WO2021192319A1 - Thermally peelable adhesive tape - Google Patents
Thermally peelable adhesive tape Download PDFInfo
- Publication number
- WO2021192319A1 WO2021192319A1 PCT/JP2020/014413 JP2020014413W WO2021192319A1 WO 2021192319 A1 WO2021192319 A1 WO 2021192319A1 JP 2020014413 W JP2020014413 W JP 2020014413W WO 2021192319 A1 WO2021192319 A1 WO 2021192319A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- adhesive tape
- pressure
- expandable
- sensitive adhesive
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J109/00—Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/06—Non-macromolecular additives organic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/08—Macromolecular additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J175/00—Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
- C09J175/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J183/00—Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
- C09J183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J201/00—Adhesives based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
- C09J5/06—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/22—Plastics; Metallised plastics
- C09J7/25—Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/38—Pressure-sensitive adhesives [PSA]
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
Definitions
- the present invention can be suitably used in a pressing process at a high temperature or at room temperature for a long time in various manufacturing processes including a manufacturing process of electronic parts and semiconductor parts, and when further heated after use in the pressing process, the adhesiveness is improved.
- the present invention relates to a heat-removable adhesive tape that is significantly reduced and can be easily peeled off without adhesive residue.
- adhesive tapes with high heat resistance are widely used in the manufacturing process of electronic parts and semiconductor parts.
- Highly heat-resistant adhesive tapes are widely used, for example, in heat treatment processes during the manufacture of electronic parts and semiconductor parts, for temporary fixing of members and parts, fixing during transportation, reinforcement, protection, masking, resin sealing, and the like.
- the adhesive tape is required to have a sufficiently high adhesive force to the adherend during use and to be easily peeled off without adhesive residue after use.
- Adhesive tape may be used for the purpose of improving workability when it is difficult to process thin parts with low rigidity.
- a double-sided adhesive tape is attached to a highly rigid transport plate by attaching an adhesive surface on one side to the adhesive surface on one side, and the thin substrate is attached to the adhesive surface on the opposite side.
- Workability in mounting parts and processing members on a thin substrate can be improved. Processing of such a member includes, for example, a heat pressing step in which a semiconductor chip is placed on a thin substrate and sealed with a resin.
- the thin substrate, double-sided tape, and transfer plate completed after processing and mounting of the members are separated from each other, and the transfer plate is reused for processing the thin substrate as needed.
- sufficiently strong adhesiveness is required during the processing process.
- the thin substrate will be damaged, so that the adhesiveness at the time of peeling the adhesive tape is required to be as low as possible.
- glass has been used as the material of the transport plate in the past.
- the transport plate made of glass may be easily deformed in a high temperature environment, or may have problems such as a coefficient of linear expansion significantly different from that of the product. Therefore, when used in a process with a stricter temperature than before, stainless steel (SUS), aluminum plate, metal such as copper plate, silicon, copper-clad laminate, etc. are often used as the material of the transport plate. There is.
- a single-sided adhesive tape using a highly rigid base material for example, a resin film of 50 ⁇ m to 125 ⁇ m
- a highly rigid base material for example, a resin film of 50 ⁇ m to 125 ⁇ m
- the adhesive tape is peeled off from the thin substrate. Even in such usage, sufficiently strong adhesiveness is required during the processing process, while extremely low adhesiveness is required when the adhesive tape is peeled off.
- Patent Documents 1 to 6 disclose adhesive tapes that have sufficient adhesiveness from the initial stage of attachment to an adherend to use in a manufacturing process, but the adhesiveness is significantly reduced by giving some external stimulus after use. Has been done.
- Patent Document 1 shows excellent initial adhesive properties for semiconductor substrates and thin film substrates, and has excellent adhesiveness during manufacturing processes such as dicing, but the light-sensitive adhesive is cured by irradiation with ultraviolet rays and adheres.
- a photosensitive adhesive tape in which the force is remarkably reduced and a method for producing the same are disclosed.
- the photoreactive component contained in the pressure-sensitive adhesive whose adhesive strength is lowered by such ultraviolet irradiation generally has low heat resistance, and may be unsuitable for use in a high-temperature manufacturing process.
- such a light-sensitive adhesive cannot be used for a transport plate made of a material that does not transmit light, such as metal or silicon, as described above.
- Patent Document 2 preferably prevents resin leakage in the sealing process, and also prevents peeling or breakage of the molded sealing resin or adhesive residue when the heat-resistant adhesive tape is peeled off.
- a heat-resistant adhesive tape capable of improving the yield is disclosed.
- the adhesive tape disclosed in Patent Document 2 has an ultraviolet curable adhesive layer, and the adhesive layer is irradiated with ultraviolet rays and further heated at 200 ° C. for 1 hour, and then the adhesive is measured in accordance with JISZ0237. The force is 1N / 19m or less.
- the adhesive tape disclosed in Patent Document 2 is irradiated with ultraviolet rays before the sealing step (that is, the heating step) with the sealing resin, and the adhesive strength is lowered by inducing a curing reaction by ultraviolet rays in the pressure-sensitive adhesive layer. It is used on the premise that the resin is injected and then heat-cured. That is, Patent Document 2 does not mention that the adhesive tape is easily peeled off by giving an external stimulus after the heating step. Like the adhesive tape of Patent Document 1, this adhesive tape cannot be used for a transport plate made of a material that does not transmit light, such as metal or silicon.
- Patent Documents 3 to 6 disclose heat-release type pressure-sensitive adhesive sheets in which heat-expandable microspheres contained in the heat-expandable pressure-sensitive adhesive layer are foamed when heated to a predetermined temperature, and the adhesive strength is remarkably reduced.
- the heat-release type pressure-sensitive adhesive sheets disclosed in these patent documents have an pressure-sensitive adhesive layer (heat-expandable pressure-sensitive adhesive layer) containing heat-expandable microspheres as a foaming agent after achieving the purpose of adhering an article including an adherend. By heating, the adhesive force is reduced, and the adherend can be easily separated from the heat-release type adhesive sheet.
- the reduction in the adhesive force in the adhesive layer is mainly caused by foaming or expanding the adhesive layer by heating, changing the surface of the adhesive layer into an uneven shape, and reducing the adhesive area with the adherend.
- the heat-removable pressure-sensitive adhesive sheets disclosed in these patent documents are not intended to be used in a high-temperature heating process for a long period of time. There is no mention of a technique for further heating and making it easy to peel off.
- These heat foam release type adhesive tapes are used in the high temperature and long time pressing process, -The heat-expandable particles foam during pressing, which reduces the adhesion to the adherend during the process.
- Patent Document 6 discloses a heat-release type adhesive tape that can prevent the pressure-sensitive adhesive from being deformed in the step of laminating and pressurizing a green sheet to cause a displacement of the heat-expandable pressure-sensitive adhesive layer in the ceramic capacitor manufacturing process. Has been done. It is considered that such a heat-removable adhesive tape can be suitably used for preventing misalignment in a pressing process at room temperature for a short time.
- Patent Document 6 describes the foam peeling property of the adhesive layer after being used in the pressing process at high temperature or at room temperature for a long time, the adhesive residue property on the adherend after peeling, and the high temperature pressing process. No mention is made of suppressing the foaming of heat-expandable particles.
- thermally expandable particles used in Examples 1 to 3 of Patent Document 6 are those that start expansion at 120 ° C., and are used in a step such as heat pressing at 170 ° C. for 1 hour. In some cases, it is assumed that foaming may occur during hot pressing.
- Japanese Unexamined Patent Publication No. 2001-139905 Japanese Unexamined Patent Publication No. 2012-46763 Japanese Unexamined Patent Publication No. 11-166164 JP-A-2007-246823 Japanese Unexamined Patent Publication No. 2016-155919 International Publication No. 2005/088787
- An object of the present invention is an adhesive tape used in a pressurizing process of an adherend in various manufacturing processes including a manufacturing process of electronic parts and semiconductor parts, which is suitable for a pressing process at a high temperature or at a normal temperature for a long time. It is an object of the present invention to provide a heat-removable adhesive tape that can be used in the above-mentioned manner and that the adhesiveness of the adhesive layer is remarkably reduced when further heated after use in the pressing step, and can be easily peeled off without adhesive residue on the adherend.
- a heat-release type adhesive tape having a heat-expandable pressure-sensitive adhesive layer containing a pressure-sensitive adhesive component and heat-expandable particles satisfies the following requirements at a high temperature. It is also very effective when used in a hot pressing process at room temperature for a long time, easy peeling and adhesive residue when heated, and suppression of expansion of heat-expandable particles during high-temperature pressing. I found. -The amount of the heat-expandable particles added to the pressure-sensitive adhesive component is within a specific range. -The maximum expansion temperature of the thermally expandable particles is within a specific range. -Various parameters in the dynamic viscoelasticity measurement of the adhesive component are in a specific range. The present inventors have completed the present invention based on such new findings.
- the heat-release type pressure-sensitive adhesive tape according to the present invention is a heat-release type pressure-sensitive adhesive tape having a heat-expandable pressure-sensitive adhesive layer containing a pressure-sensitive adhesive component and heat-expandable particles, and the heat-expandable pressure-sensitive adhesive layer is the pressure-sensitive adhesive component. It contains 4 parts by mass or more of the heat-expandable particles with respect to 100 mass, the maximum expansion temperature of the heat-expandable particles is 170 ° C. or more, and the dynamic viscoelasticity measurement of the pressure-sensitive adhesive component (temperature range-). At 60 ° C.
- the method for heat-pressing an adherend according to the present invention is as follows. A method for heat-pressing an adherend having a temporarily fixed heat-release adhesive tape.
- the heat-release type adhesive tape according to the present invention has a heat-expandable pressure-sensitive adhesive layer containing a pressure-sensitive adhesive component and heat-expandable particles, the heat-expandable particles have a maximum expansion temperature in a specific range, and the pressure-sensitive adhesive component.
- the heat-release adhesive tape according to the present invention has at least a heat-expandable adhesive layer.
- the heat-expandable pressure-sensitive adhesive layer contains at least a pressure-sensitive adhesive component for imparting adhesiveness and heat-expandable particles (foaming agent) for imparting heat-expandability.
- the heat-expandable pressure-sensitive adhesive layer contains 4 parts by mass or more of heat-expandable particles with respect to 100 parts by mass of the pressure-sensitive adhesive component.
- the maximum expansion temperature of the thermally expandable particles is 170 ° C. or higher, and the pressure-sensitive adhesive component is measured in dynamic viscoelasticity (temperature range -60 ° C.
- the tan ⁇ at the maximum expansion temperature of the thermally expandable particles satisfies 0.120 or less
- the storage elastic modulus G'at 170 ° C. satisfies 30,000 Pa or more.
- the maximum expansion temperature of the heat-expandable particles is a value obtained according to the measurement method described later. If the maximum expansion temperature of the heat-expandable particles is less than 170 ° C., the following problems may occur. -The heat-expandable particles expand (foam) during a long-term heat pressing process at a high temperature (for example, 170 ° C.), and the adhesion to the adherend decreases during the process. When the adhesion to the adherend is lowered, for example, in the cleaning process of parts, the cleaning liquid invades the interface between the adherend and the adhesive.
- the dimensions of the heat-expandable adhesive layer itself or the dimensions defined by the heat-expandable adhesive layer will change, causing problems in the processing of parts.
- the amount of the heat-expandable particles added to 100 parts by mass of the pressure-sensitive adhesive component is less than 4 parts by mass, the force generated by the expansion of the heat-expandable particles is not sufficient, and the surface of the pressure-sensitive adhesive layer is unlikely to change into an uneven shape. If it is desired to be thermally peeled off after pressing, the effect of reducing the adhesiveness may not be sufficiently obtained.
- the maximum expansion of the heat-expandable particles causes The generated force is easily dissipated as heat. That is, the surface of the adhesive layer is unlikely to change into an uneven shape due to the force generated by the expansion of the generated heat-expandable particles. As a result, the adhesive force from the adherend is unlikely to be reduced. If the storage elastic modulus G'of the pressure-sensitive adhesive component at 170 ° C. is less than 30,000 Pa, the heat-expandable particles may foam during pressing at a high temperature for a long time.
- the storage elastic modulus G'of the pressure-sensitive adhesive component is less than 30,000 Pa, the cohesive force of the heat-expandable pressure-sensitive adhesive layer is also weak, so that when the pressure-sensitive adhesive layer is peeled off after use in a high-temperature environment, adhesive remains easily on the adherend.
- the pressure-sensitive adhesive component meets the requirements for specific parameters in dynamic viscoelasticity measurements (temperature range ⁇ 60 ° C. to 300 ° C., heating rate 10 ° C./min, frequency 10 Hz). That is, the tan ⁇ at the maximum expansion temperature of the heat-expandable particles is 0.120 or less, preferably 0.001 or more and 0.120 or less, more preferably 0.001 or more and 0.110 or less, and particularly preferably 0.001 or more and 0. It is 100 or less. Further, the storage elastic modulus G'at 170 ° C. is 30,000 Pa or more, preferably 30,000 Pa or more and 1,000,000 Pa or less, more preferably 40,000 Pa or more and 1,000,000 Pa or less, and particularly preferably 50,000 Pa. It is 1,000,000 Pa or less.
- the adhesive component has the above-mentioned characteristics from, for example, acrylic adhesive, rubber adhesive, silicone adhesive, polyester adhesive, polyamide adhesive, urethane adhesive, and fluorine adhesive.
- the pressure-sensitive adhesive can be appropriately selected and used.
- the pressure-sensitive adhesive can be used alone or in combination of two or more.
- an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive can be particularly preferably used as the pressure-sensitive adhesive.
- the type of the acrylic pressure-sensitive adhesive is not particularly limited, and various known acrylic pressure-sensitive adhesives containing an acrylic copolymer as a main component can be used.
- the acrylic copolymer for example, an acrylic copolymer obtained by copolymerizing a (meth) acrylic acid ester, a carboxyl group-containing monomer, and other monomers if necessary can be used.
- Specific examples of the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth).
- Examples thereof include acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, and lauryl (meth) acrylate.
- Specific examples of the carboxyl group-containing monomer include (meth) acrylic acid, itaconic acid, crotonic acid, (maleic anhydride) maleic acid, fumaric acid, 2-carboxy-1-butene, 2-carboxy-1-pentene, and 2-carboxy. Examples thereof include -1-hexene and 2-carboxy-1-heptene.
- hydroxyl group-containing monomers such as 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate, acrylonitrile, styrene, and 2-methylolethylacrylamide.
- hydroxyl group-containing monomers such as 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate, acrylonitrile, styrene, and 2-methylolethylacrylamide.
- Vinyl acetate acryloylmorpholine and the like.
- acrylic copolymer examples include a (meth) acrylic acid alkyl ester (A1) having an alkyl group having 4 to 12 carbon atoms and a (meth) acrylic acid having an alkyl group having 4 to 12 carbon atoms.
- the components (A1), (A2), (A3), (A4) and (A5) can be used independently of one kind of component or in combination of two or more kinds of components.
- (meth) acrylic acid alkyl ester (A1) having an alkyl group having 4 to 12 carbon atoms include n-butyl (meth) acrylate, isobutyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. Examples thereof include octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, and lauryl (meth) acrylate.
- the (meth) acrylic acid alkyl ester monomer (A2) having an alkyl group having 1 to 3 carbon atoms the number of carbon atoms of methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate and the like can be increased.
- a (meth) acrylic acid alkyl ester having 1 to 3 alkyl groups may be used.
- the sum of the component amounts of the (meth) acrylic acid alkyl ester (A1) and (A2) is preferably 50% by mass or more in 100% by mass of all the constituents (monomer unit) of the acrylic copolymer (A). , More preferably 60% by mass or more, and particularly preferably 70% by mass or more.
- carboxyl group-containing monomer (A3) examples include (meth) acrylic acid, itaconic acid, crotonic acid, (maleic anhydride), fumaric acid, 2-carboxy-1-butene, 2-carboxy-1-pentene, and the like. Examples thereof include 2-carboxy-1-hexene and 2-carboxy-1-heptene.
- the blending amount of the carboxyl group-containing monomer (A3) is preferably 0.5 to 15% by mass, more preferably 1 to 1 to 100% by mass, based on 100% by mass of all the constituents (monomer units) of the acrylic copolymer (A). It is selected from the range of 12% by mass, particularly preferably 1 to 10% by mass.
- hydroxyl group-containing monomer (A4) examples include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
- the blending amount of the hydroxyl group-containing monomer (A4) is preferably 0.05 to 15% by mass, more preferably 0.07, based on 100% by mass of all the constituents (monomer units) of the acrylic copolymer (A). It is selected from the range of ⁇ 12% by mass, particularly preferably 0.1 to 10% by mass.
- the other monomer (A5) vinyl acetate and acryloylmorpholin are preferable.
- the blending amount thereof is preferably selected from the range of 0.1 to 10% by mass in 100% by mass of the constituent components (monomer unit) of the acrylic copolymer (A).
- acryloylmorpholine is added, the blending amount thereof is selected from the range of 0.1 to 10% by mass, preferably 0.1 to 10% by mass, based on 100% by mass of all the constituents (monomer units) of the acrylic copolymer (A).
- the acrylic copolymer (A) may further contain a monomer other than each of the above-exemplified monomers as a constituent component.
- a cross-linking agent having reactivity with the functional group of the acrylic copolymer is generally used.
- the cross-linking agent for example, isocyanate compounds, acid anhydrides, amine compounds, epoxy compounds, metal chelates, aziridine compounds, and melamine compounds can be used. If necessary, one of these cross-linking agents or a combination of two or more thereof can be used.
- the amount of the cross-linking agent to be blended is usually in the range of 0.1 to 15 parts by mass, more preferably 0.3 to 12 parts by mass, and particularly preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the acrylic copolymer. Is selected from.
- Acrylic adhesives include rosin-based, terpene-based, petroleum-based, kumaron-inden-based, pure monomer-based, phenol-based, xylene-based tackifier resins, and mineral oils such as paraffin-based process oils; polyesters, if necessary. Plasticizers; Softeners containing vegetable oils, etc .; Add at least one of anti-aging agents such as aromatic secondary amines, monophenols, bisphenols, polyphenols, benzimidazoles, rosins, etc. May be good. Further, the saturated hydrocarbon resin may be blended with the acrylic pressure-sensitive adhesive.
- the acrylic pressure-sensitive adhesive may further contain at least one of additives such as a silane coupling agent and an antioxidant, if necessary.
- a silane coupling agent containing a glycidyl group is particularly preferable.
- Specific examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane.
- the blending amount of the silane coupling agent is preferably 0.01 to 0.5 parts by mass, more preferably 0.02 to 0.5 parts by mass, particularly, with respect to 100 parts by mass of the acrylic copolymer (A). It is preferably selected from the range of 0.03 to 0.3 parts by mass.
- the antioxidant a hindered phenolic antioxidant is particularly preferable.
- the blending amount of the antioxidant is preferably selected from the range of 0.01 to 1 part by mass, more preferably 0.02 to 0.7 parts by mass with respect to 100 parts by mass of the acrylic copolymer (A). NS.
- the storage elastic modulus G'in a high temperature environment tends to be high.
- G'in a high temperature environment is high, tan ⁇ in a relatively high temperature environment is also relatively low.
- the theoretical Tg can be generally calculated by the FOX formula, but the theoretical Tg also increases by increasing the ratio of the (A2) component, the (A3) component, the (A4) component, and the (A5) component in the entire acrylic copolymer. ..
- Another method is to increase the weight average molecular weight (Mw) of the acrylic copolymer.
- Mw weight average molecular weight
- the weight average molecular weight (Mw) is high, the cohesive force between the polymers is generally high and the fluidity is low, so that the storage elastic modulus G'in a high temperature environment is high and the tan ⁇ in a high temperature environment is also low.
- the amount of the cross-linking agent added for bonding the acrylic copolymers to each other is large.
- the amount of the cross-linking agent added is large, a three-dimensional network is formed more strongly by cross-linking the acrylic copolymers, and as a result, G'is high and tan ⁇ is low even in a high temperature environment.
- the type of rubber-based adhesive is not particularly limited, and various known rubber-based adhesives containing a rubber component as a main component can be used.
- the rubber component include butyl rubber, polyisobutylene rubber, isoprene rubber, styrene-isobutylene-styrene block copolymer, styrene-isoprene block copolymer, styrene-butadiene rubber, styrene-isoprene-styrene block copolymer, and the like.
- Synthetic rubber such as styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, styrene-ethylene-propylene-styrene block copolymer, styrene-ethylene-propylene block copolymer; natural rubber Can be mentioned.
- One kind of rubber component may be used, or two or more kinds of rubber components may be used in combination.
- Butyl rubber is generally a rubber containing a copolymer of isobutylene and 1 to 3% by mass of isoprene as a main component.
- the pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive layer preferably contains a saturated hydrocarbon resin together with the rubber-based pressure-sensitive adhesive.
- the saturated hydrocarbon resin is a hydrocarbon resin having no unsaturated bond, and is a component for improving the adhesiveness of the pressure-sensitive adhesive layer.
- the type of saturated hydrocarbon resin is not particularly limited, and for example, various alicyclic or aliphatic saturated hydrocarbon resins known as tackifiers can be used.
- One kind of saturated hydrocarbon resin may be used, or two or more kinds of saturated hydrocarbon resins may be used in combination.
- an alicyclic saturated hydrocarbon resin is preferable, and a hydrocarbon resin whose unsaturated bond is eliminated by hydrogenation treatment is more preferable.
- Hydrogenated petroleum resin is a commercially available saturated hydrocarbon resin.
- Hydrogenated petroleum resin is a resin obtained by hydrogenating petroleum resin (for example, aromatic petroleum resin, aliphatic petroleum resin, copolymerized petroleum resin of alicyclic component and aromatic component, etc.). Is.
- hydrogenated petroleum resins (alicyclic saturated hydrocarbon resins) obtained by hydrogenating aromatic petroleum resins are preferable.
- This hydrogenated petroleum resin is available as a commercially available product (for example, manufactured by Arakawa Chemical Industry Co., Ltd., Archon (trade name, registered trademark in Japan) P-100).
- the blending amount of the saturated hydrocarbon resin is preferably selected from the range of 0.01 to 100 parts by mass, more preferably 0.1 to 80 parts by mass with respect to 100 parts by mass of the pressure-sensitive adhesive component. The higher the content of the saturated hydrocarbon resin, the better the adhesiveness.
- the molecular weight of the rubber component may be increased to increase the cohesive force of the pressure-sensitive adhesive component. Further, even if the rubber component is vulcanized with sulfur or resin to form a stronger three-dimensional network by cross-linking the rubber components, G'in a high temperature environment can be increased and tan ⁇ can be decreased.
- silicone-based pressure-sensitive adhesive used in the present invention include silicone raw rubber (a long-chain polymer of polydimethylsiloxane having a structure composed of D unit [(CH 3 ) 2 SiO]) and MQ resin (M unit).
- silicone raw rubber a long-chain polymer of polydimethylsiloxane having a structure composed of D unit [(CH 3 ) 2 SiO]
- MQ resin M unit
- examples thereof include a pressure-sensitive adhesive containing [(CH 3 ) 3 SiO 1/2 ] and a polymer of a silicone resin having a three-dimensional structure having a structure consisting of a Q unit [SiO 4/2].
- Such a pressure-sensitive adhesive containing silicone raw rubber and MQ resin is superior in adhesiveness to silicone raw rubber alone. Further, by changing the ratio of the silicone raw rubber and the MQ resin in the adhesive, it is possible to control the basic adhesive physical properties such as adhesive force, holding force, and tack.
- the adhesive physical characteristics can be controlled by changing the ratio of the M unit to the Q unit of the MQ resin and changing the molecular weight.
- Silicone-based adhesives are roughly classified into addition-curing type and peroxide-curing type according to their curing mechanism.
- the addition-curable silicone-based pressure-sensitive adhesive contains, for example, a main agent made of silicone raw rubber containing an alkenyl group, an MQ resin, and a cross-linking agent made of polyorganosiloxane containing a SiH group. Then, it is cured by heating under a platinum catalyst and causing a cross-linking reaction.
- the silicone raw rubber containing an alkenyl group is typically a polyorganosiloxane having at least two alkenyl groups (for example, vinyl groups) bonded to a silicon atom in one molecule.
- the polyorganosiloxane containing a SiH group is typically a polyorganosiloxane having at least two hydrogen atoms bonded to a silicon atom in one molecule.
- the peroxide-curable silicone-based pressure-sensitive adhesive contains, for example, a main agent made of silicone raw rubber containing no alkenyl group and an MQ resin. Then, a peroxide such as benzoyl peroxide is added as a curing agent, the solvent is removed, and then the mixture is heated at a high temperature to cure.
- a peroxide such as benzoyl peroxide
- the silicone-based pressure-sensitive adhesive may be a blend of two or more types of silicone-based pressure-sensitive adhesives for the purpose of improving various properties. However, it is necessary to appropriately select the type and amount of the silicone-based pressure-sensitive adhesive to be blended so as not to impair the effects of the invention.
- the ratio of silicone rubber to silicone resin is preferably in the range of 30/70 to 90/10.
- the ratio of the silicone rubber is less than this range, the cohesive force in a high temperature environment tends to be weakened, so that the storage elastic modulus G'is also low and the tan ⁇ is high.
- the proportion of silicone rubber is large, it is difficult to develop sufficient initial adhesive force and it is difficult to adhere to the adherend.
- the bond between the silicone components is controlled by adjusting the alkenyl group content and the amount of the cross-linking agent of the raw silicone rubber, and as a result, the storage elastic modulus G'and tan ⁇ are controlled. It is possible to do.
- the alkenyl group content and the amount of the cross-linking agent of the silicone raw rubber are increased, the sufficient storage elastic modulus G'at high temperature tends to increase, and the tan ⁇ tends to decrease.
- the storage elastic modulus G'and tan ⁇ can be controlled by the amount of peroxide added. When the amount of peroxide added is increased, the sufficient storage elastic modulus G'at high temperature tends to increase, and tan ⁇ tends to decrease.
- Each of the adhesives described above may further contain at least one other component, if necessary.
- solvents such as toluene
- additives such as antioxidants, ultraviolet absorbers, light stabilizers, antistatic agents, flame retardants, conductivity improvers, and thermal conductivity improvers
- carbon black such as calcium oxide, etc.
- fillers or pigments such as magnesium oxide, silica, zinc oxide and titanium oxide.
- heat-expandable particles heat-expandable particles having a maximum expansion temperature of 170 ° C. or higher are preferably used.
- the heat-expandable particles can be used alone or in combination of two or more.
- known heat-expandable microspheres can be appropriately selected, and microencapsulated heat-expandable particles are preferable.
- thermally expandable particles include those in which a gasifying agent such as a liquid low boiling point hydrocarbon such as isobutane, propane, or pentane is wrapped in a thermoplastic polymer shell (shell).
- thermoplastic polymer shell softens, and the contained liquid low-boiling-point hydrocarbon gasifies and expands at that pressure.
- the material for forming the thermoplastic polymer shell include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethylmethacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
- thermally expandable particles having a maximum expansion temperature of 170 ° C. or higher examples include the series of the product name "Matsumoto Microsphere” manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd. (for example, “Matsumoto Microsphere FN-180 SSD” as the product name. , “Matsumoto Microsphere FN-180SD”, “Matsumoto Microsphere FN-180D”, “Matsumoto Microsphere FN-190SD”, “Matsumoto Microsphere F-190D”, “Matsumoto Microsphere F-260D” ) And other commercially available products can be preferably used.
- thermally expandable particles having a maximum expansion temperature of 170 ° C. or higher, particularly preferably 180 ° C. or higher and 320 ° C. or lower can be preferably used.
- the maximum expansion temperature of the thermally expandable particles can be obtained by using the thermal analyzer TMA (TMA7100, manufactured by Hitachi High-Tech Science Corporation).
- TMA thermal analyzer
- the maximum expansion temperature of the heat-expandable particles was analyzed in a compression mode (load: 0.05 N, heating rate: 10 ° C./min) by placing the heat-expandable particles in a 5 mm ⁇ aluminum pan, covering it with an inner lid. When, it is the temperature at which the expansion of the thermally expandable particles is maximized. For convenience, this temperature was defined as TFmax.
- TMA thermal analyzer
- the heat-expandable particles having a volume expansion coefficient of 5 times or more can be preferably used.
- the blending amount of the heat-expandable particles is 4 parts by mass or more, preferably 5 parts by mass or more, more preferably 5 parts by mass or more and less than 100 parts by mass with respect to 100 parts by mass of the resin component contained in the heat-expandable adhesive layer. Particularly preferably, it can be appropriately set from the range of 7 parts by mass or more and less than 80 parts by mass, more preferably 10 parts by mass or more and 50 parts by mass, depending on the desired initial adhesiveness, lowering of peeling force after foaming, and the like. ..
- Thermal expansion particles may have reduced foamability when exposed to a high temperature and high humidity environment such as a temperature of 65 ° C. and a relative humidity of 80%. Therefore, it is desirable to store this heat-removable adhesive tape using heat-expandable particles away from a high-temperature and high-humidity environment. Further, in order to maintain the thermal exfoliation property even in a state where the foamability is lowered, the blending amount of the thermally expandable particles is preferably 7 parts by mass or more with respect to 100 parts by mass of the resin component contained in the thermally expandable adhesive layer. ..
- the average particle size of the heat-expandable particles can be appropriately selected according to the thickness of the heat-expandable adhesive layer and the like.
- the average particle size of the heat-expandable particles having a shape such as a microsphere can be selected from, for example, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and particularly preferably 1 ⁇ m or more and 50 ⁇ m or less.
- Thermally expandable particles having a target average particle size can be selected from commercially available products and used.
- the particle size of the heat-expandable particles may be adjusted in the process of producing the heat-expandable particles, or may be performed by a known method (for example, classification) for commercially available heat-expandable particles. .. In order to obtain the smoothness of the heat-expandable adhesive layer, it is preferable that the particle sizes of the heat-expandable particles are uniform.
- the thickness of the heat-expandable adhesive layer is not particularly limited, but can be selected from, for example, preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 150 ⁇ m, and particularly preferably 15 ⁇ m to 100 ⁇ m.
- a known heat-expansion method can be appropriately selected and adopted.
- a heating means such as a hot plate, a hot air dryer, or an infrared heater can be appropriately used.
- the heating temperature during the heat treatment may be equal to or higher than the foaming start temperature of the heat-expandable particles in the heat-expandable adhesive layer, but the heat treatment conditions are appropriately set depending on the heating means, the material of the adherend, the heat capacity, and the like. can.
- the layer structure of the heat-removable adhesive tape according to the present invention includes a layer structure consisting of only a heat-expandable adhesive layer having no other layers, and a layer structure consisting of a heat-expandable adhesive layer and other layers.
- the heat-release type adhesive tape composed of only the heat-expandable adhesive layer is a heat-release type adhesive tape having a plurality of different heat-expandable adhesive layers even if it is a heat-release type adhesive tape composed of a single layer of the heat-expandable adhesive layer. There may be. Examples of other layers used as necessary include a base material, a release liner and the like.
- Examples of the form of the heat-removable adhesive tape having at least one of the base material and the release liner include the following forms. (1) A heat-removable adhesive tape having a heat-expandable adhesive layer on both sides of a base material. (2) A heat-removable adhesive tape having a heat-expandable adhesive layer on only one side of the base material. (3) A heat-release type adhesive tape having a heat-expandable adhesive layer on one surface of a base material and a non-heat-expandable adhesive layer (adhesive layer having no thermal expansion) on the other surface. (4) A heat-release type adhesive tape having a heat-expandable adhesive layer on the release liner.
- a heat-release type adhesive tape having a heat-expandable adhesive layer and a non-heat-expandable adhesive layer on the release liner in this order.
- the heat-expandable pressure-sensitive adhesive layer and the non-heat-expandable pressure-sensitive adhesive layer which are different from the heat-expandable pressure-sensitive adhesive layer according to the present invention, may be selected so as to obtain the desired functions and effects of the heat-releaseable pressure-sensitive adhesive tape.
- a release liner may be provided on the heat-expandable adhesive layer or the non-heat-expandable adhesive layer.
- the base material can be used as a member of a heat-removable adhesive tape, for example, as a support for a heat-expandable adhesive layer or the like.
- the base material is not particularly limited, but known films, non-woven fabrics, foams, cloths, papers, and combinations thereof can be used.
- a film-like base material that can easily obtain thickness uniformity in the manufacturing process of a thin substrate is preferable.
- a resin film having heat resistance required in the usage environment is preferable.
- polyesters such as polyimide (PI), polyetheretherketone (PEEK), polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyphenylene sulfide (PPS), polyamideimide (PAI), and poly.
- resin films such as ether sulfone (PES) and polytetrafluoroethylene (PTFE). These films can be used as a single layer or a laminated film having two or more layers.
- the laminated film may include one or more combinations of a plurality of layers made of different materials.
- a polyimide film having excellent dimensional stability at high temperatures is particularly preferable.
- the thickness of the base material is not particularly limited, but can be selected from a range of preferably 1 ⁇ m or more and 200 ⁇ m or less, more preferably 2 ⁇ m or more and 150 ⁇ m or less, and particularly preferably 2 ⁇ m or more and 125 ⁇ m or less.
- an easy-adhesion treatment may be applied to the surface of the base material on which the pressure-sensitive adhesive layer is provided.
- Examples of the easy-adhesion treatment include a primer treatment, a corona treatment, an etching treatment, a plasma treatment, and a sandblast treatment. From these, one kind or a combination of two or more kinds can be selected.
- the base material may be surface-treated such as antistatic if necessary.
- antistatic treatment include treatment with an antistatic agent such as a cationic surfactant, an anionic surfactant, and a nonionic surfactant.
- the base material may be colored by printing, kneading, or the like, if necessary.
- the pressure-sensitive adhesive for forming the non-thermally expandable pressure-sensitive adhesive layer is not particularly limited, and the pressure-sensitive adhesive exemplified above in the description of the heat-expandable pressure-sensitive adhesive layer can be similarly used.
- the pressure-sensitive adhesive for example, known pressure-sensitive adhesives such as acrylic pressure-sensitive adhesive, rubber-based pressure-sensitive adhesive, silicone-based pressure-sensitive adhesive, polyester-based pressure-sensitive adhesive, polyamide-based pressure-sensitive adhesive, and urethane-based pressure-sensitive adhesive can be used. These adhesives can be used alone or in combination of two or more.
- the non-heat-expandable adhesive layer contains at least one additive such as a tackifier, a coloring pigment, an antioxidant, an antioxidant, an antistatic agent, a cross-linking agent, and a silane coupling agent. May be good.
- the thickness of the non-thermally expandable adhesive layer can be selected from, for example, preferably 200 ⁇ m or less, more preferably 1 ⁇ m or more and 150 ⁇ m or less, and particularly preferably 1 ⁇ m or more and 100 ⁇ m or less.
- the method for forming the non-thermally expandable adhesive layer is the same as that for the heat-expandable adhesive layer (for example, a method of applying on a base material, a method of applying on a release liner to form an adhesive layer, and then this. Is transferred onto a substrate, etc.).
- the release liner As the release liner, a known release paper or the like can be used.
- the release liner is used as a protective material for the heat-expandable adhesive layer, and is peeled off when the heat-release type adhesive sheet is attached to the adherend.
- Examples of the release liner include a plastic film (for example, PET film) surface-treated with a release agent such as silicone-based, long-chain alkyl-based, and fluorine-based, a base material having a release layer such as paper, and a fluorine-based resin (for example).
- a low adhesive base material made of a non-polar polymer such as polytetrafluoroethylene) or an olefin resin (for example, polyethylene, polypropylene, etc.) may be used.
- FIG. 1 is a schematic cross-sectional view in the thickness direction showing an embodiment of the heat-removable adhesive tape according to the present invention.
- the heat-release type pressure-sensitive adhesive sheet 1 shown in FIG. 1 has a base material 2, a heat-expandable pressure-sensitive adhesive layer 3, and a release liner 4.
- the two heat-expandable adhesive layers 3 may be the same or different.
- the two release liners 4 may also be the same release liner or different release liners.
- the heat-removable pressure-sensitive adhesive sheet 1 shown in FIG. 1 has the form of a double-sided pressure-sensitive adhesive tape having two heat-expandable pressure-sensitive adhesive layers 3 formed on both sides of the base material 2.
- at least one of the two adhesive layers may be the heat-expandable adhesive layer according to the present invention.
- at least one of the two adhesive layers 3 is a heat-expandable adhesive layer according to the present invention, and the other is a heat-expandable adhesive layer other than the heat-expandable adhesive layer according to the present invention. It may be a layer or an adhesive layer having no thermal expansion property (non-thermal expansion adhesive layer).
- the heat-release type adhesive tape composed of a heat-expandable adhesive layer is obtained by applying a layer-forming composition material containing a resin component and heat-expandable particles on a base material for forming a heat-expandable pressure-sensitive adhesive layer, and heating the coating layer. It can be produced by peeling the heat-expandable adhesive layer formed by causing a cross-linking reaction from the base material for forming the heat-expandable pressure-sensitive adhesive layer.
- the heat-release type adhesive tape having a heat-expandable adhesive layer on a base material or a release liner as a constituent member of the heat-release type adhesive tape is based on, for example, a layer-forming composition material containing a resin component and heat-expandable particles. It can be produced by applying it on a material or a release liner and causing a cross-linking reaction in the coating layer by heating to form a heat-expandable adhesive layer. Further, a layer-forming composition material containing a resin component and heat-expandable particles is applied onto a release liner (for example, a silicone-treated PET film), and heating causes a cross-linking reaction in the coated layer to cause a cross-linking reaction on one side of the base material.
- a layer-forming composition material containing a resin component and heat-expandable particles is applied onto a release liner (for example, a silicone-treated PET film), and heating causes a cross-linking reaction in the coated layer to cause a cross
- a heat-removable adhesive tape can be formed by transferring to both sides. It is important that the heating temperature for cross-linking is sufficiently lower than the foaming start temperature of the heat-expandable particles.
- a known coating device such as a roll coater, a die coater, or a lip coater can be used. When heating after coating, the solvent in the layer-forming material can be removed as well as the cross-linking reaction by heating.
- the heat-expandable adhesive layer is formed by transfer, it is preferable to laminate with a heated roll or the like in order to improve the adhesion between the base material and the heat-expandable adhesive layer and further obtain the smoothness of the surface.
- the heat-removable adhesive tape according to the present invention can be suitably used for heat-pressing an adherend to which the heat-removable adhesive tape is temporarily fixed.
- One form of the method of using the heat-removable adhesive tape according to the present invention in the heat pressing treatment of the adherend is The process of temporarily fixing the adhesive tape having the above configuration to the adherend, A step of heat-pressing the adherend to which the adhesive tape is temporarily fixed, and A step of heating the adhesive tape temporarily fixed to the heat-pressed adherend to a temperature for peeling, and A step of peeling the adhesive tape heated to the peeling temperature from the adherend, Have.
- One form of the heat pressing treatment method for the adherend using such a usage method is A method for heat-pressing an adherend having a temporarily fixed heat-release adhesive tape.
- the forms of temporary fixing of the heat-removable adhesive tape to the adherend include temporary fixing between the adherends, temporary fixing during transportation of the adherend, reinforcement, protection or masking of the adherend, and temporary fixing to the adherend.
- the conditions of the heat pressing step that can be preferably used for the heat-release adhesive tape according to the present invention include a temperature of 120 to 240 ° C., a time of 5 minutes to 10 hours, and a pressure of 5 to 40 kgf / cm 2 .
- part is a mass part.
- the weight average molecular weight (Mw) is the type and amount of the polymerization initiator (for example, 0.1 part by mass of lauryl peroxide with respect to 100 parts by mass of the acrylic monomer) and the type of chain transfer agent when polymerizing the acrylic copolymer. It can be adjusted by appropriately selecting the amount (for example, 0.1 part by mass of n-dodecanethiol with respect to 100 parts by mass of the acrylic monomer), the polymerization initiation concentration (for example, 50% by mass), and the like.
- Examples 1 to 10 and Comparative Examples 1 to 11 Preparation of heat-removable acrylic adhesive tape>
- a cross-linking agent (component B), an antioxidant (component C), and a silane coupling agent (component) are used with respect to 100 parts of the solid content of the acrylic copolymer (component A) obtained in Table 1.
- D) and toluene (diluting solvent) were mixed at a predetermined compounding ratio (mass basis) to obtain a pressure-sensitive adhesive composition.
- a foaming agent (component F) was mixed with 100 parts of the pressure-sensitive adhesive component at the blending ratio (mass basis) shown in Table 2 to prepare a heat-expandable pressure-sensitive adhesive composition.
- This heat-expandable pressure-sensitive adhesive composition was applied onto a PET film having a thickness of 50 ⁇ m that had been subjected to a silicone mold release treatment. Next, the diluting solvent was removed and dried at 90 to 100 ° C., and a cross-linking reaction was carried out to form a heat-expandable pressure-sensitive adhesive layer.
- This heat-expandable pressure-sensitive adhesive layer was bonded to both sides of a polyimide film having a thickness of 12 ⁇ m and transferred. Further, laminating was performed at a temperature of 100 ° C. using a tabletop laminating machine. Then, it was cured at 40 ° C. for 3 days to obtain a double-sided heat-peeling type adhesive tape. The heat-expandable pressure-sensitive adhesive composition was applied so that the thickness of the pressure-sensitive adhesive layer on one side after lamination was 50 ⁇ m. The thickness of the obtained double-sided adhesive tape is 112 ⁇ m.
- B1 Epoxy-based cross-linking agent (manufactured by Soken Chemical Co., Ltd., trade name E-5XM, solid content concentration 5%)
- B2 Isocyanate-based cross-linking agent (manufactured by Tosoh Corporation, trade name Coronate L-45E, solid content concentration 45%)
- C1 Antioxidant (manufactured by BASF, trade name Irganox 1010)
- D1 Silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-403, solid content concentration 10%)
- F1 Thermally expandable microcapsules (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., trade name Matsumoto Microsphere FN-180 SSD, maximum expansion temperature 192 ° C)
- F2 Thermally expandable microcapsules (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., trade name Matsumoto Microsphere FN-180 SSD, maximum expansion temperature 192
- Example 13 Preparation of heat-removable silicone-based adhesive tape>
- two types of prototypes (I and II) of an addition-curable silicone-based pressure-sensitive adhesive stock solution were prepared.
- the storage elastic modulus G after curing is measured by the method described later by appropriately changing the mixing ratio of MQ resin to the raw silicone rubber, the MQ resin type, the amount of the alkenyl group of the raw silicone rubber, and the amount of the cross-linking agent.
- This is a prototype of a pressure-sensitive adhesive adjusted so that tan ⁇ shows various values.
- an addition-curable silicone-based pressure-sensitive adhesive having a storage elastic modulus G'at 170 ° C.
- the undiluted solution (I) was selected. 100 parts of additive-curing silicone adhesive stock solution (I) with a solid content concentration of 50% by mass, 25 parts of toluene as a diluting solvent, and platinum catalyst (CAT-PL-50T, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 1.25 as a curing catalyst. A silicone-based pressure-sensitive adhesive composition containing a portion was prepared.
- heat-expandable microcapsules F1 manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., trade name Matsumoto Microsphere FN-180 SSD, maximum expansion temperature 192 ° C.
- a foaming agent 15 parts of heat-expandable microcapsules F1 (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., trade name Matsumoto Microsphere FN-180 SSD, maximum expansion temperature 192 ° C.) were mixed as a foaming agent to prepare a heat-expandable pressure-sensitive adhesive composition.
- This heat-expandable pressure-sensitive adhesive composition is applied to one side of a primer-treated polyimide (PI) film having a thickness of 50 ⁇ m so that the thickness of the pressure-sensitive adhesive layer after drying is 50 ⁇ m, and is placed in a drying furnace. It was dried at 120 ° C. for 2 minutes to remove the solvent and heat-cured to form a heat-expandable pressure-sensitive adhesive layer. Then, as a release liner, a polyethylene terephthalate (PET) film having a thickness of 50 ⁇ m treated with a fluorine-substituted alkyl-modified silicone resin was attached to an adhesive layer to obtain a heat-release type single-sided adhesive tape.
- PTT polyethylene terephthalate
- a silicone-based pressure-sensitive adhesive composition containing a portion was prepared. Further, 15 parts of heat-expandable microcapsules F1 (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., trade name Matsumoto Microsphere FN-180 SSD, maximum expansion temperature 192 ° C.) were mixed as a foaming agent to prepare a heat-expandable pressure-sensitive adhesive composition.
- a heat-peeling type single-sided adhesive tape was obtained in the same manner as in Example 13 except for the above.
- Each pressure-sensitive adhesive composition as a sample for measurement is used independently, and in the case of an acrylic pressure-sensitive adhesive composition, the thickness after drying is 50 ⁇ m on a PET film having a thickness of 50 ⁇ m that has been subjected to silicone mold release treatment. Was applied to. Next, the solvent was removed and dried at 90 to 100 ° C., and a cross-linking reaction was carried out to form a pressure-sensitive adhesive layer. The pressure-sensitive adhesive layers were laminated to form a laminate having a thickness of 2 mm, which was further cured at 40 ° C. for 3 days to prepare a sample for measurement.
- the silicone-based pressure-sensitive adhesive composition it was applied on a polyethylene terephthalate (PET) film having a thickness of 50 ⁇ m, which had been mold-released with a fluorine-substituted alkyl-modified silicone resin, so as to have a thickness of 50 ⁇ m after drying. Then, it was dried in a drying oven at 120 ° C. for 2 minutes to remove the solvent, and heat-cured to form a pressure-sensitive adhesive layer.
- the pressure-sensitive adhesive layers were laminated to form a laminated body having a thickness of 2 mm, which was used as a measurement sample.
- a sample for measurement is sandwiched between parallel disks ( ⁇ 8 mm), and a temperature rise rate of 10 ° C./min is applied using a dynamic viscoelasticity measuring device (manufactured by Rheometric Scientific, device name RDAIII) while applying shear strain at a frequency of 10 Hz. Then, the storage elastic modulus (G') and the loss elastic modulus (G ") are measured in the range of ⁇ 50 ° C. to 300 ° C. From the storage elastic modulus (G') and the loss elastic modulus (G "), the loss tangent tan ⁇ is calculated by the following formula.
- a roller coated with a rubber layer weighing 2 kg was reciprocated once at a speed of 300 mm / min for crimping, and then heated in a dryer at 200 ° C. for 3 minutes. After allowing to cool at 23 ° C. for 1 hour or more, the force required to peel the copper foil from the tape at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the glue on the adherend was measured. The presence or absence of the residue was visually confirmed. Next, the force required to peel the tape from the copper plate was measured at a speed of 300 mm / min at an angle of 90 ° using a tensile tester, and the presence or absence of adhesive residue on the adherend was visually confirmed.
- the peeling force and adhesive residue after the heat peeling treatment were judged according to the following criteria.
- a copper foil (assuming a substrate product) having a thickness of 35 ⁇ m, a width of 10 mm, and a length of 90 mm, and these were bonded together.
- a roller coated with a rubber layer weighing 2 kg reciprocates once at a speed of 300 mm / min for crimping, and then using a heating press machine, the temperature is 170 ° C. and the pressure applied to the entire test piece is 26 kg / cm 2. Pressurized for 1 hour.
- a silicone rubber sheet (IS-825, hardness 50 °, manufactured by Irumagawa Rubber Co., Ltd.) having a thickness of 1 mm, a width of 25 mm, and a length of 125 mm was laid under the copper plate, and the width was 10 mm.
- the same silicone rubber sheet cut to a length of 90 mm was placed on a test piece, sandwiched and pressed. After allowing to cool at 23 ° C. for 1 hour or more, the tape was peeled off from the copper foil and the copper plate, the presence or absence of foaming was visually confirmed, and the obtained results were evaluated according to the following criteria.
- B The heat-expandable adhesive layer foamed during hot pressing (defective).
- a silicone rubber sheet (IS-825, hardness 50 °, manufactured by Irumagawa Rubber Co., Ltd.) having a thickness of 1 mm, a width of 50 mm, and a length of 125 mm was laid under the copper plate, and the width was 10 mm.
- the same silicone rubber sheet cut to a length of 90 mm was placed on a test piece, sandwiched and pressed. After allowing to cool at 23 ° C. for 1 hour or more, the mixture was further heated in a dryer at 200 ° C. for 3 minutes. After allowing to cool at 23 ° C.
- the force required to peel the copper foil from the tape at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the glue on the adherend was measured. The presence or absence of the residue was visually confirmed.
- the force required to peel the tape from the copper plate at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the presence or absence of adhesive residue on the adherend was visually confirmed.
- the peeling of the copper foil and the peeling of the tape against the copper plate were evaluated according to the following criteria.
- the force required to peel the copper foil from the tape was measured at an angle of 90 ° at a speed of 300 mm / min in an environment of 23 ° C.
- the base material side of the single-sided adhesive tape was fixed to the SUS plate with a paper double-sided adhesive tape (No. 778 manufactured by Teraoka Seisakusho Co., Ltd.) for measurement.
- Example 13 and Comparative Example 9 Cut into a width of 10 mm and a length of 90 mm (single-sided adhesive tape, assuming reinforcement during transportation) were subjected to a glossy surface of a copper foil having a thickness of 35 ⁇ m, a width of 10 mm, and a length of 90 mm. It was attached to (assuming a substrate product, electrolytic copper foil manufactured by Fukuda Metal Co., Ltd.). A roller coated with a rubber layer weighing 2 kg was reciprocated once at a speed of 300 mm / min for crimping, and then heated in a dryer at 200 ° C. for 3 minutes.
- the force required to peel the copper foil from the tape at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the adhesive residue on the adherend was measured. The presence or absence of was visually confirmed.
- the force required to peel the tape from the copper plate at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the presence or absence of adhesive residue on the adherend was visually confirmed.
- the base material side of the single-sided adhesive tape was fixed to the SUS plate with a paper double-sided adhesive tape (No. 778 manufactured by Teraoka Seisakusho Co., Ltd.) for measurement.
- the peeling force and adhesive residue after the heat peeling treatment were judged according to the following criteria.
- a roller coated with a rubber layer weighing 2 kg reciprocates once at a speed of 300 mm / min for crimping, and then using a heating press machine, the temperature is 170 ° C. and the pressure applied to the entire test piece is 26 kg / cm 2. Pressurized for 1 hour.
- a silicone rubber sheet (IS-825, hardness 50 °) having a thickness of 1 mm, a width of 25 mm and a length of 125 mm is placed under a copper plate having a thickness of 0.7 mm, a width of 25 mm and a length of 125 mm.
- the force required to peel the tape from the copper plate at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the presence or absence of adhesive residue on the adherend was visually confirmed.
- the base material side of the single-sided adhesive tape was fixed to the SUS plate with a paper double-sided adhesive tape (No. 778 manufactured by Teraoka Seisakusho Co., Ltd.) for measurement.
- the peeling of the copper foil was evaluated according to the following criteria.
- Comparative Example 1 since the heat-expandable particles were not contained in the first place, they were not easily peeled off even by the heat peeling treatment.
- Comparative Example 2 if the heat press treatment was not performed, the heat peeling treatment was performed to make the peeling easy. However, since the amount of the foaming agent added to the pressure-sensitive adhesive component is less than 4 parts, if the heat peeling treatment is performed after hot pressing at a high temperature for a long time, the peeling force for the copper foil assuming the substrate product member is sufficiently reduced. The effect was not obtained.
- the tan ⁇ of the pressure-sensitive adhesive component at the maximum expansion temperature of the heat-expandable particles is lower than 0.120. do.
- the storage elastic modulus G'at 170 ° C. is lower than 30,000 Pa, the expansion of the heat-expandable particles could not be suppressed during the hot press heat press for a long time at high temperature.
- Patent Document 6 defines the range of the storage elastic modulus G'of the heat-expandable adhesive layer at a relatively low temperature such as 23 ° C. or 95 ° C., and there is a possibility that it can be preferably used in that range.
- a relatively low temperature such as 23 ° C. or 95 ° C.
- the storage elastic modulus at high temperature for example, 170 ° C.
- the position is less likely to shift in the pressing process at room temperature for a short time (for example, room temperature, 3 MPa, 3 seconds, 100 times as in the examples), and further heating is easy.
- Examples 1 to 3 described in Patent Document 6 are low-temperature expansion type heat-expandable particles (according to the examples in the specification of Patent Document 6, firing is started at 120 ° C. and foam peeling is performed at 130 ° C. ) Is used, and it can be assumed that the foaming of the heat-expandable particles cannot be suppressed when the heat press treatment is performed at a high temperature (for example, 170 ° C.).
- the heat-removable adhesive tape of the present invention is usefully used in manufacturing processes of electronic parts and semiconductor parts, for example, in processes requiring high-temperature heating such as temporary fixing of parts, fixing during transportation, reinforcement, protection, masking, and resin sealing. can.
- high-temperature heating such as temporary fixing of parts, fixing during transportation, reinforcement, protection, masking, and resin sealing.
- resin sealing can.
- it is very useful in a process such as a curing process of a sealing resin, which requires easy peeling without adhesive residue after a high-temperature and long-time pressing process.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Adhesive Tapes (AREA)
- Laminated Bodies (AREA)
Abstract
In this thermally peelable adhesive tape having a thermally expandable adhesive layer containing thermally expandable particles and an adhesive component, the maximum expansion temperature of the thermally expandable particles is set to 170°C or higher; and for a dynamic viscoelastic measurement (temperature range of -60°C to 300°C, temperature rising speed of 10°C/minute, and frequency of 10 Hz) of the adhesive component, (1) the tanδ of the maximum expansion temperature of the thermally expandable particles is set to 0.120 or less, and (2) the storage modulus G' at 170°C is set to at least 30,000 Pa, whereby a thermally peelable adhesive tape can be obtained which can be suitably used in a pressing step for a long time at normal temperature or at high temperature, has a prominent reduction in the adhesiveness of the adhesive layer when further heated after use in the pressing step, and can be easily peeled off without residual paste remaining on an adherend.
Description
本発明は、電子部品や半導体部品の製造工程を含む各種製造工程における、高温での、あるいは常温長時間でのプレス工程で好適に使用でき、かつプレス工程で使用後にさらに加熱すると、接着性が著しく低減され、糊残りなく容易に剥離できる熱剥離型粘着テープに関する。
The present invention can be suitably used in a pressing process at a high temperature or at room temperature for a long time in various manufacturing processes including a manufacturing process of electronic parts and semiconductor parts, and when further heated after use in the pressing process, the adhesiveness is improved. The present invention relates to a heat-removable adhesive tape that is significantly reduced and can be easily peeled off without adhesive residue.
一般に、高い耐熱性を有する粘着テープは、電子部品・半導体部品の製造工程用途において多用されている。高耐熱性粘着テープは、例えば、電子部品・半導体部品製造中の加熱処理工程において、部材や部品の仮固定、搬送時固定、補強、保護、マスキング、樹脂封止等の用途に広く利用されている。このような用途においては、使用中は被着体に対して十分に高い接着力を持ち、かつ使用後は糊残りなく容易に剥離できることが粘着テープに求められる。
Generally, adhesive tapes with high heat resistance are widely used in the manufacturing process of electronic parts and semiconductor parts. Highly heat-resistant adhesive tapes are widely used, for example, in heat treatment processes during the manufacture of electronic parts and semiconductor parts, for temporary fixing of members and parts, fixing during transportation, reinforcement, protection, masking, resin sealing, and the like. There is. In such applications, the adhesive tape is required to have a sufficiently high adhesive force to the adherend during use and to be easily peeled off without adhesive residue after use.
近年では、電子機器を含む各種の最終製品の薄型化・小型化の要求に伴い、部品も薄型化、小型化している。剛性が低い薄い部品の加工が困難な場合に、作業性を改善することを目的として粘着テープが使用されることがある。例えば、薄型電子回路基板等の薄型基板の製造工程において、剛性の高い搬送板に両面粘着テープをその片側の粘着面を貼り合わせて固定し、その反対側の粘着面に薄型基板を貼り合わせて、薄型基板上での部品の実装や部材の加工における作業性を改善することができる。このような部材の加工には、例えば、薄型基板上に半導体チップを配置し、樹脂で封止するときの熱プレス工程が含まれる。部材の加工や実装が完了して完成した薄型基板、両面テープおよび搬送板は互いに分離され、搬送板は必要に応じて薄型基板の加工に再利用される。
上述した粘着テープによる薄型基板の仮固定においては、加工工程中は十分に強い接着性が要求される。その一方で、粘着テープを剥離する際に薄型基板にかかる負荷が大きいと、薄型基板にダメージがかかってしまうため、粘着テープの剥離時の接着性は極力低いことが求められる。また、搬送板の材質も従来はガラスが用いられることもあった。しかし、ガラスからなる搬送板は高温環境で変形しやすい、あるいは製品と線膨張係数が著しく異なる等の不具合が生じることがある。そのため、従来よりも厳しい温度の工程で使用する場合、搬送板の材質として、ステンレス鋼(SUS)やアルミ板、銅板等の金属、シリコン、銅張積層板等が使用されることが多くなっている。 In recent years, in response to demands for thinner and smaller final products including electronic devices, parts have also become thinner and smaller. Adhesive tape may be used for the purpose of improving workability when it is difficult to process thin parts with low rigidity. For example, in the manufacturing process of a thin substrate such as a thin electronic circuit board, a double-sided adhesive tape is attached to a highly rigid transport plate by attaching an adhesive surface on one side to the adhesive surface on one side, and the thin substrate is attached to the adhesive surface on the opposite side. , Workability in mounting parts and processing members on a thin substrate can be improved. Processing of such a member includes, for example, a heat pressing step in which a semiconductor chip is placed on a thin substrate and sealed with a resin. The thin substrate, double-sided tape, and transfer plate completed after processing and mounting of the members are separated from each other, and the transfer plate is reused for processing the thin substrate as needed.
In the temporary fixing of the thin substrate with the adhesive tape described above, sufficiently strong adhesiveness is required during the processing process. On the other hand, if the load applied to the thin substrate when peeling the adhesive tape is large, the thin substrate will be damaged, so that the adhesiveness at the time of peeling the adhesive tape is required to be as low as possible. In addition, glass has been used as the material of the transport plate in the past. However, the transport plate made of glass may be easily deformed in a high temperature environment, or may have problems such as a coefficient of linear expansion significantly different from that of the product. Therefore, when used in a process with a stricter temperature than before, stainless steel (SUS), aluminum plate, metal such as copper plate, silicon, copper-clad laminate, etc. are often used as the material of the transport plate. There is.
上述した粘着テープによる薄型基板の仮固定においては、加工工程中は十分に強い接着性が要求される。その一方で、粘着テープを剥離する際に薄型基板にかかる負荷が大きいと、薄型基板にダメージがかかってしまうため、粘着テープの剥離時の接着性は極力低いことが求められる。また、搬送板の材質も従来はガラスが用いられることもあった。しかし、ガラスからなる搬送板は高温環境で変形しやすい、あるいは製品と線膨張係数が著しく異なる等の不具合が生じることがある。そのため、従来よりも厳しい温度の工程で使用する場合、搬送板の材質として、ステンレス鋼(SUS)やアルミ板、銅板等の金属、シリコン、銅張積層板等が使用されることが多くなっている。 In recent years, in response to demands for thinner and smaller final products including electronic devices, parts have also become thinner and smaller. Adhesive tape may be used for the purpose of improving workability when it is difficult to process thin parts with low rigidity. For example, in the manufacturing process of a thin substrate such as a thin electronic circuit board, a double-sided adhesive tape is attached to a highly rigid transport plate by attaching an adhesive surface on one side to the adhesive surface on one side, and the thin substrate is attached to the adhesive surface on the opposite side. , Workability in mounting parts and processing members on a thin substrate can be improved. Processing of such a member includes, for example, a heat pressing step in which a semiconductor chip is placed on a thin substrate and sealed with a resin. The thin substrate, double-sided tape, and transfer plate completed after processing and mounting of the members are separated from each other, and the transfer plate is reused for processing the thin substrate as needed.
In the temporary fixing of the thin substrate with the adhesive tape described above, sufficiently strong adhesiveness is required during the processing process. On the other hand, if the load applied to the thin substrate when peeling the adhesive tape is large, the thin substrate will be damaged, so that the adhesiveness at the time of peeling the adhesive tape is required to be as low as possible. In addition, glass has been used as the material of the transport plate in the past. However, the transport plate made of glass may be easily deformed in a high temperature environment, or may have problems such as a coefficient of linear expansion significantly different from that of the product. Therefore, when used in a process with a stricter temperature than before, stainless steel (SUS), aluminum plate, metal such as copper plate, silicon, copper-clad laminate, etc. are often used as the material of the transport plate. There is.
このような薄型基板の製造工程においては、搬送板を用いる代わりに剛性の高い基材(例えば50μm~125μmの樹脂フィルム)を使用した片面粘着テープを薄型基板に貼り合わせることで、薄型基板上での部品の実装や部材の加工における作業性を改善することができる。部材の加工や実装が完了した後は、粘着テープは薄型基板から剥離される。このような使い方をする場合においても、加工工程中は十分に強い接着性が要求される一方で、粘着テープの剥離時は極力低い接着性が要求される。
In the manufacturing process of such a thin substrate, a single-sided adhesive tape using a highly rigid base material (for example, a resin film of 50 μm to 125 μm) is attached to the thin substrate instead of using a transport plate, so that the thin substrate can be manufactured. It is possible to improve workability in mounting parts and processing members. After the processing and mounting of the member is completed, the adhesive tape is peeled off from the thin substrate. Even in such usage, sufficiently strong adhesiveness is required during the processing process, while extremely low adhesiveness is required when the adhesive tape is peeled off.
また、近年では、車載用途を中心に、電子部品・半導体部品には従来よりも高い耐熱性が要求されている。それに伴い、部品を構成する材料(例えば半導体パッケージにおいてチップを封止する樹脂)も、より高い耐熱性が要求されている。高い耐熱性を有する樹脂は、一般に硬化させるのに必要な加熱温度が高く、加熱時間も長い。そのため、このような耐熱性の高い樹脂を硬化させる工程で使用される粘着テープにも高い耐熱性が求められる。
In recent years, electronic parts and semiconductor parts are required to have higher heat resistance than before, mainly for in-vehicle applications. Along with this, materials constituting parts (for example, resins that seal chips in semiconductor packages) are also required to have higher heat resistance. A resin having high heat resistance generally has a high heating temperature and a long heating time required for curing. Therefore, the adhesive tape used in the process of curing such a highly heat-resistant resin is also required to have high heat resistance.
従来、被着体への貼着初期から製造工程での使用まで十分な接着性を持つが、使用後に何らかの外部刺激を与えることで接着性が著しく低減する粘着テープが特許文献1~6に開示されている。
Conventionally, Patent Documents 1 to 6 disclose adhesive tapes that have sufficient adhesiveness from the initial stage of attachment to an adherend to use in a manufacturing process, but the adhesiveness is significantly reduced by giving some external stimulus after use. Has been done.
特許文献1には、半導体基板や薄膜基板に対して優れた初期粘着特性を示し、ダイシング等の製造工程中は接着性優れるが、紫外線を照射することで光感応性粘着剤が硬化し、粘着力が著しく低減する光感応性粘着テープ及びその製造方法が開示されている。しかし、このような紫外線照射で粘着力が低下する粘着剤に含まれる光反応性成分は、一般に耐熱性が低いため、高温の製造工程で使用するには不適な場合がある。さらに、このような光感応性粘着剤は、前述のように金属やシリコンなどの光を透過しない材料からなる搬送板には使用できない。
Patent Document 1 shows excellent initial adhesive properties for semiconductor substrates and thin film substrates, and has excellent adhesiveness during manufacturing processes such as dicing, but the light-sensitive adhesive is cured by irradiation with ultraviolet rays and adheres. A photosensitive adhesive tape in which the force is remarkably reduced and a method for producing the same are disclosed. However, the photoreactive component contained in the pressure-sensitive adhesive whose adhesive strength is lowered by such ultraviolet irradiation generally has low heat resistance, and may be unsuitable for use in a high-temperature manufacturing process. Further, such a light-sensitive adhesive cannot be used for a transport plate made of a material that does not transmit light, such as metal or silicon, as described above.
特許文献2には、封止工程での樹脂漏れを好適に防止すると共に、該耐熱性粘着テープの剥離の際には、モールドした封止樹脂の剥がれや破損、或いは糊残りを防止して、歩留まりの向上が図れる耐熱性粘着テープが開示されている。特許文献2で開示されている粘着テープは、紫外線硬化型粘着剤層を有し、この粘着剤層に紫外線を照射し、更に200℃で1時間加熱した後にJISZ0237に準拠して測定したその粘着力は1N/19m幅以下である。しかし、特許文献2で開示されている粘着テープは、封止樹脂による封止工程(つまり加熱工程)前に紫外線照射を行い、粘着剤層に紫外線による硬化反応を誘起させることにより粘着力を低下させ、その後に樹脂を注入し加熱硬化させることが前提として用いられている。つまり、加熱工程後に外部刺激を与えて粘着テープを易剥離化させることについては特許文献2には何ら言及されていない。この粘着テープは、特許文献1の粘着テープと同様に、金属やシリコンなどの光を透過しない材料からなる搬送板には使用できない。
Patent Document 2 preferably prevents resin leakage in the sealing process, and also prevents peeling or breakage of the molded sealing resin or adhesive residue when the heat-resistant adhesive tape is peeled off. A heat-resistant adhesive tape capable of improving the yield is disclosed. The adhesive tape disclosed in Patent Document 2 has an ultraviolet curable adhesive layer, and the adhesive layer is irradiated with ultraviolet rays and further heated at 200 ° C. for 1 hour, and then the adhesive is measured in accordance with JISZ0237. The force is 1N / 19m or less. However, the adhesive tape disclosed in Patent Document 2 is irradiated with ultraviolet rays before the sealing step (that is, the heating step) with the sealing resin, and the adhesive strength is lowered by inducing a curing reaction by ultraviolet rays in the pressure-sensitive adhesive layer. It is used on the premise that the resin is injected and then heat-cured. That is, Patent Document 2 does not mention that the adhesive tape is easily peeled off by giving an external stimulus after the heating step. Like the adhesive tape of Patent Document 1, this adhesive tape cannot be used for a transport plate made of a material that does not transmit light, such as metal or silicon.
特許文献3~6には、所定の温度に加熱すると熱膨張性粘着層に含有された熱膨張性微小球が発泡し、粘着力が著しく低減する熱剥離型粘着シートが開示されている。
これらの特許文献に開示の熱剥離型粘着シートは、被着体を含む物品の接着目的を達成した後、発泡剤としての熱膨張性微小球を含有する粘着層(熱膨張性粘着層)を加熱することによって、接着力が低減し、熱剥離型粘着シートから被着体を容易に分離できる。粘着層における接着力の低減は、主に、加熱により粘着層が発泡もしくは膨張して、粘着層表面が凹凸状に変化し、被着体との接着面積が減少することにより生じる。
これらの特許文献に開示の熱剥離型粘着シートは、長時間の高温加熱工程での使用を前提にしたものではなく、これらの特許文献には、高温または常温長時間のプレス工程で使用した後でさらに加熱し、易剥離化させる技術についてはなんら言及されていない。
高温長時間のプレス工程にこれらの熱発泡剥離型粘着テープを使用すると、
・プレス中に熱膨張性粒子が発泡してしまい、工程中の被着体との密着性が低下する、
・プレス中に熱膨張性粒子が発泡してしまい、熱発泡剥離型粘着テープ自体の、あるいは熱発泡剥離型粘着テープにより規定されている寸法が変化して加工に不具合が生じる、
・粘着剤成分が熱劣化して凝集力が低下し、発泡剥離後の被着体に糊残りが発生する
等の問題が発生するおそれがある。 Patent Documents 3 to 6 disclose heat-release type pressure-sensitive adhesive sheets in which heat-expandable microspheres contained in the heat-expandable pressure-sensitive adhesive layer are foamed when heated to a predetermined temperature, and the adhesive strength is remarkably reduced.
The heat-release type pressure-sensitive adhesive sheets disclosed in these patent documents have an pressure-sensitive adhesive layer (heat-expandable pressure-sensitive adhesive layer) containing heat-expandable microspheres as a foaming agent after achieving the purpose of adhering an article including an adherend. By heating, the adhesive force is reduced, and the adherend can be easily separated from the heat-release type adhesive sheet. The reduction in the adhesive force in the adhesive layer is mainly caused by foaming or expanding the adhesive layer by heating, changing the surface of the adhesive layer into an uneven shape, and reducing the adhesive area with the adherend.
The heat-removable pressure-sensitive adhesive sheets disclosed in these patent documents are not intended to be used in a high-temperature heating process for a long period of time. There is no mention of a technique for further heating and making it easy to peel off.
When these heat foam release type adhesive tapes are used in the high temperature and long time pressing process,
-The heat-expandable particles foam during pressing, which reduces the adhesion to the adherend during the process.
-The heat-expandable particles foam during pressing, and the dimensions of the heat-foaming release type adhesive tape itself or the dimensions specified by the heat-foaming release type adhesive tape change, causing processing problems.
-There is a risk that the adhesive component will be thermally deteriorated and the cohesive force will be reduced, causing problems such as adhesive residue on the adherend after foam peeling.
これらの特許文献に開示の熱剥離型粘着シートは、被着体を含む物品の接着目的を達成した後、発泡剤としての熱膨張性微小球を含有する粘着層(熱膨張性粘着層)を加熱することによって、接着力が低減し、熱剥離型粘着シートから被着体を容易に分離できる。粘着層における接着力の低減は、主に、加熱により粘着層が発泡もしくは膨張して、粘着層表面が凹凸状に変化し、被着体との接着面積が減少することにより生じる。
これらの特許文献に開示の熱剥離型粘着シートは、長時間の高温加熱工程での使用を前提にしたものではなく、これらの特許文献には、高温または常温長時間のプレス工程で使用した後でさらに加熱し、易剥離化させる技術についてはなんら言及されていない。
高温長時間のプレス工程にこれらの熱発泡剥離型粘着テープを使用すると、
・プレス中に熱膨張性粒子が発泡してしまい、工程中の被着体との密着性が低下する、
・プレス中に熱膨張性粒子が発泡してしまい、熱発泡剥離型粘着テープ自体の、あるいは熱発泡剥離型粘着テープにより規定されている寸法が変化して加工に不具合が生じる、
・粘着剤成分が熱劣化して凝集力が低下し、発泡剥離後の被着体に糊残りが発生する
等の問題が発生するおそれがある。 Patent Documents 3 to 6 disclose heat-release type pressure-sensitive adhesive sheets in which heat-expandable microspheres contained in the heat-expandable pressure-sensitive adhesive layer are foamed when heated to a predetermined temperature, and the adhesive strength is remarkably reduced.
The heat-release type pressure-sensitive adhesive sheets disclosed in these patent documents have an pressure-sensitive adhesive layer (heat-expandable pressure-sensitive adhesive layer) containing heat-expandable microspheres as a foaming agent after achieving the purpose of adhering an article including an adherend. By heating, the adhesive force is reduced, and the adherend can be easily separated from the heat-release type adhesive sheet. The reduction in the adhesive force in the adhesive layer is mainly caused by foaming or expanding the adhesive layer by heating, changing the surface of the adhesive layer into an uneven shape, and reducing the adhesive area with the adherend.
The heat-removable pressure-sensitive adhesive sheets disclosed in these patent documents are not intended to be used in a high-temperature heating process for a long period of time. There is no mention of a technique for further heating and making it easy to peel off.
When these heat foam release type adhesive tapes are used in the high temperature and long time pressing process,
-The heat-expandable particles foam during pressing, which reduces the adhesion to the adherend during the process.
-The heat-expandable particles foam during pressing, and the dimensions of the heat-foaming release type adhesive tape itself or the dimensions specified by the heat-foaming release type adhesive tape change, causing processing problems.
-There is a risk that the adhesive component will be thermally deteriorated and the cohesive force will be reduced, causing problems such as adhesive residue on the adherend after foam peeling.
特許文献6には、セラミックコンデンサ製造工程において、グリーンシートの積層加圧工程で粘着剤が変形して熱膨張性粘着層の位置ズレが発生するのを防ぐことができる熱剥離型粘着テープが開示されている。このような熱剥離型粘着テープは、常温短時間のプレス工程における位置ズレ防止には好適に使用できると考えられる。しかしながら、特許文献6には、高温での、あるいは常温長時間でのプレス工程で使用した後の粘着層の発泡剥離性や剥離後の被着体上での糊残り性、高温プレス工程中の熱膨張性粒子の発泡抑制等については、なんら言及されていない。また、特許文献6の実施例1~3で使用されている熱膨張性粒子は120℃で膨張を開始するものを使用しており、例えば170℃で1時間熱プレスするような工程で使用する場合には、熱プレス中で発泡してしまう場合があると想定される。
Patent Document 6 discloses a heat-release type adhesive tape that can prevent the pressure-sensitive adhesive from being deformed in the step of laminating and pressurizing a green sheet to cause a displacement of the heat-expandable pressure-sensitive adhesive layer in the ceramic capacitor manufacturing process. Has been done. It is considered that such a heat-removable adhesive tape can be suitably used for preventing misalignment in a pressing process at room temperature for a short time. However, Patent Document 6 describes the foam peeling property of the adhesive layer after being used in the pressing process at high temperature or at room temperature for a long time, the adhesive residue property on the adherend after peeling, and the high temperature pressing process. No mention is made of suppressing the foaming of heat-expandable particles. Further, the thermally expandable particles used in Examples 1 to 3 of Patent Document 6 are those that start expansion at 120 ° C., and are used in a step such as heat pressing at 170 ° C. for 1 hour. In some cases, it is assumed that foaming may occur during hot pressing.
本発明の目的は、電子部品や半導体部品の製造工程を含む各種製造工程における被着体の加圧工程に使用される粘着テープにおいて、高温での、あるいは常温温長時間でのプレス工程で好適に使用でき、かつプレス工程で使用後にさらに加熱すると粘着層の接着性が著しく低減され、被着体上での糊残りなく容易に剥離できる熱剥離型粘着テープを提供することにある。
An object of the present invention is an adhesive tape used in a pressurizing process of an adherend in various manufacturing processes including a manufacturing process of electronic parts and semiconductor parts, which is suitable for a pressing process at a high temperature or at a normal temperature for a long time. It is an object of the present invention to provide a heat-removable adhesive tape that can be used in the above-mentioned manner and that the adhesiveness of the adhesive layer is remarkably reduced when further heated after use in the pressing step, and can be easily peeled off without adhesive residue on the adherend.
本発明者らは上記目的を達成すべく鋭意検討した結果、粘着剤成分と熱膨張性粒子を含む熱膨張性粘着層を有する熱剥離型粘着テープが、以下の要件を満たすことによって、高温での、あるは常温長時間での熱プレス工程で使用した際の適性、さらに加熱したときの易剥離化や糊残り性、高温プレス中の熱膨張性粒子の発泡抑制に非常に有効であることを見出した。
・粘着剤成分に対する熱膨張性粒子の添加量が特定の範囲である。
・熱膨張性粒子の最大膨張温度が特定の範囲である。
・粘着剤成分の動的粘弾性測定における諸パラメータが特定の範囲である。
本発明者らはかかる新たな知見に基づいて本発明を完成するに至った。 As a result of diligent studies to achieve the above object, the present inventors have found that a heat-release type adhesive tape having a heat-expandable pressure-sensitive adhesive layer containing a pressure-sensitive adhesive component and heat-expandable particles satisfies the following requirements at a high temperature. It is also very effective when used in a hot pressing process at room temperature for a long time, easy peeling and adhesive residue when heated, and suppression of expansion of heat-expandable particles during high-temperature pressing. I found.
-The amount of the heat-expandable particles added to the pressure-sensitive adhesive component is within a specific range.
-The maximum expansion temperature of the thermally expandable particles is within a specific range.
-Various parameters in the dynamic viscoelasticity measurement of the adhesive component are in a specific range.
The present inventors have completed the present invention based on such new findings.
・粘着剤成分に対する熱膨張性粒子の添加量が特定の範囲である。
・熱膨張性粒子の最大膨張温度が特定の範囲である。
・粘着剤成分の動的粘弾性測定における諸パラメータが特定の範囲である。
本発明者らはかかる新たな知見に基づいて本発明を完成するに至った。 As a result of diligent studies to achieve the above object, the present inventors have found that a heat-release type adhesive tape having a heat-expandable pressure-sensitive adhesive layer containing a pressure-sensitive adhesive component and heat-expandable particles satisfies the following requirements at a high temperature. It is also very effective when used in a hot pressing process at room temperature for a long time, easy peeling and adhesive residue when heated, and suppression of expansion of heat-expandable particles during high-temperature pressing. I found.
-The amount of the heat-expandable particles added to the pressure-sensitive adhesive component is within a specific range.
-The maximum expansion temperature of the thermally expandable particles is within a specific range.
-Various parameters in the dynamic viscoelasticity measurement of the adhesive component are in a specific range.
The present inventors have completed the present invention based on such new findings.
すなわち、本発明にかかる熱剥離型粘着テープは、粘着剤成分と熱膨張性粒子を含む熱膨張性粘着層を有する熱剥離型粘着テープであって、前記熱膨張性粘着層が前記粘着剤成分100質量に対して4質量部以上の前記熱膨張性粒子を含み、前記熱膨張性粒子の最大膨張温度が170℃以上であり、かつ、前記粘着剤成分の動的粘弾性測定(温度範囲-60℃~300℃、昇温速度10℃/分、周波数10Hz)において
(1)前記熱膨張性粒子の最大膨張温度におけるtanδが0.120以下、及び
(2)170℃における貯蔵弾性率G’が30,000Pa以上
であることを特徴とする。
本発明にかかる被着体の熱プレス処理方法は、
仮固定された熱剥離型粘着テープを有する被着体の熱プレス処理方法であって、
被着体に上記の粘着テープを仮固定する工程と、
前記粘着テープが仮固定された被着体を熱プレス処理する工程と、
前記熱プレス処理された被着体に仮固定された粘着テープを、剥離用の温度に加熱する工程と、
前記剥離用の温度に加熱された粘着テープを前記被着体から剥離する工程と、
を有することを特徴とする。 That is, the heat-release type pressure-sensitive adhesive tape according to the present invention is a heat-release type pressure-sensitive adhesive tape having a heat-expandable pressure-sensitive adhesive layer containing a pressure-sensitive adhesive component and heat-expandable particles, and the heat-expandable pressure-sensitive adhesive layer is the pressure-sensitive adhesive component. It contains 4 parts by mass or more of the heat-expandable particles with respect to 100 mass, the maximum expansion temperature of the heat-expandable particles is 170 ° C. or more, and the dynamic viscoelasticity measurement of the pressure-sensitive adhesive component (temperature range-). At 60 ° C. to 300 ° C., heating rate 10 ° C./min, frequency 10 Hz), (1) tan δ at the maximum expansion temperature of the thermally expandable particles is 0.120 or less, and (2) storage elasticity G'at 170 ° C. Is 30,000 Pa or more.
The method for heat-pressing an adherend according to the present invention is as follows.
A method for heat-pressing an adherend having a temporarily fixed heat-release adhesive tape.
The process of temporarily fixing the above adhesive tape to the adherend, and
A step of heat-pressing the adherend to which the adhesive tape is temporarily fixed, and
A step of heating the adhesive tape temporarily fixed to the heat-pressed adherend to a temperature for peeling, and
A step of peeling the adhesive tape heated to the peeling temperature from the adherend,
It is characterized by having.
(1)前記熱膨張性粒子の最大膨張温度におけるtanδが0.120以下、及び
(2)170℃における貯蔵弾性率G’が30,000Pa以上
であることを特徴とする。
本発明にかかる被着体の熱プレス処理方法は、
仮固定された熱剥離型粘着テープを有する被着体の熱プレス処理方法であって、
被着体に上記の粘着テープを仮固定する工程と、
前記粘着テープが仮固定された被着体を熱プレス処理する工程と、
前記熱プレス処理された被着体に仮固定された粘着テープを、剥離用の温度に加熱する工程と、
前記剥離用の温度に加熱された粘着テープを前記被着体から剥離する工程と、
を有することを特徴とする。 That is, the heat-release type pressure-sensitive adhesive tape according to the present invention is a heat-release type pressure-sensitive adhesive tape having a heat-expandable pressure-sensitive adhesive layer containing a pressure-sensitive adhesive component and heat-expandable particles, and the heat-expandable pressure-sensitive adhesive layer is the pressure-sensitive adhesive component. It contains 4 parts by mass or more of the heat-expandable particles with respect to 100 mass, the maximum expansion temperature of the heat-expandable particles is 170 ° C. or more, and the dynamic viscoelasticity measurement of the pressure-sensitive adhesive component (temperature range-). At 60 ° C. to 300 ° C., heating rate 10 ° C./min, frequency 10 Hz), (1) tan δ at the maximum expansion temperature of the thermally expandable particles is 0.120 or less, and (2) storage elasticity G'at 170 ° C. Is 30,000 Pa or more.
The method for heat-pressing an adherend according to the present invention is as follows.
A method for heat-pressing an adherend having a temporarily fixed heat-release adhesive tape.
The process of temporarily fixing the above adhesive tape to the adherend, and
A step of heat-pressing the adherend to which the adhesive tape is temporarily fixed, and
A step of heating the adhesive tape temporarily fixed to the heat-pressed adherend to a temperature for peeling, and
A step of peeling the adhesive tape heated to the peeling temperature from the adherend,
It is characterized by having.
本発明にかかる熱剥離型粘着テープは、粘着剤成分と熱膨張性粒子を含む熱膨張性粘着層を有し、熱膨張性粒子が特定範囲の最大膨張温度を有し、かつ、粘着剤成分の特定条件での動的粘弾性測定において特定の物性を有する。これらの熱膨張性粘着層の構成と物性とにより、高温での、あるいは常温長時間でのプレス工程中では粘着層に含有された熱膨張性粒子の発泡が抑制され、プレス工程後にさらに加熱することで熱膨張性粘着層の接着性が著しく低減され、被着体上への糊残りが発生しにくい熱剥離型粘着テープを提供できる。
The heat-release type adhesive tape according to the present invention has a heat-expandable pressure-sensitive adhesive layer containing a pressure-sensitive adhesive component and heat-expandable particles, the heat-expandable particles have a maximum expansion temperature in a specific range, and the pressure-sensitive adhesive component. Has specific physical properties in dynamic viscoelasticity measurement under specific conditions. Due to the structure and physical properties of these heat-expandable adhesive layers, the foaming of the heat-expandable particles contained in the pressure-sensitive adhesive layer is suppressed during the pressing process at high temperature or at room temperature for a long time, and further heating is performed after the pressing process. As a result, the adhesiveness of the heat-expandable adhesive layer is remarkably reduced, and it is possible to provide a heat-release type adhesive tape in which adhesive residue is less likely to occur on the adherend.
本発明にかかる熱剥離型粘着テープは、少なくとも熱膨張性粘着層を有する。
[熱膨張性粘着層]
熱膨張性粘着層は、少なくとも、粘着性を付与するための粘着剤成分と、熱膨張性を付与するための熱膨張性粒子(発泡剤)とを含有している。
熱膨張性粘着層は、粘着剤成分100質量部に対して4質量部以上の熱膨張性粒子を含む。
熱膨張性粒子の最大膨張温度が170℃以上であり、かつ粘着剤成分が、動的粘弾性測定(温度範囲-60℃~300℃、昇温速度10℃/分、周波数10Hz)において、
(1)前記熱膨張性粒子の最大膨張温度におけるtanδが0.120以下、及び
(2)170℃における貯蔵弾性率G’が30,000Pa以上
を満たす。 The heat-release adhesive tape according to the present invention has at least a heat-expandable adhesive layer.
[Thermal expansion adhesive layer]
The heat-expandable pressure-sensitive adhesive layer contains at least a pressure-sensitive adhesive component for imparting adhesiveness and heat-expandable particles (foaming agent) for imparting heat-expandability.
The heat-expandable pressure-sensitive adhesive layer contains 4 parts by mass or more of heat-expandable particles with respect to 100 parts by mass of the pressure-sensitive adhesive component.
The maximum expansion temperature of the thermally expandable particles is 170 ° C. or higher, and the pressure-sensitive adhesive component is measured in dynamic viscoelasticity (temperature range -60 ° C. to 300 ° C., heating rate 10 ° C./min, frequency 10 Hz).
(1) the tan δ at the maximum expansion temperature of the thermally expandable particles satisfies 0.120 or less, and (2) the storage elastic modulus G'at 170 ° C. satisfies 30,000 Pa or more.
[熱膨張性粘着層]
熱膨張性粘着層は、少なくとも、粘着性を付与するための粘着剤成分と、熱膨張性を付与するための熱膨張性粒子(発泡剤)とを含有している。
熱膨張性粘着層は、粘着剤成分100質量部に対して4質量部以上の熱膨張性粒子を含む。
熱膨張性粒子の最大膨張温度が170℃以上であり、かつ粘着剤成分が、動的粘弾性測定(温度範囲-60℃~300℃、昇温速度10℃/分、周波数10Hz)において、
(1)前記熱膨張性粒子の最大膨張温度におけるtanδが0.120以下、及び
(2)170℃における貯蔵弾性率G’が30,000Pa以上
を満たす。 The heat-release adhesive tape according to the present invention has at least a heat-expandable adhesive layer.
[Thermal expansion adhesive layer]
The heat-expandable pressure-sensitive adhesive layer contains at least a pressure-sensitive adhesive component for imparting adhesiveness and heat-expandable particles (foaming agent) for imparting heat-expandability.
The heat-expandable pressure-sensitive adhesive layer contains 4 parts by mass or more of heat-expandable particles with respect to 100 parts by mass of the pressure-sensitive adhesive component.
The maximum expansion temperature of the thermally expandable particles is 170 ° C. or higher, and the pressure-sensitive adhesive component is measured in dynamic viscoelasticity (temperature range -60 ° C. to 300 ° C., heating rate 10 ° C./min, frequency 10 Hz).
(1) the tan δ at the maximum expansion temperature of the thermally expandable particles satisfies 0.120 or less, and (2) the storage elastic modulus G'at 170 ° C. satisfies 30,000 Pa or more.
熱膨張性粒子の最大膨張温度は、後述する測定方法に従って求められる値である。
熱膨張性粒子の最大膨張温度が170℃未満であると、以下のような問題が生じる場合がある。
・高温(例えば170℃)の長時間の熱プレス工程中に熱膨張性粒子が膨張(発泡)してしまい、工程中に被着体との密着性が低下してしまう。被着体との密着性が低下すると、例えば部品の洗浄工程において、被着体と粘着剤の界面に洗浄液が侵入してしまう。また、熱膨張性粘着層自体のあるいは熱膨張性粘着層により規定されている寸法が変化してしまい、部品の加工に不具合が出る懸念もある。
粘着剤成分100質量部に対する熱膨張性粒子の添加量が4質量部未満の場合には、熱膨張性粒子の膨張により発生する力が十分でなく、粘着層表面が凹凸状に変化しにくいため、プレス後に熱剥離させたい場合には、接着性低減の効果が十分に得られない場合がある。
熱膨張性粒子の最大膨張温度における粘着剤成分のtanδが0.120よりも高いと、つまり粘着剤成分において弾性項に比べて粘性項が著しく高い場合には、熱膨張性粒子の最大膨張により発生した力が熱として散逸されやすい。すなわち、発生した熱膨張性粒子の膨張により発生する力で粘着層表面が凹凸状に変化し難い。その結果として被着体からの粘着力の低減が生じ難い。
粘着剤成分の170℃における貯蔵弾性率G’が30,000Pa未満であると、高温長時間のプレス中に熱膨張性粒子が発泡してしまうことがある。
また、粘着剤成分の貯蔵弾性率G’が30,000Pa未満であると、熱膨張性粘着層の凝集力も弱いため、高温環境で使用後に剥離すると被着体に糊残りしやすくなる。 The maximum expansion temperature of the heat-expandable particles is a value obtained according to the measurement method described later.
If the maximum expansion temperature of the heat-expandable particles is less than 170 ° C., the following problems may occur.
-The heat-expandable particles expand (foam) during a long-term heat pressing process at a high temperature (for example, 170 ° C.), and the adhesion to the adherend decreases during the process. When the adhesion to the adherend is lowered, for example, in the cleaning process of parts, the cleaning liquid invades the interface between the adherend and the adhesive. In addition, there is a concern that the dimensions of the heat-expandable adhesive layer itself or the dimensions defined by the heat-expandable adhesive layer will change, causing problems in the processing of parts.
When the amount of the heat-expandable particles added to 100 parts by mass of the pressure-sensitive adhesive component is less than 4 parts by mass, the force generated by the expansion of the heat-expandable particles is not sufficient, and the surface of the pressure-sensitive adhesive layer is unlikely to change into an uneven shape. If it is desired to be thermally peeled off after pressing, the effect of reducing the adhesiveness may not be sufficiently obtained.
When the tan δ of the pressure-sensitive adhesive component at the maximum expansion temperature of the heat-expandable particles is higher than 0.120, that is, when the viscosity term of the pressure-sensitive adhesive component is significantly higher than the elastic term, the maximum expansion of the heat-expandable particles causes The generated force is easily dissipated as heat. That is, the surface of the adhesive layer is unlikely to change into an uneven shape due to the force generated by the expansion of the generated heat-expandable particles. As a result, the adhesive force from the adherend is unlikely to be reduced.
If the storage elastic modulus G'of the pressure-sensitive adhesive component at 170 ° C. is less than 30,000 Pa, the heat-expandable particles may foam during pressing at a high temperature for a long time.
Further, when the storage elastic modulus G'of the pressure-sensitive adhesive component is less than 30,000 Pa, the cohesive force of the heat-expandable pressure-sensitive adhesive layer is also weak, so that when the pressure-sensitive adhesive layer is peeled off after use in a high-temperature environment, adhesive remains easily on the adherend.
熱膨張性粒子の最大膨張温度が170℃未満であると、以下のような問題が生じる場合がある。
・高温(例えば170℃)の長時間の熱プレス工程中に熱膨張性粒子が膨張(発泡)してしまい、工程中に被着体との密着性が低下してしまう。被着体との密着性が低下すると、例えば部品の洗浄工程において、被着体と粘着剤の界面に洗浄液が侵入してしまう。また、熱膨張性粘着層自体のあるいは熱膨張性粘着層により規定されている寸法が変化してしまい、部品の加工に不具合が出る懸念もある。
粘着剤成分100質量部に対する熱膨張性粒子の添加量が4質量部未満の場合には、熱膨張性粒子の膨張により発生する力が十分でなく、粘着層表面が凹凸状に変化しにくいため、プレス後に熱剥離させたい場合には、接着性低減の効果が十分に得られない場合がある。
熱膨張性粒子の最大膨張温度における粘着剤成分のtanδが0.120よりも高いと、つまり粘着剤成分において弾性項に比べて粘性項が著しく高い場合には、熱膨張性粒子の最大膨張により発生した力が熱として散逸されやすい。すなわち、発生した熱膨張性粒子の膨張により発生する力で粘着層表面が凹凸状に変化し難い。その結果として被着体からの粘着力の低減が生じ難い。
粘着剤成分の170℃における貯蔵弾性率G’が30,000Pa未満であると、高温長時間のプレス中に熱膨張性粒子が発泡してしまうことがある。
また、粘着剤成分の貯蔵弾性率G’が30,000Pa未満であると、熱膨張性粘着層の凝集力も弱いため、高温環境で使用後に剥離すると被着体に糊残りしやすくなる。 The maximum expansion temperature of the heat-expandable particles is a value obtained according to the measurement method described later.
If the maximum expansion temperature of the heat-expandable particles is less than 170 ° C., the following problems may occur.
-The heat-expandable particles expand (foam) during a long-term heat pressing process at a high temperature (for example, 170 ° C.), and the adhesion to the adherend decreases during the process. When the adhesion to the adherend is lowered, for example, in the cleaning process of parts, the cleaning liquid invades the interface between the adherend and the adhesive. In addition, there is a concern that the dimensions of the heat-expandable adhesive layer itself or the dimensions defined by the heat-expandable adhesive layer will change, causing problems in the processing of parts.
When the amount of the heat-expandable particles added to 100 parts by mass of the pressure-sensitive adhesive component is less than 4 parts by mass, the force generated by the expansion of the heat-expandable particles is not sufficient, and the surface of the pressure-sensitive adhesive layer is unlikely to change into an uneven shape. If it is desired to be thermally peeled off after pressing, the effect of reducing the adhesiveness may not be sufficiently obtained.
When the tan δ of the pressure-sensitive adhesive component at the maximum expansion temperature of the heat-expandable particles is higher than 0.120, that is, when the viscosity term of the pressure-sensitive adhesive component is significantly higher than the elastic term, the maximum expansion of the heat-expandable particles causes The generated force is easily dissipated as heat. That is, the surface of the adhesive layer is unlikely to change into an uneven shape due to the force generated by the expansion of the generated heat-expandable particles. As a result, the adhesive force from the adherend is unlikely to be reduced.
If the storage elastic modulus G'of the pressure-sensitive adhesive component at 170 ° C. is less than 30,000 Pa, the heat-expandable particles may foam during pressing at a high temperature for a long time.
Further, when the storage elastic modulus G'of the pressure-sensitive adhesive component is less than 30,000 Pa, the cohesive force of the heat-expandable pressure-sensitive adhesive layer is also weak, so that when the pressure-sensitive adhesive layer is peeled off after use in a high-temperature environment, adhesive remains easily on the adherend.
[粘着剤成分]
粘着剤成分は、動的粘弾性測定(温度範囲-60℃~300℃、昇温速度10℃/分、周波数10Hz)において特定のパラメータに関する要件を満たす。
すなわち、熱膨張性粒子の最大膨張温度におけるtanδが0.120以下、好ましくは0.001以上0.120以下、より好ましくは0.001以上0.110以下、特に好ましくは0.001以上0.100以下である。
更に、170℃における貯蔵弾性率G’は、30,000Pa以上、好ましくは30,000Pa以上1,000,000Pa以下、より好ましくは40,000Pa以上1,000,000Pa以下、特に好ましくは50,000Pa以上1,000,000Pa以下である。 [Adhesive component]
The pressure-sensitive adhesive component meets the requirements for specific parameters in dynamic viscoelasticity measurements (temperature range −60 ° C. to 300 ° C., heating rate 10 ° C./min, frequency 10 Hz).
That is, the tan δ at the maximum expansion temperature of the heat-expandable particles is 0.120 or less, preferably 0.001 or more and 0.120 or less, more preferably 0.001 or more and 0.110 or less, and particularly preferably 0.001 or more and 0. It is 100 or less.
Further, the storage elastic modulus G'at 170 ° C. is 30,000 Pa or more, preferably 30,000 Pa or more and 1,000,000 Pa or less, more preferably 40,000 Pa or more and 1,000,000 Pa or less, and particularly preferably 50,000 Pa. It is 1,000,000 Pa or less.
粘着剤成分は、動的粘弾性測定(温度範囲-60℃~300℃、昇温速度10℃/分、周波数10Hz)において特定のパラメータに関する要件を満たす。
すなわち、熱膨張性粒子の最大膨張温度におけるtanδが0.120以下、好ましくは0.001以上0.120以下、より好ましくは0.001以上0.110以下、特に好ましくは0.001以上0.100以下である。
更に、170℃における貯蔵弾性率G’は、30,000Pa以上、好ましくは30,000Pa以上1,000,000Pa以下、より好ましくは40,000Pa以上1,000,000Pa以下、特に好ましくは50,000Pa以上1,000,000Pa以下である。 [Adhesive component]
The pressure-sensitive adhesive component meets the requirements for specific parameters in dynamic viscoelasticity measurements (temperature range −60 ° C. to 300 ° C., heating rate 10 ° C./min, frequency 10 Hz).
That is, the tan δ at the maximum expansion temperature of the heat-expandable particles is 0.120 or less, preferably 0.001 or more and 0.120 or less, more preferably 0.001 or more and 0.110 or less, and particularly preferably 0.001 or more and 0. It is 100 or less.
Further, the storage elastic modulus G'at 170 ° C. is 30,000 Pa or more, preferably 30,000 Pa or more and 1,000,000 Pa or less, more preferably 40,000 Pa or more and 1,000,000 Pa or less, and particularly preferably 50,000 Pa. It is 1,000,000 Pa or less.
粘着剤成分としては、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、フッ素系粘着剤の中から、前記特性を有する粘着剤を適宜選択して用いることができる。粘着剤は単独で、あるいは、その2種以上を組み合わせて使用することができる。
The adhesive component has the above-mentioned characteristics from, for example, acrylic adhesive, rubber adhesive, silicone adhesive, polyester adhesive, polyamide adhesive, urethane adhesive, and fluorine adhesive. The pressure-sensitive adhesive can be appropriately selected and used. The pressure-sensitive adhesive can be used alone or in combination of two or more.
本発明では、粘着剤としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤を特に好適に用いることができる。
In the present invention, an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive can be particularly preferably used as the pressure-sensitive adhesive.
アクリル系粘着剤の種類は特に限定されず、アクリル系共重合体を主成分とする各種の公知のアクリル系粘着剤を使用できる。アクリル系共重合体としては、例えば(メタ)アクリル酸エステル、カルボキシル基含有モノマー及び必要に応じてその他のモノマーを共重合して得られるアクリル系共重合体を使用できる。(メタ)アクリル酸エステルの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、ラウリル(メタ)アクリレートが挙げられる。カルボキシル基含有モノマーの具体例としては、(メタ)アクリル酸、イタコン酸、クロトン酸、(無水)マレイン酸、フマル酸、2-カルボキシ-1-ブテン、2-カルボキシ-1-ペンテン、2-カルボキシ-1-ヘキセン、2-カルボキシ-1-ヘプテンが挙げられる。その他のモノマーの具体例としては、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基含有モノマー、アクリロニトリル、スチレン、2-メチロールエチルアクリルアミド、酢酸ビニル、アクリロイルモルフォリンが挙げられる。
The type of the acrylic pressure-sensitive adhesive is not particularly limited, and various known acrylic pressure-sensitive adhesives containing an acrylic copolymer as a main component can be used. As the acrylic copolymer, for example, an acrylic copolymer obtained by copolymerizing a (meth) acrylic acid ester, a carboxyl group-containing monomer, and other monomers if necessary can be used. Specific examples of the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth). Examples thereof include acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, and lauryl (meth) acrylate. Specific examples of the carboxyl group-containing monomer include (meth) acrylic acid, itaconic acid, crotonic acid, (maleic anhydride) maleic acid, fumaric acid, 2-carboxy-1-butene, 2-carboxy-1-pentene, and 2-carboxy. Examples thereof include -1-hexene and 2-carboxy-1-heptene. Specific examples of other monomers include hydroxyl group-containing monomers such as 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate, acrylonitrile, styrene, and 2-methylolethylacrylamide. , Vinyl acetate, acryloylmorpholine and the like.
アクリル系共重合体としては、特に、炭素原子数が4~12のアルキル基を有する(メタ)アクリル酸アルキルエステル(A1)、炭素原子数が4~12のアルキル基を有する(メタ)アクリル酸アルキルエステル(A2)、カルボキシル基含有モノマー(A3)、水酸基含有モノマー(A4)及び必要に応じてその他のモノマー(A5)を構成成分として含む、ヒドロキシル基及びカルボキシル基を有するアクリル系重合体(A)が好ましい。成分(A1)、(A2)、(A3)、(A4)及び(A5)は、それぞれ独立して、1種の成分を、あるいは2種以上の成分を組み合わせて用いることができる。
Examples of the acrylic copolymer include a (meth) acrylic acid alkyl ester (A1) having an alkyl group having 4 to 12 carbon atoms and a (meth) acrylic acid having an alkyl group having 4 to 12 carbon atoms. Acrylic polymer (A) having a hydroxyl group and a carboxyl group, which contains an alkyl ester (A2), a carboxyl group-containing monomer (A3), a hydroxyl group-containing monomer (A4) and, if necessary, another monomer (A5) as constituents. ) Is preferable. The components (A1), (A2), (A3), (A4) and (A5) can be used independently of one kind of component or in combination of two or more kinds of components.
炭素原子数が4~12のアルキル基を有する(メタ)アクリル酸アルキルエステル(A1)の具体例としては、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、ラウリル(メタ)アクリレートが挙げられる。さらに、炭素原子数が1~3のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマー(A2)として、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート等の炭素原子数が1~3のアルキル基を有する(メタ)アクリル酸アルキルエステルを用いても良い。(メタ)アクリル酸アルキルエステル(A1)と(A2)の成分量の和は、アクリル系共重合体(A)の全構成成分(単量体単位)100質量%中、好ましくは50質量%以上、より好ましくは60質量%以上、特に好ましくは70質量%以上の範囲から選択される。
Specific examples of the (meth) acrylic acid alkyl ester (A1) having an alkyl group having 4 to 12 carbon atoms include n-butyl (meth) acrylate, isobutyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. Examples thereof include octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, and lauryl (meth) acrylate. Further, as the (meth) acrylic acid alkyl ester monomer (A2) having an alkyl group having 1 to 3 carbon atoms, the number of carbon atoms of methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate and the like can be increased. A (meth) acrylic acid alkyl ester having 1 to 3 alkyl groups may be used. The sum of the component amounts of the (meth) acrylic acid alkyl ester (A1) and (A2) is preferably 50% by mass or more in 100% by mass of all the constituents (monomer unit) of the acrylic copolymer (A). , More preferably 60% by mass or more, and particularly preferably 70% by mass or more.
カルボキシル基含有モノマー(A3)の具体例としては、(メタ)アクリル酸、イタコン酸、クロトン酸、(無水)マレイン酸、フマル酸、2-カルボキシ-1-ブテン、2-カルボキシ-1-ペンテン、2-カルボキシ-1-ヘキセン、2-カルボキシ-1-ヘプテンが挙げられる。カルボキシル基含有モノマー(A3)の配合量は、アクリル系共重合体(A)の全構成成分(単量体単位)100質量%中、好ましくは0.5~15質量%、より好ましくは1~12質量%、特に好ましくは1~10質量%の範囲から選択される。
Specific examples of the carboxyl group-containing monomer (A3) include (meth) acrylic acid, itaconic acid, crotonic acid, (maleic anhydride), fumaric acid, 2-carboxy-1-butene, 2-carboxy-1-pentene, and the like. Examples thereof include 2-carboxy-1-hexene and 2-carboxy-1-heptene. The blending amount of the carboxyl group-containing monomer (A3) is preferably 0.5 to 15% by mass, more preferably 1 to 1 to 100% by mass, based on 100% by mass of all the constituents (monomer units) of the acrylic copolymer (A). It is selected from the range of 12% by mass, particularly preferably 1 to 10% by mass.
水酸基含有モノマー(A4)の具体例としては、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートが挙げられる。水酸基含有モノマー(A4)の配合量は、アクリル系共重合体(A)の全構成成分(単量体単位)100質量%中、好ましくは0.05~15質量%、より好ましくは0.07~12質量%、特に好ましくは0.1~10質量%の範囲から選択される。
Specific examples of the hydroxyl group-containing monomer (A4) include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. The blending amount of the hydroxyl group-containing monomer (A4) is preferably 0.05 to 15% by mass, more preferably 0.07, based on 100% by mass of all the constituents (monomer units) of the acrylic copolymer (A). It is selected from the range of ~ 12% by mass, particularly preferably 0.1 to 10% by mass.
その他のモノマー(A5)としては、酢酸ビニル、アクリロイルモルフォリンが好ましい。酢酸ビニルを添加する場合のその配合量は、アクリル系共重合体(A)の構成成分(単量体単位)100質量%中、好ましくは0.1~10質量%の範囲から選択される。アクリロイルモルフォリンを添加する場合のその配合量は、アクリル系共重合体(A)の全構成成分(単量体単位)100質量%中、好ましくは0.1~10質量%の範囲から選択される。
As the other monomer (A5), vinyl acetate and acryloylmorpholin are preferable. When vinyl acetate is added, the blending amount thereof is preferably selected from the range of 0.1 to 10% by mass in 100% by mass of the constituent components (monomer unit) of the acrylic copolymer (A). When acryloylmorpholine is added, the blending amount thereof is selected from the range of 0.1 to 10% by mass, preferably 0.1 to 10% by mass, based on 100% by mass of all the constituents (monomer units) of the acrylic copolymer (A). NS.
アクリル系共重合体(A)は、以上例示した各モノマー以外のモノマーを構成成分として更に含んでいても良い。
The acrylic copolymer (A) may further contain a monomer other than each of the above-exemplified monomers as a constituent component.
アクリル系粘着剤には、アクリル系共重合体の官能基との反応性を有する架橋剤を用いるのが一般的である。架橋剤としては、例えば、イソシアネート化合物、酸無水物、アミン化合物、エポキシ化合物、金属キレート類、アジリジン化合物、メラミン化合物を使用できる。必要に応じて、これらの架橋剤の1種を、あるいは2種以上を組み合わせて用いることができる。
架橋剤の配合量は、アクリル系共重合体100質量部に対し、通常0.1~15質量部、より好ましくは0.3~12質量部、特に好ましくは0.5~10質量部の範囲から選択される。 As the acrylic pressure-sensitive adhesive, a cross-linking agent having reactivity with the functional group of the acrylic copolymer is generally used. As the cross-linking agent, for example, isocyanate compounds, acid anhydrides, amine compounds, epoxy compounds, metal chelates, aziridine compounds, and melamine compounds can be used. If necessary, one of these cross-linking agents or a combination of two or more thereof can be used.
The amount of the cross-linking agent to be blended is usually in the range of 0.1 to 15 parts by mass, more preferably 0.3 to 12 parts by mass, and particularly preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the acrylic copolymer. Is selected from.
架橋剤の配合量は、アクリル系共重合体100質量部に対し、通常0.1~15質量部、より好ましくは0.3~12質量部、特に好ましくは0.5~10質量部の範囲から選択される。 As the acrylic pressure-sensitive adhesive, a cross-linking agent having reactivity with the functional group of the acrylic copolymer is generally used. As the cross-linking agent, for example, isocyanate compounds, acid anhydrides, amine compounds, epoxy compounds, metal chelates, aziridine compounds, and melamine compounds can be used. If necessary, one of these cross-linking agents or a combination of two or more thereof can be used.
The amount of the cross-linking agent to be blended is usually in the range of 0.1 to 15 parts by mass, more preferably 0.3 to 12 parts by mass, and particularly preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the acrylic copolymer. Is selected from.
アクリル系粘着剤には、必要に応じてロジン系、テルペン系、石油系、クマロン・インデン系、ピュアモノマー系、フェノール系、キシレン系等の粘着付与剤樹脂;パラフィン系プロセスオイル等の鉱油;ポリエステル系可塑剤;植物性油等を含む軟化剤;芳香族第二級アミン系、モノフェノール系、ビスフェノール系、ポリフェノール系、ベンツイミダゾール系、亜燐酸系等の老化防止剤の少なくとも一種を添加してもよい。また、飽和炭化水素樹脂をアクリル系粘着剤に配合しても良い。
Acrylic adhesives include rosin-based, terpene-based, petroleum-based, kumaron-inden-based, pure monomer-based, phenol-based, xylene-based tackifier resins, and mineral oils such as paraffin-based process oils; polyesters, if necessary. Plasticizers; Softeners containing vegetable oils, etc .; Add at least one of anti-aging agents such as aromatic secondary amines, monophenols, bisphenols, polyphenols, benzimidazoles, rosins, etc. May be good. Further, the saturated hydrocarbon resin may be blended with the acrylic pressure-sensitive adhesive.
アクリル系粘着剤は、必要に応じて、さらにシランカップリング剤、酸化防止剤等の添加剤の少なくとも一種を含有していても良い。
The acrylic pressure-sensitive adhesive may further contain at least one of additives such as a silane coupling agent and an antioxidant, if necessary.
シランカップリング剤としては、特にグリシジル基を含むシランカップリング剤が好ましい。具体例としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート等が挙げられる。これらの一種を用いても、あるいは二種類以上を併用しても良い。シランカップリング剤の配合量は、アクリル系共重合体(A)100質量部に対して、好ましくは0.01~0.5質量部、より好ましくは0.02~0.5質量部、特に好ましくは0.03~0.3質量部の範囲から選択される。
As the silane coupling agent, a silane coupling agent containing a glycidyl group is particularly preferable. Specific examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane. , Tris- (trimethoxysilylpropyl) isocyanurate and the like. One of these may be used, or two or more thereof may be used in combination. The blending amount of the silane coupling agent is preferably 0.01 to 0.5 parts by mass, more preferably 0.02 to 0.5 parts by mass, particularly, with respect to 100 parts by mass of the acrylic copolymer (A). It is preferably selected from the range of 0.03 to 0.3 parts by mass.
酸化防止剤としては、特にヒンダードフェノール系酸化防止剤が好ましい。酸化防止剤の配合量は、アクリル系共重合体(A)100質量部に対して、好ましくは0.01~1質量部、より好ましくは0.02~0.7質量部の範囲から選択される。
As the antioxidant, a hindered phenolic antioxidant is particularly preferable. The blending amount of the antioxidant is preferably selected from the range of 0.01 to 1 part by mass, more preferably 0.02 to 0.7 parts by mass with respect to 100 parts by mass of the acrylic copolymer (A). NS.
アクリル系粘着剤で上記パラメータを満足するには、例えばアクリル系共重合体の理論Tgを高くすることが挙げられる。理論Tgの高いアクリル系共重合体は一般にポリマー同士の凝集力が高いため、高温環境下での貯蔵弾性率G’が高くなる傾向にある。また、高温環境下のG’が高いため、相対的に高温環境下でのtanδも低くなる。理論Tgは一般にFOXの式により算出できるが、アクリル系共重合体全体における(A2)成分、(A3)成分、(A4)成分、(A5)成分の比率を高くすることにより理論Tgも高くなる。
また、アクリル系共重合体の重量平均分子量(Mw)を高くすることも手法として挙げられる。重量平均分子量(Mw)が高いと、一般にポリマー同士の凝集力も高くなり、流動性も低くなるため、高温環境下の貯蔵弾性率G’が高くなり、また高温環境下でのtanδも低くなる。
さらに、アクリル系共重合体同士を結合させるための架橋剤の添加量も多い方が好ましい。架橋剤の添加量が多いと、アクリル系共重合体同士の架橋による三次元ネットワークがより強固に形成され、結果として高温環境下でもG’を高くなり、tanδは低くなる。 In order to satisfy the above parameters with the acrylic pressure-sensitive adhesive, for example, increasing the theoretical Tg of the acrylic copolymer can be mentioned. Since an acrylic copolymer having a high theoretical Tg generally has a high cohesive force between the polymers, the storage elastic modulus G'in a high temperature environment tends to be high. Moreover, since G'in a high temperature environment is high, tan δ in a relatively high temperature environment is also relatively low. The theoretical Tg can be generally calculated by the FOX formula, but the theoretical Tg also increases by increasing the ratio of the (A2) component, the (A3) component, the (A4) component, and the (A5) component in the entire acrylic copolymer. ..
Another method is to increase the weight average molecular weight (Mw) of the acrylic copolymer. When the weight average molecular weight (Mw) is high, the cohesive force between the polymers is generally high and the fluidity is low, so that the storage elastic modulus G'in a high temperature environment is high and the tan δ in a high temperature environment is also low.
Further, it is preferable that the amount of the cross-linking agent added for bonding the acrylic copolymers to each other is large. When the amount of the cross-linking agent added is large, a three-dimensional network is formed more strongly by cross-linking the acrylic copolymers, and as a result, G'is high and tan δ is low even in a high temperature environment.
また、アクリル系共重合体の重量平均分子量(Mw)を高くすることも手法として挙げられる。重量平均分子量(Mw)が高いと、一般にポリマー同士の凝集力も高くなり、流動性も低くなるため、高温環境下の貯蔵弾性率G’が高くなり、また高温環境下でのtanδも低くなる。
さらに、アクリル系共重合体同士を結合させるための架橋剤の添加量も多い方が好ましい。架橋剤の添加量が多いと、アクリル系共重合体同士の架橋による三次元ネットワークがより強固に形成され、結果として高温環境下でもG’を高くなり、tanδは低くなる。 In order to satisfy the above parameters with the acrylic pressure-sensitive adhesive, for example, increasing the theoretical Tg of the acrylic copolymer can be mentioned. Since an acrylic copolymer having a high theoretical Tg generally has a high cohesive force between the polymers, the storage elastic modulus G'in a high temperature environment tends to be high. Moreover, since G'in a high temperature environment is high, tan δ in a relatively high temperature environment is also relatively low. The theoretical Tg can be generally calculated by the FOX formula, but the theoretical Tg also increases by increasing the ratio of the (A2) component, the (A3) component, the (A4) component, and the (A5) component in the entire acrylic copolymer. ..
Another method is to increase the weight average molecular weight (Mw) of the acrylic copolymer. When the weight average molecular weight (Mw) is high, the cohesive force between the polymers is generally high and the fluidity is low, so that the storage elastic modulus G'in a high temperature environment is high and the tan δ in a high temperature environment is also low.
Further, it is preferable that the amount of the cross-linking agent added for bonding the acrylic copolymers to each other is large. When the amount of the cross-linking agent added is large, a three-dimensional network is formed more strongly by cross-linking the acrylic copolymers, and as a result, G'is high and tan δ is low even in a high temperature environment.
ゴム系粘着剤の種類は特に限定されず、ゴム成分を主成分とする各種の公知のゴム系粘着剤を使用できる。ゴム成分の具体例としては、ブチルゴム、ポリイソブチレンゴム、イソプレンゴム、スチレン-イソブチレン-スチレンブロック共重合体、スチレン-イソプレンブロック共重合体、スチレン-ブタジエンゴム、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-エチレン-ブチレン-スチレンブロック共重合体、スチレン-エチレン-プロピレン-スチレンブロック共重合体、スチレン-エチレン-プロピレンブロック共重合体等の合成ゴム;天然ゴムが挙げられる。一種のゴム成分を用いても、二種以上のゴム成分を併用しても良い。ブチルゴムとは、一般にイソブチレンと1~3質量%のイソプレンとの共重合体を主成分とするゴムである。
The type of rubber-based adhesive is not particularly limited, and various known rubber-based adhesives containing a rubber component as a main component can be used. Specific examples of the rubber component include butyl rubber, polyisobutylene rubber, isoprene rubber, styrene-isobutylene-styrene block copolymer, styrene-isoprene block copolymer, styrene-butadiene rubber, styrene-isoprene-styrene block copolymer, and the like. Synthetic rubber such as styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, styrene-ethylene-propylene-styrene block copolymer, styrene-ethylene-propylene block copolymer; natural rubber Can be mentioned. One kind of rubber component may be used, or two or more kinds of rubber components may be used in combination. Butyl rubber is generally a rubber containing a copolymer of isobutylene and 1 to 3% by mass of isoprene as a main component.
粘着剤層にゴム系粘着剤を用いる場合、粘着剤層を構成する粘着剤組成物は、ゴム系粘着剤と共に飽和炭化水素樹脂を含むことが好ましい。飽和炭化水素樹脂は、不飽和結合を持たない炭化水素樹脂であり、粘着剤層の粘着性を向上する為の成分である。
When a rubber-based pressure-sensitive adhesive is used for the pressure-sensitive adhesive layer, the pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive layer preferably contains a saturated hydrocarbon resin together with the rubber-based pressure-sensitive adhesive. The saturated hydrocarbon resin is a hydrocarbon resin having no unsaturated bond, and is a component for improving the adhesiveness of the pressure-sensitive adhesive layer.
飽和炭化水素樹脂の種類は特に限定されず、例えば、粘着付与剤として知られる各種の脂環族系又は脂肪族系の飽和炭化水素樹脂を使用できる。一種の飽和炭化水素樹脂を用いても、二種以上の飽和炭化水素樹脂を併用しても良い。特に、脂環族系の飽和炭化水素樹脂が好ましく、水素添加処理により不飽和結合を無くした炭化水素樹脂がより好ましい。飽和炭化水素樹脂の市販品として、水添石油樹脂がある。水添石油樹脂とは、石油樹脂(例えば芳香族系石油樹脂、脂肪族系石油樹脂、脂環族系成分と芳香族成分との共重合石油樹脂等)を水素添加処理することにより得られる樹脂である。中でも、芳香族系石油樹脂を水素添加処理して得られる水添石油樹脂(脂環族系の飽和炭化水素樹脂)が好ましい。この水添石油樹脂は、市販品(例えば荒川化学工業(株)製、アルコン(商品名、日本における登録商標)P-100)として入手可能である。飽和炭化水素樹脂の配合量は、粘着剤成分100質量部に対して、好ましくは0.01~100質量部、より好ましくは0.1~80質量部の範囲から選択される。飽和炭化水素樹脂の含有量が多ければ粘着性がより向上する。
The type of saturated hydrocarbon resin is not particularly limited, and for example, various alicyclic or aliphatic saturated hydrocarbon resins known as tackifiers can be used. One kind of saturated hydrocarbon resin may be used, or two or more kinds of saturated hydrocarbon resins may be used in combination. In particular, an alicyclic saturated hydrocarbon resin is preferable, and a hydrocarbon resin whose unsaturated bond is eliminated by hydrogenation treatment is more preferable. Hydrogenated petroleum resin is a commercially available saturated hydrocarbon resin. Hydrogenated petroleum resin is a resin obtained by hydrogenating petroleum resin (for example, aromatic petroleum resin, aliphatic petroleum resin, copolymerized petroleum resin of alicyclic component and aromatic component, etc.). Is. Of these, hydrogenated petroleum resins (alicyclic saturated hydrocarbon resins) obtained by hydrogenating aromatic petroleum resins are preferable. This hydrogenated petroleum resin is available as a commercially available product (for example, manufactured by Arakawa Chemical Industry Co., Ltd., Archon (trade name, registered trademark in Japan) P-100). The blending amount of the saturated hydrocarbon resin is preferably selected from the range of 0.01 to 100 parts by mass, more preferably 0.1 to 80 parts by mass with respect to 100 parts by mass of the pressure-sensitive adhesive component. The higher the content of the saturated hydrocarbon resin, the better the adhesiveness.
ゴム系粘着剤で上記パラメータを満足するには、例えばゴム成分の分子量を高くして粘着剤成分の凝集力を高くすることが挙げられる。また、硫黄や樹脂によりゴム成分を加硫し、ゴム成分同士の架橋による三次元ネットワークをより強固に形成しても、高温環境下のG’を高くし、tanδを低くすることができる。
In order to satisfy the above parameters with a rubber-based pressure-sensitive adhesive, for example, the molecular weight of the rubber component may be increased to increase the cohesive force of the pressure-sensitive adhesive component. Further, even if the rubber component is vulcanized with sulfur or resin to form a stronger three-dimensional network by cross-linking the rubber components, G'in a high temperature environment can be increased and tan δ can be decreased.
本発明に用いるシリコーン系粘着剤の具体例としては、主にシリコーン生ゴム(D単位[(CH3)2SiO]からなる構造を有するポリジメチルシロキサンの長鎖の重合体)とMQレジン(M単位[(CH3)3SiO1/2]とQ単位[SiO4/2]からなる構造を有する3次元構造のシリコーンレジンの重合体)を含有する粘着剤が挙げられる。このようなシリコーン生ゴムとMQレジンを含有する粘着剤は、シリコーン生ゴム単体に比べて粘着性に優れる。また、粘着剤中のシリコーン生ゴムとMQレジンの比率を変えることで粘着力・保持力・タック等の基本的な粘着物性をコントロールすることができる。さらにMQレジンのM単位とQ単位の比率を変えることや、分子量を変えることによっても粘着物性のコントロールが可能である。シリコーン系粘着剤は、その硬化機構により、付加硬化型、過酸化物硬化型に大別される。
Specific examples of the silicone-based pressure-sensitive adhesive used in the present invention include silicone raw rubber (a long-chain polymer of polydimethylsiloxane having a structure composed of D unit [(CH 3 ) 2 SiO]) and MQ resin (M unit). Examples thereof include a pressure-sensitive adhesive containing [(CH 3 ) 3 SiO 1/2 ] and a polymer of a silicone resin having a three-dimensional structure having a structure consisting of a Q unit [SiO 4/2]. Such a pressure-sensitive adhesive containing silicone raw rubber and MQ resin is superior in adhesiveness to silicone raw rubber alone. Further, by changing the ratio of the silicone raw rubber and the MQ resin in the adhesive, it is possible to control the basic adhesive physical properties such as adhesive force, holding force, and tack. Furthermore, the adhesive physical characteristics can be controlled by changing the ratio of the M unit to the Q unit of the MQ resin and changing the molecular weight. Silicone-based adhesives are roughly classified into addition-curing type and peroxide-curing type according to their curing mechanism.
付加硬化型シリコーン系粘着剤は、例えば、アルケニル基を含有するシリコーン生ゴムからなる主剤と、MQレジンと、SiH基を含有するポリオルガノシロキサンからなる架橋剤とを含む。そして、白金触媒下で加熱して架橋反応させることにより硬化する。アルケニル基を含有するシリコーン生ゴムは、代表的には、ケイ素原子に結合したアルケニル基(例えばビニル基)を1分子中に少なくとも2個有するポリオルガノシロキサンである。SiH基を含有するポリオルガノシロキサンは、代表的には、ケイ素原子に結合した水素原子を1分子中に少なくとも2個有するポリオルガノシロキサンである。
The addition-curable silicone-based pressure-sensitive adhesive contains, for example, a main agent made of silicone raw rubber containing an alkenyl group, an MQ resin, and a cross-linking agent made of polyorganosiloxane containing a SiH group. Then, it is cured by heating under a platinum catalyst and causing a cross-linking reaction. The silicone raw rubber containing an alkenyl group is typically a polyorganosiloxane having at least two alkenyl groups (for example, vinyl groups) bonded to a silicon atom in one molecule. The polyorganosiloxane containing a SiH group is typically a polyorganosiloxane having at least two hydrogen atoms bonded to a silicon atom in one molecule.
過酸化物硬化型シリコーン系粘着剤は、例えば、アルケニル基を含有しないシリコーン生ゴムからなる主剤と、MQレジンとを含む。そして、硬化剤として過酸化ベンゾイル等の過酸化物を添加し、溶媒を除去した後、高温で加熱することで硬化する。
The peroxide-curable silicone-based pressure-sensitive adhesive contains, for example, a main agent made of silicone raw rubber containing no alkenyl group and an MQ resin. Then, a peroxide such as benzoyl peroxide is added as a curing agent, the solvent is removed, and then the mixture is heated at a high temperature to cure.
シリコーン系粘着剤は、各種特性の向上を目的として2種以上のシリコーン系粘着剤をブレンドしても良い。ただしブレンドするシリコーン系粘着剤の種類や量は、発明の効果が損なわれないよう適宜選定する必要がある。
The silicone-based pressure-sensitive adhesive may be a blend of two or more types of silicone-based pressure-sensitive adhesives for the purpose of improving various properties. However, it is necessary to appropriately select the type and amount of the silicone-based pressure-sensitive adhesive to be blended so as not to impair the effects of the invention.
シリコーン系粘着剤で上記粘着剤パラメータを満足するには、例えばシリコーンゴムとシリコーンレジンの比率を適宜調整することで達成できる。具体的には、シリコーンゴムとシリコーンレジンの比率(質量基準)が、30/70~90/10の範囲が好適である。シリコーンゴムの比率がこの範囲より少なくなると、高温環境下での凝集力が弱くなる傾向にあるため、貯蔵弾性率G’も低くなりtanδは高くなる。反対にシリコーンゴムの比率が多いと、十分な初期接着力が発現しにくく、被着体に貼りつきにくくなる。
さらに、付加硬化型シリコーン系粘着剤であれば、シリコーン生ゴムのアルケニル基含有量や架橋剤の量を調整することでシリコーン成分同士の結合を制御し、結果として貯蔵弾性率G‘やtanδを制御することが可能である。シリコーン生ゴムのアルケニル基含有量や架橋剤の量を増やすと、高温での十分な貯蔵弾性率G’が高くなり、tanδは低くなる傾向にある。
過酸化物硬化型シリコーン系粘着剤であれば、添加する過酸化物の量によって貯蔵弾性率G’やtanδを制御することが可能である。過酸化物の添加量を増やすと、高温での十分な貯蔵弾性率G’が高くなり、tanδは低くなる傾向にある。 Satisfaction of the above pressure-sensitive adhesive parameters with a silicone-based pressure-sensitive adhesive can be achieved, for example, by appropriately adjusting the ratio of silicone rubber and silicone resin. Specifically, the ratio of silicone rubber to silicone resin (based on mass) is preferably in the range of 30/70 to 90/10. When the ratio of the silicone rubber is less than this range, the cohesive force in a high temperature environment tends to be weakened, so that the storage elastic modulus G'is also low and the tan δ is high. On the other hand, if the proportion of silicone rubber is large, it is difficult to develop sufficient initial adhesive force and it is difficult to adhere to the adherend.
Further, in the case of an addition-curable silicone-based adhesive, the bond between the silicone components is controlled by adjusting the alkenyl group content and the amount of the cross-linking agent of the raw silicone rubber, and as a result, the storage elastic modulus G'and tan δ are controlled. It is possible to do. When the alkenyl group content and the amount of the cross-linking agent of the silicone raw rubber are increased, the sufficient storage elastic modulus G'at high temperature tends to increase, and the tan δ tends to decrease.
In the case of a peroxide-curable silicone-based pressure-sensitive adhesive, the storage elastic modulus G'and tan δ can be controlled by the amount of peroxide added. When the amount of peroxide added is increased, the sufficient storage elastic modulus G'at high temperature tends to increase, and tan δ tends to decrease.
さらに、付加硬化型シリコーン系粘着剤であれば、シリコーン生ゴムのアルケニル基含有量や架橋剤の量を調整することでシリコーン成分同士の結合を制御し、結果として貯蔵弾性率G‘やtanδを制御することが可能である。シリコーン生ゴムのアルケニル基含有量や架橋剤の量を増やすと、高温での十分な貯蔵弾性率G’が高くなり、tanδは低くなる傾向にある。
過酸化物硬化型シリコーン系粘着剤であれば、添加する過酸化物の量によって貯蔵弾性率G’やtanδを制御することが可能である。過酸化物の添加量を増やすと、高温での十分な貯蔵弾性率G’が高くなり、tanδは低くなる傾向にある。 Satisfaction of the above pressure-sensitive adhesive parameters with a silicone-based pressure-sensitive adhesive can be achieved, for example, by appropriately adjusting the ratio of silicone rubber and silicone resin. Specifically, the ratio of silicone rubber to silicone resin (based on mass) is preferably in the range of 30/70 to 90/10. When the ratio of the silicone rubber is less than this range, the cohesive force in a high temperature environment tends to be weakened, so that the storage elastic modulus G'is also low and the tan δ is high. On the other hand, if the proportion of silicone rubber is large, it is difficult to develop sufficient initial adhesive force and it is difficult to adhere to the adherend.
Further, in the case of an addition-curable silicone-based adhesive, the bond between the silicone components is controlled by adjusting the alkenyl group content and the amount of the cross-linking agent of the raw silicone rubber, and as a result, the storage elastic modulus G'and tan δ are controlled. It is possible to do. When the alkenyl group content and the amount of the cross-linking agent of the silicone raw rubber are increased, the sufficient storage elastic modulus G'at high temperature tends to increase, and the tan δ tends to decrease.
In the case of a peroxide-curable silicone-based pressure-sensitive adhesive, the storage elastic modulus G'and tan δ can be controlled by the amount of peroxide added. When the amount of peroxide added is increased, the sufficient storage elastic modulus G'at high temperature tends to increase, and tan δ tends to decrease.
以上説明した各粘着剤は、必要に応じてさらに、少なくとも1種の他の成分を含んでいても良い。具体例としては、トルエン等の溶剤; 酸化防止剤、紫外線吸収剤、光安定剤、帯電防止剤、難燃剤、導電性向上剤、熱伝導性向上剤等の添加剤; カーボンブラック、酸化カルシウム、酸化マグネシウム、シリカ、酸化亜鉛、酸化チタン等の充填剤又は顔料が挙げられる。
Each of the adhesives described above may further contain at least one other component, if necessary. Specific examples include solvents such as toluene; additives such as antioxidants, ultraviolet absorbers, light stabilizers, antistatic agents, flame retardants, conductivity improvers, and thermal conductivity improvers; carbon black, calcium oxide, etc. Examples thereof include fillers or pigments such as magnesium oxide, silica, zinc oxide and titanium oxide.
[熱膨張性粒子]
熱膨張性粒子としては、最大膨張温度が170℃以上となるような熱膨張性粒子が好適に用いられる。熱膨張性粒子は単独で又は2種以上組み合わせて使用することができる。
熱膨張性粒子としては、公知の熱膨張性微小球から適宜選択することができ、マイクロカプセル化されている熱膨張性粒子が好ましい。このような熱膨張性粒子としては、例えば、イソブタン、プロパン、ペンタンなど液状の低沸点炭化水素等のガス化剤を熱可塑性高分子殻(シェル)に包み込んだものが挙げられる。このような熱膨張性粒子は、加熱すると、高分子殻が軟化し、内包された液状の低沸点炭化水素がガス化し、その圧力で膨張する。熱可塑性高分子殻を形成する材料として、例えば、塩化ビニリデン- アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホンなどが挙げられる。 [Thermal expandable particles]
As the heat-expandable particles, heat-expandable particles having a maximum expansion temperature of 170 ° C. or higher are preferably used. The heat-expandable particles can be used alone or in combination of two or more.
As the heat-expandable particles, known heat-expandable microspheres can be appropriately selected, and microencapsulated heat-expandable particles are preferable. Examples of such thermally expandable particles include those in which a gasifying agent such as a liquid low boiling point hydrocarbon such as isobutane, propane, or pentane is wrapped in a thermoplastic polymer shell (shell). When such heat-expandable particles are heated, the polymer shell softens, and the contained liquid low-boiling-point hydrocarbon gasifies and expands at that pressure. Examples of the material for forming the thermoplastic polymer shell include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethylmethacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
熱膨張性粒子としては、最大膨張温度が170℃以上となるような熱膨張性粒子が好適に用いられる。熱膨張性粒子は単独で又は2種以上組み合わせて使用することができる。
熱膨張性粒子としては、公知の熱膨張性微小球から適宜選択することができ、マイクロカプセル化されている熱膨張性粒子が好ましい。このような熱膨張性粒子としては、例えば、イソブタン、プロパン、ペンタンなど液状の低沸点炭化水素等のガス化剤を熱可塑性高分子殻(シェル)に包み込んだものが挙げられる。このような熱膨張性粒子は、加熱すると、高分子殻が軟化し、内包された液状の低沸点炭化水素がガス化し、その圧力で膨張する。熱可塑性高分子殻を形成する材料として、例えば、塩化ビニリデン- アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホンなどが挙げられる。 [Thermal expandable particles]
As the heat-expandable particles, heat-expandable particles having a maximum expansion temperature of 170 ° C. or higher are preferably used. The heat-expandable particles can be used alone or in combination of two or more.
As the heat-expandable particles, known heat-expandable microspheres can be appropriately selected, and microencapsulated heat-expandable particles are preferable. Examples of such thermally expandable particles include those in which a gasifying agent such as a liquid low boiling point hydrocarbon such as isobutane, propane, or pentane is wrapped in a thermoplastic polymer shell (shell). When such heat-expandable particles are heated, the polymer shell softens, and the contained liquid low-boiling-point hydrocarbon gasifies and expands at that pressure. Examples of the material for forming the thermoplastic polymer shell include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethylmethacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
最大膨張温度が170℃以上の熱膨張性粒子としては、例えば、松本油脂製薬株式会社製の商品名「マツモトマイクロスフェアー」のシリーズ(例えば、商品名としての「マツモトマイクロスフェアーFN―180SSD」、「マツモトマイクロスフェアーFN―180SD」、「マツモトマイクロスフェアーFN―180D」、「マツモトマイクロスフェアーFN―190SSD」、「マツモトマイクロスフェアーF-190D」、「マツモトマイクロスフェアーF―260D」)などの市販品を好適に使用することができる。
Examples of the thermally expandable particles having a maximum expansion temperature of 170 ° C. or higher include the series of the product name "Matsumoto Microsphere" manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd. (for example, "Matsumoto Microsphere FN-180 SSD" as the product name. , "Matsumoto Microsphere FN-180SD", "Matsumoto Microsphere FN-180D", "Matsumoto Microsphere FN-190SD", "Matsumoto Microsphere F-190D", "Matsumoto Microsphere F-260D" ) And other commercially available products can be preferably used.
本発明において目的とする効果を得る上で、熱膨張性粒子の最大膨張温度が170℃以上、特に好ましくは180℃以上320℃以下となるような熱膨張性粒子を好適に用いることができる。
In order to obtain the desired effect in the present invention, thermally expandable particles having a maximum expansion temperature of 170 ° C. or higher, particularly preferably 180 ° C. or higher and 320 ° C. or lower can be preferably used.
本発明においては、熱膨張性粒子の最大膨張温度は熱分析装置TMA(TMA7100、株式会社日立ハイテクサイエンス製)を使用することで求めることができる。熱膨張性粒子の最大膨張温度は、5mmφのアルミ製のパンに熱膨張性粒子を入れて内蓋をし、圧縮モード(荷重:0.05N、昇温速度:10℃/分)で分析したとき、熱膨張性粒子の膨張が最大となる温度である。便宜上、この温度をTFmaxとした。最大膨張温度よりも高い温度にまで加熱すると、熱膨張性粒子の内部のガスが高分子殻を透過していくため、一般に破裂せずに収縮が進んでいく。
In the present invention, the maximum expansion temperature of the thermally expandable particles can be obtained by using the thermal analyzer TMA (TMA7100, manufactured by Hitachi High-Tech Science Corporation). The maximum expansion temperature of the heat-expandable particles was analyzed in a compression mode (load: 0.05 N, heating rate: 10 ° C./min) by placing the heat-expandable particles in a 5 mmφ aluminum pan, covering it with an inner lid. When, it is the temperature at which the expansion of the thermally expandable particles is maximized. For convenience, this temperature was defined as TFmax. When heated to a temperature higher than the maximum expansion temperature, the gas inside the thermally expandable particles permeates the polymer shell, so that the shrinkage generally proceeds without bursting.
なお、加熱処理により、熱膨張性粘着層の接着力を効率よく且つ安定して低下させるため、体積膨張率が5倍以上となる熱膨張性粒子を好ましく用いることができる。
Since the adhesive force of the heat-expandable adhesive layer is efficiently and stably reduced by the heat treatment, the heat-expandable particles having a volume expansion coefficient of 5 times or more can be preferably used.
熱膨張性粒子の配合量は、熱膨張性粘着層に含まれる樹脂成分100質量部に対して、4質量部以上、好ましくは5質量部以上、より好ましくは5質量部以上100質量部未満、特に好ましくは7質量部以上80質量部未満、更に好ましくは10質量部以上50質量部の範囲から、所望の初期接着性や発泡後の剥離力の低下性などに応じて適宜設定することができる。
The blending amount of the heat-expandable particles is 4 parts by mass or more, preferably 5 parts by mass or more, more preferably 5 parts by mass or more and less than 100 parts by mass with respect to 100 parts by mass of the resin component contained in the heat-expandable adhesive layer. Particularly preferably, it can be appropriately set from the range of 7 parts by mass or more and less than 80 parts by mass, more preferably 10 parts by mass or more and 50 parts by mass, depending on the desired initial adhesiveness, lowering of peeling force after foaming, and the like. ..
熱膨張性粒子は例えば温度65℃相対湿度80%のような高温高湿の環境に晒されると発泡性が低下することがある。そのため、熱膨張性粒子を使用した本熱剥離型粘着テープは、高温高湿の環境を避けて保管することが望ましい。さらに、発泡性が低下した状態でも熱剥離性を維持するため、熱膨張性粒子の配合量は熱膨張性粘着層に含まれる樹脂成分100質量部に対して7質量部以上とすることが好ましい。
Thermal expansion particles may have reduced foamability when exposed to a high temperature and high humidity environment such as a temperature of 65 ° C. and a relative humidity of 80%. Therefore, it is desirable to store this heat-removable adhesive tape using heat-expandable particles away from a high-temperature and high-humidity environment. Further, in order to maintain the thermal exfoliation property even in a state where the foamability is lowered, the blending amount of the thermally expandable particles is preferably 7 parts by mass or more with respect to 100 parts by mass of the resin component contained in the thermally expandable adhesive layer. ..
熱膨張性粒子の平均粒子径は、熱膨張性粘着層の厚みなどに応じて適宜選択することができる。微小球等の形状を有する熱膨張性粒子の平均粒子径は、例えば、好ましくは100μm以下、より好ましくは80μm以下、特に好ましくは1μm以上50μm以下の範囲から選択できる。市販品から目的とする平均粒子径の熱膨張性粒を選択して用いることができる。あるいは、熱膨張性粒子の粒径の調整は、熱膨張性粒子の生成過程で行われていてもよく、市販の熱膨張性粒子に対して公知の手法(例えば分級)により行われてもよい。熱膨張性粘着層の平滑性を得るためにも、熱膨張性粒子の粒子径は揃えられていることが好ましい。
The average particle size of the heat-expandable particles can be appropriately selected according to the thickness of the heat-expandable adhesive layer and the like. The average particle size of the heat-expandable particles having a shape such as a microsphere can be selected from, for example, preferably 100 μm or less, more preferably 80 μm or less, and particularly preferably 1 μm or more and 50 μm or less. Thermally expandable particles having a target average particle size can be selected from commercially available products and used. Alternatively, the particle size of the heat-expandable particles may be adjusted in the process of producing the heat-expandable particles, or may be performed by a known method (for example, classification) for commercially available heat-expandable particles. .. In order to obtain the smoothness of the heat-expandable adhesive layer, it is preferable that the particle sizes of the heat-expandable particles are uniform.
熱膨張性粘着層の厚さは、特に制限されるものではないが、例えば、好ましくは5μm~200μm、より好ましくは10μm~150μm、特に好ましくは15μm~100μmの範囲から選択できる。
The thickness of the heat-expandable adhesive layer is not particularly limited, but can be selected from, for example, preferably 5 μm to 200 μm, more preferably 10 μm to 150 μm, and particularly preferably 15 μm to 100 μm.
なお、熱膨張性粘着層中の熱膨張性粒子を発泡させる方法としては、公知の加熱膨張方法から適宜選して採用することができる。具体的には、熱膨張性粒子を膨張させるための加熱処理としては、例えば、ホットプレート、熱風乾燥機、赤外線ヒーターなどの加熱手段を適宜利用して行うことができる。加熱処理時の加熱温度は、熱膨張性粘着層中の熱膨張性粒子の発泡開始温度以上であればよいが、加熱処理の条件は、加熱手段や被着体の材質や熱容量などにより適宜設定できる。
As a method for foaming the heat-expandable particles in the heat-expandable adhesive layer, a known heat-expansion method can be appropriately selected and adopted. Specifically, as the heat treatment for expanding the heat-expandable particles, for example, a heating means such as a hot plate, a hot air dryer, or an infrared heater can be appropriately used. The heating temperature during the heat treatment may be equal to or higher than the foaming start temperature of the heat-expandable particles in the heat-expandable adhesive layer, but the heat treatment conditions are appropriately set depending on the heating means, the material of the adherend, the heat capacity, and the like. can.
[熱剥離型粘着テープの層構成]
本発明にかかる熱剥離型粘着テープの層構成としては、その他の層を有していない熱膨張性粘着層のみからなる層構成や、熱膨張性粘着層とその他の層とからなる層構成が挙げられる。熱膨張性粘着層のみからなる熱剥離型粘着テープは、熱膨張性粘着層単層からなる熱剥離型粘着テープであっても、複数の異なる熱膨張性粘着層を有する熱剥離型粘着テープであってもよい。
必要に応じて用いられるその他の層としては、基材、剥離ライナー等が挙げられる。
基材及び剥離ライナーの少なくとも一方を有する熱剥離型粘着テープの形態として、以下の各形態が挙げられる。
(1)基材の両面に熱膨張性粘着層を有する熱剥離型粘着テープ。
(2)基材の片面のみに熱膨張性粘着層を有する熱剥離型粘着テープ。
(3)基材の一方の面に熱膨張性粘着層を、かつ他方の面に非熱膨張性粘着層(熱膨張性を有していない粘着層)を有する熱剥離型粘着テープ。
(4)剥離ライナー上に熱膨張性粘着層を有する熱剥離型粘着テープ。
(5)剥離ライナー上に熱膨張性粘着層と、非熱膨張性粘着層をこの順に有する熱剥離型粘着テープ。
なお、基材の両面に熱膨張性粘着層が形成されている場合、少なくとも一方の熱膨張性粘着層が、前述した本発明にかかる特性を有していればよい。本発明にかかる熱膨張性粘着層と異なる熱膨張性粘着層及び非熱膨張性粘着層は、熱剥離型粘着テープの目的とする機能や効果を得ることができるように選択すればよい。また、上記(1)~(3)の形態の場合、熱膨張性粘着層または非熱膨張性粘着層上に剥離ライナーが設けられてもよい。 [Layer structure of heat-removable adhesive tape]
The layer structure of the heat-removable adhesive tape according to the present invention includes a layer structure consisting of only a heat-expandable adhesive layer having no other layers, and a layer structure consisting of a heat-expandable adhesive layer and other layers. Can be mentioned. The heat-release type adhesive tape composed of only the heat-expandable adhesive layer is a heat-release type adhesive tape having a plurality of different heat-expandable adhesive layers even if it is a heat-release type adhesive tape composed of a single layer of the heat-expandable adhesive layer. There may be.
Examples of other layers used as necessary include a base material, a release liner and the like.
Examples of the form of the heat-removable adhesive tape having at least one of the base material and the release liner include the following forms.
(1) A heat-removable adhesive tape having a heat-expandable adhesive layer on both sides of a base material.
(2) A heat-removable adhesive tape having a heat-expandable adhesive layer on only one side of the base material.
(3) A heat-release type adhesive tape having a heat-expandable adhesive layer on one surface of a base material and a non-heat-expandable adhesive layer (adhesive layer having no thermal expansion) on the other surface.
(4) A heat-release type adhesive tape having a heat-expandable adhesive layer on the release liner.
(5) A heat-release type adhesive tape having a heat-expandable adhesive layer and a non-heat-expandable adhesive layer on the release liner in this order.
When the heat-expandable adhesive layers are formed on both sides of the base material, it is sufficient that at least one of the heat-expandable adhesive layers has the above-mentioned characteristics according to the present invention. The heat-expandable pressure-sensitive adhesive layer and the non-heat-expandable pressure-sensitive adhesive layer, which are different from the heat-expandable pressure-sensitive adhesive layer according to the present invention, may be selected so as to obtain the desired functions and effects of the heat-releaseable pressure-sensitive adhesive tape. Further, in the case of the above-mentioned forms (1) to (3), a release liner may be provided on the heat-expandable adhesive layer or the non-heat-expandable adhesive layer.
本発明にかかる熱剥離型粘着テープの層構成としては、その他の層を有していない熱膨張性粘着層のみからなる層構成や、熱膨張性粘着層とその他の層とからなる層構成が挙げられる。熱膨張性粘着層のみからなる熱剥離型粘着テープは、熱膨張性粘着層単層からなる熱剥離型粘着テープであっても、複数の異なる熱膨張性粘着層を有する熱剥離型粘着テープであってもよい。
必要に応じて用いられるその他の層としては、基材、剥離ライナー等が挙げられる。
基材及び剥離ライナーの少なくとも一方を有する熱剥離型粘着テープの形態として、以下の各形態が挙げられる。
(1)基材の両面に熱膨張性粘着層を有する熱剥離型粘着テープ。
(2)基材の片面のみに熱膨張性粘着層を有する熱剥離型粘着テープ。
(3)基材の一方の面に熱膨張性粘着層を、かつ他方の面に非熱膨張性粘着層(熱膨張性を有していない粘着層)を有する熱剥離型粘着テープ。
(4)剥離ライナー上に熱膨張性粘着層を有する熱剥離型粘着テープ。
(5)剥離ライナー上に熱膨張性粘着層と、非熱膨張性粘着層をこの順に有する熱剥離型粘着テープ。
なお、基材の両面に熱膨張性粘着層が形成されている場合、少なくとも一方の熱膨張性粘着層が、前述した本発明にかかる特性を有していればよい。本発明にかかる熱膨張性粘着層と異なる熱膨張性粘着層及び非熱膨張性粘着層は、熱剥離型粘着テープの目的とする機能や効果を得ることができるように選択すればよい。また、上記(1)~(3)の形態の場合、熱膨張性粘着層または非熱膨張性粘着層上に剥離ライナーが設けられてもよい。 [Layer structure of heat-removable adhesive tape]
The layer structure of the heat-removable adhesive tape according to the present invention includes a layer structure consisting of only a heat-expandable adhesive layer having no other layers, and a layer structure consisting of a heat-expandable adhesive layer and other layers. Can be mentioned. The heat-release type adhesive tape composed of only the heat-expandable adhesive layer is a heat-release type adhesive tape having a plurality of different heat-expandable adhesive layers even if it is a heat-release type adhesive tape composed of a single layer of the heat-expandable adhesive layer. There may be.
Examples of other layers used as necessary include a base material, a release liner and the like.
Examples of the form of the heat-removable adhesive tape having at least one of the base material and the release liner include the following forms.
(1) A heat-removable adhesive tape having a heat-expandable adhesive layer on both sides of a base material.
(2) A heat-removable adhesive tape having a heat-expandable adhesive layer on only one side of the base material.
(3) A heat-release type adhesive tape having a heat-expandable adhesive layer on one surface of a base material and a non-heat-expandable adhesive layer (adhesive layer having no thermal expansion) on the other surface.
(4) A heat-release type adhesive tape having a heat-expandable adhesive layer on the release liner.
(5) A heat-release type adhesive tape having a heat-expandable adhesive layer and a non-heat-expandable adhesive layer on the release liner in this order.
When the heat-expandable adhesive layers are formed on both sides of the base material, it is sufficient that at least one of the heat-expandable adhesive layers has the above-mentioned characteristics according to the present invention. The heat-expandable pressure-sensitive adhesive layer and the non-heat-expandable pressure-sensitive adhesive layer, which are different from the heat-expandable pressure-sensitive adhesive layer according to the present invention, may be selected so as to obtain the desired functions and effects of the heat-releaseable pressure-sensitive adhesive tape. Further, in the case of the above-mentioned forms (1) to (3), a release liner may be provided on the heat-expandable adhesive layer or the non-heat-expandable adhesive layer.
[その他の層]
[基材]
基材を、熱剥離型粘着テープの部材、例えば、熱膨張性粘着層等の支持体として用いることができる。基材は特に限定されないが、公知のフィルム、不織布、発泡体、布、紙、及びこれらの組み合わせを用いることができる。薄型基板の製造工程などで厚さの均一性が得やすいフィルム状の基材が好ましい。特に、使用環境下で必要な耐熱性を有する樹脂フィルムが好ましい。その具体例としては例えば、ポリイミド(PI)、ポリエーテルエーテルケトン(PEEK)、ポリエチレンテレフタラート(PET)やポリエチレンナフタレート(PEN)等のポリエステル、ポリフェニレンサルファイド(PPS)、ポリアミドイミド(PAI)、ポリエーテルスルフォン(PES)、ポリテトラフルオロエチレン(PTFE)等の樹脂フィルムが挙げられる。これらのフィルムを単層、又は2層以上の積層フィルムとして使用することができる。積層フィルムは、異なる材質からなる複数層の組合せの1以上を含んでもよい。
耐熱性樹脂フィルムとしては、高温下の寸法安定性に優れたポリイミドフィルムが特に好ましい。
基材の厚さは特に制限されないが、好ましくは1μm以上200μm以下、より好ましくは2μm以上150μm以下、特に好ましくは2μm以上125μm以下の範囲から選択することができる。 [Other layers]
[Base material]
The base material can be used as a member of a heat-removable adhesive tape, for example, as a support for a heat-expandable adhesive layer or the like. The base material is not particularly limited, but known films, non-woven fabrics, foams, cloths, papers, and combinations thereof can be used. A film-like base material that can easily obtain thickness uniformity in the manufacturing process of a thin substrate is preferable. In particular, a resin film having heat resistance required in the usage environment is preferable. Specific examples thereof include polyesters such as polyimide (PI), polyetheretherketone (PEEK), polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyphenylene sulfide (PPS), polyamideimide (PAI), and poly. Examples thereof include resin films such as ether sulfone (PES) and polytetrafluoroethylene (PTFE). These films can be used as a single layer or a laminated film having two or more layers. The laminated film may include one or more combinations of a plurality of layers made of different materials.
As the heat-resistant resin film, a polyimide film having excellent dimensional stability at high temperatures is particularly preferable.
The thickness of the base material is not particularly limited, but can be selected from a range of preferably 1 μm or more and 200 μm or less, more preferably 2 μm or more and 150 μm or less, and particularly preferably 2 μm or more and 125 μm or less.
[基材]
基材を、熱剥離型粘着テープの部材、例えば、熱膨張性粘着層等の支持体として用いることができる。基材は特に限定されないが、公知のフィルム、不織布、発泡体、布、紙、及びこれらの組み合わせを用いることができる。薄型基板の製造工程などで厚さの均一性が得やすいフィルム状の基材が好ましい。特に、使用環境下で必要な耐熱性を有する樹脂フィルムが好ましい。その具体例としては例えば、ポリイミド(PI)、ポリエーテルエーテルケトン(PEEK)、ポリエチレンテレフタラート(PET)やポリエチレンナフタレート(PEN)等のポリエステル、ポリフェニレンサルファイド(PPS)、ポリアミドイミド(PAI)、ポリエーテルスルフォン(PES)、ポリテトラフルオロエチレン(PTFE)等の樹脂フィルムが挙げられる。これらのフィルムを単層、又は2層以上の積層フィルムとして使用することができる。積層フィルムは、異なる材質からなる複数層の組合せの1以上を含んでもよい。
耐熱性樹脂フィルムとしては、高温下の寸法安定性に優れたポリイミドフィルムが特に好ましい。
基材の厚さは特に制限されないが、好ましくは1μm以上200μm以下、より好ましくは2μm以上150μm以下、特に好ましくは2μm以上125μm以下の範囲から選択することができる。 [Other layers]
[Base material]
The base material can be used as a member of a heat-removable adhesive tape, for example, as a support for a heat-expandable adhesive layer or the like. The base material is not particularly limited, but known films, non-woven fabrics, foams, cloths, papers, and combinations thereof can be used. A film-like base material that can easily obtain thickness uniformity in the manufacturing process of a thin substrate is preferable. In particular, a resin film having heat resistance required in the usage environment is preferable. Specific examples thereof include polyesters such as polyimide (PI), polyetheretherketone (PEEK), polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyphenylene sulfide (PPS), polyamideimide (PAI), and poly. Examples thereof include resin films such as ether sulfone (PES) and polytetrafluoroethylene (PTFE). These films can be used as a single layer or a laminated film having two or more layers. The laminated film may include one or more combinations of a plurality of layers made of different materials.
As the heat-resistant resin film, a polyimide film having excellent dimensional stability at high temperatures is particularly preferable.
The thickness of the base material is not particularly limited, but can be selected from a range of preferably 1 μm or more and 200 μm or less, more preferably 2 μm or more and 150 μm or less, and particularly preferably 2 μm or more and 125 μm or less.
基材の粘着剤層を設ける面には、必要に応じて易接着処理を施しても良い。易接着処理としては、例えば、プライマー処理、コロナ処理、エッチング処理、プラズマ処理、サンドブラスト処理などが挙げられる。これらから1種の、あるいは2種以上の組合せを選択することができる。
If necessary, an easy-adhesion treatment may be applied to the surface of the base material on which the pressure-sensitive adhesive layer is provided. Examples of the easy-adhesion treatment include a primer treatment, a corona treatment, an etching treatment, a plasma treatment, and a sandblast treatment. From these, one kind or a combination of two or more kinds can be selected.
基材には必要に応じて帯電防止等の表面処理がなされていてもよい。帯電防止処理としては、陽イオン性界面活性剤、陰イオン性界面活性剤、非イオン性界面活性剤等の帯電防止剤による処理が例として挙げられる。また、基材には必要に応じて印刷や練りこみ等により、着色処理がなされていても良い。
The base material may be surface-treated such as antistatic if necessary. Examples of the antistatic treatment include treatment with an antistatic agent such as a cationic surfactant, an anionic surfactant, and a nonionic surfactant. Further, the base material may be colored by printing, kneading, or the like, if necessary.
[非熱膨張性粘着層]
非熱膨張性粘着層を形成するための粘着剤としては、特に制限されず、熱膨張性粘着層の説明において先に例示された粘着剤が同様に利用できる。粘着剤としては、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤等の公知の粘着剤を用いることができる。これらの粘着剤は単独で又は2種以上組み合わせて使用することができる。非熱膨張性粘着層には、例えば、粘着付与剤、着色顔料、老化防止剤、酸化防止剤、帯電防止剤、架橋剤、シランカップリング剤などの添加剤の少なくとも1種が配合されていてもよい。 [Non-thermally expandable adhesive layer]
The pressure-sensitive adhesive for forming the non-thermally expandable pressure-sensitive adhesive layer is not particularly limited, and the pressure-sensitive adhesive exemplified above in the description of the heat-expandable pressure-sensitive adhesive layer can be similarly used. As the pressure-sensitive adhesive, for example, known pressure-sensitive adhesives such as acrylic pressure-sensitive adhesive, rubber-based pressure-sensitive adhesive, silicone-based pressure-sensitive adhesive, polyester-based pressure-sensitive adhesive, polyamide-based pressure-sensitive adhesive, and urethane-based pressure-sensitive adhesive can be used. These adhesives can be used alone or in combination of two or more. The non-heat-expandable adhesive layer contains at least one additive such as a tackifier, a coloring pigment, an antioxidant, an antioxidant, an antistatic agent, a cross-linking agent, and a silane coupling agent. May be good.
非熱膨張性粘着層を形成するための粘着剤としては、特に制限されず、熱膨張性粘着層の説明において先に例示された粘着剤が同様に利用できる。粘着剤としては、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤等の公知の粘着剤を用いることができる。これらの粘着剤は単独で又は2種以上組み合わせて使用することができる。非熱膨張性粘着層には、例えば、粘着付与剤、着色顔料、老化防止剤、酸化防止剤、帯電防止剤、架橋剤、シランカップリング剤などの添加剤の少なくとも1種が配合されていてもよい。 [Non-thermally expandable adhesive layer]
The pressure-sensitive adhesive for forming the non-thermally expandable pressure-sensitive adhesive layer is not particularly limited, and the pressure-sensitive adhesive exemplified above in the description of the heat-expandable pressure-sensitive adhesive layer can be similarly used. As the pressure-sensitive adhesive, for example, known pressure-sensitive adhesives such as acrylic pressure-sensitive adhesive, rubber-based pressure-sensitive adhesive, silicone-based pressure-sensitive adhesive, polyester-based pressure-sensitive adhesive, polyamide-based pressure-sensitive adhesive, and urethane-based pressure-sensitive adhesive can be used. These adhesives can be used alone or in combination of two or more. The non-heat-expandable adhesive layer contains at least one additive such as a tackifier, a coloring pigment, an antioxidant, an antioxidant, an antistatic agent, a cross-linking agent, and a silane coupling agent. May be good.
非熱膨張性粘着層の厚さは、例えば、好ましくは200μm以下、より好ましくは1μm以上150μm以下、特に好ましくは1μm以上100μm以下の範囲から選択することができる。なお、非熱膨張性粘着層の形成方法としては、前記熱膨張性粘着層と同様の方法(例えば、基材上に塗布する方法、剥離ライナー上に塗布して粘着層を形成した後、これを基材上に転写する方法など)を利用することができる。
The thickness of the non-thermally expandable adhesive layer can be selected from, for example, preferably 200 μm or less, more preferably 1 μm or more and 150 μm or less, and particularly preferably 1 μm or more and 100 μm or less. The method for forming the non-thermally expandable adhesive layer is the same as that for the heat-expandable adhesive layer (for example, a method of applying on a base material, a method of applying on a release liner to form an adhesive layer, and then this. Is transferred onto a substrate, etc.).
[剥離ライナー]
剥離ライナーとしては、公知の剥離紙などを使用できる。剥離ライナーは熱膨張性粘着層の保護材として用いられており、熱剥離型粘着シートを被着体に貼着する際に剥がされる。剥離ライナーとしては、例えば、シリコーン系、長鎖アルキル系、フッ素系等の剥離剤により表面処理されたプラスチックフィルム(例えば、PETフィルム)や紙等の剥離層を有する基材、フッ素系樹脂(例えばポリテトラフルオロエチレン)やオレフィン系樹脂(例えば、ポリエチレン、ポリプロピレンなど)等の無極性ポリマーからなる低接着性基材を用いてもよい。 [Peeling liner]
As the release liner, a known release paper or the like can be used. The release liner is used as a protective material for the heat-expandable adhesive layer, and is peeled off when the heat-release type adhesive sheet is attached to the adherend. Examples of the release liner include a plastic film (for example, PET film) surface-treated with a release agent such as silicone-based, long-chain alkyl-based, and fluorine-based, a base material having a release layer such as paper, and a fluorine-based resin (for example). A low adhesive base material made of a non-polar polymer such as polytetrafluoroethylene) or an olefin resin (for example, polyethylene, polypropylene, etc.) may be used.
剥離ライナーとしては、公知の剥離紙などを使用できる。剥離ライナーは熱膨張性粘着層の保護材として用いられており、熱剥離型粘着シートを被着体に貼着する際に剥がされる。剥離ライナーとしては、例えば、シリコーン系、長鎖アルキル系、フッ素系等の剥離剤により表面処理されたプラスチックフィルム(例えば、PETフィルム)や紙等の剥離層を有する基材、フッ素系樹脂(例えばポリテトラフルオロエチレン)やオレフィン系樹脂(例えば、ポリエチレン、ポリプロピレンなど)等の無極性ポリマーからなる低接着性基材を用いてもよい。 [Peeling liner]
As the release liner, a known release paper or the like can be used. The release liner is used as a protective material for the heat-expandable adhesive layer, and is peeled off when the heat-release type adhesive sheet is attached to the adherend. Examples of the release liner include a plastic film (for example, PET film) surface-treated with a release agent such as silicone-based, long-chain alkyl-based, and fluorine-based, a base material having a release layer such as paper, and a fluorine-based resin (for example). A low adhesive base material made of a non-polar polymer such as polytetrafluoroethylene) or an olefin resin (for example, polyethylene, polypropylene, etc.) may be used.
その他の層として基材及び剥離ライナーを有する熱剥離型粘着テープの実施の形態について、図1を参照しながら説明する。図1は、本発明にかかる熱剥離型粘着テープの一実施形態を示す、厚さ方向における断面模式図である。図1に示す熱剥離型粘着シート1は、基材2、熱膨張性粘着層3及び剥離ライナー4を有する。2つの熱膨張性粘着層3は同一であっても異なっていてもよい。2つの剥離ライナー4も、同一剥離ライナーであっても、異なる剥離ライナーであってもよい。
An embodiment of a heat-release adhesive tape having a base material and a release liner as other layers will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view in the thickness direction showing an embodiment of the heat-removable adhesive tape according to the present invention. The heat-release type pressure-sensitive adhesive sheet 1 shown in FIG. 1 has a base material 2, a heat-expandable pressure-sensitive adhesive layer 3, and a release liner 4. The two heat-expandable adhesive layers 3 may be the same or different. The two release liners 4 may also be the same release liner or different release liners.
図1で示される熱剥離型粘着シート1は、基材2の両面にそれぞれ形成された2つの熱膨張性粘着層3を有する両面粘着テープの形態を有する。この両面粘着テープの形態においては、2つの粘着層の少なくとも一方が、本発明にかかる熱膨張性粘着層であればよい。例えば、両面粘着テープの形態において、2つの粘着層3の少なくとも一方が本発明にかかる熱膨張性粘着層であって、他方が、本発明にかかる熱膨張性粘着層以外の、熱膨張性粘着層あるいは熱膨張性を有していない粘着層(非熱膨張性粘着層)であってもよい。
The heat-removable pressure-sensitive adhesive sheet 1 shown in FIG. 1 has the form of a double-sided pressure-sensitive adhesive tape having two heat-expandable pressure-sensitive adhesive layers 3 formed on both sides of the base material 2. In the form of the double-sided adhesive tape, at least one of the two adhesive layers may be the heat-expandable adhesive layer according to the present invention. For example, in the form of a double-sided adhesive tape, at least one of the two adhesive layers 3 is a heat-expandable adhesive layer according to the present invention, and the other is a heat-expandable adhesive layer other than the heat-expandable adhesive layer according to the present invention. It may be a layer or an adhesive layer having no thermal expansion property (non-thermal expansion adhesive layer).
[熱剥離型粘着テープの製造方法]
熱膨張性粘着層からなる熱剥離型粘着テープは、熱膨張性粘着層形成用の基材上に、樹脂成分と熱膨張性粒子を含む層形成用組成物材料を塗布し、加熱により塗布層に架橋反応を生じさせて形成した熱膨張性粘着層を熱膨張性粘着層形成用の基材から剥離することにより製造することができる。
熱剥離型粘着テープの構成部材としての基材や剥離ライナー上に、熱膨張性粘着層を有する熱剥離型粘着テープは、例えば樹脂成分と熱膨張性粒子を含む層形成用組成物材料を基材もしくは剥離ライナー上に塗布し、加熱により塗布層に架橋反応を生じさせて熱膨張性粘着層を形成することにより製造することができる。また、樹脂成分と熱膨張性粒子を含む層形成用組成物材料を剥離ライナー(例えば、シリコーン処理されたPETフィルム)上に塗布し、加熱により塗布層に架橋反応を生じさせ、基材の片面又は両面に転写することにより熱剥離型粘着テープを形成することもできる。架橋のための加熱の温度は熱膨張性粒子の発泡開始温度よりも十分に低いことが肝要である。塗布層の形成には、例えば、ロールコーター、ダイコーター、リップコーター等の既知の塗布装置を使用できる。塗布後に加熱する場合は、加熱による架橋反応と共に層形成用材料中の溶剤も除去できる。転写により熱膨張性粘着層を形成する場合には、基材と熱膨張性粘着層との密着性を向上させ、さらに表面の平滑性を得るため、熱したロール等によりラミネートすることが好ましい。 [Manufacturing method of heat-removable adhesive tape]
The heat-release type adhesive tape composed of a heat-expandable adhesive layer is obtained by applying a layer-forming composition material containing a resin component and heat-expandable particles on a base material for forming a heat-expandable pressure-sensitive adhesive layer, and heating the coating layer. It can be produced by peeling the heat-expandable adhesive layer formed by causing a cross-linking reaction from the base material for forming the heat-expandable pressure-sensitive adhesive layer.
The heat-release type adhesive tape having a heat-expandable adhesive layer on a base material or a release liner as a constituent member of the heat-release type adhesive tape is based on, for example, a layer-forming composition material containing a resin component and heat-expandable particles. It can be produced by applying it on a material or a release liner and causing a cross-linking reaction in the coating layer by heating to form a heat-expandable adhesive layer. Further, a layer-forming composition material containing a resin component and heat-expandable particles is applied onto a release liner (for example, a silicone-treated PET film), and heating causes a cross-linking reaction in the coated layer to cause a cross-linking reaction on one side of the base material. Alternatively, a heat-removable adhesive tape can be formed by transferring to both sides. It is important that the heating temperature for cross-linking is sufficiently lower than the foaming start temperature of the heat-expandable particles. For forming the coating layer, for example, a known coating device such as a roll coater, a die coater, or a lip coater can be used. When heating after coating, the solvent in the layer-forming material can be removed as well as the cross-linking reaction by heating. When the heat-expandable adhesive layer is formed by transfer, it is preferable to laminate with a heated roll or the like in order to improve the adhesion between the base material and the heat-expandable adhesive layer and further obtain the smoothness of the surface.
熱膨張性粘着層からなる熱剥離型粘着テープは、熱膨張性粘着層形成用の基材上に、樹脂成分と熱膨張性粒子を含む層形成用組成物材料を塗布し、加熱により塗布層に架橋反応を生じさせて形成した熱膨張性粘着層を熱膨張性粘着層形成用の基材から剥離することにより製造することができる。
熱剥離型粘着テープの構成部材としての基材や剥離ライナー上に、熱膨張性粘着層を有する熱剥離型粘着テープは、例えば樹脂成分と熱膨張性粒子を含む層形成用組成物材料を基材もしくは剥離ライナー上に塗布し、加熱により塗布層に架橋反応を生じさせて熱膨張性粘着層を形成することにより製造することができる。また、樹脂成分と熱膨張性粒子を含む層形成用組成物材料を剥離ライナー(例えば、シリコーン処理されたPETフィルム)上に塗布し、加熱により塗布層に架橋反応を生じさせ、基材の片面又は両面に転写することにより熱剥離型粘着テープを形成することもできる。架橋のための加熱の温度は熱膨張性粒子の発泡開始温度よりも十分に低いことが肝要である。塗布層の形成には、例えば、ロールコーター、ダイコーター、リップコーター等の既知の塗布装置を使用できる。塗布後に加熱する場合は、加熱による架橋反応と共に層形成用材料中の溶剤も除去できる。転写により熱膨張性粘着層を形成する場合には、基材と熱膨張性粘着層との密着性を向上させ、さらに表面の平滑性を得るため、熱したロール等によりラミネートすることが好ましい。 [Manufacturing method of heat-removable adhesive tape]
The heat-release type adhesive tape composed of a heat-expandable adhesive layer is obtained by applying a layer-forming composition material containing a resin component and heat-expandable particles on a base material for forming a heat-expandable pressure-sensitive adhesive layer, and heating the coating layer. It can be produced by peeling the heat-expandable adhesive layer formed by causing a cross-linking reaction from the base material for forming the heat-expandable pressure-sensitive adhesive layer.
The heat-release type adhesive tape having a heat-expandable adhesive layer on a base material or a release liner as a constituent member of the heat-release type adhesive tape is based on, for example, a layer-forming composition material containing a resin component and heat-expandable particles. It can be produced by applying it on a material or a release liner and causing a cross-linking reaction in the coating layer by heating to form a heat-expandable adhesive layer. Further, a layer-forming composition material containing a resin component and heat-expandable particles is applied onto a release liner (for example, a silicone-treated PET film), and heating causes a cross-linking reaction in the coated layer to cause a cross-linking reaction on one side of the base material. Alternatively, a heat-removable adhesive tape can be formed by transferring to both sides. It is important that the heating temperature for cross-linking is sufficiently lower than the foaming start temperature of the heat-expandable particles. For forming the coating layer, for example, a known coating device such as a roll coater, a die coater, or a lip coater can be used. When heating after coating, the solvent in the layer-forming material can be removed as well as the cross-linking reaction by heating. When the heat-expandable adhesive layer is formed by transfer, it is preferable to laminate with a heated roll or the like in order to improve the adhesion between the base material and the heat-expandable adhesive layer and further obtain the smoothness of the surface.
本発明にかかる熱剥離型粘着テープは、熱剥離型粘着テープを仮固定した被着体の熱プレス処理に好適に用いることができる。
被着体の熱プレス処理における本発明にかかる熱剥離型粘着テープの使用方法の一形態は、
被着体に上記構成の粘着テープを仮固定する工程と、
前記粘着テープが仮固定された被着体を熱プレス処理する工程と、
前記熱プレス処理された被着体に仮固定された粘着テープを、剥離用の温度に加熱する工程と、
前記剥離用の温度に加熱された粘着テープを前記被着体から剥離する工程と、
を有する。
かかる使用方法を用いた被着体の熱プレス処理方法の一形態は、
仮固定された熱剥離型粘着テープを有する被着体の熱プレス処理方法であって、
被着体に上記構成の熱剥離型粘着テープを仮固定する工程と、
前記粘着テープが仮固定された被着体を熱プレス処理する工程と、
前記熱プレス処理された被着体に仮固定された粘着テープを、剥離用の温度に加熱する工程と、
前記剥離用の温度に加熱された粘着テープを前記被着体から剥離する工程と、
を有する。
被着体への熱剥離型粘着テープの仮固定の形態には、被着体同士の仮固定、被着体の搬送時仮固定、被着体の補強、保護またはマスキング、被着体への樹脂封止等が含まれる。
また、熱プレス工程としては、電子部品・半導体部品の製造工程における熱プレス工程が挙げられる。
本発明にかかる熱剥離型粘着テープは好適に利用し得る熱プレス工程の条件としては、温度120~240℃、時間5分~10時間、圧力5~40kgf/cm2を挙げることができる。 The heat-removable adhesive tape according to the present invention can be suitably used for heat-pressing an adherend to which the heat-removable adhesive tape is temporarily fixed.
One form of the method of using the heat-removable adhesive tape according to the present invention in the heat pressing treatment of the adherend is
The process of temporarily fixing the adhesive tape having the above configuration to the adherend,
A step of heat-pressing the adherend to which the adhesive tape is temporarily fixed, and
A step of heating the adhesive tape temporarily fixed to the heat-pressed adherend to a temperature for peeling, and
A step of peeling the adhesive tape heated to the peeling temperature from the adherend,
Have.
One form of the heat pressing treatment method for the adherend using such a usage method is
A method for heat-pressing an adherend having a temporarily fixed heat-release adhesive tape.
The process of temporarily fixing the heat-removable adhesive tape having the above configuration to the adherend, and
A step of heat-pressing the adherend to which the adhesive tape is temporarily fixed, and
A step of heating the adhesive tape temporarily fixed to the heat-pressed adherend to a temperature for peeling, and
A step of peeling the adhesive tape heated to the peeling temperature from the adherend,
Have.
The forms of temporary fixing of the heat-removable adhesive tape to the adherend include temporary fixing between the adherends, temporary fixing during transportation of the adherend, reinforcement, protection or masking of the adherend, and temporary fixing to the adherend. Includes resin encapsulation and the like.
Further, as the heat pressing process, a heat pressing process in the manufacturing process of electronic parts / semiconductor parts can be mentioned.
The conditions of the heat pressing step that can be preferably used for the heat-release adhesive tape according to the present invention include a temperature of 120 to 240 ° C., a time of 5 minutes to 10 hours, and a pressure of 5 to 40 kgf / cm 2 .
被着体の熱プレス処理における本発明にかかる熱剥離型粘着テープの使用方法の一形態は、
被着体に上記構成の粘着テープを仮固定する工程と、
前記粘着テープが仮固定された被着体を熱プレス処理する工程と、
前記熱プレス処理された被着体に仮固定された粘着テープを、剥離用の温度に加熱する工程と、
前記剥離用の温度に加熱された粘着テープを前記被着体から剥離する工程と、
を有する。
かかる使用方法を用いた被着体の熱プレス処理方法の一形態は、
仮固定された熱剥離型粘着テープを有する被着体の熱プレス処理方法であって、
被着体に上記構成の熱剥離型粘着テープを仮固定する工程と、
前記粘着テープが仮固定された被着体を熱プレス処理する工程と、
前記熱プレス処理された被着体に仮固定された粘着テープを、剥離用の温度に加熱する工程と、
前記剥離用の温度に加熱された粘着テープを前記被着体から剥離する工程と、
を有する。
被着体への熱剥離型粘着テープの仮固定の形態には、被着体同士の仮固定、被着体の搬送時仮固定、被着体の補強、保護またはマスキング、被着体への樹脂封止等が含まれる。
また、熱プレス工程としては、電子部品・半導体部品の製造工程における熱プレス工程が挙げられる。
本発明にかかる熱剥離型粘着テープは好適に利用し得る熱プレス工程の条件としては、温度120~240℃、時間5分~10時間、圧力5~40kgf/cm2を挙げることができる。 The heat-removable adhesive tape according to the present invention can be suitably used for heat-pressing an adherend to which the heat-removable adhesive tape is temporarily fixed.
One form of the method of using the heat-removable adhesive tape according to the present invention in the heat pressing treatment of the adherend is
The process of temporarily fixing the adhesive tape having the above configuration to the adherend,
A step of heat-pressing the adherend to which the adhesive tape is temporarily fixed, and
A step of heating the adhesive tape temporarily fixed to the heat-pressed adherend to a temperature for peeling, and
A step of peeling the adhesive tape heated to the peeling temperature from the adherend,
Have.
One form of the heat pressing treatment method for the adherend using such a usage method is
A method for heat-pressing an adherend having a temporarily fixed heat-release adhesive tape.
The process of temporarily fixing the heat-removable adhesive tape having the above configuration to the adherend, and
A step of heat-pressing the adherend to which the adhesive tape is temporarily fixed, and
A step of heating the adhesive tape temporarily fixed to the heat-pressed adherend to a temperature for peeling, and
A step of peeling the adhesive tape heated to the peeling temperature from the adherend,
Have.
The forms of temporary fixing of the heat-removable adhesive tape to the adherend include temporary fixing between the adherends, temporary fixing during transportation of the adherend, reinforcement, protection or masking of the adherend, and temporary fixing to the adherend. Includes resin encapsulation and the like.
Further, as the heat pressing process, a heat pressing process in the manufacturing process of electronic parts / semiconductor parts can be mentioned.
The conditions of the heat pressing step that can be preferably used for the heat-release adhesive tape according to the present invention include a temperature of 120 to 240 ° C., a time of 5 minutes to 10 hours, and a pressure of 5 to 40 kgf / cm 2 .
以下、実施例及び比較例を挙げて、本発明を更に詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。以下の記載において「部」は質量部である。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In the following description, "part" is a mass part.
<アクリル系共重合体の調製例>
表1に示すとおりの組成のアクリル系共重合体を重合した。表1における各成分の配合比は、成分A1~A5の合計を100部とした場合の割合を示す。参考として各アクリル系共重合体の理論Tg及び重量平均分子量(Mw)を表1に併記した。理論TgはFOXの式により算出した値であり、アクリルモノマーの組成を適宜選定することで調整可能である。また、この重量平均分子量(Mw)は、GPC法により、アクリル系共重合体の標準ポリスチレン換算の分子量を以下の測定装置及び条件にて測定した値である。
・装置:LC-2000シリーズ(日本分光株式会社製)
・カラム:ShodexKF-806M×2本、ShodexKF-802×1本
・溶離液:テトラヒドロフラン(THF)
・流速:10mL/分
・カラム温度:40℃
・注入量:100μL
・検出器:屈折率計(RI)
・測定サンプル:アクリル系ポリマーをTHFに溶解させ、アクリル系ポリマーの濃度が0.5質量%の溶液を作製し、フィルターによるろ過でゴミを除去したもの。
重量平均分子量(Mw)は、アクリル系共重合体の重合に際し、重合開始剤の種類と量(例えばアクリルモノマー100質量部に対してラウリルパーオキサイドを0.1質量部)、連鎖移動剤の種類と量(例えばアクリルモノマー100質量部に対してn-ドデカンチオールを0.1質量部)、重合開始濃度(例えば50質量%)等を適宜選定することで調整可能である。 <Preparation example of acrylic copolymer>
An acrylic copolymer having the composition shown in Table 1 was polymerized. The compounding ratio of each component in Table 1 shows the ratio when the total of the components A1 to A5 is 100 parts. For reference, the theoretical Tg and weight average molecular weight (Mw) of each acrylic copolymer are also shown in Table 1. The theoretical Tg is a value calculated by the formula of FOX, and can be adjusted by appropriately selecting the composition of the acrylic monomer. The weight average molecular weight (Mw) is a value obtained by measuring the molecular weight of the acrylic copolymer in terms of standard polystyrene by the GPC method with the following measuring devices and conditions.
・ Equipment: LC-2000 series (manufactured by JASCO Corporation)
-Column: Shodex KF-806M x 2, Shodex KF-802 x 1-Eluent: tetrahydrofuran (THF)
・ Flow velocity: 10 mL / min ・ Column temperature: 40 ° C
・ Injection amount: 100 μL
・ Detector: Refractive index meter (RI)
-Measurement sample: A solution in which an acrylic polymer is dissolved in THF to prepare a solution having an acrylic polymer concentration of 0.5% by mass, and dust is removed by filtration through a filter.
The weight average molecular weight (Mw) is the type and amount of the polymerization initiator (for example, 0.1 part by mass of lauryl peroxide with respect to 100 parts by mass of the acrylic monomer) and the type of chain transfer agent when polymerizing the acrylic copolymer. It can be adjusted by appropriately selecting the amount (for example, 0.1 part by mass of n-dodecanethiol with respect to 100 parts by mass of the acrylic monomer), the polymerization initiation concentration (for example, 50% by mass), and the like.
表1に示すとおりの組成のアクリル系共重合体を重合した。表1における各成分の配合比は、成分A1~A5の合計を100部とした場合の割合を示す。参考として各アクリル系共重合体の理論Tg及び重量平均分子量(Mw)を表1に併記した。理論TgはFOXの式により算出した値であり、アクリルモノマーの組成を適宜選定することで調整可能である。また、この重量平均分子量(Mw)は、GPC法により、アクリル系共重合体の標準ポリスチレン換算の分子量を以下の測定装置及び条件にて測定した値である。
・装置:LC-2000シリーズ(日本分光株式会社製)
・カラム:ShodexKF-806M×2本、ShodexKF-802×1本
・溶離液:テトラヒドロフラン(THF)
・流速:10mL/分
・カラム温度:40℃
・注入量:100μL
・検出器:屈折率計(RI)
・測定サンプル:アクリル系ポリマーをTHFに溶解させ、アクリル系ポリマーの濃度が0.5質量%の溶液を作製し、フィルターによるろ過でゴミを除去したもの。
重量平均分子量(Mw)は、アクリル系共重合体の重合に際し、重合開始剤の種類と量(例えばアクリルモノマー100質量部に対してラウリルパーオキサイドを0.1質量部)、連鎖移動剤の種類と量(例えばアクリルモノマー100質量部に対してn-ドデカンチオールを0.1質量部)、重合開始濃度(例えば50質量%)等を適宜選定することで調整可能である。 <Preparation example of acrylic copolymer>
An acrylic copolymer having the composition shown in Table 1 was polymerized. The compounding ratio of each component in Table 1 shows the ratio when the total of the components A1 to A5 is 100 parts. For reference, the theoretical Tg and weight average molecular weight (Mw) of each acrylic copolymer are also shown in Table 1. The theoretical Tg is a value calculated by the formula of FOX, and can be adjusted by appropriately selecting the composition of the acrylic monomer. The weight average molecular weight (Mw) is a value obtained by measuring the molecular weight of the acrylic copolymer in terms of standard polystyrene by the GPC method with the following measuring devices and conditions.
・ Equipment: LC-2000 series (manufactured by JASCO Corporation)
-Column: Shodex KF-806M x 2, Shodex KF-802 x 1-Eluent: tetrahydrofuran (THF)
・ Flow velocity: 10 mL / min ・ Column temperature: 40 ° C
・ Injection amount: 100 μL
・ Detector: Refractive index meter (RI)
-Measurement sample: A solution in which an acrylic polymer is dissolved in THF to prepare a solution having an acrylic polymer concentration of 0.5% by mass, and dust is removed by filtration through a filter.
The weight average molecular weight (Mw) is the type and amount of the polymerization initiator (for example, 0.1 part by mass of lauryl peroxide with respect to 100 parts by mass of the acrylic monomer) and the type of chain transfer agent when polymerizing the acrylic copolymer. It can be adjusted by appropriately selecting the amount (for example, 0.1 part by mass of n-dodecanethiol with respect to 100 parts by mass of the acrylic monomer), the polymerization initiation concentration (for example, 50% by mass), and the like.
表1中の略号は、以下の化合物を示す。
「2-EHA」:2-エチルヘキシルアクリレート
「BA」:n-ブチルアクリレート
「MA」:メチルアクリレート
「EA」:エチルアクリレート
「AA」:アクリル酸
「4-HBA」:4-ヒドロキシブチルアクリレート
「2-HEA」:2-ヒドロキシエチルアクリレート
「VAc」:酢酸ビニル
「ACMO」:アクリロイルモルフォリン The abbreviations in Table 1 indicate the following compounds.
"2-EHA": 2-ethylhexyl acrylate "BA": n-butyl acrylate "MA": methyl acrylate "EA": ethyl acrylate "AA": acrylic acid "4-HBA": 4-hydroxybutyl acrylate "2-" HEA ": 2-Hydroxyethyl acrylate" VAc ": Vinyl acetate" ACMO ": Acryloylmorpholin
「2-EHA」:2-エチルヘキシルアクリレート
「BA」:n-ブチルアクリレート
「MA」:メチルアクリレート
「EA」:エチルアクリレート
「AA」:アクリル酸
「4-HBA」:4-ヒドロキシブチルアクリレート
「2-HEA」:2-ヒドロキシエチルアクリレート
「VAc」:酢酸ビニル
「ACMO」:アクリロイルモルフォリン The abbreviations in Table 1 indicate the following compounds.
"2-EHA": 2-ethylhexyl acrylate "BA": n-butyl acrylate "MA": methyl acrylate "EA": ethyl acrylate "AA": acrylic acid "4-HBA": 4-hydroxybutyl acrylate "2-" HEA ": 2-Hydroxyethyl acrylate" VAc ": Vinyl acetate" ACMO ": Acryloylmorpholin
<実施例1~10及び比較例1~11:熱剥離型アクリル系粘着テープの作製>
表2に示す通り、表1で得たアクリル系共重合体(成分A)の固形分100部に対して、架橋剤(成分B)、酸化防止剤(成分C)、シランカップリング剤(成分D)、トルエン(希釈溶剤)を所定の配合比(質量基準)で混合し粘着剤組成物を得た。さらに、粘着剤成分100部に対して表2に示す配合比(質量基準)で発泡剤(成分F)を混合し、熱膨張性粘着剤組成物を調製した。 <Examples 1 to 10 and Comparative Examples 1 to 11: Preparation of heat-removable acrylic adhesive tape>
As shown in Table 2, a cross-linking agent (component B), an antioxidant (component C), and a silane coupling agent (component) are used with respect to 100 parts of the solid content of the acrylic copolymer (component A) obtained in Table 1. D) and toluene (diluting solvent) were mixed at a predetermined compounding ratio (mass basis) to obtain a pressure-sensitive adhesive composition. Further, a foaming agent (component F) was mixed with 100 parts of the pressure-sensitive adhesive component at the blending ratio (mass basis) shown in Table 2 to prepare a heat-expandable pressure-sensitive adhesive composition.
表2に示す通り、表1で得たアクリル系共重合体(成分A)の固形分100部に対して、架橋剤(成分B)、酸化防止剤(成分C)、シランカップリング剤(成分D)、トルエン(希釈溶剤)を所定の配合比(質量基準)で混合し粘着剤組成物を得た。さらに、粘着剤成分100部に対して表2に示す配合比(質量基準)で発泡剤(成分F)を混合し、熱膨張性粘着剤組成物を調製した。 <Examples 1 to 10 and Comparative Examples 1 to 11: Preparation of heat-removable acrylic adhesive tape>
As shown in Table 2, a cross-linking agent (component B), an antioxidant (component C), and a silane coupling agent (component) are used with respect to 100 parts of the solid content of the acrylic copolymer (component A) obtained in Table 1. D) and toluene (diluting solvent) were mixed at a predetermined compounding ratio (mass basis) to obtain a pressure-sensitive adhesive composition. Further, a foaming agent (component F) was mixed with 100 parts of the pressure-sensitive adhesive component at the blending ratio (mass basis) shown in Table 2 to prepare a heat-expandable pressure-sensitive adhesive composition.
この熱膨張性粘着剤組成物を、シリコーン離型処理された厚み50μmのPETフィルム上に塗布した。次いで、90~100℃で希釈溶剤を除去・乾燥すると共に架橋反応させて、熱膨張性粘着剤層を形成した。この熱膨張性粘着剤層を、厚み12μmのポリイミドフィルムの両面に貼り合せて転写した。さらに、卓上ラミネート機を用いて、温度100℃でラミネートした。そして40℃で3日間養生して、両面熱剥離型の粘着テープを得た。
熱膨張性粘着剤組成物は、ラミネート後の片側の粘着層厚みが50μmとなるように塗布した。得られた両面粘着テープの厚みは112μmとなる。 This heat-expandable pressure-sensitive adhesive composition was applied onto a PET film having a thickness of 50 μm that had been subjected to a silicone mold release treatment. Next, the diluting solvent was removed and dried at 90 to 100 ° C., and a cross-linking reaction was carried out to form a heat-expandable pressure-sensitive adhesive layer. This heat-expandable pressure-sensitive adhesive layer was bonded to both sides of a polyimide film having a thickness of 12 μm and transferred. Further, laminating was performed at a temperature of 100 ° C. using a tabletop laminating machine. Then, it was cured at 40 ° C. for 3 days to obtain a double-sided heat-peeling type adhesive tape.
The heat-expandable pressure-sensitive adhesive composition was applied so that the thickness of the pressure-sensitive adhesive layer on one side after lamination was 50 μm. The thickness of the obtained double-sided adhesive tape is 112 μm.
熱膨張性粘着剤組成物は、ラミネート後の片側の粘着層厚みが50μmとなるように塗布した。得られた両面粘着テープの厚みは112μmとなる。 This heat-expandable pressure-sensitive adhesive composition was applied onto a PET film having a thickness of 50 μm that had been subjected to a silicone mold release treatment. Next, the diluting solvent was removed and dried at 90 to 100 ° C., and a cross-linking reaction was carried out to form a heat-expandable pressure-sensitive adhesive layer. This heat-expandable pressure-sensitive adhesive layer was bonded to both sides of a polyimide film having a thickness of 12 μm and transferred. Further, laminating was performed at a temperature of 100 ° C. using a tabletop laminating machine. Then, it was cured at 40 ° C. for 3 days to obtain a double-sided heat-peeling type adhesive tape.
The heat-expandable pressure-sensitive adhesive composition was applied so that the thickness of the pressure-sensitive adhesive layer on one side after lamination was 50 μm. The thickness of the obtained double-sided adhesive tape is 112 μm.
表2中の略号は、以下の成分を示す。
「B1」:エポキシ系架橋剤(綜研化学株式会社製、商品名E-5XM、固形分濃度5%)
「B2」:イソシアネート系架橋剤(東ソー株式会社製、商品名コロネートL-45E、固形分濃度45%)
「C1」:酸化防止剤(BASF社製、商品名イルガノックス1010)
「D1」:シランカップリング剤(信越化学工業株式会社製、商品名KBM-403、固形分濃度10%)
「F1」:熱膨張性マイクロカプセル(松本油脂製薬株式会社製、商品名マツモトマイクロスフェアーFN-180SSD、最大膨張温度192℃)
「F2」:熱膨張性マイクロカプセル(松本油脂製薬株式会社製、商品名マツモトマイクロスフェアーFN-100SSD、最大膨張温度162℃) The abbreviations in Table 2 indicate the following components.
"B1": Epoxy-based cross-linking agent (manufactured by Soken Chemical Co., Ltd., trade name E-5XM, solid content concentration 5%)
"B2": Isocyanate-based cross-linking agent (manufactured by Tosoh Corporation, trade name Coronate L-45E, solid content concentration 45%)
"C1": Antioxidant (manufactured by BASF, trade name Irganox 1010)
"D1": Silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-403, solid content concentration 10%)
"F1": Thermally expandable microcapsules (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., trade name Matsumoto Microsphere FN-180 SSD, maximum expansion temperature 192 ° C)
"F2": Thermally expandable microcapsules (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., trade name Matsumoto Microsphere FN-100 SSD, maximum expansion temperature 162 ° C)
「B1」:エポキシ系架橋剤(綜研化学株式会社製、商品名E-5XM、固形分濃度5%)
「B2」:イソシアネート系架橋剤(東ソー株式会社製、商品名コロネートL-45E、固形分濃度45%)
「C1」:酸化防止剤(BASF社製、商品名イルガノックス1010)
「D1」:シランカップリング剤(信越化学工業株式会社製、商品名KBM-403、固形分濃度10%)
「F1」:熱膨張性マイクロカプセル(松本油脂製薬株式会社製、商品名マツモトマイクロスフェアーFN-180SSD、最大膨張温度192℃)
「F2」:熱膨張性マイクロカプセル(松本油脂製薬株式会社製、商品名マツモトマイクロスフェアーFN-100SSD、最大膨張温度162℃) The abbreviations in Table 2 indicate the following components.
"B1": Epoxy-based cross-linking agent (manufactured by Soken Chemical Co., Ltd., trade name E-5XM, solid content concentration 5%)
"B2": Isocyanate-based cross-linking agent (manufactured by Tosoh Corporation, trade name Coronate L-45E, solid content concentration 45%)
"C1": Antioxidant (manufactured by BASF, trade name Irganox 1010)
"D1": Silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-403, solid content concentration 10%)
"F1": Thermally expandable microcapsules (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., trade name Matsumoto Microsphere FN-180 SSD, maximum expansion temperature 192 ° C)
"F2": Thermally expandable microcapsules (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., trade name Matsumoto Microsphere FN-100 SSD, maximum expansion temperature 162 ° C)
<実施例13:熱剥離型シリコーン系粘着テープの作製>
まず、付加硬化型シリコーン系粘着剤原液の2種の試作品(I、II)を用意した。これらの試作品は、シリコーン生ゴムに対するMQレジンの配合比率やMQレジン種、シリコーン生ゴムのアルケニル基量、架橋剤量を適宜変更することによって、後述の方法で測定される硬化後の貯蔵弾性率G’、tanδが様々な値を示すように調整した粘着剤の試作品である。実施例13においては、これらの試作品のうち、170℃における貯蔵弾性率G’が125,770Pa、熱膨張性粒子F1の最大膨張温度におけるtanδが0.053となる付加硬化型シリコーン系粘着剤原液(I)を選択した。
固形分濃度50質量%の付加硬化型シリコーン系粘着剤原液(I)100部、希釈溶剤としてトルエン25部、硬化触媒として白金触媒(信越化学工業株式会社製、CAT-PL-50T)1.25部を含むシリコーン系粘着剤組成物を調製した。さらに発泡剤として熱膨張性マイクロカプセルF1(松本油脂製薬社製、商品名マツモトマイクロスフェアーFN-180SSD、最大膨張温度192℃)15部を混合し、熱膨張性粘着剤組成物を調製した。 <Example 13: Preparation of heat-removable silicone-based adhesive tape>
First, two types of prototypes (I and II) of an addition-curable silicone-based pressure-sensitive adhesive stock solution were prepared. In these prototypes, the storage elastic modulus G after curing is measured by the method described later by appropriately changing the mixing ratio of MQ resin to the raw silicone rubber, the MQ resin type, the amount of the alkenyl group of the raw silicone rubber, and the amount of the cross-linking agent. ', This is a prototype of a pressure-sensitive adhesive adjusted so that tan δ shows various values. In Example 13, of these prototypes, an addition-curable silicone-based pressure-sensitive adhesive having a storage elastic modulus G'at 170 ° C. of 125,770 Pa and a tan δ of 0.053 at the maximum expansion temperature of the heat-expandable particles F1. The undiluted solution (I) was selected.
100 parts of additive-curing silicone adhesive stock solution (I) with a solid content concentration of 50% by mass, 25 parts of toluene as a diluting solvent, and platinum catalyst (CAT-PL-50T, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 1.25 as a curing catalyst. A silicone-based pressure-sensitive adhesive composition containing a portion was prepared. Further, 15 parts of heat-expandable microcapsules F1 (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., trade name Matsumoto Microsphere FN-180 SSD, maximum expansion temperature 192 ° C.) were mixed as a foaming agent to prepare a heat-expandable pressure-sensitive adhesive composition.
まず、付加硬化型シリコーン系粘着剤原液の2種の試作品(I、II)を用意した。これらの試作品は、シリコーン生ゴムに対するMQレジンの配合比率やMQレジン種、シリコーン生ゴムのアルケニル基量、架橋剤量を適宜変更することによって、後述の方法で測定される硬化後の貯蔵弾性率G’、tanδが様々な値を示すように調整した粘着剤の試作品である。実施例13においては、これらの試作品のうち、170℃における貯蔵弾性率G’が125,770Pa、熱膨張性粒子F1の最大膨張温度におけるtanδが0.053となる付加硬化型シリコーン系粘着剤原液(I)を選択した。
固形分濃度50質量%の付加硬化型シリコーン系粘着剤原液(I)100部、希釈溶剤としてトルエン25部、硬化触媒として白金触媒(信越化学工業株式会社製、CAT-PL-50T)1.25部を含むシリコーン系粘着剤組成物を調製した。さらに発泡剤として熱膨張性マイクロカプセルF1(松本油脂製薬社製、商品名マツモトマイクロスフェアーFN-180SSD、最大膨張温度192℃)15部を混合し、熱膨張性粘着剤組成物を調製した。 <Example 13: Preparation of heat-removable silicone-based adhesive tape>
First, two types of prototypes (I and II) of an addition-curable silicone-based pressure-sensitive adhesive stock solution were prepared. In these prototypes, the storage elastic modulus G after curing is measured by the method described later by appropriately changing the mixing ratio of MQ resin to the raw silicone rubber, the MQ resin type, the amount of the alkenyl group of the raw silicone rubber, and the amount of the cross-linking agent. ', This is a prototype of a pressure-sensitive adhesive adjusted so that tan δ shows various values. In Example 13, of these prototypes, an addition-curable silicone-based pressure-sensitive adhesive having a storage elastic modulus G'at 170 ° C. of 125,770 Pa and a tan δ of 0.053 at the maximum expansion temperature of the heat-expandable particles F1. The undiluted solution (I) was selected.
100 parts of additive-curing silicone adhesive stock solution (I) with a solid content concentration of 50% by mass, 25 parts of toluene as a diluting solvent, and platinum catalyst (CAT-PL-50T, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 1.25 as a curing catalyst. A silicone-based pressure-sensitive adhesive composition containing a portion was prepared. Further, 15 parts of heat-expandable microcapsules F1 (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., trade name Matsumoto Microsphere FN-180 SSD, maximum expansion temperature 192 ° C.) were mixed as a foaming agent to prepare a heat-expandable pressure-sensitive adhesive composition.
この熱膨張性粘着剤組成物を、プライマー処理された厚さ50μmのポリイミド(PI)フィルムの片面に、乾燥後の粘着剤層の厚さが50μmになるように塗布し、乾燥炉内にて120℃で2分間乾燥して溶剤の除去、加熱硬化させ、熱膨張性粘着剤層を形成した。そして剥離ライナーとしてフッ素置換アルキル変性シリコーン樹脂で離型処理した厚さ50μmのポリエチレンテレフタレート(PET)フィルムを粘着剤層に貼り合わせて熱剥離型の片面粘着テープを得た。
This heat-expandable pressure-sensitive adhesive composition is applied to one side of a primer-treated polyimide (PI) film having a thickness of 50 μm so that the thickness of the pressure-sensitive adhesive layer after drying is 50 μm, and is placed in a drying furnace. It was dried at 120 ° C. for 2 minutes to remove the solvent and heat-cured to form a heat-expandable pressure-sensitive adhesive layer. Then, as a release liner, a polyethylene terephthalate (PET) film having a thickness of 50 μm treated with a fluorine-substituted alkyl-modified silicone resin was attached to an adhesive layer to obtain a heat-release type single-sided adhesive tape.
<比較例9:熱剥離型シリコーン系粘着テープの作製>
比較例9においては、170℃における貯蔵弾性率G’が39,749Pa、熱膨張性粒子F1の最大膨張温度におけるtanδが0.532となる付加硬化型シリコーン系粘着剤原液(II)を選択した。
固形分濃度50質量%の付加硬化型シリコーン系粘着剤原液(II)100部、希釈溶剤としてトルエン25部、硬化触媒として白金触媒(信越化学工業株式会社製、CAT-PL-50T)1.25部を含むシリコーン系粘着剤組成物を調製した。さらに発泡剤として熱膨張性マイクロカプセルF1(松本油脂製薬社製、商品名マツモトマイクロスフェアーFN-180SSD、最大膨張温度192℃)15部を混合し、熱膨張性粘着剤組成物を調製した。それ以外は実施例13と同様の方法で、熱剥離型の片面粘着テープを得た。 <Comparative Example 9: Fabrication of Heat-Removable Silicone Adhesive Tape>
In Comparative Example 9, an addition-curable silicone-based pressure-sensitive adhesive stock solution (II) having a storage elastic modulus G'at 170 ° C. of 39,749 Pa and a tan δ of 0.532 at the maximum expansion temperature of the heat-expandable particles F1 was selected. ..
100 parts of additive-curing silicone adhesive stock solution (II) with a solid content concentration of 50% by mass, 25 parts of toluene as a diluting solvent, and platinum catalyst (CAT-PL-50T, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 1.25 as a curing catalyst. A silicone-based pressure-sensitive adhesive composition containing a portion was prepared. Further, 15 parts of heat-expandable microcapsules F1 (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., trade name Matsumoto Microsphere FN-180 SSD, maximum expansion temperature 192 ° C.) were mixed as a foaming agent to prepare a heat-expandable pressure-sensitive adhesive composition. A heat-peeling type single-sided adhesive tape was obtained in the same manner as in Example 13 except for the above.
比較例9においては、170℃における貯蔵弾性率G’が39,749Pa、熱膨張性粒子F1の最大膨張温度におけるtanδが0.532となる付加硬化型シリコーン系粘着剤原液(II)を選択した。
固形分濃度50質量%の付加硬化型シリコーン系粘着剤原液(II)100部、希釈溶剤としてトルエン25部、硬化触媒として白金触媒(信越化学工業株式会社製、CAT-PL-50T)1.25部を含むシリコーン系粘着剤組成物を調製した。さらに発泡剤として熱膨張性マイクロカプセルF1(松本油脂製薬社製、商品名マツモトマイクロスフェアーFN-180SSD、最大膨張温度192℃)15部を混合し、熱膨張性粘着剤組成物を調製した。それ以外は実施例13と同様の方法で、熱剥離型の片面粘着テープを得た。 <Comparative Example 9: Fabrication of Heat-Removable Silicone Adhesive Tape>
In Comparative Example 9, an addition-curable silicone-based pressure-sensitive adhesive stock solution (II) having a storage elastic modulus G'at 170 ° C. of 39,749 Pa and a tan δ of 0.532 at the maximum expansion temperature of the heat-expandable particles F1 was selected. ..
100 parts of additive-curing silicone adhesive stock solution (II) with a solid content concentration of 50% by mass, 25 parts of toluene as a diluting solvent, and platinum catalyst (CAT-PL-50T, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 1.25 as a curing catalyst. A silicone-based pressure-sensitive adhesive composition containing a portion was prepared. Further, 15 parts of heat-expandable microcapsules F1 (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., trade name Matsumoto Microsphere FN-180 SSD, maximum expansion temperature 192 ° C.) were mixed as a foaming agent to prepare a heat-expandable pressure-sensitive adhesive composition. A heat-peeling type single-sided adhesive tape was obtained in the same manner as in Example 13 except for the above.
実施例1~13、比較例1~9で得た熱剥離型の粘着テープを、以下の方法で評価した。結果を表3-1~表3-4に示した。
The heat-removable adhesive tapes obtained in Examples 1 to 13 and Comparative Examples 1 to 9 were evaluated by the following methods. The results are shown in Tables 3-1 to 3-4.
(a)[粘着剤組成物の動的粘弾性測定]
アクリル系粘着剤組成物については、表2に示した配合から、熱膨張性マイクロカプセル(F)を含まずに、表1で得たアクリル系共重合体(A)の固形分100部に対して、架橋剤(B)、酸化防止剤(C)、シランカップリング剤(D)を加えて混合し、測定用サンプル調製用の粘着剤組成物を調製した。
シリコーン系粘着剤組成物については、熱膨張性マイクロカプセル(F)を含まない以外は、実施例13、及び比較例9と同様にして、測定用サンプル調製用の粘着剤組成物を調製した。 (A) [Dynamic viscoelasticity measurement of adhesive composition]
Regarding the acrylic pressure-sensitive adhesive composition, from the formulation shown in Table 2, the solid content of the acrylic copolymer (A) obtained in Table 1 was 100 parts without containing the heat-expandable microcapsules (F). Then, the cross-linking agent (B), the antioxidant (C), and the silane coupling agent (D) were added and mixed to prepare a pressure-sensitive adhesive composition for preparing a sample for measurement.
Regarding the silicone-based pressure-sensitive adhesive composition, a pressure-sensitive adhesive composition for preparing a sample for measurement was prepared in the same manner as in Example 13 and Comparative Example 9 except that the heat-expandable microcapsules (F) were not contained.
アクリル系粘着剤組成物については、表2に示した配合から、熱膨張性マイクロカプセル(F)を含まずに、表1で得たアクリル系共重合体(A)の固形分100部に対して、架橋剤(B)、酸化防止剤(C)、シランカップリング剤(D)を加えて混合し、測定用サンプル調製用の粘着剤組成物を調製した。
シリコーン系粘着剤組成物については、熱膨張性マイクロカプセル(F)を含まない以外は、実施例13、及び比較例9と同様にして、測定用サンプル調製用の粘着剤組成物を調製した。 (A) [Dynamic viscoelasticity measurement of adhesive composition]
Regarding the acrylic pressure-sensitive adhesive composition, from the formulation shown in Table 2, the solid content of the acrylic copolymer (A) obtained in Table 1 was 100 parts without containing the heat-expandable microcapsules (F). Then, the cross-linking agent (B), the antioxidant (C), and the silane coupling agent (D) were added and mixed to prepare a pressure-sensitive adhesive composition for preparing a sample for measurement.
Regarding the silicone-based pressure-sensitive adhesive composition, a pressure-sensitive adhesive composition for preparing a sample for measurement was prepared in the same manner as in Example 13 and Comparative Example 9 except that the heat-expandable microcapsules (F) were not contained.
測定用試料としての各粘着剤組成物をそれぞれ独立して用い、アクリル系粘着剤組成物の場合にはシリコーン離型処理された厚み50μmのPETフィルム上に乾燥後の厚さが50μmになるように塗布した。次いで、90~100℃で溶媒を除去・乾燥すると共に架橋反応させて、粘着剤層を形成した。この粘着剤層を積層して厚さ2mmの積層体を形成し、さらに40℃で3日間養生してこれを測定用サンプルとした。シリコーン系粘着剤組成物の場合には、フッ素置換アルキル変性シリコーン樹脂で離型処理した厚さ50μmのポリエチレンテレフタレート(PET)フィルム上に、乾燥後の厚さが50μmになるように塗布した。次いで乾燥炉内にて120℃で2分間乾燥して溶剤を除去し、加熱硬化させて粘着剤層を形成した。この粘着剤層を積層して厚さ2mmの積層体を形成し、これを測定用サンプルとした。
Each pressure-sensitive adhesive composition as a sample for measurement is used independently, and in the case of an acrylic pressure-sensitive adhesive composition, the thickness after drying is 50 μm on a PET film having a thickness of 50 μm that has been subjected to silicone mold release treatment. Was applied to. Next, the solvent was removed and dried at 90 to 100 ° C., and a cross-linking reaction was carried out to form a pressure-sensitive adhesive layer. The pressure-sensitive adhesive layers were laminated to form a laminate having a thickness of 2 mm, which was further cured at 40 ° C. for 3 days to prepare a sample for measurement. In the case of the silicone-based pressure-sensitive adhesive composition, it was applied on a polyethylene terephthalate (PET) film having a thickness of 50 μm, which had been mold-released with a fluorine-substituted alkyl-modified silicone resin, so as to have a thickness of 50 μm after drying. Then, it was dried in a drying oven at 120 ° C. for 2 minutes to remove the solvent, and heat-cured to form a pressure-sensitive adhesive layer. The pressure-sensitive adhesive layers were laminated to form a laminated body having a thickness of 2 mm, which was used as a measurement sample.
測定用サンプルを平行円盤(φ8mm)の間に挟み、動的粘弾性測定装置(Rheometric Scientific社製、装置名RDAIII)を用いて、周波数10Hzのせん断ひずみを加えながら、昇温速度10℃/分で、-50℃~300℃の範囲において貯蔵弾性率(G’)及び損失弾性率(G”)を測定する。
貯蔵弾性率(G’)及び損失弾性率(G”)より、以下の計算式により損失正接tanδを算出する。
tanδ=損失弾性率(G”)/貯蔵弾性率(G’)
表3-1に、23℃、170℃での貯蔵弾性率(G’)、及び最大膨張温度TFmax℃でのtanδの測定値を示す。 A sample for measurement is sandwiched between parallel disks (φ8 mm), and a temperature rise rate of 10 ° C./min is applied using a dynamic viscoelasticity measuring device (manufactured by Rheometric Scientific, device name RDAIII) while applying shear strain at a frequency of 10 Hz. Then, the storage elastic modulus (G') and the loss elastic modulus (G ") are measured in the range of −50 ° C. to 300 ° C.
From the storage elastic modulus (G') and the loss elastic modulus (G "), the loss tangent tan δ is calculated by the following formula.
tan δ = modulus of loss (G ”) / modulus of storage (G ′)
Table 3-1 shows the measured values of the storage elastic modulus (G') at 23 ° C. and 170 ° C. and tan δ at the maximum expansion temperature TFmax ° C.
貯蔵弾性率(G’)及び損失弾性率(G”)より、以下の計算式により損失正接tanδを算出する。
tanδ=損失弾性率(G”)/貯蔵弾性率(G’)
表3-1に、23℃、170℃での貯蔵弾性率(G’)、及び最大膨張温度TFmax℃でのtanδの測定値を示す。 A sample for measurement is sandwiched between parallel disks (φ8 mm), and a temperature rise rate of 10 ° C./min is applied using a dynamic viscoelasticity measuring device (manufactured by Rheometric Scientific, device name RDAIII) while applying shear strain at a frequency of 10 Hz. Then, the storage elastic modulus (G') and the loss elastic modulus (G ") are measured in the range of −50 ° C. to 300 ° C.
From the storage elastic modulus (G') and the loss elastic modulus (G "), the loss tangent tan δ is calculated by the following formula.
tan δ = modulus of loss (G ”) / modulus of storage (G ′)
Table 3-1 shows the measured values of the storage elastic modulus (G') at 23 ° C. and 170 ° C. and tan δ at the maximum expansion temperature TFmax ° C.
(b)TFmaxの測定
熱膨張性粒子の最大膨張温度(TFmax)は先に記載した方法により測定した。 (B) Measurement of TFmax The maximum expansion temperature (TFmax) of the thermally expandable particles was measured by the method described above.
熱膨張性粒子の最大膨張温度(TFmax)は先に記載した方法により測定した。 (B) Measurement of TFmax The maximum expansion temperature (TFmax) of the thermally expandable particles was measured by the method described above.
[アクリル系両面熱剥離型粘着テープの評価]
(c)[銅箔の初期剥離力、銅板に対する熱剥離型粘着テープの初期剥離力]
幅10mm、長さ90mmに断裁した実施例1~12及び比較例1~8に記載の試料(両面粘着テープ)を、厚さ0.7mm、幅25mm、長さ125mmの銅板(搬送板を想定)と、厚さ35μm、幅10mm、長さ90mmの銅箔の光沢面(基板製品を想定、福田金属株式会社製の電解銅箔)の間に配置し、これらを貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着し、23℃環境で20~40分放置した。その後、引張試験機を用いて、23℃環境で300mm/分の速度で90°の角度で銅箔を上記テープから剥離するのに要する力を測定した。次いで、引張試験機を用いて300mm/分の速度で90°の角度で上記テープを銅板から剥離するのに要する力を測定した。 [Evaluation of acrylic double-sided heat-removable adhesive tape]
(C) [Initial peeling force of copper foil, initial peeling force of heat-peeling adhesive tape against copper plate]
The samples (double-sided adhesive tape) described in Examples 1 to 12 and Comparative Examples 1 to 8 cut into a width of 10 mm and a length of 90 mm are subjected to a copper plate having a thickness of 0.7 mm, a width of 25 mm, and a length of 125 mm (assuming a transport plate). ) And the glossy surface of a copper foil having a thickness of 35 μm, a width of 10 mm, and a length of 90 mm (assuming a substrate product, an electrolytic copper foil manufactured by Fukuda Metal Co., Ltd.), and these were bonded together. A roller coated with a rubber layer weighing 2 kg was reciprocated once at a speed of 300 mm / min for crimping, and left to stand in an environment of 23 ° C. for 20 to 40 minutes. Then, using a tensile tester, the force required to peel the copper foil from the tape was measured at an angle of 90 ° at a speed of 300 mm / min in an environment of 23 ° C. Then, a tensile tester was used to measure the force required to peel the tape from the copper plate at a speed of 300 mm / min at an angle of 90 °.
(c)[銅箔の初期剥離力、銅板に対する熱剥離型粘着テープの初期剥離力]
幅10mm、長さ90mmに断裁した実施例1~12及び比較例1~8に記載の試料(両面粘着テープ)を、厚さ0.7mm、幅25mm、長さ125mmの銅板(搬送板を想定)と、厚さ35μm、幅10mm、長さ90mmの銅箔の光沢面(基板製品を想定、福田金属株式会社製の電解銅箔)の間に配置し、これらを貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着し、23℃環境で20~40分放置した。その後、引張試験機を用いて、23℃環境で300mm/分の速度で90°の角度で銅箔を上記テープから剥離するのに要する力を測定した。次いで、引張試験機を用いて300mm/分の速度で90°の角度で上記テープを銅板から剥離するのに要する力を測定した。 [Evaluation of acrylic double-sided heat-removable adhesive tape]
(C) [Initial peeling force of copper foil, initial peeling force of heat-peeling adhesive tape against copper plate]
The samples (double-sided adhesive tape) described in Examples 1 to 12 and Comparative Examples 1 to 8 cut into a width of 10 mm and a length of 90 mm are subjected to a copper plate having a thickness of 0.7 mm, a width of 25 mm, and a length of 125 mm (assuming a transport plate). ) And the glossy surface of a copper foil having a thickness of 35 μm, a width of 10 mm, and a length of 90 mm (assuming a substrate product, an electrolytic copper foil manufactured by Fukuda Metal Co., Ltd.), and these were bonded together. A roller coated with a rubber layer weighing 2 kg was reciprocated once at a speed of 300 mm / min for crimping, and left to stand in an environment of 23 ° C. for 20 to 40 minutes. Then, using a tensile tester, the force required to peel the copper foil from the tape was measured at an angle of 90 ° at a speed of 300 mm / min in an environment of 23 ° C. Then, a tensile tester was used to measure the force required to peel the tape from the copper plate at a speed of 300 mm / min at an angle of 90 °.
(d)[加熱剥離処理させたときの銅箔の剥離力、銅板に対する熱剥離型粘着テープの剥離力]
幅10mm、長さ90mmに断裁した実施例1~12及び比較例1~8に記載の試料(両面粘着テープ)を、厚さ0.7mm、幅25mm、長さ125mmの銅板(搬送板を想定)と厚さ35μm、幅10mm、長さ90mm(基板製品を想定)の間に配置し、これらを貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着した後、200℃の乾燥機で3分間加熱した。23℃で1時間以上放冷した後、引張試験機を用いて300mm/分の速度で90°の角度で銅箔を上記テープから剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。次いで、引張試験機を用いて300mm/分の速度で90°の角度で上記テープを銅板から剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。 (D) [Peeling force of copper foil when heat peeling treatment, peeling force of heat peeling type adhesive tape against copper plate]
The samples (double-sided adhesive tape) according to Examples 1 to 12 and Comparative Examples 1 to 8 cut into a width of 10 mm and a length of 90 mm are subjected to a copper plate having a thickness of 0.7 mm, a width of 25 mm, and a length of 125 mm (assuming a transport plate). ) And a thickness of 35 μm, a width of 10 mm, and a length of 90 mm (assuming a substrate product), and these were bonded together. A roller coated with a rubber layer weighing 2 kg was reciprocated once at a speed of 300 mm / min for crimping, and then heated in a dryer at 200 ° C. for 3 minutes. After allowing to cool at 23 ° C. for 1 hour or more, the force required to peel the copper foil from the tape at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the glue on the adherend was measured. The presence or absence of the residue was visually confirmed. Next, the force required to peel the tape from the copper plate was measured at a speed of 300 mm / min at an angle of 90 ° using a tensile tester, and the presence or absence of adhesive residue on the adherend was visually confirmed.
幅10mm、長さ90mmに断裁した実施例1~12及び比較例1~8に記載の試料(両面粘着テープ)を、厚さ0.7mm、幅25mm、長さ125mmの銅板(搬送板を想定)と厚さ35μm、幅10mm、長さ90mm(基板製品を想定)の間に配置し、これらを貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着した後、200℃の乾燥機で3分間加熱した。23℃で1時間以上放冷した後、引張試験機を用いて300mm/分の速度で90°の角度で銅箔を上記テープから剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。次いで、引張試験機を用いて300mm/分の速度で90°の角度で上記テープを銅板から剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。 (D) [Peeling force of copper foil when heat peeling treatment, peeling force of heat peeling type adhesive tape against copper plate]
The samples (double-sided adhesive tape) according to Examples 1 to 12 and Comparative Examples 1 to 8 cut into a width of 10 mm and a length of 90 mm are subjected to a copper plate having a thickness of 0.7 mm, a width of 25 mm, and a length of 125 mm (assuming a transport plate). ) And a thickness of 35 μm, a width of 10 mm, and a length of 90 mm (assuming a substrate product), and these were bonded together. A roller coated with a rubber layer weighing 2 kg was reciprocated once at a speed of 300 mm / min for crimping, and then heated in a dryer at 200 ° C. for 3 minutes. After allowing to cool at 23 ° C. for 1 hour or more, the force required to peel the copper foil from the tape at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the glue on the adherend was measured. The presence or absence of the residue was visually confirmed. Next, the force required to peel the tape from the copper plate was measured at a speed of 300 mm / min at an angle of 90 ° using a tensile tester, and the presence or absence of adhesive residue on the adherend was visually confirmed.
加熱剥離処理させたときの剥離力および糊残り性は以下の基準で判定した。
(加熱剥離処理させたときの銅箔の剥離力)
A:加熱中に自然に剥離した、もしくは剥離力が初期剥離力の20%未満であった(良好)。
B:剥離力が初期剥離力の20%以上であった(不良)。
(加熱剥離処理させたときの銅箔の糊残り性)
A:糊残りがなかった(良好)。
B:糊残りがあった(不良)。
(加熱剥離処理させたときの銅板に対する熱剥離型粘着テープの剥離力)
A:加熱中に自然に剥離した、もしくは剥離力が初期剥離力の20%未満であった(良好)。
B:剥離力が初期剥離力の20%以上であった(不良)。
(加熱剥離処理させたときの銅板の糊残り性)
A:糊残りがなかった(良好)。
B:糊残りがあった(不良)。 The peeling force and adhesive residue after the heat peeling treatment were judged according to the following criteria.
(Copper foil peeling force when heat peeling treatment)
A: The peeling force was spontaneously peeled off during heating, or the peeling force was less than 20% of the initial peeling force (good).
B: The peeling force was 20% or more of the initial peeling force (defective).
(Remaining adhesiveness of copper foil when heat-peeled)
A: There was no adhesive residue (good).
B: There was adhesive residue (defective).
(Peeling force of heat-peeling adhesive tape against copper plate when heat-peeling treatment)
A: The peeling force was spontaneously peeled off during heating, or the peeling force was less than 20% of the initial peeling force (good).
B: The peeling force was 20% or more of the initial peeling force (defective).
(Remaining adhesiveness of copper plate when heat-peeled)
A: There was no adhesive residue (good).
B: There was adhesive residue (defective).
(加熱剥離処理させたときの銅箔の剥離力)
A:加熱中に自然に剥離した、もしくは剥離力が初期剥離力の20%未満であった(良好)。
B:剥離力が初期剥離力の20%以上であった(不良)。
(加熱剥離処理させたときの銅箔の糊残り性)
A:糊残りがなかった(良好)。
B:糊残りがあった(不良)。
(加熱剥離処理させたときの銅板に対する熱剥離型粘着テープの剥離力)
A:加熱中に自然に剥離した、もしくは剥離力が初期剥離力の20%未満であった(良好)。
B:剥離力が初期剥離力の20%以上であった(不良)。
(加熱剥離処理させたときの銅板の糊残り性)
A:糊残りがなかった(良好)。
B:糊残りがあった(不良)。 The peeling force and adhesive residue after the heat peeling treatment were judged according to the following criteria.
(Copper foil peeling force when heat peeling treatment)
A: The peeling force was spontaneously peeled off during heating, or the peeling force was less than 20% of the initial peeling force (good).
B: The peeling force was 20% or more of the initial peeling force (defective).
(Remaining adhesiveness of copper foil when heat-peeled)
A: There was no adhesive residue (good).
B: There was adhesive residue (defective).
(Peeling force of heat-peeling adhesive tape against copper plate when heat-peeling treatment)
A: The peeling force was spontaneously peeled off during heating, or the peeling force was less than 20% of the initial peeling force (good).
B: The peeling force was 20% or more of the initial peeling force (defective).
(Remaining adhesiveness of copper plate when heat-peeled)
A: There was no adhesive residue (good).
B: There was adhesive residue (defective).
(e)[高温長時間プレス時の発泡抑制]
上記(d)の評価で良好であった(すべてがA評価)の実施例1~12および比較例2、3、7、8に対して、高温長時間プレス時の発泡抑制を以下のとおり評価した。
幅10mm、長さ90mmに断裁した実施例1~12及び比較例1~8に記載の試料(両面粘着テープ)を、厚さ0.7mm、幅25mm、長さ125mmの銅板(搬送板を想定)と厚さ35μm、幅10mm、長さ90mmの銅箔(基板製品を想定)の間に配置し、これらを貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着した後、加熱式のプレス機を用いて、温度170℃、試験片全体にかかる圧力が26kg/cm2で1時間加圧した。この際、圧力を均一にかけるために、厚さ1mm、幅25mm、長さ125mmのシリコーンゴムシート(IS―825、硬度50°、入間川ゴム株式会社製)を銅板の下に敷き、幅10mm、長さ90mmに断裁した同シリコーンゴムシートを試験片の上に乗せて、挟んでプレスした。23℃で1時間以上放冷した後、銅箔、および銅板から上記テープを剥離し、発泡の有無を目視で確認し、得られた結果について以下の基準で評価した。
A:熱プレス中に熱膨張性粘着層が発泡しなかった(良好)。
B:熱プレス中に熱膨張性粘着層が発泡した(不良)。 (E) [Suppression of foaming during high-temperature long-time pressing]
With respect to Examples 1 to 12 and Comparative Examples 2, 3, 7, and 8 which were good in the evaluation of (d) above (all were evaluated as A), the suppression of foaming during high-temperature long-time pressing was evaluated as follows. bottom.
The samples (double-sided adhesive tape) according to Examples 1 to 12 and Comparative Examples 1 to 8 cut into a width of 10 mm and a length of 90 mm are subjected to a copper plate having a thickness of 0.7 mm, a width of 25 mm, and a length of 125 mm (assuming a transport plate). ) And a copper foil (assuming a substrate product) having a thickness of 35 μm, a width of 10 mm, and a length of 90 mm, and these were bonded together. A roller coated with a rubber layer weighing 2 kg reciprocates once at a speed of 300 mm / min for crimping, and then using a heating press machine, the temperature is 170 ° C. and the pressure applied to the entire test piece is 26 kg / cm 2. Pressurized for 1 hour. At this time, in order to apply pressure uniformly, a silicone rubber sheet (IS-825, hardness 50 °, manufactured by Irumagawa Rubber Co., Ltd.) having a thickness of 1 mm, a width of 25 mm, and a length of 125 mm was laid under the copper plate, and the width was 10 mm. The same silicone rubber sheet cut to a length of 90 mm was placed on a test piece, sandwiched and pressed. After allowing to cool at 23 ° C. for 1 hour or more, the tape was peeled off from the copper foil and the copper plate, the presence or absence of foaming was visually confirmed, and the obtained results were evaluated according to the following criteria.
A: The heat-expandable adhesive layer did not foam during the hot press (good).
B: The heat-expandable adhesive layer foamed during hot pressing (defective).
上記(d)の評価で良好であった(すべてがA評価)の実施例1~12および比較例2、3、7、8に対して、高温長時間プレス時の発泡抑制を以下のとおり評価した。
幅10mm、長さ90mmに断裁した実施例1~12及び比較例1~8に記載の試料(両面粘着テープ)を、厚さ0.7mm、幅25mm、長さ125mmの銅板(搬送板を想定)と厚さ35μm、幅10mm、長さ90mmの銅箔(基板製品を想定)の間に配置し、これらを貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着した後、加熱式のプレス機を用いて、温度170℃、試験片全体にかかる圧力が26kg/cm2で1時間加圧した。この際、圧力を均一にかけるために、厚さ1mm、幅25mm、長さ125mmのシリコーンゴムシート(IS―825、硬度50°、入間川ゴム株式会社製)を銅板の下に敷き、幅10mm、長さ90mmに断裁した同シリコーンゴムシートを試験片の上に乗せて、挟んでプレスした。23℃で1時間以上放冷した後、銅箔、および銅板から上記テープを剥離し、発泡の有無を目視で確認し、得られた結果について以下の基準で評価した。
A:熱プレス中に熱膨張性粘着層が発泡しなかった(良好)。
B:熱プレス中に熱膨張性粘着層が発泡した(不良)。 (E) [Suppression of foaming during high-temperature long-time pressing]
With respect to Examples 1 to 12 and Comparative Examples 2, 3, 7, and 8 which were good in the evaluation of (d) above (all were evaluated as A), the suppression of foaming during high-temperature long-time pressing was evaluated as follows. bottom.
The samples (double-sided adhesive tape) according to Examples 1 to 12 and Comparative Examples 1 to 8 cut into a width of 10 mm and a length of 90 mm are subjected to a copper plate having a thickness of 0.7 mm, a width of 25 mm, and a length of 125 mm (assuming a transport plate). ) And a copper foil (assuming a substrate product) having a thickness of 35 μm, a width of 10 mm, and a length of 90 mm, and these were bonded together. A roller coated with a rubber layer weighing 2 kg reciprocates once at a speed of 300 mm / min for crimping, and then using a heating press machine, the temperature is 170 ° C. and the pressure applied to the entire test piece is 26 kg / cm 2. Pressurized for 1 hour. At this time, in order to apply pressure uniformly, a silicone rubber sheet (IS-825, hardness 50 °, manufactured by Irumagawa Rubber Co., Ltd.) having a thickness of 1 mm, a width of 25 mm, and a length of 125 mm was laid under the copper plate, and the width was 10 mm. The same silicone rubber sheet cut to a length of 90 mm was placed on a test piece, sandwiched and pressed. After allowing to cool at 23 ° C. for 1 hour or more, the tape was peeled off from the copper foil and the copper plate, the presence or absence of foaming was visually confirmed, and the obtained results were evaluated according to the following criteria.
A: The heat-expandable adhesive layer did not foam during the hot press (good).
B: The heat-expandable adhesive layer foamed during hot pressing (defective).
(f)[高温長時間プレス後に加熱剥離処理させたときの銅箔の剥離力、銅板に対する熱剥離型粘着テープの剥離力]
上記(e)の評価で良好であった(A評価)実施例および比較例に対して、高温長時間プレス後に加熱剥離処理させたときの銅箔の剥離力、銅板に対する熱剥離型粘着テープの剥離力を以下のとおり評価した。
幅10mm、長さ90mmに断裁した実施例1~12及び比較例2に記載の試料(両面粘着テープ)を、厚さ0.7mm、幅25mm、長さ125mmの銅板(搬送板を想定)と厚さ35μm、幅10mm、長さ90mmの銅箔(基板製品を想定)の間に配置し、これらを貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着した後、加熱式のプレス機を用いて、温度170℃、試験片全体にかかる圧力が26kg/cm2で1時間加圧した。この際、圧力を均一にかけるために、厚さ1mm、幅50mm、長さ125mmのシリコーンゴムシート(IS―825、硬度50°、入間川ゴム株式会社製)を銅板の下に敷き、幅10mm、長さ90mmに断裁した同シリコーンゴムシートを試験片の上に乗せて、挟んでプレスした。23℃で1時間以上放冷した後、さらに200℃の乾燥機で3分間加熱した。23℃で1時間以上放冷した後、引張試験機を用いて300mm/分の速度で90°の角度で銅箔を上記テープから剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。次いで、引張試験機を用いて300mm/分の速度で90°の角度でテープを銅板から剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。 (F) [Peeling force of copper foil when heat-peeling treatment after high-temperature long-time pressing, peeling force of heat-peeling adhesive tape against copper plate]
Compared to the examples and comparative examples that were good in the evaluation of (e) above, the peeling force of the copper foil when heat-peeling treatment was performed after pressing at a high temperature for a long time, and the heat-peeling adhesive tape on the copper plate. The peeling force was evaluated as follows.
The samples (double-sided adhesive tape) described in Examples 1 to 12 and Comparative Example 2 cut into a width of 10 mm and a length of 90 mm were combined with a copper plate (assuming a transport plate) having a thickness of 0.7 mm, a width of 25 mm, and a length of 125 mm. It was placed between copper foils (assuming a substrate product) having a thickness of 35 μm, a width of 10 mm, and a length of 90 mm, and these were bonded together. A roller coated with a rubber layer weighing 2 kg reciprocates once at a speed of 300 mm / min for crimping, and then using a heating press machine, the temperature is 170 ° C. and the pressure applied to the entire test piece is 26 kg / cm 2. Pressurized for 1 hour. At this time, in order to apply pressure uniformly, a silicone rubber sheet (IS-825, hardness 50 °, manufactured by Irumagawa Rubber Co., Ltd.) having a thickness of 1 mm, a width of 50 mm, and a length of 125 mm was laid under the copper plate, and the width was 10 mm. The same silicone rubber sheet cut to a length of 90 mm was placed on a test piece, sandwiched and pressed. After allowing to cool at 23 ° C. for 1 hour or more, the mixture was further heated in a dryer at 200 ° C. for 3 minutes. After allowing to cool at 23 ° C. for 1 hour or more, the force required to peel the copper foil from the tape at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the glue on the adherend was measured. The presence or absence of the residue was visually confirmed. Next, the force required to peel the tape from the copper plate at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the presence or absence of adhesive residue on the adherend was visually confirmed.
上記(e)の評価で良好であった(A評価)実施例および比較例に対して、高温長時間プレス後に加熱剥離処理させたときの銅箔の剥離力、銅板に対する熱剥離型粘着テープの剥離力を以下のとおり評価した。
幅10mm、長さ90mmに断裁した実施例1~12及び比較例2に記載の試料(両面粘着テープ)を、厚さ0.7mm、幅25mm、長さ125mmの銅板(搬送板を想定)と厚さ35μm、幅10mm、長さ90mmの銅箔(基板製品を想定)の間に配置し、これらを貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着した後、加熱式のプレス機を用いて、温度170℃、試験片全体にかかる圧力が26kg/cm2で1時間加圧した。この際、圧力を均一にかけるために、厚さ1mm、幅50mm、長さ125mmのシリコーンゴムシート(IS―825、硬度50°、入間川ゴム株式会社製)を銅板の下に敷き、幅10mm、長さ90mmに断裁した同シリコーンゴムシートを試験片の上に乗せて、挟んでプレスした。23℃で1時間以上放冷した後、さらに200℃の乾燥機で3分間加熱した。23℃で1時間以上放冷した後、引張試験機を用いて300mm/分の速度で90°の角度で銅箔を上記テープから剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。次いで、引張試験機を用いて300mm/分の速度で90°の角度でテープを銅板から剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。 (F) [Peeling force of copper foil when heat-peeling treatment after high-temperature long-time pressing, peeling force of heat-peeling adhesive tape against copper plate]
Compared to the examples and comparative examples that were good in the evaluation of (e) above, the peeling force of the copper foil when heat-peeling treatment was performed after pressing at a high temperature for a long time, and the heat-peeling adhesive tape on the copper plate. The peeling force was evaluated as follows.
The samples (double-sided adhesive tape) described in Examples 1 to 12 and Comparative Example 2 cut into a width of 10 mm and a length of 90 mm were combined with a copper plate (assuming a transport plate) having a thickness of 0.7 mm, a width of 25 mm, and a length of 125 mm. It was placed between copper foils (assuming a substrate product) having a thickness of 35 μm, a width of 10 mm, and a length of 90 mm, and these were bonded together. A roller coated with a rubber layer weighing 2 kg reciprocates once at a speed of 300 mm / min for crimping, and then using a heating press machine, the temperature is 170 ° C. and the pressure applied to the entire test piece is 26 kg / cm 2. Pressurized for 1 hour. At this time, in order to apply pressure uniformly, a silicone rubber sheet (IS-825, hardness 50 °, manufactured by Irumagawa Rubber Co., Ltd.) having a thickness of 1 mm, a width of 50 mm, and a length of 125 mm was laid under the copper plate, and the width was 10 mm. The same silicone rubber sheet cut to a length of 90 mm was placed on a test piece, sandwiched and pressed. After allowing to cool at 23 ° C. for 1 hour or more, the mixture was further heated in a dryer at 200 ° C. for 3 minutes. After allowing to cool at 23 ° C. for 1 hour or more, the force required to peel the copper foil from the tape at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the glue on the adherend was measured. The presence or absence of the residue was visually confirmed. Next, the force required to peel the tape from the copper plate at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the presence or absence of adhesive residue on the adherend was visually confirmed.
銅箔の剥離、銅板に対するテープの剥離について以下の基準で評価した。
(加熱剥離処理させたときの銅箔の剥離力)
A:加熱中に自然に剥離した、もしくは剥離力が初期剥離力の20%未満であった(良好)。
B:剥離力が初期剥離力の20%以上であった(不良)。
(加熱剥離処理させたときの銅箔の糊残り性)
A:糊残りがなかった(良好)。
B:糊残りがあった(不良)。
(加熱剥離処理させたときの銅板に対する熱剥離型粘着テープの剥離力)
A:加熱中に自然に剥離した、もしくは剥離力が初期剥離力の20%未満であった(良好)。
B:剥離力が初期剥離力の20%以上であった(不良)。
(加熱剥離処理させたときの銅板の糊残り性)
A:糊残りがなかった(良好)。
B:糊残りがあった(不良)。 The peeling of the copper foil and the peeling of the tape against the copper plate were evaluated according to the following criteria.
(Copper foil peeling force when heat peeling treatment)
A: The peeling force was spontaneously peeled off during heating, or the peeling force was less than 20% of the initial peeling force (good).
B: The peeling force was 20% or more of the initial peeling force (defective).
(Remaining adhesiveness of copper foil when heat-peeled)
A: There was no adhesive residue (good).
B: There was adhesive residue (defective).
(Peeling force of heat-peeling adhesive tape against copper plate when heat-peeling treatment)
A: The peeling force was spontaneously peeled off during heating, or the peeling force was less than 20% of the initial peeling force (good).
B: The peeling force was 20% or more of the initial peeling force (defective).
(Remaining adhesiveness of copper plate when heat-peeled)
A: There was no adhesive residue (good).
B: There was adhesive residue (defective).
(加熱剥離処理させたときの銅箔の剥離力)
A:加熱中に自然に剥離した、もしくは剥離力が初期剥離力の20%未満であった(良好)。
B:剥離力が初期剥離力の20%以上であった(不良)。
(加熱剥離処理させたときの銅箔の糊残り性)
A:糊残りがなかった(良好)。
B:糊残りがあった(不良)。
(加熱剥離処理させたときの銅板に対する熱剥離型粘着テープの剥離力)
A:加熱中に自然に剥離した、もしくは剥離力が初期剥離力の20%未満であった(良好)。
B:剥離力が初期剥離力の20%以上であった(不良)。
(加熱剥離処理させたときの銅板の糊残り性)
A:糊残りがなかった(良好)。
B:糊残りがあった(不良)。 The peeling of the copper foil and the peeling of the tape against the copper plate were evaluated according to the following criteria.
(Copper foil peeling force when heat peeling treatment)
A: The peeling force was spontaneously peeled off during heating, or the peeling force was less than 20% of the initial peeling force (good).
B: The peeling force was 20% or more of the initial peeling force (defective).
(Remaining adhesiveness of copper foil when heat-peeled)
A: There was no adhesive residue (good).
B: There was adhesive residue (defective).
(Peeling force of heat-peeling adhesive tape against copper plate when heat-peeling treatment)
A: The peeling force was spontaneously peeled off during heating, or the peeling force was less than 20% of the initial peeling force (good).
B: The peeling force was 20% or more of the initial peeling force (defective).
(Remaining adhesiveness of copper plate when heat-peeled)
A: There was no adhesive residue (good).
B: There was adhesive residue (defective).
[シリコーン系熱剥離型片面粘着テープの評価]
(g)[銅箔の初期剥離力]
幅10mm、長さ90mmに断裁した実施例13及び比較例9に記載の試料(片面粘着テープ、搬送時補強用を想定)を、厚さ35μm、幅10mm、長さ90mmの銅箔の光沢面(基板製品を想定、福田金属株式会社製の電解銅箔)に貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着し、23℃環境で20~40分放置した。その後、引張試験機を用いて、23℃環境で300mm/分の速度で90°の角度で銅箔をテープから剥離するのに要する力を測定した。この際、片面粘着テープの基材側を、紙両面粘着テープ(寺岡製作所株式会社製のNo.778)でSUS板に固定して測定を行った。 [Evaluation of silicone-based heat-release type single-sided adhesive tape]
(G) [Initial peeling force of copper foil]
The samples described in Example 13 and Comparative Example 9 cut into a width of 10 mm and a length of 90 mm (single-sided adhesive tape, assuming reinforcement during transportation) were subjected to a glossy surface of a copper foil having a thickness of 35 μm, a width of 10 mm, and a length of 90 mm. It was attached to (assuming a substrate product, electrolytic copper foil manufactured by Fukuda Metal Co., Ltd.). A roller coated with a rubber layer weighing 2 kg was reciprocated once at a speed of 300 mm / min for crimping, and left to stand in an environment of 23 ° C. for 20 to 40 minutes. Then, using a tensile tester, the force required to peel the copper foil from the tape was measured at an angle of 90 ° at a speed of 300 mm / min in an environment of 23 ° C. At this time, the base material side of the single-sided adhesive tape was fixed to the SUS plate with a paper double-sided adhesive tape (No. 778 manufactured by Teraoka Seisakusho Co., Ltd.) for measurement.
(g)[銅箔の初期剥離力]
幅10mm、長さ90mmに断裁した実施例13及び比較例9に記載の試料(片面粘着テープ、搬送時補強用を想定)を、厚さ35μm、幅10mm、長さ90mmの銅箔の光沢面(基板製品を想定、福田金属株式会社製の電解銅箔)に貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着し、23℃環境で20~40分放置した。その後、引張試験機を用いて、23℃環境で300mm/分の速度で90°の角度で銅箔をテープから剥離するのに要する力を測定した。この際、片面粘着テープの基材側を、紙両面粘着テープ(寺岡製作所株式会社製のNo.778)でSUS板に固定して測定を行った。 [Evaluation of silicone-based heat-release type single-sided adhesive tape]
(G) [Initial peeling force of copper foil]
The samples described in Example 13 and Comparative Example 9 cut into a width of 10 mm and a length of 90 mm (single-sided adhesive tape, assuming reinforcement during transportation) were subjected to a glossy surface of a copper foil having a thickness of 35 μm, a width of 10 mm, and a length of 90 mm. It was attached to (assuming a substrate product, electrolytic copper foil manufactured by Fukuda Metal Co., Ltd.). A roller coated with a rubber layer weighing 2 kg was reciprocated once at a speed of 300 mm / min for crimping, and left to stand in an environment of 23 ° C. for 20 to 40 minutes. Then, using a tensile tester, the force required to peel the copper foil from the tape was measured at an angle of 90 ° at a speed of 300 mm / min in an environment of 23 ° C. At this time, the base material side of the single-sided adhesive tape was fixed to the SUS plate with a paper double-sided adhesive tape (No. 778 manufactured by Teraoka Seisakusho Co., Ltd.) for measurement.
(h)[加熱剥離処理させたときの銅箔の剥離力]
幅10mm、長さ90mmに断裁した実施例13及び比較例9に記載の試料(片面粘着テープ、搬送時補強用を想定)を、厚さ35μm、幅10mm、長さ90mmの銅箔の光沢面(基板製品を想定、福田金属株式会社製の電解銅箔)に貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着した後、200℃の乾燥機で3分間加熱した。23℃で1時間以上放冷した後、引張試験機を用いて300mm/分の速度で90°の角度で銅箔をテープから剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。次いで、引張試験機を用いて300mm/分の速度で90°の角度でテープを銅板から剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。この際、片面粘着テープの基材側を、紙両面粘着テープ(寺岡製作所株式会社製のNo.778)でSUS板に固定して測定を行った。 (H) [Peeling force of copper foil when heat peeling treatment]
The samples described in Example 13 and Comparative Example 9 cut into a width of 10 mm and a length of 90 mm (single-sided adhesive tape, assuming reinforcement during transportation) were subjected to a glossy surface of a copper foil having a thickness of 35 μm, a width of 10 mm, and a length of 90 mm. It was attached to (assuming a substrate product, electrolytic copper foil manufactured by Fukuda Metal Co., Ltd.). A roller coated with a rubber layer weighing 2 kg was reciprocated once at a speed of 300 mm / min for crimping, and then heated in a dryer at 200 ° C. for 3 minutes. After allowing to cool at 23 ° C for 1 hour or more, the force required to peel the copper foil from the tape at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the adhesive residue on the adherend was measured. The presence or absence of was visually confirmed. Next, the force required to peel the tape from the copper plate at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the presence or absence of adhesive residue on the adherend was visually confirmed. At this time, the base material side of the single-sided adhesive tape was fixed to the SUS plate with a paper double-sided adhesive tape (No. 778 manufactured by Teraoka Seisakusho Co., Ltd.) for measurement.
幅10mm、長さ90mmに断裁した実施例13及び比較例9に記載の試料(片面粘着テープ、搬送時補強用を想定)を、厚さ35μm、幅10mm、長さ90mmの銅箔の光沢面(基板製品を想定、福田金属株式会社製の電解銅箔)に貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着した後、200℃の乾燥機で3分間加熱した。23℃で1時間以上放冷した後、引張試験機を用いて300mm/分の速度で90°の角度で銅箔をテープから剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。次いで、引張試験機を用いて300mm/分の速度で90°の角度でテープを銅板から剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。この際、片面粘着テープの基材側を、紙両面粘着テープ(寺岡製作所株式会社製のNo.778)でSUS板に固定して測定を行った。 (H) [Peeling force of copper foil when heat peeling treatment]
The samples described in Example 13 and Comparative Example 9 cut into a width of 10 mm and a length of 90 mm (single-sided adhesive tape, assuming reinforcement during transportation) were subjected to a glossy surface of a copper foil having a thickness of 35 μm, a width of 10 mm, and a length of 90 mm. It was attached to (assuming a substrate product, electrolytic copper foil manufactured by Fukuda Metal Co., Ltd.). A roller coated with a rubber layer weighing 2 kg was reciprocated once at a speed of 300 mm / min for crimping, and then heated in a dryer at 200 ° C. for 3 minutes. After allowing to cool at 23 ° C for 1 hour or more, the force required to peel the copper foil from the tape at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the adhesive residue on the adherend was measured. The presence or absence of was visually confirmed. Next, the force required to peel the tape from the copper plate at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the presence or absence of adhesive residue on the adherend was visually confirmed. At this time, the base material side of the single-sided adhesive tape was fixed to the SUS plate with a paper double-sided adhesive tape (No. 778 manufactured by Teraoka Seisakusho Co., Ltd.) for measurement.
加熱剥離処理させたときの剥離力および糊残り性は以下の基準で判定した。
(加熱剥離処理させたときの銅箔の剥離力)
A:加熱中に自然に剥離した、もしくは剥離力が初期剥離力の20%未満であった(良好)。
B:剥離力が初期剥離力の20%以上であった(不良)。
(加熱剥離処理させたときの銅箔の糊残り性)
A:糊残りがなかった(良好)。
B:糊残りがあった(不良)。 The peeling force and adhesive residue after the heat peeling treatment were judged according to the following criteria.
(Copper foil peeling force when heat peeling treatment)
A: The peeling force was spontaneously peeled off during heating, or the peeling force was less than 20% of the initial peeling force (good).
B: The peeling force was 20% or more of the initial peeling force (defective).
(Remaining adhesiveness of copper foil when heat-peeled)
A: There was no adhesive residue (good).
B: There was adhesive residue (defective).
(加熱剥離処理させたときの銅箔の剥離力)
A:加熱中に自然に剥離した、もしくは剥離力が初期剥離力の20%未満であった(良好)。
B:剥離力が初期剥離力の20%以上であった(不良)。
(加熱剥離処理させたときの銅箔の糊残り性)
A:糊残りがなかった(良好)。
B:糊残りがあった(不良)。 The peeling force and adhesive residue after the heat peeling treatment were judged according to the following criteria.
(Copper foil peeling force when heat peeling treatment)
A: The peeling force was spontaneously peeled off during heating, or the peeling force was less than 20% of the initial peeling force (good).
B: The peeling force was 20% or more of the initial peeling force (defective).
(Remaining adhesiveness of copper foil when heat-peeled)
A: There was no adhesive residue (good).
B: There was adhesive residue (defective).
(i)[高温長時間プレス時の発泡抑制]
上記(h)の評価で良好であった(すべてがA評価)の実施例および比較例に対して、高温長時間プレス時の発泡抑制を以下のとおり評価した。
幅10mm、長さ90mmに断裁した実施例13に記載の試料(片面粘着テープ、搬送時補強用を想定)を、厚さ35μm、幅10mm、長さ90mmの銅箔の光沢面(基板製品を想定、福田金属株式会社製の電解銅箔)に貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着した後、加熱式のプレス機を用いて、温度170℃、試験片全体にかかる圧力が26kg/cm2で1時間加圧した。この際、圧力を均一にかけるために、厚さ0.7mm、幅25mm、長さ125mmの銅板の下に厚さ1mm、幅25mm、長さ125mmのシリコーンゴムシート(IS―825、硬度50°、入間川ゴム株式会社製)を敷き、幅10mm、長さ90mmに断裁した同シリコーンゴムシートを試験片の上に乗せて、挟んでプレスした。23℃で1時間以上放冷した後、銅箔、および銅板からテープを剥離し、発泡の有無を目視で確認し、得られた結果について以下の基準で評価した。
A:熱プレス中に熱膨張性粘着層が発泡しなかった(良好)。
B:熱プレス中に熱膨張性粘着層が発泡した(不良)。 (I) [Suppression of foaming during high-temperature long-time pressing]
With respect to the examples and comparative examples that were good in the evaluation of (h) above (all were evaluated as A), the suppression of foaming during high temperature and long-time pressing was evaluated as follows.
The sample according to Example 13 cut into a width of 10 mm and a length of 90 mm (single-sided adhesive tape, assuming reinforcement during transportation) is subjected to a glossy surface of a copper foil having a thickness of 35 μm, a width of 10 mm, and a length of 90 mm (a substrate product). Assumed, it was attached to an electrolytic copper foil manufactured by Fukuda Metal Co., Ltd.). A roller coated with a rubber layer weighing 2 kg reciprocates once at a speed of 300 mm / min for crimping, and then using a heating press machine, the temperature is 170 ° C. and the pressure applied to the entire test piece is 26 kg / cm 2. Pressurized for 1 hour. At this time, in order to apply pressure uniformly, a silicone rubber sheet (IS-825, hardness 50 °) having a thickness of 1 mm, a width of 25 mm and a length of 125 mm is placed under a copper plate having a thickness of 0.7 mm, a width of 25 mm and a length of 125 mm. , Made by Irumagawa Rubber Co., Ltd.), and the same silicone rubber sheet cut to a width of 10 mm and a length of 90 mm was placed on a test piece, sandwiched and pressed. After allowing to cool at 23 ° C. for 1 hour or more, the tape was peeled off from the copper foil and the copper plate, the presence or absence of foaming was visually confirmed, and the obtained results were evaluated according to the following criteria.
A: The heat-expandable adhesive layer did not foam during the hot press (good).
B: The heat-expandable adhesive layer foamed during hot pressing (defective).
上記(h)の評価で良好であった(すべてがA評価)の実施例および比較例に対して、高温長時間プレス時の発泡抑制を以下のとおり評価した。
幅10mm、長さ90mmに断裁した実施例13に記載の試料(片面粘着テープ、搬送時補強用を想定)を、厚さ35μm、幅10mm、長さ90mmの銅箔の光沢面(基板製品を想定、福田金属株式会社製の電解銅箔)に貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着した後、加熱式のプレス機を用いて、温度170℃、試験片全体にかかる圧力が26kg/cm2で1時間加圧した。この際、圧力を均一にかけるために、厚さ0.7mm、幅25mm、長さ125mmの銅板の下に厚さ1mm、幅25mm、長さ125mmのシリコーンゴムシート(IS―825、硬度50°、入間川ゴム株式会社製)を敷き、幅10mm、長さ90mmに断裁した同シリコーンゴムシートを試験片の上に乗せて、挟んでプレスした。23℃で1時間以上放冷した後、銅箔、および銅板からテープを剥離し、発泡の有無を目視で確認し、得られた結果について以下の基準で評価した。
A:熱プレス中に熱膨張性粘着層が発泡しなかった(良好)。
B:熱プレス中に熱膨張性粘着層が発泡した(不良)。 (I) [Suppression of foaming during high-temperature long-time pressing]
With respect to the examples and comparative examples that were good in the evaluation of (h) above (all were evaluated as A), the suppression of foaming during high temperature and long-time pressing was evaluated as follows.
The sample according to Example 13 cut into a width of 10 mm and a length of 90 mm (single-sided adhesive tape, assuming reinforcement during transportation) is subjected to a glossy surface of a copper foil having a thickness of 35 μm, a width of 10 mm, and a length of 90 mm (a substrate product). Assumed, it was attached to an electrolytic copper foil manufactured by Fukuda Metal Co., Ltd.). A roller coated with a rubber layer weighing 2 kg reciprocates once at a speed of 300 mm / min for crimping, and then using a heating press machine, the temperature is 170 ° C. and the pressure applied to the entire test piece is 26 kg / cm 2. Pressurized for 1 hour. At this time, in order to apply pressure uniformly, a silicone rubber sheet (IS-825, hardness 50 °) having a thickness of 1 mm, a width of 25 mm and a length of 125 mm is placed under a copper plate having a thickness of 0.7 mm, a width of 25 mm and a length of 125 mm. , Made by Irumagawa Rubber Co., Ltd.), and the same silicone rubber sheet cut to a width of 10 mm and a length of 90 mm was placed on a test piece, sandwiched and pressed. After allowing to cool at 23 ° C. for 1 hour or more, the tape was peeled off from the copper foil and the copper plate, the presence or absence of foaming was visually confirmed, and the obtained results were evaluated according to the following criteria.
A: The heat-expandable adhesive layer did not foam during the hot press (good).
B: The heat-expandable adhesive layer foamed during hot pressing (defective).
(j)[高温長時間プレス後に加熱剥離処理させたときの銅箔の剥離力]
上記(h)の評価で良好であった(A評価)実施例および比較例に対して、高温長時間プレス後に加熱剥離処理させたときの銅箔の剥離力を以下のとおり評価した。
幅10mm、長さ90mmに断裁した実施例13に記載の試料(片面粘着テープ、搬送時補強用を想定)を、厚さ35μm、幅10mm、長さ90mmの銅箔の光沢面(基板製品を想定、福田金属株式会社製の電解銅箔)に貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着した後、加熱式のプレス機を用いて、温度170℃、試験片全体にかかる圧力が26kg/cm2で1時間加圧した。この際、圧力を均一にかけるために、厚さ0.7mm、幅25mm、長さ125mmの銅板の下に厚さ1mm、幅25mm、長さ125mmのシリコーンゴムシート(IS―825、硬度50°、入間川ゴム株式会社製)を敷き、幅10mm、長さ90mmに断裁した同シリコーンゴムシートを試験片の上に乗せて、挟んでプレスした。23℃で1時間以上放冷した後、さらに200℃の乾燥機で3分間加熱した。23℃で1時間以上放冷した後、引張試験機を用いて300mm/分の速度で90°の角度で銅箔を上記テープから剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。次いで、引張試験機を用いて300mm/分の速度で90°の角度でテープを銅板から剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。この際、片面粘着テープの基材側を、紙両面粘着テープ(寺岡製作所株式会社製のNo.778)でSUS板に固定して測定を行った。 (J) [Peeling force of copper foil when heat peeling treatment is performed after pressing at high temperature for a long time]
The peeling force of the copper foil when heat peeling was performed after pressing at a high temperature for a long time was evaluated as follows with respect to Examples and Comparative Examples which were good in the evaluation of (h) above (Evaluation A).
The sample according to Example 13 cut into a width of 10 mm and a length of 90 mm (single-sided adhesive tape, assuming reinforcement during transportation) is subjected to a glossy surface of a copper foil having a thickness of 35 μm, a width of 10 mm, and a length of 90 mm (a substrate product). Assumed, it was attached to an electrolytic copper foil manufactured by Fukuda Metal Co., Ltd.). A roller coated with a rubber layer weighing 2 kg reciprocates once at a speed of 300 mm / min for crimping, and then using a heating press machine, the temperature is 170 ° C. and the pressure applied to the entire test piece is 26 kg / cm 2. Pressurized for 1 hour. At this time, in order to apply pressure uniformly, a silicone rubber sheet (IS-825, hardness 50 °) having a thickness of 1 mm, a width of 25 mm and a length of 125 mm is placed under a copper plate having a thickness of 0.7 mm, a width of 25 mm and a length of 125 mm. , Made by Irumagawa Rubber Co., Ltd.), and the same silicone rubber sheet cut to a width of 10 mm and a length of 90 mm was placed on a test piece, sandwiched and pressed. After allowing to cool at 23 ° C. for 1 hour or more, the mixture was further heated in a dryer at 200 ° C. for 3 minutes. After allowing to cool at 23 ° C. for 1 hour or more, the force required to peel the copper foil from the tape at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the glue on the adherend was measured. The presence or absence of the residue was visually confirmed. Next, the force required to peel the tape from the copper plate at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the presence or absence of adhesive residue on the adherend was visually confirmed. At this time, the base material side of the single-sided adhesive tape was fixed to the SUS plate with a paper double-sided adhesive tape (No. 778 manufactured by Teraoka Seisakusho Co., Ltd.) for measurement.
上記(h)の評価で良好であった(A評価)実施例および比較例に対して、高温長時間プレス後に加熱剥離処理させたときの銅箔の剥離力を以下のとおり評価した。
幅10mm、長さ90mmに断裁した実施例13に記載の試料(片面粘着テープ、搬送時補強用を想定)を、厚さ35μm、幅10mm、長さ90mmの銅箔の光沢面(基板製品を想定、福田金属株式会社製の電解銅箔)に貼り合わせた。重さ2kgのゴム層で被覆されたローラーで300mm/分の速度で1往復させて圧着した後、加熱式のプレス機を用いて、温度170℃、試験片全体にかかる圧力が26kg/cm2で1時間加圧した。この際、圧力を均一にかけるために、厚さ0.7mm、幅25mm、長さ125mmの銅板の下に厚さ1mm、幅25mm、長さ125mmのシリコーンゴムシート(IS―825、硬度50°、入間川ゴム株式会社製)を敷き、幅10mm、長さ90mmに断裁した同シリコーンゴムシートを試験片の上に乗せて、挟んでプレスした。23℃で1時間以上放冷した後、さらに200℃の乾燥機で3分間加熱した。23℃で1時間以上放冷した後、引張試験機を用いて300mm/分の速度で90°の角度で銅箔を上記テープから剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。次いで、引張試験機を用いて300mm/分の速度で90°の角度でテープを銅板から剥離するのに要する力を測定し、被着体上の糊残りの有無を目視で確認した。この際、片面粘着テープの基材側を、紙両面粘着テープ(寺岡製作所株式会社製のNo.778)でSUS板に固定して測定を行った。 (J) [Peeling force of copper foil when heat peeling treatment is performed after pressing at high temperature for a long time]
The peeling force of the copper foil when heat peeling was performed after pressing at a high temperature for a long time was evaluated as follows with respect to Examples and Comparative Examples which were good in the evaluation of (h) above (Evaluation A).
The sample according to Example 13 cut into a width of 10 mm and a length of 90 mm (single-sided adhesive tape, assuming reinforcement during transportation) is subjected to a glossy surface of a copper foil having a thickness of 35 μm, a width of 10 mm, and a length of 90 mm (a substrate product). Assumed, it was attached to an electrolytic copper foil manufactured by Fukuda Metal Co., Ltd.). A roller coated with a rubber layer weighing 2 kg reciprocates once at a speed of 300 mm / min for crimping, and then using a heating press machine, the temperature is 170 ° C. and the pressure applied to the entire test piece is 26 kg / cm 2. Pressurized for 1 hour. At this time, in order to apply pressure uniformly, a silicone rubber sheet (IS-825, hardness 50 °) having a thickness of 1 mm, a width of 25 mm and a length of 125 mm is placed under a copper plate having a thickness of 0.7 mm, a width of 25 mm and a length of 125 mm. , Made by Irumagawa Rubber Co., Ltd.), and the same silicone rubber sheet cut to a width of 10 mm and a length of 90 mm was placed on a test piece, sandwiched and pressed. After allowing to cool at 23 ° C. for 1 hour or more, the mixture was further heated in a dryer at 200 ° C. for 3 minutes. After allowing to cool at 23 ° C. for 1 hour or more, the force required to peel the copper foil from the tape at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the glue on the adherend was measured. The presence or absence of the residue was visually confirmed. Next, the force required to peel the tape from the copper plate at an angle of 90 ° at a speed of 300 mm / min was measured using a tensile tester, and the presence or absence of adhesive residue on the adherend was visually confirmed. At this time, the base material side of the single-sided adhesive tape was fixed to the SUS plate with a paper double-sided adhesive tape (No. 778 manufactured by Teraoka Seisakusho Co., Ltd.) for measurement.
銅箔の剥離について以下の基準で評価した。
(加熱剥離処理させたときの銅箔の剥離力)
A:加熱中に自然に剥離した、もしくは剥離力が初期剥離力の20%未満であった(良好)。
B:剥離力が初期剥離力の20%以上であった(不良)。
(加熱剥離処理させたときの銅箔の糊残り性)
A:糊残りがなかった(良好)。
B:糊残りがあった(不良)。 The peeling of the copper foil was evaluated according to the following criteria.
(Copper foil peeling force when heat peeling treatment)
A: The peeling force was spontaneously peeled off during heating, or the peeling force was less than 20% of the initial peeling force (good).
B: The peeling force was 20% or more of the initial peeling force (defective).
(Remaining adhesiveness of copper foil when heat-peeled)
A: There was no adhesive residue (good).
B: There was adhesive residue (defective).
(加熱剥離処理させたときの銅箔の剥離力)
A:加熱中に自然に剥離した、もしくは剥離力が初期剥離力の20%未満であった(良好)。
B:剥離力が初期剥離力の20%以上であった(不良)。
(加熱剥離処理させたときの銅箔の糊残り性)
A:糊残りがなかった(良好)。
B:糊残りがあった(不良)。 The peeling of the copper foil was evaluated according to the following criteria.
(Copper foil peeling force when heat peeling treatment)
A: The peeling force was spontaneously peeled off during heating, or the peeling force was less than 20% of the initial peeling force (good).
B: The peeling force was 20% or more of the initial peeling force (defective).
(Remaining adhesiveness of copper foil when heat-peeled)
A: There was no adhesive residue (good).
B: There was adhesive residue (defective).
[評価結果]
表3-2~表3-4の評価結果から明らかなように、本発明の要件を満たした実施例1~13では、高温長時間の熱プレス工程を経た後でも、さらに加熱剥離処理することで易剥離化し、また被着体にも糊残りしにくい良好な結果が得られた。さらに熱プレス中でも熱膨張性粒子の発泡が抑制されていた。 [Evaluation results]
As is clear from the evaluation results in Tables 3-2 to 3-4, in Examples 1 to 13 that satisfy the requirements of the present invention, further heat peeling treatment is performed even after undergoing a high-temperature and long-time hot pressing step. It was easy to peel off, and good results were obtained with less adhesive residue on the adherend. Furthermore, the foaming of the heat-expandable particles was suppressed even during the hot press.
表3-2~表3-4の評価結果から明らかなように、本発明の要件を満たした実施例1~13では、高温長時間の熱プレス工程を経た後でも、さらに加熱剥離処理することで易剥離化し、また被着体にも糊残りしにくい良好な結果が得られた。さらに熱プレス中でも熱膨張性粒子の発泡が抑制されていた。 [Evaluation results]
As is clear from the evaluation results in Tables 3-2 to 3-4, in Examples 1 to 13 that satisfy the requirements of the present invention, further heat peeling treatment is performed even after undergoing a high-temperature and long-time hot pressing step. It was easy to peel off, and good results were obtained with less adhesive residue on the adherend. Furthermore, the foaming of the heat-expandable particles was suppressed even during the hot press.
比較例1では熱膨張性粒子がそもそも含有されていないので、加熱剥離処理をしても易剥離化しなかった。
比較例2は、熱プレス処理をしない場合であれば、加熱剥離処理をすることで易剥離化した。しかし、粘着剤成分に対する発泡剤の添加量が4部に満たないため、高温長時間の熱プレス後に加熱剥離処理をすると、基板製品部材を想定した銅箔に対しての剥離力が十分に低下する効果が得られなかった。 In Comparative Example 1, since the heat-expandable particles were not contained in the first place, they were not easily peeled off even by the heat peeling treatment.
In Comparative Example 2, if the heat press treatment was not performed, the heat peeling treatment was performed to make the peeling easy. However, since the amount of the foaming agent added to the pressure-sensitive adhesive component is less than 4 parts, if the heat peeling treatment is performed after hot pressing at a high temperature for a long time, the peeling force for the copper foil assuming the substrate product member is sufficiently reduced. The effect was not obtained.
比較例2は、熱プレス処理をしない場合であれば、加熱剥離処理をすることで易剥離化した。しかし、粘着剤成分に対する発泡剤の添加量が4部に満たないため、高温長時間の熱プレス後に加熱剥離処理をすると、基板製品部材を想定した銅箔に対しての剥離力が十分に低下する効果が得られなかった。 In Comparative Example 1, since the heat-expandable particles were not contained in the first place, they were not easily peeled off even by the heat peeling treatment.
In Comparative Example 2, if the heat press treatment was not performed, the heat peeling treatment was performed to make the peeling easy. However, since the amount of the foaming agent added to the pressure-sensitive adhesive component is less than 4 parts, if the heat peeling treatment is performed after hot pressing at a high temperature for a long time, the peeling force for the copper foil assuming the substrate product member is sufficiently reduced. The effect was not obtained.
比較例3は、熱プレス処理をしない場合であれば、加熱剥離処理をすることで易剥離化した。一方で、熱膨張性粒子の最大膨張温度が170℃未満であるため、高温長時間の熱プレス中に熱膨張性粒子の膨張を抑制できなかった。
In Comparative Example 3, if the heat press treatment was not performed, the heat peeling treatment was performed to make the peeling easy. On the other hand, since the maximum expansion temperature of the heat-expandable particles is less than 170 ° C., the expansion of the heat-expandable particles could not be suppressed during a hot press at a high temperature for a long time.
比較例4~6、および比較例9は、熱膨張性粒子の最大膨張温度における粘着剤成分のtanδが0.120よりも高いため、高温長時間のプレスをしなくても、加熱剥離処理後に易剥離化しなかった。
In Comparative Examples 4 to 6 and Comparative Example 9, since the tan δ of the pressure-sensitive adhesive component at the maximum expansion temperature of the heat-expandable particles is higher than 0.120, after the heat peeling treatment without pressing at a high temperature for a long time. It did not peel off easily.
比較例7~8は、熱膨張性粒子の最大膨張温度における粘着剤成分のtanδが0.120よりも低いため、熱プレス処理をしない場合であれば、加熱剥離処理をすることで易剥離化する。しかし、170℃の貯蔵弾性率G’が30,000Paよりも低いため、高温長時間の熱プレス熱プレス中に熱膨張性粒子の膨張を抑制できなかった。
In Comparative Examples 7 to 8, the tan δ of the pressure-sensitive adhesive component at the maximum expansion temperature of the heat-expandable particles is lower than 0.120. do. However, since the storage elastic modulus G'at 170 ° C. is lower than 30,000 Pa, the expansion of the heat-expandable particles could not be suppressed during the hot press heat press for a long time at high temperature.
例えば特許文献6では、23℃や95℃などの比較的低い温度での熱膨張性粘着層の貯蔵弾性率G’の範囲が規定されており、その範囲においては好適に使用できる可能性があるが、表3-2~表3-4に示す上記の評価結果から明らかなように、常温における貯蔵弾性率G’が高いからといって、必ずしも高温(例えば170℃)における貯蔵弾性率がG’が高いとは限らない。したがって、特許文献6で開示されている技術では、常温短時間(例えば実施例にあるような常温、3MPa、3秒間、100回)のプレス工程においては位置ズレしにくく、さらに加熱することで易剥離するような用途では好適であると考えられるが、高温長時間のプレス工程で使用する場合には本発明で規定した各パラメータを満足する必要がある。また、特許文献6に記載の実施例1~3は、低温膨張型の熱膨張性粒子(特許文献6の明細書の実施例より、120℃で発砲を開始し、130℃で発泡剥離するもの)を使用しており、高温(例えば170℃)の熱プレス処理をすると熱膨張性粒子の発泡を抑制できないものと想定できる。
For example, Patent Document 6 defines the range of the storage elastic modulus G'of the heat-expandable adhesive layer at a relatively low temperature such as 23 ° C. or 95 ° C., and there is a possibility that it can be preferably used in that range. However, as is clear from the above evaluation results shown in Tables 3-2 to 3-4, even if the storage elastic modulus G'at room temperature is high, the storage elastic modulus at high temperature (for example, 170 ° C.) is not necessarily G. 'Is not always high. Therefore, in the technique disclosed in Patent Document 6, the position is less likely to shift in the pressing process at room temperature for a short time (for example, room temperature, 3 MPa, 3 seconds, 100 times as in the examples), and further heating is easy. Although it is considered to be suitable for applications such as peeling, it is necessary to satisfy each parameter specified in the present invention when it is used in a high temperature and long time pressing process. Further, Examples 1 to 3 described in Patent Document 6 are low-temperature expansion type heat-expandable particles (according to the examples in the specification of Patent Document 6, firing is started at 120 ° C. and foam peeling is performed at 130 ° C. ) Is used, and it can be assumed that the foaming of the heat-expandable particles cannot be suppressed when the heat press treatment is performed at a high temperature (for example, 170 ° C.).
本発明の熱剥離型粘着テープは、電子部品や半導体部品の製造工程、例えば部品の仮固定、搬送時固定、補強、保護、マスキング、樹脂封止等の高温加熱が必要な工程において有用に使用できる。特に、封止樹脂の硬化工程など、高温長時間のプレス工程後に容易に糊残りなく剥離することが必要な工程において非常に有用である。
The heat-removable adhesive tape of the present invention is usefully used in manufacturing processes of electronic parts and semiconductor parts, for example, in processes requiring high-temperature heating such as temporary fixing of parts, fixing during transportation, reinforcement, protection, masking, and resin sealing. can. In particular, it is very useful in a process such as a curing process of a sealing resin, which requires easy peeling without adhesive residue after a high-temperature and long-time pressing process.
Claims (14)
- 粘着剤成分と熱膨張性粒子を含む熱膨張性粘着層を有する熱剥離型粘着テープであって、
前記熱膨張性粘着層が前記粘着剤成分100質量に対して4質量部以上の前記熱膨張性粒子を含み、
前記熱膨張性粒子の最大膨張温度が170℃以上であり、かつ、
前記粘着剤成分の動的粘弾性測定(温度範囲-60℃~300℃、昇温速度10℃/分、周波数10Hz)において
(1)前記熱膨張性粒子の最大膨張温度におけるtanδが0.120以下、及び
(2)170℃における貯蔵弾性率G’が30,000Pa以上
であることを特徴とする熱剥離型粘着テープ。 A heat-release adhesive tape having a heat-expandable pressure-sensitive adhesive layer containing a pressure-sensitive adhesive component and heat-expandable particles.
The heat-expandable adhesive layer contains 4 parts by mass or more of the heat-expandable particles with respect to 100 mass by mass of the pressure-sensitive adhesive component.
The maximum expansion temperature of the thermally expandable particles is 170 ° C. or higher, and
In the dynamic viscoelasticity measurement of the pressure-sensitive adhesive component (temperature range -60 ° C to 300 ° C, heating rate 10 ° C / min, frequency 10 Hz), (1) tan δ at the maximum expansion temperature of the heat-expandable particles is 0.120. Hereinafter, (2) a heat-release adhesive tape having a storage elastic modulus G'at 170 ° C. of 30,000 Pa or more. - 前記熱膨張性粒子を、前記熱膨張性粘着層に含まれる樹脂成分100質量部に対して5質量部以上含む、請求項1に記載の熱剥離型粘着テープ。 The heat-release type adhesive tape according to claim 1, wherein the heat-expandable particles are contained in an amount of 5 parts by mass or more with respect to 100 parts by mass of a resin component contained in the heat-expandable adhesive layer.
- 前記熱膨張性粒子を、前記熱膨張性粘着層に含まれる樹脂成分100質量部に対して7質量部以上80質量部未満の割合で含む、請求項1に記載の熱剥離型粘着テープ。 The heat-release type adhesive tape according to claim 1, wherein the heat-expandable particles are contained in a ratio of 7 parts by mass or more and less than 80 parts by mass with respect to 100 parts by mass of the resin component contained in the heat-expandable adhesive layer.
- 前記粘着剤成分が、アクリル系粘着剤、ゴム系粘着剤及びシリコーン系粘着剤のいずれかである、請求項1に記載の熱剥離型粘着テープ The heat-removable adhesive tape according to claim 1, wherein the pressure-sensitive adhesive component is any of an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive.
- 前記熱膨張性粒子の最大熱膨張温度が180℃以上320℃以下である、請求項1に記載の熱剥離型粘着テープ The heat-removable adhesive tape according to claim 1, wherein the maximum thermal expansion temperature of the heat-expandable particles is 180 ° C. or higher and 320 ° C. or lower.
- 前記tanδが0.001以上、0.110以下であり、前記貯蔵弾性率G’が40,000Pa以上、1,000,000Pa以下である、請求項1に記載の熱剥離型粘着テープ。 The heat-removable adhesive tape according to claim 1, wherein the tan δ is 0.001 or more and 0.110 or less, and the storage elastic modulus G'is 40,000 Pa or more and 1,000,000 Pa or less.
- 基材の少なくとも片面に熱膨張性粘着層を有する請求項1記載の熱剥離型粘着テープ。 The heat-removable adhesive tape according to claim 1, which has a heat-expandable adhesive layer on at least one side of the base material.
- 基材の両面に前記熱膨張性粘着層を有する請求項1記載の熱剥離型粘着テープ。 The heat-removable adhesive tape according to claim 1, which has the heat-expandable adhesive layer on both sides of the base material.
- 前記基材が樹脂フィルムである請求項7または8に記載の熱剥離型粘着テープ。 The heat-removable adhesive tape according to claim 7 or 8, wherein the base material is a resin film.
- 前記基材がポリイミドフィルムである請求項9記載の熱剥離型粘着テープ。 The heat-removable adhesive tape according to claim 9, wherein the base material is a polyimide film.
- 被着体の熱プレス工程における被着体への仮固定用である、請求項1に記載の熱剥離型粘着テープ。 The heat-removable adhesive tape according to claim 1, which is used for temporarily fixing the adherend to the adherend in the heat pressing process.
- 前記熱プレス工程が、温度120~240℃、時間5分~10時間、圧力5~40kgf/cm2の熱プレス工程を含み、該熱プレス工程後の剥離用の加熱により該被着体からの剥離力が著しく低減する、請求項11に記載の熱剥離型粘着テープ。 The hot pressing step includes a hot pressing step of a temperature of 120 to 240 ° C., a time of 5 minutes to 10 hours, and a pressure of 5 to 40 kgf / cm 2 , and is heated from the adherend by heating for peeling after the hot pressing step. The heat-removable adhesive tape according to claim 11, wherein the peeling force is remarkably reduced.
- 被着体の熱プレス処理における熱剥離型粘着テープの使用方法であって、
被着体に請求項1に記載の熱剥離型粘着テープを仮固定する工程と、
前記粘着テープが仮固定された被着体を熱プレス処理する工程と、
前記熱プレス処理された被着体に仮固定された熱剥離型粘着テープを、剥離用の温度に加熱する工程と、
前記剥離用の温度に加熱された熱剥離型粘着テープを前記被着体から剥離する工程と、
を有することを特徴とする熱剥離型粘着テープの使用方法。 It is a method of using the heat-release type adhesive tape in the heat pressing process of the adherend.
The step of temporarily fixing the heat-removable adhesive tape according to claim 1 to the adherend, and
A step of heat-pressing the adherend to which the adhesive tape is temporarily fixed, and
A step of heating the heat-release type adhesive tape temporarily fixed to the heat-pressed adherend to a temperature for peeling, and
A step of peeling the heat-peeling type adhesive tape heated to the peeling temperature from the adherend,
A method of using a heat-removable adhesive tape, which comprises. - 前記熱プレス工程が、温度120~240℃、時間5分~10時間、圧力5~40kgf/cm2の熱プレス工程を含む、請求項13に記載の熱剥離型粘着テープの使用方法。 The method for using a heat-release adhesive tape according to claim 13, wherein the heat-pressing step includes a heat-pressing step at a temperature of 120 to 240 ° C., a time of 5 minutes to 10 hours, and a pressure of 5 to 40 kgf / cm 2.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020536904A JP6807492B1 (en) | 2020-03-27 | 2020-03-27 | Heat peeling adhesive tape |
KR1020227037769A KR20230002527A (en) | 2020-03-27 | 2020-03-27 | Heat-peel adhesive tape |
PCT/JP2020/014413 WO2021192319A1 (en) | 2020-03-27 | 2020-03-27 | Thermally peelable adhesive tape |
CN202080005706.0A CN113597458B (en) | 2020-03-27 | 2020-03-27 | Thermal peeling type adhesive tape |
JP2020202060A JP2021155700A (en) | 2020-03-27 | 2020-12-04 | Heat-peelable pressure sensitive adhesive tape |
TW110145564A TWI849362B (en) | 2020-03-27 | 2021-03-12 | Thermal release adhesive tape |
TW110108868A TWI752845B (en) | 2020-03-27 | 2021-03-12 | Thermal peel adhesive tape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/014413 WO2021192319A1 (en) | 2020-03-27 | 2020-03-27 | Thermally peelable adhesive tape |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021192319A1 true WO2021192319A1 (en) | 2021-09-30 |
Family
ID=73992807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/014413 WO2021192319A1 (en) | 2020-03-27 | 2020-03-27 | Thermally peelable adhesive tape |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP6807492B1 (en) |
KR (1) | KR20230002527A (en) |
CN (1) | CN113597458B (en) |
TW (2) | TWI752845B (en) |
WO (1) | WO2021192319A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7109698B1 (en) * | 2021-09-02 | 2022-07-29 | 株式会社寺岡製作所 | Thermal peel adhesive tape |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013076031A (en) * | 2011-09-30 | 2013-04-25 | Sekisui Chem Co Ltd | Adhesive release sheet |
JP2013177549A (en) * | 2012-01-30 | 2013-09-09 | Nitto Denko Corp | Thermally releasable protective tape for sliding |
US20150299521A1 (en) * | 2012-11-02 | 2015-10-22 | Nitto Denko Corporation | Thermally debondable tape |
JP2016155919A (en) * | 2015-02-24 | 2016-09-01 | 日東電工株式会社 | Heat peelable adhesive sheet |
JP2017002190A (en) * | 2015-06-10 | 2017-01-05 | リンテック株式会社 | Thermal peeling adhesive sheet |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3810911B2 (en) | 1997-12-01 | 2006-08-16 | 日東電工株式会社 | Heat release type adhesive sheet |
JP4578600B2 (en) | 1999-11-19 | 2010-11-10 | 株式会社スリオンテック | Photosensitive adhesive tape and method for producing the same |
JP2002148300A (en) | 2000-11-10 | 2002-05-22 | Matsushita Electric Ind Co Ltd | Method and device for nondestructive insulation testing of small-sized electric machine |
JP2006160872A (en) * | 2004-12-07 | 2006-06-22 | Nitto Denko Corp | Heat-peelable self-adhesive sheet, and electronic part and circuit board |
JP5057678B2 (en) | 2006-03-17 | 2012-10-24 | 日東電工株式会社 | Thermally peelable adhesive sheet |
JP2007284666A (en) * | 2006-03-20 | 2007-11-01 | Furukawa Electric Co Ltd:The | Heat-peelable adhesive tape |
JP2009035635A (en) * | 2007-08-01 | 2009-02-19 | Nitto Denko Corp | Stain resistant heat peelable adhesive sheet |
JP2012149182A (en) * | 2011-01-19 | 2012-08-09 | Nitto Denko Corp | Double-sided adhesive tape or sheet, and method for processing adherend |
JP5588950B2 (en) | 2011-10-17 | 2014-09-10 | 日東電工株式会社 | Heat resistant adhesive tape |
JP5778721B2 (en) * | 2013-07-19 | 2015-09-16 | 日東電工株式会社 | Thermally peelable adhesive tape and method for cutting electronic parts |
JP2015021082A (en) * | 2013-07-19 | 2015-02-02 | 日東電工株式会社 | Thermal peeling type adhesive tape for cutting-off electronic component and cutting-off method of electronic component |
TWI739833B (en) * | 2016-05-12 | 2021-09-21 | 日商索瑪爾股份有限公司 | Adhesive sheet and manufacturing method of adhered volume layer |
CN110494524B (en) * | 2017-03-31 | 2022-01-18 | 琳得科株式会社 | Adhesive sheet |
-
2020
- 2020-03-27 WO PCT/JP2020/014413 patent/WO2021192319A1/en active Application Filing
- 2020-03-27 CN CN202080005706.0A patent/CN113597458B/en active Active
- 2020-03-27 JP JP2020536904A patent/JP6807492B1/en active Active
- 2020-03-27 KR KR1020227037769A patent/KR20230002527A/en not_active Application Discontinuation
- 2020-12-04 JP JP2020202060A patent/JP2021155700A/en active Pending
-
2021
- 2021-03-12 TW TW110108868A patent/TWI752845B/en active
- 2021-03-12 TW TW110145564A patent/TWI849362B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013076031A (en) * | 2011-09-30 | 2013-04-25 | Sekisui Chem Co Ltd | Adhesive release sheet |
JP2013177549A (en) * | 2012-01-30 | 2013-09-09 | Nitto Denko Corp | Thermally releasable protective tape for sliding |
US20150299521A1 (en) * | 2012-11-02 | 2015-10-22 | Nitto Denko Corporation | Thermally debondable tape |
JP2016155919A (en) * | 2015-02-24 | 2016-09-01 | 日東電工株式会社 | Heat peelable adhesive sheet |
JP2017002190A (en) * | 2015-06-10 | 2017-01-05 | リンテック株式会社 | Thermal peeling adhesive sheet |
Also Published As
Publication number | Publication date |
---|---|
TW202216937A (en) | 2022-05-01 |
CN113597458A (en) | 2021-11-02 |
JPWO2021192319A1 (en) | 2021-09-30 |
TWI752845B (en) | 2022-01-11 |
TWI849362B (en) | 2024-07-21 |
JP2021155700A (en) | 2021-10-07 |
KR20230002527A (en) | 2023-01-05 |
CN113597458B (en) | 2023-10-27 |
JP6807492B1 (en) | 2021-01-06 |
TW202142650A (en) | 2021-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6371931B1 (en) | Adhesive sheet | |
WO2018092904A1 (en) | Adhesive sheet | |
JP6605562B2 (en) | Adhesive sheet | |
EP3480270A1 (en) | Thermally conductive pressure-sensitive adhesive sheet | |
TWI617641B (en) | Thermosensitive adhesive | |
WO2012108348A1 (en) | Adhesive | |
JP7555271B2 (en) | Adhesive sheet | |
JP2011037944A (en) | Temperature-sensitive adhesive and temperature-sensitive adhesive tape | |
JP2017160417A (en) | Adhesive sheet | |
KR20190049521A (en) | Adhesive sheet | |
JP6807492B1 (en) | Heat peeling adhesive tape | |
JP7125259B2 (en) | Adhesive sheet | |
JP2012180507A (en) | Adhesive | |
JP7262484B2 (en) | Adhesive sheet | |
JP7166052B2 (en) | Adhesive sheet | |
TWI593777B (en) | Thermosensitiveadhesive sheet for dicing ceramic electronic components and method for manufacturing ceramic electronic components | |
JP7115623B1 (en) | A foamed adhesive tape for fixing electronic device parts, and an electronic device using the foamed adhesive tape for fixing electronic device parts. | |
JP7319766B2 (en) | Adhesive sheet | |
TW202116944A (en) | Adhesive sheet including a polymer as a base polymer and thermally-expandable microspheres having an expansion starting temperature | |
TW202033705A (en) | Heat-resistant laminate and heat-resistant adhesive | |
CN110819254A (en) | Adhesive sheet | |
JP2013155323A (en) | Adhesive | |
JP2013155325A (en) | Adhesive | |
JP2013155324A (en) | Adhesive | |
JP2014012786A (en) | High temperature holding adhesive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020536904 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20927457 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20927457 Country of ref document: EP Kind code of ref document: A1 |