WO2021192251A1 - 固体電解質電池 - Google Patents

固体電解質電池 Download PDF

Info

Publication number
WO2021192251A1
WO2021192251A1 PCT/JP2020/014129 JP2020014129W WO2021192251A1 WO 2021192251 A1 WO2021192251 A1 WO 2021192251A1 JP 2020014129 W JP2020014129 W JP 2020014129W WO 2021192251 A1 WO2021192251 A1 WO 2021192251A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
solid electrolyte
separator
negative electrode
electrolyte battery
Prior art date
Application number
PCT/JP2020/014129
Other languages
English (en)
French (fr)
Inventor
堤 香津雄
Original Assignee
株式会社堤水素研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堤水素研究所 filed Critical 株式会社堤水素研究所
Priority to JP2021516505A priority Critical patent/JP6931950B1/ja
Priority to PCT/JP2020/014129 priority patent/WO2021192251A1/ja
Publication of WO2021192251A1 publication Critical patent/WO2021192251A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the structure of a secondary battery, and more particularly to the structure of a laminated battery using a solid electrolyte.
  • Lithium-ion batteries are attracting attention as secondary batteries suitable for miniaturization of electronic devices.
  • the all-solid-state battery is a highly safe battery in which a flammable organic electrolyte is replaced with a nonflammable inorganic solid electrolyte. All-solid-state batteries are attracting attention as the development of innovative storage batteries is expected for larger batteries and higher energy densities (Non-Patent Document 1).
  • the solid electrolyte is inferior in ionic conductivity to the liquid electrolyte and has poor contact with the active material, so that it is difficult to obtain a sufficient battery capacity. Therefore, in recent years, as a means for overcoming such a problem, a gel-like polymer solid electrolyte battery using both a liquid electrolyte and a polymer solid electrolyte has been developed and is being put into practical use (Patent Document 2).
  • the liquid electrolyte is fluid and comes into contact with the reactive active material to promote the movement of ions.
  • the pressure between the electrode and the electrode must be increased in order to improve the ionic conductivity. Therefore, a consolidation device is required to apply pressure between the electrodes, but there arises a problem that the weight of the battery increases.
  • the present invention has been made in view of the above circumstances, and by using a solid electrolyte that has no risk of liquid leakage and has improved safety as compared with conventional liquid batteries, the ionic conductivity of the solid electrolyte is improved.
  • the purpose is to provide a secondary battery with an improved rate.
  • the solid electrolyte battery according to the present invention includes a first current collector, a tubular second current collector containing the first current collector, a negative electrode, a positive electrode, and the like.
  • the first current collector includes a cell including an electrode group in which a separator having a solid electrolyte arranged between the negative electrode and the positive electrode is laminated, and a compaction mechanism for compacting the electrode group.
  • the electrode group penetrates along the axial direction of the first current collector, and one of the negative electrode and the positive electrode comes into contact with the inner surface of the second current collector. While being electrically connected to the second current collector, it is not in contact with the first current collector, and either the negative electrode or the positive electrode is in contact with the second current collector. On the other hand, it is in contact with the outer surface of the first current collector and is electrically connected to the first current collector.
  • each cell is connected by a current collector with a larger cross-sectional area than the wiring, the electrical resistance is small and high output can be achieved. Also, the ohm loss is small. Furthermore, since the electrode group has a laminated structure, the heat generated by the electrodes due to charging and discharging is quickly transferred to the outside via the current collector, so that the rise in the internal temperature of the battery is restricted and the output is high. Can be used.
  • the electrode group consisting of the negative electrode, the positive electrode, and the separator having the solid electrolyte has a structure that can be pressurized by the compaction mechanism, stress is applied to the separator having the solid electrolyte by activating the compaction mechanism to have the solid electrolyte.
  • the ion permeability of the separator is improved.
  • the solid electrolyte battery according to the present invention includes a plurality of the cells stacked concentrically, a pair of pressure plates sandwiching the plurality of cells, and the consolidation mechanism for urging the pressure plates.
  • the current collectors have a structure in which the solid electrolyte batteries are stacked in the axial direction, so that the size of the batteries can be reduced.
  • a compressible member is laminated on the electrode group.
  • the compressible member is an insulating packing arranged above or below the electrode group, or a pair of insulating packings arranged above or below the electrode group, respectively. Includes packing.
  • the first current collector penetrates one of the insulating packings and is in contact with the other of the insulating packings. Further, in the assembled battery of the solid electrolyte battery according to the present invention, a plurality of the cells are laminated, and the first current collector of one cell penetrates one of the insulating packings of the other cells. It abuts on the bottom surface of the second current collector.
  • the first current collector has a pipe shape.
  • the separator is the compressible member.
  • the ion permeability of the separator having a solid electrolyte is improved, the separator resistance is reduced, and the charge / discharge efficiency is increased. Further, by compacting all the cells together, it is possible to obtain a secondary battery in which the decrease in weight energy density is small.
  • FIG. 5 is an axial cross-sectional side view of an embodiment of a solid electrolyte battery composed of 5 cells.
  • FIG. 5 is an axial cross-sectional side view of another embodiment of a solid electrolyte battery consisting of 5 cells.
  • a lithium ion battery is taken up as a secondary battery to which the present invention is applied, but the type of the secondary battery is not limited to this, and a nickel hydrogen battery and a manganese dioxide are used. It may be a secondary battery such as a battery or a nickel-zinc battery.
  • the negative electrode was prepared as follows. First, lithium titanate, carboxymethyl cellulose, and Ketjen black were mixed to prepare a slurry mixture. Next, this mixture was applied onto a stainless steel foil, temporarily dried, and then heat-treated to obtain a negative electrode.
  • the positive electrode was prepared as follows. First, lithium iron phosphate, carboxymethyl cellulose, activated carbon, and Ketjen black were mixed to prepare a slurry mixture. Next, this mixture was applied onto a stainless steel foil, temporarily dried, and then heat-treated to obtain a positive electrode.
  • the method for producing a negative electrode includes, for example, applying and molding a paste obtained by adding a solvent or water to a negative electrode active material, a binder and a powder to which a conductive agent is added if necessary, on a current collector. But it may be.
  • a method for producing a positive electrode a positive electrode active material, a binder, and a powder to which a conductive agent is added if necessary are added with a solvent or water to form a paste, which is then applied and molded on a current collector. May include.
  • Ketjen black was used as the conductive agent, but the powder is not particularly limited as long as it is a conductive powder, but a carbon material which is a low-cost material and has high conductivity is preferable.
  • Carboxymethyl cellulose was used as the binder.
  • Stainless steel was used as the current collector, but the current collector is not limited to this as long as it has conductivity and corrosion resistance and can energize the held negative electrode material.
  • Examples of the form of the separator containing the solid electrolyte include microporous membranes, woven fabrics, non-woven fabrics, etc. Among them, non-woven fabrics were used from the viewpoint of output characteristics and production cost.
  • the material of the separator is not particularly limited, but it is preferably having alkali resistance, oxidation resistance, and reduction resistance. Specifically, polyolefin fibers are preferable, and for example, polypropylene or polyethylene is preferable.
  • the solid electrolyte is not particularly limited, but an oxide system having low ignitability and water resistance was used.
  • a solid electrolyte separator was produced by crushing a solid electrolyte into a powder, sieving it with a fine mesh sieve, dissolving it in water to form a slurry, immersing a polyolefin-based non-woven fabric in it, and then drying it.
  • a fine powdery solid electrolyte lined with a wire mesh may be evenly sprinkled on the separator.
  • the current collector of the solid electrolyte battery according to the embodiment of the present invention is configured by combining a bottomed cylindrical can 15 and a pipe 14.
  • a plan view of the current collectors in the combined state is shown in FIG. 1A, and a partial cross-sectional view of the side surface is shown in FIG. 1B.
  • FIG. 1B is a cross-sectional view taken along the line AA of the plan view of FIG. 1A.
  • An insulating sheet 17 is arranged in FIG. 1B for convenience of later description.
  • FIG. 2 shows a cross-sectional view of a cell which is a component of the solid electrolyte battery according to the embodiment of the present invention.
  • the cell 10 of the solid electrolyte battery includes the first current collector 14, the second current collector 15, and the electrode group 18 concentrically arranged and stored in the space between the two current collectors 14, 15. Is provided as a component.
  • the current collector is composed of a cylindrical second current collector 15 and a pipe-shaped first current collector 14 concentrically contained therein.
  • a bottom packing 17 that acts as an insulating sheet is arranged between the bottom of the second current collector 15 and the first current collector 14, and the first current collector 14 and the second current collector 15 come into contact with each other.
  • the first current collector may be rod-shaped instead of pipe-shaped, and the second current collector may be tubular instead of cylindrical.
  • FIG. 3 shows an embodiment in which the second current collector 15 has a cylindrical shape.
  • the bottom of the second current collector 15 is covered with a bottom member 19, and the two are in contact with each other. Further, the bottom packing 17 is arranged between the electrode group 18 and the bottom member 19.
  • the electrode group 18 is composed of a negative electrode 11, a positive electrode 12, and a separator 13 containing a solid electrolyte interposed between the negative electrode 11 and the positive electrode 12.
  • the electrode group 18 is stacked in the axial direction of the current collectors 14 and 15 and housed between the two current collectors 14 and 15.
  • a hole through which the first current collector 14 penetrates is provided in the center of the negative electrode 11, the positive electrode 12, and the separator 13.
  • the first current collector 14 penetrates the center of the electrode group 18 composed of the positive electrode 12, the negative electrode 11, and the separator 13 in the axial direction of the first current collector 14.
  • the diameter of the hole provided in the negative electrode 11 is smaller than the outer diameter of the first current collector 14. Therefore, the peripheral edge of the hole of the negative electrode 11 is in contact with the outer surface of the first current collector 14, and the negative electrode 11 and the first current collector 14 are electrically connected.
  • the diameter of the hole provided in the center of the positive electrode 12 is larger than the outer diameter of the first current collector 14, and the peripheral edge of the hole of the positive electrode 12 does not come into contact with the first current collector 14, and the positive electrode 12 and the first are 1
  • the current collector 14 is electrically insulated.
  • the outer diameter of the negative electrode 11 is slightly smaller than the inner diameter of the cylinder portion of the second current collector 15, and the outer edge portion of the negative electrode 11 and the inner surface of the cylinder portion of the second current collector 15 are not in contact with each other. 2 It is electrically insulated from the current collector 15.
  • the outer diameter of the positive electrode 12 is slightly larger than the inner diameter of the cylinder portion of the second current collector 15, and the outer edge portion of the positive electrode 12 is in contact with the inner surface of the cylinder portion of the second current collector 15, and the positive electrode 12 and the second 2 It is electrically connected to the current collector 15.
  • the outer edge of the separator 13 is covered with the positive electrode 12, and the outer edge of the negative electrode 11 is covered with the separator 13.
  • the peripheral edge of the hole of the positive electrode 12 is covered with the separator 13, and the peripheral edge of the hole of the separator 13 is covered with the negative electrode 11.
  • the electrode group 18 has a lid packing 16 arranged on the upper portion thereof.
  • the lid packing 16 has an insulating property and protects the electrode group 18 from a short circuit.
  • a hole through which the first current collector 14 penetrates is provided in the center of the lid packing 16.
  • a bottom packing 17 that functions as an insulating sheet is arranged at the bottom of the second current collector 15. The bottom packing 17 prevents the first current collector 14 and the second current collector 15 from being short-circuited. Further, the electrode group 18 is prevented from being short-circuited with the second current collector 15.
  • the packings 16 and 17 have appropriate compressibility. For example, it is desirable to have a compressibility that restores the original dimensions when the thickness is compressed to 2/3 and released.
  • the separator 13 may have an appropriate compressibility.
  • the packings 16 and 17 or the separator 13 or both the packings 16 and 17 and the separator 13 may be provided with appropriate compressibility.
  • polypropylene is its excellent mechanical properties. It has excellent mechanical strength such as tensile strength, impact strength, and compressive strength, and also has excellent wear resistance. Since the polypropylene fiber has an appropriate compressibility and has preferable properties as a material of the packings 16 and 17 according to the present invention, a polypropylene sheet was used. Further, polypropylene has preferable properties as a material for a separator.
  • the materials of the packings 16 and 17 may be, for example, polyolefins such as polyethylene, polypropylene, polybuden and ethylene propylene rubber, and resins such as polyamide and polyamideimide. Further, from the viewpoint of compressibility, it may be a fluorine-based rubber. If it is rubber, it has excellent alkali resistance.
  • the axial length of the first current collector 14 is important in design. In the assembled state of the cell 10, it is desirable that the upper end portion of the first current collector 14 is located below the surface of the lid packing 16. By compressing the cell 10 in the axial direction, the lid packing 16 and the bottom packing 17 are deformed, and the upper end portion of the first current collector 14 reaches the surface of the lid packing 16.
  • the method of assembling the cell 10 will be described with reference to FIG. (1)
  • the bottom packing is arranged on the bottom of the second current collector 15, and the first current collector 14 is arranged in the center of the second current collector 15.
  • a donut-shaped negative electrode 11 is arranged in the space of the two current collectors 14 and 15. The hole of the negative electrode 11 contacts the outer surface of the first current collector 14, but does not contact the second current collector 15.
  • a donut-shaped separator 13 prepared in advance is placed on the negative electrode 11.
  • Donut-shaped positive electrodes 12 are stacked. The positive electrode 12 contacts the inner surface of the second current collector 15, but does not contact the first current collector 14. (5) After storing a predetermined number of electrode pairs between the current collectors 14 and 15, a lid packing 16 is attached to complete the cell 10.
  • a fine powdery solid electrolyte may be dispersed in a separator and compacted to complete the separator.
  • the second current collector 15 of the next cell 10 is placed on the cell 10, and the negative electrode 11, the separator 13 containing the solid electrolyte, and the positive electrode 12 are alternately laminated, and then the lid packing 16 is attached.
  • pressure plates that also serve as terminal plates are attached to the top and bottom, and the solid electrolyte battery 20 is assembled by compacting in the vertical direction.
  • communication bolts may be used, or push bolts may be used.
  • FIG. 5 shows an axial sectional side view of the solid electrolyte battery 20 according to the embodiment of the present invention.
  • FIG. 5 shows an example in which a communication bolt is used for the consolidation mechanism.
  • the solid electrolyte battery 20 is a battery in which five cells 10 are connected in series.
  • the electrode group 18 in which a plurality of negative electrodes 11 and the positive electrode 12 and the separator 13 interposed between the negative electrode 11 and the positive electrode 12 are laminated is outside the first current collector 14 and inside the second current collector 15. It is housed in a space that is one side and constitutes one cell 10. Then, the five cells 10 are stacked concentrically to form the solid electrolyte battery 20.
  • the outer surface of the first current collector 14 is in contact with the negative electrode 11, it becomes a negative electrode current collector, and in the second current collector 15, the inner surface of the cylindrical portion is in contact with the positive electrode 12. It becomes a positive electrode current collector.
  • the five cells 10 are sandwiched between the two terminal plates 21 and 22, connected with bolts 23 and fixed with nuts 24 to complete the solid electrolyte battery 20. Since the bolt 23 is covered with a vinyl insulating tube 25, the side surface of the cylindrical portion of the second current collector 15 and the bolt 23 do not come into contact with each other to cause an electrical short circuit, and the terminal plates 21 and 22 do not occur. And the bolt 23 do not come into contact with each other to cause an electrical short circuit.
  • the solid electrolyte battery 20 is a battery in which five cells 10 are electrically connected in series.
  • the bolt 23a and the positive electrode terminal plate 22 are electrically insulated.
  • a metal flat washer 27a is interposed between the bolt 23a and the negative electrode terminal plate 21, the bolt 23a and the negative electrode terminal plate 21 are electrically connected. Therefore, the bolt 23a constitutes the negative electrode terminal.
  • a negative electrode cable can be connected between the nut 24a on the left side and the locknut 28a.
  • the bolt 23b and the negative electrode terminal plate 21 are electrically insulated.
  • a metal flat washer 27b is interposed between the bolt 23b and the positive electrode terminal plate 22, the bolt 23b and the positive electrode terminal plate 22 are electrically connected. Therefore, the bolt 23b constitutes the positive electrode terminal.
  • a positive electrode cable can be connected between the nut 24b and the locknut 28b on the right side.
  • the insulating washer 26b may have an insulating property, and in this embodiment, a polypropylene one is used.
  • the cell 10 sandwiched between the negative electrode terminal plate 21 connected by the four bolts 23 and the positive electrode terminal plate 22 is compressed in the vertical direction thereof.
  • the stress due to this compression is transmitted to the separator 13 containing the solid electrolyte of the electrode group 18 via the lid packing 16. Due to the characteristics of the solid electrolyte, the ion permeability of the separator 13 containing the solid electrolyte is enhanced.
  • the nut 24 is equipped with a lock nut 28 to prevent loosening.
  • the magnitude of the stress applied to the separator 13 containing the solid electrolyte is determined by the amount of deformation of the lid packing 16 and the bottom packing 17. By adjusting the thickness dimensions and materials of the packings 16 and 17, it is possible to adjust the stress applied to the separator 13 containing the solid electrolyte. The ion permeability of the separator 13 can be adjusted.
  • a separator can be mentioned as a candidate for a member having this appropriate compressibility. If it is a material used for packing, it has an appropriate compressibility, so it is a candidate for a material for a separator containing a solid electrolyte.
  • FIG. 6 shows an axial cross-sectional side view of the solid electrolyte battery 30 according to another embodiment.
  • the solid electrolyte battery 30 shown in FIG. 6 is a battery in which five cells 10 are concentrically stacked and connected in series. The five cells 10 are sandwiched between the two terminal plates 21 and 22, and are housed in a cylinder constituting the support portion 32 of the solid electrolyte battery 30.
  • the five cells 10 are insulated from the support portion 32 by an insulating cylinder 33 provided on the outer periphery thereof and by an insulating sheet 34 provided on the bottom thereof.
  • the insulating cylinder 33 and the insulating sheet 34 appropriately prevent the cell 10 from being short-circuited.
  • the solid electrolyte battery 30 is a battery in which five cells 10 are electrically connected in series.
  • a screw hole 36 is provided in the center of the holding portion 31 firmly connected to the support portion 32, and the push bolt 35 is screwed into the screw hole 36.
  • the tip of the push bolt 35 is in contact with the negative electrode terminal plate 21.
  • the push bolt 35 By rotating the push bolt 35, the push bolt 35 moves downward and compresses the cell 10 sandwiched between the negative electrode terminal plate 21 and the positive electrode terminal plate 22 downward. The stress due to this compression is transmitted to the separator containing the solid electrolyte of the electrode group 18 via the lid packing 16. Due to the characteristics of the solid electrolyte, the ion permeability of the separator 13 containing the solid electrolyte is enhanced.
  • the push bolt 35 is equipped with a lock mechanism for preventing loosening (not shown).
  • the solid electrolyte battery according to the present invention can be suitably used as a power storage device not only for industrial use but also for consumer use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

液体の電解質は流動性があり反応活物質と接触してイオンを流すが、固体電解質は流動性がないので電極間に大きな圧力を加えなければイオン透過性が悪い。イオン透過性を改善するために電極間に圧力をかける場合、圧密装置が必要となり電池の全体重量が増す。しかし、本発明によれば、セパレータに固体電解質を均一に配置してその両側に対極を置いて積層してセルを組み立てる。このセルを直列につなぎ、電極群の両端に端子板である圧板を配して、圧板間に大きな圧力を加えて固体電解質の電極間でのイオン透過性を上げることが可能となる

Description

固体電解質電池
 本発明は、二次電池の構造に関し、詳しくは、固体電解質を用いた積層電池の構造に関する。
 電子機器の小型化に適した二次電池としてリチウムイオン電池が注目を集めいている。全固体電池は、可燃性の有機電解液を不燃性の無機固体電解質に置き換えた安全性の高い電池である。電池の大型化、高エネルギー密度化に向けて、革新的な蓄電池の開発が期待されているなかで、全固体電池が注目されている(非特許文献1)。
 特に、近年、電池における重要な構成要素である「電解質」として、固体電解質を用いた電池が注目されている。それは、固体電解質は電池特有の問題である漏液のおそれが無く、また従来の液体系の電池に比べて発熱等に対する引火性が低くなるため安全性が向上すること、および高分子固体電解質の優れた成形性により、電池自身の加工性が向上し、薄型で自由な形状の電池を実現することが可能である等の多くの特長を有するためである(特許文献1)。
 固体電解質は、液体電解質に比べてイオン導電性に劣るとともに、活物質に対する接触性が悪いため、十分な電池容量を得られにくい。そこで近年、このような問題点を克服する手段として、液体電解質と高分子固体電解質とを共に用いたゲル状高分子固体電解質電池が開発され、実用化されつつある(特許文献2)。
特開2000-268866号公報 特開平11-283673号公報
"全固体電池の最前線"、化学 Vol.67 No.7( 2012)p19
 機械的強度を強くするために固体電解質中の高分子マトリクスの濃度(比率)を高くすると、イオン導電性の向上に貢献する溶媒成分の比率が下がり、イオン移動度の低下に伴い、電解質のイオン導電率が低下し、電池の内部抵抗が増加してしまう(特許文献1)。
 液体の電解質は流動性があり、反応活物質と接触してイオンの移動を促す。しかし、固体電解質の場合はイオン導電性を良くするには電極との間の圧力を大きくしなければならない。そこで、電極間に圧力をかけるためには圧密装置を必要とするが、電池の重量が増大するという問題が生じる。
 本発明は、以上の事情に鑑みなされたものであって、漏液のおそれが無く、また従来の液体系の電池に比べて安全性が向上する固体電解質を用いることにより、固体電解質のイオン導電率の向上を図った二次電池を提供することにある。
 前記した目的を達成するために、本発明に係る固体電解質電池は、第1集電体と、前記第1集電体を内包する筒状の第2集電体と、負極と、正極と、前記負極と前記正極との間に配された固体電解質を有するセパレータとが積層された電極群と、を含むセルと、前記電極群を圧密する圧密機構と、を備え、前記第1集電体が、前記電極群を前記第1集電体の軸方向に沿って貫通しており、前記負極及び前記正極のいずれか一方の電極が、前記第2集電体の内側面に当接して、前記第2集電体と電気的に接続されている一方、前記第1集電体と接触しておらず、前記負極及び前記正極のいずれか他方の電極が、前記第2集電体に接触していない一方、前記第1集電体の外側面に当接して、前記第1集電体と電気的に接続されている。
 この構成によれば、各セルを接続する配線が存在しないため、配線の電気抵抗による出力の低下がない。また、配線や各セルの蓋等が不要なので、固体電解質電池の小型化を図ることができ、高容量化が期待できる。更に、固体電解質電池のエネルギー密度が向上して高出力化が期待できる。また、部品点数が減り組立工数の低減を図ることができる。
 各セルは配線より断面積の大きな集電体により接続されているため、電気抵抗が小さく、高出力化を図ることができる。また、オーム損失が小さい。さらに、電極群は積層構造をしているので、充放電により電極で発生する熱は、集電体を介して速やかに外部に伝えられるので、電池の内部温度の上昇が制限されて、高出力化が可能となる。
 負極、正極および固体電解質を有するセパレータからなる電極群が圧密機構により加圧が可能な構造になっているので、圧密機構を働かせることにより固体電解質を有するセパレータに応力が印加され、固体電解質を有するセパレータのイオン透過性が改善される。
 本発明に係る固体電解質電池は、同心状に積み重ねられた複数の前記セルと、前記複数のセルを挟持する1対の圧板と、前記圧板を付勢する前記圧密機構と、を備える。この構成において、集電体は固体電解質電池の軸方向に積み重ねられた構造となっているので、電池の小型化を図ることができる。
 本発明に係る固体電解質電池は、圧縮性部材が前記電極群に積層されている。また、本発明に係る固体電解質電池は、前記圧縮性部材が、前記電極群の上方又は下方に配置された絶縁性パッキン、もしくは、それぞれ前記電極群の上方及び下方に配置された一対の絶縁性パッキンを含む。
 本発明に係る固体電解質電池の組電池は、前記第1集電体が前記絶縁性パッキンの一方を貫通し、前記絶縁性パッキンの他方に当接している。また、本発明に係る固体電解質電池の組電池は、複数の前記セルが積層されていて、一のセルの前記第1集電体が、前記絶縁性パッキンの一方を貫通し、他のセルの前記第2集電体の底面に当接する。
 本発明に係る固体電解質電池の組電池は、前記第1集電体がパイプ形状である。また、本発明に係る固体電解質電池の組電池は、前記セパレータが前記圧縮性部材である。
 電極群を圧密することにより、固体電解質を有するセパレータのイオン透過性がよくなり、セパレータ抵抗が減少して充放電効率が高くなる。更に、全セルまとめて圧密することにより重量エネルギー密度の低下が少ない二次電池とすることができる。
集電体の平面図である。 図1AのA-A線に沿った部分断面図である。 固体電解質電池の構成要素であるセルの構造を示す図面である。 セルの別の実施形態の構造を示す図面である。 固体電解質電池の組立方法を説明する図面である。 5セルからなる固体電解質電池の実施形態の軸方向断側面図である。 5セルからなる固体電解質電池の別の実施形態の軸方向断側面図である。
 以下、本発明に係る実施形態を図面に従って説明するが、本発明はこの実施形態に限定されるものではない。
 本発明の各実施形態について説明するにあたり、本発明が適用される二次電池としてリチウムイオン電池を取り挙げるが、二次電池のタイプはこれに限定されるものでなく、ニッケル水素電池、二酸化マンガン電池、ニッケル亜鉛電池等の二次電池であってもよい。
 負極は、以下のようにして作製した。まず、チタン酸リチウム、カルボキシメチルセルロース、およびケッチェンブラックを混合し、スラリー状合剤を調整した。次に、この合剤をステンレス鋼箔上に塗布し、仮乾燥した後、加熱処理して負極を得た。
 正極は、以下のようにして作製した。まず、リン酸鉄リチウム、カルボキシメチルセルロース、活性炭、およびケッチェンブラックを混合し、スラリー状合剤を調整した。次に、この合剤をステンレス鋼箔上に塗布し、仮乾燥した後、加熱処理して正極を得た。
 負極の作製方法は、例えば、負極活物質、バインダーおよび必要に応じて導電剤を添加した粉末に、溶剤又は水を加えてペースト状にしたものを、集電体上に塗布成形することを含んでもよい。同様に、正極の製造方法としては、正極活物質、バインダー、および必要に応じて導電剤を添加した粉末に溶剤又は水を加えてペースト状にしたものを、集電体上に塗布成形することを含んでもよい。
 導電剤としては、ケッチェンブラックを用いたが、導電性を有する粉末であれば特に限定されないが、コストの低い材料であり、しかも高い導電性を有する、炭素材料が好ましい。
 バインダーとしては、カルボキシメチルセルロースを用いた。集電体としては、ステンレス鋼を用いたが、導電性と耐食性を備え、保持した負極材料に通電し得る材料であればこれに限定されない。
 固体電解質を含むセパレータの形態としては、微多孔膜、織布、不織布等が挙げられ、このうち、出力特性と作製コストの観点から不織布を用いた。セパレータの材質としては、特に限定されないが、耐アルカリ性、耐酸化性、耐還元性を有することが好ましい。具体的にはポリオレフィン系繊維が好ましく、例えば、ポリプロピレンもしくはポリエチレンが好ましい。
 固体電解質は、特に限定されないが、発火性が低く、耐水性がある酸化物系を用いた。固体電解質を砕いて粉体状にしたもの網目の細かいふるいでふるったものを水に溶かしてスラリーにして、ポリオレフィン系の不織布を浸した後に乾燥させて固体電解質セパレータを製作した。もしくは、金網で裏ごしした微粉状の固体電解質をセパレータに均一に振りかけてもよい。
 本発明の実施形態に係る固体電解質電池の集電体は、有底の円筒缶15とパイプ14を組み合わせて構成される。組み合わせた状態における集電体の平面図を図1Aに、側面の部分断面図を図1Bに示す。図1Bは、図1Aの平面図のA-A線に沿った断面図である。なお、図1Bには後の説明の便宜のため絶縁シート17が配置されている。
 図2に本発明の実施形態に係る固体電解質電池の構成要素であるセルの断面図を示す。固体電解質電池のセル10は、第1集電体14と、第2集電体15と、2つの集電体14,15の間の空間に同心状に配置されて収納される電極群18とを構成要素として備えている。
 集電体は円筒状の第2集電体15とこれに同心状に内包されるパイプ状の第1集電体14から構成される。第2集電体15の底部と第1集電体14との間には絶縁シートとして作用する底部パッキン17が配置されていて、第1集電体14と第2集電体15が接触して導通するのを防止する。なお、第1集電体はパイプ状でなく棒状であってもよく、第2集電体は円筒状でなく筒状であってもよい。
 図3は、第2集電体15が筒状である場合の実施形態である。第2集電体15の底部は底部材19で覆われていて、両者は接触している。また、電極群18と底部材19の間に底部パッキン17が配置されている。
 電極群18は、負極11と、正極12と、負極11と正極12の間に介在する固体電解質を含むセパレータ13とで構成されている。電極群18は、集電体14、15の軸方向に積層され2つの集電体14、15の間に収納されている。そして、負極11、正極12およびセパレータ13の中央には、第1集電体14が貫通する穴が設けられている。第1集電体14は、正極12と負極11とセパレータ13とから構成される電極群18の中央を第1集電体14の軸方向に貫通している。
 負極11および正極12の寸法と、集電体14,15の寸法との関係について説明する。負極11に設けられた穴の径は、第1集電体14の外径より小さい。したがって、負極11の穴の周縁部は第1集電体14の外側面と接触して、負極11と第1集電体14は、電気的に接続されている。一方、正極12の中央に設けられた穴の径は、第1集電体14の外径より大きく、正極12の穴の周縁部は第1集電体14と接触せず、正極12と第1集電体14は、電気的に絶縁されている。
 負極11の外径は第2集電体15の筒部の内径よりもやや小さく、負極11の外縁部と第2集電体15の筒部の内面は接触しておらず、負極11と第2集電体15とは電気的に絶縁されている。一方、正極12の外径は第2集電体15の筒部の内径よりやや大きく、正極12の外縁部は第2集電体15の筒部の内面と接触しており、正極12と第2集電体15とは電気的に接続されている。
 次に、負極11および正極12の寸法と、セパレータ13の寸法との関係について説明する。セパレータ13の外縁は正極12により覆われており、負極11の外縁はセパレータ13により覆われている。そして、正極12の穴の周縁が、セパレータ13により覆われており、セパレータ13の穴の周縁が、負極11により覆われている。
 電極群18はその上部に蓋部パッキン16が配置されている。蓋部パッキン16は絶縁性を有しており電極群18を短絡から保護する。蓋部パッキン16の中央には第1集電体14が貫通する穴が設けられている。第2集電体15の底部には絶縁シートとして機能する底部パッキン17が配置されている。底部パッキン17は、第1集電体14と第2集電体15とが短絡するのを防いでいる。また、電極群18が第2集電体15と短絡するのを防いでいる。
 パッキン16、17は適度の圧縮性を有することが望ましい。例えば厚みを2/3に圧縮した状態で解放したときに元の寸法に復元する程度の圧縮性を有することが望ましい。セパレータ13に適度の圧縮性を持たせてもよい。パッキン16、17又はセパレータ13、もしくはパッキン16、17およびセパレータ13の両方に適度な圧縮性を持たせてもよい。
 ポリプロピレンの長所は、その優れた機械的特性にある。引張強度、衝撃強度、圧縮強度といった機械的強度に優れ、耐摩耗性にも優れている。ポリプロピレン繊維は適度の圧縮性があり、本発明に係るパッキン16、17の材質として好ましい特性を有しているので、ポリプロピレン製のシートを用いた。また、ポリプロピレンはセパレータの材質として好ましい特性を有している。
 パッキン16、17の材質として、例えば、ポリエチレン、ポリプロピレン、ポリブデン、エチレンプロピレンラバー等のポリオレフィン、ポリアミド、ポリアミドイミド等の樹脂であってもよい。また、圧縮性の観点からフッ素系のゴムであってもよい。ゴムであれば耐アルカリ性に優れている。
 第1集電体14の軸方向の長さは設計上重要な意味を持つ。セル10を組み立てた状態において、第1集電体14の上端部は蓋部パッキン16の表面より下に位置していることが望ましい。セル10を軸方向に圧縮することにより、蓋部パッキン16および底部パッキン17が変形して、第1集電体14の上端部は蓋部パッキン16の表面に達する。
 セル10の組立方法について図4を用いて説明する。(1)第2集電体15の底に底部パッキンを配置して、第2集電体15の中央に第1集電体14を配置する。(2)2つの集電体14,15の空間にドーナツ状の負極11を配置する。負極11の穴は第1集電体14の外側面に接触するが第2集電体15には接触しない。(3)負極11の上に、予め用意したドーナツ状のセパレータ13を配置する。(4)ドーナツ状の正極12を重ねる。正極12は第2集電体15の内側面に接触するが第1集電体14には接触しない。(5)既定数の電極対を集電体14、15の間に収納した後に蓋部パッキン16を取り付けてセル10を完成させる。
 セル10を組み立てるに際して、微粉状の固体電解質をセパレータに分散させ圧密してセパレータを完成させたものを用いてもよい。
 セル10の上に次のセル10の第2集電体15を置いて、更に負極11、固体電解質を含むセパレータ13、正極12とを交互に積層した後に蓋部パッキン16を取り付ける。所定数のセルを直列に積み重ねた後に、上下に端子板を兼ねる圧板を取り付けて、上下方向に圧密して固体電解質電池20を組み立てる。圧密は、連通ボルトを用いてもよく、押しボルトを用いてもよい。
 図5に本発明の実施形態に係る固体電解質電池20の軸方向断側面図を示す。図5は圧密機構に連通ボルトを用いた例である。固体電解質電池20は5つのセル10が直列に接続された電池となっている。
 複数の負極11と、正極12と、負極11と正極12の間に介在するセパレータ13とを積層した電極群18が、第1集電体14の外方であり第2集電体15の内方である空間に収納されて1つのセル10を構成する。そして、5つのセル10が同心状に積み重ねられて固体電解質電池20が構成される。ここで、第1集電体14は、その外側面が負極11に当接しているので負極集電体となり、第2集電体15は、その円筒部内面が正極12に当接しているので正極集電体となる。
 5つのセル10を2つの端子板21、22でサンドイッチして、ボルト23で連結してナット24で固定して固体電解質電池20を完成させる。ボルト23はビニール製の絶縁チューブ25で覆われているので、第2集電体15の円筒部側面とボルト23が接触して電気的に短絡が生じることはなく、また、端子板21,22とボルト23が接触して電気的に短絡が生じることはない。
 負極端子板21に加わった応力は各セル10の蓋部パッキン16、電極群18および底部パッキン17を上下方向に圧縮する。これにより各セル10の軸方向の寸法は小さくなる。一番上のセル10の第1集電体14の上端部が負極端子板21の下面に当接する。中間に位置するセル10の第1集電体14の頂部は、その上のセル10の第2集電体15の底面に当接する。一番下のセル10の第2集電体15の底面は正極端子板22に当接する。以上のように、固体電解質電池20は5つのセル10が電気的に直列に接続された電池となる。
 左側のボルト23aと正極端子板22の間には絶縁ワッシャー26aが介在しているので、ボルト23aと正極端子板22は電気的に絶縁されている。一方、ボルト23aと負極端子板21の間には金属製の平ワッシャー27aが介在しているので、ボルト23aと負極端子板21は電気的に接続されている。よって、ボルト23aは負極端子を構成する。左側のナット24aとロックナット28aの間に負極ケーブルを接続することができる。
 右側のボルト23bと負極端子板21の間には絶縁ワッシャー26bが介在しているので、ボルト23bと負極端子板21は電気的に絶縁されている。一方、ボルト23bと正極端子板22の間には金属製の平ワッシャー27bが介在しているので、ボルト23bと正極端子板22は電気的に接続されている。よって、ボルト23bは正極端子を構成する。右側のナット24bとロックナット28bの間に正極ケーブルを接続することができる。なお、絶縁ワッシャー26bは絶縁性を有しておればよく、本実施形態ではポリプロピレン製のものを用いた。
 ナット24を締め付けることにより、4本のボルト23で連結された負極端子板21と正極端子板22にサンドイッチされたセル10は、その上下方向に圧縮される。この圧縮による応力は蓋部パッキン16を介して電極群18の固体電解質を含むセパレータ13に伝わる。固体電解質の有する特性により、固体電解質を含むセパレータ13のイオン透過性が高まる。なお、ナット24には緩み止めのロックナット28が装備されている。
 固体電解質を含んだセパレータ13に印加される応力の大きさは蓋部パッキン16と底部パッキン17の変形量により定まる。これらパッキン16,17の厚み寸法および材質を調製することにより、固体電解質を含んだセパレータ13にかかる応力を加減することが可能となる。セパレータ13のイオン透過度を調整することができる。
 適度の圧縮性を有する部材を、固体電解質を含んだセパレータの上方又は下方もしくはその両方に配置して、圧密機構を利用してセパレータを圧縮すれば、固体電解質を含むセパレータのイオン透過性を高めることできる。この適度な圧縮性を備えた部材の候補としてセパレータが挙げることができる。パッキンに使用される材料であれば適度な圧縮性を有しているので固体電解質を含んだセパレータの材料の候補となる。
 図6は別の実施形態に係る固体電解質電池30の軸方向断側面図を示す。図6に示す固体電解質電池30は5つのセル10が同心状に積み重ねられて、直列に接続された電池となっている。5つのセル10が、2つの端子板21、22でサンドイッチされて、固体電解質電池30の支持部32を構成する円筒内に収納されている。
 5つのセル10は、その外周に設けた絶縁筒33により、またその底部に設けた絶縁シート34により、支持部32と絶縁されている。これら絶縁筒33および絶縁シート34は、セル10が短絡するのを適切に防いでいる。
 負極端子板21に加わった応力は一番上のセル10の蓋部パッキン16、電極群18および底部パッキン17を圧縮する。これによりセル10の軸方向の寸法は小さくなり、第1集電体14の端部が第2集電体15の底面に接触する。同様に中間に位置するセル10の第1集電体14の頂部は、その上のセル10の第2集電体15の底面に当接する。一番下のセル10の第2集電体15の底面は正極端子板22に当接する。以上のように、固体電解質電池30は5つのセル10が電気的に直列に接続された電池となる。
 支持部32と頑丈に結合した保持部31の中央にねじ穴36が設けられていて、このねじ穴36に押しボルト35が螺合するようになっている。押しボルト35の先端は負極端子板21に当接している。
 押しボルト35を回転させることにより、押しボルト35は下方に移動して負極端子板21と正極端子板22にサンドイッチされたセル10をその下方向に圧縮する。この圧縮による応力は蓋部パッキン16を介して電極群18の固体電解質を含むセパレータに伝わる。固体電解質の有する特性により、固体電解質を含むセパレータ13のイオン透過性が高まる。なお、押しボルト35には図示しない緩み止めのロック機構が装備されている。
 本発明に係る固体電解質電池は、産業用のみならず民生用の蓄電装置として好適に用いることができる。
10 セル
11 負極
12 正極
13 固体電解質セパレータ
14 第1集電体
15 第2集電体
16 蓋部パッキン
17 絶縁シート(底部パッキン)
18 電極群
20 固体電解質電池
21 負極端子板
22 正極端子板
23 ボルト
24 ナット
25 絶縁チューブ
26 絶縁ワッシャー
27 平ワッシャー
28 ロックナット
30 固体電解質電池
31 保持部
32 支持部
33 絶縁筒
34 絶縁シート
35 押しボルト
 

Claims (8)

  1.  第1集電体と、
     前記第1集電体を内包する筒状の第2集電体と、
     負極と、正極と、前記負極と前記正極との間に配された固体電解質を有するセパレータとが積層された電極群と、
     を含むセルと、
     前記電極群を圧密する圧密機構と、を備え、
     前記第1集電体が、前記電極群を前記第1集電体の軸方向に沿って貫通しており、
     前記負極及び前記正極のいずれか一方の電極が、前記第2集電体の内側面に当接して、前記第2集電体と電気的に接続されている一方、前記第1集電体と接触しておらず、
     前記負極及び前記正極のいずれか他方の電極が、前記第2集電体に接触していない一方、前記第1集電体の外側面に当接して、前記第1集電体と電気的に接続されている、
     固体電解質電池。
  2.  同心状に積み重ねられた複数の前記セルと、
     前記複数のセルを挟持する1対の圧板と、
     前記圧板を付勢する前記圧密機構と、
     を備える請求項1に記載の固体電解質電池。
  3.  圧縮性部材が前記電極群に積層されている請求項1又は2に記載の固体電解質電池。
  4.  前記圧縮性部材が、前記電極群の上方又は下方に配置された絶縁性パッキン、もしくは、それぞれ前記電極群の上方及び下方に配置された一対の絶縁性パッキンを含む請求項3に記載の固体電解質電池。
  5.  前記第1集電体が前記絶縁性パッキンの一方を貫通し、前記絶縁性パッキンの他方に当接している請求項4に記載の固体電解質電池。
  6.  複数の前記セルが積層されていて、一のセルの前記第1集電体が、前記絶縁性パッキンの一方を貫通し、他のセルの前記第2集電体の底面に当接する請求項4に記載の固体電解質電池。
  7.  前記第1集電体がパイプ形状である請求項6に記載の固体電解質電池。
  8.  前記セパレータが前記圧縮性部材である請求項3に記載の固体電解質電池。
     
     

     
PCT/JP2020/014129 2020-03-27 2020-03-27 固体電解質電池 WO2021192251A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021516505A JP6931950B1 (ja) 2020-03-27 2020-03-27 固体電解質電池
PCT/JP2020/014129 WO2021192251A1 (ja) 2020-03-27 2020-03-27 固体電解質電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014129 WO2021192251A1 (ja) 2020-03-27 2020-03-27 固体電解質電池

Publications (1)

Publication Number Publication Date
WO2021192251A1 true WO2021192251A1 (ja) 2021-09-30

Family

ID=77549908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014129 WO2021192251A1 (ja) 2020-03-27 2020-03-27 固体電解質電池

Country Status (2)

Country Link
JP (1) JP6931950B1 (ja)
WO (1) WO2021192251A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230137731A (ko) * 2022-03-22 2023-10-05 삼성에스디아이 주식회사 전고체 이차전지 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048854A (ja) * 1998-07-31 2000-02-18 Toshiba Battery Co Ltd 円筒型二次電池
JP2013080698A (ja) * 2011-09-21 2013-05-02 Institute Of Energy Engineering Inc 積層電池および積層電池システム
JP2013157158A (ja) * 2012-01-29 2013-08-15 Institute Of Energy Engineering Inc 積層電池および積層電池システム
WO2015118691A1 (ja) * 2014-02-10 2015-08-13 エクセルギー・パワー・システムズ株式会社 アルカリ二次電池
JP2017174710A (ja) * 2016-03-25 2017-09-28 エクセルギー・パワー・システムズ株式会社 積層電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048854A (ja) * 1998-07-31 2000-02-18 Toshiba Battery Co Ltd 円筒型二次電池
JP2013080698A (ja) * 2011-09-21 2013-05-02 Institute Of Energy Engineering Inc 積層電池および積層電池システム
JP2013157158A (ja) * 2012-01-29 2013-08-15 Institute Of Energy Engineering Inc 積層電池および積層電池システム
WO2015118691A1 (ja) * 2014-02-10 2015-08-13 エクセルギー・パワー・システムズ株式会社 アルカリ二次電池
JP2017174710A (ja) * 2016-03-25 2017-09-28 エクセルギー・パワー・システムズ株式会社 積層電池

Also Published As

Publication number Publication date
JP6931950B1 (ja) 2021-09-08
JPWO2021192251A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
RU2298264C2 (ru) Биполярная электрохимическая батарея из пакетированных галетных гальванических элементов
US8023251B2 (en) Hybrid energy storage device and method of making same
US5420747A (en) Capacitor with a double electric layer cell stack
JP3975940B2 (ja) 蓄電素子
CN1179425C (zh) 棱柱形电化学电池与电池组
KR20140025331A (ko) 납산 시스템용 전극 및 축전장치
CN107949947B (zh) 双极性电池
WO2021192251A1 (ja) 固体電解質電池
KR101979040B1 (ko) 리튬 축전지
JPH04294071A (ja) リチウム電池
US20110188171A1 (en) Electric double layer capacitor and method of manufacturing the same
JP2015502626A5 (ja)
KR102410490B1 (ko) 파우치형 전기이중층 커패시터
JPH09293649A (ja) 電気二重層キャパシタ
CN111540937B (zh) 一种大容量二次电池及其用途
CA3103488C (en) Bipolar lead acid battery cells with increased energy density
JP7153279B2 (ja) 固体電解質アルカリ電池
KR101368226B1 (ko) 리튬 2차전지용 전극구조체 및 상기 전극구조체를 포함하는 2차전지
CN110770864B (zh) 一种可降低内压的超级电容器系统及其制备方法
JP2003109653A (ja) 電気化学セル
JP2022052959A (ja) 二次電池
KR101383250B1 (ko) 리튬 2차전지용 전극구조체 및 상기 전극구조체를 포함하는 2차전지
KR101396792B1 (ko) 리튬 2차전지용 전극구조체 및 상기 전극구조체를 포함하는 2차전지
JP2014146725A (ja) 蓄電デバイス
JP2000251876A (ja) 非水系二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021516505

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927623

Country of ref document: EP

Kind code of ref document: A1