WO2021192223A1 - Solid rotor, squirrel cage induction rotating electric machine, and method for designing squirrel cage induction rotating electric machine - Google Patents

Solid rotor, squirrel cage induction rotating electric machine, and method for designing squirrel cage induction rotating electric machine Download PDF

Info

Publication number
WO2021192223A1
WO2021192223A1 PCT/JP2020/014028 JP2020014028W WO2021192223A1 WO 2021192223 A1 WO2021192223 A1 WO 2021192223A1 JP 2020014028 W JP2020014028 W JP 2020014028W WO 2021192223 A1 WO2021192223 A1 WO 2021192223A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
slot
slots
electric machine
stator
Prior art date
Application number
PCT/JP2020/014028
Other languages
French (fr)
Japanese (ja)
Inventor
雄一 坪井
米谷 晴之
Original Assignee
東芝三菱電機産業システム株式会社
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社, 三菱電機株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2020/014028 priority Critical patent/WO2021192223A1/en
Priority to JP2020555249A priority patent/JP7168680B2/en
Publication of WO2021192223A1 publication Critical patent/WO2021192223A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors

Definitions

  • the present invention relates to a massive rotor, a squirrel-cage induction rotary electric machine having the lump rotor, and a method for designing a squirrel-cage induction rotary electric machine.
  • the induction rotary electric machine has restrictions such as not being able to adjust the power factor like the synchronous rotary electric machine, but has the advantage of having a simpler structure than the synchronous rotary electric machine.
  • the induction rotary electric machine generally includes a winding type induction rotary electric machine and a cage type induction rotary electric machine.
  • the cage-type induction rotary electric machine does not require an electrical connection with the outside like the winding-type induction rotary electric machine, and has a simpler structure than the winding-type induction rotary electric machine.
  • control on the power supply side has become easier due to the development of semiconductors for electric power, so a method combined with this has come to be widely used.
  • a plurality of rotor slots are formed in the vicinity of the radial surface of the rotor core, which are arranged at intervals in the circumferential direction and penetrate in the axial direction.
  • a conductor bar penetrates each rotor slot, and the conductor bars are electrically connected to each other by a short-circuit ring on the axially outer side of the rotor core.
  • the rotor slot is formed in the direction from the surface side of the rotor core toward the rotation axis of rotation, and its cross-sectional shape is, for example, a shape close to a rectangle (see Patent Document 1) or a shape close to an oval shape. (See Patent Document 2).
  • the rotor is generally configured by attaching a rotor shaft and a rotor core composed of laminated plates to the outside in the radial direction of the rotor shaft.
  • the laminated plates are electrically insulated from each other, no eddy current is generated in the axial direction.
  • a cage-type induction rotary electric machine having a rotor core made of a laminated plate as described above, a technique for reducing heat generation in the rotor by suppressing heat generation in the conductor bar of the rotor is known (patented). Reference 4).
  • the massive rotor has a simpler structure than the laminated rotor and has excellent mechanical strength, but it also generates an eddy current in the axial direction, so the loss is larger than that of the laminated rotor. Become. As a result, there is a problem that the temperature of the surface of the rotor core rises.
  • an object of the present invention is to suppress an increase in the surface temperature of the rotor core portion of the massive rotor while reducing the cost increase in the cage-shaped induction rotary electric machine having the massive rotor.
  • the massive rotor according to the present invention is a massive rotor used in a cage-shaped induction rotary electric machine, and includes a shaft portion extending in the axial direction and rotatably supported, and the shaft portion.
  • a columnar rotor core portion formed coaxially integrally, having a diameter larger than that of the shaft portion, arranged at intervals in the circumferential direction, and extending in the axial direction, and the rotation. It has a plurality of conductor bars penetrating the inside of the child slot and connecting to each other on both outer sides of the rotor core portion in the axial direction, and the two walls of the rotor slot facing each other are the shaft portion. It is tilted by a predetermined angle or more in the circumferential direction with respect to the plane including the rotation axis of And non-existent regions are arranged alternately in the circumferential direction.
  • the cage-shaped induction rotary electric machine includes the above-mentioned massive rotor, a cylindrical stator core provided on the radial outer side of the rotor core portion, and a radial inner side of the stator core.
  • a stator having a stator winding formed on the surface at intervals in the circumferential direction and penetrating the inside of a plurality of stator slots extending in the axial direction, and a stator in the axial direction with the rotor core portion interposed therebetween. It is characterized by including two bearings that support the massive rotor on both sides of the shaft portion.
  • the method for designing a cage-shaped induction rotary electric machine is a method of designing a massive rotor having a shaft portion and a rotor core portion, and fixing provided outside the rotor core portion in the radial direction.
  • a method of designing a cage-type induction rotary electric machine including a child which is a method of designing a plurality of stator slots formed on the radial inner surface of the stator, arranged at intervals in the circumferential direction, and penetrating in the axial direction.
  • stator condition setting step for setting the dimensions and the pitch in the circumferential direction and the stator condition setting step are formed on the radial outer surface of the rotor core portion and arranged at intervals in the circumferential direction.
  • the thinning step of forming the rotor slots which does not form the rotor slots at the same rank from each of the k sets having more than three adjacent to each other, and the rotation when viewed from the rotation axis.
  • a rotor slot position readjustment step that adjusts the position of the rotor slot so that the overlap angle of each of the plurality of conductor bars adjacent to each other that remains as a result of the thinning step of forming the child slot is reduced. It is characterized by.
  • FIG. 3 is a cross-sectional view of a third conceptual part for explaining the relationship between the stator slot and the rotor slot of the squirrel-cage induction rotary electric machine according to the embodiment. It is a partial cross-sectional view explaining the rotor slot inclination angle of the dense type rotor which concerns on embodiment.
  • FIG. 5 is a conceptual partial cross-sectional view illustrating the effect of the dense rotor according to the embodiment. It is a conceptual graph for demonstrating the relationship between the rotor slot inclination angle of the dense rotor which concerns on embodiment, and the evaluation function value. It is a flow chart which shows the procedure of the design stage of a massive rotor in the design method of the squirrel-cage induction rotary electric machine which concerns on embodiment. It is a partial cross-sectional view explaining the thinning-out step of rotor slot formation in the design stage of a massive rotor in the design method of the squirrel-cage induction rotary electric machine which concerns on embodiment. FIG.
  • FIG. 5 is a partial cross-sectional view illustrating a step of readjusting the rotor slot position after thinning out the rotor slot formation in the design stage of the massive rotor in the design method of the squirrel-cage induction rotary electric machine according to the embodiment. It is a graph which conceptually explains the effect of the design method of a massive rotor in the design method of the squirrel-cage induction rotary electric machine which concerns on embodiment.
  • FIG. 1 is a vertical cross-sectional view showing the configuration of a squirrel-cage induction rotary electric machine according to an embodiment.
  • the cage-shaped induction rotary electric machine 100 has a massive rotor 10, a stator 20, a bearing 30, a frame 40, and a cooler 51.
  • the massive rotor 10 is a massive magnetic pole type rotor in which a rotor core is integrated with a rotor shaft for the purpose of further improving mechanical strength, and is an integrated rotor 11, a plurality of conductor bars 16, and two. It has a short-circuit ring 17.
  • the integrated rotor 11 has a shaft portion 12 which corresponds to a rotor shaft and a rotor core portion 13 which corresponds to a rotor core, and these are coaxially integrated. That is, the integrated rotor 11 has a shape that is a combination of cylindrical shapes having different diameters in the rotation axis direction (hereinafter, axial direction). Around the center of the integrated rotor 11 in the axial direction, a columnar shape having a large diameter forms a rotor core portion 13. Shaft portions 12 having a diameter smaller than that of the rotor core portion 13 are formed on both sides in the axial direction with the rotor core portion 13 interposed therebetween.
  • the shaft portions 12 on both sides of the integrated rotor 11 in the axial direction are rotatably supported by bearings 30, respectively.
  • An inner fan 18 is provided in a portion between the rotor core portion 13 and the bearing 30 of each shaft portion 12.
  • the plurality of conductor bars 16 penetrate the vicinity of the radial surface of the rotor core portion 13 at intervals in the circumferential direction and extend in the axial direction. Each conductor bar 16 projects to both outer sides of the rotor core portion 13 in the axial direction. On the outer side of each of the rotor core portions 13 in the axial direction, the plurality of conductor bars 16 on the same side protrude from each other by the same length. Further, the plurality of conductor bars 16 are electrically and mechanically coupled to each other by electrically and mechanically coupling the ends of the plurality of conductor bars 16 to the annular short-circuit ring 17. While the material of the rotor core portion 13 is steel or low alloy steel, the conductor bar 16 and the short-circuit ring 17 are made of a material having a higher conductivity than the rotor core portion 13 such as copper or aluminum. It is used.
  • the stator 20 has a stator core 21 and a plurality of stator windings 24.
  • the stator core 21 is provided on the radial outer side of the rotor core portion 13 of the massive rotor 10 via an annular gap 25.
  • the stator core 21 has a cylindrical shape, and the stator winding 24 penetrates the vicinity of the inner surface of the stator core 21.
  • the frame 40 houses the stator 20 and the rotor core portion 13.
  • Bearing brackets 35 are provided at both ends of the frame 40 in the axial direction. Each of the bearing brackets 35 statically supports the bearing 30.
  • a cooler 51 is provided above the frame 40 and is housed in the cooler cover 52.
  • the cooler cover 52 forms a closed space 61 together with the frame 40 and the two bearing brackets 35.
  • the inside of the closed space 61 is filled with a cooling gas such as air, and the cooling gas circulates in the closed space 61 by the inner fan 18.
  • the space inside the cooler cover 52 and the space inside the frame 40 constituting the closed space 61 are the cooler inlet opening 62 formed above the stator 20 and the cooling formed above the respective inner fans 18. It communicates with the vessel outlet opening 63.
  • FIG. 2 is a cross-sectional view showing the massive rotor 10 and the stator slot of the squirrel-cage induction rotary electric machine according to the embodiment.
  • a plurality of groove-shaped rotor slots 14 having a width d extending in the axial direction are formed on the radial surface of the rotor core portion 13 so as to be spaced apart from each other in the circumferential direction.
  • a conductor bar 16 penetrates through each rotor slot 14.
  • Each rotor slot 14 has an outer wall 14a, an inner wall 14b, and a radial innermost wall 14c that extend axially and face each other and are parallel to each other.
  • the innermost wall 14c is formed in a curved shape in the cross section of the rotor slot 14. In the radial direction, each rotor slot 14 is formed to a depth of up to the inscribed circle 14d.
  • the shapes and dimensions of the cross sections of the conductor bar 16 and the rotor slot 14 are almost the same as each other.
  • the conductor bar 16 has a flat plate shape that is long in the axial direction.
  • the conductor bar 16 can be fitted into the rotor slot 14 from the outside in the radial direction of the rotor slot 14.
  • the portions of the conductor bar 16 facing the outer wall 14a, the inner side wall 14b, and the innermost wall 14c are wrapped with silver wax foil, and then the rotor slot 14 is used. It can be inserted and melted.
  • a method may be adopted in which the conductor bar 16 is inserted into the rotor slot 14 and then TIG welding is performed from the outside, or the conductor bar 16 and the rotor slot 14 are pressed against each other.
  • each of the plurality of conductor bars 16 has a shape that becomes a part of a cylindrical shape that wraps the radial outer surface of the rotor core portion 13, that is, the radial outer side of the rotor core portion 13. It is formed in a shape that is continuous with the surface. It should be noted that the present invention is not limited to this, and for example, the radial outer side is partially retracted radially inward from the above cylindrical shape by making the radial outer end of the conductor bar perpendicular to both sides of the conductor bar. It may be the case.
  • the conductor bar 16 has been described as an example in which the conductor bar 16 can be fitted into the rotor slot 14 from the outside in the radial direction of the rotor slot 14, but it can also be inserted from the axial end of the rotor core portion 13. good.
  • the conductor bar 16 is not flat, but has a maximum thickness or a minimum thickness in the middle of the width direction, and the cross-sectional shape of the rotor slot 14 is also formed so as to fit with the conductor bar 16. It may be made to resist centrifugal force.
  • the rotor slot 14 is not formed along the direction outward from the rotation axis in the radial direction, but is inclined in the circumferential direction.
  • the angle of each conductor bar 16 housed in the rotor slot 14 in the circumferential direction when viewed from the rotation axis Z of the massive rotor 10 is defined as the inscribed angle ⁇ 1. Further, the angle in the circumferential direction when the region in the circumferential direction in which the conductor bar 16 does not exist is viewed from the rotation axis Z of the massive rotor 10 is defined as the inscribed angle ⁇ 2.
  • the existing regions and the non-existing regions of the conductor bars 16 are alternately arranged in the circumferential direction when viewed from the rotation axis Z, and the arrangement is as follows. There are various characteristics.
  • the first feature is that a plurality of conductor bars 16 are adjacent to each other in the circumferential direction in the circumferential region where the conductor bars 16 exist.
  • the regions of the inscribed angle ⁇ 1 of each conductor bar 16 are adjacent to each other so as not to be separated from each other and to overlap each other. That is, when viewed from the rotation axis Z, the conductor bars 16 adjacent to each other are sequentially arranged for each inscribed angle ⁇ 1.
  • the same number of rotor teeth 15 as the rotor slots 14 are formed so as to be arranged at intervals in the circumferential direction.
  • stator winding conductor 24a penetrates each stator slot 22, and the stator winding conductor 24a forms the stator winding 24.
  • FIG. 3 is a flow chart showing the procedure of the design method of the squirrel-cage induction rotary electric machine according to the embodiment.
  • the design method of the cage-type induction rotary electric machine includes a design stage S100 of the dense rotor 90 and a design stage S200 of the massive rotor 10.
  • the dense rotor 90 refers to an intermediate stage in the process of deriving the massive rotor 10 according to the present embodiment.
  • FIG. 4 is a flow chart showing the procedure at the design stage of the dense rotor 90 (FIG. 9). That is, the procedure of the design method for evaluating the optimum range of the circumferential pitch and the tilt angle ⁇ (hereinafter, the rotor slot tilt angle ⁇ ) of the rotor slot 14 and obtaining the dense rotor 90 is shown. ..
  • the conditions of the stator slot 22 such as the dimensions of the stator slot 22 and the pitch in the circumferential direction are set (step S101).
  • the dimensions of the stator winding conductor 24a penetrating the stator slot 22 are also set according to the setting of the conditions.
  • step S102 the conditions of the rotor slot 14 such as the dimensions of the rotor slot 14 and the pitch in the circumferential direction are set.
  • the rotor slot tilt angle ⁇ is set (step S103).
  • the dimensions and shape of the conductor bar 16 penetrating the rotor slot 14 are also set according to the setting of the conditions.
  • step S104 the loss in the rotor core portion 13 of the dense rotor 90 is calculated.
  • step S105 the temperature distribution of the rotor core portion 13 is calculated based on the calculated loss.
  • step S106 the stress distribution of the rotor core portion 13 is calculated.
  • step S107 it is determined whether or not the procedure up to step S106 has been completed over the range to be examined for the rotor slot inclination angle ⁇ (step S107).
  • the range to be examined for the rotor slot inclination angle ⁇ is the range from ⁇ smin to ⁇ smax
  • ⁇ smin is an angle larger than 0 degrees
  • ⁇ smax is an angle smaller than 90 degrees.
  • ⁇ smin may be 10 degrees
  • ⁇ smax may be 80 degrees
  • the like may be a wide range to some extent, or the range may be further narrowed.
  • step S107 NO If it is determined that the procedure up to step S106 has not been completed over the range to be examined for the rotor slot tilt angle ⁇ (step S107 NO), the process returns to step S103 and the rotor slot tilt angle ⁇ is changed. The steps up to step S106 are carried out.
  • step S106 If it is determined that the procedure up to step S106 has been completed over the range to be examined for the rotor slot tilt angle ⁇ (YES in step S107), then the step is performed over the range to be examined for the pitch of the rotor slot 14. It is determined whether or not the procedure up to S106 is completed (step S108). If it is determined that the procedure up to step S106 has not been completed over the range to be examined regarding the pitch of the rotor slot 14 (step S108 NO), the process returns to step S102 and the pitch of the rotor slot 14 is changed. Step S106 is carried out.
  • step S108 When it is determined that the procedure up to step S106 has been completed over the range to be examined for the pitch of the rotor slot 14 (step S108 YES), the process proceeds to the next step S110.
  • the evaluation function is determined by the stage of step S110 (step S109).
  • the evaluation function is, for example, the evaluation function PI (n) as shown in the following equation (3) or equation (4) for minimizing the total generated stress and loss with respect to the number of rotor slots n, or the evaluation function. It is an evaluation function PI ( ⁇ , n 0 ) as shown by the equation (5) described later for minimizing the total generated stress and loss.
  • step S110 the number of rotor slots n and the rotor slot tilt angle ⁇ of the rotor slot 14 are determined based on the evaluation function set in step S109 (step S110).
  • the procedure of the design method of the dense rotor 90 shown in FIG. 4 has been described above, but the procedure of steps S102 to S108 includes the examination range of the predetermined rotor slot inclination angle ⁇ and the rotor slot 14. This is a survey within the examination range of the pitch or the number of rotor slots n corresponding thereto. Actually, the number of rotor slots n and the rotor slot inclination angle ⁇ of the rotor slot 14 are determined in steps S109 and S110 based on the survey results. The contents at this stage will be described below.
  • FIG. 5 is a graph showing a trial calculation example of the relationship between the number of rotor slots and the generated stress and loss in the dense rotor 90.
  • the horizontal axis represents the ratio of the number of rotor slots n to the reference number of rotor slots n 0.
  • the vertical axis is the ratio of generated stress based on the generated stress at the reference number of rotor slots n 0 (relative value) and the ratio of loss based on the loss at the reference number of rotor slots n 0 (relative value). ).
  • the curve shown by the dotted line shows the case where the slot width d of the rotor slot 14 is changed in inverse proportion to the number of slots of the rotor slot 14.
  • the curve shown by the alternate long and short dash line shows the case where the slot width d of the rotor slot 14 is fixed.
  • the generated stress indicates the stress at the base of the rotor teeth 15, which is the maximum in the stress distribution.
  • the curve shown by the solid line represents the ratio (relative value) of the loss based on the loss at the reference rotor slot number n 0. As shown in FIG. 5, the loss decreases as the number of rotor slots 14 increases. This point will be supplemented below with reference to FIGS. 6 to 8.
  • FIG. 6 is a cross-sectional view of the first conceptual part for explaining the relationship between the stator slot and the rotor slot of the cage-shaped induction rotary electric machine
  • FIG. 7 is a cross-sectional view of the second conceptual part
  • 8 is a cross-sectional view of the third conceptual part.
  • the display of the stator winding conductor 24a (FIG. 2) is omitted.
  • n be the number of rotor slots 14 and N be the number of stator slots 22.
  • FIG. 6 shows a case where the number of rotor slots n is equal to the number of stator slots N.
  • the circumferential intensity distribution (circumferential magnetic flux intensity distribution) of the magnetic flux formed by the current flowing through the stator winding 24 is a phase pitch corresponding to the distribution of the positions of the stator slots 22, in other words, a period. Therefore, for example, when the circumferential magnetic flux intensity distribution shown by the broken line in FIG. 6 occurs, it is the rotor of the conductor bar 16 that corresponds to the magnetic flux formed by the current flowing through the stator winding 24 (FIG. 1). It is a portion far from the surface of the iron core portion 13.
  • the second conceptual diagram of FIG. 7 shows a case where the number of rotor slots n is larger than the number of stator slots N.
  • the pitch of the arrangement of the rotor slots 14 is different from the period of the intensity distribution of the circumferential magnetic flux generated by the current flowing through the stator winding 24, that is, the pitch of the phase. Therefore, the time in which the magnetic flux permeates the conductor bar 16 in the portion close to the surface of the rotor core portion 13, that is, the time in which the interaction between the magnetic flux and the conductor bar 16 is strong always increases.
  • the third conceptual diagram of FIG. 8 shows a case where the number of rotor slots n is further increased and becomes twice the number of stator slots N.
  • the magnetic flux always permeates the portion of the conductor bar 16 close to the surface of the rotor core portion 13 in any phase, and the interaction between the magnetic flux and the conductor bar 16 continues to be strong.
  • stator winding 24 (FIG. 1) It is considered that the coupling between the magnetic flux generated by the above and the conductor bar 16 of the dense rotor 90 becomes stronger. This is a factor in reducing the loss.
  • the number of rotor slots n is larger than the number of stator slots N, and the condition of the following equation (2) is set to be satisfied.
  • the generated stress tends to increase as the number of rotor slots n of the rotor slots 14 increases, while the loss tends to decrease. That is, the generated stress and the loss tend to be opposite to each other as the number of slots of the rotor slot 14 increases.
  • S 0 be the stress generated when the number of rotor slots is n 0
  • L 0 be the loss.
  • n 0 is arbitrary.
  • S (n) the stress generated when the number of rotor slots is n
  • L (n) the loss
  • PIN (n) [S (n) / S 0 ] + p ⁇ [L (n) / L 0 ] ... (3)
  • the first evaluation function PIN (n) shown in the following equation (4) may be used.
  • PIN (n) [S (n) / S 0 ] ⁇ [L (n) / L 0 ] p ... (4)
  • S 0 and L 0 in the formulas (3) and (4) are arbitrary reference values.
  • the constant p is a constant for considering the mutual weight of the disadvantage due to the generated stress S (n) and the disadvantage due to the loss L (n), and is the purpose of the target rotating electric machine, the design margin, etc. Set in consideration of.
  • FIG. 9 is a partial cross-sectional view illustrating the rotor slot inclination angle ⁇ of the dense rotor 90 according to the embodiment.
  • a virtual surface 14s located in the same rotor slot 14 between the outer wall 14a and the inner wall 14b facing each other and parallel to each other.
  • the surface of the rotor core portion 13 in the radial direction is defined as a curved surface Sf.
  • the line of intersection between the curved surface Sf and the virtual surface 14s is defined as the line of intersection L0.
  • a plane passing through the rotor rotation shaft 11a and the line of intersection L0 is defined as a plane P.
  • the rotor slot 14 formed on the surface of the rotor core portion 13 of the dense rotor 90 is located in the circumferential direction. It is tilted. Further, the ratio of the number of rotor slots 14 to the number of stator slots 22 is larger than 1.1.
  • FIG. 10 is a conceptual partial cross-sectional view illustrating the effect of the dense rotor.
  • the two on the left side of the figure are the rotor slot 14 and the conductor bar 16 of the rotor core portion 13 according to the present embodiment. Further, on the right side, for comparison, a conventional rotor slot and a conductor bar having the same cross-sectional area as the conductor bar of the present embodiment are shown by broken lines.
  • the radius of the inscribed circle 14d of the rotor slot 14 in the present embodiment is larger than the radius of the inscribed circle Si0 of the conventional rotor slot. That is, the radial width ⁇ R1 of the rotor slot 14 according to the present embodiment is smaller than the radial width ⁇ R0 of the conventional rotor slot. Therefore, for example, the center position of each conductor bar 16 is close to the surface of the rotor core portion 13 as a whole, and the distance between the overall position (center position, etc.) in each conductor bar 16 and the stator winding 24. Is relatively short. ⁇ R1 is approximately ⁇ R0 ⁇ cos ⁇ .
  • iron loss occurs in the rotor core portion 13 having a relatively low conductivity as compared with the conductor bar 16, and the induced current flows particularly to the surface of the rotor core portion 13, so that the rotor core portion 13 has an iron loss.
  • the temperature of the surface of the portion 13 tends to rise.
  • the relatively short distance between the overall position of the conductor bar 16 and the stator winding 24 increases the coupling force due to the magnetic flux passing through the stator core 21 side and the conductor bar 16 and improves efficiency. Bring. As a result, the loss is reduced. Therefore, the increase in the surface temperature Ts of the rotor core portion 13 in the present embodiment can be suppressed to be lower than in the conventional case.
  • the ratio of the radial widths of the rotor slots 14 is, for example, at least about 5% to 10%. It seems that it needs to be reduced.
  • the value of cos ⁇ is 0.9 to 0.95, that is, ⁇ is 18 degrees to 26 degrees. Therefore, it is considered that at least the rotor slot inclination angle ⁇ needs to be at least about 20 degrees.
  • the centrifugal force F acting on the center of gravity M in the cross section of the conductor bar 16 is a component force Fh in the direction of pulling out the conductor bar 16 along the rotor slot 14, and the outer wall of the rotor slot 14 perpendicular to the component force Fh. It is decomposed into a component force Fw in the direction of acting on 14a.
  • the value of the component force Fh is Fcos ⁇ , which is smaller than the value of the centrifugal force F. Therefore, when the same level of pop-out prevention measures as before is taken, the amount of (F-Fcos ⁇ ) is a margin for pop-out prevention. Furthermore, what used to require large-scale equipment such as pressure welding does not require such large-scale equipment. For example, there may be cases where the same level of margin for pop-out prevention as before can be secured by measures to prevent pop-out such as brazing.
  • the value of the component force Fw in the direction acting on the outer wall 14a is Fsin ⁇ , and acts so as to bend the rotor teeth 15 in the circumferential direction and the rotor teeth 15 in the radial direction.
  • the stress distribution for the rotor teeth 15 produces a maximum value Smax at the base 15c of the rotor teeth 15. Therefore, the maximum value Smax is set to the rotor slot tilt angle within a range sufficiently smaller than the allowable stress.
  • the rotor is relaxed while relaxing the conditions for preventing the conductor bar 16 from coming off from the rotor slot 14.
  • the loss L which causes an increase in the surface temperature of the iron core portion 13, can be suppressed.
  • the efficiency is further improved by setting the number of the rotor slots 14 to be larger than 1.1 times the number of the stator slots 22. Therefore, it is possible to further suppress an increase in the surface temperature Ts of the rotor core portion 13.
  • FIG. 11 is a conceptual graph for explaining the relationship between the rotor slot tilt angle of the dense rotor 90 and the evaluation function value according to the embodiment.
  • the horizontal axis is the rotor slot tilt angle ⁇ .
  • the vertical axis shows the evaluation value of the loss L ( ⁇ , n 0 ) shown by the curve A0, the generated stress S ( ⁇ , n 0 ) shown by the curve B0, and the disadvantage evaluation function PI ⁇ ( ⁇ ) shown by the combined curve C0. , N 0 ) function value.
  • the generated stress S ( ⁇ , n 0 ) and the loss L ( ⁇ , n 0 ) are values with respect to the rotor slot inclination angle ⁇ when the number of rotor slots is n 0.
  • the disadvantage evaluation function PI ⁇ ( ⁇ , n 0 ) is expressed by the following equation (5).
  • n 0 is a value within the range of the number of rotor slots n obtained in the first step, that is, the minimization step of the equation (3) or the equation (4) with respect to the number of rotor slots n.
  • Treated as a parameter That is, in the second step, that is, in the step of minimizing the disadvantage evaluation function with respect to the rotor slot inclination angle ⁇ , each is treated as a constant value.
  • PI ⁇ ( ⁇ , n 0 ) [S ( ⁇ , n 0 ) / S 0 ] + q ⁇ [L ( ⁇ , n 0 ) / L 0 ] ... (6)
  • the evaluation function PI (n) the one shown in the following equation (7) may be used.
  • S 0 and L 0 are arbitrary reference values.
  • the constant q is a constant for considering the mutual weight of the disadvantage due to the generated stress S (n) and the disadvantage due to the loss L (n), as in the case of p in the first step, and is a target. Set in consideration of the purpose of the rotating electric machine or the design margin.
  • equations (3) and (4) in the first step and the equations (6) and (7) in the second step are examples and are not limited thereto. That is, if there is another index affected by the rotor slot 14 tilt angle ⁇ , it may be added to the variables of these equations. If the effect is negligible, it may be excluded from the variable in equation (2). Further, a function shape other than the above-mentioned form may be used.
  • the limit value HL for example, a loss L that gives the maximum temperature obtained by subtracting a predetermined margin from the upper limit of the temperature range in which the operation of the rotor core portion 13 can be continued is used.
  • the generated stress S ( ⁇ , n 0 ) is subject to the condition of the limit value HS or less and the rotor slot tilt angle ⁇ at this time is ⁇ 0max, the range of ⁇ ⁇ 0max and the rotor slot tilt angle ⁇ .
  • the limit value HS for example, a value obtained by subtracting a predetermined margin from the allowable stress of the material of the rotor core portion 13 is used.
  • the rotor slot tilt angle ⁇ satisfying the condition of ⁇ 0min ⁇ ⁇ 0max has the minimum value as shown by the solid line C0 in the example of FIG. 11, the rotor slot tilt angle ⁇ 0 that gives it is obtained.
  • the angle width ⁇ may be set to a value of, for example, about 5 degrees to 10 degrees, which is sufficiently larger than the manufacturing accuracy of the squirrel-cage induction rotary electric machine 100 including the formation of the rotor slot 14.
  • the rotor is relaxed while relaxing the conditions for preventing the conductor bar 16 from coming off from the rotor slot 14.
  • the increase in the surface temperature Ts of the iron core portion 13 can be suppressed, and further, the efficiency is further improved by setting the number of rotor slots 14 to be larger than 1.1 times the number of stator slots 22. .. Therefore, it is possible to further suppress an increase in the surface temperature Ts of the rotor core portion 13.
  • the number n of the rotor slots 14 and the inclination angle ⁇ of the rotor slots 14 are set to the optimum values based on indexes such as the generated stress S ( ⁇ , n 0 ) and the loss L ( ⁇ , n 0). be able to.
  • FIG. 12 is a flow chart showing the procedure of the design stage S200 of the massive rotor 10 in the design stage of the squirrel-cage induction rotary electric machine according to the embodiment.
  • the procedure for obtaining the massive rotor 10 according to the present embodiment is carried out based on the dense rotor 90 obtained in the design step S100 of the dense rotor 90.
  • the design stage S200 of the massive rotor 10 includes a thinning step S201 for forming the rotor slot and a readjustment step S202 for the rotor slot position after the thinning.
  • FIG. 13 is a partial cross-sectional view illustrating the thinning step S201 of rotor slot formation at the design stage of the massive rotor 10 in the design method of the squirrel-cage induction rotary electric machine according to the embodiment.
  • (A) shows the state before thinning, that is, the dense rotor 90.
  • (B) shows the state after thinning out.
  • rotor slot forming thinning step S201 a part of the rotor slot 14 formed in the dense rotor 90 obtained in the design step S100 of the dense rotor 90 is removed, that is, the rotor slot 14 is removed. Stop forming. This operation is referred to as thinning out of rotor slot formation.
  • the thinning of the rotor slot formation shall be performed regularly, and among the k rotor slots 14 that are continuously arranged in the 90-circumferential direction of the dense rotor, the rotor slots 14 at the same rank positions are thinned out. It shall be.
  • the first rotor slot 14 is thinned out counterclockwise.
  • k is assumed to be 3 or more. That is, in FIG. 13, k is 3, and when the pairs composed of C1, C2, and C3 are arranged in the circumferential direction, C1 is thinned out for each pair.
  • the same operation is sequentially performed for the set composed of the k rotor slots 14. Since the last set may not be k, if the number of rotor slots 14 in the last set is one, it is not thinned out, and if there are two or more, the rotor slots 14 of C1 are similarly used. It shall be thinned out. As a result, the rotor slots 14 to be thinned out exist at the same intervals in the circumferential direction except for the last set.
  • the conductor bars 16 remaining as a result of the thinning step S201 of rotor slot formation have an inscribed angle of ⁇ 1 as seen from the rotation axis Z (FIG. 2) and are adjacent to each other as seen from the rotation axis Z. Let the overlapping angle of the conductor bars 16 be ⁇ 1. At this time, with respect to the portion where the rotor slot 14 is thinned out, the inscribed angle ⁇ d of the portion where the conductor bar 16 does not exist when viewed from the rotation axis Z is ( ⁇ 1-2 ⁇ 1).
  • the number of rotor slots 14 is reduced to about (k-1) / k, and the cost required for forming the rotor slots 14 is reduced.
  • FIG. 14 is a partial cross-sectional view illustrating the readjustment step S202 of the rotor slot position after thinning in the design stage S200 of the massive rotor in the design method of the squirrel-cage induction rotary electric machine according to the embodiment.
  • (A) shows the state after thinning out, which is the same state as (b) in FIG.
  • FIG. 14B shows a state after the rotor slot position has been readjusted.
  • the position of the rotor slot 14 is further readjusted from the result obtained in the thinning step S201 of the rotor slot formation.
  • the readjustment method is performed by reducing the overlapping angle of the circumferential angles ⁇ 1 of the conductor bars 16 adjacent to each other as seen from the rotation axis Z from the overlapping angle ⁇ 1. In this case, the overlap angle is reduced to zero, but it may be reduced to an intermediate angle that is not reduced to zero.
  • the inscribed angles ⁇ 1 of the conductor bar 16 as seen from the axis of rotation Z (Fig. 2) are adjacent to each other.
  • FIG. 15 is a graph conceptually explaining the effect of the method of designing the massive rotor in the method of designing the squirrel-cage induction rotary electric machine according to the embodiment.
  • the horizontal axis is the number of rotor slots (n / n 0 ), and the vertical axis is the cost C and the loss L.
  • the loss L and the cost C have the property of changing in opposite directions with respect to a change in the number of rotor slots (n / n 0).
  • the characteristics of the loss L and the cost C are shown by the solid line L and the solid line C, respectively.
  • the total index of the weighting of the loss L and the cost C which comprehensively evaluates the loss L and the cost C, is shown by a broken line (C + L).
  • step S201 Thinning out of rotor slot formation
  • the number of rotor slots (n / n 0 ) is reduced, so that the cost C is lowered to C1.
  • the loss increases to L1 due to the occurrence of a region in which the conductor bars 16 adjacent to each other as seen from the rotation axis Z cannot be seen.
  • the position on (C + L) becomes A1, and there is a possibility that a negative effect may occur as a whole.
  • the loss L is reduced to L2 by readjusting the position of the rotor slot 14 in the readjustment step S202 of the rotor slot position.
  • the total index of the weighting of the loss L and the cost C which comprehensively evaluates the loss L and the cost C, also decreases.
  • the design method of the squirrel-cage induction rotary electric machine according to the present embodiment it is possible to obtain a massive rotor having a cost merit while maintaining the performance. That is, in a cage-shaped induction rotary electric machine having a massive rotor, it is possible to suppress an increase in the surface temperature of the rotor core portion of the massive rotor while reducing the cost increase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Induction Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

This solid rotor (10) used in a squirrel cage induction rotating electric machine includes: a shaft part which extends in the axial direction and is rotatably supported; a columnar rotor core part (13) which is integrally formed coaxially with the shaft part and has a greater diameter than the shaft part, and in which are formed rotor slots (14) that are disposed with gaps therebetween in the circumferential direction and extend in the axial direction; and a plurality of conductor bars (16) which penetrate through the inside of the rotor slots (14) and are coupled to each other on both outer sides in the axial direction of the rotor core part (13). The two mutually opposing walls of each of the rotor slots (14) incline by at least a predetermined angle in the circumferential direction with respect to a plane that includes the axis of rotation of the shaft part. When viewed outward in the radial direction from the axis of rotation of the shaft part, regions where a portion of a plurality of conductor bars (16) among the plurality of conductor bars (16) are present and regions where the same is not present are alternately disposed in the circumferential direction.

Description

塊状回転子、かご形誘導回転電機、およびかご形誘導回転電機の設計方法How to design massive rotors, squirrel-cage induction machines, and squirrel-cage induction machines
 本発明は、塊状回転子、これを有するかご形誘導回転電機、およびかご形誘導回転電機の設計方法に関する。 The present invention relates to a massive rotor, a squirrel-cage induction rotary electric machine having the lump rotor, and a method for designing a squirrel-cage induction rotary electric machine.
 誘導回転電機は、同期回転電機のような力率調整ができないなどの制約があるが、同期回転電機に比べて、構造が単純であるというメリットを有する。誘導回転電機には、一般に、巻線形誘導回転電機と、かご形誘導回転電機とがある。かご形誘導回転電機は、巻線形誘導回転電機のような外部との電気的な接続が不要であり、巻線形誘導回転電機に比べると構造が単純である。特にかご形誘導回転電機については、電力用の半導体の発達により電源側での制御が容易となったため、これと組み合わせた方式が多く用いられるようになっている。 The induction rotary electric machine has restrictions such as not being able to adjust the power factor like the synchronous rotary electric machine, but has the advantage of having a simpler structure than the synchronous rotary electric machine. The induction rotary electric machine generally includes a winding type induction rotary electric machine and a cage type induction rotary electric machine. The cage-type induction rotary electric machine does not require an electrical connection with the outside like the winding-type induction rotary electric machine, and has a simpler structure than the winding-type induction rotary electric machine. In particular, for squirrel-cage induction rotary electric machines, control on the power supply side has become easier due to the development of semiconductors for electric power, so a method combined with this has come to be widely used.
 かご形誘導回転電機においては、回転子鉄心の径方向の表面近傍に、周方向に互いに間隔をあけて配置されて軸方向に貫通する複数の回転子スロットが形成される。それぞれの回転子スロットを導体バーが貫通し、回転子鉄心の軸方向外側において、導体バー同士が短絡環によって電気的に結合される。回転子スロットは、回転子鉄心の表面側から回転の回転軸に向かう方向に形成され、その横断面形状は、たとえば、矩形に近い形状の場合(特許文献1参照)、あるいは卵型に近い形状の場合(特許文献2参照)などがある。 In a squirrel-cage induction rotary electric machine, a plurality of rotor slots are formed in the vicinity of the radial surface of the rotor core, which are arranged at intervals in the circumferential direction and penetrate in the axial direction. A conductor bar penetrates each rotor slot, and the conductor bars are electrically connected to each other by a short-circuit ring on the axially outer side of the rotor core. The rotor slot is formed in the direction from the surface side of the rotor core toward the rotation axis of rotation, and its cross-sectional shape is, for example, a shape close to a rectangle (see Patent Document 1) or a shape close to an oval shape. (See Patent Document 2).
 あるいは、導体バーと短絡環とをアルミニウム製などとして鋳造により一体で製造する場合(特許文献3参照)がある。 Alternatively, there is a case where the conductor bar and the short-circuit ring are integrally manufactured by casting, such as made of aluminum (see Patent Document 3).
特開2016-220404号公報Japanese Unexamined Patent Publication No. 2016-220404 特許第3752781号公報Japanese Patent No. 3752781 特開2014-195374号公報Japanese Unexamined Patent Publication No. 2014-195374 特許第5557685号公報Japanese Patent No. 5557685 米国特許第6933647号明細書U.S. Pat. No. 6,933,647
 回転子は、ロータシャフトと、積層板からなる回転子鉄心をロータシャフトの径方向外側に取り付けて構成するのが一般である。この場合、積層板同士は電気的に絶縁されているため、軸方向に渦電流が発生しない。このように積層板からなる回転子鉄心を有するかご形誘導回転電機においては、回転子の導体バーでの発熱を抑制することにより、回転子における発熱の低減を図る技術が知られている(特許文献4参照)。 The rotor is generally configured by attaching a rotor shaft and a rotor core composed of laminated plates to the outside in the radial direction of the rotor shaft. In this case, since the laminated plates are electrically insulated from each other, no eddy current is generated in the axial direction. In a cage-type induction rotary electric machine having a rotor core made of a laminated plate as described above, a technique for reducing heat generation in the rotor by suppressing heat generation in the conductor bar of the rotor is known (patented). Reference 4).
 回転数の高い領域で使用する高速機においては、より機械的な強度を確保する目的で、回転子鉄心をロータシャフトと一体にした塊状磁極形の回転子(塊状回転子)が採用される場合がある。このような場合、導体バーに働く遠心力が増大するので、導体バーの径方向外側への抜け止めを確実にする必要がある。遠心力の方向は、スロットが形成されている方向に一致するため、たとえば、導体バーを回転子鉄心に圧接する等の方法がとられている(特許文献5参照)。 In a high-speed machine used in a high rotation speed region, when a massive magnetic pole type rotor (lump rotor) in which a rotor core is integrated with a rotor shaft is adopted for the purpose of ensuring more mechanical strength. There is. In such a case, the centrifugal force acting on the conductor bar increases, so it is necessary to ensure that the conductor bar is prevented from coming off in the radial direction. Since the direction of the centrifugal force coincides with the direction in which the slot is formed, for example, a method such as pressing the conductor bar against the rotor core is adopted (see Patent Document 5).
 塊状回転子は、積層構造の回転子に比べて構造が単純であり、機械的強度に優れているが、軸方向にも渦電流が発生するため、積層構造の回転子に比べて損失が大きくなる。この結果、回転子鉄心の表面の温度が上昇するという課題がある。 The massive rotor has a simpler structure than the laminated rotor and has excellent mechanical strength, but it also generates an eddy current in the axial direction, so the loss is larger than that of the laminated rotor. Become. As a result, there is a problem that the temperature of the surface of the rotor core rises.
 そこで、本発明は、塊状回転子を有するかご形誘導回転電機において、コスト増加を低減しながら、塊状回転子の回転子鉄心部の表面温度の上昇を抑制することを目的とする。 Therefore, an object of the present invention is to suppress an increase in the surface temperature of the rotor core portion of the massive rotor while reducing the cost increase in the cage-shaped induction rotary electric machine having the massive rotor.
 上述の目的を達成するため、本発明に係る塊状回転子は、かご形誘導回転電機に用いる塊状回転子であって、軸方向に延びて回転可能に支持されたシャフト部と、前記シャフト部と同軸に一体で形成されて前記シャフト部より大きな径を有し周方向に互いに間隔をあけて配置されて軸方向に延びた回転子スロットが形成された円柱状の回転子鉄心部と、前記回転子スロット内を貫通し前記回転子鉄心部の前記軸方向の両外側において互いに結合する複数の導体バーと、を有し、前記回転子スロットのそれぞれの互いに対向する2つの壁は、前記シャフト部の回転軸を含む平面に対して周方向に所定の角度以上、傾いており、前記回転軸から径方向外側を見たときに、前記複数の導体バーの一部の複数の導体バーの存在領域と不存在領域が、周方向に交互に配されている、ことを特徴とする。 In order to achieve the above object, the massive rotor according to the present invention is a massive rotor used in a cage-shaped induction rotary electric machine, and includes a shaft portion extending in the axial direction and rotatably supported, and the shaft portion. A columnar rotor core portion formed coaxially integrally, having a diameter larger than that of the shaft portion, arranged at intervals in the circumferential direction, and extending in the axial direction, and the rotation. It has a plurality of conductor bars penetrating the inside of the child slot and connecting to each other on both outer sides of the rotor core portion in the axial direction, and the two walls of the rotor slot facing each other are the shaft portion. It is tilted by a predetermined angle or more in the circumferential direction with respect to the plane including the rotation axis of And non-existent regions are arranged alternately in the circumferential direction.
 また、本発明に係るかご形誘導回転電機は、上述の塊状回転子と、前記回転子鉄心部の径方向外側に設けられた円筒状の固定子鉄心と、前記固定子鉄心の径方向の内側表面に周方向に互いに間隔をあけて形成され軸方向に延びた複数の固定子スロットの内部を貫通する固定子巻線とを有する固定子と、前記回転子鉄心部を挟んで前記軸方向の前記シャフト部の両側のそれぞれで前記塊状回転子を支持する2つの軸受と、を備えることを特徴とする。 Further, the cage-shaped induction rotary electric machine according to the present invention includes the above-mentioned massive rotor, a cylindrical stator core provided on the radial outer side of the rotor core portion, and a radial inner side of the stator core. A stator having a stator winding formed on the surface at intervals in the circumferential direction and penetrating the inside of a plurality of stator slots extending in the axial direction, and a stator in the axial direction with the rotor core portion interposed therebetween. It is characterized by including two bearings that support the massive rotor on both sides of the shaft portion.
 また、本発明に係るかご形誘導回転電機の設計方法は、一体で形成されシャフト部と回転子鉄心部とを有する塊状回転子と、前記回転子鉄心部の径方向の外側に設けられた固定子とを備えるかご形誘導回転電機の設計方法であって、前記固定子の径方向内側表面に形成されて周方向に互いに間隔をあけて配置されて軸方向に貫通する複数の固定子スロットの寸法および周方向のピッチを設定する固定子条件設定ステップと、前記固定子条件設定ステップの後に、前記回転子鉄心部の径方向外側表面に形成されて周方向に互いに間隔をあけて配置されて軸方向に貫通する回転子スロットの寸法および周方向のピッチおよび周方向への傾き角度を設定し、稠密形回転子を得る稠密形回転子条件設定ステップと、前記稠密形回転子の前記回転子スロットについて、互いに隣接する3個より多いk個の組のそれぞれから、同じ順位の位置の回転子スロットをそれぞれ形成しない前記回転子スロット形成の間引きステップと、回転軸から見たときに、前記回転子スロット形成の間引きステップの結果残った互いに隣接する複数の導体バーのそれぞれ同士の重なり角度が減少するように前記回転子スロットの位置を調整する回転子スロット位置の再調整ステップと、を有することを特徴とする。 Further, the method for designing a cage-shaped induction rotary electric machine according to the present invention is a method of designing a massive rotor having a shaft portion and a rotor core portion, and fixing provided outside the rotor core portion in the radial direction. A method of designing a cage-type induction rotary electric machine including a child, which is a method of designing a plurality of stator slots formed on the radial inner surface of the stator, arranged at intervals in the circumferential direction, and penetrating in the axial direction. After the stator condition setting step for setting the dimensions and the pitch in the circumferential direction and the stator condition setting step, they are formed on the radial outer surface of the rotor core portion and arranged at intervals in the circumferential direction. A dense rotor condition setting step for obtaining a dense rotor by setting the dimensions of a rotor slot penetrating in the axial direction, a pitch in the circumferential direction, and a tilt angle in the circumferential direction, and the rotor of the dense rotor. Regarding the slots, the thinning step of forming the rotor slots, which does not form the rotor slots at the same rank from each of the k sets having more than three adjacent to each other, and the rotation when viewed from the rotation axis. Having a rotor slot position readjustment step that adjusts the position of the rotor slot so that the overlap angle of each of the plurality of conductor bars adjacent to each other that remains as a result of the thinning step of forming the child slot is reduced. It is characterized by.
 本発明によれば、塊状回転子を有するかご形誘導回転電機において、コスト増加を低減しながら、塊状回転子の回転子鉄心部の表面温度の上昇を抑制することができる。 According to the present invention, in a cage-type induction rotary electric machine having a massive rotor, it is possible to suppress an increase in the surface temperature of the rotor core portion of the massive rotor while reducing the cost increase.
実施形態に係るかご形誘導回転電機の構成を示す立断面図である。It is a vertical cross-sectional view which shows the structure of the squirrel-cage induction rotary electric machine which concerns on embodiment. 実施形態に係るかご形誘導回転電機の塊状回転子および固定子スロットを示す横断面図である。It is sectional drawing which shows the massive rotor and the stator slot of the squirrel-cage induction rotary electric machine which concerns on embodiment. 実施形態に係るかご形誘導回転電機の設計方法の手順を示すフロー図である。It is a flow chart which shows the procedure of the design method of the squirrel-cage induction rotary electric machine which concerns on embodiment. 実施形態に係るかご形誘導回転電機の設計方法における稠密形回転子の設計段階の手順を示すフロー図である。It is a flow chart which shows the procedure of the design stage of the dense type rotor in the design method of the cage type induction rotary electric machine which concerns on embodiment. 実施形態に係るかご形誘導回転電機の稠密形回転子における回転子スロット数と発生応力および損失との関係の試算例を示すグラフである。It is a graph which shows the trial calculation example of the relationship between the number of rotor slots, the generated stress and the loss in the dense rotor of the squirrel-cage induction rotary electric machine which concerns on embodiment. 実施形態に係るかご形誘導回転電機の固定子スロットと回転子スロットとの関係を説明するための第1の概念的部横断面図である。It is 1st conceptual part cross-sectional view for demonstrating the relationship between the stator slot and the rotor slot of the squirrel-cage induction rotary electric machine which concerns on embodiment. 実施形態に係るかご形誘導回転電機の固定子スロットと回転子スロットとの関係を説明するための第2の概念的部横断面図である。It is the 2nd conceptual part cross-sectional view for demonstrating the relationship between the stator slot and the rotor slot of the squirrel-cage induction rotary electric machine which concerns on embodiment. 実施形態に係るかご形誘導回転電機の固定子スロットと回転子スロットとの関係を説明するための第3の概念的部横断面図である。FIG. 3 is a cross-sectional view of a third conceptual part for explaining the relationship between the stator slot and the rotor slot of the squirrel-cage induction rotary electric machine according to the embodiment. 実施形態に係る稠密形回転子の回転子スロット傾き角度を説明する部分横断面図である。It is a partial cross-sectional view explaining the rotor slot inclination angle of the dense type rotor which concerns on embodiment. 実施形態に係る稠密形回転子の効果を説明する概念的な部分横断面図である。FIG. 5 is a conceptual partial cross-sectional view illustrating the effect of the dense rotor according to the embodiment. 実施形態に係る稠密形回転子の回転子スロット傾き角度と評価関数値との関係を説明するための概念的グラフである。It is a conceptual graph for demonstrating the relationship between the rotor slot inclination angle of the dense rotor which concerns on embodiment, and the evaluation function value. 実施形態に係るかご形誘導回転電機の設計方法における塊状回転子の設計段階の手順を示すフロー図である。It is a flow chart which shows the procedure of the design stage of a massive rotor in the design method of the squirrel-cage induction rotary electric machine which concerns on embodiment. 実施形態に係るかご形誘導回転電機の設計方法における塊状回転子の設計段階における回転子スロット形成の間引きステップを説明する部分的横断面図である。It is a partial cross-sectional view explaining the thinning-out step of rotor slot formation in the design stage of a massive rotor in the design method of the squirrel-cage induction rotary electric machine which concerns on embodiment. 実施形態に係るかご形誘導回転電機の設計方法における塊状回転子の設計段階における回転子スロット形成の間引き後の回転子スロット位置の再調整ステップを説明する部分的横断面図である。FIG. 5 is a partial cross-sectional view illustrating a step of readjusting the rotor slot position after thinning out the rotor slot formation in the design stage of the massive rotor in the design method of the squirrel-cage induction rotary electric machine according to the embodiment. 実施形態に係るかご形誘導回転電機の設計方法における塊状回転子の設計方法の効果を概念的に説明するグラフである。It is a graph which conceptually explains the effect of the design method of a massive rotor in the design method of the squirrel-cage induction rotary electric machine which concerns on embodiment.
 以下、図面を参照して、本発明に係るかご形誘導回転電機、塊状回転子、およびかご形誘導回転電機の設計方法について説明する。ここで、互いに同一または類似の部分には、共通の符号を付して、重複説明は省略する。 Hereinafter, the design method of the squirrel-cage induction rotary electric machine, the massive rotor, and the squirrel-cage induction rotary electric machine according to the present invention will be described with reference to the drawings. Here, parts that are the same as or similar to each other are designated by a common reference numeral, and duplicate description will be omitted.
 図1は、実施形態に係るかご形誘導回転電機の構成を示す立断面図である。 FIG. 1 is a vertical cross-sectional view showing the configuration of a squirrel-cage induction rotary electric machine according to an embodiment.
 かご形誘導回転電機100は、塊状回転子10、固定子20、軸受30、フレーム40、および冷却器51を有する。 The cage-shaped induction rotary electric machine 100 has a massive rotor 10, a stator 20, a bearing 30, a frame 40, and a cooler 51.
 塊状回転子10は、機械的な強度をより向上させる目的で、回転子鉄心をロータシャフトと一体にした塊状磁極形の回転子であり、一体型ロータ11、複数の導体バー16、および2つの短絡環17を有する。 The massive rotor 10 is a massive magnetic pole type rotor in which a rotor core is integrated with a rotor shaft for the purpose of further improving mechanical strength, and is an integrated rotor 11, a plurality of conductor bars 16, and two. It has a short-circuit ring 17.
 一体型ロータ11は、ロータシャフトに相当する部分であるシャフト部12と回転子鉄心に相当する回転子鉄心部13とを有し、これらが同軸で一体となった一体物である。すなわち、一体型ロータ11は、回転軸方向(以下、軸方向)に径が異なる円柱形状を組合せた形状を有する。一体型ロータ11の軸方向の中央付近は、径が大きな円柱状で、回転子鉄心部13を形成している。回転子鉄心部13を挟んで軸方向の両側は、回転子鉄心部13より径の小さなシャフト部12を形成している。 The integrated rotor 11 has a shaft portion 12 which corresponds to a rotor shaft and a rotor core portion 13 which corresponds to a rotor core, and these are coaxially integrated. That is, the integrated rotor 11 has a shape that is a combination of cylindrical shapes having different diameters in the rotation axis direction (hereinafter, axial direction). Around the center of the integrated rotor 11 in the axial direction, a columnar shape having a large diameter forms a rotor core portion 13. Shaft portions 12 having a diameter smaller than that of the rotor core portion 13 are formed on both sides in the axial direction with the rotor core portion 13 interposed therebetween.
 一体型ロータ11の軸方向両側のシャフト部12は、それぞれ、軸受30により回転可能に支持されている。それぞれのシャフト部12の回転子鉄心部13と軸受30との間の部分には、内扇18が設けられている。 The shaft portions 12 on both sides of the integrated rotor 11 in the axial direction are rotatably supported by bearings 30, respectively. An inner fan 18 is provided in a portion between the rotor core portion 13 and the bearing 30 of each shaft portion 12.
 複数の導体バー16は、互いに周方向に間隔をおいて、回転子鉄心部13の径方向の表面の近傍を貫通して軸方向に延びている。それぞれの導体バー16は、回転子鉄心部13の軸方向の両外側に突出している。回転子鉄心部13のそれぞれの軸方向外側において、同じ側の複数の導体バー16は互いに同じ長さだけ突出している。また、複数の導体バー16の端部が環状の短絡環17と電気的および機械的に結合することにより、複数の導体バー16は、互いに電気的に結合している。回転子鉄心部13の材料が鉄鋼あるいは低合金鋼等であるのに対して、導体バー16および短絡環17は、たとえば銅やアルミニウム等の回転子鉄心部13に比べて導電率の高い材料が用いられている。 The plurality of conductor bars 16 penetrate the vicinity of the radial surface of the rotor core portion 13 at intervals in the circumferential direction and extend in the axial direction. Each conductor bar 16 projects to both outer sides of the rotor core portion 13 in the axial direction. On the outer side of each of the rotor core portions 13 in the axial direction, the plurality of conductor bars 16 on the same side protrude from each other by the same length. Further, the plurality of conductor bars 16 are electrically and mechanically coupled to each other by electrically and mechanically coupling the ends of the plurality of conductor bars 16 to the annular short-circuit ring 17. While the material of the rotor core portion 13 is steel or low alloy steel, the conductor bar 16 and the short-circuit ring 17 are made of a material having a higher conductivity than the rotor core portion 13 such as copper or aluminum. It is used.
 固定子20は、固定子鉄心21および複数の固定子巻線24を有する。固定子鉄心21は、塊状回転子10の回転子鉄心部13の径方向外側に、環状の空隙25を介して設けられている。固定子鉄心21は、円筒状であり、固定子鉄心21の内側表面近傍を固定子巻線24が貫通している。 The stator 20 has a stator core 21 and a plurality of stator windings 24. The stator core 21 is provided on the radial outer side of the rotor core portion 13 of the massive rotor 10 via an annular gap 25. The stator core 21 has a cylindrical shape, and the stator winding 24 penetrates the vicinity of the inner surface of the stator core 21.
 フレーム40は、固定子20および回転子鉄心部13を収納する。フレーム40の軸方向の両端には、軸受ブラケット35がそれぞれ設けられている。軸受ブラケット35は、それぞれ軸受30を静止支持している。 The frame 40 houses the stator 20 and the rotor core portion 13. Bearing brackets 35 are provided at both ends of the frame 40 in the axial direction. Each of the bearing brackets 35 statically supports the bearing 30.
 フレーム40の上方には、冷却器51が設けられ、冷却器カバー52に収納されている。冷却器カバー52は、フレーム40および2つの軸受ブラケット35とともに閉空間61を形成している。閉空間61内は、空気などの冷却用気体で満たされており、冷却用気体は内扇18により閉空間61内を循環する。閉空間61を構成する冷却器カバー52内の空間とフレーム40内の空間とは、固定子20の上方に形成された冷却器入口開口62と、それぞれの内扇18の上方に形成された冷却器出口開口63とを介して連通している。 A cooler 51 is provided above the frame 40 and is housed in the cooler cover 52. The cooler cover 52 forms a closed space 61 together with the frame 40 and the two bearing brackets 35. The inside of the closed space 61 is filled with a cooling gas such as air, and the cooling gas circulates in the closed space 61 by the inner fan 18. The space inside the cooler cover 52 and the space inside the frame 40 constituting the closed space 61 are the cooler inlet opening 62 formed above the stator 20 and the cooling formed above the respective inner fans 18. It communicates with the vessel outlet opening 63.
 図2は、実施形態に係るかご形誘導回転電機の塊状回転子10および固定子スロットを示す横断面図である。 FIG. 2 is a cross-sectional view showing the massive rotor 10 and the stator slot of the squirrel-cage induction rotary electric machine according to the embodiment.
 回転子鉄心部13の径方向の表面には、周方向に互いに間隔をあけて配置されて軸方向に延びた幅dを有する複数の溝状の回転子スロット14が形成されている。それぞれの回転子スロット14内を導体バー16が貫通している。それぞれの回転子スロット14は、軸方向に延びて互いに対向し互いに平行な外側壁14a、内側壁14b、および径方向の最内壁14cを有する。最内壁14cは、回転子スロット14の横断面において、曲面状に形成されている。径方向には、それぞれの回転子スロット14は、内接円14dまでの深さに形成されている。 A plurality of groove-shaped rotor slots 14 having a width d extending in the axial direction are formed on the radial surface of the rotor core portion 13 so as to be spaced apart from each other in the circumferential direction. A conductor bar 16 penetrates through each rotor slot 14. Each rotor slot 14 has an outer wall 14a, an inner wall 14b, and a radial innermost wall 14c that extend axially and face each other and are parallel to each other. The innermost wall 14c is formed in a curved shape in the cross section of the rotor slot 14. In the radial direction, each rotor slot 14 is formed to a depth of up to the inscribed circle 14d.
 導体バー16と回転子スロット14のそれぞれの横断面の形状、寸法は互いにほぼ同一である。導体バー16は、軸方向に長い平板状である。導体バー16は、回転子スロット14の径方向の外側から回転子スロット14に嵌めこむことができる。導体バー16の回転子スロット14からの抜け止めのために、たとえば、導体バー16の外側壁14a、内側壁14bおよび最内壁14cに対向する部分を銀ロウ箔で巻いてから回転子スロット14の挿入し、溶かすことでよい。あるいは、導体バー16を回転子スロット14に挿入したのちに外側からTIG溶接を施したり、導体バー16と回転子スロット14とを圧接する方法をとってもよい。 The shapes and dimensions of the cross sections of the conductor bar 16 and the rotor slot 14 are almost the same as each other. The conductor bar 16 has a flat plate shape that is long in the axial direction. The conductor bar 16 can be fitted into the rotor slot 14 from the outside in the radial direction of the rotor slot 14. In order to prevent the conductor bar 16 from coming off from the rotor slot 14, for example, the portions of the conductor bar 16 facing the outer wall 14a, the inner side wall 14b, and the innermost wall 14c are wrapped with silver wax foil, and then the rotor slot 14 is used. It can be inserted and melted. Alternatively, a method may be adopted in which the conductor bar 16 is inserted into the rotor slot 14 and then TIG welding is performed from the outside, or the conductor bar 16 and the rotor slot 14 are pressed against each other.
 複数の導体バー16のそれぞれの径方向の外側端部は、回転子鉄心部13の径方向外側表面を包絡する円筒形の一部となるような形状、すなわち回転子鉄心部13の径方向外側表面と連続するような形状に形成されている。なお、これに限定されず、たとえば、導体バーの径方向外側の端部を導体バーの両面に垂直とするなどにより径方向外側が上記の円筒形より一部が径方向内側に後退している場合であってもよい。 The radial outer end of each of the plurality of conductor bars 16 has a shape that becomes a part of a cylindrical shape that wraps the radial outer surface of the rotor core portion 13, that is, the radial outer side of the rotor core portion 13. It is formed in a shape that is continuous with the surface. It should be noted that the present invention is not limited to this, and for example, the radial outer side is partially retracted radially inward from the above cylindrical shape by making the radial outer end of the conductor bar perpendicular to both sides of the conductor bar. It may be the case.
 なお、導体バー16は、回転子スロット14の径方向の外側から回転子スロット14に嵌めこむことができる場合を例にとって説明したが、回転子鉄心部13の軸方向端部から挿入することでもよい。この場合は、導体バー16を平板状ではなく、幅方向の途中に最大の厚みあるいは最小の厚みを設け、回転子スロット14の断面形状も導体バー16と嵌合する形状に形成することにより、遠心力に抗するようにしてもよい。 The conductor bar 16 has been described as an example in which the conductor bar 16 can be fitted into the rotor slot 14 from the outside in the radial direction of the rotor slot 14, but it can also be inserted from the axial end of the rotor core portion 13. good. In this case, the conductor bar 16 is not flat, but has a maximum thickness or a minimum thickness in the middle of the width direction, and the cross-sectional shape of the rotor slot 14 is also formed so as to fit with the conductor bar 16. It may be made to resist centrifugal force.
 回転子スロット14は、回転軸から径方向外側に向かう方向に沿って形成されてはおらず、周方向に傾きをもっている。回転子スロット14に収納されているそれぞれの導体バー16を、塊状回転子10の回転軸Zから見たときの周方向の角度を円周角Ψ1とする。また、導体バー16が存在しない周方向の領域を塊状回転子10の回転軸Zから見たときの周方向の角度を円周角Ψ2とする。 The rotor slot 14 is not formed along the direction outward from the rotation axis in the radial direction, but is inclined in the circumferential direction. The angle of each conductor bar 16 housed in the rotor slot 14 in the circumferential direction when viewed from the rotation axis Z of the massive rotor 10 is defined as the inscribed angle Ψ1. Further, the angle in the circumferential direction when the region in the circumferential direction in which the conductor bar 16 does not exist is viewed from the rotation axis Z of the massive rotor 10 is defined as the inscribed angle Ψ2.
 ここで、本実施形態における塊状回転子10においては、回転軸Zからみて、導体バー16の存在領域と不存在領域が、周方向に交互に配されており、この配置については、次のような特徴がある。 Here, in the massive rotor 10 of the present embodiment, the existing regions and the non-existing regions of the conductor bars 16 are alternately arranged in the circumferential direction when viewed from the rotation axis Z, and the arrangement is as follows. There are various characteristics.
 第1の特徴は、導体バー16が存在する周方向の領域においては、複数の導体バー16が互いに周方向に隣接していることである。それぞれの導体バー16の円周角Ψ1の領域は、互いに離れることなく、かつ、互いに重複しないように隣接している。すなわち、回転軸Zからみると、互いに隣接する導体バー16は、円周角Ψ1ごとに順次配列されている。 The first feature is that a plurality of conductor bars 16 are adjacent to each other in the circumferential direction in the circumferential region where the conductor bars 16 exist. The regions of the inscribed angle Ψ1 of each conductor bar 16 are adjacent to each other so as not to be separated from each other and to overlap each other. That is, when viewed from the rotation axis Z, the conductor bars 16 adjacent to each other are sequentially arranged for each inscribed angle Ψ1.
 第2の特徴は、次の式(1)が成立することである。 The second feature is that the following equation (1) holds.
    円周角Ψ1>円周角Ψ2   …(1)
 なお、上記の第2の特徴があれば、第1の特徴についての条件は緩和してもよい。すなわち、互いに隣接する導体バー16の円周角Ψ1の領域は、互いに一部重複していてもよい。
Inscribed angle Ψ1> Inscribed angle Ψ2… (1)
If there is the above-mentioned second feature, the condition for the first feature may be relaxed. That is, the regions of the inscribed angle Ψ1 of the conductor bars 16 adjacent to each other may partially overlap each other.
 回転子スロット14が形成されている結果、周方向に互いに間隔をあけて配置されて回転子スロット14と同数の回転子ティース15が形成されている。 As a result of forming the rotor slots 14, the same number of rotor teeth 15 as the rotor slots 14 are formed so as to be arranged at intervals in the circumferential direction.
 空隙25を介して径方向外側に配された固定子鉄心21の径方向内側表面には、周方向に互いに間隔をあけて配置されて軸方向に延びた複数の溝状の固定子スロット22が形成されている。その結果、周方向に互いに間隔をあけて配置されて、固定子スロット22と同数の固定子ティース23が形成されている。固定子スロット22の互いに向かい合う側壁の中心となる仮想面22sは、塊状回転子10の回転軸Zを通るように、固定子ティース23の方向が形成されている。それぞれの固定子スロット22を固定子巻線導体24aが貫通し、固定子巻線導体24aは、固定子巻線24を形成する。 On the radial inner surface of the stator core 21 arranged radially outward through the gap 25, a plurality of groove-shaped stator slots 22 arranged at intervals in the circumferential direction and extending in the axial direction are provided. It is formed. As a result, the same number of stator teeth 23 as the stator slots 22 are formed so as to be spaced apart from each other in the circumferential direction. The direction of the stator teeth 23 is formed so that the virtual surface 22s, which is the center of the side walls of the stator slots 22 facing each other, passes through the rotation axis Z of the massive rotor 10. The stator winding conductor 24a penetrates each stator slot 22, and the stator winding conductor 24a forms the stator winding 24.
 図3は、実施形態に係るかご形誘導回転電機の設計方法の手順を示すフロー図である。 FIG. 3 is a flow chart showing the procedure of the design method of the squirrel-cage induction rotary electric machine according to the embodiment.
 かご形誘導回転電機の設計方法は、稠密形回転子90の設計段階S100と、塊状回転子10の設計段階S200とを有する。ここで、稠密形回転子90とは、本実施形態に係る塊状回転子10を導く過程における中間段階の姿を言う。 The design method of the cage-type induction rotary electric machine includes a design stage S100 of the dense rotor 90 and a design stage S200 of the massive rotor 10. Here, the dense rotor 90 refers to an intermediate stage in the process of deriving the massive rotor 10 according to the present embodiment.
 図4は、稠密形回転子90(図9)の設計段階の手順を示すフロー図である。すなわち、回転子スロット14の周方向のピッチと傾き角度Φ(以下、回転子スロット傾き角度Φ)の最適な範囲を評価し、稠密形回転子90を得るための設計方法の手順を示している。 FIG. 4 is a flow chart showing the procedure at the design stage of the dense rotor 90 (FIG. 9). That is, the procedure of the design method for evaluating the optimum range of the circumferential pitch and the tilt angle Φ (hereinafter, the rotor slot tilt angle Φ) of the rotor slot 14 and obtaining the dense rotor 90 is shown. ..
 まず、固定子スロット22の寸法、周方向のピッチなど、固定子スロット22の条件を設定する(ステップS101)。なお、固定子スロット22の条件の設定に合わせて、これを貫通する固定子巻線導体24aの寸法も設定される。 First, the conditions of the stator slot 22 such as the dimensions of the stator slot 22 and the pitch in the circumferential direction are set (step S101). The dimensions of the stator winding conductor 24a penetrating the stator slot 22 are also set according to the setting of the conditions.
 次に、回転子スロット14の寸法、周方向のピッチなど、回転子スロット14の条件を設定する(ステップS102)。 Next, the conditions of the rotor slot 14 such as the dimensions of the rotor slot 14 and the pitch in the circumferential direction are set (step S102).
 次に、回転子スロット傾き角度Φを設定する(ステップS103)。回転子スロット14の条件の設定に合わせて、これを貫通する導体バー16の寸法、形状も設定される。 Next, the rotor slot tilt angle Φ is set (step S103). The dimensions and shape of the conductor bar 16 penetrating the rotor slot 14 are also set according to the setting of the conditions.
 なお、回転子スロット14および固定子スロット22に関する条件を除いて、稠密形回転子90、固定子20および空隙25の各寸法などの条件は予め設定されているものとする。 Except for the conditions related to the rotor slot 14 and the stator slot 22, the conditions such as the dimensions of the dense rotor 90, the stator 20 and the gap 25 are assumed to be set in advance.
 以上の結果、回転子スロット14および固定子スロット22に関する条件が決まるので、次に、稠密形回転子90の回転子鉄心部13における損失を算出する(ステップS104)。続いて、算出した損失に基づいて、回転子鉄心部13の温度分布を算出する(ステップS105)。 As a result of the above, the conditions for the rotor slot 14 and the stator slot 22 are determined. Next, the loss in the rotor core portion 13 of the dense rotor 90 is calculated (step S104). Subsequently, the temperature distribution of the rotor core portion 13 is calculated based on the calculated loss (step S105).
 また、ステップS104、S105による温度計算に並行して、回転子鉄心部13の応力分布を算出する(ステップS106)。 Further, in parallel with the temperature calculation in steps S104 and S105, the stress distribution of the rotor core portion 13 is calculated (step S106).
 次に、回転子スロット傾き角度Φについて検討すべき範囲にわたってステップS106までの手順が終了したか否かを判定する(ステップS107)。ここで、回転子スロット傾き角度Φについて検討すべき範囲を、ΦsminからΦsmaxの範囲であるとすると、Φsminは0度より大きい角度であり、Φsmaxは90度より小さい角度である。具体的には、たとえば、Φsminを10度、Φsmaxを80度等のように、ある程度広い範囲としてもよいし、さらに範囲を狭くすることでもよい。 Next, it is determined whether or not the procedure up to step S106 has been completed over the range to be examined for the rotor slot inclination angle Φ (step S107). Here, assuming that the range to be examined for the rotor slot inclination angle Φ is the range from Φsmin to Φsmax, Φsmin is an angle larger than 0 degrees and Φsmax is an angle smaller than 90 degrees. Specifically, for example, Φsmin may be 10 degrees, Φsmax may be 80 degrees, and the like may be a wide range to some extent, or the range may be further narrowed.
 回転子スロット傾き角度Φの検討すべき範囲にわたってステップS106までの手順が終了していないと判定された場合(ステップS107 NO)には、ステップS103に戻り、回転子スロット傾き角度Φを変更してステップS106までを実施する。 If it is determined that the procedure up to step S106 has not been completed over the range to be examined for the rotor slot tilt angle Φ (step S107 NO), the process returns to step S103 and the rotor slot tilt angle Φ is changed. The steps up to step S106 are carried out.
 回転子スロット傾き角度Φについて検討すべき範囲にわたってステップS106までの手順が終了したと判定された場合(ステップS107 YES)には、次に、回転子スロット14のピッチについての検討すべき範囲にわたってステップS106までの手順が終了したか否かを判定する(ステップS108)。回転子スロット14のピッチについての検討すべき範囲にわたってステップS106までの手順が終了していないと判定された場合(ステップS108 NO)には、ステップS102に戻り、回転子スロット14のピッチを変更してステップS106までを実施する。 If it is determined that the procedure up to step S106 has been completed over the range to be examined for the rotor slot tilt angle Φ (YES in step S107), then the step is performed over the range to be examined for the pitch of the rotor slot 14. It is determined whether or not the procedure up to S106 is completed (step S108). If it is determined that the procedure up to step S106 has not been completed over the range to be examined regarding the pitch of the rotor slot 14 (step S108 NO), the process returns to step S102 and the pitch of the rotor slot 14 is changed. Step S106 is carried out.
 回転子スロット14のピッチについての検討すべき範囲にわたってステップS106までの手順が終了したと判定された場合(ステップS108 YES)には、次のステップS110に移行する。 When it is determined that the procedure up to step S106 has been completed over the range to be examined for the pitch of the rotor slot 14 (step S108 YES), the process proceeds to the next step S110.
 また、ステップS110の段階までに、評価関数を決定する(ステップS109)。評価関数は、たとえば、回転子スロット数nに対して発生応力および損失の全体を最小化するための後述する式(3)または式(4)で示すような評価関数PI(n)、あるいは、発生応力および損失の全体を最小化するための後述する式(5)で示すような評価関数PI(Φ,n)などである。 Further, the evaluation function is determined by the stage of step S110 (step S109). The evaluation function is, for example, the evaluation function PI (n) as shown in the following equation (3) or equation (4) for minimizing the total generated stress and loss with respect to the number of rotor slots n, or the evaluation function. It is an evaluation function PI (Φ, n 0 ) as shown by the equation (5) described later for minimizing the total generated stress and loss.
 次に、ステップS109において設定された評価関数に基づいて、回転子スロット14の回転子スロット数nおよび回転子スロット傾き角度Φおよびを決定する(ステップS110)。 Next, the number of rotor slots n and the rotor slot tilt angle Φ of the rotor slot 14 are determined based on the evaluation function set in step S109 (step S110).
 以上、図4に示す稠密形回転子90の設計方法の手順を一通り説明したが、ステップS102ないしステップS108の手順は、所定の回転子スロット傾き角度Φの検討範囲、および回転子スロット14のピッチあるいはこれに対応する回転子スロット数nの検討範囲でのサーベイである。実際に、回転子スロット14の回転子スロット数nおよび回転子スロット傾き角度Φの決定は、サーベイ結果に基づいて、ステップS109およびステップS110において行う。この段階での内容について、以下に説明する。 The procedure of the design method of the dense rotor 90 shown in FIG. 4 has been described above, but the procedure of steps S102 to S108 includes the examination range of the predetermined rotor slot inclination angle Φ and the rotor slot 14. This is a survey within the examination range of the pitch or the number of rotor slots n corresponding thereto. Actually, the number of rotor slots n and the rotor slot inclination angle Φ of the rotor slot 14 are determined in steps S109 and S110 based on the survey results. The contents at this stage will be described below.
 図5は、稠密形回転子90における回転子スロット数と発生応力および損失との関係の試算例を示すグラフである。横軸は、基準の回転子スロット数nに対する回転子スロット数nの比を表す。また、縦軸は、基準の回転子スロット数nにおける発生応力を基準とした発生応力の比(相対値)、および基準の回転子スロット数nにおける損失を基準として損失の比(相対値)を表す。 FIG. 5 is a graph showing a trial calculation example of the relationship between the number of rotor slots and the generated stress and loss in the dense rotor 90. The horizontal axis represents the ratio of the number of rotor slots n to the reference number of rotor slots n 0. The vertical axis is the ratio of generated stress based on the generated stress at the reference number of rotor slots n 0 (relative value) and the ratio of loss based on the loss at the reference number of rotor slots n 0 (relative value). ).
 点線で示す曲線は、回転子スロット14のスロット幅dを、回転子スロット14のスロット数に逆比例して変化させる場合を示す。また、2点鎖線で示す曲線は、回転子スロット14のスロット幅dを固定した場合を示す。ここで、発生応力は、応力分布上最大となる、回転子ティース15の付け根部における応力を示す。 The curve shown by the dotted line shows the case where the slot width d of the rotor slot 14 is changed in inverse proportion to the number of slots of the rotor slot 14. The curve shown by the alternate long and short dash line shows the case where the slot width d of the rotor slot 14 is fixed. Here, the generated stress indicates the stress at the base of the rotor teeth 15, which is the maximum in the stress distribution.
 図5に示すように、回転子スロット14のスロット数を増やすと、スロット幅dをスロット数の増加分に応じて減らしたとしても、増加の程度は緩和されるが、応力は増加している。 As shown in FIG. 5, when the number of slots of the rotor slot 14 is increased, even if the slot width d is reduced according to the increase in the number of slots, the degree of increase is alleviated, but the stress is increased. ..
 実線で示す曲線は、基準の回転子スロット数nにおける損失を基準とした損失の比(相対値)を表す。図5に示すように、回転子スロット14の数を増加させるに伴い、損失は、減少する。この点について、図6ないし図8を用いて、以下に補足する。 The curve shown by the solid line represents the ratio (relative value) of the loss based on the loss at the reference rotor slot number n 0. As shown in FIG. 5, the loss decreases as the number of rotor slots 14 increases. This point will be supplemented below with reference to FIGS. 6 to 8.
 図6は、かご形誘導回転電機の固定子スロットと回転子スロットとの関係を説明するための第1の概念的部横断面図、図7は、第2の概念的部横断面図、図8は、第3の概念的部横断面図である。なお、いずれにおいても、固定子巻線導体24a(図2)の表示を省略している。また、それぞれにおいて破線で示す曲線は、固定子巻線24(図1)により生ずる磁束の分布のある瞬間の状態を概念的に示している。 FIG. 6 is a cross-sectional view of the first conceptual part for explaining the relationship between the stator slot and the rotor slot of the cage-shaped induction rotary electric machine, and FIG. 7 is a cross-sectional view of the second conceptual part. 8 is a cross-sectional view of the third conceptual part. In each case, the display of the stator winding conductor 24a (FIG. 2) is omitted. Further, the curved line shown by the broken line in each conceptually shows the state at a certain moment of the distribution of the magnetic flux generated by the stator winding 24 (FIG. 1).
 いま、回転子スロット14の数をn個、固定子スロット22の数をNとする。図6は、回転子スロット数nが固定子スロット数Nと等しい場合を示している。固定子巻線24を流れる電流により形成された磁束の周方向の強度分布(周方向磁束強度分布)は、固定子スロット22の位置の分布に対応した位相のピッチ、言い換えれば周期となる。したがって、たとえば、図6の破線で示す周方向磁束強度分布が生じている場合、固定子巻線24(図1)を流れる電流により形成された磁束に対応するのは、導体バー16の回転子鉄心部13の表面から遠い部分となる。固定子巻線24による磁束は、回転子鉄心部13の径方向内側になるほど弱くなることから、固定子巻線24による磁束と導体バー16との相互作用が弱くなり、かご形誘導回転電機100の効率の低下をもたらす。 Now, let n be the number of rotor slots 14 and N be the number of stator slots 22. FIG. 6 shows a case where the number of rotor slots n is equal to the number of stator slots N. The circumferential intensity distribution (circumferential magnetic flux intensity distribution) of the magnetic flux formed by the current flowing through the stator winding 24 is a phase pitch corresponding to the distribution of the positions of the stator slots 22, in other words, a period. Therefore, for example, when the circumferential magnetic flux intensity distribution shown by the broken line in FIG. 6 occurs, it is the rotor of the conductor bar 16 that corresponds to the magnetic flux formed by the current flowing through the stator winding 24 (FIG. 1). It is a portion far from the surface of the iron core portion 13. Since the magnetic flux due to the stator winding 24 becomes weaker toward the inner side in the radial direction of the rotor core portion 13, the interaction between the magnetic flux due to the stator winding 24 and the conductor bar 16 becomes weaker, and the cage-shaped induction rotary electric machine 100 Causes a decrease in efficiency.
 回転子スロット数nが固定子スロット数Nより小さな場合は、さらに磁束と導体バー16との相互作用が弱い状態の時間が増大する。 When the number of rotor slots n is smaller than the number of stator slots N, the time in which the interaction between the magnetic flux and the conductor bar 16 is weak further increases.
 図7の第2の概念図では、回転子スロット数nが固定子スロット数Nより大きな場合を示している。この場合は、回転子スロット14の配列のピッチは、固定子巻線24を流れる電流により生ずる周方向磁束の強度分布の周期、すなわち位相のピッチとは異なっている。したがって、必ず、磁束が、回転子鉄心部13の表面から近い部分の導体バー16に浸透する状態の時間、すなわち、磁束と導体バー16との相互作用が強い状態の時間が増加する。 The second conceptual diagram of FIG. 7 shows a case where the number of rotor slots n is larger than the number of stator slots N. In this case, the pitch of the arrangement of the rotor slots 14 is different from the period of the intensity distribution of the circumferential magnetic flux generated by the current flowing through the stator winding 24, that is, the pitch of the phase. Therefore, the time in which the magnetic flux permeates the conductor bar 16 in the portion close to the surface of the rotor core portion 13, that is, the time in which the interaction between the magnetic flux and the conductor bar 16 is strong always increases.
 図8の第3の概念図では、回転子スロット数nがさらに増加し、固定子スロット数Nの2倍となった場合を示している。この場合は、いずれの位相においても常に磁束が、導体バー16の回転子鉄心部13の表面から近い部分に浸透し、磁束と導体バー16との相互作用が強い状態が継続する。 The third conceptual diagram of FIG. 8 shows a case where the number of rotor slots n is further increased and becomes twice the number of stator slots N. In this case, the magnetic flux always permeates the portion of the conductor bar 16 close to the surface of the rotor core portion 13 in any phase, and the interaction between the magnetic flux and the conductor bar 16 continues to be strong.
 このように、回転子スロット14について回転子スロット数nを、固定子スロット22についての固定子スロット数Nと等しい場合から、2倍の場合に増加させると、固定子巻線24(図1)により生ずる磁束と稠密形回転子90の導体バー16との結合は強くなると考えられる。これは、損失を低減する要因となる。 As described above, when the number of rotor slots n for the rotor slot 14 is increased from the case where it is equal to the number of stator slots N for the stator slot 22 to the case where it is doubled, the stator winding 24 (FIG. 1) It is considered that the coupling between the magnetic flux generated by the above and the conductor bar 16 of the dense rotor 90 becomes stronger. This is a factor in reducing the loss.
 以上のことから、損失については、回転子スロット数nの方が固定子スロット数Nより大きい場合が好ましく、次の式(2)の条件が成立するように設定する。 From the above, regarding the loss, it is preferable that the number of rotor slots n is larger than the number of stator slots N, and the condition of the following equation (2) is set to be satisfied.
     n/N ≧ 1.1           ・・・(2)
 以上に述べたように、回転子スロット14の回転子スロット数nの増加に対して、発生応力は増加する傾向を示す、一方、損失は減少する傾向を示す。すなわち、回転子スロット14のスロット数の増加に対して、発生応力と損失は互いに逆の傾向の特性を示す。
n / N ≧ 1.1 ・ ・ ・ (2)
As described above, the generated stress tends to increase as the number of rotor slots n of the rotor slots 14 increases, while the loss tends to decrease. That is, the generated stress and the loss tend to be opposite to each other as the number of slots of the rotor slot 14 increases.
 発生応力と損失は、互いに異なる特性値ではあるが、いずれもマイナスの要因である点は一致している。したがって、これらの2つのマイナス要因を、互いに共通の評価基準に変換、すなわち互いに共通化して、全体としてマイナスを最小化する。 Although the generated stress and loss are characteristic values that differ from each other, they all agree that they are negative factors. Therefore, these two negative factors are converted into evaluation criteria common to each other, that is, they are shared with each other to minimize the negative factors as a whole.
 今、回転子スロット数がnのときの発生応力をS、損失をLとする。ここで、nは、任意である。また、回転子スロット数がnのときの発生応力をS(n)、損失をL(n)とする。 Now, let S 0 be the stress generated when the number of rotor slots is n 0 , and let L 0 be the loss. Here, n 0 is arbitrary. Further, the stress generated when the number of rotor slots is n is S (n), and the loss is L (n).
 このとき、たとえば次の式(3)に示す第1の評価関数PIn(n)をnに対して最小にすることにより、発生応力および損失の全体を最小化する回転子スロット数を得ることができる。 At this time, for example, by minimizing the first evaluation function PIN (n) shown in the following equation (3) with respect to n, it is possible to obtain the number of rotor slots that minimizes the total generated stress and loss. can.
 PIn(n)=[S(n)/S]+p・[L(n)/L]      …(3)
 あるいは、第1の評価関数PIn(n)として次の式(4)に示すものを使用してもよい。
PIN (n) = [S (n) / S 0 ] + p · [L (n) / L 0 ] ... (3)
Alternatively, the first evaluation function PIN (n) shown in the following equation (4) may be used.
 PIn(n)=[S(n)/S]・[L(n)/L]      …(4)
 式(3)および式(4)におけるSおよびLは、任意の基準値である。また、定数pは、発生応力S(n)による不利益と、損失L(n)による不利益の相互の重みを考慮するための定数であり、対象とする回転電機の目的、あるいは設計余裕等を考慮して設定する。
PIN (n) = [S (n) / S 0 ] · [L (n) / L 0 ] p ... (4)
S 0 and L 0 in the formulas (3) and (4) are arbitrary reference values. Further, the constant p is a constant for considering the mutual weight of the disadvantage due to the generated stress S (n) and the disadvantage due to the loss L (n), and is the purpose of the target rotating electric machine, the design margin, etc. Set in consideration of.
 このように、第1ステップとしての回転子スロット数nに対する評価については、上記の式(3)あるいは式(4)が最小となるような特定の値を算出する。この場合、次の第2ステップにおける回転子スロット傾き角度Φ(図9)の決定プロセスを考慮すると、回転子スロット数nおよび回転子スロット傾き角度Φの組合せとしての最適条件に一致した回転子スロット数を与えるとは限らない。したがって、回転子スロット数nについては、十分な幅をもって、選択する。 As described above, for the evaluation of the number of rotor slots n as the first step, a specific value is calculated so that the above equation (3) or equation (4) is minimized. In this case, considering the process of determining the rotor slot tilt angle Φ (FIG. 9) in the next second step, the rotor slots that match the optimum conditions as a combination of the number of rotor slots n and the rotor slot tilt angle Φ. It does not always give a number. Therefore, the number of rotor slots n is selected with a sufficient width.
 図9は、実施形態に係る稠密形回転子90の回転子スロット傾き角度Φを説明する部分横断面図である。今、同一の回転子スロット14にあって、互いに対向し互いに平行な外側壁14aと内側壁14bとの中間に位置する仮想面14sを考える。また、回転子鉄心部13の径方向の表面を曲面Sfとする。また、曲面Sfと仮想面14sとの交線を交線L0とする。さらに、回転子回転軸11aおよび交線L0を通る平面を平面Pとする。 FIG. 9 is a partial cross-sectional view illustrating the rotor slot inclination angle Φ of the dense rotor 90 according to the embodiment. Now consider a virtual surface 14s located in the same rotor slot 14 between the outer wall 14a and the inner wall 14b facing each other and parallel to each other. Further, the surface of the rotor core portion 13 in the radial direction is defined as a curved surface Sf. Further, the line of intersection between the curved surface Sf and the virtual surface 14s is defined as the line of intersection L0. Further, a plane passing through the rotor rotation shaft 11a and the line of intersection L0 is defined as a plane P.
 この結果、交線L0を仮想面14sと平面Pの2つの平面が通ることになる。この2つの平面がなす周方向の交差角度を回転子スロット傾き角度Φとする。ただし、0度<回転子スロット傾き角度Φ<90度である。また、互いに隣接する交線L1、交線L2を通る平面P1と平面P2とのなす角をピッチ角度ΔΘrとする。ただし、0度<ピッチ角度ΔΘr<90度である。 As a result, two planes, the virtual plane 14s and the plane P, pass through the line of intersection L0. The angle of intersection of these two planes in the circumferential direction is defined as the rotor slot tilt angle Φ. However, 0 degree <rotor slot tilt angle Φ <90 degree. Further, the angle formed by the plane P1 and the plane P2 passing through the line of intersection L1 and the line of intersection L2 adjacent to each other is defined as the pitch angle ΔΘr. However, 0 degree <pitch angle ΔΘr <90 degree.
 以上のように、本実施形態によるかご形誘導回転電機100の稠密形回転子90においては、稠密形回転子90の回転子鉄心部13の表面に形成されている回転子スロット14が周方向に傾いている。また、回転子スロット14の数の固定子スロット22の数に対する比率が1.1より大きい。 As described above, in the dense rotor 90 of the cage-shaped induction rotary electric machine 100 according to the present embodiment, the rotor slot 14 formed on the surface of the rotor core portion 13 of the dense rotor 90 is located in the circumferential direction. It is tilted. Further, the ratio of the number of rotor slots 14 to the number of stator slots 22 is larger than 1.1.
 図10は、稠密形回転子の効果を説明する概念的な部分横断面図である。図の左側の2つは、本実施形態による回転子鉄心部13の回転子スロット14および導体バー16である。また、右側に、比較のために従来の回転子スロットおよび本実施形態の導体バーと同じ断面積の導体バーを破線で示している。 FIG. 10 is a conceptual partial cross-sectional view illustrating the effect of the dense rotor. The two on the left side of the figure are the rotor slot 14 and the conductor bar 16 of the rotor core portion 13 according to the present embodiment. Further, on the right side, for comparison, a conventional rotor slot and a conductor bar having the same cross-sectional area as the conductor bar of the present embodiment are shown by broken lines.
 本実施形態における回転子スロット14の内接円14dの半径は、従来の回転子スロットの内接円Si0の半径よりも大きい。すなわち、従来の回転子スロットの径方向の幅ΔR0に対して本実施形態による回転子スロット14の径方向の幅ΔR1は小さい。したがって、各導体バー16のたとえば中心位置などが全体として回転子鉄心部13の表面に近づいており、各導体バー16内の全体的な位置(中心位置など)と固定子巻線24との間隔が相対的に短くなっている。ΔR1は、ほぼ、ΔR0・cosΦである。 The radius of the inscribed circle 14d of the rotor slot 14 in the present embodiment is larger than the radius of the inscribed circle Si0 of the conventional rotor slot. That is, the radial width ΔR1 of the rotor slot 14 according to the present embodiment is smaller than the radial width ΔR0 of the conventional rotor slot. Therefore, for example, the center position of each conductor bar 16 is close to the surface of the rotor core portion 13 as a whole, and the distance between the overall position (center position, etc.) in each conductor bar 16 and the stator winding 24. Is relatively short. ΔR1 is approximately ΔR0 · cosΦ.
 一般的に、鉄損は、導体バー16に比べて相対的に導電率の低い回転子鉄心部13において生じ、また、誘導電流は、特に回転子鉄心部13の表面に流れるため、回転子鉄心部13の表面の温度が上昇する傾向がある。 In general, iron loss occurs in the rotor core portion 13 having a relatively low conductivity as compared with the conductor bar 16, and the induced current flows particularly to the surface of the rotor core portion 13, so that the rotor core portion 13 has an iron loss. The temperature of the surface of the portion 13 tends to rise.
 導体バー16の全体的位置と固定子巻線24との間隔が相対的に短くなることは、固定子鉄心21側と導体バー16とを透過する磁束による結合力を増加させ、効率の向上をもたらす。この結果、損失が減少する。したがって、本実施形態における回転子鉄心部13の表面温度Tsの上昇は、従来に比べて低く抑えられる。回転子スロット傾き角度Φが大きくなるほど、この効果は大きくなる。 The relatively short distance between the overall position of the conductor bar 16 and the stator winding 24 increases the coupling force due to the magnetic flux passing through the stator core 21 side and the conductor bar 16 and improves efficiency. Bring. As a result, the loss is reduced. Therefore, the increase in the surface temperature Ts of the rotor core portion 13 in the present embodiment can be suppressed to be lower than in the conventional case. The larger the rotor slot tilt angle Φ, the greater this effect.
 この効果を確保するための目安としては、固定子巻線24を含めて評価する必要があるが、回転子スロット14の径方向の幅の比が、たとえば、少なくとも、5%ないし10%程度は減少している必要があると考えられる。この場合、cosΦの値が0.9ないし0.95、すなわち、Φは、18度ないし26度である。したがって、少なくとも、回転子スロット傾き角度Φは少なくとも、20度程度は必要であると考えられる。 As a guideline for ensuring this effect, it is necessary to evaluate including the stator winding 24, but the ratio of the radial widths of the rotor slots 14 is, for example, at least about 5% to 10%. It seems that it needs to be reduced. In this case, the value of cosΦ is 0.9 to 0.95, that is, Φ is 18 degrees to 26 degrees. Therefore, it is considered that at least the rotor slot inclination angle Φ needs to be at least about 20 degrees.
 また、20%ないし30%程度減少していれば、十分に効果があると考えられる。この場合、ΔR1=ΔR0cosΦから、cosΦの値が0.7ないし0.8、すなわち、Φは、37度ないし46度である。したがって、好ましい回転子スロット傾き角度Φは、40度ないし45度程度であると考えられる。 Also, if it is reduced by about 20% to 30%, it is considered to be sufficiently effective. In this case, from ΔR1 = ΔR0cosΦ, the value of cosΦ is 0.7 to 0.8, that is, Φ is 37 degrees to 46 degrees. Therefore, it is considered that the preferable rotor slot inclination angle Φ is about 40 degrees to 45 degrees.
 図10において、導体バー16の断面における重心Mに働く遠心力Fは、導体バー16を回転子スロット14に沿って引き出そうとする方向の分力Fhと、それに垂直で回転子スロット14の外側壁14aに働く方向の分力Fwとに分解される。 In FIG. 10, the centrifugal force F acting on the center of gravity M in the cross section of the conductor bar 16 is a component force Fh in the direction of pulling out the conductor bar 16 along the rotor slot 14, and the outer wall of the rotor slot 14 perpendicular to the component force Fh. It is decomposed into a component force Fw in the direction of acting on 14a.
 分力Fhの値は、FcosΦであり遠心力Fの値に比べて小さい。したがって、従来と同程度の飛び出し防止策を行っている場合には、(F-FcosΦ)の分は飛び出し防止に関する余裕となる。さらには、従来ではたとえば圧接などで大掛かりな設備が必要だったものが、それほど大掛かりな設備を要しない。たとえばろう付けなどの飛び出し防止策で従来と同程度の飛び出し防止に関する余裕が確保できるという場合も生ずる。 The value of the component force Fh is FcosΦ, which is smaller than the value of the centrifugal force F. Therefore, when the same level of pop-out prevention measures as before is taken, the amount of (F-FcosΦ) is a margin for pop-out prevention. Furthermore, what used to require large-scale equipment such as pressure welding does not require such large-scale equipment. For example, there may be cases where the same level of margin for pop-out prevention as before can be secured by measures to prevent pop-out such as brazing.
 一方、外側壁14aに働く方向の分力Fwの値は、FsinΦであり、回転子ティース15を周方向に、回転子ティース15が径方向に沿うような向きに曲げるように作用する。この場合、回転子ティース15についての応力分布は、回転子ティース15の付け根部15cにおいて最大値Smaxを生ずる。したがって、最大値Smaxが、許容応力に対して十分に小さい範囲内の回転子スロット傾き角度とする。 On the other hand, the value of the component force Fw in the direction acting on the outer wall 14a is FsinΦ, and acts so as to bend the rotor teeth 15 in the circumferential direction and the rotor teeth 15 in the radial direction. In this case, the stress distribution for the rotor teeth 15 produces a maximum value Smax at the base 15c of the rotor teeth 15. Therefore, the maximum value Smax is set to the rotor slot tilt angle within a range sufficiently smaller than the allowable stress.
 以上のように、本実施形態による稠密形回転子90においては、回転子スロット14を周方向に傾けることにより、導体バー16の回転子スロット14からの抜け止めに関する条件を緩和しながら、回転子鉄心部13の表面温度上昇の要因となる損失Lを抑制することができる。 As described above, in the dense rotor 90 according to the present embodiment, by tilting the rotor slot 14 in the circumferential direction, the rotor is relaxed while relaxing the conditions for preventing the conductor bar 16 from coming off from the rotor slot 14. The loss L, which causes an increase in the surface temperature of the iron core portion 13, can be suppressed.
 さらに、式(2)で説明したように、回転子スロット14の数を、固定子スロット22の数の1.1倍より大きい数とすることによって、さらに効率が向上する。このため、回転子鉄心部13の表面温度Tsの上昇をさらに抑制することができる。 Further, as described in the equation (2), the efficiency is further improved by setting the number of the rotor slots 14 to be larger than 1.1 times the number of the stator slots 22. Therefore, it is possible to further suppress an increase in the surface temperature Ts of the rotor core portion 13.
 図11は、実施形態に係る稠密形回転子90の回転子スロット傾き角度と評価関数値との関係を説明するための概念的グラフである。横軸は、回転子スロット傾き角度Φである。縦軸は、曲線A0で示す損失L(Φ,n)の評価値、曲線B0で示す発生応力S(Φ,n)、およびこれらを総合した曲線C0で示す不利益評価関数PIΦ(Φ,n)の関数値である。 FIG. 11 is a conceptual graph for explaining the relationship between the rotor slot tilt angle of the dense rotor 90 and the evaluation function value according to the embodiment. The horizontal axis is the rotor slot tilt angle Φ. The vertical axis shows the evaluation value of the loss L (Φ, n 0 ) shown by the curve A0, the generated stress S (Φ, n 0 ) shown by the curve B0, and the disadvantage evaluation function PIΦ (Φ) shown by the combined curve C0. , N 0 ) function value.
 発生応力S(Φ,n)および損失L(Φ,n)は、回転子スロット数nの場合における回転子スロット傾き角度Φに対する値である。 The generated stress S (Φ, n 0 ) and the loss L (Φ, n 0 ) are values with respect to the rotor slot inclination angle Φ when the number of rotor slots is n 0.
 不利益評価関数PIΦ(Φ,n)は、次の式(5)で表される。 The disadvantage evaluation function PIΦ (Φ, n 0 ) is expressed by the following equation (5).
 PIΦ(Φ,n)=g[S(Φ,n),L(Φ,n)]      …(5)
 ここで、nは、第1ステップ、すなわち回転子スロット数nに対する式(3)あるいは式(4)等の最小化のステップにおいて求められた回転子スロット数nの範囲の中の値であり、パラメータとして扱われる。すなわち、本第2ステップ、すなわち回転子スロット傾き角度Φに対する不利益評価関数最小化のステップでは、それぞれ一定の値として扱われる。この結果、それぞれの回転子スロット数nについて不利益評価関数PIΦ(Φ,n)を最小にする(回転子スロット数n)と(回転子スロット傾き角度Φ)の組合せが得られる。これらの組合せの中で不利益評価関数PIΦ(Φ,n)の値が最小となるような組み合わせが、最終的に決定すべき(回転子スロット数n)と(回転子スロット傾き角度Φ)となる。
PIΦ (Φ, n 0 ) = g [S (Φ, n 0 ), L (Φ, n 0 )]… (5)
Here, n 0 is a value within the range of the number of rotor slots n obtained in the first step, that is, the minimization step of the equation (3) or the equation (4) with respect to the number of rotor slots n. , Treated as a parameter. That is, in the second step, that is, in the step of minimizing the disadvantage evaluation function with respect to the rotor slot inclination angle Φ, each is treated as a constant value. As a result, disadvantages evaluation function PIΦ (Φ, n 0) for each rotor slot number n 0 Kumiawase of minimizing (number rotor slot n 0) and (rotor slot inclination angle Fai) is obtained. Among these combinations, the combination that minimizes the value of the disadvantage evaluation function PIΦ (Φ, n 0 ) should be finally determined (rotor slot number n) and (rotor slot tilt angle Φ). It becomes.
 PIΦ(Φ,n)としては、次の式(6)を使用している。 The following equation (6) is used as PIΦ (Φ, n 0).
 PIΦ(Φ,n)=[S(Φ,n)/S]+q・[L(Φ,n)/L]
                                 …(6)
 なお、評価関数PI(n)として次の式(7)に示すものを使用してもよい。
PIΦ (Φ, n 0 ) = [S (Φ, n 0 ) / S 0 ] + q · [L (Φ, n 0 ) / L 0 ]
… (6)
As the evaluation function PI (n), the one shown in the following equation (7) may be used.
 PIΦ(Φ,n)=[S(Φ,n)/S]・[L(Φ,n)/L]   …(7)
 S、Lは任意の基準値である。また、定数qは、第1ステップの場合のpと同様に、発生応力S(n)による不利益と、損失L(n)による不利益の相互の重みを考慮するための定数であり、対象とする回転電機の目的、あるいは設計余裕等を考慮して設定する。
PIΦ (Φ, n 0 ) = [S (Φ, n 0 ) / S 0 ] · [L (Φ, n 0 ) / L 0 ] q ... (7)
S 0 and L 0 are arbitrary reference values. Further, the constant q is a constant for considering the mutual weight of the disadvantage due to the generated stress S (n) and the disadvantage due to the loss L (n), as in the case of p in the first step, and is a target. Set in consideration of the purpose of the rotating electric machine or the design margin.
 なお、以上、第1ステップにおける式(3)および式(4)、第2ステップにおける式(6)および式(7)は例示でありこれらに限定されるものではない。即ち、回転子スロット14傾き角度Φにより影響を受ける指標が他にあればこれらの式の変数に追加してもよい。また、影響が無視できる場合は式(2)の変数から除外してもよい。また、以上に示した形態以外の関数形状を用いてもよい。 As described above, the equations (3) and (4) in the first step and the equations (6) and (7) in the second step are examples and are not limited thereto. That is, if there is another index affected by the rotor slot 14 tilt angle Φ, it may be added to the variables of these equations. If the effect is negligible, it may be excluded from the variable in equation (2). Further, a function shape other than the above-mentioned form may be used.
 図11に示すように、回転子スロット傾き角度Φが大きくなるほど、損失L(Φ,n)が減少する。一方、外側壁14aに作用して回転子ティース15を周方向に曲げるように作用する力は、回転子スロット傾き角度Φが大きくなるほど大きくなるので、回転子スロット傾き角度Φが大きくなるほど、発生応力S(Φ,n)が増大する。PIΦ(Φ,n)は、曲線C0に示すように、回転子スロット傾き角度Φの増加に対して、減少の後に増大する特性となり、最小値を有する。 As shown in FIG. 11, as the rotor slot tilt angle Φ increases, the loss L (Φ, n 0 ) decreases. On the other hand, the force acting on the outer wall 14a to bend the rotor teeth 15 in the circumferential direction increases as the rotor slot tilt angle Φ increases, so that the generated stress increases as the rotor slot tilt angle Φ increases. S (Φ, n 0 ) increases. As shown in the curve C0, PIΦ (Φ, n 0 ) has a characteristic of increasing after a decrease with respect to an increase in the rotor slot inclination angle Φ, and has a minimum value.
 また、損失L(Φ,n)には制限値HL以下という条件を課して、この時の回転子スロット傾き角度ΦをΦ0minとすると、Φ>Φ0minと回転子スロット傾き角度Φの範囲を制限する。ここで、制限値HLは、たとえば、回転子鉄心部13の運転継続可能な温度範囲の上限に対して所定のマージンを差し引いた最高温度を与えるような損失Lを用いる。 Further, if the condition that the loss L (Φ, n 0 ) is equal to or less than the limit value HL is imposed and the rotor slot tilt angle Φ at this time is Φ0 min, the range of Φ> Φ0 min and the rotor slot tilt angle Φ is set. Restrict. Here, as the limit value HL, for example, a loss L that gives the maximum temperature obtained by subtracting a predetermined margin from the upper limit of the temperature range in which the operation of the rotor core portion 13 can be continued is used.
 また、発生応力S(Φ,n)には制限値HS以下という条件を課して、この時の回転子スロット傾き角度ΦをΦ0maxとすると、Φ<Φ0maxと回転子スロット傾き角度Φの範囲を制限する。ここで、制限値HSは、たとえば、回転子鉄心部13の材料の許容応力に対して所定のマージンを差し引いた値を用いる。 Further, if the generated stress S (Φ, n 0 ) is subject to the condition of the limit value HS or less and the rotor slot tilt angle Φ at this time is Φ0max, the range of Φ <Φ0max and the rotor slot tilt angle Φ. To limit. Here, as the limit value HS, for example, a value obtained by subtracting a predetermined margin from the allowable stress of the material of the rotor core portion 13 is used.
 図11の例の実線C0のように、Φ0min<Φ<Φ0maxの条件を満たす回転子スロット傾き角度Φにおいて最小値を有する場合、それを与える回転子スロット傾き角度Φ0を求める。これに所定の角度幅ΔΦを見て、(Φ0-ΔΦ)から(Φ0+ΔΦ)までの範囲を最適範囲とする。ここで、角度幅ΔΦは、回転子スロット14の形成を含めたかご形誘導回転電機100の製作上の精度より十分に大きなたとえば5度ないし10度程度の値に設定すればよい。 If the rotor slot tilt angle Φ satisfying the condition of Φ0min <Φ <Φ0max has the minimum value as shown by the solid line C0 in the example of FIG. 11, the rotor slot tilt angle Φ0 that gives it is obtained. Looking at the predetermined angular width ΔΦ, the range from (Φ0−ΔΦ) to (Φ0 + ΔΦ) is set as the optimum range. Here, the angle width ΔΦ may be set to a value of, for example, about 5 degrees to 10 degrees, which is sufficiently larger than the manufacturing accuracy of the squirrel-cage induction rotary electric machine 100 including the formation of the rotor slot 14.
 以上のように、本実施形態による稠密形回転子90においては、回転子スロット14を周方向に傾けることにより、導体バー16の回転子スロット14からの抜け止めに関する条件を緩和しながら、回転子鉄心部13の表面温度Tsの上昇を抑制することができ、さらに、回転子スロット14の数を、固定子スロット22の数の1.1倍より大きい数とすることによって、さらに効率が向上する。このため、回転子鉄心部13の表面温度Tsの上昇をさらに抑制することができる。 As described above, in the dense rotor 90 according to the present embodiment, by tilting the rotor slot 14 in the circumferential direction, the rotor is relaxed while relaxing the conditions for preventing the conductor bar 16 from coming off from the rotor slot 14. The increase in the surface temperature Ts of the iron core portion 13 can be suppressed, and further, the efficiency is further improved by setting the number of rotor slots 14 to be larger than 1.1 times the number of stator slots 22. .. Therefore, it is possible to further suppress an increase in the surface temperature Ts of the rotor core portion 13.
 また、発生応力S(Φ,n)および損失L(Φ,n)などの指標に基づいて、回転子スロット14の数nおよび回転子スロット14の傾き角度Φを最適な値に設定することができる。 Further, the number n of the rotor slots 14 and the inclination angle Φ of the rotor slots 14 are set to the optimum values based on indexes such as the generated stress S (Φ, n 0 ) and the loss L (Φ, n 0). be able to.
 次に、稠密形回転子90の設計段階S100で得られた稠密形回転子90に基づいての、塊状回転子10の設計段階S200の手順を説明する。 Next, the procedure of the design stage S200 of the massive rotor 10 based on the dense rotor 90 obtained in the design stage S100 of the dense rotor 90 will be described.
 図12は、実施形態に係るかご形誘導回転電機の設計段階における塊状回転子10の設計段階S200の手順を示すフロー図である。塊状回転子10の設計段階S200では、稠密形回転子90の設計段階S100で得られた稠密形回転子90に基づいて、本実施形態に係る塊状回転子10を得るための手順を実施する。 FIG. 12 is a flow chart showing the procedure of the design stage S200 of the massive rotor 10 in the design stage of the squirrel-cage induction rotary electric machine according to the embodiment. In the design step S200 of the massive rotor 10, the procedure for obtaining the massive rotor 10 according to the present embodiment is carried out based on the dense rotor 90 obtained in the design step S100 of the dense rotor 90.
 塊状回転子10の設計段階S200は、回転子スロット形成の間引きステップS201および間引き後の回転子スロット位置の再調整ステップS202を有する。 The design stage S200 of the massive rotor 10 includes a thinning step S201 for forming the rotor slot and a readjustment step S202 for the rotor slot position after the thinning.
 図13は、実施形態に係るかご形誘導回転電機の設計方法における塊状回転子10の設計段階における回転子スロット形成の間引きステップS201を説明する部分的横断面図である。(a)は間引き前の状態、すなわち稠密形回転子90を示す。(b)は、間引き後の状態を示す。 FIG. 13 is a partial cross-sectional view illustrating the thinning step S201 of rotor slot formation at the design stage of the massive rotor 10 in the design method of the squirrel-cage induction rotary electric machine according to the embodiment. (A) shows the state before thinning, that is, the dense rotor 90. (B) shows the state after thinning out.
 回転子スロット形成の間引きステップS201においては、稠密形回転子90の設計段階S100で得られた稠密形回転子90に形成された回転子スロット14の一部を、取り除く、すなわち、回転子スロット14の形成を取りやめる。この操作を、回転子スロット形成の間引きと呼ぶこととする。 In the rotor slot forming thinning step S201, a part of the rotor slot 14 formed in the dense rotor 90 obtained in the design step S100 of the dense rotor 90 is removed, that is, the rotor slot 14 is removed. Stop forming. This operation is referred to as thinning out of rotor slot formation.
 回転子スロット形成の間引きは、規則的に行なうものとし、稠密形回転子90周方向に連続的に並ぶk個ずつの回転子スロット14のうち、同じ順位の位置の回転子スロット14をそれぞれ間引くものとする。たとえば、反時計方向に1番目の回転子スロット14を間引く。ただし、kは3以上であるものとする。すなわち、図13では、kは3で、C1、C2およびC3で構成される組が、周方向に配されている場合に、それぞれの組についてC1を間引くことになる。 The thinning of the rotor slot formation shall be performed regularly, and among the k rotor slots 14 that are continuously arranged in the 90-circumferential direction of the dense rotor, the rotor slots 14 at the same rank positions are thinned out. It shall be. For example, the first rotor slot 14 is thinned out counterclockwise. However, k is assumed to be 3 or more. That is, in FIG. 13, k is 3, and when the pairs composed of C1, C2, and C3 are arranged in the circumferential direction, C1 is thinned out for each pair.
 このようにして、k個の回転子スロット14で構成される組について順次、同様の操作を行なう。最後の組がk個ではない場合もあるので、最後の組における回転子スロット14の数が1つの場合は間引かないこととし、2つ以上の場合は、同様にC1の回転子スロット14を間引くものとする。これにより、間引かれる回転子スロット14は、最後の組を除き、周方向に同じ間隔で存在することになる。 In this way, the same operation is sequentially performed for the set composed of the k rotor slots 14. Since the last set may not be k, if the number of rotor slots 14 in the last set is one, it is not thinned out, and if there are two or more, the rotor slots 14 of C1 are similarly used. It shall be thinned out. As a result, the rotor slots 14 to be thinned out exist at the same intervals in the circumferential direction except for the last set.
 稠密形回転子90において、回転子スロット形成の間引きステップS201の結果で残った導体バー16を回転軸Z(図2)から見た円周角をΨ1とし、回転軸Zから見た互いに隣接する導体バー16の重なり角度をΔΨ1とする。このとき、回転子スロット14が間引かれた部分について、回転軸Zから見て導体バー16が存在しない部分の円周角Ψdは、(Ψ1-2ΔΨ1)である。 In the dense rotor 90, the conductor bars 16 remaining as a result of the thinning step S201 of rotor slot formation have an inscribed angle of Ψ1 as seen from the rotation axis Z (FIG. 2) and are adjacent to each other as seen from the rotation axis Z. Let the overlapping angle of the conductor bars 16 be ΔΨ1. At this time, with respect to the portion where the rotor slot 14 is thinned out, the inscribed angle Ψd of the portion where the conductor bar 16 does not exist when viewed from the rotation axis Z is (Ψ1-2ΔΨ1).
 以上の結果、回転子スロット14の数は、約(k-1)/kに減少し、回転子スロット14の形成に要するコストが減少する。 As a result of the above, the number of rotor slots 14 is reduced to about (k-1) / k, and the cost required for forming the rotor slots 14 is reduced.
 図14は、実施形態に係るかご形誘導回転電機の設計方法における塊状回転子の設計段階S200における間引き後の回転子スロット位置の再調整ステップS202を説明する部分的横断面図である。(a)は間引き後の状態を示し図13の(b)と同じ状態である。図14の(b)は、回転子スロット位置の再調整後の状態を示す。 FIG. 14 is a partial cross-sectional view illustrating the readjustment step S202 of the rotor slot position after thinning in the design stage S200 of the massive rotor in the design method of the squirrel-cage induction rotary electric machine according to the embodiment. (A) shows the state after thinning out, which is the same state as (b) in FIG. FIG. 14B shows a state after the rotor slot position has been readjusted.
 本回転子スロット位置の再調整ステップS202では、回転子スロット形成の間引きステップS201で得られた結果から、さらに、回転子スロット14の位置を再調整する。再調整の方法は、回転軸Zから見た互いに隣接する導体バー16の円周角Ψ1の互いの重なり角度を、重なり角度ΔΨ1から減少させることにより行なう。この場合、重なり角度はゼロとなるように減少させるが、ゼロまで減少させない途中の角度までの減少であってもよい。ゼロまで減少させた場合は、導体バー16を回転軸Z(図2)から見た円周角Ψ1は互いに隣接するようになる
 今、k個の組で、位置の再調整を互いの重なり角がゼロとなるまで行なうと、それぞれの組で残っている(k-1)個の回転子スロット14について、位置の再調整前は、重なり部分が(k-2)個あるのが0個となり、この分、回転軸Zから見た互いに隣接する導体バー16が見えない領域の円周角が減少する。
In the main rotor slot position readjustment step S202, the position of the rotor slot 14 is further readjusted from the result obtained in the thinning step S201 of the rotor slot formation. The readjustment method is performed by reducing the overlapping angle of the circumferential angles Ψ1 of the conductor bars 16 adjacent to each other as seen from the rotation axis Z from the overlapping angle ΔΨ1. In this case, the overlap angle is reduced to zero, but it may be reduced to an intermediate angle that is not reduced to zero. When reduced to zero, the inscribed angles Ψ1 of the conductor bar 16 as seen from the axis of rotation Z (Fig. 2) are adjacent to each other. When is performed until becomes zero, the remaining (k-1) rotor slots 14 in each set have 0 overlapping portions (k-2) before the position readjustment. By this amount, the inscribed angle of the region where the conductor bars 16 adjacent to each other as seen from the rotation axis Z cannot be seen is reduced.
 すなわち、回転軸Zから見た互いに隣接する導体バー16が見えない領域について、位置再調整前の円周角Ψdと、位置再調整後の円周角Ψfとの間では、次の式(9)の関係が成立する。 That is, in the region where the conductor bars 16 adjacent to each other cannot be seen from the rotation axis Z, the following equation (9) is used between the inscribed angle Ψd before the position readjustment and the inscribed angle Ψf after the position readjustment. ) Is established.
 Ψf=Ψd-(k-2)・ΔΨ1              …(9)
 ΔΨ1の重なり角度が減少する(図14に示す場合はゼロまでに減少する)ことにより、それぞれの導体バー16が有効に使用され、この結果、効率の高い状態が得られる。
Ψf = Ψd− (k-2) ・ ΔΨ1… (9)
By reducing the overlap angle of ΔΨ1 (reducing to zero in the case shown in FIG. 14), each conductor bar 16 is effectively used, and as a result, a highly efficient state is obtained.
 図15は、実施形態に係るかご形誘導回転電機の設計方法における塊状回転子の設計方法の効果を概念的に説明するグラフである。 FIG. 15 is a graph conceptually explaining the effect of the method of designing the massive rotor in the method of designing the squirrel-cage induction rotary electric machine according to the embodiment.
 横軸は、回転子スロット数(n/n)、縦軸は、コストCおよび損失Lである。 The horizontal axis is the number of rotor slots (n / n 0 ), and the vertical axis is the cost C and the loss L.
 回転子スロット数(n/n)については、稠密形回転子90の条件を探索した稠密形回転子の設計段階S100示したように、回転子スロット数(n/n)の増加にしたがって、かご形誘導回転電機100の損失は低下する。 Regarding the number of rotor slots (n / n 0 ), as shown in the design stage S100 of the dense rotor in which the conditions of the dense rotor 90 are searched, as the number of rotor slots (n / n 0 ) increases. , The loss of the cage-type induction rotary electric machine 100 is reduced.
 一方、回転子スロット数(n/n)を増加させれば、加工費等の増大を招き、コストCは増加することは明らかである。 On the other hand, it is clear that if the number of rotor slots (n / n 0 ) is increased, the processing cost and the like are increased, and the cost C is increased.
 したがって、損失LとコストCは、回転子スロット数(n/n)の変化に対して、互いに逆方向に変化する特性を有する。損失LとコストCの特性を、それぞれ実線Lと実線Cで示す。また、損失LとコストCを総合的に評価する損失LとコストCの重み付けの合計指数を破線(C+L)で示す。 Therefore, the loss L and the cost C have the property of changing in opposite directions with respect to a change in the number of rotor slots (n / n 0). The characteristics of the loss L and the cost C are shown by the solid line L and the solid line C, respectively. Further, the total index of the weighting of the loss L and the cost C, which comprehensively evaluates the loss L and the cost C, is shown by a broken line (C + L).
 いま、稠密形回転子90の損失がL0、コストがC0の場合、稠密形回転子90の条件は、(C+L)曲線上では、A0にある。 Now, when the loss of the dense rotor 90 is L0 and the cost is C0, the condition of the dense rotor 90 is A0 on the (C + L) curve.
 回転子スロット形成の間引きステップS201での回転子スロット形成の間引きにより、回転子スロット数(n/n)は、減少するので、コストCは、C1に低下する。一方、回転軸Zから見た互いに隣接する導体バー16が見えない領域が生ずることにより、損失は、L1に増加する。この結果、重み次第では、(C+L)上での位置は、A1となり全体としては、マイナスの効果を生ずる可能性がある。 Thinning out of rotor slot formation By thinning out the rotor slot formation in step S201, the number of rotor slots (n / n 0 ) is reduced, so that the cost C is lowered to C1. On the other hand, the loss increases to L1 due to the occurrence of a region in which the conductor bars 16 adjacent to each other as seen from the rotation axis Z cannot be seen. As a result, depending on the weight, the position on (C + L) becomes A1, and there is a possibility that a negative effect may occur as a whole.
 ここで、回転子スロット位置の再調整ステップS202での回転子スロット14の位置の再調整により、損失LがL2まで低下する。この結果、損失LとコストCを総合的に評価する損失LとコストCの重み付けの合計指数も減少する。 Here, the loss L is reduced to L2 by readjusting the position of the rotor slot 14 in the readjustment step S202 of the rotor slot position. As a result, the total index of the weighting of the loss L and the cost C, which comprehensively evaluates the loss L and the cost C, also decreases.
 すなわち、本実施形態によるかご形誘導回転電機の設計方法によれば、性能を維持しながらコストメリットを有する塊状回転子を得ることができる。すなわち、塊状回転子を有するかご形誘導回転電機において、コスト増加を低減しながら、塊状回転子の回転子鉄心部の表面温度の上昇を抑制することができる。 That is, according to the design method of the squirrel-cage induction rotary electric machine according to the present embodiment, it is possible to obtain a massive rotor having a cost merit while maintaining the performance. That is, in a cage-shaped induction rotary electric machine having a massive rotor, it is possible to suppress an increase in the surface temperature of the rotor core portion of the massive rotor while reducing the cost increase.
 [その他の実施形態]
 以上、本発明の実施形態を説明したが、実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。さらに、実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
[Other Embodiments]
Although the embodiments of the present invention have been described above, the embodiments are presented as examples and are not intended to limit the scope of the invention. Further, the embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. The embodiments and modifications thereof are included in the scope and the gist of the invention as well as the invention described in the claims and the equivalent scope thereof.
 10…塊状回転子、11…一体形ロータ、11a…回転子回転軸、12…シャフト部、13…回転子鉄心部、14…回転子スロット、14a…外側壁、14b…内側壁、14c…最内壁、14d…内接円、14s…仮想面、15…回転子ティース、15c…付け根部、16…導体バー、17…短絡環、18…内扇、20…固定子、21…固定子鉄心、22…固定子スロット、23…固定子ティース、24…固定子巻線、24a…固定子巻線導体、25…空隙、30…軸受、35…軸受ブラケット、40…フレーム、51…冷却器、52…冷却器カバー、61…閉空間、62…冷却器入口開口、63…冷却器出口開口、90…稠密形回転子、100…かご形誘導回転電機 10 ... Stator rotor, 11 ... Stator rotor, 11a ... Rotor rotation shaft, 12 ... Shaft part, 13 ... Rotor core part, 14 ... Rotor slot, 14a ... Outer wall, 14b ... Inner side wall, 14c ... Most Inner wall, 14d ... Inner circle, 14s ... Virtual surface, 15 ... Rotor tooth, 15c ... Base, 16 ... Conductor bar, 17 ... Short ring, 18 ... Inner fan, 20 ... Stator, 21 ... Stator core, 22 ... Stator slot, 23 ... Stator teeth, 24 ... Stator winding, 24a ... Stator winding conductor, 25 ... Air gap, 30 ... Bearing, 35 ... Bearing bracket, 40 ... Frame, 51 ... Cooler, 52 ... Cooler cover, 61 ... Closed space, 62 ... Cooler inlet opening, 63 ... Cooler outlet opening, 90 ... Dense rotor, 100 ... Cage-shaped induction rotor

Claims (11)

  1.  かご形誘導回転電機に用いる塊状回転子であって、
     軸方向に延びて回転可能に支持されたシャフト部と、
     前記シャフト部と同軸に一体で形成されて前記シャフト部より大きな径を有し周方向に互いに間隔をあけて配置されて軸方向に延びた回転子スロットが形成された円柱状の回転子鉄心部と、
     前記回転子スロット内を貫通し前記回転子鉄心部の前記軸方向の両外側において互いに結合する複数の導体バーと、
     を有し、
     前記回転子スロットのそれぞれの互いに対向する2つの壁は、前記シャフト部の回転軸を含む平面に対して周方向に所定の角度以上、傾いており、
     前記回転軸から径方向外側を見たときに、前記複数の導体バーの一部の存在領域と不存在領域が、周方向に交互に配されている、
     ことを特徴とする塊状回転子。
    A massive rotor used in squirrel-cage induction rotary electric machines.
    A shaft part that extends in the axial direction and is rotatably supported,
    A columnar rotor core portion that is integrally formed coaxially with the shaft portion, has a diameter larger than that of the shaft portion, is arranged at intervals in the circumferential direction, and has rotor slots extending in the axial direction. When,
    A plurality of conductor bars penetrating the rotor slot and connecting to each other on both outer sides of the rotor core portion in the axial direction.
    Have,
    The two walls of the rotor slots facing each other are inclined in the circumferential direction by a predetermined angle or more with respect to the plane including the rotation axis of the shaft portion.
    When the radial side is viewed from the rotation axis, a part of the existing regions and the non-existing regions of the plurality of conductor bars are alternately arranged in the circumferential direction.
    A massive rotor characterized by that.
  2.  前記回転軸から前記導体バーを見たときの前記不存在領域の円周角Ψ2は、前記回転軸から前記複数の導体バーのそれぞれを見たときの円周角Ψ1より小さいことを特徴とする塊状回転子。 The circumference angle Ψ2 of the non-existent region when the conductor bar is viewed from the rotation axis is smaller than the circumference angle Ψ1 when each of the plurality of conductor bars is viewed from the rotation axis. Massive rotor.
  3.  前記シャフト部の回転軸から前記複数の導体バーのそれぞれを見たときの円周角Ψ1の領域は、互いに重複しないように隣接していることを特徴とする請求項1または請求項2に記載の塊状回転子。 The first or second aspect of the present invention, wherein the regions having an inscribed angle Ψ1 when each of the plurality of conductor bars is viewed from the rotation axis of the shaft portion are adjacent to each other so as not to overlap each other. Massive rotor.
  4.  前記回転子スロットの横断面において、径方向の最内壁は、曲面状に形成されていることを特徴とする請求項1ないし請求項3のいずれか一項に記載の塊状回転子。 The massive rotor according to any one of claims 1 to 3, wherein the innermost wall in the radial direction is formed in a curved surface shape in the cross section of the rotor slot.
  5.  前記複数の導体バーのそれぞれの径方向の外側端部は、前記回転子鉄心部の径方向外側表面を包絡する円筒形の一部となるような形状に形成されていることを特徴とする請求項1ないし請求項4のいずれか一項に記載の塊状回転子。 A claim characterized in that each of the radial outer ends of the plurality of conductor bars is formed in a shape that becomes a part of a cylindrical shape that wraps the radial outer surface of the rotor core portion. The massive rotor according to any one of items 1 to 4.
  6.  前記所定の角度は、20度以上であることを特徴とする請求項1ないし請求項5のいずれか一項に記載の塊状回転子。 The massive rotor according to any one of claims 1 to 5, wherein the predetermined angle is 20 degrees or more.
  7.  前記請求項1ないし請求項6のいずれか一項に記載の塊状回転子と、
     前記回転子鉄心部の径方向外側に設けられた円筒状の固定子鉄心と、前記固定子鉄心の径方向の内側表面に周方向に互いに間隔をあけて形成され軸方向に延びた複数の固定子スロットの内部を貫通する固定子巻線とを有する固定子と、
     前記回転子鉄心部を挟んで前記軸方向の前記シャフト部の両側のそれぞれで前記塊状回転子を支持する2つの軸受と、
     を備えることを特徴とするかご形誘導回転電機。
    The massive rotor according to any one of claims 1 to 6 and the massive rotor.
    A cylindrical stator core provided on the radial outer side of the rotor core portion, and a plurality of fixings formed on the inner surface of the stator core in the radial direction at intervals in the circumferential direction and extending in the axial direction. A stator with a stator winding that penetrates the inside of the child slot, and
    Two bearings that support the massive rotor on both sides of the shaft portion in the axial direction with the rotor core portion interposed therebetween.
    A squirrel-cage induction rotary electric machine characterized by being equipped with.
  8.  一体で形成されシャフト部と回転子鉄心部とを有する塊状回転子と、前記回転子鉄心部の径方向の外側に設けられた固定子とを備えるかご形誘導回転電機の設計方法であって、
     前記固定子の径方向内側表面に形成されて周方向に互いに間隔をあけて配置されて軸方向に貫通する複数の固定子スロットの寸法および周方向のピッチを設定する固定子条件設定ステップと、
     前記固定子条件設定ステップの後に、前記回転子鉄心部の径方向外側表面に形成されて周方向に互いに間隔をあけて配置されて軸方向に貫通する回転子スロットの寸法および周方向のピッチおよび周方向への傾き角度を設定し、稠密形回転子を得る稠密形回転子条件設定ステップと、
     前記稠密形回転子の前記回転子スロットについて、互いに隣接する3個より多いk個の組のそれぞれから、同じ順位の位置の回転子スロットをそれぞれ形成しない前記回転子スロット形成の間引きステップと、
     回転軸から見たときに、前記回転子スロット形成の間引きステップの結果残った互いに隣接する複数の導体バーのそれぞれ同士の重なり角度が減少するように前記回転子スロットの位置を調整する回転子スロット位置の再調整ステップと、
     を有することを特徴とするかご形誘導回転電機の設計方法。
    A method for designing a squirrel-cage induction rotary electric machine, which includes a massive rotor integrally formed and having a shaft portion and a rotor core portion, and a stator provided outside the rotor core portion in the radial direction.
    A stator condition setting step for setting the dimensions and the pitch in the circumferential direction of a plurality of stator slots formed on the radial inner surface of the stator and arranged at intervals in the circumferential direction and penetrating in the axial direction.
    After the stator condition setting step, the dimensions and circumferential pitch of the rotor slots formed on the radial outer surface of the rotor core portion and arranged at intervals in the circumferential direction and penetrating in the axial direction. In the dense rotor condition setting step to set the tilt angle in the circumferential direction and obtain the dense rotor,
    With respect to the rotor slots of the dense rotor, the thinning step of forming the rotor slots which does not form the rotor slots at the same rank from each of k sets of more than three adjacent to each other.
    A rotor slot that adjusts the position of the rotor slot so that the overlapping angles of the plurality of adjacent conductor bars remaining as a result of the thinning step of forming the rotor slot are reduced when viewed from the rotation axis. Position readjustment step and
    A method of designing a squirrel-cage induction rotary electric machine, which is characterized by having.
  9.  前記回転子条件設定ステップは、
     前記回転子スロットの周方向への傾き角度を設定する傾き角度設定ステップと、
     前記傾き角度設定ステップの後に、前記回転子鉄心部の応力を算出する応力算出ステップと、
     前記傾き角度設定ステップの後に、前記回転子鉄心部の温度を算出する温度算出ステップと、
     前記回転子スロットの周方向への傾き角度についての検討範囲にわたって終了したか否かを判定し、終了していないと判定された場合に、前記傾き角度設定ステップ以降を実施する角度範囲判定ステップと、
     前記角度範囲判定ステップで前記回転子スロットの周方向への傾き角度についての検討範囲にわたって終了したと判定された場合に、前記回転子スロットのピッチについての検討範囲にわたって終了したか否かを判定し、終了していないと判定された場合に、前記回転子条件設定ステップ以降を実施するピッチ範囲判定ステップと、
     前記ピッチ範囲判定ステップで前記回転子スロットのピッチについての検討範囲にわたって終了したと判定された場合に、前記応力算出ステップと前記温度算出ステップの結果に基づいて、前記回転子スロットの前記傾き角度およびピッチを決定する決定ステップと、
     を有することを特徴とする請求項8に記載のかご形誘導回転電機の設計方法。
    The rotor condition setting step is
    A tilt angle setting step for setting the tilt angle of the rotor slot in the circumferential direction, and
    After the tilt angle setting step, a stress calculation step for calculating the stress of the rotor core portion and a stress calculation step
    After the tilt angle setting step, a temperature calculation step for calculating the temperature of the rotor core portion and a temperature calculation step
    It is determined whether or not the rotation angle of the rotor slot in the circumferential direction has been completed over the examination range, and when it is determined that the rotation angle has not been completed, the angle range determination step of performing the tilt angle setting step and subsequent steps is performed. ,
    When it is determined in the angle range determination step that the tilt angle of the rotor slot in the circumferential direction has been completed over the examination range, it is determined whether or not the rotation range has ended over the examination range regarding the pitch of the rotor slot. , A pitch range determination step for executing the rotor condition setting step and subsequent steps when it is determined that the process has not been completed,
    When it is determined in the pitch range determination step that the pitch of the rotor slot has been examined over the examination range, the inclination angle of the rotor slot and the inclination angle of the rotor slot are determined based on the results of the stress calculation step and the temperature calculation step. The decision step to determine the pitch and
    The method for designing a squirrel-cage induction rotary electric machine according to claim 8, wherein the squirrel-cage induction rotary electric machine is provided.
  10.  前記回転子スロットの数は、前記固定子スロットの数に対して1より大きな所定の比率以上であることを特徴とする請求項9に記載のかご形誘導回転電機の設計方法。 The method for designing a squirrel-cage induction rotary electric machine according to claim 9, wherein the number of rotor slots is a predetermined ratio greater than 1 with respect to the number of stator slots.
  11.  前記所定の比率は、1.1以上であることを特徴とする請求項9または請求項10に記載のかご形誘導回転電機の設計方法。 The method for designing a squirrel-cage induction rotary electric machine according to claim 9 or 10, wherein the predetermined ratio is 1.1 or more.
PCT/JP2020/014028 2020-03-27 2020-03-27 Solid rotor, squirrel cage induction rotating electric machine, and method for designing squirrel cage induction rotating electric machine WO2021192223A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/014028 WO2021192223A1 (en) 2020-03-27 2020-03-27 Solid rotor, squirrel cage induction rotating electric machine, and method for designing squirrel cage induction rotating electric machine
JP2020555249A JP7168680B2 (en) 2020-03-27 2020-03-27 Lumpy Rotor, Squirrel-Cage Induction Rotating Machine, and Design Method of Squirrel-Cage Induction Rotating Machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014028 WO2021192223A1 (en) 2020-03-27 2020-03-27 Solid rotor, squirrel cage induction rotating electric machine, and method for designing squirrel cage induction rotating electric machine

Publications (1)

Publication Number Publication Date
WO2021192223A1 true WO2021192223A1 (en) 2021-09-30

Family

ID=77891044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014028 WO2021192223A1 (en) 2020-03-27 2020-03-27 Solid rotor, squirrel cage induction rotating electric machine, and method for designing squirrel cage induction rotating electric machine

Country Status (2)

Country Link
JP (1) JP7168680B2 (en)
WO (1) WO2021192223A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767303A (en) * 1993-08-27 1995-03-10 Nissan Motor Co Ltd Induction motor
JP2012085477A (en) * 2010-10-14 2012-04-26 Hitachi Ltd Rotary electric machine
WO2019116438A1 (en) * 2017-12-12 2019-06-20 東芝三菱電機産業システム株式会社 Squirrel-cage induction rotating electric machine, solid rotor, and squirrel-cage induction rotating electric machine design method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767303A (en) * 1993-08-27 1995-03-10 Nissan Motor Co Ltd Induction motor
JP2012085477A (en) * 2010-10-14 2012-04-26 Hitachi Ltd Rotary electric machine
WO2019116438A1 (en) * 2017-12-12 2019-06-20 東芝三菱電機産業システム株式会社 Squirrel-cage induction rotating electric machine, solid rotor, and squirrel-cage induction rotating electric machine design method

Also Published As

Publication number Publication date
JPWO2021192223A1 (en) 2021-09-30
JP7168680B2 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
US7893575B2 (en) Rotor with field coils in optimized flux space slots
CA2316708C (en) Cage-type induction motor for high rotational speeds
JP4542864B2 (en) Rotating electric machine and armature winding of rotating electric machine
US2944171A (en) Intermediate ring squirrel cage rotor
US11489424B2 (en) Squirrel-cage induction rotating electrical machine, solid rotor, and design method for squirrel-cage induction rotating electrical machine
JP2006109616A5 (en)
WO2018066654A1 (en) Synchronous reluctance rotary electric machine
WO2019163021A1 (en) Stator, electric motor, compressor, and air conditioning device
US7812499B2 (en) Armature winding of electric rotating machine, stator of electric rotating machine and electric rotating machine
JP5066820B2 (en) Magnet structure
JP2016201902A (en) Induction machine, and induction machine drive system and railway vehicle that use the same
WO2021192223A1 (en) Solid rotor, squirrel cage induction rotating electric machine, and method for designing squirrel cage induction rotating electric machine
JPWO2019123977A1 (en) Stator manufacturing method
JP2003199267A (en) Stator for rotating electric machine
JP5602968B1 (en) Cage rotor and electric motor including cage rotor
JP2695952B2 (en) Cage rotor
JP2016036193A (en) Induction motor
JPH07163107A (en) Squirrel-cage induction motor, manufacture thereof, and fluid machinery having square torque characteristics driven thereby
JP5947703B2 (en) Squirrel-cage induction motor
JP2006340488A (en) Rotating electric machine
JP6609482B2 (en) Rotating electric machine
TW202011672A (en) Cage rotor and rotary motor
CN111564915A (en) Stator
JP2854703B2 (en) Cage rotor
US20230396113A1 (en) Stator for a rotating electrical machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020555249

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927231

Country of ref document: EP

Kind code of ref document: A1