WO2021192108A1 - Power management device, power feeding system, and power management method - Google Patents

Power management device, power feeding system, and power management method Download PDF

Info

Publication number
WO2021192108A1
WO2021192108A1 PCT/JP2020/013413 JP2020013413W WO2021192108A1 WO 2021192108 A1 WO2021192108 A1 WO 2021192108A1 JP 2020013413 W JP2020013413 W JP 2020013413W WO 2021192108 A1 WO2021192108 A1 WO 2021192108A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage
power supply
power generation
amount
Prior art date
Application number
PCT/JP2020/013413
Other languages
French (fr)
Japanese (ja)
Inventor
久和 宇都
鈴木 真吾
克夫 直井
雅雄 一
琢真 光永
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to PCT/JP2020/013413 priority Critical patent/WO2021192108A1/en
Priority to JP2022510228A priority patent/JP7367852B2/en
Publication of WO2021192108A1 publication Critical patent/WO2021192108A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • This disclosure relates to a power management device, a power supply system, and a power management method.
  • auxiliary power supply In order to operate the auxiliary power supply, for example, fuel and commercial power are required, so there is a risk that a great deal of cost will be incurred.
  • power cannot be supplied to the power supply system due to a power outage in an area where the power system is unstable. Therefore, it is desired to shorten the operating time of the auxiliary power supply device.
  • This disclosure describes a power management device, a power supply system, and a power management method that can shorten the operating time of the auxiliary power supply device.
  • the power management device includes a first acquisition unit that acquires the remaining battery level of a storage battery connected to a DC bus via a converter, and a power generation device included in a power supply device that supplies power to the DC bus. It is provided with a second acquisition unit that acquires the amount of power generated in the above, and a control unit that controls the start or stop of the auxiliary power supply device that supplies electric power to the DC bus based on the remaining battery level and the amount of power generation.
  • the start or stop of the auxiliary power supply device is controlled in consideration of not only the remaining battery level of the storage battery but also the amount of power generated by the power generation device. For example, even if the remaining battery level of the storage battery is reduced, it is possible not to start the auxiliary power supply device if a sufficient amount of power generation can be obtained. In a situation where the auxiliary power supply device is operating, even if the storage battery does not have a sufficient battery level, the auxiliary power supply device can be stopped if a sufficient amount of power generation can be obtained. As a result, the operating time of the auxiliary power supply device can be shortened.
  • the control unit may activate the auxiliary power supply device when the remaining battery level is smaller than the first storage threshold value and the amount of power generation is smaller than the first power generation threshold value.
  • the auxiliary power supply device is not activated when a certain amount of power generation can be obtained. Therefore, the timing of starting the auxiliary power supply device can be delayed. As a result, the operating time of the auxiliary power supply device can be shortened.
  • the control unit may start the auxiliary power supply device.
  • the auxiliary power supply device may be activated regardless of the amount of power generation.
  • the second storage threshold may be smaller than the first storage threshold.
  • the control unit may stop the auxiliary power supply device.
  • the auxiliary power supply device may be stopped regardless of the amount of power generation.
  • the fourth storage threshold value may be larger than the third storage storage threshold value.
  • the power generation device may be a renewable energy power generation device. In this case, since renewable energy is used, it is possible to reduce the cost.
  • the power supply system includes a DC bus for supplying DC power, a power supply device that includes a power generation device and supplies power to the DC bus, and an auxiliary power supply device that supplies power to the DC bus.
  • the first converter which is connected to the DC bus and converts the bus voltage supplied to the DC bus into the load voltage supplied to the load equipment, is provided between the storage battery, the storage battery and the DC bus, and the bus voltage and the storage battery. It is provided with a second converter capable of bidirectionally converting the battery voltage of the above battery, and a power management device for charging and discharging the storage battery by controlling the second converter.
  • the power management device controls the start or stop of the auxiliary power supply device based on the remaining battery level of the storage battery and the amount of power generated by the power generation device.
  • the start or stop of the auxiliary power supply device is controlled in consideration of not only the remaining battery level of the storage battery but also the amount of power generated by the power generation device. For example, even if the remaining battery level of the storage battery is reduced, it is possible not to start the auxiliary power supply device if a sufficient amount of power generation can be obtained. In a situation where the auxiliary power supply device is operating, even if the storage battery does not have a sufficient battery level, the auxiliary power supply device can be stopped if a sufficient amount of power generation can be obtained. As a result, the operating time of the auxiliary power supply device can be shortened.
  • a power management method is a step of acquiring the remaining battery level of a storage battery connected to a DC bus via a converter, and a power generation device included in a power supply device that supplies power to the DC bus. It includes a step of acquiring the amount of power generation and a step of controlling the start or stop of the auxiliary power supply device that supplies power to the DC bus based on the remaining battery level and the amount of power generation.
  • the start or stop of the auxiliary power supply device is controlled in consideration of not only the remaining battery level of the storage battery but also the amount of power generated by the power generation device. For example, even if the remaining battery level of the storage battery is reduced, it is possible not to start the auxiliary power supply device if a sufficient amount of power generation can be obtained. In a situation where the auxiliary power supply device is operating, even if the storage battery does not have a sufficient battery level, the auxiliary power supply device can be stopped if a sufficient amount of power generation can be obtained. As a result, the operating time of the auxiliary power supply device can be shortened.
  • the operating time of the auxiliary power supply device can be shortened.
  • FIG. 1 is a configuration diagram schematically showing a power supply system according to an embodiment.
  • FIG. 2 is a hardware configuration diagram of the power management device shown in FIG.
  • FIG. 3 is a functional block diagram of the power management device shown in FIG.
  • FIG. 4 is a diagram showing the relationship between the threshold values.
  • FIG. 5 is a flowchart showing a series of processes of start control performed by the power management device shown in FIG.
  • FIG. 6 is a flowchart showing a series of stop control processes performed by the power management device shown in FIG.
  • FIG. 7 is a diagram for explaining the operating time of the auxiliary power supply device when start control and stop control are performed by the power management device shown in FIG.
  • FIG. 8 is a diagram for explaining the operating time of the auxiliary power supply device when start control and stop control are performed by the power management device of the comparative example.
  • FIG. 1 is a configuration diagram schematically showing a power supply system according to an embodiment.
  • the power supply system 1 shown in FIG. 1 is a system that supplies load power WL (load voltage VL) to load device L.
  • the power supply system 1 is a DC power supply system.
  • the load device L may be a DC load device that operates at a DC voltage, or may be an AC load device that operates at an AC voltage. Examples of direct current load devices include LED (Light Emission Diode) illuminators, DC (Direct Current) fans, and personal computers. Examples of AC load equipment include washing machines, refrigerators, and air conditioners.
  • the power supply system 1 includes a DC bus 2, one or more power supply devices 3, an auxiliary power supply device 5, one or more converters 6 (first converter), one or more power storage devices 7, and a power management device. 10 and.
  • the DC bus 2 is a bus that functions as a bus for supplying DC power to supply DC power.
  • the DC bus 2 is laid over the installation locations of the power supply device 3, the auxiliary power supply device 5, the power storage device 7, and the load device L.
  • the bus voltage Vbus is supplied to the DC bus 2.
  • the bus voltage Vbus is a high voltage DC voltage.
  • the bus voltage Vbus is set to be within the range of the input voltage of the converter 6.
  • the bus voltage Vbus is, for example, a voltage of DC250V or more and DC450V or less.
  • the voltage value of the bus voltage Vbus may be fixed or may vary.
  • the power supply device 3 is a device that supplies electric power to the DC bus 2.
  • the power supply system 1 includes one power supply device 3.
  • the number of power supply devices 3 is not limited to one, and may be changed as needed.
  • the power supply device 3 includes a renewable energy power generation device 31 (power generation device) and a power conditioner 32.
  • the renewable energy power generation device 31 is a device that generates generated power Wre.
  • Examples of the renewable energy power generation device 31 include a solar power generation device, a wind power generation device, a hydroelectric power generation device, and a geothermal power generation device.
  • the renewable energy power generation device 31 is connected to the DC bus 2 via the power conditioner 32.
  • the renewable energy power generation device 31 generates a power generation voltage Vre having a predetermined voltage value, and outputs a power generation power Wre corresponding to the power generation voltage Vre.
  • the generated voltage Vre may be a DC voltage or an AC voltage.
  • the power conditioner 32 is a device that is connected to the DC bus 2 and converts the generated voltage Vre into the bus voltage Vbus.
  • the power conditioner 32 includes a DC / DC converter.
  • the power conditioner 32 includes an AC (Alternating Current) / DC converter.
  • the power conditioner 32 operates with a DC voltage generated internally based on, for example, the generated voltage Vre.
  • the power conditioner 32 controls the generated power Wre by controlling the power generation operation of the renewable energy power generation device 31 based on the command from the power management device 10.
  • the power conditioner 32 converts the generated voltage Vre into the bus voltage Vbus and supplies the bus voltage Vbus to the DC bus 2 based on the command from the power management device 10.
  • the power conditioner 32 has a power measurement function for measuring the generated power Wre supplied from the renewable energy power generation device 31 to the DC bus 2.
  • the power conditioner 32 for example, periodically measures the generated power Wre.
  • the power conditioner 32 transmits the measured value of the generated power Wre to the power management device 10.
  • the auxiliary power supply device 5 is a device that supplies electric power to the DC bus 2.
  • the auxiliary power supply device 5 includes a commercial power supply 51 and an AC / DC converter 52.
  • the commercial power supply 51 supplies system power Ws including system voltage Vs having a predetermined voltage value.
  • the system voltage Vs is an AC voltage.
  • the commercial power supply 51 is connected to the DC bus 2 via an AC / DC converter 52.
  • the AC / DC converter 52 is a device that is connected to the DC bus 2 and converts the system voltage Vs into the bus voltage Vbus.
  • the system voltage Vs is an AC voltage.
  • the AC / DC converter 52 operates, for example, with a DC voltage generated internally based on the system voltage Vs.
  • the AC / DC converter 52 converts the system voltage Vs into the bus voltage Vbus and supplies the bus voltage Vbus to the DC bus 2 based on the command from the power management device 10.
  • the AC / DC converter 52 has a power measurement function for measuring the system power Ws supplied from the commercial power supply 51 to the DC bus 2.
  • the AC / DC converter 52 periodically measures the system power Ws, for example.
  • the AC / DC converter 52 transmits the measured value of the system power Ws to the power management device 10.
  • the auxiliary power supply device 5 can stably supply electric power, it is controlled to supply electric power when the electric power of the entire power supply system 1 is insufficient.
  • the system power Ws is equal to or greater than the sum of the total load power WL and the standby power in the power supply system 1.
  • the standby power includes the power consumption of the power management device 10 and the power consumption of auxiliary equipment (relays, fans, small-capacity power supplies, etc. (not shown)).
  • the converter 6 is connected to the DC bus 2 and is a device that converts the bus voltage Vbus into the load voltage VL.
  • the load voltage VL is a voltage supplied to the load device L.
  • the load device L is connected to the DC bus 2 via the converter 6.
  • the converter 6 operates with a DC voltage generated internally based on, for example, the bus voltage Vbus.
  • the power supply system 1 includes four converters 6.
  • the number of converters 6 is not limited to four, and may be changed according to the number of load devices L.
  • the converter 6 When the converter 6 receives the start command from the power management device 10, the converter 6 converts the bus voltage Vbus into the load voltage VL and supplies the load voltage VL (load power WL) to the load device L.
  • the load device L When the load device L is a DC load device, the load voltage VL is a DC voltage, and the converter 6 is a DC / DC converter.
  • the load device L When the load device L is an AC load device, the load voltage VL is an AC voltage, and the converter 6 is a DC / AC converter.
  • the converter 6 receives the stop command from the power management device 10, the converter 6 stops the supply of the load voltage VL.
  • the converter 6 has a current limiting function that limits the load current supplied from the DC bus 2 to the load device L by an upper limit current value.
  • the upper limit current value is set by the power management device 10.
  • the converter 6 has a power measurement function for measuring the load power WL supplied from the DC bus 2 to the load device L based on the load voltage VL and the load current. The converter 6 periodically measures the load power WL, for example. The converter 6 transmits the measured value of the load power WL to the power management device 10.
  • the power storage device 7 is a device for accumulating the surplus power generated in the power supply system 1 and supplying the insufficient power generated in the power supply system 1.
  • surplus power equal to the magnitude (power value) of the differential power is generated.
  • the supplied electric power is the electric power supplied to the DC bus 2.
  • the supplied power is the generated power Wre and the system power Ws.
  • Power Wc obtained by evenly dividing the surplus power by the number of power storage devices 7 is supplied to each power storage device 7 from the DC bus 2.
  • the differential power is smaller than 0, a shortage power equal to the magnitude of the differential power occurs. From each power storage device 7, the power Wc obtained by evenly dividing the insufficient power by the number of power storage devices 7 is discharged to the DC bus 2.
  • Each power storage device 7 includes a storage battery 71, a BMU (Battery Management Unit: battery management device) 72, and a bidirectional DC / DC converter 73 (second converter).
  • BMU Battery Management Unit: battery management device
  • bidirectional DC / DC converter 73 second converter
  • the storage battery 71 is a device that can be charged and discharged.
  • the storage battery 71 is connected to the DC bus 2 via a bidirectional DC / DC converter 73.
  • Examples of the storage battery 71 include a lithium ion battery, a NAS (sodium-sulfur) battery, a redox flow battery, a lead storage battery, and a nickel hydrogen battery.
  • the storage batteries 71 included in the plurality of power storage devices 7 are of the same type and have the same storage capacity.
  • the storage capacity is the maximum storage capacity that can be stored.
  • the storage batteries 71 included in the plurality of power storage devices 7 may be different types of storage batteries, or may have different storage capacities.
  • the storage battery 71 includes, for example, a plurality of battery cells.
  • the BMU72 is a device that manages the storage battery 71.
  • the BMU 72 has a function of measuring the battery voltage Vbat of the storage battery 71 and a function of measuring the current value of the charge / discharge current of the storage battery 71 and calculating the SOC (State of charge).
  • the BMU 72 may further have a function of measuring the cell voltage of a plurality of battery cells constituting the storage battery 71.
  • the BMU 72 transmits the battery information of the storage battery 71 to the power management device 10.
  • the battery information includes the measured value of the battery voltage Vbat, the current value of the charge / discharge current, and the SOC.
  • the battery information may include the smallest cell voltage among the cell voltages of a plurality of battery cells.
  • the BMU 72 periodically transmits battery information to the power management device 10.
  • the bidirectional DC / DC converter 73 is connected to the DC bus 2 and is a device capable of bidirectionally converting the bus voltage Vbus and the battery voltage Vbat.
  • the bidirectional DC / DC converter 73 is provided between the storage battery 71 and the DC bus 2.
  • the battery voltage Vbat is the voltage of the storage battery 71.
  • a known bidirectional DC / DC converter can be used as the bidirectional DC / DC converter 73.
  • the bidirectional DC / DC converter 73 operates with an internally generated DC voltage based on, for example, the bus voltage Vbus.
  • the bidirectional DC / DC converter 73 is controlled by the power management device 10. Specifically, when the bidirectional DC / DC converter 73 receives a charging command from the power management device 10, the bidirectional DC / DC converter 73 converts the bus voltage Vbus into the battery voltage Vbat and causes the charging current to flow from the DC bus 2 to the storage battery 71. As a result, the storage battery 71 is charged. When the bidirectional DC / DC converter 73 receives the discharge command from the power management device 10, the bidirectional DC / DC converter 73 converts the battery voltage Vbat into the bus voltage Vbus and causes the discharge current to flow from the storage battery 71 to the DC bus 2. As a result, the storage battery 71 is discharged.
  • the bidirectional DC / DC converter 73 may charge or discharge the storage battery 71 by a constant current method, or may charge or discharge the storage battery 71 by a constant voltage method.
  • the bidirectional DC / DC converter 73 When the bidirectional DC / DC converter 73 receives a stop command from the power management device 10, the bidirectional DC / DC converter 73 stops its operation and shifts to a sleep state for reducing power consumption. When the bidirectional DC / DC converter 73 receives the charge command or the discharge command in the sleep state, the bidirectional DC / DC converter 73 wakes up from the sleep state and executes the charge process or the discharge process.
  • the bidirectional DC / DC converter 73 has a current limiting function that limits each current value of the charging current supplied to the storage battery 71 and the discharging current discharged from the storage battery 71 to the maximum current value (for example, 45A) or less of the storage battery 71. doing.
  • the bidirectional DC / DC converter 73 has a power measurement function for measuring power Wc.
  • the bidirectional DC / DC converter 73 for example, periodically measures the power Wc.
  • the bidirectional DC / DC converter 73 transmits the measured value of the power Wc to the power management device 10.
  • the power management device 10 is a device (controller) that manages the entire power supply system 1.
  • the power management device 10 is also referred to as an EMS (Energy Management System).
  • the power management device 10 is communicably connected to the power supply device 3, the auxiliary power supply device 5, the converter 6, and the power storage device 7 via a communication line.
  • the communication line may be configured by either wire or wireless.
  • the power management device 10 may perform communication conforming to standards such as RS-232C, RS-485, CAN (Controller Area Network), and Ethernet (registered trademark).
  • the power management device 10 performs a voltage measurement process for measuring the bus voltage Vbus.
  • the power management device 10 may directly measure the bus voltage Vbus.
  • the bidirectional DC / DC converter 73 may measure the bus voltage Vbus and transmit the measured value to the power management device 10, so that the power management device 10 may indirectly measure the bus voltage Vbus.
  • the power management device 10 transmits a start command and a stop command to each of the power conditioner 32, the AC / DC converter 52, the converter 6, and the bidirectional DC / DC converter 73.
  • the power management device 10 transmits a start command to the converter 6 to supply the converter 6 with a load voltage VL.
  • the power management device 10 stops the supply of the load voltage VL to the converter 6 by transmitting a stop command to the converter 6. The same applies to other converters.
  • the power management device 10 performs charge / discharge processing for charging / discharging the storage battery 71 by controlling the bidirectional DC / DC converter 73.
  • the power management device 10 performs charge / discharge processing according to the differential power.
  • the power management device 10 transmits a charging command to the bidirectional DC / DC converter 73, which is the differential power.
  • the surplus electric power is stored in the storage battery 71. That is, each storage battery 71 stores the power obtained by evenly dividing the surplus power according to the number of storage batteries 71.
  • the power management device 10 transmits a discharge command to the bidirectional DC / DC converter 73 to store the insufficient power in the storage battery 71. Release from. The power obtained by evenly dividing the insufficient power according to the number of storage batteries 71 is discharged from each storage battery 71.
  • the power management device 10 controls the start or stop of the auxiliary power supply device 5 based on the remaining battery level of the storage battery 71 and the amount of power generated by the renewable energy power generation device 31. Details of start control and stop control will be described later.
  • FIG. 2 is a hardware configuration diagram of the power management device shown in FIG.
  • the power management device 10 can be physically configured as a computer including hardware such as one or more processors 101, a memory 102, and a communication interface 103.
  • An example of the processor 101 is a CPU (Central Processing Unit).
  • the memory 102 may include a main storage device and an auxiliary storage device.
  • the main storage device is composed of RAM (Random Access Memory), ROM (Read Only Memory), and the like.
  • Examples of the auxiliary storage device include a semiconductor memory and a hard disk device.
  • the communication interface 103 is a device that transmits / receives data to / from another device.
  • the communication interface 103 is composed of, for example, a communication module conforming to communication standards such as RS-232C, RS-485, and CAN, a network interface card (NIC), or a wireless communication module.
  • NIC network interface card
  • each hardware When the processor 101 reads and executes the program stored in the memory 102, each hardware operates under the control of the processor 101, and the data in the memory 102 is read and written. As a result, each functional unit shown in FIG. 3 of the power management device 10 is realized.
  • FIG. 3 is a functional block diagram of the power management device shown in FIG. As shown in FIG. 3, the power management device 10 functionally includes an acquisition unit 11 (first acquisition unit), an acquisition unit 12 (second acquisition unit), and a control unit 13.
  • the power management device 10 functionally includes an acquisition unit 11 (first acquisition unit), an acquisition unit 12 (second acquisition unit), and a control unit 13.
  • the acquisition unit 11 is a functional unit that acquires the remaining battery level of the storage battery 71.
  • the acquisition unit 11 receives the battery information from each BMU 72, and acquires the SOC included in each battery information as the remaining amount of each storage battery 71. Since the cell voltage of the battery cell corresponds to the SOC of the battery cell, the acquisition unit 11 may acquire the minimum cell voltage included in each battery information as the remaining amount of each storage battery 71.
  • the acquisition unit 11 acquires the minimum remaining amount of the remaining amount of all the storage batteries 71 as the remaining amount of the battery.
  • the acquisition unit 11 may acquire the total remaining amount of all the storage batteries 71 as the battery remaining amount.
  • the remaining amount of each storage battery 71 is simply referred to as “remaining amount”
  • the remaining amount used for start control and stop control described later is referred to as "battery remaining amount”.
  • the acquisition unit 12 is a functional unit that acquires the amount of power generated by the renewable energy power generation device 31.
  • the acquisition unit 12 acquires the measured value of the generated power Wre from the power conditioner 32 as the amount of power generation.
  • the acquisition unit 12 uses the sum of the measured values of the generated power Wre acquired from each power conditioner 32 as the power generation amount.
  • the control unit 13 is a functional unit that controls the start or stop of the auxiliary power supply device 5 based on the remaining battery level of the storage battery 71 and the amount of power generated by the renewable energy power generation device 31.
  • the control unit 13 performs start control and stop control of the auxiliary power supply device 5 by using the storage thresholds Bdth1, Bdth2, Bct1, Bct2, and the power generation thresholds Gth1, Gth2.
  • the storage thresholds Bds1 and Bds2 are used when the storage battery 71 is discharged.
  • the storage threshold value Bds1 (first storage threshold value) is a threshold value for determining that the storage battery 71 is near the sky.
  • the storage threshold value Bds1 is set to a value larger than the storage threshold value Bds2.
  • the storage threshold value Bds2 (second storage threshold value) is a threshold value for determining that the storage battery 71 is about to become empty. Therefore, the storage threshold value Bds2 is set to a value slightly larger than 0.
  • the storage thresholds Bct1 and Bct2 are used when the storage battery 71 is being charged.
  • the storage threshold value Bct1 (fourth storage threshold value) is a threshold value for determining that the storage battery 71 is out of the near-empty state.
  • the storage threshold Bct1 is set to a value larger than the storage threshold Bct2 and equal to or higher than the storage threshold Bds1.
  • the storage threshold value Bct2 (third storage threshold value) is a threshold value for determining that the storage battery 71 is out of the state near the space.
  • the storage threshold Bct2 is set to a value equal to or higher than the storage threshold Bds2.
  • the power generation threshold Gth1 (first power generation threshold) is a threshold for determining that the amount of power generated by the renewable energy power generation device 31 is insufficient.
  • the power generation threshold value Gth2 (second power generation threshold value) is a threshold value for determining that the amount of power generated by the renewable energy power generation device 31 is sufficient.
  • the power generation threshold Gth2 is set to a value larger than the power generation threshold Gth1.
  • FIG. 5 is a flowchart showing a series of processes of start control performed by the power management device shown in FIG.
  • the series of processes shown in FIG. 5 is started, for example, in response to the auxiliary power supply device 5 being stopped.
  • the acquisition unit 11 acquires the remaining battery level of the storage battery 71 (step S11).
  • the acquisition unit 11 receives battery information from each BMU 72, for example, and acquires the SOC included in each battery information as the remaining amount of each storage battery 71.
  • the acquisition unit 11 may acquire the minimum cell voltage included in each battery information as the remaining amount of each storage battery 71.
  • the acquisition unit 11 acquires the minimum remaining amount of the remaining amount of all the storage batteries 71 as the remaining amount of the battery.
  • the acquisition unit 11 may acquire the total remaining amount of all the storage batteries 71 as the battery remaining amount. Then, the acquisition unit 11 outputs the remaining battery level to the control unit 13.
  • the acquisition unit 12 acquires the amount of power generated by the renewable energy power generation device 31 (step S12).
  • the acquisition unit 12 acquires, for example, the measured value of the generated power Wre from the power conditioner 32 as the amount of power generation.
  • the acquisition unit 12 uses the sum of the measured values of the generated power Wre acquired from each power conditioner 32 as the power generation amount. Then, the acquisition unit 12 outputs the amount of power generation to the control unit 13.
  • step S13 when the control unit 13 receives the remaining battery level from the acquisition unit 11 and the amount of power generation from the acquisition unit 12, the remaining battery level is higher than the storage threshold value Bds2 by comparing the remaining battery level with the storage threshold value Bds2. Is also small (step S13).
  • step S13 determines that the remaining battery level is equal to or higher than the storage threshold value Bds2 (step S13; NO)
  • step S13 compares the remaining battery level with the storage threshold value Bds1 to store the remaining battery level. It is determined whether or not it is smaller than the threshold value Bds1 (step S14).
  • step S14 When it is determined in step S14 that the remaining battery level is equal to or higher than the storage threshold value Bds1 (step S14; NO), it can be said that the storage battery 71 has a sufficient remaining battery level. Therefore, the control unit 13 performs the process of step S11 again without activating the auxiliary power supply device 5. On the other hand, when it is determined in step S14 that the remaining battery level is smaller than the storage threshold value Bds1 (step S14; YES), the control unit 13 compares the power generation amount with the power generation threshold Gth1 to generate power. It is determined whether or not it is smaller than the threshold value Gth1 (step S15).
  • step S15 When it is determined in step S15 that the amount of power generation is equal to or greater than the power generation threshold value Gth1 (step S15; NO), the storage battery 71 has a certain amount of remaining battery power, and a certain amount of power generation can be obtained. Therefore, the control unit 13 performs the process of step S11 again without activating the auxiliary power supply device 5. On the other hand, when it is determined in step S15 that the amount of power generation is smaller than the power generation threshold value Gth1 (step S15; YES), the storage battery 71 has a certain amount of remaining battery power, but the amount of power generation is not sufficient. Therefore, the control unit 13 transmits an activation command to the auxiliary power supply device 5 to activate the auxiliary power supply device 5 (step S16). As a result, a series of start control processes is completed.
  • step S13 when it is determined that the remaining battery level is smaller than the storage threshold value Bds2 (step S13; YES), the storage battery 71 is almost empty. Therefore, the control unit 13 transmits a start command to the auxiliary power supply device 5 and starts the auxiliary power supply device 5 regardless of the amount of power generation (step S16). As a result, a series of start control processes is completed.
  • step S13 the control unit 13 determines whether or not the remaining battery level is smaller than the storage threshold value Bds2, but may determine whether or not the remaining battery level is equal to or lower than the storage threshold value Bds2. .. Similarly, in step S14, the control unit 13 may determine whether or not the remaining battery level is equal to or less than the storage threshold value Bds1. In step S15, the control unit 13 may determine whether or not the amount of power generation is equal to or less than the power generation threshold value Gth1.
  • the control unit 13 activates the auxiliary power supply device 5 when the remaining battery level is larger than the storage threshold value Bds2, the remaining battery level is smaller than the storage threshold value Bdth1, and the amount of power generation is smaller than the power generation threshold value Gth1.
  • the control unit 13 activates the auxiliary power supply device 5 regardless of the amount of power generation.
  • the control unit 13 does not start the auxiliary power supply device 5 when the remaining battery level is larger than the storage threshold value Bds2, the remaining battery level is smaller than the storage threshold value Bdth1, and the amount of power generation is larger than the power generation threshold value Gth1.
  • the control unit 13 does not start the auxiliary power supply device 5 regardless of the amount of power generation.
  • step S12 may be performed at any timing as long as it is before step S15. If it is determined in step S13 that the remaining battery level is smaller than the storage threshold value Bds2, step S12 may not be performed.
  • FIG. 6 is a flowchart showing a series of stop control processes performed by the power management device shown in FIG.
  • the series of processes shown in FIG. 6 is started, for example, in response to the activation of the auxiliary power supply device 5.
  • step S21 and S22 Since the processing of steps S21 and S22 is the same as that of steps S11 and S12, the description thereof will be omitted. Subsequently, when the control unit 13 receives the remaining battery level from the acquisition unit 11 and the amount of power generation from the acquisition unit 12, the remaining battery level is higher than the storage threshold value Bct1 by comparing the remaining battery level with the storage threshold value Bcts1. Is also large (step S23). When it is determined in step S23 that the remaining battery level is equal to or lower than the storage threshold value Bct1 (step S23; NO), the control unit 13 compares the remaining battery level with the storage threshold value Bct2 to store the remaining battery level. It is determined whether or not it is larger than the threshold value Bct2 (step S24).
  • step S24 When it is determined in step S24 that the remaining battery level is equal to or less than the storage threshold Bct2 (step S24; NO), the storage battery 71 is in a state close to space. Therefore, the control unit 13 performs the process of step S21 again without stopping the auxiliary power supply device 5. On the other hand, when it is determined in step S24 that the remaining battery level is larger than the storage threshold Bct2 (step S24; YES), the control unit 13 compares the power generation amount with the power generation threshold Gth2 to generate power. It is determined whether or not it is larger than the threshold value Gth2 (step S25).
  • step S25 When it is determined in step S25 that the amount of power generation is equal to or less than the power generation threshold value Gth2 (step S25; NO), the storage battery 71 has a certain amount of remaining battery power, but a sufficient amount of power generation cannot be obtained. Therefore, the control unit 13 performs the process of step S21 again without stopping the auxiliary power supply device 5. On the other hand, when it is determined in step S25 that the amount of power generation is larger than the power generation threshold value Gth2 (step S25; YES), the storage battery 71 has a certain amount of remaining battery power, and a sufficient amount of power generation can be obtained. Therefore, the control unit 13 transmits a stop command to the auxiliary power supply device 5 to stop the auxiliary power supply device 5 (step S26). As a result, a series of stop control processes is completed.
  • step S23 If it is determined in step S23 that the remaining battery level is larger than the storage threshold value Bct1 (step S23; YES), the storage battery 71 has a sufficient remaining battery level. Therefore, the control unit 13 transmits a stop command to the auxiliary power supply device 5 and stops the auxiliary power supply device 5 regardless of the amount of power generation (step S26). As a result, a series of stop control processes is completed.
  • step S23 the control unit 13 determines whether or not the remaining battery level is larger than the storage threshold value Bcts1, but may determine whether or not the remaining battery level is equal to or higher than the storage threshold value Bcts1. .. Similarly, in step S24, the control unit 13 may determine whether or not the remaining battery level is equal to or higher than the storage threshold value Bct2. In step S25, the control unit 13 may determine whether or not the amount of power generation is equal to or greater than the power generation threshold value Gth2.
  • the control unit 13 stops the auxiliary power supply device 5.
  • the control unit 13 stops the auxiliary power supply device 5 regardless of the amount of power generation.
  • the control unit 13 does not stop the auxiliary power supply device 5 when the battery remaining amount is larger than the storage threshold value Bct2, the battery remaining amount is smaller than the storage storage threshold value Bcts1, and the power generation amount is smaller than the power generation threshold value Gth2.
  • the control unit 13 does not stop the auxiliary power supply device 5 regardless of the amount of power generation.
  • step S22 may be performed at any timing as long as it is before step S25. If it is determined in step S23 that the remaining battery level is larger than the storage threshold Bct1, step S22 may not be performed.
  • FIG. 7 is a diagram for explaining the operating time of the auxiliary power supply device when start control and stop control are performed by the power management device shown in FIG.
  • FIG. 8 is a diagram for explaining the operating time of the auxiliary power supply device when start control and stop control are performed by the power management device of the comparative example.
  • the horizontal axis of FIGS. 7 and 8 indicates the elapsed time (unit: au). “A.u.” means an arbitrary unit.
  • the vertical axis on the left side of FIGS. 7 and 8 shows the remaining battery level (unit:%) of the storage battery, and the vertical axis on the right side shows the amount of power generated by the renewable energy power generation device (unit: W).
  • the power management device of the comparative example controls the activation of the auxiliary power supply device 5 by using only the storage threshold value Bds1. Specifically, the power management device of the comparative example activates the auxiliary power supply device 5 when the remaining battery level of the storage battery 71 is smaller than the storage threshold value Bds1, and does not activate the auxiliary power supply device 5 in other cases.
  • the power management device of the comparative example controls the stop of the auxiliary power supply device 5 by using only the storage threshold Bct1. Specifically, the power management device of the comparative example stops the auxiliary power supply device 5 when the remaining battery level of the storage battery 71 is larger than the storage threshold value Bct1, and does not stop the auxiliary power supply device 5 in other cases.
  • the waveforms of the system power Ws shown in FIGS. 7 and 8 were obtained by calculation under the following conditions.
  • the load power WL was set to 20000 W
  • the system power Ws was set to 30000 W
  • the generated power Wre power generation amount
  • the storage threshold Bds2 was set to 8%
  • the storage threshold Bct2 was set to 9%
  • the storage threshold Bds1 was set to 10%
  • the storage threshold Bct1 was set to 17%
  • the power generation threshold Gth1 was set to 5000 W
  • the power generation threshold Gth2 was set to 7000 W.
  • the power management device of the comparative example activates the auxiliary power supply device 5 when the remaining battery level becomes less than the storage threshold value Bds1, and then activates the auxiliary power supply device 5 when the remaining battery level exceeds the storage threshold value Bcts1. Stop.
  • the operating time of the auxiliary power supply device 5 is 280 [a. u. ]Met.
  • the power management device 10 does not start the auxiliary power supply device 5 while the remaining battery level is the storage threshold value Bds2 or more and the generated power Wre is the power generation threshold value Gth1 or more.
  • the power management device 10 activates the auxiliary power supply device 5 when the remaining battery level falls below the storage threshold value Bds2.
  • the power management device 10 stops the auxiliary power supply device 5.
  • the operating time of the auxiliary power supply device 5 is 165 [a. u. ]Met. Therefore, the operating time of the auxiliary power supply device 5 is shortened by about 40% as compared with the comparative example.
  • the auxiliary power supply device 5 is started or stopped in consideration of not only the remaining battery level of the storage battery 71 but also the amount of power generated by the renewable energy power generation device 31. Is controlled. For example, even if the remaining battery level of the storage battery 71 is reduced, it is possible not to start the auxiliary power supply device 5 if a sufficient amount of power generation can be obtained. In a situation where the auxiliary power supply device 5 is operating, even if the remaining battery level of the storage battery 71 is not sufficiently large, the auxiliary power supply device 5 can be stopped if a sufficient amount of power generation can be obtained. As a result, the operating time of the auxiliary power supply device 5 can be shortened. Since renewable energy is used instead of operating the auxiliary power supply device 5, the cost can be reduced.
  • the control unit 13 has the condition that the remaining battery level is smaller than the storage threshold value Bdth1, the remaining battery level is larger than the storage threshold value Bdth2, and the amount of power generation is smaller than the power generation threshold value Gth1, or the battery remaining amount.
  • the auxiliary power supply device 5 is activated.
  • the control unit 13 does not start the auxiliary power supply device 5 if any of the above conditions is not satisfied.
  • the auxiliary power supply device 5 is activated when the storage battery 71 has a certain amount of battery remaining and a certain amount of power generation can be obtained. Not done. Therefore, the timing of starting the auxiliary power supply device 5 can be delayed. As a result, the operating time of the auxiliary power supply device 5 can be shortened.
  • the control unit 13 has the condition that the remaining battery level is larger than the storage threshold value Bct2, the remaining battery level is smaller than the storage threshold value Bcts1, and the amount of power generation is larger than the power generation threshold value Gth2, or the battery remaining amount.
  • the auxiliary power supply device 5 is stopped.
  • the control unit 13 does not stop the auxiliary power supply device 5 when any of the above conditions is not satisfied.
  • the auxiliary power supply device 5 is stopped when the storage battery 71 has a certain amount of battery remaining and a certain amount of power generation can be obtained. NS. Therefore, the timing of stopping the auxiliary power supply device 5 can be accelerated. As a result, the operating time of the auxiliary power supply device 5 can be shortened.
  • the power management device, power supply system, and power management method according to the present disclosure are not limited to the above embodiments.
  • the power management device 10 may be composed of one device that is physically or logically coupled, or may be composed of a plurality of devices that are physically or logically separated from each other.
  • the power management device 10 may be realized by a plurality of computers distributed on a network as in cloud computing.
  • At least one of the power conditioner 32, the AC / DC converter 52, the converter 6, and the bidirectional DC / DC converter 73 does not have to have a power measurement function.
  • the power management device 10 may acquire the measured value of each power from the measured value of the voltage measured by the voltage sensor and the measured value of the current measured by the current sensor.
  • the power supply device 3 may be provided with another power generation device instead of the renewable energy power generation device 31.
  • the auxiliary power supply device 5 may be provided with a power generation device instead of the commercial power supply 51.
  • a power generator is a diesel generator.
  • the number of the auxiliary power supply devices 5 is not limited to one, and may be appropriately changed as needed.
  • the power supply system 1 is also referred to as a stand-alone DC power supply system.
  • each of the power conditioner 32, the AC / DC converter 52, the converter 6, and the bidirectional DC / DC converter 73 operates with the DC voltage generated inside the apparatus.
  • the power supply system 1 includes a power supply unit, and the power supply unit generates a DC voltage having a constant voltage value from the bus voltage Vbus of the DC bus 2 and supplies the DC voltage (power) to each device. You may.
  • the storage threshold Bct1 may be set to a value larger than the storage threshold Bds1 in order to avoid frequent switching of whether or not the storage battery 71 is near the sky.
  • the storage threshold Bct2 may be set to a value larger than the storage threshold Bds2 in order to avoid frequent switching of whether or not the storage battery 71 is close to the space.
  • step S13 may be omitted. That is, the control unit 13 activates the auxiliary power supply device 5 when the remaining battery level is smaller than the storage threshold value Bds1 and the amount of power generation is smaller than the power generation threshold value Gth1. In other cases, the control unit 13 does not activate the auxiliary power supply device 5. In this configuration, even if the remaining battery level of the storage battery 71 becomes smaller than the storage threshold value Bds1, the auxiliary power supply device 5 is not activated when a certain amount of power generation can be obtained. Therefore, the timing of starting the auxiliary power supply device 5 can be delayed. As a result, the operating time of the auxiliary power supply device 5 can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

This power management device is provided with: a first acquiring unit for acquiring the battery remaining amount of a storage battery connected to a DC bus via a converter; a second acquiring unit for acquiring the amount of power generated by a power generation device included in a power supply device for supplying power to the DC bus; and a control unit for controlling, on the basis of the battery remaining amount and the generated power amount, the start-up or stop of an auxiliary power supply device for supplying power to the DC bus.

Description

電力管理装置、給電システム、及び電力管理方法Power management device, power supply system, and power management method
 本開示は、電力管理装置、給電システム、及び電力管理方法に関する。 This disclosure relates to a power management device, a power supply system, and a power management method.
 近年、太陽光及び風力等の再生可能エネルギーを利用した発電装置が普及し始めている。再生可能エネルギー発電装置の発電量は不安定であるので、蓄電池が用いられることがある。例えば、発電量が負荷電力よりも多い場合には余剰電力が蓄電池に蓄積され、発電量が負荷電力よりも少ない場合には不足電力が蓄電池から放出される。さらに、再生可能エネルギー発電装置及び蓄電池に加えて、補助電源装置を備える給電システムが知られている(例えば、特許文献1~3参照)。 In recent years, power generation devices that use renewable energy such as solar power and wind power have begun to spread. Since the amount of power generated by a renewable energy power generator is unstable, a storage battery may be used. For example, when the amount of power generation is larger than the load power, the surplus power is stored in the storage battery, and when the amount of power generation is less than the load power, the insufficient power is discharged from the storage battery. Further, a power supply system including an auxiliary power supply device in addition to the renewable energy power generation device and the storage battery is known (see, for example, Patent Documents 1 to 3).
特開2016-134933号公報Japanese Unexamined Patent Publication No. 2016-134933 特開2019-9969号公報JP-A-2019-99969 特開2015-149792号公報Japanese Unexamined Patent Publication No. 2015-149792
 補助電源装置を動かすためには、例えば燃料及び商用電力が必要になるので、多大なコストが掛かるおそれがある。補助電源装置として電力系統が用いられる場合、電力系統が不安定な地域では、停電により給電システムに電力を供給できなくなるおそれがある。したがって、補助電源装置の稼働時間を短縮することが望まれている。 In order to operate the auxiliary power supply, for example, fuel and commercial power are required, so there is a risk that a great deal of cost will be incurred. When a power system is used as an auxiliary power supply, power cannot be supplied to the power supply system due to a power outage in an area where the power system is unstable. Therefore, it is desired to shorten the operating time of the auxiliary power supply device.
 本開示は、補助電源装置の稼働時間を短縮可能な電力管理装置、給電システム、及び電力管理方法を説明する。 This disclosure describes a power management device, a power supply system, and a power management method that can shorten the operating time of the auxiliary power supply device.
 本開示の一側面に係る電力管理装置は、コンバータを介して直流バスに接続された蓄電池の電池残量を取得する第1取得部と、直流バスに電力を供給する電源装置に含まれる発電装置の発電量を取得する第2取得部と、電池残量及び発電量に基づいて、直流バスに電力を供給する補助電源装置の起動又は停止を制御する制御部と、を備える。 The power management device according to one aspect of the present disclosure includes a first acquisition unit that acquires the remaining battery level of a storage battery connected to a DC bus via a converter, and a power generation device included in a power supply device that supplies power to the DC bus. It is provided with a second acquisition unit that acquires the amount of power generated in the above, and a control unit that controls the start or stop of the auxiliary power supply device that supplies electric power to the DC bus based on the remaining battery level and the amount of power generation.
 この電力管理装置では、蓄電池の電池残量だけでなく、発電装置の発電量を考慮して、補助電源装置の起動又は停止が制御される。例えば、蓄電池の電池残量が減少したとしても、十分な発電量が得られる場合には、補助電源装置を起動しないことが可能となる。補助電源装置が稼働している状況において、蓄電池に十分な電池残量が無かったとしても、十分な発電量が得られる場合には、補助電源装置を停止することが可能となる。その結果、補助電源装置の稼働時間を短縮することが可能となる。 In this power management device, the start or stop of the auxiliary power supply device is controlled in consideration of not only the remaining battery level of the storage battery but also the amount of power generated by the power generation device. For example, even if the remaining battery level of the storage battery is reduced, it is possible not to start the auxiliary power supply device if a sufficient amount of power generation can be obtained. In a situation where the auxiliary power supply device is operating, even if the storage battery does not have a sufficient battery level, the auxiliary power supply device can be stopped if a sufficient amount of power generation can be obtained. As a result, the operating time of the auxiliary power supply device can be shortened.
 制御部は、電池残量が第1蓄電閾値よりも小さく、かつ、発電量が第1発電閾値よりも小さい場合、補助電源装置を起動してもよい。この構成では、蓄電池の電池残量が第1蓄電閾値よりも小さくなったとしても、ある程度の発電量が得られる場合には、補助電源装置が起動されない。したがって、補助電源装置を起動するタイミングを遅らせることができる。その結果、補助電源装置の稼働時間を短縮することが可能となる。 The control unit may activate the auxiliary power supply device when the remaining battery level is smaller than the first storage threshold value and the amount of power generation is smaller than the first power generation threshold value. In this configuration, even if the remaining battery level of the storage battery becomes smaller than the first storage threshold value, the auxiliary power supply device is not activated when a certain amount of power generation can be obtained. Therefore, the timing of starting the auxiliary power supply device can be delayed. As a result, the operating time of the auxiliary power supply device can be shortened.
 制御部は、電池残量が第1蓄電閾値よりも小さく、電池残量が第2蓄電閾値よりも大きく、かつ、発電量が第1発電閾値よりも小さい場合、補助電源装置を起動してもよく、電池残量が第2蓄電閾値よりも小さい場合、発電量によらずに補助電源装置を起動してもよい。第2蓄電閾値は、第1蓄電閾値よりも小さくてもよい。この構成では、蓄電池の電池残量が第1蓄電閾値よりも小さくなったとしても、蓄電池にある程度の電池残量があり、ある程度の発電量が得られる場合には、補助電源装置が起動されない。したがって、補助電源装置を起動するタイミングを遅らせることができる。その結果、補助電源装置の稼働時間を短縮することが可能となる。 When the remaining battery level is smaller than the first storage threshold value, the remaining battery level is larger than the second storage capacity threshold value, and the amount of power generation is smaller than the first power generation threshold value, the control unit may start the auxiliary power supply device. Well, when the remaining battery level is smaller than the second storage threshold value, the auxiliary power supply device may be activated regardless of the amount of power generation. The second storage threshold may be smaller than the first storage threshold. In this configuration, even if the remaining battery level of the storage battery becomes smaller than the first storage threshold value, the auxiliary power supply device is not activated when the storage battery has a certain amount of battery level and a certain amount of power generation can be obtained. Therefore, the timing of starting the auxiliary power supply device can be delayed. As a result, the operating time of the auxiliary power supply device can be shortened.
 制御部は、電池残量が第3蓄電閾値よりも大きく、電池残量が第4蓄電閾値よりも小さく、かつ、発電量が第2発電閾値よりも大きい場合、補助電源装置を停止してもよく、電池残量が第4蓄電閾値よりも大きい場合、発電量によらずに補助電源装置を停止してもよい。第4蓄電閾値は、第3蓄電閾値よりも大きくてもよい。この構成では、蓄電池の電池残量が第4蓄電閾値よりも小さかったとしても、蓄電池にある程度の電池残量があり、ある程度の発電量が得られる場合には、補助電源装置が停止される。したがって、補助電源装置を停止するタイミングを早めることができる。その結果、補助電源装置の稼働時間を短縮することが可能となる。 When the remaining battery level is larger than the third storage threshold value, the remaining battery level is smaller than the fourth storage capacity threshold value, and the amount of power generation is larger than the second power generation threshold value, the control unit may stop the auxiliary power supply device. Well, when the remaining battery level is larger than the fourth storage threshold value, the auxiliary power supply device may be stopped regardless of the amount of power generation. The fourth storage threshold value may be larger than the third storage storage threshold value. In this configuration, even if the remaining battery level of the storage battery is smaller than the fourth storage threshold value, the auxiliary power supply device is stopped when the storage battery has a certain amount of battery level and a certain amount of power generation can be obtained. Therefore, the timing of stopping the auxiliary power supply device can be accelerated. As a result, the operating time of the auxiliary power supply device can be shortened.
 発電装置は、再生可能エネルギー発電装置であってもよい。この場合、再生可能エネルギーが用いられるので、コストを低減することが可能となる。 The power generation device may be a renewable energy power generation device. In this case, since renewable energy is used, it is possible to reduce the cost.
 本開示の別の側面に係る給電システムは、直流電力を供給するための直流バスと、発電装置を含み、直流バスに電力を供給する電源装置と、直流バスに電力を供給する補助電源装置と、直流バスに接続され、直流バスに供給されるバス電圧を負荷機器に供給される負荷電圧に変換する第1コンバータと、蓄電池と、蓄電池と直流バスとの間に設けられ、バス電圧と蓄電池の電池電圧とを双方向に変換可能な第2コンバータと、第2コンバータを制御することによって蓄電池を充放電する電力管理装置と、を備える。電力管理装置は、蓄電池の電池残量及び発電装置の発電量に基づいて、補助電源装置の起動又は停止を制御する。 The power supply system according to another aspect of the present disclosure includes a DC bus for supplying DC power, a power supply device that includes a power generation device and supplies power to the DC bus, and an auxiliary power supply device that supplies power to the DC bus. The first converter, which is connected to the DC bus and converts the bus voltage supplied to the DC bus into the load voltage supplied to the load equipment, is provided between the storage battery, the storage battery and the DC bus, and the bus voltage and the storage battery. It is provided with a second converter capable of bidirectionally converting the battery voltage of the above battery, and a power management device for charging and discharging the storage battery by controlling the second converter. The power management device controls the start or stop of the auxiliary power supply device based on the remaining battery level of the storage battery and the amount of power generated by the power generation device.
 この給電システムでは、蓄電池の電池残量だけでなく、発電装置の発電量を考慮して、補助電源装置の起動又は停止が制御される。例えば、蓄電池の電池残量が減少したとしても、十分な発電量が得られる場合には、補助電源装置を起動しないことが可能となる。補助電源装置が稼働している状況において、蓄電池に十分な電池残量が無かったとしても、十分な発電量が得られる場合には、補助電源装置を停止することが可能となる。その結果、補助電源装置の稼働時間を短縮することが可能となる。 In this power supply system, the start or stop of the auxiliary power supply device is controlled in consideration of not only the remaining battery level of the storage battery but also the amount of power generated by the power generation device. For example, even if the remaining battery level of the storage battery is reduced, it is possible not to start the auxiliary power supply device if a sufficient amount of power generation can be obtained. In a situation where the auxiliary power supply device is operating, even if the storage battery does not have a sufficient battery level, the auxiliary power supply device can be stopped if a sufficient amount of power generation can be obtained. As a result, the operating time of the auxiliary power supply device can be shortened.
 本開示のさらに別の側面に係る電力管理方法は、コンバータを介して直流バスに接続された蓄電池の電池残量を取得するステップと、直流バスに電力を供給する電源装置に含まれる発電装置の発電量を取得するステップと、電池残量及び発電量に基づいて、直流バスに電力を供給する補助電源装置の起動又は停止を制御するステップと、を備える。 A power management method according to yet another aspect of the present disclosure is a step of acquiring the remaining battery level of a storage battery connected to a DC bus via a converter, and a power generation device included in a power supply device that supplies power to the DC bus. It includes a step of acquiring the amount of power generation and a step of controlling the start or stop of the auxiliary power supply device that supplies power to the DC bus based on the remaining battery level and the amount of power generation.
 この電力管理方法では、蓄電池の電池残量だけでなく、発電装置の発電量を考慮して、補助電源装置の起動又は停止が制御される。例えば、蓄電池の電池残量が減少したとしても、十分な発電量が得られる場合には、補助電源装置を起動しないことが可能となる。補助電源装置が稼働している状況において、蓄電池に十分な電池残量が無かったとしても、十分な発電量が得られる場合には、補助電源装置を停止することが可能となる。その結果、補助電源装置の稼働時間を短縮することが可能となる。 In this power management method, the start or stop of the auxiliary power supply device is controlled in consideration of not only the remaining battery level of the storage battery but also the amount of power generated by the power generation device. For example, even if the remaining battery level of the storage battery is reduced, it is possible not to start the auxiliary power supply device if a sufficient amount of power generation can be obtained. In a situation where the auxiliary power supply device is operating, even if the storage battery does not have a sufficient battery level, the auxiliary power supply device can be stopped if a sufficient amount of power generation can be obtained. As a result, the operating time of the auxiliary power supply device can be shortened.
 本開示の各側面及び各実施形態によれば、補助電源装置の稼働時間を短縮することができる。 According to each aspect and each embodiment of the present disclosure, the operating time of the auxiliary power supply device can be shortened.
図1は、一実施形態に係る給電システムを概略的に示す構成図である。FIG. 1 is a configuration diagram schematically showing a power supply system according to an embodiment. 図2は、図1に示される電力管理装置のハードウェア構成図である。FIG. 2 is a hardware configuration diagram of the power management device shown in FIG. 図3は、図1に示される電力管理装置の機能ブロック図である。FIG. 3 is a functional block diagram of the power management device shown in FIG. 図4は、各閾値の関係を示す図である。FIG. 4 is a diagram showing the relationship between the threshold values. 図5は、図1に示される電力管理装置が行う起動制御の一連の処理を示すフローチャートである。FIG. 5 is a flowchart showing a series of processes of start control performed by the power management device shown in FIG. 図6は、図1に示される電力管理装置が行う停止制御の一連の処理を示すフローチャートである。FIG. 6 is a flowchart showing a series of stop control processes performed by the power management device shown in FIG. 図7は、図1に示される電力管理装置によって起動制御及び停止制御が行われた場合の補助電源装置の稼働時間を説明するための図である。FIG. 7 is a diagram for explaining the operating time of the auxiliary power supply device when start control and stop control are performed by the power management device shown in FIG. 図8は、比較例の電力管理装置によって起動制御及び停止制御が行われた場合の補助電源装置の稼働時間を説明するための図である。FIG. 8 is a diagram for explaining the operating time of the auxiliary power supply device when start control and stop control are performed by the power management device of the comparative example.
 以下、図面を参照しながら本開示の実施形態が詳細に説明される。なお、図面の説明において同一要素には同一符号が付され、重複する説明は省略される。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description is omitted.
 図1は、一実施形態に係る給電システムを概略的に示す構成図である。図1に示される給電システム1は、負荷機器Lに負荷電力WL(負荷電圧VL)を供給するシステムである。本実施形態では、給電システム1は、直流給電システムである。負荷機器Lは、直流電圧で動作する直流負荷機器であってもよく、交流電圧で動作する交流負荷機器であってもよい。直流負荷機器の例としては、LED(Light Emission Diode)照明器、DC(Direct Current)ファン、及びパーソナルコンピュータが挙げられる。交流負荷機器の例としては、洗濯機、冷蔵庫、及びエアーコンディショナが挙げられる。給電システム1は、直流バス2と、1又は複数の電源装置3と、補助電源装置5と、1又は複数のコンバータ6(第1コンバータ)と、1又は複数の蓄電装置7と、電力管理装置10と、を備える。 FIG. 1 is a configuration diagram schematically showing a power supply system according to an embodiment. The power supply system 1 shown in FIG. 1 is a system that supplies load power WL (load voltage VL) to load device L. In the present embodiment, the power supply system 1 is a DC power supply system. The load device L may be a DC load device that operates at a DC voltage, or may be an AC load device that operates at an AC voltage. Examples of direct current load devices include LED (Light Emission Diode) illuminators, DC (Direct Current) fans, and personal computers. Examples of AC load equipment include washing machines, refrigerators, and air conditioners. The power supply system 1 includes a DC bus 2, one or more power supply devices 3, an auxiliary power supply device 5, one or more converters 6 (first converter), one or more power storage devices 7, and a power management device. 10 and.
 直流バス2は、直流電力を供給する直流給電を行うための母線として機能するバスである。直流バス2は、電源装置3、補助電源装置5、蓄電装置7、及び負荷機器Lの設置場所に亘って敷設されている。直流バス2にはバス電圧Vbusが供給される。バス電圧Vbusは、高圧の直流電圧である。バス電圧Vbusは、コンバータ6の入力電圧の範囲に含まれるように設定される。バス電圧Vbusは、例えば、DC250V以上DC450V以下の電圧である。バス電圧Vbusの電圧値は、固定されていてもよく、変動してもよい。 The DC bus 2 is a bus that functions as a bus for supplying DC power to supply DC power. The DC bus 2 is laid over the installation locations of the power supply device 3, the auxiliary power supply device 5, the power storage device 7, and the load device L. The bus voltage Vbus is supplied to the DC bus 2. The bus voltage Vbus is a high voltage DC voltage. The bus voltage Vbus is set to be within the range of the input voltage of the converter 6. The bus voltage Vbus is, for example, a voltage of DC250V or more and DC450V or less. The voltage value of the bus voltage Vbus may be fixed or may vary.
 電源装置3は、直流バス2に電力を供給する装置である。本実施形態では、給電システム1は、1つの電源装置3を備えている。電源装置3の数は、1つに限られず、必要に応じて適宜変更され得る。電源装置3は、再生可能エネルギー発電装置31(発電装置)と、パワーコンディショナー32と、を含む。 The power supply device 3 is a device that supplies electric power to the DC bus 2. In this embodiment, the power supply system 1 includes one power supply device 3. The number of power supply devices 3 is not limited to one, and may be changed as needed. The power supply device 3 includes a renewable energy power generation device 31 (power generation device) and a power conditioner 32.
 再生可能エネルギー発電装置31は、発電電力Wreを生成する装置である。再生可能エネルギー発電装置31の例としては、太陽光発電装置、風力発電装置、水力発電装置、及び地熱発電装置が挙げられる。再生可能エネルギー発電装置31は、パワーコンディショナー32を介して、直流バス2に接続されている。再生可能エネルギー発電装置31は、所定の電圧値の発電電圧Vreを生成し、発電電圧Vreに応じた発電電力Wreを出力する。発電電圧Vreは、直流電圧でもよく、交流電圧でもよい。 The renewable energy power generation device 31 is a device that generates generated power Wre. Examples of the renewable energy power generation device 31 include a solar power generation device, a wind power generation device, a hydroelectric power generation device, and a geothermal power generation device. The renewable energy power generation device 31 is connected to the DC bus 2 via the power conditioner 32. The renewable energy power generation device 31 generates a power generation voltage Vre having a predetermined voltage value, and outputs a power generation power Wre corresponding to the power generation voltage Vre. The generated voltage Vre may be a DC voltage or an AC voltage.
 パワーコンディショナー32は、直流バス2に接続されており、発電電圧Vreをバス電圧Vbusに変換する装置である。発電電圧Vreが直流電圧である場合、パワーコンディショナー32は、DC/DCコンバータを含む。発電電圧Vreが交流電圧である場合、パワーコンディショナー32は、AC(Alternating Current)/DCコンバータを含む。パワーコンディショナー32は、例えば、発電電圧Vreに基づいて内部で生成した直流電圧で動作する。パワーコンディショナー32は、電力管理装置10からの指令に基づき、再生可能エネルギー発電装置31の発電動作を制御することで、発電電力Wreを制御する。パワーコンディショナー32は、電力管理装置10からの指令に基づき、発電電圧Vreをバス電圧Vbusに変換し、バス電圧Vbusを直流バス2に供給する。 The power conditioner 32 is a device that is connected to the DC bus 2 and converts the generated voltage Vre into the bus voltage Vbus. When the generated voltage Vre is a DC voltage, the power conditioner 32 includes a DC / DC converter. When the generated voltage Vre is an alternating current voltage, the power conditioner 32 includes an AC (Alternating Current) / DC converter. The power conditioner 32 operates with a DC voltage generated internally based on, for example, the generated voltage Vre. The power conditioner 32 controls the generated power Wre by controlling the power generation operation of the renewable energy power generation device 31 based on the command from the power management device 10. The power conditioner 32 converts the generated voltage Vre into the bus voltage Vbus and supplies the bus voltage Vbus to the DC bus 2 based on the command from the power management device 10.
 パワーコンディショナー32は、再生可能エネルギー発電装置31から直流バス2に供給されている発電電力Wreを計測する電力計測機能を有している。パワーコンディショナー32は、例えば、周期的に発電電力Wreを計測する。パワーコンディショナー32は、発電電力Wreの計測値を電力管理装置10に送信する。 The power conditioner 32 has a power measurement function for measuring the generated power Wre supplied from the renewable energy power generation device 31 to the DC bus 2. The power conditioner 32, for example, periodically measures the generated power Wre. The power conditioner 32 transmits the measured value of the generated power Wre to the power management device 10.
 補助電源装置5は、直流バス2に電力を供給する装置である。補助電源装置5は、商用電源51と、AC/DCコンバータ52と、を含む。商用電源51は、所定の電圧値の系統電圧Vsを含む系統電力Wsを供給する。系統電圧Vsは交流電圧である。商用電源51は、AC/DCコンバータ52を介して直流バス2に接続されている。 The auxiliary power supply device 5 is a device that supplies electric power to the DC bus 2. The auxiliary power supply device 5 includes a commercial power supply 51 and an AC / DC converter 52. The commercial power supply 51 supplies system power Ws including system voltage Vs having a predetermined voltage value. The system voltage Vs is an AC voltage. The commercial power supply 51 is connected to the DC bus 2 via an AC / DC converter 52.
 AC/DCコンバータ52は、直流バス2に接続されており、系統電圧Vsをバス電圧Vbusに変換する装置である。系統電圧Vsは、交流電圧である。AC/DCコンバータ52は、例えば、系統電圧Vsに基づいて内部で生成した直流電圧で動作する。AC/DCコンバータ52は、電力管理装置10からの指令に基づき、系統電圧Vsをバス電圧Vbusに変換し、バス電圧Vbusを直流バス2に供給する。AC/DCコンバータ52は、商用電源51から直流バス2に供給されている系統電力Wsを計測する電力計測機能を有している。AC/DCコンバータ52は、例えば、周期的に系統電力Wsを計測する。AC/DCコンバータ52は、系統電力Wsの計測値を電力管理装置10に送信する。 The AC / DC converter 52 is a device that is connected to the DC bus 2 and converts the system voltage Vs into the bus voltage Vbus. The system voltage Vs is an AC voltage. The AC / DC converter 52 operates, for example, with a DC voltage generated internally based on the system voltage Vs. The AC / DC converter 52 converts the system voltage Vs into the bus voltage Vbus and supplies the bus voltage Vbus to the DC bus 2 based on the command from the power management device 10. The AC / DC converter 52 has a power measurement function for measuring the system power Ws supplied from the commercial power supply 51 to the DC bus 2. The AC / DC converter 52 periodically measures the system power Ws, for example. The AC / DC converter 52 transmits the measured value of the system power Ws to the power management device 10.
 補助電源装置5は、安定的に電力を供給することが可能であるので、給電システム1全体の電力が不足している場合に電力を供給するよう制御される。なお、給電システム1を維持するために、系統電力Wsは、負荷電力WLの総和と給電システム1における待機電力との合計以上である。待機電力は、電力管理装置10の消費電力、及び補機類(不図示のリレー、ファン、及び小容量電源等)の消費電力を含む。 Since the auxiliary power supply device 5 can stably supply electric power, it is controlled to supply electric power when the electric power of the entire power supply system 1 is insufficient. In order to maintain the power supply system 1, the system power Ws is equal to or greater than the sum of the total load power WL and the standby power in the power supply system 1. The standby power includes the power consumption of the power management device 10 and the power consumption of auxiliary equipment (relays, fans, small-capacity power supplies, etc. (not shown)).
 コンバータ6は、直流バス2に接続されており、バス電圧Vbusを負荷電圧VLに変換する装置である。負荷電圧VLは、負荷機器Lに供給される電圧である。負荷機器Lは、コンバータ6を介して直流バス2に接続されている。コンバータ6は、例えば、バス電圧Vbusに基づいて内部で生成した直流電圧で動作する。本実施形態では、給電システム1は、4つのコンバータ6を備えている。コンバータ6の数は、4つに限られず、負荷機器Lの数に応じて変更され得る。 The converter 6 is connected to the DC bus 2 and is a device that converts the bus voltage Vbus into the load voltage VL. The load voltage VL is a voltage supplied to the load device L. The load device L is connected to the DC bus 2 via the converter 6. The converter 6 operates with a DC voltage generated internally based on, for example, the bus voltage Vbus. In this embodiment, the power supply system 1 includes four converters 6. The number of converters 6 is not limited to four, and may be changed according to the number of load devices L.
 コンバータ6は、電力管理装置10から起動指令を受信した場合、バス電圧Vbusを負荷電圧VLに変換し、負荷電圧VL(負荷電力WL)を負荷機器Lに供給する。負荷機器Lが直流負荷機器である場合、負荷電圧VLは直流電圧であり、コンバータ6はDC/DCコンバータである。負荷機器Lが交流負荷機器である場合、負荷電圧VLは交流電圧であり、コンバータ6はDC/ACコンバータである。コンバータ6は、電力管理装置10から停止指令を受信した場合、負荷電圧VLの供給を停止する。 When the converter 6 receives the start command from the power management device 10, the converter 6 converts the bus voltage Vbus into the load voltage VL and supplies the load voltage VL (load power WL) to the load device L. When the load device L is a DC load device, the load voltage VL is a DC voltage, and the converter 6 is a DC / DC converter. When the load device L is an AC load device, the load voltage VL is an AC voltage, and the converter 6 is a DC / AC converter. When the converter 6 receives the stop command from the power management device 10, the converter 6 stops the supply of the load voltage VL.
 コンバータ6は、直流バス2から負荷機器Lに供給される負荷電流を上限電流値で制限する電流制限機能を有している。上限電流値は、電力管理装置10によって設定される。コンバータ6は、負荷電圧VL及び負荷電流に基づき、直流バス2から負荷機器Lに供給されている負荷電力WLを計測する電力計測機能を有している。コンバータ6は、例えば、周期的に負荷電力WLを計測する。コンバータ6は、負荷電力WLの計測値を電力管理装置10に送信する。 The converter 6 has a current limiting function that limits the load current supplied from the DC bus 2 to the load device L by an upper limit current value. The upper limit current value is set by the power management device 10. The converter 6 has a power measurement function for measuring the load power WL supplied from the DC bus 2 to the load device L based on the load voltage VL and the load current. The converter 6 periodically measures the load power WL, for example. The converter 6 transmits the measured value of the load power WL to the power management device 10.
 蓄電装置7は、給電システム1で生じた余剰電力を蓄積し、給電システム1で生じた不足電力を供給するための装置である。供給電力の総和から負荷電力WLの総和を引くことによって得られる差分電力が0より大きい場合には、差分電力の大きさ(電力値)に等しい余剰電力が生じる。供給電力は、直流バス2に供給される電力である。本実施形態では、供給電力は、発電電力Wre、及び系統電力Wsである。各蓄電装置7には、蓄電装置7の数で余剰電力を均等に分割することによって得られる電力Wcが直流バス2から供給される。差分電力が0より小さい場合には、差分電力の大きさに等しい不足電力が生じる。各蓄電装置7からは、蓄電装置7の数で不足電力を均等に分割することによって得られる電力Wcが直流バス2に放出される。 The power storage device 7 is a device for accumulating the surplus power generated in the power supply system 1 and supplying the insufficient power generated in the power supply system 1. When the differential power obtained by subtracting the total load power WL from the total supply power is greater than 0, surplus power equal to the magnitude (power value) of the differential power is generated. The supplied electric power is the electric power supplied to the DC bus 2. In the present embodiment, the supplied power is the generated power Wre and the system power Ws. Power Wc obtained by evenly dividing the surplus power by the number of power storage devices 7 is supplied to each power storage device 7 from the DC bus 2. When the differential power is smaller than 0, a shortage power equal to the magnitude of the differential power occurs. From each power storage device 7, the power Wc obtained by evenly dividing the insufficient power by the number of power storage devices 7 is discharged to the DC bus 2.
 蓄電装置7の数は、3つに限られず、必要に応じて適宜変更され得る。各蓄電装置7は、蓄電池71と、BMU(Battery Management Unit:電池管理装置)72と、双方向DC/DCコンバータ73(第2コンバータ)と、を含む。 The number of power storage devices 7 is not limited to three, and can be changed as needed. Each power storage device 7 includes a storage battery 71, a BMU (Battery Management Unit: battery management device) 72, and a bidirectional DC / DC converter 73 (second converter).
 蓄電池71は、充放電可能な装置である。蓄電池71は、双方向DC/DCコンバータ73を介して直流バス2に接続されている。蓄電池71の例としては、リチウムイオン電池、NAS(ナトリウム硫黄)電池、レドックスフロー電池、鉛蓄電池、及びニッケル水素電池が挙げられる。本実施形態では、複数の蓄電装置7に含まれる蓄電池71は、互いに同種で、かつ同じ蓄電容量を有している。蓄電容量は、蓄電可能な最大の蓄電量である。複数の蓄電装置7に含まれる蓄電池71は、互いに異なる種類の蓄電池でもよく、互いに異なる蓄電容量を有してもよい。蓄電池71は、例えば、複数の電池セルを含む。 The storage battery 71 is a device that can be charged and discharged. The storage battery 71 is connected to the DC bus 2 via a bidirectional DC / DC converter 73. Examples of the storage battery 71 include a lithium ion battery, a NAS (sodium-sulfur) battery, a redox flow battery, a lead storage battery, and a nickel hydrogen battery. In the present embodiment, the storage batteries 71 included in the plurality of power storage devices 7 are of the same type and have the same storage capacity. The storage capacity is the maximum storage capacity that can be stored. The storage batteries 71 included in the plurality of power storage devices 7 may be different types of storage batteries, or may have different storage capacities. The storage battery 71 includes, for example, a plurality of battery cells.
 BMU72は、蓄電池71を管理する装置である。BMU72は、蓄電池71の電池電圧Vbatを計測する機能と、蓄電池71の充放電電流の電流値を計測してSOC(State of charge:残容量)を演算する機能と、を有する。BMU72は、蓄電池71を構成する複数の電池セルのセル電圧を計測する機能をさらに有してもよい。BMU72は、蓄電池71の電池情報を電力管理装置10に送信する。電池情報は、電池電圧Vbatの計測値、充放電電流の電流値、及びSOCを含む。電池情報は、複数の電池セルのセル電圧のうち最小のセル電圧を含んでもよい。BMU72は、周期的に電池情報を電力管理装置10に送信する。 BMU72 is a device that manages the storage battery 71. The BMU 72 has a function of measuring the battery voltage Vbat of the storage battery 71 and a function of measuring the current value of the charge / discharge current of the storage battery 71 and calculating the SOC (State of charge). The BMU 72 may further have a function of measuring the cell voltage of a plurality of battery cells constituting the storage battery 71. The BMU 72 transmits the battery information of the storage battery 71 to the power management device 10. The battery information includes the measured value of the battery voltage Vbat, the current value of the charge / discharge current, and the SOC. The battery information may include the smallest cell voltage among the cell voltages of a plurality of battery cells. The BMU 72 periodically transmits battery information to the power management device 10.
 双方向DC/DCコンバータ73は、直流バス2に接続されており、バス電圧Vbusと電池電圧Vbatとを双方向に変換可能な装置である。双方向DC/DCコンバータ73は、蓄電池71と直流バス2との間に設けられている。電池電圧Vbatは、蓄電池71の電圧である。双方向DC/DCコンバータ73としては、公知の双方向DC/DCコンバータが用いられ得る。双方向DC/DCコンバータ73は、例えば、バス電圧Vbusに基づいて内部で生成した直流電圧で動作する。 The bidirectional DC / DC converter 73 is connected to the DC bus 2 and is a device capable of bidirectionally converting the bus voltage Vbus and the battery voltage Vbat. The bidirectional DC / DC converter 73 is provided between the storage battery 71 and the DC bus 2. The battery voltage Vbat is the voltage of the storage battery 71. As the bidirectional DC / DC converter 73, a known bidirectional DC / DC converter can be used. The bidirectional DC / DC converter 73 operates with an internally generated DC voltage based on, for example, the bus voltage Vbus.
 双方向DC/DCコンバータ73は、電力管理装置10によって制御される。具体的には、双方向DC/DCコンバータ73は、電力管理装置10から充電指令を受信した場合、バス電圧Vbusを電池電圧Vbatに変換するとともに、充電電流を直流バス2から蓄電池71に流す。これにより、蓄電池71が充電される。双方向DC/DCコンバータ73は、電力管理装置10から放電指令を受信した場合、電池電圧Vbatをバス電圧Vbusに変換するとともに、放電電流を蓄電池71から直流バス2に流す。これにより、蓄電池71が放電される。双方向DC/DCコンバータ73は、定電流方式で蓄電池71を充電又は放電してもよく、定電圧方式で蓄電池71を充電又は放電してもよい。 The bidirectional DC / DC converter 73 is controlled by the power management device 10. Specifically, when the bidirectional DC / DC converter 73 receives a charging command from the power management device 10, the bidirectional DC / DC converter 73 converts the bus voltage Vbus into the battery voltage Vbat and causes the charging current to flow from the DC bus 2 to the storage battery 71. As a result, the storage battery 71 is charged. When the bidirectional DC / DC converter 73 receives the discharge command from the power management device 10, the bidirectional DC / DC converter 73 converts the battery voltage Vbat into the bus voltage Vbus and causes the discharge current to flow from the storage battery 71 to the DC bus 2. As a result, the storage battery 71 is discharged. The bidirectional DC / DC converter 73 may charge or discharge the storage battery 71 by a constant current method, or may charge or discharge the storage battery 71 by a constant voltage method.
 双方向DC/DCコンバータ73は、電力管理装置10から停止指令を受信した場合、動作を停止させて消費電力を低減させるスリープ状態に移行する。双方向DC/DCコンバータ73は、スリープ状態において充電指令又は放電指令を受信した場合には、スリープ状態から脱して、充電処理又は放電処理を実行する。双方向DC/DCコンバータ73は、蓄電池71に供給する充電電流及び蓄電池71から放出される放電電流の各電流値を蓄電池71の最大電流値(例えば、45A)以下に制限する電流制限機能を有している。 When the bidirectional DC / DC converter 73 receives a stop command from the power management device 10, the bidirectional DC / DC converter 73 stops its operation and shifts to a sleep state for reducing power consumption. When the bidirectional DC / DC converter 73 receives the charge command or the discharge command in the sleep state, the bidirectional DC / DC converter 73 wakes up from the sleep state and executes the charge process or the discharge process. The bidirectional DC / DC converter 73 has a current limiting function that limits each current value of the charging current supplied to the storage battery 71 and the discharging current discharged from the storage battery 71 to the maximum current value (for example, 45A) or less of the storage battery 71. doing.
 双方向DC/DCコンバータ73は、電力Wcを計測する電力計測機能を有している。双方向DC/DCコンバータ73は、例えば、周期的に電力Wcを計測する。双方向DC/DCコンバータ73は、電力Wcの計測値を電力管理装置10に送信する。 The bidirectional DC / DC converter 73 has a power measurement function for measuring power Wc. The bidirectional DC / DC converter 73, for example, periodically measures the power Wc. The bidirectional DC / DC converter 73 transmits the measured value of the power Wc to the power management device 10.
 電力管理装置10は、給電システム1全体を管理する装置(コントローラ)である。電力管理装置10は、EMS(Energy Management System)とも称される。電力管理装置10は、電源装置3、補助電源装置5、コンバータ6、及び蓄電装置7と通信線を介して互いに通信可能に接続されている。通信線は、有線及び無線のいずれで構成されてもよい。電力管理装置10は、RS-232C、RS-485、CAN(Controller Area Network)、及びイーサネット(登録商標)等の規格に準拠した通信を行ってもよい。 The power management device 10 is a device (controller) that manages the entire power supply system 1. The power management device 10 is also referred to as an EMS (Energy Management System). The power management device 10 is communicably connected to the power supply device 3, the auxiliary power supply device 5, the converter 6, and the power storage device 7 via a communication line. The communication line may be configured by either wire or wireless. The power management device 10 may perform communication conforming to standards such as RS-232C, RS-485, CAN (Controller Area Network), and Ethernet (registered trademark).
 電力管理装置10は、バス電圧Vbusを計測する電圧計測処理を行う。電力管理装置10は、バス電圧Vbusを直接的に計測してもよい。双方向DC/DCコンバータ73がバス電圧Vbusを計測して計測値を電力管理装置10に送信することによって、電力管理装置10がバス電圧Vbusを間接的に計測してもよい。 The power management device 10 performs a voltage measurement process for measuring the bus voltage Vbus. The power management device 10 may directly measure the bus voltage Vbus. The bidirectional DC / DC converter 73 may measure the bus voltage Vbus and transmit the measured value to the power management device 10, so that the power management device 10 may indirectly measure the bus voltage Vbus.
 電力管理装置10は、パワーコンディショナー32、AC/DCコンバータ52、コンバータ6、及び双方向DC/DCコンバータ73のそれぞれに、起動指令、及び停止指令を送信する。例えば、電力管理装置10は、コンバータ6に起動指令を送信することで、コンバータ6に負荷電圧VLを供給させる。電力管理装置10は、コンバータ6に停止指令を送信することで、コンバータ6に負荷電圧VLの供給を停止させる。他のコンバータについても同様である。 The power management device 10 transmits a start command and a stop command to each of the power conditioner 32, the AC / DC converter 52, the converter 6, and the bidirectional DC / DC converter 73. For example, the power management device 10 transmits a start command to the converter 6 to supply the converter 6 with a load voltage VL. The power management device 10 stops the supply of the load voltage VL to the converter 6 by transmitting a stop command to the converter 6. The same applies to other converters.
 電力管理装置10は、双方向DC/DCコンバータ73を制御することによって蓄電池71を充放電する充放電処理を行う。電力管理装置10は、差分電力に応じて充放電処理を行う。電力管理装置10は、供給電力の総和が負荷電力WLの総和よりも大きい場合(差分電力が0よりも大きい場合)、双方向DC/DCコンバータ73に充電指令を送信し、その差分電力である余剰電力を蓄電池71に蓄積させる。つまり、各蓄電池71には、蓄電池71の台数で余剰電力を均等に分割することによって得られる電力が蓄積される。電力管理装置10は、供給電力の総和が負荷電力WLの総和よりも小さい場合(差分電力が0よりも小さい場合)、双方向DC/DCコンバータ73に放電指令を送信し、不足電力を蓄電池71から放出させる。蓄電池71の台数で不足電力を均等に分割することによって得られる電力が各蓄電池71から放出される。 The power management device 10 performs charge / discharge processing for charging / discharging the storage battery 71 by controlling the bidirectional DC / DC converter 73. The power management device 10 performs charge / discharge processing according to the differential power. When the total supply power is larger than the total load power WL (when the differential power is larger than 0), the power management device 10 transmits a charging command to the bidirectional DC / DC converter 73, which is the differential power. The surplus electric power is stored in the storage battery 71. That is, each storage battery 71 stores the power obtained by evenly dividing the surplus power according to the number of storage batteries 71. When the total power supply is smaller than the total load power WL (when the differential power is smaller than 0), the power management device 10 transmits a discharge command to the bidirectional DC / DC converter 73 to store the insufficient power in the storage battery 71. Release from. The power obtained by evenly dividing the insufficient power according to the number of storage batteries 71 is discharged from each storage battery 71.
 電力管理装置10は、蓄電池71の電池残量及び再生可能エネルギー発電装置31の発電量に基づいて、補助電源装置5の起動又は停止を制御する。起動制御及び停止制御の詳細は後述する。 The power management device 10 controls the start or stop of the auxiliary power supply device 5 based on the remaining battery level of the storage battery 71 and the amount of power generated by the renewable energy power generation device 31. Details of start control and stop control will be described later.
 図2は、図1に示される電力管理装置のハードウェア構成図である。図2に示されるように、電力管理装置10は、物理的には、1又は複数のプロセッサ101、メモリ102、及び通信インターフェース103等のハードウェアを備えるコンピュータとして構成され得る。プロセッサ101の例としては、CPU(Central Processing Unit)が挙げられる。メモリ102は、主記憶装置と補助記憶装置とを含み得る。主記憶装置は、RAM(Random Access Memory)及びROM(Read Only Memory)等で構成される。補助記憶装置の例としては、半導体メモリ、及びハードディスク装置が挙げられる。通信インターフェース103は、他の装置とデータの送受信を行う装置である。通信インターフェース103は、例えば、RS-232C、RS-485、及びCANといった通信規格に準拠した通信モジュール、ネットワークインタフェースカード(NIC)又は無線通信モジュールで構成される。 FIG. 2 is a hardware configuration diagram of the power management device shown in FIG. As shown in FIG. 2, the power management device 10 can be physically configured as a computer including hardware such as one or more processors 101, a memory 102, and a communication interface 103. An example of the processor 101 is a CPU (Central Processing Unit). The memory 102 may include a main storage device and an auxiliary storage device. The main storage device is composed of RAM (Random Access Memory), ROM (Read Only Memory), and the like. Examples of the auxiliary storage device include a semiconductor memory and a hard disk device. The communication interface 103 is a device that transmits / receives data to / from another device. The communication interface 103 is composed of, for example, a communication module conforming to communication standards such as RS-232C, RS-485, and CAN, a network interface card (NIC), or a wireless communication module.
 プロセッサ101が、メモリ102に格納されているプログラムを読み出して実行することにより、プロセッサ101の制御のもとで各ハードウェアが動作し、メモリ102におけるデータの読み出し及び書き込みが行われる。これにより、電力管理装置10の図3に示される各機能部が実現される。 When the processor 101 reads and executes the program stored in the memory 102, each hardware operates under the control of the processor 101, and the data in the memory 102 is read and written. As a result, each functional unit shown in FIG. 3 of the power management device 10 is realized.
 図3は、図1に示される電力管理装置の機能ブロック図である。図3に示されるように、電力管理装置10は、機能的には、取得部11(第1取得部)と、取得部12(第2取得部)と、制御部13と、を備える。 FIG. 3 is a functional block diagram of the power management device shown in FIG. As shown in FIG. 3, the power management device 10 functionally includes an acquisition unit 11 (first acquisition unit), an acquisition unit 12 (second acquisition unit), and a control unit 13.
 取得部11は、蓄電池71の電池残量を取得する機能部である。取得部11は、各BMU72から電池情報を受信し、各電池情報に含まれるSOCを各蓄電池71の残量として取得する。電池セルのセル電圧は電池セルのSOCに対応するので、取得部11は、各電池情報に含まれる最小のセル電圧を各蓄電池71の残量として取得してもよい。取得部11は、すべての蓄電池71の残量のうち、最小の残量を電池残量として取得する。取得部11は、すべての蓄電池71の残量の総和を電池残量として取得してもよい。なお、説明の便宜上、個々の蓄電池71の残量を単に「残量」と称し、後述の起動制御及び停止制御に用いられる残量を「電池残量」と称する。 The acquisition unit 11 is a functional unit that acquires the remaining battery level of the storage battery 71. The acquisition unit 11 receives the battery information from each BMU 72, and acquires the SOC included in each battery information as the remaining amount of each storage battery 71. Since the cell voltage of the battery cell corresponds to the SOC of the battery cell, the acquisition unit 11 may acquire the minimum cell voltage included in each battery information as the remaining amount of each storage battery 71. The acquisition unit 11 acquires the minimum remaining amount of the remaining amount of all the storage batteries 71 as the remaining amount of the battery. The acquisition unit 11 may acquire the total remaining amount of all the storage batteries 71 as the battery remaining amount. For convenience of explanation, the remaining amount of each storage battery 71 is simply referred to as "remaining amount", and the remaining amount used for start control and stop control described later is referred to as "battery remaining amount".
 取得部12は、再生可能エネルギー発電装置31の発電量を取得する機能部である。取得部12は、パワーコンディショナー32から発電電力Wreの計測値を発電量として取得する。給電システム1が複数の電源装置3を備える場合、取得部12は、各パワーコンディショナー32から取得した発電電力Wreの計測値の総和を発電量とする。 The acquisition unit 12 is a functional unit that acquires the amount of power generated by the renewable energy power generation device 31. The acquisition unit 12 acquires the measured value of the generated power Wre from the power conditioner 32 as the amount of power generation. When the power supply system 1 includes a plurality of power supply devices 3, the acquisition unit 12 uses the sum of the measured values of the generated power Wre acquired from each power conditioner 32 as the power generation amount.
 制御部13は、蓄電池71の電池残量及び再生可能エネルギー発電装置31の発電量に基づいて、補助電源装置5の起動又は停止を制御する機能部である。制御部13は、蓄電閾値Bdth1,Bdth2,Bcth1,Bcth2、及び発電閾値Gth1,Gth2を用いて補助電源装置5の起動制御及び停止制御を行う。 The control unit 13 is a functional unit that controls the start or stop of the auxiliary power supply device 5 based on the remaining battery level of the storage battery 71 and the amount of power generated by the renewable energy power generation device 31. The control unit 13 performs start control and stop control of the auxiliary power supply device 5 by using the storage thresholds Bdth1, Bdth2, Bct1, Bct2, and the power generation thresholds Gth1, Gth2.
 図4に示されるように、蓄電閾値Bdth1,Bdth2は、蓄電池71が放電されているときに用いられる。蓄電閾値Bdth1(第1蓄電閾値)は、蓄電池71が空近傍であることを判定するための閾値である。蓄電閾値Bdth1は、蓄電閾値Bdth2よりも大きい値に設定される。蓄電閾値Bdth2(第2蓄電閾値)は、蓄電池71が空になる間近であることを判定するための閾値である。したがって、蓄電閾値Bdth2は、0よりもわずかに大きい値に設定される。 As shown in FIG. 4, the storage thresholds Bds1 and Bds2 are used when the storage battery 71 is discharged. The storage threshold value Bds1 (first storage threshold value) is a threshold value for determining that the storage battery 71 is near the sky. The storage threshold value Bds1 is set to a value larger than the storage threshold value Bds2. The storage threshold value Bds2 (second storage threshold value) is a threshold value for determining that the storage battery 71 is about to become empty. Therefore, the storage threshold value Bds2 is set to a value slightly larger than 0.
 蓄電閾値Bcth1,Bcth2は、蓄電池71が充電されているときに用いられる。蓄電閾値Bcth1(第4蓄電閾値)は、蓄電池71が空近傍の状態から脱していることを判定するための閾値である。蓄電閾値Bcth1は、蓄電閾値Bcth2よりも大きく、蓄電閾値Bdth1以上の値に設定される。蓄電閾値Bcth2(第3蓄電閾値)は、蓄電池71が空間近の状態を脱していることを判定するための閾値である。蓄電閾値Bcth2は、蓄電閾値Bdth2以上の値に設定される。 The storage thresholds Bct1 and Bct2 are used when the storage battery 71 is being charged. The storage threshold value Bct1 (fourth storage threshold value) is a threshold value for determining that the storage battery 71 is out of the near-empty state. The storage threshold Bct1 is set to a value larger than the storage threshold Bct2 and equal to or higher than the storage threshold Bds1. The storage threshold value Bct2 (third storage threshold value) is a threshold value for determining that the storage battery 71 is out of the state near the space. The storage threshold Bct2 is set to a value equal to or higher than the storage threshold Bds2.
 発電閾値Gth1(第1発電閾値)は、再生可能エネルギー発電装置31の発電量が不足していることを判定するための閾値である。発電閾値Gth2(第2発電閾値)は、再生可能エネルギー発電装置31の発電量が十分であることを判定するための閾値である。発電閾値Gth2は、発電閾値Gth1よりも大きい値に設定される。 The power generation threshold Gth1 (first power generation threshold) is a threshold for determining that the amount of power generated by the renewable energy power generation device 31 is insufficient. The power generation threshold value Gth2 (second power generation threshold value) is a threshold value for determining that the amount of power generated by the renewable energy power generation device 31 is sufficient. The power generation threshold Gth2 is set to a value larger than the power generation threshold Gth1.
 次に、図5をさらに参照して、電力管理装置10が行う電力管理方法のうちの起動制御を説明する。図5は、図1に示される電力管理装置が行う起動制御の一連の処理を示すフローチャートである。図5の一連の処理は、例えば、補助電源装置5が停止されたことに応じて開始される。 Next, with reference to FIG. 5, activation control among the power management methods performed by the power management device 10 will be described. FIG. 5 is a flowchart showing a series of processes of start control performed by the power management device shown in FIG. The series of processes shown in FIG. 5 is started, for example, in response to the auxiliary power supply device 5 being stopped.
 まず、取得部11が、蓄電池71の電池残量を取得する(ステップS11)。取得部11は、例えば、各BMU72から電池情報を受信し、各電池情報に含まれるSOCを各蓄電池71の残量として取得する。取得部11は、各電池情報に含まれる最小のセル電圧を各蓄電池71の残量として取得してもよい。 First, the acquisition unit 11 acquires the remaining battery level of the storage battery 71 (step S11). The acquisition unit 11 receives battery information from each BMU 72, for example, and acquires the SOC included in each battery information as the remaining amount of each storage battery 71. The acquisition unit 11 may acquire the minimum cell voltage included in each battery information as the remaining amount of each storage battery 71.
 そして、取得部11は、すべての蓄電池71の残量のうち、最小の残量を電池残量として取得する。取得部11は、すべての蓄電池71の残量の総和を電池残量として取得してもよい。そして、取得部11は、電池残量を制御部13に出力する。 Then, the acquisition unit 11 acquires the minimum remaining amount of the remaining amount of all the storage batteries 71 as the remaining amount of the battery. The acquisition unit 11 may acquire the total remaining amount of all the storage batteries 71 as the battery remaining amount. Then, the acquisition unit 11 outputs the remaining battery level to the control unit 13.
 続いて、取得部12は、再生可能エネルギー発電装置31の発電量を取得する(ステップS12)。取得部12は、例えば、パワーコンディショナー32から発電電力Wreの計測値を発電量として取得する。なお、給電システム1が複数の電源装置3を備える場合、取得部12は、各パワーコンディショナー32から取得した発電電力Wreの計測値の総和を発電量とする。そして、取得部12は、発電量を制御部13に出力する。 Subsequently, the acquisition unit 12 acquires the amount of power generated by the renewable energy power generation device 31 (step S12). The acquisition unit 12 acquires, for example, the measured value of the generated power Wre from the power conditioner 32 as the amount of power generation. When the power supply system 1 includes a plurality of power supply devices 3, the acquisition unit 12 uses the sum of the measured values of the generated power Wre acquired from each power conditioner 32 as the power generation amount. Then, the acquisition unit 12 outputs the amount of power generation to the control unit 13.
 続いて、制御部13は、取得部11から電池残量を受け取り、取得部12から発電量を受け取ると、電池残量と蓄電閾値Bdth2とを比較することによって、電池残量が蓄電閾値Bdth2よりも小さいか否かを判定する(ステップS13)。ステップS13において、電池残量が蓄電閾値Bdth2以上であると判定された場合(ステップS13;NO)、制御部13は、電池残量と蓄電閾値Bdth1とを比較することによって、電池残量が蓄電閾値Bdth1よりも小さいか否かを判定する(ステップS14)。 Subsequently, when the control unit 13 receives the remaining battery level from the acquisition unit 11 and the amount of power generation from the acquisition unit 12, the remaining battery level is higher than the storage threshold value Bds2 by comparing the remaining battery level with the storage threshold value Bds2. Is also small (step S13). When it is determined in step S13 that the remaining battery level is equal to or higher than the storage threshold value Bds2 (step S13; NO), the control unit 13 compares the remaining battery level with the storage threshold value Bds1 to store the remaining battery level. It is determined whether or not it is smaller than the threshold value Bds1 (step S14).
 ステップS14において、電池残量が蓄電閾値Bdth1以上であると判定された場合(ステップS14;NO)、蓄電池71には十分な電池残量があるといえる。したがって、制御部13は、補助電源装置5を起動することなく、再びステップS11の処理を行う。一方、ステップS14において、電池残量が蓄電閾値Bdth1よりも小さいと判定された場合(ステップS14;YES)、制御部13は、発電量と発電閾値Gth1とを比較することによって、発電量が発電閾値Gth1よりも小さいか否かを判定する(ステップS15)。 When it is determined in step S14 that the remaining battery level is equal to or higher than the storage threshold value Bds1 (step S14; NO), it can be said that the storage battery 71 has a sufficient remaining battery level. Therefore, the control unit 13 performs the process of step S11 again without activating the auxiliary power supply device 5. On the other hand, when it is determined in step S14 that the remaining battery level is smaller than the storage threshold value Bds1 (step S14; YES), the control unit 13 compares the power generation amount with the power generation threshold Gth1 to generate power. It is determined whether or not it is smaller than the threshold value Gth1 (step S15).
 ステップS15において、発電量が発電閾値Gth1以上であると判定された場合(ステップS15;NO)、蓄電池71にはある程度の電池残量があり、ある程度の発電量が得られる。したがって、制御部13は、補助電源装置5を起動することなく、再びステップS11の処理を行う。一方、ステップS15において、発電量が発電閾値Gth1よりも小さいと判定された場合(ステップS15;YES)、蓄電池71にはある程度の電池残量があるものの発電量が十分でない。したがって、制御部13は、補助電源装置5に起動指令を送信し、補助電源装置5を起動する(ステップS16)。以上により、起動制御の一連の処理が終了する。 When it is determined in step S15 that the amount of power generation is equal to or greater than the power generation threshold value Gth1 (step S15; NO), the storage battery 71 has a certain amount of remaining battery power, and a certain amount of power generation can be obtained. Therefore, the control unit 13 performs the process of step S11 again without activating the auxiliary power supply device 5. On the other hand, when it is determined in step S15 that the amount of power generation is smaller than the power generation threshold value Gth1 (step S15; YES), the storage battery 71 has a certain amount of remaining battery power, but the amount of power generation is not sufficient. Therefore, the control unit 13 transmits an activation command to the auxiliary power supply device 5 to activate the auxiliary power supply device 5 (step S16). As a result, a series of start control processes is completed.
 ステップS13において、電池残量が蓄電閾値Bdth2よりも小さいと判定された場合(ステップS13;YES)、蓄電池71が空になる間近である。したがって、制御部13は、発電量によらずに、補助電源装置5に起動指令を送信し、補助電源装置5を起動する(ステップS16)。以上により、起動制御の一連の処理が終了する。 In step S13, when it is determined that the remaining battery level is smaller than the storage threshold value Bds2 (step S13; YES), the storage battery 71 is almost empty. Therefore, the control unit 13 transmits a start command to the auxiliary power supply device 5 and starts the auxiliary power supply device 5 regardless of the amount of power generation (step S16). As a result, a series of start control processes is completed.
 なお、ステップS13では、制御部13は、電池残量が蓄電閾値Bdth2よりも小さいか否かを判定しているが、電池残量が蓄電閾値Bdth2以下であるか否かを判定してもよい。同様に、ステップS14において、制御部13は、電池残量が蓄電閾値Bdth1以下であるか否かを判定してもよい。ステップS15において、制御部13は、発電量が発電閾値Gth1以下であるか否かを判定してもよい。 In step S13, the control unit 13 determines whether or not the remaining battery level is smaller than the storage threshold value Bds2, but may determine whether or not the remaining battery level is equal to or lower than the storage threshold value Bds2. .. Similarly, in step S14, the control unit 13 may determine whether or not the remaining battery level is equal to or less than the storage threshold value Bds1. In step S15, the control unit 13 may determine whether or not the amount of power generation is equal to or less than the power generation threshold value Gth1.
 つまり、制御部13は、電池残量が蓄電閾値Bdth2よりも大きく、電池残量が蓄電閾値Bdth1よりも小さく、かつ、発電量が発電閾値Gth1よりも小さい場合、補助電源装置5を起動する。制御部13は、電池残量が発電閾値Gth1よりも小さい場合、発電量によらずに補助電源装置5を起動する。一方、制御部13は、電池残量が蓄電閾値Bdth2よりも大きく、電池残量が蓄電閾値Bdth1よりも小さく、かつ、発電量が発電閾値Gth1よりも大きい場合、補助電源装置5を起動しない。制御部13は、電池残量が蓄電閾値Bdth1よりも大きい場合には、発電量によらずに補助電源装置5を起動しない。 That is, the control unit 13 activates the auxiliary power supply device 5 when the remaining battery level is larger than the storage threshold value Bds2, the remaining battery level is smaller than the storage threshold value Bdth1, and the amount of power generation is smaller than the power generation threshold value Gth1. When the remaining battery level is smaller than the power generation threshold value Gth1, the control unit 13 activates the auxiliary power supply device 5 regardless of the amount of power generation. On the other hand, the control unit 13 does not start the auxiliary power supply device 5 when the remaining battery level is larger than the storage threshold value Bds2, the remaining battery level is smaller than the storage threshold value Bdth1, and the amount of power generation is larger than the power generation threshold value Gth1. When the remaining battery level is larger than the storage threshold value Bds1, the control unit 13 does not start the auxiliary power supply device 5 regardless of the amount of power generation.
 発電量はステップS15において用いられるので、ステップS12は、ステップS15よりも前であればどのタイミングで行われてもよい。ステップS13において、電池残量が蓄電閾値Bdth2よりも小さいと判定された場合には、ステップS12は行われなくてもよい。 Since the amount of power generation is used in step S15, step S12 may be performed at any timing as long as it is before step S15. If it is determined in step S13 that the remaining battery level is smaller than the storage threshold value Bds2, step S12 may not be performed.
 次に、図6をさらに参照して、電力管理装置10が行う電力管理方法のうちの停止制御を説明する。図6は、図1に示される電力管理装置が行う停止制御の一連の処理を示すフローチャートである。図6の一連の処理は、例えば、補助電源装置5が起動されたことに応じて開始される。 Next, with reference to FIG. 6, stop control among the power management methods performed by the power management device 10 will be described. FIG. 6 is a flowchart showing a series of stop control processes performed by the power management device shown in FIG. The series of processes shown in FIG. 6 is started, for example, in response to the activation of the auxiliary power supply device 5.
 ステップS21,S22の処理は、ステップS11,S12と同様であるので、それらの説明を省略する。続いて、制御部13は、取得部11から電池残量を受け取り、取得部12から発電量を受け取ると、電池残量と蓄電閾値Bcth1とを比較することによって、電池残量が蓄電閾値Bcth1よりも大きいか否かを判定する(ステップS23)。ステップS23において、電池残量が蓄電閾値Bcth1以下であると判定された場合(ステップS23;NO)、制御部13は、電池残量と蓄電閾値Bcth2とを比較することによって、電池残量が蓄電閾値Bcth2よりも大きいか否かを判定する(ステップS24)。 Since the processing of steps S21 and S22 is the same as that of steps S11 and S12, the description thereof will be omitted. Subsequently, when the control unit 13 receives the remaining battery level from the acquisition unit 11 and the amount of power generation from the acquisition unit 12, the remaining battery level is higher than the storage threshold value Bct1 by comparing the remaining battery level with the storage threshold value Bcts1. Is also large (step S23). When it is determined in step S23 that the remaining battery level is equal to or lower than the storage threshold value Bct1 (step S23; NO), the control unit 13 compares the remaining battery level with the storage threshold value Bct2 to store the remaining battery level. It is determined whether or not it is larger than the threshold value Bct2 (step S24).
 ステップS24において、電池残量が蓄電閾値Bcth2以下であると判定された場合(ステップS24;NO)、蓄電池71は空間近の状態である。したがって、制御部13は、補助電源装置5を停止することなく、再びステップS21の処理を行う。一方、ステップS24において、電池残量が蓄電閾値Bcth2よりも大きいと判定された場合(ステップS24;YES)、制御部13は、発電量と発電閾値Gth2とを比較することによって、発電量が発電閾値Gth2よりも大きいか否かを判定する(ステップS25)。 When it is determined in step S24 that the remaining battery level is equal to or less than the storage threshold Bct2 (step S24; NO), the storage battery 71 is in a state close to space. Therefore, the control unit 13 performs the process of step S21 again without stopping the auxiliary power supply device 5. On the other hand, when it is determined in step S24 that the remaining battery level is larger than the storage threshold Bct2 (step S24; YES), the control unit 13 compares the power generation amount with the power generation threshold Gth2 to generate power. It is determined whether or not it is larger than the threshold value Gth2 (step S25).
 ステップS25において、発電量が発電閾値Gth2以下であると判定された場合(ステップS25;NO)、蓄電池71にはある程度の電池残量があるものの、十分な発電量が得られない。したがって、制御部13は、補助電源装置5を停止することなく、再びステップS21の処理を行う。一方、ステップS25において、発電量が発電閾値Gth2よりも大きいと判定された場合(ステップS25;YES)、蓄電池71にはある程度の電池残量があり、十分な発電量が得られる。したがって、制御部13は、補助電源装置5に停止指令を送信し、補助電源装置5を停止する(ステップS26)。以上により、停止制御の一連の処理が終了する。 When it is determined in step S25 that the amount of power generation is equal to or less than the power generation threshold value Gth2 (step S25; NO), the storage battery 71 has a certain amount of remaining battery power, but a sufficient amount of power generation cannot be obtained. Therefore, the control unit 13 performs the process of step S21 again without stopping the auxiliary power supply device 5. On the other hand, when it is determined in step S25 that the amount of power generation is larger than the power generation threshold value Gth2 (step S25; YES), the storage battery 71 has a certain amount of remaining battery power, and a sufficient amount of power generation can be obtained. Therefore, the control unit 13 transmits a stop command to the auxiliary power supply device 5 to stop the auxiliary power supply device 5 (step S26). As a result, a series of stop control processes is completed.
 ステップS23において、電池残量が蓄電閾値Bcth1よりも大きいと判定された場合(ステップS23;YES)、蓄電池71には十分な電池残量がある。したがって、制御部13は、発電量によらずに、補助電源装置5に停止指令を送信し、補助電源装置5を停止する(ステップS26)。以上により、停止制御の一連の処理が終了する。 If it is determined in step S23 that the remaining battery level is larger than the storage threshold value Bct1 (step S23; YES), the storage battery 71 has a sufficient remaining battery level. Therefore, the control unit 13 transmits a stop command to the auxiliary power supply device 5 and stops the auxiliary power supply device 5 regardless of the amount of power generation (step S26). As a result, a series of stop control processes is completed.
 なお、ステップS23では、制御部13は、電池残量が蓄電閾値Bcth1よりも大きいか否かを判定しているが、電池残量が蓄電閾値Bcth1以上であるか否かを判定してもよい。同様に、ステップS24において、制御部13は、電池残量が蓄電閾値Bcth2以上であるか否かを判定してもよい。ステップS25において、制御部13は、発電量が発電閾値Gth2以上であるか否かを判定してもよい。 In step S23, the control unit 13 determines whether or not the remaining battery level is larger than the storage threshold value Bcts1, but may determine whether or not the remaining battery level is equal to or higher than the storage threshold value Bcts1. .. Similarly, in step S24, the control unit 13 may determine whether or not the remaining battery level is equal to or higher than the storage threshold value Bct2. In step S25, the control unit 13 may determine whether or not the amount of power generation is equal to or greater than the power generation threshold value Gth2.
 つまり、制御部13は、電池残量が蓄電閾値Bcth2よりも大きく、電池残量が蓄電閾値Bcth1よりも小さく、かつ、発電量が発電閾値Gth2よりも大きい場合、補助電源装置5を停止する。制御部13は、電池残量が蓄電閾値Bcth1よりも大きい場合、発電量によらずに補助電源装置5を停止する。一方、制御部13は、電池残量が蓄電閾値Bcth2よりも大きく、電池残量が蓄電閾値Bcth1よりも小さく、かつ、発電量が発電閾値Gth2よりも小さい場合、補助電源装置5を停止しない。制御部13は、電池残量が蓄電閾値Bcth2よりも小さい場合には、発電量によらずに補助電源装置5を停止しない。 That is, when the remaining battery level is larger than the storage threshold value Bct2, the remaining battery level is smaller than the storage threshold value Bcts1, and the power generation amount is larger than the power generation threshold value Gth2, the control unit 13 stops the auxiliary power supply device 5. When the remaining battery level is larger than the storage threshold value Bct1, the control unit 13 stops the auxiliary power supply device 5 regardless of the amount of power generation. On the other hand, the control unit 13 does not stop the auxiliary power supply device 5 when the battery remaining amount is larger than the storage threshold value Bct2, the battery remaining amount is smaller than the storage storage threshold value Bcts1, and the power generation amount is smaller than the power generation threshold value Gth2. When the remaining battery level is smaller than the storage threshold value Bct2, the control unit 13 does not stop the auxiliary power supply device 5 regardless of the amount of power generation.
 発電量はステップS25において用いられるので、ステップS22は、ステップS25よりも前であればどのタイミングで行われてもよい。ステップS23において、電池残量が蓄電閾値Bcth1よりも大きいと判定された場合には、ステップS22は行われなくてもよい。 Since the amount of power generation is used in step S25, step S22 may be performed at any timing as long as it is before step S25. If it is determined in step S23 that the remaining battery level is larger than the storage threshold Bct1, step S22 may not be performed.
 次に、図7及び図8を参照して、給電システム1及び電力管理装置10の作用効果を説明する。図7は、図1に示される電力管理装置によって起動制御及び停止制御が行われた場合の補助電源装置の稼働時間を説明するための図である。図8は、比較例の電力管理装置によって起動制御及び停止制御が行われた場合の補助電源装置の稼働時間を説明するための図である。図7及び図8の横軸は経過時間(単位:a.u.)を示す。「a.u.」は、任意単位(arbitrary unit)を意味する。図7及び図8の左側の縦軸は蓄電池の電池残量(単位:%)を示し、右側の縦軸は再生可能エネルギー発電装置の発電量(単位:W)を示す。 Next, the operation and effect of the power supply system 1 and the power management device 10 will be described with reference to FIGS. 7 and 8. FIG. 7 is a diagram for explaining the operating time of the auxiliary power supply device when start control and stop control are performed by the power management device shown in FIG. FIG. 8 is a diagram for explaining the operating time of the auxiliary power supply device when start control and stop control are performed by the power management device of the comparative example. The horizontal axis of FIGS. 7 and 8 indicates the elapsed time (unit: au). “A.u.” means an arbitrary unit. The vertical axis on the left side of FIGS. 7 and 8 shows the remaining battery level (unit:%) of the storage battery, and the vertical axis on the right side shows the amount of power generated by the renewable energy power generation device (unit: W).
 比較例の電力管理装置は、蓄電閾値Bdth1のみを用いて補助電源装置5の起動制御を行う。具体的には、比較例の電力管理装置は、蓄電池71の電池残量が蓄電閾値Bdth1よりも小さい場合に補助電源装置5を起動し、それ以外の場合には補助電源装置5を起動しない。比較例の電力管理装置は、蓄電閾値Bcth1のみを用いて補助電源装置5の停止制御を行う。具体的には、比較例の電力管理装置は、蓄電池71の電池残量が蓄電閾値Bcth1よりも大きい場合に補助電源装置5を停止し、それ以外の場合には補助電源装置5を停止しない。 The power management device of the comparative example controls the activation of the auxiliary power supply device 5 by using only the storage threshold value Bds1. Specifically, the power management device of the comparative example activates the auxiliary power supply device 5 when the remaining battery level of the storage battery 71 is smaller than the storage threshold value Bds1, and does not activate the auxiliary power supply device 5 in other cases. The power management device of the comparative example controls the stop of the auxiliary power supply device 5 by using only the storage threshold Bct1. Specifically, the power management device of the comparative example stops the auxiliary power supply device 5 when the remaining battery level of the storage battery 71 is larger than the storage threshold value Bct1, and does not stop the auxiliary power supply device 5 in other cases.
 図7及び図8に示される系統電力Wsの波形は、以下の条件の下で計算することによって得られた。負荷電力WLを20000W、系統電力Wsを30000W、発電電力Wre(発電量)を5000~8000Wとした。蓄電閾値Bdth2を8%、蓄電閾値Bcth2を9%、蓄電閾値Bdth1を10%、蓄電閾値Bcth1を17%、発電閾値Gth1を5000W、発電閾値Gth2を7000Wにそれぞれ設定した。 The waveforms of the system power Ws shown in FIGS. 7 and 8 were obtained by calculation under the following conditions. The load power WL was set to 20000 W, the system power Ws was set to 30000 W, and the generated power Wre (power generation amount) was set to 5000 to 8000 W. The storage threshold Bds2 was set to 8%, the storage threshold Bct2 was set to 9%, the storage threshold Bds1 was set to 10%, the storage threshold Bct1 was set to 17%, the power generation threshold Gth1 was set to 5000 W, and the power generation threshold Gth2 was set to 7000 W.
 図8に示されるように、比較例の電力管理装置は、電池残量が蓄電閾値Bdth1未満になると補助電源装置5を起動し、その後電池残量が蓄電閾値Bcth1を上回ると補助電源装置5を停止する。この例では、補助電源装置5の稼働時間は、280[a.u.]であった。 As shown in FIG. 8, the power management device of the comparative example activates the auxiliary power supply device 5 when the remaining battery level becomes less than the storage threshold value Bds1, and then activates the auxiliary power supply device 5 when the remaining battery level exceeds the storage threshold value Bcts1. Stop. In this example, the operating time of the auxiliary power supply device 5 is 280 [a. u. ]Met.
 一方、図7に示されるように、電池残量が蓄電閾値Bdth1未満であっても、発電電力Wreが発電閾値Gth1以上であるので、発電電力Wreによる補填が期待できる。このため、電力管理装置10は、電池残量が蓄電閾値Bdth2以上であり、かつ、発電電力Wreが発電閾値Gth1以上である間は補助電源装置5を起動しない。しかしながら、負荷電力WLが発電電力Wreよりも大きいので、電池残量が徐々に低下していく。そして、電力管理装置10は、電池残量が蓄電閾値Bdth2を下回ると補助電源装置5を起動する。 On the other hand, as shown in FIG. 7, even if the remaining battery level is less than the storage threshold value Bds1, the generated power Wre is equal to or higher than the power generation threshold Gth1, so that compensation by the generated power Wre can be expected. Therefore, the power management device 10 does not start the auxiliary power supply device 5 while the remaining battery level is the storage threshold value Bds2 or more and the generated power Wre is the power generation threshold value Gth1 or more. However, since the load power WL is larger than the generated power Wre, the remaining battery level gradually decreases. Then, the power management device 10 activates the auxiliary power supply device 5 when the remaining battery level falls below the storage threshold value Bds2.
 これにより、蓄電池71が充電されて電池残量が徐々に増加する。そして、電池残量が蓄電閾値Bcth2を上回り、さらに発電電力Wreが発電閾値Gth2を上回ると、電力管理装置10は、補助電源装置5を停止する。この例では、補助電源装置5の稼働時間は、165[a.u.]であった。したがって、比較例と比べて補助電源装置5の稼働時間が4割ほど短縮された。 As a result, the storage battery 71 is charged and the remaining battery level gradually increases. Then, when the remaining battery level exceeds the storage threshold Bct2 and the generated power Wre exceeds the power generation threshold Gth2, the power management device 10 stops the auxiliary power supply device 5. In this example, the operating time of the auxiliary power supply device 5 is 165 [a. u. ]Met. Therefore, the operating time of the auxiliary power supply device 5 is shortened by about 40% as compared with the comparative example.
 以上説明した給電システム1、電力管理装置10、及び電力管理方法では、蓄電池71の電池残量だけでなく、再生可能エネルギー発電装置31の発電量を考慮して、補助電源装置5の起動又は停止が制御される。例えば、蓄電池71の電池残量が減少したとしても、十分な発電量が得られる場合には、補助電源装置5を起動しないことが可能となる。補助電源装置5が稼働している状況において、蓄電池71の電池残量が十分多くなかったとしても、十分な発電量が得られる場合には、補助電源装置5を停止することが可能となる。その結果、補助電源装置5の稼働時間を短縮することが可能となる。補助電源装置5を稼働させる代わりに、再生可能エネルギーを利用しているので、コストを低減することが可能となる。 In the power supply system 1, the power management device 10, and the power management method described above, the auxiliary power supply device 5 is started or stopped in consideration of not only the remaining battery level of the storage battery 71 but also the amount of power generated by the renewable energy power generation device 31. Is controlled. For example, even if the remaining battery level of the storage battery 71 is reduced, it is possible not to start the auxiliary power supply device 5 if a sufficient amount of power generation can be obtained. In a situation where the auxiliary power supply device 5 is operating, even if the remaining battery level of the storage battery 71 is not sufficiently large, the auxiliary power supply device 5 can be stopped if a sufficient amount of power generation can be obtained. As a result, the operating time of the auxiliary power supply device 5 can be shortened. Since renewable energy is used instead of operating the auxiliary power supply device 5, the cost can be reduced.
 上述のように、制御部13は、電池残量が蓄電閾値Bdth1よりも小さく、電池残量が蓄電閾値Bdth2よりも大きく、かつ、発電量が発電閾値Gth1よりも小さいという条件、又は、電池残量が蓄電閾値Bdth2よりも小さいという条件を満たした場合に、補助電源装置5を起動する。制御部13は、上記条件のいずれも満たしていない場合には補助電源装置5を起動しない。この構成では、蓄電池71の電池残量が蓄電閾値Bdth1よりも小さくなったとしても、蓄電池71にある程度の電池残量があり、ある程度の発電量が得られる場合には、補助電源装置5が起動されない。したがって、補助電源装置5を起動するタイミングを遅らせることができる。その結果、補助電源装置5の稼働時間を短縮することが可能となる。 As described above, the control unit 13 has the condition that the remaining battery level is smaller than the storage threshold value Bdth1, the remaining battery level is larger than the storage threshold value Bdth2, and the amount of power generation is smaller than the power generation threshold value Gth1, or the battery remaining amount. When the condition that the amount is smaller than the storage threshold value Bds2 is satisfied, the auxiliary power supply device 5 is activated. The control unit 13 does not start the auxiliary power supply device 5 if any of the above conditions is not satisfied. In this configuration, even if the remaining battery level of the storage battery 71 becomes smaller than the storage threshold value Bds1, the auxiliary power supply device 5 is activated when the storage battery 71 has a certain amount of battery remaining and a certain amount of power generation can be obtained. Not done. Therefore, the timing of starting the auxiliary power supply device 5 can be delayed. As a result, the operating time of the auxiliary power supply device 5 can be shortened.
 上述のように、制御部13は、電池残量が蓄電閾値Bcth2よりも大きく、電池残量が蓄電閾値Bcth1よりも小さく、かつ、発電量が発電閾値Gth2よりも大きいという条件、又は、電池残量が蓄電閾値Bcth1よりも大きいという条件を満たした場合に、補助電源装置5を停止する。制御部13は、上記条件のいずれも満たしていない場合には補助電源装置5を停止しない。この構成では、蓄電池71の電池残量が蓄電閾値Bcth1よりも小さかったとしても、蓄電池71にある程度の電池残量があり、ある程度の発電量が得られる場合には、補助電源装置5が停止される。したがって、補助電源装置5を停止するタイミングを早めることができる。その結果、補助電源装置5の稼働時間を短縮することが可能となる。 As described above, the control unit 13 has the condition that the remaining battery level is larger than the storage threshold value Bct2, the remaining battery level is smaller than the storage threshold value Bcts1, and the amount of power generation is larger than the power generation threshold value Gth2, or the battery remaining amount. When the condition that the amount is larger than the storage threshold value Bct1 is satisfied, the auxiliary power supply device 5 is stopped. The control unit 13 does not stop the auxiliary power supply device 5 when any of the above conditions is not satisfied. In this configuration, even if the remaining battery level of the storage battery 71 is smaller than the storage threshold value Bct1, the auxiliary power supply device 5 is stopped when the storage battery 71 has a certain amount of battery remaining and a certain amount of power generation can be obtained. NS. Therefore, the timing of stopping the auxiliary power supply device 5 can be accelerated. As a result, the operating time of the auxiliary power supply device 5 can be shortened.
 なお、本開示に係る電力管理装置、給電システム、及び電力管理方法は上記実施形態に限定されない。 The power management device, power supply system, and power management method according to the present disclosure are not limited to the above embodiments.
 例えば、電力管理装置10は、物理的又は論理的に結合した1つの装置によって構成されていてもよく、互いに物理的又は論理的に分離している複数の装置によって構成されてもよい。例えば、電力管理装置10は、クラウドコンピューティングのようにネットワーク上に分散された複数のコンピュータによって実現されてもよい。 For example, the power management device 10 may be composed of one device that is physically or logically coupled, or may be composed of a plurality of devices that are physically or logically separated from each other. For example, the power management device 10 may be realized by a plurality of computers distributed on a network as in cloud computing.
 パワーコンディショナー32、AC/DCコンバータ52、コンバータ6、及び双方向DC/DCコンバータ73の少なくともいずれかは、電力計測機能を有していなくてもよい。この場合、電力管理装置10は、電圧センサによって計測された電圧の計測値と、電流センサによって計測された電流の計測値と、から各電力の計測値を取得してもよい。 At least one of the power conditioner 32, the AC / DC converter 52, the converter 6, and the bidirectional DC / DC converter 73 does not have to have a power measurement function. In this case, the power management device 10 may acquire the measured value of each power from the measured value of the voltage measured by the voltage sensor and the measured value of the current measured by the current sensor.
 電源装置3は、再生可能エネルギー発電装置31に代えて、別の発電装置を備えてもよい。 The power supply device 3 may be provided with another power generation device instead of the renewable energy power generation device 31.
 補助電源装置5は、商用電源51に代えて発電装置を備えてもよい。発電装置の例としては、ディーゼル発電機が挙げられる。この場合、補助電源装置5の数は、1つに限られず、必要に応じて適宜変更され得る。補助電源装置5が商用電源51を備えていない場合、給電システム1は、独立型の直流電源システムとも称される。 The auxiliary power supply device 5 may be provided with a power generation device instead of the commercial power supply 51. An example of a power generator is a diesel generator. In this case, the number of the auxiliary power supply devices 5 is not limited to one, and may be appropriately changed as needed. When the auxiliary power supply device 5 does not include the commercial power supply 51, the power supply system 1 is also referred to as a stand-alone DC power supply system.
 上記実施形態では、パワーコンディショナー32、AC/DCコンバータ52、コンバータ6、及び双方向DC/DCコンバータ73のそれぞれは、装置内部で生成した直流電圧で動作している。この構成に代えて、給電システム1が電源ユニットを備え、電源ユニットが、直流バス2のバス電圧Vbusから一定の電圧値を有する直流電圧を生成し、各装置に直流電圧(電力)を供給してもよい。 In the above embodiment, each of the power conditioner 32, the AC / DC converter 52, the converter 6, and the bidirectional DC / DC converter 73 operates with the DC voltage generated inside the apparatus. Instead of this configuration, the power supply system 1 includes a power supply unit, and the power supply unit generates a DC voltage having a constant voltage value from the bus voltage Vbus of the DC bus 2 and supplies the DC voltage (power) to each device. You may.
 蓄電池71が空近傍であるか否かが頻繁に切り替わることを避けるために、蓄電閾値Bcth1は、蓄電閾値Bdth1よりも大きい値に設定されてもよい。同様に、蓄電池71が空間近であるか否かが頻繁に切り替わることを避けるために、蓄電閾値Bcth2は、蓄電閾値Bdth2よりも大きい値に設定されてもよい。 The storage threshold Bct1 may be set to a value larger than the storage threshold Bds1 in order to avoid frequent switching of whether or not the storage battery 71 is near the sky. Similarly, the storage threshold Bct2 may be set to a value larger than the storage threshold Bds2 in order to avoid frequent switching of whether or not the storage battery 71 is close to the space.
 起動制御において、ステップS13は省略されてもよい。つまり、制御部13は、電池残量が蓄電閾値Bdth1よりも小さく、かつ、発電量が発電閾値Gth1よりも小さい場合、補助電源装置5を起動する。それ以外の場合には、制御部13は、補助電源装置5を起動しない。この構成では、蓄電池71の電池残量が蓄電閾値Bdth1よりも小さくなったとしても、ある程度の発電量が得られる場合には、補助電源装置5が起動されない。したがって、補助電源装置5を起動するタイミングを遅らせることができる。その結果、補助電源装置5の稼働時間を短縮することが可能となる。 In the activation control, step S13 may be omitted. That is, the control unit 13 activates the auxiliary power supply device 5 when the remaining battery level is smaller than the storage threshold value Bds1 and the amount of power generation is smaller than the power generation threshold value Gth1. In other cases, the control unit 13 does not activate the auxiliary power supply device 5. In this configuration, even if the remaining battery level of the storage battery 71 becomes smaller than the storage threshold value Bds1, the auxiliary power supply device 5 is not activated when a certain amount of power generation can be obtained. Therefore, the timing of starting the auxiliary power supply device 5 can be delayed. As a result, the operating time of the auxiliary power supply device 5 can be shortened.
 1…給電システム、2…直流バス、3…電源装置、5…補助電源装置、6…コンバータ(第1コンバータ)、10…電力管理装置、11…取得部(第1取得部)、12…取得部(第2取得部)、13…制御部、31…再生可能エネルギー発電装置(発電装置)、51…商用電源、71…蓄電池、73…双方向DC/DCコンバータ(第2コンバータ)、Bcth1…蓄電閾値(第4蓄電閾値)、Bcth2…蓄電閾値(第3蓄電閾値)、Bdth1…蓄電閾値(第1蓄電閾値)、蓄電閾値Bdth2…蓄電閾値(第2蓄電閾値)、Gth1…発電閾値(第1発電閾値)、Gth2…発電閾値(第2発電閾値)、L…負荷機器、Vbat…電池電圧、Vbus…バス電圧、VL…負荷電圧、Wre…発電電力、Ws…系統電力。 1 ... Power supply system, 2 ... DC bus, 3 ... Power supply device, 5 ... Auxiliary power supply device, 6 ... Converter (first converter), 10 ... Power management device, 11 ... Acquisition unit (first acquisition unit), 12 ... Acquisition Unit (second acquisition unit), 13 ... control unit, 31 ... renewable energy power generation device (power generation device), 51 ... commercial power supply, 71 ... storage battery, 73 ... bidirectional DC / DC converter (second converter), Bctth1 ... Storage threshold (fourth storage threshold), Bct2 ... storage threshold (third storage threshold), Bds1 ... storage threshold (first storage threshold), storage threshold Bds2 ... storage threshold (second storage threshold), Gth1 ... power generation threshold (third) 1 power generation threshold), Gth2 ... power generation threshold (second power generation threshold), L ... load equipment, Vbat ... battery voltage, Vbus ... bus voltage, VL ... load voltage, Wre ... power generation power, Ws ... system power.

Claims (7)

  1.  コンバータを介して直流バスに接続された蓄電池の電池残量を取得する第1取得部と、
     前記直流バスに電力を供給する電源装置に含まれる発電装置の発電量を取得する第2取得部と、
     前記電池残量及び前記発電量に基づいて、前記直流バスに電力を供給する補助電源装置の起動又は停止を制御する制御部と、
    を備える電力管理装置。
    The first acquisition unit that acquires the remaining battery level of the storage battery connected to the DC bus via the converter,
    A second acquisition unit that acquires the amount of power generated by the power generation device included in the power supply device that supplies power to the DC bus, and
    A control unit that controls the start or stop of an auxiliary power supply device that supplies electric power to the DC bus based on the remaining battery level and the amount of power generation.
    Power management device equipped with.
  2.  前記制御部は、前記電池残量が第1蓄電閾値よりも小さく、かつ、前記発電量が第1発電閾値よりも小さい場合、前記補助電源装置を起動する、請求項1に記載の電力管理装置。 The power management device according to claim 1, wherein the control unit activates the auxiliary power supply device when the remaining battery level is smaller than the first storage threshold value and the power generation amount is smaller than the first power generation threshold value. ..
  3.  前記制御部は、
     前記電池残量が第1蓄電閾値よりも小さく、前記電池残量が第2蓄電閾値よりも大きく、かつ、前記発電量が第1発電閾値よりも小さい場合、前記補助電源装置を起動し、
     前記電池残量が前記第2蓄電閾値よりも小さい場合、前記発電量によらずに前記補助電源装置を起動し、
     前記第2蓄電閾値は、前記第1蓄電閾値よりも小さい、請求項1に記載の電力管理装置。
    The control unit
    When the battery remaining amount is smaller than the first storage threshold value, the battery remaining amount is larger than the second storage storage threshold value, and the power generation amount is smaller than the first power generation threshold value, the auxiliary power supply device is activated.
    When the remaining battery level is smaller than the second storage threshold value, the auxiliary power supply device is activated regardless of the amount of power generation.
    The power management device according to claim 1, wherein the second storage threshold is smaller than the first storage threshold.
  4.  前記制御部は、
     前記電池残量が第3蓄電閾値よりも大きく、前記電池残量が第4蓄電閾値よりも小さく、かつ、前記発電量が第2発電閾値よりも大きい場合、前記補助電源装置を停止し、
     前記電池残量が第4蓄電閾値よりも大きい場合、前記発電量によらずに前記補助電源装置を停止し、
     前記第4蓄電閾値は、前記第3蓄電閾値よりも大きい、請求項1~請求項3のいずれか一項に記載の電力管理装置。
    The control unit
    When the remaining battery level is larger than the third storage threshold value, the remaining battery level is smaller than the fourth storage capacity threshold value, and the power generation amount is larger than the second power generation threshold value, the auxiliary power supply device is stopped.
    When the remaining battery level is larger than the fourth storage threshold value, the auxiliary power supply device is stopped regardless of the amount of power generation.
    The power management device according to any one of claims 1 to 3, wherein the fourth storage threshold is larger than the third storage threshold.
  5.  前記発電装置は、再生可能エネルギー発電装置である、請求項1~請求項4のいずれか一項に記載の電力管理装置。 The power management device according to any one of claims 1 to 4, wherein the power generation device is a renewable energy power generation device.
  6.  直流電力を供給するための直流バスと、
     発電装置を含み、前記直流バスに電力を供給する電源装置と、
     前記直流バスに電力を供給する補助電源装置と、
     前記直流バスに接続され、前記直流バスに供給されるバス電圧を負荷機器に供給される負荷電圧に変換する第1コンバータと、
     蓄電池と、
     前記蓄電池と前記直流バスとの間に設けられ、前記バス電圧と前記蓄電池の電池電圧とを双方向に変換可能な第2コンバータと、
     前記第2コンバータを制御することによって前記蓄電池を充放電する電力管理装置と、
    を備え、
     前記電力管理装置は、前記蓄電池の電池残量及び前記発電装置の発電量に基づいて、前記補助電源装置の起動又は停止を制御する、給電システム。
    A DC bus for supplying DC power,
    A power supply device that includes a power generation device and supplies electric power to the DC bus,
    An auxiliary power supply that supplies power to the DC bus,
    A first converter connected to the DC bus and converting a bus voltage supplied to the DC bus into a load voltage supplied to a load device.
    With a storage battery
    A second converter provided between the storage battery and the DC bus and capable of bidirectionally converting the bus voltage and the battery voltage of the storage battery.
    A power management device that charges and discharges the storage battery by controlling the second converter, and
    With
    The power management device is a power supply system that controls the start or stop of the auxiliary power supply device based on the remaining battery level of the storage battery and the amount of power generated by the power generation device.
  7.  コンバータを介して直流バスに接続された蓄電池の電池残量を取得するステップと、
     前記直流バスに電力を供給する電源装置に含まれる発電装置の発電量を取得するステップと、
     前記電池残量及び前記発電量に基づいて、前記直流バスに電力を供給する補助電源装置の起動又は停止を制御するステップと、
    を備える電力管理方法。
    The step of acquiring the remaining battery level of the storage battery connected to the DC bus via the converter,
    The step of acquiring the amount of power generated by the power generation device included in the power supply device that supplies power to the DC bus, and
    A step of controlling the start or stop of an auxiliary power supply device that supplies electric power to the DC bus based on the remaining battery level and the amount of power generation.
    Power management method with.
PCT/JP2020/013413 2020-03-25 2020-03-25 Power management device, power feeding system, and power management method WO2021192108A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/013413 WO2021192108A1 (en) 2020-03-25 2020-03-25 Power management device, power feeding system, and power management method
JP2022510228A JP7367852B2 (en) 2020-03-25 2020-03-25 Power management device, power supply system, and power management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/013413 WO2021192108A1 (en) 2020-03-25 2020-03-25 Power management device, power feeding system, and power management method

Publications (1)

Publication Number Publication Date
WO2021192108A1 true WO2021192108A1 (en) 2021-09-30

Family

ID=77891571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013413 WO2021192108A1 (en) 2020-03-25 2020-03-25 Power management device, power feeding system, and power management method

Country Status (2)

Country Link
JP (1) JP7367852B2 (en)
WO (1) WO2021192108A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064814A (en) * 2002-07-25 2004-02-26 Kawasaki Heavy Ind Ltd Method and system for power supply
JP2013150369A (en) * 2012-01-17 2013-08-01 Mitsubishi Electric Corp Power conversion system for system interconnection
WO2015198678A1 (en) * 2014-06-26 2015-12-30 シャープ株式会社 Power supply system and controller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128152A (en) 2012-12-27 2014-07-07 Panasonic Corp Charge and discharge controller, charge and discharge control system and charge and discharge control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064814A (en) * 2002-07-25 2004-02-26 Kawasaki Heavy Ind Ltd Method and system for power supply
JP2013150369A (en) * 2012-01-17 2013-08-01 Mitsubishi Electric Corp Power conversion system for system interconnection
WO2015198678A1 (en) * 2014-06-26 2015-12-30 シャープ株式会社 Power supply system and controller

Also Published As

Publication number Publication date
JPWO2021192108A1 (en) 2021-09-30
JP7367852B2 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
US20200127459A1 (en) Method and apparatus for coordination of generators in droop controlled microgrids using hysteresis
JP3469228B2 (en) Power storage device charge / discharge control device, charge / discharge control method, and power storage system
US20120043819A1 (en) Power storage system, method of controlling the same, and computer readable recording medium storing a program for executing the method
JP6430775B2 (en) Storage battery device
CN110176788B (en) Power storage system and power storage device
WO2011042788A1 (en) Electricity supply management device
JP2013169083A (en) Power supply system
CN106159980B (en) Power generation system and energy management method
JP5979865B2 (en) Power supply system
KR101849664B1 (en) Power applying apparatus and method for controlling connecting photo voltaic power generating apparatus
WO2022172457A1 (en) Power management device and power supply system
WO2021192108A1 (en) Power management device, power feeding system, and power management method
WO2019163008A1 (en) Dc feeding system
CN210074859U (en) Light storage and charging integrated system with power grid feedback function
US20180233910A1 (en) Energy management device, energy management method, and energy management program
JP7414122B2 (en) Power supply system and power management device
US12009669B2 (en) Power feeding system and power management device
JP3688744B2 (en) Solar power plant
JP2017108558A (en) DC power supply system
US20230006282A1 (en) Power management device and power storage system
US20230291222A1 (en) Power management device, power feeding system and power management method
US20230333529A1 (en) Power management device, upper power management device, and power management method
KR20210037105A (en) ESS operation system based on storage battery of electric vehicle that can prevent battery discharge
KR102046821B1 (en) Power distribution and power transmission control apparatus based on generation voltage of solar-cell power generating system
US20230333525A1 (en) Upper power management device, power interchange control method, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510228

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927346

Country of ref document: EP

Kind code of ref document: A1