WO2015198678A1 - Power supply system and controller - Google Patents

Power supply system and controller Download PDF

Info

Publication number
WO2015198678A1
WO2015198678A1 PCT/JP2015/060732 JP2015060732W WO2015198678A1 WO 2015198678 A1 WO2015198678 A1 WO 2015198678A1 JP 2015060732 W JP2015060732 W JP 2015060732W WO 2015198678 A1 WO2015198678 A1 WO 2015198678A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage device
bus
home controller
conversion
Prior art date
Application number
PCT/JP2015/060732
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 上山
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015198678A1 publication Critical patent/WO2015198678A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • the present invention relates to a power supply system and a controller, and more particularly, to a technique for supplying power by controlling the operation of a power conversion device and a power storage device connected to a DC bus in the power supply system and controller.
  • the DC power generated by the distributed power supply device is consumed by being supplied to the DC load, or sold by a reverse power flow to the commercial power system. Further, by charging the storage battery with the power generated by the distributed power supply device, stable power supply that is not affected by the weather is performed.
  • JP 2012-249471 A discloses a power distribution system.
  • the power distribution system includes a load DC / DC converter and a power conditioner connected to an output terminal of a DC power supply unit, an AC / DC converter connected to an AC power system, and a control unit for controlling them. .
  • the control unit individually controls the operation of each unit so that the power from the DC power supply unit is supplied to the load with priority over the AC power system.
  • the DC power supply unit supplies power to a DC load via a load DC / DC converter, and supplies power to an AC load via a power conditioner.
  • the AC power system supplies power to a DC load via an AC / DC converter, and supplies power directly to the AC load.
  • the present invention has been made in order to solve the above-described problems, and provides a power supply system and a controller capable of more effectively using power by performing efficient power conversion.
  • the purpose is to do.
  • a power supply system is provided between a power system and a DC bus, has a forward conversion function for converting AC power supplied from the power system into DC power, and DC power supplied from the DC bus.
  • a power conversion device having at least one function of an inverse conversion function for converting to AC power, a power storage device connected to a DC bus and configured to charge and discharge DC power, and the power conversion device and the power storage device are controlled. Controller.
  • the controller includes a power consumption monitoring unit that monitors power consumption of a load unit that is supplied with DC power from a DC bus, and a storage unit that stores efficiency characteristic information indicating a relationship between input power to the power converter and conversion efficiency; And a power control unit that controls the charge / discharge operation of the power storage device based on the power consumption while causing the power conversion device to perform power conversion so that the conversion efficiency is equal to or higher than the reference threshold.
  • FIG. 10 is a functional block diagram of a home controller according to a second embodiment.
  • FIG. 11 is a functional block diagram of a home controller according to a third embodiment.
  • 12 is a flowchart showing an example of a processing procedure executed by a home controller according to the third embodiment. It is a figure which shows roughly the whole structure of the electric power supply system according to Embodiment 4.
  • FIG. 10 is a functional block diagram of a home controller according to a fourth embodiment. It is a flowchart which shows an example of the process sequence which the home controller according to Embodiment 4 performs.
  • FIG. 16 is a functional block diagram of a home controller according to a fifth embodiment. It is a flowchart which shows an example of the process sequence which the home controller according to Embodiment 5 performs. It is a figure which shows roughly the whole structure of the electric power supply system according to Embodiment 6.
  • FIG. 17 is a functional block diagram of a home controller according to a sixth embodiment. It is a flowchart which shows an example of the process sequence which the home controller according to Embodiment 6 performs.
  • FIG. 1 schematically shows an overall configuration of power supply system 1100 according to the first embodiment.
  • the power supply system 1100 is realized by, for example, a HEMS (Home Energy Management System). The same applies to the power supply systems in the following embodiments.
  • HEMS Home Energy Management System
  • power supply system 1100 includes home controller 10, power storage device 20, AC / DC converter 30, power measuring device 40, and DC bus 50.
  • a DC load group 80 is connected to the DC bus 50
  • a power system 60 is connected to the AC / DC converter 30.
  • the power system 60 is typically a single-phase three-wire commercial AC power system.
  • the neutral wire is grounded via a resistor, and AC200V is supplied using two wires other than the neutral wire (R-phase wire RL and T-phase wire TL). To do.
  • the DC load group 80 includes a refrigerator 81, an air conditioner 82, a lighting fixture 83, and a television 84 as a DC load.
  • the DC load group 80 is an electric device such as a washing machine or a personal computer used at home, an electric device such as a computer, a copying machine or a facsimile used in an office, or a showcase used in a store. Such electrical equipment may be included.
  • the DC load group 80 includes a plurality of DC loads (electrical devices), but may be configured by a single electric device.
  • the power storage device 20 is connected to a DC bus 50 and configured to charge and discharge DC power.
  • the power storage device 20 is a rechargeable power storage-dedicated device, a storage battery (not shown) such as a lithium ion battery or a nickel metal hydride battery, and a CPU (Central Control Unit) that controls the operation of the power storage device 20 in accordance with instructions from the home controller 10.
  • Control unit (not shown) such as Processing Unit).
  • the storage battery is configured by connecting a plurality of battery cells in series.
  • the storage battery is “directly connected” to the DC bus 50, and it is preferable to exchange DC power with the DC bus 50.
  • “directly connected” means that a power converter such as a DC / DC converter is not interposed between the DC bus 50 and the storage battery. Therefore, when the storage battery and the DC bus 50 are “directly connected”, no loss due to power conversion occurs in the exchange of DC power between the power storage device 20 and the DC bus 50.
  • the AC / DC converter 30 is connected between the DC bus 50 and the power system 60.
  • the AC / DC converter 30 converts the AC power into DC power and outputs (supplies) to the DC bus 50 when AC power is supplied (purchased) from the power system 60.
  • the AC / DC converter 30 performs power conversion in accordance with an instruction from the home controller 10 so that the conversion efficiency (ratio of output power to input power) is equal to or higher than a reference threshold value.
  • This conversion efficiency changes according to the input power input to the AC / DC converter 30.
  • the conversion efficiency and the input power have a relationship as shown in FIG.
  • FIG. 2 is a diagram showing the relationship between input power and conversion efficiency.
  • the conversion efficiency increases as the input power increases. For example, the conversion efficiency when the input power is 1.5 kW is 0.95, and the conversion efficiency when the input power is 0.5 kW is 0.9.
  • the reason why the input power and the conversion efficiency have such a relationship is that there is a fixed power loss due to the switching operation of the internal circuit that is not affected by the power value of the converted power during the power conversion operation by the AC / DC converter 30. Because. Therefore, in order to efficiently use power, it can be said that it is desirable to convert as much AC power (input power) as possible into DC power (output power) and supply it to the DC bus 50.
  • the power meter 40 measures the power consumption of the DC load group 80 and transmits the measurement information to the home controller 10 via the network 90. Thereby, the home controller 10 can always monitor the power consumption of the DC load group 80.
  • the power measuring device 40 a power consumption measuring device that is disposed between the DC bus 50 and the plug of the DC load group 80 and measures power consumption is used.
  • the home controller 10 is configured to be able to communicate with the power storage device 20, the AC / DC converter 30, and the power measuring device 40 via a wired or wireless network 90.
  • Home controller 10 monitors the power consumption measured by power meter 40 and controls the charge / discharge operation of DC power in power storage device 20 and the power conversion operation of AC / DC converter 30 based on the power consumption. .
  • Any network 90 can be used, but Ethernet (registered trademark), PLC (Power Line Communications), or the like can be used as long as it is a wired network.
  • the network 90 is a wireless network, for example, a wireless LAN (Local Area Network) compliant with IEEE (Institute of Electrical and Electronic Engineers) 802.11 standard, ZigBee (registered trademark), Bluetooth (registered trademark).
  • Infrared communication method can be used. Further, a plurality of communication methods may be combined.
  • the home controller 10 stops the AC / DC converter 30 (arrow X1). In addition, the home controller 10 discharges power for the power consumption P from the power storage device 20 to the DC load group 80 in order to supply power for the power consumption P (0.5 kW) to the DC load group 80 (arrow Z1). (Arrow Y1).
  • the AC / DC converter 30 converts the conversion efficiency into a reference threshold value (in accordance with an instruction from the home controller 10). 0.95) Power conversion is executed with input power (for example, rated power: 3 kW) that is equal to or greater than that, and DC power (2.85 kW) is output to the DC bus 50 (arrow X2).
  • the DC load group 80 is supplied with power (2.5 kW) corresponding to the power consumption P (arrow Z2), and the power storage device 20 uses the DC power (2.85 kw) to the power consumption P (2) according to the instruction of the home controller 10. .5 kw) is subtracted from the differential power (0.35 kw) (arrow Y2).
  • the home controller 10 stops the AC / DC converter 30 (arrow X1), and power for the power consumption P Is discharged from the power storage device 20 (arrow Y1).
  • FIG. 3 is a schematic diagram showing a hardware configuration of home controller 10 included in power supply system 1100 according to the first embodiment.
  • home controller 10 includes at least CPU 101 and memory 110, and touch panel 102 including display 103 and tablet 104 as necessary, operation buttons 105, communication interface 106, output interface 107, and the like.
  • the input interface 108, the speaker 111, and the clock 112 may be included.
  • the CPU 101 is a processing entity that controls the entire processing in the home controller 10, and provides various functions as described later by executing a program stored in advance in the memory 110 or the like. In response to a user operation input to the tablet 104 or the operation button 105, the CPU 101 executes processing instructed by the user operation.
  • the touch panel 102 is a device that provides a user interface, presents various information to the user according to instructions from the CPU 101, and outputs instructions input from the user to the CPU 101.
  • the display 103 includes, for example, an LCD (Liquid Crystal Display), an organic EL (Electro Luminescence) display, and the like, and displays an image on its display surface.
  • LCD Liquid Crystal Display
  • organic EL Electro Luminescence
  • the tablet 104 detects a touch operation with a user's finger or the like, and outputs a coordinate value indicating a position where the touch operation is performed to the CPU 101.
  • a tablet 104 is provided in association with the display surface of the display 103.
  • the home controller 10 does not necessarily include a touch panel, and it is sufficient that various information can be presented to the user.
  • the operation button 105 is an input unit for accepting a user operation, and typically one or more are arranged on the surface of the home controller 10. When the operation button 105 receives a user operation, the operation button 105 outputs information indicating the user operation to the CPU 101.
  • the communication interface 106 performs data communication with the power storage device 20 and the AC / DC converter 30 according to a command from the CPU 101. More specifically, the communication interface 106 uses Ethernet (registered trademark), PLC, wireless LAN, ZigBee (registered trademark), Bluetooth (registered trademark), an infrared communication method, or the like.
  • the output interface 107 mediates exchange of internal commands between the CPU 101 and the display 103.
  • the input interface 108 mediates exchange of internal commands between the tablet 104 and / or the operation buttons 105 and the CPU 101.
  • the memory 110 is realized by a RAM (Random Access Memory), a ROM (Read-Only Memory), a hard disk, or the like.
  • the memory 110 stores various data and programs executed by the CPU 101.
  • the speaker 111 is an audio device, and outputs audio according to a command from the CPU 101.
  • the clock 112 is a time measuring unit, and inputs the current date and time to the CPU 101 in accordance with a command from the CPU 101.
  • the memory 110 may be realized using a storage medium connected via a communication interface.
  • a storage medium optical disk storage media such as flash memory, CD-ROM (Compact Disc-Read Only Memory) and DVD-ROM (Digital Versatile Disk-Read Only Memory) can be used.
  • Information processing as described in the following flowchart in the home controller 10 is realized by the CPU 101 executing a program in cooperation with peripheral hardware components. Generally, such a program is preinstalled in the memory 110 or the like.
  • Such a program can be provided by being stored and distributed in an arbitrary storage medium.
  • a program can be provided by downloading from a server device (or other device) connected to the Internet or the like. That is, the program stored in the storage medium is read out, or the program is acquired by downloading from the server device and temporarily stored in the memory 110 or the like.
  • the CPU 101 expands the program stored in the memory 110 into an executable format and then executes the program.
  • the CPU 101 executes not only all the functions according to the present embodiment by executing a program, but also all or part of processing required by an OS (operating system) executed on the computer according to the program. By performing the above, the function according to the present embodiment may be realized.
  • FIG. 4 is a functional block diagram of home controller 10 according to the first embodiment.
  • home controller 10 includes a power consumption monitoring unit 150, a power control unit 152, and a storage unit 154 as its main functional configuration.
  • the power consumption monitoring unit 150 and the power control unit 152 are basically realized by the CPU 101 of the home controller 10 executing a program stored in the memory 110 and giving a command to the components of the home controller 10.
  • the storage unit 154 is a functional configuration realized by the memory 110. Note that some or all of these functional configurations may be realized by hardware.
  • the storage unit 154 stores efficiency characteristic information indicating the relationship between AC power (input power) input from the power system 60 to the AC / DC converter 30 and conversion efficiency. Specifically, the efficiency characteristic information is the graph shown in FIG.
  • the power consumption monitoring unit 150 monitors the power consumption P of the DC load group 80. Specifically, the power consumption monitoring unit 150 receives measurement information from the power meter 40 and monitors the power consumption P of the DC load group 80.
  • the power consumption P of the DC load group 80 is the sum of the power consumption of each DC load.
  • the power consumption monitoring unit 150 may monitor the power consumption of each DC load.
  • the power control unit 152 controls the AC / DC converter 30 and the power storage device 20 based on the efficiency characteristic information stored in the storage unit 154 and the power consumption P monitored by the power consumption monitoring unit 150.
  • the power control unit 152 refers to the efficiency characteristic information stored in the storage unit 154 when the AC power is supplied (purchased) from the power system 60, and the conversion efficiency is equal to or higher than the reference threshold value.
  • the AC / DC converter 30 is caused to perform power conversion so that For example, when the reference threshold is set to 0.95, the power controller 152 causes the AC / DC converter 30 to convert AC power of 1.5 kW or more into DC power from the relationship shown in FIG. To instruct.
  • the power control unit 152 performs the conversion operation of the AC / DC converter 30 with the rated power (for example, 3 kW).
  • the reference threshold value is stored in the storage unit 154 and can be appropriately changed according to an instruction from the user via the touch panel 102.
  • the power control unit 152 receives AC power from the power system 60 (purchases power) and outputs DC power to the DC bus 50 when the power consumption P is equal to or higher than the reference power. Instruct the converter 30. Specifically, when the DC power output from the AC / DC converter 30 to the DC bus 50 is equal to or higher than the power consumption P, the power control unit 152 stores the difference power obtained by subtracting the power consumption P from the DC power. Let 20 charge. When the DC power output from the AC / DC converter 30 to the DC bus 50 is less than the power consumption P, the power control unit 152 uses the power consumption P to subtract the DC power from the power storage device 20 to the DC bus 50. To discharge.
  • the reference power is preferably equal to or higher than output power (1.425 kW) obtained by converting input power (1.5 kW) at which the conversion efficiency is equal to or higher than a reference threshold (for example, 0.95).
  • the power control unit 152 stops the AC / DC converter 30 and discharges the DC power corresponding to the power consumption P from the power storage device 20 to the DC bus 50.
  • FIG. 5 is a flowchart showing an example of a processing procedure executed by the home controller 10 according to the first embodiment. This flow is mainly realized by the CPU 101 executing a control program or the like stored in the memory 110. The same applies to the flows in the following embodiments. Note that at the start of the flowchart of FIG. 5, AC / DC converter 30 is stopped, and power storage device 20 is in a charged state in which power consumption P of DC load group 80 can be supplemented (for example, a fully charged state). Suppose that
  • home controller 10 discharges power corresponding to power consumption P of DC load group 80 from power storage device 20 to DC load group 80 (step S10).
  • the home controller 10 determines whether or not the power consumption P is greater than or equal to the reference power (step S12). If power consumption P is less than the reference power (NO in step S12), home controller 10 stops AC / DC converter 30 (step S22), and returns to the process of step S10 (return). If the power consumption P is greater than or equal to the reference power (YES in step S12), the home controller 10 purchases AC power from the power system 60 and outputs the DC power to the DC bus 50. 30 is instructed (step S14). Typically, the home controller 10 causes the AC / DC converter 30 to execute a power conversion operation with power at which the conversion efficiency is equal to or higher than a reference threshold.
  • the home controller 10 determines whether or not the DC power output to the DC bus 50 is greater than or equal to the power consumption P (step S16). If the DC power is greater than or equal to power consumption P (YES in step S16), home controller 10 causes power storage device 20 to charge surplus power obtained by subtracting power consumption P from DC power (step S18), and step S12. Return to the process. If the DC power is less than power consumption P (NO in step S16), home controller 10 discharges insufficient power obtained by subtracting DC power from power consumption P from power storage device 20 (step S20), and step S12. Return to the process.
  • the DC load group 80 when the power consumption P is less than the reference power, the DC load group 80 is operated by the power of the power storage device 20, and therefore no conversion loss is caused by the AC / DC converter 30. Also, when the power consumption P is greater than the reference power and it becomes difficult to operate the DC load group 80 with the power from the power storage device 20, the AC / DC converter 30 purchases AC power from the power system 60. The power conversion operation is performed with electric power having a conversion efficiency equal to or higher than a reference threshold. Thereafter, when the power consumption P becomes less than the reference power, the AC / DC converter 30 is stopped, and the DC load group 80 is operated again by the power from the power storage device 20 to return to a state where no conversion loss occurs.
  • FIG. 6 is a diagram schematically showing an overall configuration of power supply system 1200 according to the second embodiment.
  • power supply system 1200 includes home controller 10 ⁇ / b> A, power storage device 20, AC / DC converter 30, power meter 40, and DC bus 50.
  • the home controller 10A corresponds to the home controller 10 of the first embodiment shown in FIG. 1, but for the sake of distinction from the other embodiments, an additional symbol “A” is attached for convenience. The same applies to the following embodiments. Since the configuration of power supply system 1200 other than home controller 10A is substantially the same as the configuration of power supply system 1100, detailed description thereof will not be repeated.
  • the home controller 10A acquires the remaining battery charge Q of the power storage device 20 from the device.
  • the state of charge (SOC) (%) indicates the current remaining capacity as a percentage (0 to 100%) with respect to the full charge capacity.
  • the AC / DC converter 30 converts the conversion efficiency into the reference threshold (0) according to the instruction of the home controller 10A. .95)
  • the power conversion is executed with the rated power (3 kW) that is equal to or higher than that, and the DC power (2.85 kW) is output to the DC bus 50 (arrow Xa2).
  • the DC load group 80 is supplied with power corresponding to power consumption P (0.5 kW) (arrow Za), and the power storage device 20 subtracts the power consumption P from this DC power in accordance with an instruction from the home controller 10A ( 2.35 kW) is charged (arrow Ya2).
  • the home controller 10A stops the AC / DC converter 30. (Arrow Xa1), the DC power corresponding to the power consumption P is discharged from the power storage device 20 to the DC load group 80 (arrow Ya1).
  • FIG. 7 is a functional block diagram of home controller 10A according to the second embodiment.
  • home controller 10A includes a power consumption monitoring unit 150A, a power control unit 152A, a storage unit 154A, and a battery remaining amount monitoring unit 156A as its main functional configuration.
  • the power consumption monitoring unit 150A and the storage unit 154A have substantially the same functions as the power consumption monitoring unit 150 and the storage unit 154 shown in FIG. 4, respectively.
  • Battery remaining amount monitoring unit 156A monitors battery remaining amount Q of power storage device 20. Specifically, the remaining battery level monitoring unit 156A receives the remaining battery level information transmitted from the power storage device 20 and monitors the remaining battery level Q. Specifically, the control unit of the power storage device 20 transmits the detected remaining battery level Q to the remaining battery level monitoring unit 156A via the network 90.
  • the power control unit 152A performs AC based on the efficiency characteristic information stored in the storage unit 154A, the power consumption P of the DC load group 80 monitored by the power consumption monitoring unit 150A, and the battery remaining amount Q of the power storage device 20. / DC converter 30 and power storage device 20 are controlled.
  • the power control unit 152A receives the AC power from the power system 60 and outputs the DC power to the DC bus 50 when the battery remaining amount Q is less than the reference remaining amount RQ1.
  • the power control unit 152A causes the power storage device 20 to be charged with the differential power obtained by subtracting the power consumption P from the DC power.
  • the power control unit 152A causes the AC / DC converter 30 to perform a conversion operation at the rated power, and causes the DC bus 50 to output DC power that is greater than or equal to the power consumption P.
  • the reference remaining amount RQ2 is set to a remaining amount that allows the DC load group 80 to be operated only by the electric power from the power storage device 20 for a predetermined time or more in consideration of the power consumption P.
  • the reference remaining amount RQ ⁇ b> 1 and the reference remaining amount RQ ⁇ b> 2 are stored in the storage unit 154 ⁇ / b> A and can be appropriately changed according to an instruction from the user via the touch panel 102.
  • FIG. 8 is a flowchart showing an example of a processing procedure executed by the home controller 10A according to the second embodiment. Note that at the start of the flowchart of FIG. 8, the AC / DC converter 30 is stopped, and the remaining battery charge Q is equal to or higher than the reference remaining charge RQ1.
  • home controller 10A discharges power corresponding to power consumption P of DC load group 80 from power storage device 20 to DC load group 80 (step S30).
  • the home controller 10A determines whether or not the remaining battery charge Q is less than the reference remaining charge RQ1 due to the discharge (step S32). If battery remaining amount Q is equal to or greater than reference remaining amount RQ1 (NO in step S32), home controller 10A repeats the processing from step S30.
  • home controller 10A purchases AC power from power system 60 and outputs DC power to DC bus 50.
  • / DC converter 30 is instructed (step S34).
  • the home controller 10A causes the AC / DC converter 30 to execute the power conversion operation with the rated power at which the conversion efficiency is equal to or higher than the reference threshold and the power consumption P is equal to or higher.
  • the home controller 10A charges the power storage device 20 with surplus power obtained by subtracting the power consumption P from the DC power output from the AC / DC converter 30 to the DC bus 50 (step S36).
  • the home controller 10A determines whether or not the remaining battery charge Q has become equal to or greater than the reference remaining charge RQ2 due to the charging (step S38).
  • step S38 When the battery remaining amount Q is less than the reference remaining amount RQ2 (NO in step S38), the home controller 10A repeats the processing from step S36. If battery remaining amount Q is equal to or greater than reference remaining amount RQ2 (YES in step S38), home controller 10A stops AC / DC converter 30 to end the power purchase (step S40), and the process in step S30 Return to (Return). Specifically, home controller 10A operates DC load group 80 again by DC power from power storage device 20.
  • DC load group 80 when battery remaining capacity Q is equal to or greater than reference remaining capacity RQ1, DC load group 80 operates with power from power storage device 20 without purchasing AC power from power system 60. Therefore, conversion loss due to the AC / DC converter 30 does not occur.
  • the AC / DC converter 30 purchases power from the power system 60 and increases power consumption. Performs efficient power conversion.
  • the power storage device 20 charges surplus power. Thereafter, when the remaining battery level Q becomes equal to or greater than the reference remaining level RQ2, the AC / DC converter 30 is stopped, and the DC load group 80 is operated again by the power from the power storage device 20 so that no conversion loss occurs.
  • the charging time of the power storage device 20 can be shortened, so that the power conversion operation time (power purchase time) can also be shortened. Also from this point, the power conversion loss by the AC / DC converter 30 can be suppressed.
  • FIG. 9 schematically shows an overall configuration of power supply system 1300 according to the third embodiment.
  • power supply system 1300 includes home controller 10 ⁇ / b> B, power storage device 20, bidirectional power conversion device 32, power measuring devices 40 and 42, DC bus 50, and power generation device 70. . Since the configuration of the power supply system 1300 other than the home controller 10B, the bidirectional power conversion device 32, the power measuring device 42, and the power generation device 70 is substantially the same as the configuration of the power supply system 1100, a detailed description thereof will be given. Do not repeat.
  • the bidirectional power converter 32 has a forward conversion function that converts AC power supplied from the power system 60 into DC power, and an inverse conversion function that converts DC power supplied from the DC bus 50 into AC power. ing. Specifically, the bidirectional power converter 32 converts an AC power into a DC power when AC power is purchased from the power system 60 (for example, the above-described AC / DC converter 30). And a DC / AC converter that converts DC power to AC power when DC power is sold to the power system 60.
  • the bidirectional power converter 32 receives AC power from the power system 60 and converts it into DC power (purchased power) in accordance with an instruction from the home controller 10B, and receives DC power from the DC bus 50 and converts it into AC power. In either case (power sale), power conversion is performed so that the conversion efficiency is equal to or higher than a reference threshold.
  • the bidirectional power conversion device 32 has a conversion efficiency of 1.5 kW or more that makes the conversion efficiency equal to or higher than the reference threshold (0.95) when purchasing power from the power system 60. Converts AC power (input power) to DC power.
  • the bi-directional power conversion device 32 sells power to the power system 60, the DC power (input power) of 1.5 kW or higher that makes the conversion efficiency equal to or higher than the reference threshold (0.95) is converted into AC power. Convert.
  • the power generation device 70 includes a solar cell 72 and a DC / DC converter 74.
  • the solar cell 72 is composed of a crystalline solar cell, a polycrystalline solar cell, a thin film solar cell, or the like.
  • the DC / DC converter 74 is connected between the solar cell 72 and the DC bus 50, converts the DC power received from the solar cell 72 into a voltage, and supplies it to the DC bus 50.
  • the DC / DC converter 74 performs control (so-called maximum power point tracking control) such that maximum power can be acquired from the solar cell 72.
  • the power generation device 70 may be a power generation method other than solar power generation, and may include a fuel cell, a wind power generation device, a plasma power generation device, or the like instead of the solar cell 72.
  • the power meter 42 measures the generated power Pg generated by the power generator 70 and transmits the measurement information to the home controller 10B via the network 90. Thereby, the home controller 10B can always monitor the generated power Pg of the power generator 70.
  • the power generation device 70 supplies the generated power Pg (2.5 kW) to the DC bus 50 (arrow Wb).
  • the home controller 10B stops the bidirectional power conversion device 32 (arrow Xb1). Further, the home controller 10B causes the DC load group 80 to supply power corresponding to the power consumption P (0.5 kW) (arrow Zb) and also generates DC power (2.0 kW) obtained by subtracting the power consumption P from the generated power Pg.
  • the power storage device 20 is charged (arrow Yb1).
  • the bidirectional power conversion device 32 receives the input power whose conversion efficiency is equal to or higher than the reference threshold (0.95) according to the instruction of the home controller 10B. (Rated power: 3 kW) is converted into AC power, and AC power (2.85 kW) is output to the power system 60 (arrow Xb2). At this time, the home controller 10B generates the generated power Pg from the sum (3.5 kW) of the power consumption P (0.5 kW) and the rated power supplied to the DC load group 80 so that the input power becomes the rated power. The DC power (1 kW) obtained by subtracting (2.5 kW) is discharged from the power storage device 20 (arrow Yb2).
  • the home controller 10B stops the bidirectional power converter 32 (arrow) Xb1), the power storage device 20 is charged with surplus power (arrow Yb1).
  • FIG. 10 is a functional block diagram of home controller 10B according to the third embodiment.
  • home controller 10B has, as its main functional configuration, power consumption monitoring unit 150B, power control unit 152B, storage unit 154B, battery remaining amount monitoring unit 156B, and generated power monitoring unit 158B.
  • the power consumption monitoring unit 150A and the storage unit 154A have substantially the same functions as the power consumption monitoring unit 150 and the storage unit 154 shown in FIG. 4, respectively.
  • the remaining battery level monitoring unit 156B has substantially the same function as the remaining battery level monitoring unit 156A shown in FIG.
  • the generated power monitoring unit 158B monitors the generated power Pg of the power generation device 70. Specifically, the generated power monitoring unit 158B receives the measurement information from the power measuring instrument 42 and monitors the generated power Pg.
  • the power control unit 152B includes the efficiency characteristic information stored in the storage unit 154B, the power consumption P of the DC load group 80 monitored by the power consumption monitoring unit 150B, and the power storage device 20 monitored by the battery remaining amount monitoring unit 156B.
  • the bidirectional power conversion device 32 and the power storage device 20 are controlled based on the remaining battery charge Q and the generated power Pg of the power generation device 70 monitored by the generated power monitoring unit 158B.
  • the power storage device 20 is charged with the differential power obtained by subtracting the power consumption P from.
  • the power control unit 152B receives supply of DC power from the DC bus 50 to the bidirectional power conversion device 32 and supplies AC power to the power system 60. Instruct to output.
  • the power control unit 152B adjusts the power discharged from the power storage device 20 to the DC bus 50 based on the generated power Pg and the consumed power P, so that the conversion efficiency becomes equal to or higher than the reference threshold value. 32 is caused to perform power conversion.
  • the power control unit 152B is configured so that the input power corresponding to the conversion efficiency equal to or higher than the reference threshold is input from the DC bus 50 to the bidirectional power conversion device 32 based on the efficiency characteristic information (see FIG. 2). The discharge power of the power storage device 20 is adjusted.
  • Unit 152B stops bidirectional power conversion device 32 and causes power storage device 20 to be charged with differential power obtained by subtracting power consumption P from generated power Pg.
  • FIG. 11 is a flowchart illustrating an example of a processing procedure executed by the home controller 10B according to the third embodiment. Note that at the start of the flowchart of FIG. 11, it is assumed that bidirectional power conversion device 32 is stopped and battery remaining amount Q of power storage device 20 is less than reference remaining amount RQ3.
  • home controller 10B operates DC load group 80 with generated power Pg of power generation device 70 and charges power storage device 20 with surplus power obtained by subtracting power consumption P from generated power Pg (step). S50).
  • the home controller 10B sets the input power to the bidirectional power converter 32 to the rated power (the input power value is the rated power value).
  • the discharge power of the power storage device 20 is adjusted so as to become (step S54). Specifically, home controller 10 ⁇ / b> B discharges power difference from power storage device 20 by subtracting generated power Pg from the sum of rated power and power consumption P.
  • the home controller 10B instructs the bidirectional power converter 32 to sell DC power (step S56). Specifically, the home controller 10B causes the bidirectional power converter 32 to convert DC power (input power) received from the DC bus 50 into AC power and output the AC power to the power system 60.
  • the battery remaining amount Q of the power storage device 20 is less than the reference remaining amount RQ3
  • power conversion loss due to power purchase occurs because the DC load group 80 is operated using the generated power Pg. do not do.
  • excess power is charged in the power storage device 20, power is not wasted.
  • the bidirectional power converter 32 is caused to execute a highly efficient power conversion operation. Thereafter, when the remaining battery level becomes less than the reference remaining level RQ4, the bidirectional power converter 32 is stopped, and the DC load group 80 is operated again by the generated power Pg to return to a state where no power conversion loss occurs. Can do.
  • FIG. 12 schematically shows an overall configuration of power supply system 1400 according to the fourth embodiment.
  • power supply system 1400 includes home controller 10 ⁇ / b> C, power storage device 20, bidirectional power conversion device 32, power measuring devices 40 and 42, DC bus 50, and power generation device 70. . Since the configuration of power supply system 1400 other than home controller 10C is substantially the same as the configuration of power supply system 1300, detailed description thereof will not be repeated.
  • the time zone information includes, for example, information (demand response (DR) signal) indicating power demand by time zone received from an electric power company or the like, power rate information by time zone, and the like.
  • DR demand response
  • the home controller 10C can grasp in which time zone the power demand increases (or decreases) or in which time zone the power rate is high (or low).
  • the generated power Pg of the power generation device 70 is smaller than the power consumption of the DC load group 80.
  • the power generation device 70 supplies the generated power Pg (1.5 kW) to the DC bus 50 (arrow Wc).
  • the bidirectional power converter 32 stops operating in accordance with an instruction from the home controller 10C (arrow Xc1).
  • the home controller 10C stores insufficient power (0.5 kW) obtained by subtracting the generated power Pg from the power consumption P in order to supply the DC load group 80 with power corresponding to the power consumption P (2.0 kW) (arrow Zc).
  • the device 20 is discharged (arrow Yc1).
  • Home controller 10C does not purchase AC power from power system 60 during a peak time period (for example, a time period when demand power increases), and uses DC power from power storage device 20 and generated power Pg to set DC load group 80.
  • the home controller 10C starts purchasing AC power from the power system 60 so that the remaining battery level Q reaches the target remaining battery level by the start time of the peak time period.
  • the bidirectional power converter 32 performs power conversion at a rated power (3 kW) at which the conversion efficiency is equal to or higher than the reference threshold (0.95) in accordance with an instruction from the home controller 10 ⁇ / b> C, and directs the DC bus 50 Electric power (2.85 kW) is output (arrow Xc2).
  • the power storage device 20 has a difference power (2.35 kW) obtained by subtracting the power consumption P (2.0 kW) from the sum of the DC power (2.85 kW) and the generated power Pg (1.5 kW) in accordance with an instruction from the home controller 10C. Is charged (arrow Yc2).
  • the peak time zone may be a time zone during which the demand power increases or a time zone during which the power charge increases.
  • the home controller 10C stops the bidirectional power conversion device 32 (arrow Xc1) and supplies the insufficient power to the power storage device 20. To discharge (arrow Yc1).
  • FIG. 13 is a functional block diagram of home controller 10C according to the fourth embodiment.
  • home controller 10C has, as its main functional configuration, power consumption monitoring unit 150C, power control unit 152C, storage unit 154C, battery remaining amount monitoring unit 156C, and generated power monitoring unit 158C. , And an input unit 160C.
  • the power consumption monitoring unit 150C and the storage unit 154C have substantially the same functions as the power consumption monitoring unit 150 and the storage unit 154 shown in FIG. 4, respectively.
  • the remaining battery level monitoring unit 156C has substantially the same function as the remaining battery level monitoring unit 156A shown in FIG.
  • the generated power monitoring unit 158C has substantially the same function as the generated power monitoring unit 158B shown in FIG.
  • the input unit 160C receives (receives) time zone information input from an external device (such as a power company management server) via the communication interface 106. Specifically, the input unit 160C receives input of time zone information. Note that the input unit 160 ⁇ / b> C may accept input of time zone information via the touch panel 102.
  • the power control unit 152C Based on the generated power Pg, the consumed power P, and the time zone information, the power control unit 152C does not receive the AC power supply from the power system 60 in the peak time zone, and discharge power and power generation discharged from the power storage device 20 The target battery remaining amount of the power storage device 20 necessary for operating the DC load group 80 by the electric power Pg is predicted.
  • the power control unit 152C calculates the power consumption (kwh) of the DC load group 80 in the peak time zone from the current power consumption and the number of hours in the peak time zone, and calculates the current generated power Pg and the time. The amount of power generated during peak hours is calculated from the number.
  • the difference power amount obtained by subtracting the generated power amount from the power consumption amount is the power amount that the power storage device 20 needs to supplement during the peak time period.
  • the power control unit 152C predicts the target battery remaining amount so that the power storage device 20 can discharge the power amount equal to or greater than the difference power amount in the peak time period.
  • the power control unit 152C may calculate the amount of generated power Pg in the peak time period by acquiring weather information acquired from the outside, or consider the operation schedule of the DC load group 80 in the peak time period. The power consumption may be calculated.
  • past performance data (power generation amount and power consumption amount) in the peak time period is stored in the storage unit 154C, and the power control unit 152C determines the generated power Pg amount and the power consumption amount based on the result data. It may be calculated.
  • the power control unit 152C based on the charging power charged in the power storage device 20 when AC power is supplied from the power system 60, the remaining battery level Q of the power storage device 20 by the start time of the peak time zone. Causes the bidirectional power conversion device 32 to start receiving AC power from the power grid 60 so that the battery reaches the target remaining battery level. Specifically, the power control unit 152C starts the receipt at the timing described below.
  • the charging power is a difference obtained by subtracting the power consumption P from the sum of the DC power and the generated power Pg output from the bidirectional power converter 32 to the DC bus 50 when AC power is supplied from the power system 60. Electric power.
  • the power control unit 152C calculates a time T1 until the remaining battery level Q reaches the target remaining battery level based on the differential power. Specifically, the power control unit 152C calculates the difference battery remaining amount obtained by subtracting the current battery remaining amount from the target battery remaining amount, and the time required to satisfy the power amount corresponding to the difference battery remaining amount by the difference power. T1 is calculated.
  • the power control unit 152C then sends the bidirectional power conversion device 32 from the power system 60 at the timing immediately before the time T2 from the current time measured by the clock 112 to the start time of the peak time period becomes less than the time T1.
  • the immediately preceding timing is the timing at which the time T2 from the current time to the start time of the peak time zone coincides with the time T1, or the time T2 is slightly longer than the time T1 (for example, time T2 ⁇ time T1> 1 minute). It is timing.
  • the power control unit 152 ⁇ / b> C stops the bidirectional power conversion device 32 and stores the power storage device 20 when the remaining power Q reaches the target battery remaining amount by charging the power storage device 20 with the differential power. DC power is discharged to the DC bus 50.
  • FIG. 14 is a flowchart showing an example of a processing procedure executed by the home controller 10C according to the fourth embodiment. Note that at the start of the flowchart of FIG. 14, the bidirectional power converter 32 is stopped, and the power consumption P of the DC load group 80 is greater than the generated power Pg of the power generator 70.
  • home controller 10C receives time zone information (step S70).
  • the home controller 10C discharges the insufficient power obtained by subtracting the generated power Pg of the power generation device 70 from the power consumption of the DC load group 80 from the power storage device 20 (step S72).
  • the home controller 10C predicts the target remaining battery level of the power storage device 20 based on the generated power Pg of the power generation device 70, the power consumption of the DC load group 80, and the time zone information (step S74).
  • the home controller 10 ⁇ / b> C generates AC power from the power grid 60 in order to reach the target battery remaining amount of the power storage device 20 by the start time of the peak time period in which the demand power increases most. It is determined whether or not it is time to start power purchase (step S76).
  • step S76 If the timing has not arrived (NO in step S76), the process of step S76 is repeated.
  • home controller 10C causes bidirectional power converter 32 to start receiving AC power (purchasing power) from power system 60 (step S78). At this time, the home controller 10C causes the bidirectional power conversion device 32 to execute a power conversion operation with the rated power at which the conversion efficiency is equal to or higher than the reference threshold.
  • the home controller 10C charges the power storage device 20 with surplus power obtained by subtracting the power consumption P from the DC power output from the bidirectional power conversion device 32 to the DC bus 50 (step S80).
  • Home controller 10C determines whether or not the remaining battery level of power storage device 20 has reached the target remaining battery level due to the charging (step S82). If the remaining battery level has not reached the target remaining battery level (NO in step S82), the processing from step S78 is repeated. When the remaining battery level reaches the target remaining battery level (YES in step S82), home controller 10C stops bidirectional power converter 32 (step S84) and returns to the process in step S70 (return).
  • the power storage device 20 is charged in advance with the power necessary for operating the DC load group 80 during the peak time period, so that power is not purchased during the peak time period. be able to. Thereby, it can contribute to the reduction of an electricity bill and the power saving of the whole area at the time of electric power demand pressure.
  • the power storage device 20 is charged by the power necessary for the peak time period, it is possible to keep the required minimum power purchase and to suppress power conversion loss due to power purchase. Furthermore, since the bidirectional power converter 32 performs a highly efficient power conversion operation at the time of power purchase, power conversion loss can be suppressed also from this point.
  • FIG. 15 schematically shows an overall configuration of power supply system 1500 according to the fifth embodiment.
  • power supply system 1500 includes home controller 10 ⁇ / b> D, power storage device 20, AC / DC converter 30, power meter 40, and DC bus 50.
  • a DC load group 80A is connected to the DC bus 50.
  • the DC load group 80A is obtained by adding a water heater 85 (DC load) having a peak shift mode for suppressing power use during peak hours to the DC load group 80.
  • the water heater 85 is configured to be able to communicate with the home controller 10D via the network 90, and receives an instruction from the home controller 10D.
  • a DC load having a peak shift mode is a DC load having a mode in which a time zone in which power consumption is maximum can be shifted from a peak time zone in which power demand is tight to a slow time zone.
  • the water heater 85 stops the heating operation to boil hot water with high power consumption during peak hours, performs the heating operation at low power demand, for example, at night (off-peak hours), and boils and stores hot water. I can leave.
  • home controller 10D stops AC / DC converter 30 and water heater 85 (arrow Xd1).
  • the home controller 10D uses the power consumption P (0.5 kW) from the power storage device 20 to the DC load group 80A in order to supply the DC load group 80 with power corresponding to the power consumption P (0.5 kW) (arrow Zd1).
  • the power of the minute is discharged (arrow Yd1).
  • the AC / DC converter 30 receives supply of AC power from the power system 60 and outputs DC power to the DC bus 50 (arrow Xd2). Specifically, the AC / DC converter 30 performs power conversion at a rated power (3 kW) at which the conversion efficiency is equal to or higher than the reference threshold (0.95) according to an instruction from the home controller 10D, and directs the direct current to the direct current bus 50. Output power (2.85 kW). Moreover, since the water heater 85 starts operating according to the instruction of the home controller 10D and consumes 1.5 kW of power, the DC load group 80A is supplied with power equivalent to the power consumption P (2.0 kW) ( Arrow Zd2). At this time, the power storage device 20 charges the surplus power (0.85 kW) obtained by subtracting the power consumption P (2.0 kW) from the DC power (2.85 kW) according to the instruction of the home controller 10D (arrow Yd2).
  • the home controller 10D stops the AC / DC converter 30 and the hot water heater 85 (arrow Xd1), and discharges electric power necessary for the DC load group 80A from the power storage device 20 ( Arrow Yd1).
  • FIG. 16 is a functional block diagram of home controller 10D according to the fifth embodiment.
  • home controller 10D includes a power consumption monitoring unit 150D, a power control unit 152D, a storage unit 154D, an input unit 160D, and a device control unit 162D as its main functional configuration.
  • the power consumption monitoring unit 150D and the storage unit 154D have substantially the same functions as the power consumption monitoring unit 150 and the storage unit 154 shown in FIG.
  • the input unit 160D has substantially the same function as the input unit 160C shown in FIG.
  • device control unit 162D Based on the time zone information, device control unit 162D operates water heater 85 in the off-peak time zone and stops water heater 85 in a time zone other than the off-peak time zone (for example, the peak time zone) as described above. Such control is performed.
  • the power control unit 152D instructs the AC / DC converter 30 to receive the AC power from the power system 60 and output the DC power to the DC bus 50 during the off-peak time period.
  • the power control unit 152D charges the power storage device 20 with the differential power obtained by subtracting the power consumption of the DC load group 80A from the DC power.
  • Power control unit 152D stops AC / DC converter 30 in a time zone other than the off-peak time zone (for example, a peak time zone) and discharges DC power from power storage device 20 to DC bus 50.
  • FIG. 17 is a flowchart illustrating an example of a processing procedure executed by the home controller 10D according to the fifth embodiment. Note that at the start of the flowchart of FIG. 17, it is assumed that AC / DC converter 30 and water heater 85 are stopped in a time zone other than the off-peak time zone. Further, it is assumed that the power storage device 20 is in a charged state capable of supplementing the power consumption of the DC load group 80A.
  • home controller 10D receives time zone information from the power company (step S90).
  • the home controller 10D discharges the insufficient power obtained by subtracting the generated power Pg of the power generation device 70 from the power consumption of the DC load group 80 from the power storage device 20 (step S92).
  • the home controller 10D determines whether or not the start time of the off-peak time period has arrived (step S94). If the start time has not arrived (NO in step S94), home controller 10D repeats the process in step S94. When the start time has arrived (YES in step S94), home controller 10D causes AC / DC converter 30 to start receiving (purchasing) AC power from power system 60 and operate water heater 85 (step). S96). At this time, the home controller 10D causes the AC / DC converter 30 to execute the power conversion operation with the rated power at which the conversion efficiency is equal to or higher than the reference threshold.
  • the home controller 10D charges the power storage device 20 with surplus power obtained by subtracting the power consumption P from the DC power output from the AC / DC converter 30 to the DC bus 50 (step S98).
  • Home controller 10D determines whether or not the end time of the off-peak time zone has arrived (step S100). If the end time has not come (NO in step S100), home controller 10D repeats the process of step S100. When the end time has arrived (YES in step S100), home controller 10D stops AC / DC converter 30 to end power purchase, and also stops water heater 85 (step S102). Return to processing (return).
  • the AC / DC converter 30 is stopped and the DC load group 80 is operated by electric power from the power storage device 20 in a time zone other than the off-peak time zone.
  • the water heater 85 that can use the peak shift mode stops in a time zone other than the off-peak time zone and operates in the off-peak time zone. Therefore, the power consumption of the DC load group 80A in a time zone other than the off-peak time zone can be reduced. This can contribute to the reduction of electricity charges and the avoidance of large-scale power outages and planned power outages when power demand is under pressure. Furthermore, since power conversion operation with high efficiency is executed by the AC / DC converter 30 during power purchase, power conversion loss can be suppressed.
  • FIG. 18 schematically shows an overall configuration of power supply system 1600 according to the sixth embodiment.
  • power supply system 1600 includes home controller 10E, power storage device 20, bidirectional power conversion device 32, power measuring devices 40 and 42, DC bus 50, and power generation device 70. . Since the configuration other than home controller 10E is substantially the same as the configuration of power supply system 1300, detailed description thereof will not be repeated. However, in the sixth embodiment, the home controller 10E is configured to be communicable with the DC load group 80 via the network 90.
  • the power generation device 70 supplies the generated power Pg (2.5 kW) to the DC bus 50 (arrow We).
  • the home controller 10E stops the bidirectional power conversion device 32 until the start time of the peak time zone arrives (arrow Xe1). Power corresponding to power consumption P (1.5 kW) is supplied to the DC load group 80 (arrow Ze1).
  • the power storage device 20 charges the power storage device 20 with DC power (1.0 kW) obtained by subtracting the power consumption P of the DC load group 80 from the generated power Pg (arrow Ye1).
  • the home controller 10E stops at least one DC load in the DC load group 80.
  • the power consumption P of the DC load group 80 decreases from 1.5 kW to 0.5 kW (arrow Ze2).
  • the bidirectional power converter 32 converts the input power (rated power: 3 kW) whose conversion efficiency is equal to or higher than the reference threshold (0.95) into AC power according to the instruction of the home controller 10E, and supplies the AC power to the power system 60. Electric power (2.85 kW) is output (arrow Xe2).
  • the home controller 10E subtracts the generated power Pg (2.5 kW) from the sum (3.5 kW) of the rated power and the power consumption P of the DC load group 80 so that the input power becomes the rated power.
  • the direct current power (1 kW) thus discharged is discharged from the power storage device 20 (arrow Ye2).
  • the home controller 10E operates the stopped DC load, stops the bidirectional power conversion device 32 (arrow Xe1), and supplies the surplus power to the power storage device 20. Is charged (arrow Ye1).
  • FIG. 19 is a functional block diagram of home controller 10E according to the sixth embodiment.
  • home controller 10E has, as its main functional configuration, power consumption monitoring unit 150E, power control unit 152E, storage unit 154E, generated power monitoring unit 158E, input unit 160E, and device control. Part 162E.
  • the power consumption monitoring unit 150A and the storage unit 154A have substantially the same functions as the power consumption monitoring unit 150 and the storage unit 154 shown in FIG. 4, respectively.
  • the generated power monitoring unit 158E has substantially the same function as the generated power monitoring unit 158B shown in FIG.
  • the input unit 160E has substantially the same function as the input unit 160C shown in FIG.
  • the device control unit 162E operates a plurality of DC loads included in the DC load group 80 in a time zone other than the peak time zone (for example, off-peak time zone) based on the time zone information, and the DC load group in the peak time zone. At least one predetermined DC load out of 80 is stopped. In the sixth embodiment, device control unit 162E stops air conditioner 82, for example. As the DC load to be stopped, an electric device having a power saving mode or an electric device having a low priority order is selected.
  • the power control unit 152E stops the bidirectional power conversion device 32 in a time zone other than the peak time zone and charges the power storage device 20 with the differential power obtained by subtracting the power consumption from the generated power Pg.
  • the power control unit 152E instructs the bidirectional power conversion device 32 to receive supply of DC power from the DC bus 50 and output AC power to the power system 60 during the peak time period.
  • the power control unit 152E adjusts the power discharged from the power storage device 20 to the DC bus 50 based on the generated power Pg and the power consumption P, so that the conversion efficiency becomes equal to or higher than the reference threshold value. 32 is caused to perform power conversion.
  • FIG. 20 is a flowchart showing an example of a processing procedure executed by home controller 10E according to the sixth embodiment. Note that at the start of the flowchart of FIG. 20, it is assumed that it is a time zone other than the peak time zone and the bidirectional power converter 32 is stopped.
  • home controller 10E operates DC load group 80 with generated power Pg of power generation device 70 and charges power storage device 20 with surplus power obtained by subtracting power consumption P from generated power Pg (step). S110).
  • the home controller 10E determines whether or not the start time of the peak time period has arrived (step S112). If the start time has not arrived (NO in step S112), home controller 10E repeats the process of step S112. When the start time has arrived (YES in step S112), home controller 10E stops air conditioner 82 set in advance so as to stop the operation in the peak time zone (step S114).
  • the home controller 10B adjusts the discharge power of the power storage device 20 so that the input power to the bidirectional power conversion device 32 becomes the rated power (step S116). Specifically, home controller 10 ⁇ / b> B discharges power difference from power storage device 20 by subtracting generated power Pg from the sum of rated power and power consumption P. Then, the home controller 10B instructs the bidirectional power conversion device 32 to receive the supply of DC power from the DC bus 50 and supply (sell) AC power to the power system 60 (step S118).
  • the home controller 10E determines whether or not the end time of the peak time period has arrived (step S120). If the end time has not arrived (NO in step S120), home controller 10E repeats the process of step S120. When the end time has arrived (YES in step S120), home controller 10E stops bidirectional power conversion device 32 to end power sale and operates air conditioner 82 (step S122). Return to processing (return).
  • the sixth embodiment in the time zone other than the peak time zone, it is not necessary to purchase power because the DC load group 80 is operated by the generated power Pg of the power generation device 70, so that the power conversion loss by the bidirectional power conversion device 32 occurs. Does not occur. Further, the power storage device 20 can be charged with surplus power. Further, since the air conditioner 82 is stopped during the peak time period, the power consumption of the DC load group 80 during the peak time period can be reduced accordingly. Thereby, it becomes possible to sell more power in the peak time zone. Power selling at a high price becomes possible, and power sales cooperation when power demand is tight can contribute to stable power demand in the entire region.
  • the power supply system 1100 is provided between the power system 60 and the DC bus 50, and includes an AC / DC converter 30 that converts AC power supplied from the power system 60 into DC power, and a DC bus 50.
  • the power storage device 20 is connected and configured to be able to charge and discharge DC power, and the home controller 10 that controls the AC / DC converter 30 and the power storage device 20 is provided.
  • the home controller 10 monitors the power consumption P of the DC load group 80 that receives DC power supplied from the DC bus 50, and the relationship between the input power to the AC / DC converter 30 and the conversion efficiency.
  • Storage unit 154 for storing the efficiency characteristic information to be shown, and causing AC / DC converter 30 to perform power conversion so that the conversion efficiency is equal to or higher than a reference threshold, and charging / discharging operation of power storage device 20 based on power consumption P And a power control unit 152 to be controlled.
  • the power control unit 152 receives the AC power from the power system 60 and outputs the DC power to the DC bus 50 to the AC / DC converter 30. Instruct. When the power consumption P is less than the reference power, the power control unit 152 stops the AC / DC converter 30 and discharges DC power from the power storage device 20 to the DC bus 50.
  • the power of the power storage device 20 in which no conversion loss occurs can be used to the maximum.
  • the power control unit 152 supplies the power storage device 20 with the differential power obtained by subtracting the power consumption P from the DC power. Let it charge.
  • the power control unit 152 uses the power storage device 20 to calculate the difference power obtained by subtracting the DC power from the power consumption P.
  • the DC bus 50 is discharged.
  • the DC load group 80 can be operated.
  • the home controller 10A further includes a remaining battery level monitoring unit 156A that monitors the remaining battery level Q of the power storage device 20.
  • a remaining battery level monitoring unit 156A that monitors the remaining battery level Q of the power storage device 20.
  • power control unit 152A stops AC / DC converter 30 and discharges DC power from power storage device 20 to DC bus 50.
  • the power control unit 152A receives an AC power supply from the power system 60 and outputs the DC power to the DC bus 50 to the AC / DC converter 30.
  • the power storage device 20 is charged with the difference power obtained by subtracting the power consumption P from the DC power.
  • power is purchased by the AC / DC converter 30 because power is purchased only when the remaining battery capacity Q is not sufficient and it is difficult to continue power supply from the power storage device 20 to the DC load group 80. Loss can be minimized.
  • the power control unit 152A determines that the AC / DC converter is used when the battery remaining amount Q becomes equal to or larger than the reference remaining amount RQ2 larger than the reference remaining amount RQ1 due to the difference power being charged into the power storage device 20. 30 is stopped and DC power is discharged from the power storage device 20 to the DC bus 50.
  • the AC / DC converter 30 is stopped when the remaining battery capacity Q is in a sufficient state and power supply from the power storage device 20 to the DC load group 80 becomes possible. It is possible to return to a state where no loss occurs.
  • the power supply system 1300 further includes a power generator 70 that supplies the generated power Pg to the DC bus 50 as DC power.
  • Home controller 10B further includes a battery remaining amount monitoring unit 156B that monitors battery remaining amount Q of power storage device 20, and a generated power monitoring unit 158B that monitors generated power Pg of power generation device 70.
  • the power control unit 152B stops the bidirectional power conversion device 32 and charges the power storage device 20 with the difference power obtained by subtracting the power consumption P from the generated power Pg.
  • the power control unit 152B receives the DC power from the DC bus 50 and outputs AC power to the power system 60 to the bidirectional power converter 32. Instruct.
  • the power control unit 152B adjusts the power discharged from the power storage device 20 to the DC bus 50 based on the generated power Pg and the consumed power P, so that the bidirectional power is set so that the conversion efficiency is equal to or higher than the reference threshold.
  • the conversion device 32 is caused to perform power conversion.
  • the power control unit 152B When the DC power is discharged from the power storage device 20 to the DC bus 50, the power control unit 152B has both the battery remaining amount Q less than the reference remaining amount RQ4 smaller than the reference remaining amount RQ3. The power conversion device 32 is stopped, and the power storage device 20 is charged with the differential power obtained by subtracting the power consumption P from the generated power Pg.
  • the AC / DC converter 30 is stopped when the remaining battery capacity Q is reduced and the power storage device 20 is sufficiently charged with power, so that the power conversion loss is restored again. Can do.
  • the power supply system 1400 further includes a power generator 70 that supplies the generated power Pg to the DC bus 50 as DC power.
  • the home controller 10C includes an input unit 160C that receives input of time zone information, a remaining battery level monitoring unit 156C that monitors the remaining battery level Q of the power storage device 20, and a generated power monitoring unit that monitors the generated power Pg of the power generation device 70. 158C and a clock 112 that keeps the current time. Based on generated power Pg, consumed power P, and time zone information, power control unit 152C is discharged from power storage device 20 to DC bus 50 without receiving supply of AC power from power system 60 in a peak time zone.
  • the target battery remaining amount of the power storage device 20 necessary for operating the DC load group 80 is predicted by the DC power and the generated power Pg. Based on the charging power charged in the power storage device 20 when AC power is supplied from the power system 60, the power control unit 152C sets the remaining battery level Q to the target remaining battery level by the start time of the peak time period. The bidirectional power conversion device 32 is made to start receiving AC power from the power system 60 so as to reach.
  • the charging power is a difference obtained by subtracting the power consumption P from the sum of the DC power and the generated power Pg output from the bidirectional power converter 32 to the DC bus 50 when AC power is supplied from the power system 60. Including power.
  • the power control unit 152C calculates a time T1 until the remaining battery level Q reaches the target remaining battery level based on the differential power.
  • the power control unit 152C starts receiving the AC power from the power system 60 to the bidirectional power conversion device 32 at a timing immediately before the time T2 from the current time to the start time of the peak time period becomes less than the calculated time T1.
  • the power control unit 152C stops the bidirectional power conversion device 32 and stores the power storage device 20 when the remaining power Q reaches the target battery remaining amount due to the difference power being charged in the power storage device 20. DC power is discharged to the DC bus 50.
  • the DC load group 80A includes a water heater 85 having a peak shift mode for suppressing power use in a peak time zone in which power demand increases.
  • the home controller 10D has an input unit 160D that accepts input of time zone information, and device control that controls the hot water heater 85 to operate during a time zone other than the peak time zone and to stop the hot water heater 85 during the peak time zone. Part 162D.
  • the power control unit 152D instructs the AC / DC converter 30 to receive AC power from the power system 60 and output DC power to the DC bus 50 in a time zone other than the peak time zone.
  • the power control unit 152D stops the AC / DC converter 30 during the peak time period.
  • power conversion loss does not occur because power is not purchased during peak hours, and it can contribute to reduction of electricity charges and avoidance of large-scale blackouts and planned blackouts when power demand is compressed. Moreover, since the power consumption of the water heater 85 in the peak time zone can be reduced, the time during which power can be supplied from the power storage device 20 to the DC load group 80A can be extended.
  • the power supply system 1600 further includes a power generator 70 that supplies the generated power Pg to the DC bus 50 as DC power.
  • the DC load group 80 includes a plurality of electric devices.
  • Home controller 10E further includes an input unit 160E that receives input of time zone information, a generated power monitoring unit 158E that monitors the generated power Pg of the power generation apparatus 70, and a device control unit 162E that controls the operation of a plurality of electrical devices.
  • the device control unit 162E includes a plurality of electrical devices that operate in a time zone other than the peak time zone, and stops at least one predetermined electrical device among the plurality of electrical devices in the peak time zone.
  • the power control unit 152E stops the bidirectional power conversion device 32 and charges the power storage device 20 with differential power obtained by subtracting the power consumption P from the generated power Pg during a time zone other than the peak time zone.
  • the power control unit 152E instructs the bidirectional power conversion device 32 to receive supply of DC power from the DC bus 50 and output AC power to the power system 60 during the peak time period.
  • the air conditioner 82 in the DC load group 80 is stopped during the peak time period, the power consumption of the DC load group 80 during the peak time period can be reduced accordingly. Thereby, more electric power can be sold by a peak time slot
  • the home controller 10 is provided between the power system 60 and the DC bus 50, and is connected to the DC bus 50 and the AC / DC converter 30 that converts AC power supplied from the power system 60 into DC power.
  • the power storage device 20 configured to be able to charge and discharge DC power is controlled.
  • the home controller 10 monitors the power consumption P of the DC load group 80 that receives DC power supplied from the DC bus 50, and the relationship between the input power to the AC / DC converter 30 and the conversion efficiency.
  • Storage unit 154 for storing the efficiency characteristic information to be shown, and causing AC / DC converter 30 to perform power conversion so that the conversion efficiency is equal to or higher than a reference threshold, and charging / discharging operation of power storage device 20 based on power consumption P And a power control unit 152 to be controlled.
  • the configuration illustrated as the above-described embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and a part of the configuration is omitted without departing from the gist of the present invention. It is also possible to change the configuration.
  • 10, 10A, 10B, 10C, 10D, 10E Home controller 20 power storage device, 30 AC / DC converter, 32 bidirectional power converter, 40, 42 power meter, 50 DC bus, 60 power system, 70 power generator 72 solar cell, 74 converter, 80, 80A DC load group, 81 refrigerator, 82 air conditioner, 83 lighting fixture, 84 TV, 85 water heater, 90 network, 101 CPU, 102 touch panel, 103 display, 104 tablet, 105 operation Button, 106 Communication interface, 107 Output interface, 108 Input interface, 110 Memory, 111 Speaker, 112 Clock, 150, 150A, 150B, 150C, 150D, 150E Power consumption monitoring unit 152, 152A, 152B, 152C, 152D, 152E power control unit, 154, 154A, 154B, 154C, 154D, 154E storage unit, 156A, 156B, 156C remaining battery power monitoring unit, 158B, 158C, 158E power generation power monitoring unit, 160C, 160

Abstract

Provided is a power supply system in which power can be more effectively utilized by efficiently converting power. The power supply system (1100) is equipped with: an AC/DC converter (30) for converting the AC power supplied from a power system (60) to DC power; an electricity storage device (20) configured so that the DC power thereof can be charged and discharged; and a home controller (10) for controlling the AC/DC converter (30) and the electricity storage device (20). The home controller (10) monitors the power consumption (P) of a DC load group (80) receiving the DC power supplied from a DC bus (50), stores efficiency characteristic information indicating the relationship between input power to the AC/DC converter (30) and conversion efficiency, allows the AC/DC converter (30) to perform a power conversion so that the conversion efficiency becomes a reference threshold value or more, and controls the charging and discharging operation of the electricity storage device (20) according to the power consumption (P).

Description

電力供給システムおよびコントローラPower supply system and controller
 本発明は、電力供給システムおよびコントローラに関し、特に、電力供給システムおよびコントローラにおいて、直流バスに接続された電力変換装置および蓄電装置の動作を制御して電力を供給するための技術に関する。 The present invention relates to a power supply system and a controller, and more particularly, to a technique for supplying power by controlling the operation of a power conversion device and a power storage device connected to a DC bus in the power supply system and controller.
 近年、地球環境問題の意識が高まる中、太陽電池、風力発電装置および燃料電池のような分散電源装置と蓄電池による電力貯蔵とを組み合わせた電力供給システムが普及している。また、オーディオ機器、テレビ、パソコン等の直流負荷(電気機器)に対して直流電力から交流電力への変換を行わずに、直流電力をそのまま直流負荷へ給電する技術が知られている。 In recent years, with increasing awareness of global environmental problems, a power supply system that combines a distributed power supply device such as a solar cell, a wind power generator, and a fuel cell and power storage by a storage battery has become widespread. In addition, a technique is known in which DC power is directly supplied to a DC load without converting DC power into AC power for a DC load (electrical device) such as an audio device, a television, or a personal computer.
 このような直流負荷を含む電力供給システムにおいては、分散型電源装置が発電した直流電力は、直流負荷に供給されて消費されたり、商用電力系統に電力を逆潮流して売電されたりする。また、分散型電源装置で発電された電力を蓄電池に充電することにより、天候に左右されない安定的な電力の供給が行われる。 In such a power supply system including a DC load, the DC power generated by the distributed power supply device is consumed by being supplied to the DC load, or sold by a reverse power flow to the commercial power system. Further, by charging the storage battery with the power generated by the distributed power supply device, stable power supply that is not affected by the weather is performed.
 電力の供給に関し、たとえば、特開2012-249471号公報(特許文献1)は、配電システムを開示している。配電システムは、直流電源部の出力端子に接続された負荷用DC/DCコンバータおよびパワーコンディショナと、交流電力系統に接続されたAC/DCコンバータと、これらを制御する制御部とを備えている。制御部は、直流電源部からの電力が交流電力系統よりも優先的に負荷に供給されるように、各部の動作を個別に制御する。直流電源部は、直流負荷に対しては負荷用DC/DCコンバータを介して電力供給し、交流負荷に対してはパワーコンディショナを介して電力供給する。交流電力系統は、直流負荷に対してはAC/DCコンバータを介して電力供給し、交流負荷に対しては直接電力供給する。 Regarding power supply, for example, JP 2012-249471 A (Patent Document 1) discloses a power distribution system. The power distribution system includes a load DC / DC converter and a power conditioner connected to an output terminal of a DC power supply unit, an AC / DC converter connected to an AC power system, and a control unit for controlling them. . The control unit individually controls the operation of each unit so that the power from the DC power supply unit is supplied to the load with priority over the AC power system. The DC power supply unit supplies power to a DC load via a load DC / DC converter, and supplies power to an AC load via a power conditioner. The AC power system supplies power to a DC load via an AC / DC converter, and supplies power directly to the AC load.
特開2012-249471号公報JP 2012-249471 A
 特許文献1に開示された配電システムによると、直流電源部から電力が供給されていないときに直流負荷を動作させる場合には、交流電力系統からAC/DCコンバータを介して直流負荷に電力が供給されることになる。ここで、AC/DCコンバータなどの変換器が変換動作を行なうときには、変換する電力に依存しない固定の電力損失が発生する。そのため、負荷電力が比較的小さい状態が続いた場合には、AC/DCコンバータの変換電力に対する固定電力損失の影響が大きくなり、電力が効率的に活用されていない状態が続いてしまうという問題点がある。 According to the power distribution system disclosed in Patent Document 1, when operating a DC load when power is not supplied from the DC power supply unit, power is supplied from the AC power system to the DC load via an AC / DC converter. Will be. Here, when a converter such as an AC / DC converter performs a conversion operation, a fixed power loss that does not depend on the power to be converted occurs. For this reason, when the load power is relatively low, the influence of the fixed power loss on the converted power of the AC / DC converter becomes large, and the state where the power is not efficiently utilized continues. There is.
 本発明は、上記のような問題点を解決するためになされたものであって、効率の良い電力変換を行なうことにより、電力をより有効に活用することが可能な電力供給システムおよびコントローラを提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and provides a power supply system and a controller capable of more effectively using power by performing efficient power conversion. The purpose is to do.
 ある実施の形態に従う電力供給システムは、電力系統と直流バスとの間に設けられ、電力系統から供給された交流電力を直流電力に変換する順変換機能、および直流バスから供給された直流電力を交流電力に変換する逆変換機能の少なくとも一方の機能を有する電力変換装置と、直流バスに接続されており、直流電力を充放電可能に構成された蓄電装置と、電力変換装置および蓄電装置を制御するコントローラとを備える。コントローラは、直流バスから直流電力の供給を受ける負荷部の消費電力を監視する消費電力監視部と、電力変換装置への入力電力と変換効率との関係を示す効率特性情報を記憶する記憶部と、変換効率が基準閾値以上となるように電力変換装置に電力変換を実行させるとともに、消費電力に基づいて蓄電装置の充放電動作を制御する電力制御部とを含む。 A power supply system according to an embodiment is provided between a power system and a DC bus, has a forward conversion function for converting AC power supplied from the power system into DC power, and DC power supplied from the DC bus. A power conversion device having at least one function of an inverse conversion function for converting to AC power, a power storage device connected to a DC bus and configured to charge and discharge DC power, and the power conversion device and the power storage device are controlled. Controller. The controller includes a power consumption monitoring unit that monitors power consumption of a load unit that is supplied with DC power from a DC bus, and a storage unit that stores efficiency characteristic information indicating a relationship between input power to the power converter and conversion efficiency; And a power control unit that controls the charge / discharge operation of the power storage device based on the power consumption while causing the power conversion device to perform power conversion so that the conversion efficiency is equal to or higher than the reference threshold.
 本発明によると、効率の良い電力変換を行なうことにより、電力をより有効に活用することが可能となる。 According to the present invention, power can be used more effectively by performing efficient power conversion.
実施の形態1に従う電力供給システムの全体の構成を概略的に示す図である。It is a figure which shows roughly the whole structure of the electric power supply system according to Embodiment 1. FIG. 入力電力と変換効率との関係を示す図である。It is a figure which shows the relationship between input electric power and conversion efficiency. 実施の形態1に従う電力供給システムに含まれるホームコントローラ10のハードウェア構成を示す模式図である。It is a schematic diagram which shows the hardware constitutions of the home controller 10 contained in the electric power supply system according to Embodiment 1. 実施の形態1に従うホームコントローラの機能ブロック図である。3 is a functional block diagram of a home controller according to the first embodiment. FIG. 実施の形態1に従うホームコントローラが実行する処理手順の一例を示すフローチャートである。6 is a flowchart showing an example of a processing procedure executed by the home controller according to the first embodiment. 実施の形態2に従う電力供給システムの全体の構成を概略的に示す図である。It is a figure which shows roughly the whole structure of the electric power supply system according to Embodiment 2. FIG. 実施の形態2に従うホームコントローラの機能ブロック図である。FIG. 10 is a functional block diagram of a home controller according to a second embodiment. 実施の形態2に従うホームコントローラが実行する処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence which the home controller according to Embodiment 2 performs. 実施の形態3に従う電力供給システムの全体の構成を概略的に示す図である。It is a figure which shows roughly the whole structure of the electric power supply system according to Embodiment 3. FIG. 実施の形態3に従うホームコントローラの機能ブロック図である。FIG. 11 is a functional block diagram of a home controller according to a third embodiment. 実施の形態3に従うホームコントローラが実行する処理手順の一例を示すフローチャートである。12 is a flowchart showing an example of a processing procedure executed by a home controller according to the third embodiment. 実施の形態4に従う電力供給システムの全体の構成を概略的に示す図である。It is a figure which shows roughly the whole structure of the electric power supply system according to Embodiment 4. FIG. 実施の形態4に従うホームコントローラの機能ブロック図である。FIG. 10 is a functional block diagram of a home controller according to a fourth embodiment. 実施の形態4に従うホームコントローラが実行する処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence which the home controller according to Embodiment 4 performs. 実施の形態5に従う電力供給システムの全体の構成を概略的に示す図である。It is a figure which shows roughly the whole structure of the electric power supply system according to Embodiment 5. FIG. 実施の形態5に従うホームコントローラの機能ブロック図である。FIG. 16 is a functional block diagram of a home controller according to a fifth embodiment. 実施の形態5に従うホームコントローラが実行する処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence which the home controller according to Embodiment 5 performs. 実施の形態6に従う電力供給システムの全体の構成を概略的に示す図である。It is a figure which shows roughly the whole structure of the electric power supply system according to Embodiment 6. FIG. 実施の形態6に従うホームコントローラの機能ブロック図である。FIG. 17 is a functional block diagram of a home controller according to a sixth embodiment. 実施の形態6に従うホームコントローラが実行する処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence which the home controller according to Embodiment 6 performs.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 [実施の形態1]
 <システム概要>
 (全体構成)
 図1は、実施の形態1に従う電力供給システム1100の全体の構成を概略的に示す図である。電力供給システム1100は、たとえばHEMS(Home Energy Management System)によって実現される。これは、以下の実施の形態における電力供給システムについても同様である。
[Embodiment 1]
<System overview>
(overall structure)
FIG. 1 schematically shows an overall configuration of power supply system 1100 according to the first embodiment. The power supply system 1100 is realized by, for example, a HEMS (Home Energy Management System). The same applies to the power supply systems in the following embodiments.
 図1を参照して、電力供給システム1100は、ホームコントローラ10と、蓄電装置20と、AC/DC変換器30と、電力測定器40と、直流バス50とを含む。また、直流バス50には直流負荷群80が接続されており、AC/DC変換器30には電力系統60が接続されている。 Referring to FIG. 1, power supply system 1100 includes home controller 10, power storage device 20, AC / DC converter 30, power measuring device 40, and DC bus 50. In addition, a DC load group 80 is connected to the DC bus 50, and a power system 60 is connected to the AC / DC converter 30.
 電力系統60は、代表的には、単相3線式の商用交流電力系統である。単相3線式の商用交流電力系統は、中性線が抵抗を介して接地されており、中性線以外の2線(R相線RLおよびT相線TL)を使用してAC200Vを供給する。 The power system 60 is typically a single-phase three-wire commercial AC power system. In the single-phase three-wire commercial AC power system, the neutral wire is grounded via a resistor, and AC200V is supplied using two wires other than the neutral wire (R-phase wire RL and T-phase wire TL). To do.
 直流負荷群80は、直流負荷としての冷蔵庫81、エアコン82、照明器具83およびテレビ84を含む。なお、直流負荷群80は、家庭で使用される洗濯機またはパーソナルコンピュータのような電気機器、オフィスで使用されるコンピュータ、複写機またはファクシミリのような電気機器、または店舗で使用されるショーケースのような電気機器を含んでいてもよい。本実施の形態では、直流負荷群80は、複数の直流負荷(電気機器)を含んでいるが、単一の電気機器で構成されていてもよい。 The DC load group 80 includes a refrigerator 81, an air conditioner 82, a lighting fixture 83, and a television 84 as a DC load. The DC load group 80 is an electric device such as a washing machine or a personal computer used at home, an electric device such as a computer, a copying machine or a facsimile used in an office, or a showcase used in a store. Such electrical equipment may be included. In the present embodiment, the DC load group 80 includes a plurality of DC loads (electrical devices), but may be configured by a single electric device.
 蓄電装置20は、直流バス50に接続されており、直流電力を充放電可能に構成されている。蓄電装置20は、再充電可能な電力貯蔵専用の装置であり、リチウムイオン電池やニッケル水素電池などの蓄電池(図示しない)と、ホームコントローラ10の指示に従って蓄電装置20の動作を制御するCPU(Central Processing Unit)などの制御部(図示しない)とを含む。たとえば、蓄電池は、複数の電池セルを直列接続して構成されている。 The power storage device 20 is connected to a DC bus 50 and configured to charge and discharge DC power. The power storage device 20 is a rechargeable power storage-dedicated device, a storage battery (not shown) such as a lithium ion battery or a nickel metal hydride battery, and a CPU (Central Control Unit) that controls the operation of the power storage device 20 in accordance with instructions from the home controller 10. Control unit (not shown) such as Processing Unit). For example, the storage battery is configured by connecting a plurality of battery cells in series.
 蓄電池は、直流バス50に「直結」されており、直流バス50との間で直流電力の授受を行なうことが好ましい。ここで、「直結」とは、直流バス50と蓄電池との間に、DC/DC変換器のような電力変換器が介在していないことを意味する。したがって、蓄電池と直流バス50を「直結」することで、蓄電装置20と直流バス50との直流電力の授受においては、電力変換に伴う損失は発生しない。 The storage battery is “directly connected” to the DC bus 50, and it is preferable to exchange DC power with the DC bus 50. Here, “directly connected” means that a power converter such as a DC / DC converter is not interposed between the DC bus 50 and the storage battery. Therefore, when the storage battery and the DC bus 50 are “directly connected”, no loss due to power conversion occurs in the exchange of DC power between the power storage device 20 and the DC bus 50.
 AC/DC変換器30は、直流バス50と電力系統60との間に接続される。AC/DC変換器30は、電力系統60から交流電力の供給を受ける(買電する)場合に当該交流電力を直流電力に変換して直流バス50に出力(供給)する。具体的には、AC/DC変換器30は、ホームコントローラ10の指示に従って変換効率(入力電力に対する出力電力の割合)が基準閾値以上になるように電力変換を実行する。この変換効率はAC/DC変換器30に入力される入力電力に応じて変化する。具体的には、変換効率と入力電力とは図2に示すような関係を有している。 The AC / DC converter 30 is connected between the DC bus 50 and the power system 60. The AC / DC converter 30 converts the AC power into DC power and outputs (supplies) to the DC bus 50 when AC power is supplied (purchased) from the power system 60. Specifically, the AC / DC converter 30 performs power conversion in accordance with an instruction from the home controller 10 so that the conversion efficiency (ratio of output power to input power) is equal to or higher than a reference threshold value. This conversion efficiency changes according to the input power input to the AC / DC converter 30. Specifically, the conversion efficiency and the input power have a relationship as shown in FIG.
 図2は、入力電力と変換効率との関係を示す図である。図2を参照して、入力電力が大きくなるほど変換効率は大きくなっていることがわかる。たとえば、入力電力が1.5kWのときの変換効率は0.95であり、入力電力が0.5kWのときの変換効率は0.9である。入力電力および変換効率がこのような関係となる理由は、AC/DC変換器30による電力変換動作時には、変換電力の電力値に影響されない、内部回路のスイッチング動作による電力の固定損失分が存在するためである。そのため、効率よく電力を活用するためには、できるだけ大きい交流電力(入力電力)を直流電力(出力電力)に変換して直流バス50に供給することが望ましいといえる。 FIG. 2 is a diagram showing the relationship between input power and conversion efficiency. Referring to FIG. 2, it can be seen that the conversion efficiency increases as the input power increases. For example, the conversion efficiency when the input power is 1.5 kW is 0.95, and the conversion efficiency when the input power is 0.5 kW is 0.9. The reason why the input power and the conversion efficiency have such a relationship is that there is a fixed power loss due to the switching operation of the internal circuit that is not affected by the power value of the converted power during the power conversion operation by the AC / DC converter 30. Because. Therefore, in order to efficiently use power, it can be said that it is desirable to convert as much AC power (input power) as possible into DC power (output power) and supply it to the DC bus 50.
 再び図1を参照して、電力測定器40は、直流負荷群80の消費電力を測定するとともに、その測定情報をネットワーク90を介してホームコントローラ10に送信する。これにより、ホームコントローラ10は、直流負荷群80の消費電力を常時監視することができる。たとえば、電力測定器40としては、直流バス50と直流負荷群80のプラグとの間に配置され、消費電力を測定する消費電力測定装置が用いられる。 Referring again to FIG. 1, the power meter 40 measures the power consumption of the DC load group 80 and transmits the measurement information to the home controller 10 via the network 90. Thereby, the home controller 10 can always monitor the power consumption of the DC load group 80. For example, as the power measuring device 40, a power consumption measuring device that is disposed between the DC bus 50 and the plug of the DC load group 80 and measures power consumption is used.
 ホームコントローラ10は、有線または無線のネットワーク90を介して、蓄電装置20、AC/DC変換器30および電力測定器40と互いに通信可能に構成されている。ホームコントローラ10は、電力測定器40により測定された消費電力を監視するとともに、当該消費電力に基づいて蓄電装置20における直流電力の充放電動作およびAC/DC変換器30の電力変換動作を制御する。 The home controller 10 is configured to be able to communicate with the power storage device 20, the AC / DC converter 30, and the power measuring device 40 via a wired or wireless network 90. Home controller 10 monitors the power consumption measured by power meter 40 and controls the charge / discharge operation of DC power in power storage device 20 and the power conversion operation of AC / DC converter 30 based on the power consumption. .
 ネットワーク90は、任意のものを利用することができるが、有線のネットワークであれば、たとえば、イーサネット(登録商標)、PLC(Power Line Communications)などを用いることができる。また、ネットワーク90は、無線のネットワークであれば、たとえば、IEEE(Institute of Electrical and Electronic Engineers)802.11規格に準拠する無線LAN(Local Area Network)、ZigBee(登録商標)、Bluetooth(登録商標)、赤外線通信方式などを用いることができる。さらに、複数の通信方式を組み合わせてもよい。 Any network 90 can be used, but Ethernet (registered trademark), PLC (Power Line Communications), or the like can be used as long as it is a wired network. If the network 90 is a wireless network, for example, a wireless LAN (Local Area Network) compliant with IEEE (Institute of Electrical and Electronic Engineers) 802.11 standard, ZigBee (registered trademark), Bluetooth (registered trademark). Infrared communication method can be used. Further, a plurality of communication methods may be combined.
 (動作概要)
 図1を参照して、電力供給システム1100の動作概要について説明する。ここでは、最初の状態においては、蓄電装置20が直流負荷群80の消費電力Pを補うことができる充電状態(たとえば、満充電状態)であるものとする。
(Overview of operation)
With reference to FIG. 1, the operation | movement outline | summary of the electric power supply system 1100 is demonstrated. Here, in the initial state, it is assumed that power storage device 20 is in a charged state (for example, a fully charged state) in which power consumption P of DC load group 80 can be supplemented.
 図1を参照して、ホームコントローラ10は、AC/DC変換器30を停止させている(矢印X1)。また、ホームコントローラ10は、直流負荷群80に消費電力P(0.5kw)分の電力を供給するために(矢印Z1)、消費電力P分の電力を蓄電装置20から直流負荷群80に放電させる(矢印Y1)。 Referring to FIG. 1, the home controller 10 stops the AC / DC converter 30 (arrow X1). In addition, the home controller 10 discharges power for the power consumption P from the power storage device 20 to the DC load group 80 in order to supply power for the power consumption P (0.5 kW) to the DC load group 80 (arrow Z1). (Arrow Y1).
 次に、消費電力Pが増加(0.5kw⇒2.5kw)して基準電力(1.425kw)以上になると、AC/DC変換器30は、ホームコントローラ10の指示に従って変換効率が基準閾値(0.95)以上となる入力電力(たとえば、定格電力:3kw)で電力変換を実行して、直流バス50に直流電力(2.85kw)を出力する(矢印X2)。直流負荷群80には消費電力P分の電力(2.5kw)が供給され(矢印Z2)、蓄電装置20は、ホームコントローラ10の指示に従ってこの直流電力(2.85kw)から消費電力P(2.5kw)を減算した差分電力(0.35kw)を充電する(矢印Y2)。 Next, when the power consumption P increases (0.5 kw → 2.5 kw) and becomes equal to or higher than the reference power (1.425 kw), the AC / DC converter 30 converts the conversion efficiency into a reference threshold value (in accordance with an instruction from the home controller 10). 0.95) Power conversion is executed with input power (for example, rated power: 3 kW) that is equal to or greater than that, and DC power (2.85 kW) is output to the DC bus 50 (arrow X2). The DC load group 80 is supplied with power (2.5 kW) corresponding to the power consumption P (arrow Z2), and the power storage device 20 uses the DC power (2.85 kw) to the power consumption P (2) according to the instruction of the home controller 10. .5 kw) is subtracted from the differential power (0.35 kw) (arrow Y2).
 その後、消費電力Pが減少(2.5kw⇒0.5kw)して基準電力未満になると、ホームコントローラ10は、AC/DC変換器30を停止して(矢印X1)、消費電力P分の電力を蓄電装置20から放電させる(矢印Y1)。 Thereafter, when the power consumption P decreases (2.5 kw → 0.5 kw) and becomes less than the reference power, the home controller 10 stops the AC / DC converter 30 (arrow X1), and power for the power consumption P Is discharged from the power storage device 20 (arrow Y1).
 <ホームコントローラ10>
 (ハードウェア構成)
 図3は、実施の形態1に従う電力供給システム1100に含まれるホームコントローラ10のハードウェア構成を示す模式図である。
<Home controller 10>
(Hardware configuration)
FIG. 3 is a schematic diagram showing a hardware configuration of home controller 10 included in power supply system 1100 according to the first embodiment.
 図3を参照して、ホームコントローラ10は、少なくともCPU101とメモリ110とを含み、必要に応じてディスプレイ103およびタブレット104を含むタッチパネル102と、操作ボタン105と、通信インターフェイス106と、出力インターフェイス107と、入力インターフェイス108と、スピーカ111と、時計112とを含んでもよい。 Referring to FIG. 3, home controller 10 includes at least CPU 101 and memory 110, and touch panel 102 including display 103 and tablet 104 as necessary, operation buttons 105, communication interface 106, output interface 107, and the like. The input interface 108, the speaker 111, and the clock 112 may be included.
 CPU101は、ホームコントローラ10における全体処理を司る処理主体であり、メモリ110などに予め格納されたプログラムを実行することで、後述するような各種機能を提供する。CPU101は、タブレット104または操作ボタン105に入力されたユーザ操作に応答して、当該ユーザ操作によって指示された処理を実行する。 The CPU 101 is a processing entity that controls the entire processing in the home controller 10, and provides various functions as described later by executing a program stored in advance in the memory 110 or the like. In response to a user operation input to the tablet 104 or the operation button 105, the CPU 101 executes processing instructed by the user operation.
 タッチパネル102は、ユーザインターフェイスを提供する装置であり、CPU101からの命令に従って各種情報をユーザに提示するとともに、ユーザから入力された指示をCPU101へ出力する。 The touch panel 102 is a device that provides a user interface, presents various information to the user according to instructions from the CPU 101, and outputs instructions input from the user to the CPU 101.
 ディスプレイ103は、例えば、LCD(Liquid Crystal Display)や有機EL(Electro Luminescence)ディスプレイなどから構成されており、その表示面に画像を表示する。 The display 103 includes, for example, an LCD (Liquid Crystal Display), an organic EL (Electro Luminescence) display, and the like, and displays an image on its display surface.
 タブレット104は、ユーザの指などによるタッチ操作を検出して、そのタッチ操作がなされた位置を示す座標値などをCPU101へ出力する。ディスプレイ103の表示面に対応付けてタブレット104が設けられている。ただし、ホームコントローラ10は、必ずしもタッチパネルを含む必要はなく、ユーザに対して各種情報を提示できればよい。 The tablet 104 detects a touch operation with a user's finger or the like, and outputs a coordinate value indicating a position where the touch operation is performed to the CPU 101. A tablet 104 is provided in association with the display surface of the display 103. However, the home controller 10 does not necessarily include a touch panel, and it is sufficient that various information can be presented to the user.
 操作ボタン105は、ユーザ操作を受け付けるための入力部であり、典型的には、ホームコントローラ10の表面に1つまたは複数が配置される。操作ボタン105は、ユーザ操作を受け付けると、そのユーザ操作を示す情報をCPU101へ出力する。 The operation button 105 is an input unit for accepting a user operation, and typically one or more are arranged on the surface of the home controller 10. When the operation button 105 receives a user operation, the operation button 105 outputs information indicating the user operation to the CPU 101.
 通信インターフェイス106は、CPU101からの命令に従って、蓄電装置20およびAC/DC変換器30などとデータ通信を行なう。より具体的には、通信インターフェイス106は、イーサネット(登録商標)、PLC、無線LAN、ZigBee(登録商標)、Bluetooth(登録商標)、赤外線通信方式などを利用する。 The communication interface 106 performs data communication with the power storage device 20 and the AC / DC converter 30 according to a command from the CPU 101. More specifically, the communication interface 106 uses Ethernet (registered trademark), PLC, wireless LAN, ZigBee (registered trademark), Bluetooth (registered trademark), an infrared communication method, or the like.
 出力インターフェイス107は、CPU101とディスプレイ103との間の内部コマンドの遣り取りを仲介する。入力インターフェイス108は、タブレット104および/または操作ボタン105とCPU101との間の内部コマンドの遣り取りを仲介する。 The output interface 107 mediates exchange of internal commands between the CPU 101 and the display 103. The input interface 108 mediates exchange of internal commands between the tablet 104 and / or the operation buttons 105 and the CPU 101.
 メモリ110は、RAM(Random Access Memory)、ROM(Read-Only Memory)、ハードディスクなどによって実現される。メモリ110は、各種データおよびCPU101によって実行されるプログラムなどを記憶する。 The memory 110 is realized by a RAM (Random Access Memory), a ROM (Read-Only Memory), a hard disk, or the like. The memory 110 stores various data and programs executed by the CPU 101.
 スピーカ111は、音声デバイスであり、CPU101からの命令に従って音声を出力する。時計112は、計時部であり、CPU101からの命令に従って、現在の日付や時刻をCPU101に入力する。 The speaker 111 is an audio device, and outputs audio according to a command from the CPU 101. The clock 112 is a time measuring unit, and inputs the current date and time to the CPU 101 in accordance with a command from the CPU 101.
 なお、メモリ110は、通信インターフェイスを介して接続される記憶媒体を用いて実現してもよい。このような記憶媒体としては、フラッシュメモリ、CD-ROM(Compact Disc-Read Only Memory)やDVD-ROM(Digital Versatile Disk-Read Only Memory)などの光学ディスク記憶媒体を用いることができる。 Note that the memory 110 may be realized using a storage medium connected via a communication interface. As such a storage medium, optical disk storage media such as flash memory, CD-ROM (Compact Disc-Read Only Memory) and DVD-ROM (Digital Versatile Disk-Read Only Memory) can be used.
 ホームコントローラ10における以下のフローチャートで説明するような情報処理は、CPU101が周辺のハードウェアコンポーネントと連係してプログラムを実行することで実現される。一般的には、このようなプログラムは、メモリ110などに予めインストールされている。 Information processing as described in the following flowchart in the home controller 10 is realized by the CPU 101 executing a program in cooperation with peripheral hardware components. Generally, such a program is preinstalled in the memory 110 or the like.
 このようなプログラムは、任意の記憶媒体に格納されて流通することで提供されうる。あるいは、このようなプログラムは、インターネットなどに接続されているサーバ装置(または、他の装置)からのダウンロードによって提供されうる。すなわち、記憶媒体から格納されているプログラムが読み出されて、または、サーバ装置からダウンロードによりプログラムが取得されて、メモリ110などに一旦格納される。そして、CPU101は、メモリ110に格納されたプログラムを実行可能な形式に展開した上で、当該プログラムを実行する。 Such a program can be provided by being stored and distributed in an arbitrary storage medium. Alternatively, such a program can be provided by downloading from a server device (or other device) connected to the Internet or the like. That is, the program stored in the storage medium is read out, or the program is acquired by downloading from the server device and temporarily stored in the memory 110 or the like. The CPU 101 expands the program stored in the memory 110 into an executable format and then executes the program.
 また、CPU101がプログラムを実行することにより本実施の形態に従うすべての機能を実現するだけでなく、プログラムに従って、コンピュータ上で実行されているOS(オペレーティングシステム)などが必要な処理の全部または一部を行なうことで、本実施の形態に従う機能を実現するようにしてもよい。 The CPU 101 executes not only all the functions according to the present embodiment by executing a program, but also all or part of processing required by an OS (operating system) executed on the computer according to the program. By performing the above, the function according to the present embodiment may be realized.
 (機能構成)
 図4は、実施の形態1に従うホームコントローラ10の機能ブロック図である。
(Functional configuration)
FIG. 4 is a functional block diagram of home controller 10 according to the first embodiment.
 図4を参照して、ホームコントローラ10は、その主たる機能構成として、消費電力監視部150と、電力制御部152と、記憶部154とを含む。消費電力監視部150および電力制御部152は、基本的には、ホームコントローラ10のCPU101がメモリ110に格納されたプログラムを実行し、ホームコントローラ10の構成要素へ指令を与えることなどによって実現される。記憶部154は、メモリ110によって実現される機能構成である。なお、これらの機能構成の一部または全部は、ハードウェアで実現されていてもよい。 Referring to FIG. 4, home controller 10 includes a power consumption monitoring unit 150, a power control unit 152, and a storage unit 154 as its main functional configuration. The power consumption monitoring unit 150 and the power control unit 152 are basically realized by the CPU 101 of the home controller 10 executing a program stored in the memory 110 and giving a command to the components of the home controller 10. . The storage unit 154 is a functional configuration realized by the memory 110. Note that some or all of these functional configurations may be realized by hardware.
 記憶部154は、AC/DC変換器30に電力系統60から入力される交流電力(入力電力)と変換効率との関係を示す効率特性情報を記憶している。具体的には、効率特性情報は、図2に示したグラフである。 The storage unit 154 stores efficiency characteristic information indicating the relationship between AC power (input power) input from the power system 60 to the AC / DC converter 30 and conversion efficiency. Specifically, the efficiency characteristic information is the graph shown in FIG.
 消費電力監視部150は、直流負荷群80の消費電力Pを監視する。具体的には、消費電力監視部150は、電力測定器40からの測定情報を受け付けて、直流負荷群80の消費電力Pを監視する。直流負荷群80の消費電力Pは、各々の直流負荷の消費電力の総和である。直流負荷ごとに電力測定器40が設けられている場合には、消費電力監視部150は各々の直流負荷の消費電力を監視してもよい。 The power consumption monitoring unit 150 monitors the power consumption P of the DC load group 80. Specifically, the power consumption monitoring unit 150 receives measurement information from the power meter 40 and monitors the power consumption P of the DC load group 80. The power consumption P of the DC load group 80 is the sum of the power consumption of each DC load. When the power meter 40 is provided for each DC load, the power consumption monitoring unit 150 may monitor the power consumption of each DC load.
 電力制御部152は、記憶部154に記憶されている効率特性情報と消費電力監視部150により監視される消費電力Pとに基づいてAC/DC変換器30および蓄電装置20を制御する。 The power control unit 152 controls the AC / DC converter 30 and the power storage device 20 based on the efficiency characteristic information stored in the storage unit 154 and the power consumption P monitored by the power consumption monitoring unit 150.
 具体的には、電力制御部152は、電力系統60から交流電力の供給を受ける(買電する)場合、記憶部154に記憶されている効率特性情報を参照して、変換効率が基準閾値以上となるようにAC/DC変換器30に電力変換を実行させる。たとえば、基準閾値が0.95に設定されている場合には、電力制御部152は、図2に示す関係から1.5kW以上の交流電力を直流電力に変換するようにAC/DC変換器30に指示する。典型的には、電力制御部152は、定格電力(たとえば、3kw)でAC/DC変換器30を変換動作させる。たとえば、基準閾値は、記憶部154に記憶されており、タッチパネル102を介したユーザからの指示により適宜変更可能である。 Specifically, the power control unit 152 refers to the efficiency characteristic information stored in the storage unit 154 when the AC power is supplied (purchased) from the power system 60, and the conversion efficiency is equal to or higher than the reference threshold value. The AC / DC converter 30 is caused to perform power conversion so that For example, when the reference threshold is set to 0.95, the power controller 152 causes the AC / DC converter 30 to convert AC power of 1.5 kW or more into DC power from the relationship shown in FIG. To instruct. Typically, the power control unit 152 performs the conversion operation of the AC / DC converter 30 with the rated power (for example, 3 kW). For example, the reference threshold value is stored in the storage unit 154 and can be appropriately changed according to an instruction from the user via the touch panel 102.
 また、電力制御部152は、消費電力Pが基準電力以上である場合に電力系統60から交流電力の供給を受けて(買電して)直流バス50に直流電力を出力するようにAC/DC変換器30に指示する。具体的には、電力制御部152は、AC/DC変換器30から直流バス50に出力される直流電力が消費電力P以上のときには、当該直流電力から消費電力Pを減算した差分電力を蓄電装置20に充電させる。電力制御部152は、AC/DC変換器30から直流バス50に出力される直流電力が消費電力P未満のときには、消費電力Pから当該直流電力を減算した差分電力を蓄電装置20から直流バス50に放電させる。基準電力は、変換効率が基準閾値(たとえば、0.95)以上となる入力電力(1.5kw)を変換して得られる出力電力(1.425kw)以上であることが好ましい。 Further, the power control unit 152 receives AC power from the power system 60 (purchases power) and outputs DC power to the DC bus 50 when the power consumption P is equal to or higher than the reference power. Instruct the converter 30. Specifically, when the DC power output from the AC / DC converter 30 to the DC bus 50 is equal to or higher than the power consumption P, the power control unit 152 stores the difference power obtained by subtracting the power consumption P from the DC power. Let 20 charge. When the DC power output from the AC / DC converter 30 to the DC bus 50 is less than the power consumption P, the power control unit 152 uses the power consumption P to subtract the DC power from the power storage device 20 to the DC bus 50. To discharge. The reference power is preferably equal to or higher than output power (1.425 kW) obtained by converting input power (1.5 kW) at which the conversion efficiency is equal to or higher than a reference threshold (for example, 0.95).
 また、電力制御部152は、消費電力Pが基準電力未満である場合には、AC/DC変換器30を停止させるとともに蓄電装置20から直流バス50に消費電力P分の直流電力を放電させる。 Further, when the power consumption P is less than the reference power, the power control unit 152 stops the AC / DC converter 30 and discharges the DC power corresponding to the power consumption P from the power storage device 20 to the DC bus 50.
 <処理手順>
 次に、ホームコントローラ10が実行する具体的な処理手順について説明する。
<Processing procedure>
Next, a specific processing procedure executed by the home controller 10 will be described.
 図5は、実施の形態1に従うホームコントローラ10が実行する処理手順の一例を示すフローチャートである。当該フローは主に、CPU101がメモリ110に格納されている制御プログラム等を実行することにより実現するものである。これは、以下の実施の形態におけるフローにおいても同様である。なお、図5のフローチャートのスタート時には、AC/DC変換器30は停止しており、蓄電装置20は、直流負荷群80の消費電力Pを補うことが可能な充電状態(たとえば、満充電状態)であるとする。 FIG. 5 is a flowchart showing an example of a processing procedure executed by the home controller 10 according to the first embodiment. This flow is mainly realized by the CPU 101 executing a control program or the like stored in the memory 110. The same applies to the flows in the following embodiments. Note that at the start of the flowchart of FIG. 5, AC / DC converter 30 is stopped, and power storage device 20 is in a charged state in which power consumption P of DC load group 80 can be supplemented (for example, a fully charged state). Suppose that
 図5を参照して、ホームコントローラ10は、直流負荷群80の消費電力P分の電力を蓄電装置20から直流負荷群80に放電させる(ステップS10)。 Referring to FIG. 5, home controller 10 discharges power corresponding to power consumption P of DC load group 80 from power storage device 20 to DC load group 80 (step S10).
 ホームコントローラ10は、消費電力Pが基準電力以上か否かを判断する(ステップS12)。消費電力Pが基準電力未満である場合には(ステップS12においてNO)、ホームコントローラ10はAC/DC変換器30を停止して(ステップS22)、ステップS10の処理に戻る(リターン)。消費電力Pが基準電力以上である場合には(ステップS12においてYES)、ホームコントローラ10は電力系統60から交流電力を買電して直流バス50に直流電力を出力するようにAC/DC変換器30に指示する(ステップS14)。典型的には、ホームコントローラ10は、変換効率が基準閾値以上となる電力でAC/DC変換器30に電力変換動作を実行させる。 The home controller 10 determines whether or not the power consumption P is greater than or equal to the reference power (step S12). If power consumption P is less than the reference power (NO in step S12), home controller 10 stops AC / DC converter 30 (step S22), and returns to the process of step S10 (return). If the power consumption P is greater than or equal to the reference power (YES in step S12), the home controller 10 purchases AC power from the power system 60 and outputs the DC power to the DC bus 50. 30 is instructed (step S14). Typically, the home controller 10 causes the AC / DC converter 30 to execute a power conversion operation with power at which the conversion efficiency is equal to or higher than a reference threshold.
 次に、ホームコントローラ10は、直流バス50に出力される直流電力が消費電力P以上か否かを判断する(ステップS16)。当該直流電力が消費電力P以上である場合には(ステップS16においてYES)、ホームコントローラ10は直流電力から消費電力Pを減算した余剰電力を蓄電装置20に充電させて(ステップS18)、ステップS12の処理に戻る。当該直流電力が消費電力P未満である場合には(ステップS16においてNO)、ホームコントローラ10は消費電力Pから直流電力を減算した不足電力を蓄電装置20から放電させて(ステップS20)、ステップS12の処理に戻る。 Next, the home controller 10 determines whether or not the DC power output to the DC bus 50 is greater than or equal to the power consumption P (step S16). If the DC power is greater than or equal to power consumption P (YES in step S16), home controller 10 causes power storage device 20 to charge surplus power obtained by subtracting power consumption P from DC power (step S18), and step S12. Return to the process. If the DC power is less than power consumption P (NO in step S16), home controller 10 discharges insufficient power obtained by subtracting DC power from power consumption P from power storage device 20 (step S20), and step S12. Return to the process.
 実施の形態1によると、消費電力Pが基準電力未満である場合には、直流負荷群80は蓄電装置20の電力により動作するため、AC/DC変換器30による変換損失は発生しない。また、消費電力Pが基準電力以上となり蓄電装置20からの電力では直流負荷群80を動作させることが困難になった場合には、AC/DC変換器30は、電力系統60から交流電力を買電して変換効率が基準閾値以上の電力で電力変換動作を行なう。その後、消費電力Pが基準電力未満になった場合には、AC/DC変換器30は停止され、再び蓄電装置20からの電力により直流負荷群80が動作し変換損失が発生しない状態に戻る。 According to the first embodiment, when the power consumption P is less than the reference power, the DC load group 80 is operated by the power of the power storage device 20, and therefore no conversion loss is caused by the AC / DC converter 30. Also, when the power consumption P is greater than the reference power and it becomes difficult to operate the DC load group 80 with the power from the power storage device 20, the AC / DC converter 30 purchases AC power from the power system 60. The power conversion operation is performed with electric power having a conversion efficiency equal to or higher than a reference threshold. Thereafter, when the power consumption P becomes less than the reference power, the AC / DC converter 30 is stopped, and the DC load group 80 is operated again by the power from the power storage device 20 to return to a state where no conversion loss occurs.
 そのため、変換損失の発生しない蓄電装置20の電力を最大限に利用しつつ、買電する場合であっても高効率の電力変換により変換損失を抑制するため、システム全体として電力をより効率よく活用することができる。 Therefore, even when purchasing electricity while maximally using the power of the power storage device 20 that does not cause conversion loss, the conversion loss is suppressed by high-efficiency power conversion. can do.
 [実施の形態2]
 <システム概要>
 (全体構成)
 図6は、実施の形態2に従う電力供給システム1200の全体の構成を概略的に示す図である。
[Embodiment 2]
<System overview>
(overall structure)
FIG. 6 is a diagram schematically showing an overall configuration of power supply system 1200 according to the second embodiment.
 図6を参照して、電力供給システム1200は、ホームコントローラ10Aと、蓄電装置20と、AC/DC変換器30と、電力測定器40と、直流バス50とを含む。ホームコントローラ10Aは、図1に示す実施の形態1のホームコントローラ10と対応するが、他の実施の形態との区別のため、便宜上追加の符号「A」を付している。これは、以下の実施の形態においても同様である。電力供給システム1200におけるホームコントローラ10A以外の構成は、電力供給システム1100の当該構成と実質的に同一であるため、その詳細な説明は繰り返さない。 Referring to FIG. 6, power supply system 1200 includes home controller 10 </ b> A, power storage device 20, AC / DC converter 30, power meter 40, and DC bus 50. The home controller 10A corresponds to the home controller 10 of the first embodiment shown in FIG. 1, but for the sake of distinction from the other embodiments, an additional symbol “A” is attached for convenience. The same applies to the following embodiments. Since the configuration of power supply system 1200 other than home controller 10A is substantially the same as the configuration of power supply system 1100, detailed description thereof will not be repeated.
 (動作概要)
 次に、電力供給システム1200の動作概要について説明する。実施の形態2では、ホームコントローラ10Aは、蓄電装置20の電池残量Qを当該装置から取得する。なお、電池残量(SOC:State of Charge)(%)とは、満充電容量に対する現在の残容量を百分率(0~100%)で示したものである。
(Overview of operation)
Next, an outline of the operation of the power supply system 1200 will be described. In the second embodiment, the home controller 10A acquires the remaining battery charge Q of the power storage device 20 from the device. Note that the state of charge (SOC) (%) indicates the current remaining capacity as a percentage (0 to 100%) with respect to the full charge capacity.
 図6を参照して、ホームコントローラ10Aは、電池残量Qが基準残量RQ1(たとえば、SOC=5%)以上である場合には、AC/DC変換器30を停止させる(矢印Xa1)。また、ホームコントローラ10Aは、直流負荷群80に消費電力P(0.5kw)分の電力を供給するために(矢印Za)、消費電力P分の直流電力を蓄電装置20から直流負荷群80に放電させる(矢印Ya1)。 Referring to FIG. 6, home controller 10A stops AC / DC converter 30 (arrow Xa1) when battery remaining amount Q is equal to or greater than reference remaining amount RQ1 (for example, SOC = 5%). Further, the home controller 10A supplies the DC load group 80 with DC power corresponding to the power consumption P (0.5 kW) (arrow Za), from the power storage device 20 to the DC load group 80. Discharge (arrow Ya1).
 蓄電装置20の電力が放電されることにより、電池残量Qが基準残量RQ1未満になった場合には、AC/DC変換器30は、ホームコントローラ10Aの指示に従って変換効率が基準閾値(0.95)以上となる定格電力(3kw)で電力変換を実行して、直流バス50に直流電力(2.85kw)を出力する(矢印Xa2)。直流負荷群80には、消費電力P(0.5kW)分の電力が供給され(矢印Za)、蓄電装置20は、ホームコントローラ10Aの指示に従ってこの直流電力から消費電力Pを減算した差分電力(2.35kw)を充電する(矢印Ya2)。 When the battery remaining amount Q becomes less than the reference remaining amount RQ1 due to the electric power of the power storage device 20 being discharged, the AC / DC converter 30 converts the conversion efficiency into the reference threshold (0) according to the instruction of the home controller 10A. .95) The power conversion is executed with the rated power (3 kW) that is equal to or higher than that, and the DC power (2.85 kW) is output to the DC bus 50 (arrow Xa2). The DC load group 80 is supplied with power corresponding to power consumption P (0.5 kW) (arrow Za), and the power storage device 20 subtracts the power consumption P from this DC power in accordance with an instruction from the home controller 10A ( 2.35 kW) is charged (arrow Ya2).
 その後、当該充電により電池残量Qが基準残量RQ1よりも大きい基準残量RQ2(たとえば、SOC=30%)以上になった場合には、ホームコントローラ10AはAC/DC変換器30を停止して(矢印Xa1)、消費電力P分の直流電力を蓄電装置20から直流負荷群80に放電させる(矢印Ya1)。 Thereafter, when the remaining battery level Q becomes greater than or equal to a reference remaining amount RQ2 (for example, SOC = 30%) larger than the reference remaining amount RQ1 due to the charging, the home controller 10A stops the AC / DC converter 30. (Arrow Xa1), the DC power corresponding to the power consumption P is discharged from the power storage device 20 to the DC load group 80 (arrow Ya1).
 <ホームコントローラ10A>
 ホームコントローラ10Aのハードウェア構成については、図3に示されるホームコントローラ10のそれと同一であるため、その詳細な説明は繰り返さない。
<Home controller 10A>
Since the hardware configuration of home controller 10A is the same as that of home controller 10 shown in FIG. 3, detailed description thereof will not be repeated.
 (機能構成)
 図7は、実施の形態2に従うホームコントローラ10Aの機能ブロック図である。
(Functional configuration)
FIG. 7 is a functional block diagram of home controller 10A according to the second embodiment.
 図7を参照して、ホームコントローラ10Aは、その主たる機能構成として、消費電力監視部150Aと、電力制御部152Aと、記憶部154Aと、電池残量監視部156Aとを含む。消費電力監視部150Aおよび記憶部154Aは、それぞれ図4に示す消費電力監視部150および記憶部154と実質的に同一の機能を有する。 Referring to FIG. 7, home controller 10A includes a power consumption monitoring unit 150A, a power control unit 152A, a storage unit 154A, and a battery remaining amount monitoring unit 156A as its main functional configuration. The power consumption monitoring unit 150A and the storage unit 154A have substantially the same functions as the power consumption monitoring unit 150 and the storage unit 154 shown in FIG. 4, respectively.
 電池残量監視部156Aは、蓄電装置20の電池残量Qを監視する。具体的には、電池残量監視部156Aは、蓄電装置20から送信される電池残量情報を受け付けて、電池残量Qを監視する。具体的には、蓄電装置20の制御部は、検出した電池残量Qをネットワーク90を介して電池残量監視部156Aに送信する。 Battery remaining amount monitoring unit 156A monitors battery remaining amount Q of power storage device 20. Specifically, the remaining battery level monitoring unit 156A receives the remaining battery level information transmitted from the power storage device 20 and monitors the remaining battery level Q. Specifically, the control unit of the power storage device 20 transmits the detected remaining battery level Q to the remaining battery level monitoring unit 156A via the network 90.
 電力制御部152Aは、記憶部154Aに記憶された効率特性情報と、消費電力監視部150Aにより監視される直流負荷群80の消費電力Pと、蓄電装置20の電池残量Qとに基づいてAC/DC変換器30および蓄電装置20を制御する。 The power control unit 152A performs AC based on the efficiency characteristic information stored in the storage unit 154A, the power consumption P of the DC load group 80 monitored by the power consumption monitoring unit 150A, and the battery remaining amount Q of the power storage device 20. / DC converter 30 and power storage device 20 are controlled.
 具体的には、電力制御部152Aは、電池残量Qが基準残量RQ1(たとえば、SOC=5%)以上である場合には、AC/DC変換器30を停止させるとともに蓄電装置20から直流バス50に直流電力を放電させる。電力制御部152Aは、電池残量Qが基準残量RQ1未満である場合には、電力系統60から交流電力の供給を受けて直流バス50に直流電力を出力するようにAC/DC変換器30に指示する。また、電力制御部152Aは、当該直流電力から消費電力Pを減算した差分電力を蓄電装置20に充電させる。典型的には、電力制御部152Aは、定格電力でAC/DC変換器30を変換動作させて、消費電力P以上の直流電力を直流バス50に出力させる。 Specifically, power control unit 152A stops AC / DC converter 30 and performs direct current from power storage device 20 when battery remaining amount Q is equal to or greater than reference remaining amount RQ1 (eg, SOC = 5%). DC power is discharged to the bus 50. The power control unit 152A receives the AC power from the power system 60 and outputs the DC power to the DC bus 50 when the battery remaining amount Q is less than the reference remaining amount RQ1. To instruct. In addition, the power control unit 152A causes the power storage device 20 to be charged with the differential power obtained by subtracting the power consumption P from the DC power. Typically, the power control unit 152A causes the AC / DC converter 30 to perform a conversion operation at the rated power, and causes the DC bus 50 to output DC power that is greater than or equal to the power consumption P.
 電力制御部152Aは、当該差分電力が蓄電装置20に充電されることにより電池残量Qが基準残量RQ1よりも大きい基準残量RQ2(たとえば、SOC=30%)以上になった場合には、AC/DC変換器30を停止させるとともに蓄電装置20から直流バス50に直流電力を放電させる。基準残量RQ2は、消費電力Pを考慮して、一定時間以上の間、蓄電装置20からの電力のみで直流負荷群80を動作させることが可能となる残量に設定される。たとえば、基準残量RQ1および基準残量RQ2は、記憶部154Aに記憶されており、タッチパネル102を介したユーザからの指示により適宜変更可能である。 When the difference power is charged in power storage device 20, power control unit 152 </ b> A has battery remaining amount Q that is greater than reference remaining amount RQ <b> 2 (for example, SOC = 30%) greater than reference remaining amount RQ <b> 1. Then, the AC / DC converter 30 is stopped and the DC power is discharged from the power storage device 20 to the DC bus 50. The reference remaining amount RQ2 is set to a remaining amount that allows the DC load group 80 to be operated only by the electric power from the power storage device 20 for a predetermined time or more in consideration of the power consumption P. For example, the reference remaining amount RQ <b> 1 and the reference remaining amount RQ <b> 2 are stored in the storage unit 154 </ b> A and can be appropriately changed according to an instruction from the user via the touch panel 102.
 <処理手順>
 次に、ホームコントローラ10Aが実行する具体的な処理手順について説明する。
<Processing procedure>
Next, a specific processing procedure executed by the home controller 10A will be described.
 図8は、実施の形態2に従うホームコントローラ10Aが実行する処理手順の一例を示すフローチャートである。なお、図8のフローチャートのスタート時において、AC/DC変換器30は停止しており、電池残量Qは基準残量RQ1以上であるとする。 FIG. 8 is a flowchart showing an example of a processing procedure executed by the home controller 10A according to the second embodiment. Note that at the start of the flowchart of FIG. 8, the AC / DC converter 30 is stopped, and the remaining battery charge Q is equal to or higher than the reference remaining charge RQ1.
 図8を参照して、ホームコントローラ10Aは、直流負荷群80の消費電力P分の電力を蓄電装置20から直流負荷群80に放電させる(ステップS30)。 Referring to FIG. 8, home controller 10A discharges power corresponding to power consumption P of DC load group 80 from power storage device 20 to DC load group 80 (step S30).
 ホームコントローラ10Aは、当該放電により電池残量Qが基準残量RQ1未満になったか否かを判断する(ステップS32)。電池残量Qが基準残量RQ1以上である場合には(ステップS32においてNO)、ホームコントローラ10AはステップS30からの処理を繰り返す。 The home controller 10A determines whether or not the remaining battery charge Q is less than the reference remaining charge RQ1 due to the discharge (step S32). If battery remaining amount Q is equal to or greater than reference remaining amount RQ1 (NO in step S32), home controller 10A repeats the processing from step S30.
 電池残量Qが基準残量RQ1未満になった場合には(ステップS32においてYES)、ホームコントローラ10Aは電力系統60から交流電力を買電して直流バス50に直流電力を出力するようにAC/DC変換器30に指示する(ステップS34)。このとき、ホームコントローラ10Aは、変換効率が基準閾値以上かつ消費電力P以上となる定格電力でAC/DC変換器30に電力変換動作を実行させる。 When battery remaining amount Q becomes less than reference remaining amount RQ1 (YES in step S32), home controller 10A purchases AC power from power system 60 and outputs DC power to DC bus 50. / DC converter 30 is instructed (step S34). At this time, the home controller 10A causes the AC / DC converter 30 to execute the power conversion operation with the rated power at which the conversion efficiency is equal to or higher than the reference threshold and the power consumption P is equal to or higher.
 次に、ホームコントローラ10Aは、AC/DC変換器30から直流バス50に出力された直流電力から消費電力Pを減算した余剰電力を蓄電装置20に充電させる(ステップS36)。ホームコントローラ10Aは、当該充電により電池残量Qが基準残量RQ2以上になったか否かを判断する(ステップS38)。 Next, the home controller 10A charges the power storage device 20 with surplus power obtained by subtracting the power consumption P from the DC power output from the AC / DC converter 30 to the DC bus 50 (step S36). The home controller 10A determines whether or not the remaining battery charge Q has become equal to or greater than the reference remaining charge RQ2 due to the charging (step S38).
 電池残量Qが基準残量RQ2未満である場合には(ステップS38においてNO)、ホームコントローラ10AはステップS36からの処理を繰り返す。電池残量Qが基準残量RQ2以上である場合には(ステップS38においてYES)、ホームコントローラ10AはAC/DC変換器30を停止させて買電を終了し(ステップS40)、ステップS30の処理に戻る(リターン)。具体的には、ホームコントローラ10Aは、再び蓄電装置20からの直流電力により直流負荷群80を動作させる。 When the battery remaining amount Q is less than the reference remaining amount RQ2 (NO in step S38), the home controller 10A repeats the processing from step S36. If battery remaining amount Q is equal to or greater than reference remaining amount RQ2 (YES in step S38), home controller 10A stops AC / DC converter 30 to end the power purchase (step S40), and the process in step S30 Return to (Return). Specifically, home controller 10A operates DC load group 80 again by DC power from power storage device 20.
 実施の形態2によると、電池残量Qが基準残量RQ1以上である場合には、電力系統60から交流電力を買電しなくても直流負荷群80は蓄電装置20からの電力により動作するため、AC/DC変換器30による変換損失は発生しない。電池残量Qが基準残量RQ1未満となり蓄電装置20から直流負荷群80への電力供給の継続が困難になった場合には、AC/DC変換器30は電力系統60から買電して高効率の電力変換動作を行なう。また、蓄電装置20は余剰電力を充電する。その後、電池残量Qが基準残量RQ2以上になった場合には、AC/DC変換器30は停止され、再び蓄電装置20からの電力により直流負荷群80が動作し変換損失が発生しない状態に戻る。 According to the second embodiment, when battery remaining capacity Q is equal to or greater than reference remaining capacity RQ1, DC load group 80 operates with power from power storage device 20 without purchasing AC power from power system 60. Therefore, conversion loss due to the AC / DC converter 30 does not occur. When the remaining battery level Q is less than the reference remaining level RQ1 and it is difficult to continue power supply from the power storage device 20 to the DC load group 80, the AC / DC converter 30 purchases power from the power system 60 and increases power consumption. Performs efficient power conversion. In addition, the power storage device 20 charges surplus power. Thereafter, when the remaining battery level Q becomes equal to or greater than the reference remaining level RQ2, the AC / DC converter 30 is stopped, and the DC load group 80 is operated again by the power from the power storage device 20 so that no conversion loss occurs. Return to.
 そのため、AC/DC変換器30による電力変換損失を抑制することが可能となり、電力をより効率よく活用することができる。また、買電する場合には定格電力付近の大きな電力が直流バス50に供給されるため蓄電装置20の充電時間を短くできることから、電力変換動作時間(買電時間)も短くすることができる。この点からもAC/DC変換器30による電力変換損失を抑制できる。 Therefore, it becomes possible to suppress power conversion loss due to the AC / DC converter 30, and it is possible to use power more efficiently. In addition, when power is purchased, since a large amount of power near the rated power is supplied to the DC bus 50, the charging time of the power storage device 20 can be shortened, so that the power conversion operation time (power purchase time) can also be shortened. Also from this point, the power conversion loss by the AC / DC converter 30 can be suppressed.
 [実施の形態3]
 <システム概要>
 (全体構成)
 図9は、実施の形態3に従う電力供給システム1300の全体の構成を概略的に示す図である。
[Embodiment 3]
<System overview>
(overall structure)
FIG. 9 schematically shows an overall configuration of power supply system 1300 according to the third embodiment.
 図9を参照して、電力供給システム1300は、ホームコントローラ10Bと、蓄電装置20と、双方向電力変換装置32と、電力測定器40,42と、直流バス50と、発電装置70とを含む。電力供給システム1300におけるホームコントローラ10B、双方向電力変換装置32、電力測定器42および発電装置70以外の構成は、電力供給システム1100の当該構成と実質的に同一であるため、その詳細な説明は繰り返さない。 Referring to FIG. 9, power supply system 1300 includes home controller 10 </ b> B, power storage device 20, bidirectional power conversion device 32, power measuring devices 40 and 42, DC bus 50, and power generation device 70. . Since the configuration of the power supply system 1300 other than the home controller 10B, the bidirectional power conversion device 32, the power measuring device 42, and the power generation device 70 is substantially the same as the configuration of the power supply system 1100, a detailed description thereof will be given. Do not repeat.
 双方向電力変換装置32は、電力系統60から供給された交流電力を直流電力に変換する順変換機能と、直流バス50から供給された直流電力を交流電力に変換する逆変換機能とを有している。具体的には、双方向電力変換装置32は、電力系統60から交流電力を買電する場合に交流電力を直流電力に変換するAC/DC変換器(たとえば、上述のAC/DC変換器30)と、電力系統60に直流電力を売電する場合に直流電力を交流電力に変換するDC/AC変換器とを含む。 The bidirectional power converter 32 has a forward conversion function that converts AC power supplied from the power system 60 into DC power, and an inverse conversion function that converts DC power supplied from the DC bus 50 into AC power. ing. Specifically, the bidirectional power converter 32 converts an AC power into a DC power when AC power is purchased from the power system 60 (for example, the above-described AC / DC converter 30). And a DC / AC converter that converts DC power to AC power when DC power is sold to the power system 60.
 双方向電力変換装置32は、ホームコントローラ10Bの指示に従って、電力系統60から交流電力を受けて直流電力に変換する(買電する)場合および直流バス50から直流電力を受けて交流電力に変換する(売電する)場合のどちらの場合でも、変換効率が基準閾値以上となるように電力変換を実行する。具体的には、図2を参照して、双方向電力変換装置32は、電力系統60から電力を買電する場合には変換効率が基準閾値(0.95)以上になる1.5kW以上の交流電力(入力電力)を直流電力に変換する。また、双方向電力変換装置32は、電力系統60に電力を売電する場合には変換効率が基準閾値(0.95)以上になる1.5kW以上の直流電力(入力電力)を交流電力に変換する。 The bidirectional power converter 32 receives AC power from the power system 60 and converts it into DC power (purchased power) in accordance with an instruction from the home controller 10B, and receives DC power from the DC bus 50 and converts it into AC power. In either case (power sale), power conversion is performed so that the conversion efficiency is equal to or higher than a reference threshold. Specifically, with reference to FIG. 2, the bidirectional power conversion device 32 has a conversion efficiency of 1.5 kW or more that makes the conversion efficiency equal to or higher than the reference threshold (0.95) when purchasing power from the power system 60. Converts AC power (input power) to DC power. In addition, when the bi-directional power conversion device 32 sells power to the power system 60, the DC power (input power) of 1.5 kW or higher that makes the conversion efficiency equal to or higher than the reference threshold (0.95) is converted into AC power. Convert.
 発電装置70は、太陽電池72と、DC/DC変換器74とを含む。太陽電池72は、結晶型太陽電池、多結晶型太陽電池または薄膜型太陽電池などで構成される。DC/DC変換器74は、太陽電池72と直流バス50との間に接続され、太陽電池72から受ける直流電力を電圧変換して直流バス50に供給する。DC/DC変換器74は、太陽電池72から最大の電力を取得できるような制御(いわゆる最大電力点追従制御)を行なう。なお、発電装置70は、太陽光発電以外の発電方式であってもよく、太陽電池72の代わりに燃料電池、風力発電装置、プラズマ発電装置などを含んでいてもよい。 The power generation device 70 includes a solar cell 72 and a DC / DC converter 74. The solar cell 72 is composed of a crystalline solar cell, a polycrystalline solar cell, a thin film solar cell, or the like. The DC / DC converter 74 is connected between the solar cell 72 and the DC bus 50, converts the DC power received from the solar cell 72 into a voltage, and supplies it to the DC bus 50. The DC / DC converter 74 performs control (so-called maximum power point tracking control) such that maximum power can be acquired from the solar cell 72. The power generation device 70 may be a power generation method other than solar power generation, and may include a fuel cell, a wind power generation device, a plasma power generation device, or the like instead of the solar cell 72.
 電力測定器42は、発電装置70により発電された発電電力Pgを測定するとともに、その測定情報をネットワーク90を介してホームコントローラ10Bに送信する。これにより、ホームコントローラ10Bは、発電装置70の発電電力Pgを常時監視することができる。 The power meter 42 measures the generated power Pg generated by the power generator 70 and transmits the measurement information to the home controller 10B via the network 90. Thereby, the home controller 10B can always monitor the generated power Pg of the power generator 70.
 (動作概要)
 さらに、図9を参照しながら、電力供給システム1300の動作概要について説明する。ここでは、直流バス50からの直流電力を交流電力に変換して電力系統60に売電する場合の動作について説明する。そのため、発電装置70の発電電力Pgは、直流負荷群80の消費電力よりも大きいものとする。
(Overview of operation)
Further, an outline of the operation of the power supply system 1300 will be described with reference to FIG. Here, the operation in the case where DC power from the DC bus 50 is converted into AC power and sold to the power system 60 will be described. Therefore, the generated power Pg of the power generator 70 is assumed to be larger than the power consumption of the DC load group 80.
 図9を参照して、発電装置70は、直流バス50に発電電力Pg(2.5kw)を供給している(矢印Wb)。蓄電装置20の電池残量Qが基準残量RQ3(SOC=95%)未満である場合には、ホームコントローラ10Bは、双方向電力変換装置32を停止させる(矢印Xb1)。また、ホームコントローラ10Bは、直流負荷群80に消費電力P(0.5kw)分の電力を供給させる(矢印Zb)とともに、発電電力Pgから消費電力Pを減算した直流電力(2.0kw)を蓄電装置20に充電させる(矢印Yb1)。 Referring to FIG. 9, the power generation device 70 supplies the generated power Pg (2.5 kW) to the DC bus 50 (arrow Wb). When the battery remaining amount Q of the power storage device 20 is less than the reference remaining amount RQ3 (SOC = 95%), the home controller 10B stops the bidirectional power conversion device 32 (arrow Xb1). Further, the home controller 10B causes the DC load group 80 to supply power corresponding to the power consumption P (0.5 kW) (arrow Zb) and also generates DC power (2.0 kW) obtained by subtracting the power consumption P from the generated power Pg. The power storage device 20 is charged (arrow Yb1).
 当該充電により、電池残量Qが基準残量RQ3以上になった場合には、双方向電力変換装置32は、ホームコントローラ10Bの指示に従って変換効率が基準閾値(0.95)以上となる入力電力(定格電力:3kw)を交流電力に変換して、電力系統60に交流電力(2.85kw)を出力する(矢印Xb2)。このとき、ホームコントローラ10Bは、当該入力電力が定格電力になるように、直流負荷群80に供給される消費電力P(0.5kw)と定格電力との和(3.5kw)から発電電力Pg(2.5kw)を減算した直流電力(1kw)を蓄電装置20から放電させる(矢印Yb2)。 When the remaining battery level Q becomes equal to or higher than the reference remaining level RQ3 due to the charging, the bidirectional power conversion device 32 receives the input power whose conversion efficiency is equal to or higher than the reference threshold (0.95) according to the instruction of the home controller 10B. (Rated power: 3 kW) is converted into AC power, and AC power (2.85 kW) is output to the power system 60 (arrow Xb2). At this time, the home controller 10B generates the generated power Pg from the sum (3.5 kW) of the power consumption P (0.5 kW) and the rated power supplied to the DC load group 80 so that the input power becomes the rated power. The DC power (1 kW) obtained by subtracting (2.5 kW) is discharged from the power storage device 20 (arrow Yb2).
 その後、電池残量Qが基準残量RQ3よりも小さい基準残量RQ4(たとえば、SOC=90%)未満になった場合には、ホームコントローラ10Bは双方向電力変換装置32を停止して(矢印Xb1)、余剰電力を蓄電装置20に充電させる(矢印Yb1)。 Thereafter, when the remaining battery level Q becomes less than the reference remaining amount RQ4 (for example, SOC = 90%) smaller than the reference remaining amount RQ3, the home controller 10B stops the bidirectional power converter 32 (arrow) Xb1), the power storage device 20 is charged with surplus power (arrow Yb1).
 <ホームコントローラ10B>
 ホームコントローラ10Bのハードウェア構成については、図3に示されるホームコントローラ10のそれと同一であるため、その詳細な説明は繰り返さない。
<Home controller 10B>
Since the hardware configuration of home controller 10B is the same as that of home controller 10 shown in FIG. 3, detailed description thereof will not be repeated.
 (機能構成)
 図10は、実施の形態3に従うホームコントローラ10Bの機能ブロック図である。
(Functional configuration)
FIG. 10 is a functional block diagram of home controller 10B according to the third embodiment.
 図10を参照して、ホームコントローラ10Bは、その主たる機能構成として、消費電力監視部150Bと、電力制御部152Bと、記憶部154Bと、電池残量監視部156Bと、発電電力監視部158Bとを含む。消費電力監視部150Aおよび記憶部154Aは、それぞれ図4に示す消費電力監視部150および記憶部154と実質的に同一の機能を有する。また、電池残量監視部156Bは、図7に示す電池残量監視部156Aと実質的に同一の機能を有する。 Referring to FIG. 10, home controller 10B has, as its main functional configuration, power consumption monitoring unit 150B, power control unit 152B, storage unit 154B, battery remaining amount monitoring unit 156B, and generated power monitoring unit 158B. including. The power consumption monitoring unit 150A and the storage unit 154A have substantially the same functions as the power consumption monitoring unit 150 and the storage unit 154 shown in FIG. 4, respectively. Further, the remaining battery level monitoring unit 156B has substantially the same function as the remaining battery level monitoring unit 156A shown in FIG.
 発電電力監視部158Bは、発電装置70の発電電力Pgを監視する。具体的には、発電電力監視部158Bは、電力測定器42からの測定情報を受け付けて発電電力Pgを監視する。 The generated power monitoring unit 158B monitors the generated power Pg of the power generation device 70. Specifically, the generated power monitoring unit 158B receives the measurement information from the power measuring instrument 42 and monitors the generated power Pg.
 電力制御部152Bは、記憶部154Bに記憶された効率特性情報と、消費電力監視部150Bにより監視される直流負荷群80の消費電力Pと、電池残量監視部156Bにより監視される蓄電装置20の電池残量Qと、発電電力監視部158Bにより監視される発電装置70の発電電力Pgとに基づいて双方向電力変換装置32および蓄電装置20を制御する。 The power control unit 152B includes the efficiency characteristic information stored in the storage unit 154B, the power consumption P of the DC load group 80 monitored by the power consumption monitoring unit 150B, and the power storage device 20 monitored by the battery remaining amount monitoring unit 156B. The bidirectional power conversion device 32 and the power storage device 20 are controlled based on the remaining battery charge Q and the generated power Pg of the power generation device 70 monitored by the generated power monitoring unit 158B.
 具体的には、電力制御部152Bは、蓄電装置20の電池残量Qが基準残量RQ3(SOC=95%)未満である場合には、双方向電力変換装置32を停止させるとともに発電電力Pgから消費電力Pを減算した差分電力を蓄電装置20に充電させる。電力制御部152Bは、電池残量Qが基準残量RQ3以上である場合には、双方向電力変換装置32に対して、直流バス50から直流電力の供給を受けて電力系統60に交流電力を出力するように指示する。 Specifically, the power control unit 152B stops the bidirectional power conversion device 32 and generates generated power Pg when the battery remaining amount Q of the power storage device 20 is less than the reference remaining amount RQ3 (SOC = 95%). The power storage device 20 is charged with the differential power obtained by subtracting the power consumption P from. When the remaining battery capacity Q is equal to or greater than the reference remaining capacity RQ3, the power control unit 152B receives supply of DC power from the DC bus 50 to the bidirectional power conversion device 32 and supplies AC power to the power system 60. Instruct to output.
 また、電力制御部152Bは、発電電力Pgおよび消費電力Pに基づいて蓄電装置20から直流バス50に放電する電力を調整することにより、変換効率が基準閾値以上となるように双方向電力変換装置32に電力変換を実行させる。具体的には、電力制御部152Bは、効率特性情報(図2参照)に基づいて、基準閾値以上の変換効率に対応する入力電力が直流バス50から双方向電力変換装置32に入力されるように蓄電装置20の放電電力を調整する。 Further, the power control unit 152B adjusts the power discharged from the power storage device 20 to the DC bus 50 based on the generated power Pg and the consumed power P, so that the conversion efficiency becomes equal to or higher than the reference threshold value. 32 is caused to perform power conversion. Specifically, the power control unit 152B is configured so that the input power corresponding to the conversion efficiency equal to or higher than the reference threshold is input from the DC bus 50 to the bidirectional power conversion device 32 based on the efficiency characteristic information (see FIG. 2). The discharge power of the power storage device 20 is adjusted.
 さらに、蓄電装置20から直流バス50に直流電力が放電されることにより電池残量Qが基準残量RQ3よりも小さい基準残量RQ4(SOC=90%)未満になった場合には、電力制御部152Bは、双方向電力変換装置32を停止させるとともに発電電力Pgから消費電力Pを減算した差分電力を蓄電装置20に充電させる。 Further, when direct current is discharged from the power storage device 20 to the direct current bus 50, the battery remaining amount Q becomes less than the reference remaining amount RQ4 (SOC = 90%) which is smaller than the reference remaining amount RQ3. Unit 152B stops bidirectional power conversion device 32 and causes power storage device 20 to be charged with differential power obtained by subtracting power consumption P from generated power Pg.
 <処理手順>
 次に、ホームコントローラ10Bが実行する具体的な処理手順について説明する。
<Processing procedure>
Next, a specific processing procedure executed by the home controller 10B will be described.
 図11は、実施の形態3に従うホームコントローラ10Bが実行する処理手順の一例を示すフローチャートである。なお、図11のフローチャートのスタート時において、双方向電力変換装置32は停止しており、蓄電装置20の電池残量Qは基準残量RQ3未満であるとする。 FIG. 11 is a flowchart illustrating an example of a processing procedure executed by the home controller 10B according to the third embodiment. Note that at the start of the flowchart of FIG. 11, it is assumed that bidirectional power conversion device 32 is stopped and battery remaining amount Q of power storage device 20 is less than reference remaining amount RQ3.
 図11を参照して、ホームコントローラ10Bは、発電装置70の発電電力Pgにより直流負荷群80を動作させるとともに、発電電力Pgから消費電力Pを減算した余剰電力を蓄電装置20に充電させる(ステップS50)。 Referring to FIG. 11, home controller 10B operates DC load group 80 with generated power Pg of power generation device 70 and charges power storage device 20 with surplus power obtained by subtracting power consumption P from generated power Pg (step). S50).
 ホームコントローラ10Bは、当該充電により蓄電装置20の電池残量Qが基準残量RQ3(SOC=95%)以上になったか否かを判断する(ステップS52)。電池残量Qが基準残量RQ3未満である場合には(ステップS52においてNO)、ホームコントローラ10BはステップS50からの処理を繰り返す。 The home controller 10B determines whether or not the battery remaining amount Q of the power storage device 20 has become equal to or greater than the reference remaining amount RQ3 (SOC = 95%) due to the charging (step S52). When battery remaining amount Q is less than reference remaining amount RQ3 (NO in step S52), home controller 10B repeats the processing from step S50.
 電池残量Qが基準残量RQ3以上である場合には(ステップS52においてYES)、ホームコントローラ10Bは、双方向電力変換装置32への入力電力が定格電力になる(入力電力値が定格電力値になる)ように蓄電装置20の放電電力を調整する(ステップS54)。具体的には、ホームコントローラ10Bは、定格電力および消費電力Pの和から発電電力Pgを減算した差分電力を蓄電装置20から放電させる。 When the remaining battery level Q is equal to or greater than the reference remaining level RQ3 (YES in step S52), the home controller 10B sets the input power to the bidirectional power converter 32 to the rated power (the input power value is the rated power value). The discharge power of the power storage device 20 is adjusted so as to become (step S54). Specifically, home controller 10 </ b> B discharges power difference from power storage device 20 by subtracting generated power Pg from the sum of rated power and power consumption P.
 そして、ホームコントローラ10Bは、双方向電力変換装置32に直流電力を売電するように指示する(ステップS56)。具体的には、ホームコントローラ10Bは、双方向電力変換装置32に直流バス50から受けた直流電力(入力電力)を交流電力に変換して電力系統60に出力させる。 Then, the home controller 10B instructs the bidirectional power converter 32 to sell DC power (step S56). Specifically, the home controller 10B causes the bidirectional power converter 32 to convert DC power (input power) received from the DC bus 50 into AC power and output the AC power to the power system 60.
 次に、ホームコントローラ10Bは、蓄電装置20の放電動作により電池残量Qが基準残量RQ4(SOC=90%)未満になったか否かを判断する(ステップS58)。電池残量Qが基準残量RQ4以上である場合には(ステップS58においてNO)、ホームコントローラ10BはステップS54からの処理を繰り返す。電池残量Qが基準残量RQ4未満である場合には(ステップS58においてYES)、ホームコントローラ10Bは双方向電力変換装置32を停止させて売電を終了し(ステップS60)、ステップS50の処理に戻る(リターン)。具体的には、ホームコントローラ10Bは、再び発電装置70の発電電力Pgにより直流負荷群80を動作させるとともに、余剰電力を蓄電装置20に充電させる。 Next, the home controller 10B determines whether or not the battery remaining amount Q is less than the reference remaining amount RQ4 (SOC = 90%) by the discharging operation of the power storage device 20 (step S58). If battery remaining amount Q is equal to or greater than reference remaining amount RQ4 (NO in step S58), home controller 10B repeats the processing from step S54. If battery remaining amount Q is less than reference remaining amount RQ4 (YES in step S58), home controller 10B stops bidirectional power conversion device 32 to end the power sale (step S60), and the process of step S50 Return to (Return). Specifically, home controller 10 </ b> B operates DC load group 80 again with generated power Pg of power generation device 70 and charges power storage device 20 with surplus power.
 実施の形態3によると、蓄電装置20の電池残量Qが基準残量RQ3未満である場合には、発電電力Pgを活用して直流負荷群80を動作させるため買電による電力変換損失が発生しない。また、余剰電力が蓄電装置20に充電されるため電力の無駄も発生しない。さらに、蓄電装置20の電池残量が基準残量RQ3以上になった場合には、満充電状態に近づいて充電できなくなる可能性があるため売電を行なう。売電する場合には、双方向電力変換装置32に高効率の電力変換動作を実行させる。その後、電池残量が基準残量RQ4未満になった場合には、双方向電力変換装置32が停止され再び発電電力Pgにより直流負荷群80が動作し、電力変換損失が発生しない状態に戻すことができる。 According to the third embodiment, when the battery remaining amount Q of the power storage device 20 is less than the reference remaining amount RQ3, power conversion loss due to power purchase occurs because the DC load group 80 is operated using the generated power Pg. do not do. In addition, since excess power is charged in the power storage device 20, power is not wasted. Further, when the remaining battery level of the power storage device 20 is equal to or greater than the reference remaining level RQ3, power is sold because there is a possibility that the battery may approach the fully charged state and cannot be charged. When selling power, the bidirectional power converter 32 is caused to execute a highly efficient power conversion operation. Thereafter, when the remaining battery level becomes less than the reference remaining level RQ4, the bidirectional power converter 32 is stopped, and the DC load group 80 is operated again by the generated power Pg to return to a state where no power conversion loss occurs. Can do.
 そのため、変換損失の発生しない発電電力Pgおよび蓄電装置20の電力を最大限に利用しつつ、売電する場合であっても双方向電力変換装置32による電力変換損失を抑制することが可能となり、電力をより効率よく活用することができる。 Therefore, it is possible to suppress the power conversion loss by the bidirectional power conversion device 32 even when selling power while maximally using the generated power Pg and the power of the power storage device 20 without generating conversion loss. Electric power can be used more efficiently.
 [実施の形態4]
 <システム概要>
 (全体構成)
 図12は、実施の形態4に従う電力供給システム1400の全体の構成を概略的に示す図である。
[Embodiment 4]
<System overview>
(overall structure)
FIG. 12 schematically shows an overall configuration of power supply system 1400 according to the fourth embodiment.
 図12を参照して、電力供給システム1400は、ホームコントローラ10Cと、蓄電装置20と、双方向電力変換装置32と、電力測定器40,42と、直流バス50と、発電装置70とを含む。電力供給システム1400におけるホームコントローラ10C以外の構成は、電力供給システム1300の当該構成と実質的に同一であるため、その詳細な説明は繰り返さない。 Referring to FIG. 12, power supply system 1400 includes home controller 10 </ b> C, power storage device 20, bidirectional power conversion device 32, power measuring devices 40 and 42, DC bus 50, and power generation device 70. . Since the configuration of power supply system 1400 other than home controller 10C is substantially the same as the configuration of power supply system 1300, detailed description thereof will not be repeated.
 (動作概要)
 電力供給システム1400の動作概要について説明する。ここでは、特に、ホームコントローラ10Cが電力会社などから受信した時間帯情報を利用して、必要に応じて電力系統60から買電する場合の動作について説明する。時間帯情報は、たとえば、電力会社などから受信した時間帯別の電力需要を示す情報(デマンドレスポンス(DR)信号)または時間帯別の電力料金情報などを含む。時間帯情報を受信することにより、ホームコントローラ10Cは、どの時間帯に電力需要が増大(または低下)するのか、またはどの時間帯に電力料金が高く(または低く)なるのかを把握することができる。また、発電装置70の発電電力Pgは、直流負荷群80の消費電力よりも小さいものとする。
(Overview of operation)
An outline of the operation of the power supply system 1400 will be described. Here, in particular, an operation in the case where the home controller 10C purchases power from the power system 60 as necessary using time zone information received from an electric power company or the like will be described. The time zone information includes, for example, information (demand response (DR) signal) indicating power demand by time zone received from an electric power company or the like, power rate information by time zone, and the like. By receiving the time zone information, the home controller 10C can grasp in which time zone the power demand increases (or decreases) or in which time zone the power rate is high (or low). . Further, it is assumed that the generated power Pg of the power generation device 70 is smaller than the power consumption of the DC load group 80.
 図12を参照して、発電装置70は、直流バス50に発電電力Pg(1.5kw)を供給している(矢印Wc)。双方向電力変換装置32は、ホームコントローラ10Cの指示に従って動作を停止している(矢印Xc1)。ホームコントローラ10Cは、直流負荷群80に消費電力P(2.0kw)分の電力を供給させるために(矢印Zc)、消費電力Pから発電電力Pgを減算した不足電力(0.5kw)を蓄電装置20から放電させる(矢印Yc1)。 Referring to FIG. 12, the power generation device 70 supplies the generated power Pg (1.5 kW) to the DC bus 50 (arrow Wc). The bidirectional power converter 32 stops operating in accordance with an instruction from the home controller 10C (arrow Xc1). The home controller 10C stores insufficient power (0.5 kW) obtained by subtracting the generated power Pg from the power consumption P in order to supply the DC load group 80 with power corresponding to the power consumption P (2.0 kW) (arrow Zc). The device 20 is discharged (arrow Yc1).
 ホームコントローラ10Cは、ピーク時間帯(たとえば、需要電力が増大する時間帯)に電力系統60から交流電力を買電することなく、蓄電装置20からの直流電力および発電電力Pgにより直流負荷群80を動作させるために必要な蓄電装置20の目標電池残量(たとえば、SOC=50%)を予測する。そして、ホームコントローラ10Cは、ピーク時間帯の開始時刻までに電池残量Qが目標電池残量に到達するように電力系統60から交流電力の買電を開始する。具体的には、双方向電力変換装置32は、ホームコントローラ10Cの指示に従って変換効率が基準閾値(0.95)以上となる定格電力(3kw)で電力変換を実行して、直流バス50に直流電力(2.85kw)を出力する(矢印Xc2)。 Home controller 10C does not purchase AC power from power system 60 during a peak time period (for example, a time period when demand power increases), and uses DC power from power storage device 20 and generated power Pg to set DC load group 80. A target battery remaining amount (for example, SOC = 50%) of power storage device 20 required for operation is predicted. Then, the home controller 10C starts purchasing AC power from the power system 60 so that the remaining battery level Q reaches the target remaining battery level by the start time of the peak time period. Specifically, the bidirectional power converter 32 performs power conversion at a rated power (3 kW) at which the conversion efficiency is equal to or higher than the reference threshold (0.95) in accordance with an instruction from the home controller 10 </ b> C, and directs the DC bus 50 Electric power (2.85 kW) is output (arrow Xc2).
 蓄電装置20は、ホームコントローラ10Cの指示に従って、この直流電力(2.85kw)および発電電力Pg(1.5kw)の和から消費電力P(2.0kw)を減算した差分電力(2.35kw)を充電する(矢印Yc2)。なお、ピーク時間帯とは、需要電力が増大する時間帯であってもよく、または電力料金が高くなる時間帯であってもよい。 The power storage device 20 has a difference power (2.35 kW) obtained by subtracting the power consumption P (2.0 kW) from the sum of the DC power (2.85 kW) and the generated power Pg (1.5 kW) in accordance with an instruction from the home controller 10C. Is charged (arrow Yc2). Note that the peak time zone may be a time zone during which the demand power increases or a time zone during which the power charge increases.
 当該充電により、蓄電装置20の電池残量Qが目標電池残量に到達した場合には、ホームコントローラ10Cは、双方向電力変換装置32を停止して(矢印Xc1)、不足電力を蓄電装置20から放電させる(矢印Yc1)。 When the remaining battery level Q of the power storage device 20 reaches the target remaining battery level due to the charging, the home controller 10C stops the bidirectional power conversion device 32 (arrow Xc1) and supplies the insufficient power to the power storage device 20. To discharge (arrow Yc1).
 <ホームコントローラ10C>
 ホームコントローラ10Cのハードウェア構成については、図3に示されるホームコントローラ10のそれと同一であるため、その詳細な説明は繰り返さない。
<Home controller 10C>
Since the hardware configuration of home controller 10C is the same as that of home controller 10 shown in FIG. 3, detailed description thereof will not be repeated.
 (機能構成)
 図13は、実施の形態4に従うホームコントローラ10Cの機能ブロック図である。
(Functional configuration)
FIG. 13 is a functional block diagram of home controller 10C according to the fourth embodiment.
 図13を参照して、ホームコントローラ10Cは、その主たる機能構成として、消費電力監視部150Cと、電力制御部152Cと、記憶部154Cと、電池残量監視部156Cと、発電電力監視部158Cと、入力部160Cとを含む。消費電力監視部150Cおよび記憶部154Cは、それぞれ図4に示す消費電力監視部150および記憶部154と実質的に同一の機能を有する。また、電池残量監視部156Cは、図7に示す電池残量監視部156Aと実質的に同一の機能を有する。また、発電電力監視部158Cは、図10に示す発電電力監視部158Bと実質的に同一の機能を有する。 Referring to FIG. 13, home controller 10C has, as its main functional configuration, power consumption monitoring unit 150C, power control unit 152C, storage unit 154C, battery remaining amount monitoring unit 156C, and generated power monitoring unit 158C. , And an input unit 160C. The power consumption monitoring unit 150C and the storage unit 154C have substantially the same functions as the power consumption monitoring unit 150 and the storage unit 154 shown in FIG. 4, respectively. Further, the remaining battery level monitoring unit 156C has substantially the same function as the remaining battery level monitoring unit 156A shown in FIG. The generated power monitoring unit 158C has substantially the same function as the generated power monitoring unit 158B shown in FIG.
 入力部160Cは、通信インターフェイス106を介して外部装置(電力会社の管理サーバなど)から時間帯情報の入力を受け付ける(受信)する。具体的には、入力部160Cは、時間帯情報の入力を受け付ける。なお、入力部160Cは、タッチパネル102を介して時間帯情報の入力を受け付けてもよい。 The input unit 160C receives (receives) time zone information input from an external device (such as a power company management server) via the communication interface 106. Specifically, the input unit 160C receives input of time zone information. Note that the input unit 160 </ b> C may accept input of time zone information via the touch panel 102.
 電力制御部152Cは、発電電力Pgと消費電力Pと時間帯情報とに基づいて、ピーク時間帯に電力系統60から交流電力の供給を受けることなく、蓄電装置20から放電される放電電力および発電電力Pgにより直流負荷群80を動作させるために必要な蓄電装置20の目標電池残量を予測する。 Based on the generated power Pg, the consumed power P, and the time zone information, the power control unit 152C does not receive the AC power supply from the power system 60 in the peak time zone, and discharge power and power generation discharged from the power storage device 20 The target battery remaining amount of the power storage device 20 necessary for operating the DC load group 80 by the electric power Pg is predicted.
 具体的には、電力制御部152Cは、現在の消費電力およびピーク時間帯の時間数からピーク時間帯における直流負荷群80の消費電力量(kwh)を算出し、現在の発電電力Pgおよび当該時間数からピーク時間帯の発電電力量を算出する。ここで、消費電力量から発電電力量を減算した差分電力量がピーク時間帯に蓄電装置20が補う必要がある電力量となる。 Specifically, the power control unit 152C calculates the power consumption (kwh) of the DC load group 80 in the peak time zone from the current power consumption and the number of hours in the peak time zone, and calculates the current generated power Pg and the time. The amount of power generated during peak hours is calculated from the number. Here, the difference power amount obtained by subtracting the generated power amount from the power consumption amount is the power amount that the power storage device 20 needs to supplement during the peak time period.
 そこで、電力制御部152Cは、ピーク時間帯において、当該差分電力量以上の電力量を蓄電装置20が放電できるように目標電池残量を予測する。なお、電力制御部152Cは、外部から取得した天気情報などを取得してピーク時間帯の発電電力Pg量を算出してもよいし、ピーク時間帯の直流負荷群80の動作スケジュールなどを考慮して消費電力量を算出してもよい。また、ピーク時間帯の過去の実績データ(発電電力量および消費電力量)を記憶部154Cに記憶しておき、電力制御部152Cは、当該実績データに基づいて発電電力Pg量および消費電力量を算出してもよい。 Therefore, the power control unit 152C predicts the target battery remaining amount so that the power storage device 20 can discharge the power amount equal to or greater than the difference power amount in the peak time period. The power control unit 152C may calculate the amount of generated power Pg in the peak time period by acquiring weather information acquired from the outside, or consider the operation schedule of the DC load group 80 in the peak time period. The power consumption may be calculated. In addition, past performance data (power generation amount and power consumption amount) in the peak time period is stored in the storage unit 154C, and the power control unit 152C determines the generated power Pg amount and the power consumption amount based on the result data. It may be calculated.
 また、電力制御部152Cは、電力系統60から交流電力の供給を受けた場合に蓄電装置20に充電される充電電力に基づいて、ピーク時間帯の開始時刻までに蓄電装置20の電池残量Qが目標電池残量に到達するように双方向電力変換装置32に電力系統60からの交流電力の受給を開始させる。具体的には、電力制御部152Cは、以下に説明するタイミングで当該受給を開始させる。なお、当該充電電力は、電力系統60から交流電力の供給を受けた場合に双方向電力変換装置32から直流バス50に出力される直流電力および発電電力Pgの和から消費電力Pを減算した差分電力である。 Further, the power control unit 152C, based on the charging power charged in the power storage device 20 when AC power is supplied from the power system 60, the remaining battery level Q of the power storage device 20 by the start time of the peak time zone. Causes the bidirectional power conversion device 32 to start receiving AC power from the power grid 60 so that the battery reaches the target remaining battery level. Specifically, the power control unit 152C starts the receipt at the timing described below. The charging power is a difference obtained by subtracting the power consumption P from the sum of the DC power and the generated power Pg output from the bidirectional power converter 32 to the DC bus 50 when AC power is supplied from the power system 60. Electric power.
 電力制御部152Cは、当該差分電力に基づいて電池残量Qが目標電池残量に到達するまでの時間T1を算出する。詳細には、電力制御部152Cは、目標電池残量から現在の電池残量を減算した差分電池残量を算出し、当該差分電力により差分電池残量分の電力量を満たすために必要な時間T1を算出する。 The power control unit 152C calculates a time T1 until the remaining battery level Q reaches the target remaining battery level based on the differential power. Specifically, the power control unit 152C calculates the difference battery remaining amount obtained by subtracting the current battery remaining amount from the target battery remaining amount, and the time required to satisfy the power amount corresponding to the difference battery remaining amount by the difference power. T1 is calculated.
 そして、電力制御部152Cは、時計112により計時される現在時刻からピーク時間帯の開始時刻までの時間T2が、時間T1未満となる直前のタイミングで双方向電力変換装置32に電力系統60からの交流電力の受給を開始させる。直前のタイミングとは、現在時刻からピーク時間帯の開始時刻までの時間T2が時間T1と一致するタイミング、または時間T2が時間T1よりもわずかに長い(たとえば、時間T2-時間T1>1分)タイミングである。 The power control unit 152C then sends the bidirectional power conversion device 32 from the power system 60 at the timing immediately before the time T2 from the current time measured by the clock 112 to the start time of the peak time period becomes less than the time T1. Start receiving AC power. The immediately preceding timing is the timing at which the time T2 from the current time to the start time of the peak time zone coincides with the time T1, or the time T2 is slightly longer than the time T1 (for example, time T2−time T1> 1 minute). It is timing.
 また、電力制御部152Cは、この差分電力が蓄電装置20に充電されることにより電池残量Qが目標電池残量に到達した場合には、双方向電力変換装置32を停止させるとともに蓄電装置20から直流バス50に直流電力を放電させる。 Further, the power control unit 152 </ b> C stops the bidirectional power conversion device 32 and stores the power storage device 20 when the remaining power Q reaches the target battery remaining amount by charging the power storage device 20 with the differential power. DC power is discharged to the DC bus 50.
 <処理手順>
 次に、ホームコントローラ10Cが実行する具体的な処理手順について説明する。
<Processing procedure>
Next, a specific processing procedure executed by the home controller 10C will be described.
 図14は、実施の形態4に従うホームコントローラ10Cが実行する処理手順の一例を示すフローチャートである。なお、図14のフローチャートのスタート時において、双方向電力変換装置32は停止しており、直流負荷群80の消費電力Pは発電装置70の発電電力Pgよりも大きいものとする。 FIG. 14 is a flowchart showing an example of a processing procedure executed by the home controller 10C according to the fourth embodiment. Note that at the start of the flowchart of FIG. 14, the bidirectional power converter 32 is stopped, and the power consumption P of the DC load group 80 is greater than the generated power Pg of the power generator 70.
 図14を参照して、ホームコントローラ10Cは、時間帯情報を受信する(ステップS70)。ホームコントローラ10Cは、直流負荷群80の消費電力から発電装置70の発電電力Pgを減算した不足電力を蓄電装置20から放電させる(ステップS72)。 Referring to FIG. 14, home controller 10C receives time zone information (step S70). The home controller 10C discharges the insufficient power obtained by subtracting the generated power Pg of the power generation device 70 from the power consumption of the DC load group 80 from the power storage device 20 (step S72).
 ホームコントローラ10Cは、発電装置70の発電電力Pgと直流負荷群80の消費電力と時間帯情報とに基づいて蓄電装置20の目標電池残量を予測する(ステップS74)。次に、ホームコントローラ10Cは、たとえば、需要電力が最も増大するピーク時間帯の開始時刻までに蓄電装置20の電池残量を目標電池残量に到達させるために、電力系統60からの交流電力の買電を開始する必要があるタイミングが到来したか否かを判断する(ステップS76)。 The home controller 10C predicts the target remaining battery level of the power storage device 20 based on the generated power Pg of the power generation device 70, the power consumption of the DC load group 80, and the time zone information (step S74). Next, for example, the home controller 10 </ b> C generates AC power from the power grid 60 in order to reach the target battery remaining amount of the power storage device 20 by the start time of the peak time period in which the demand power increases most. It is determined whether or not it is time to start power purchase (step S76).
 当該タイミングが到来していない場合には(ステップS76においてNO)、ステップS76の処理を繰り返す。当該タイミングが到来した場合には(ステップS76においてYES)、ホームコントローラ10Cは、電力系統60からの交流電力の受給(買電)を双方向電力変換装置32に開始させる(ステップS78)。このとき、ホームコントローラ10Cは、変換効率が基準閾値以上となる定格電力で双方向電力変換装置32に電力変換動作を実行させる。 If the timing has not arrived (NO in step S76), the process of step S76 is repeated. When the timing has arrived (YES in step S76), home controller 10C causes bidirectional power converter 32 to start receiving AC power (purchasing power) from power system 60 (step S78). At this time, the home controller 10C causes the bidirectional power conversion device 32 to execute a power conversion operation with the rated power at which the conversion efficiency is equal to or higher than the reference threshold.
 次に、ホームコントローラ10Cは、双方向電力変換装置32から直流バス50に出力された直流電力から消費電力Pを減算した余剰電力を蓄電装置20に充電させる(ステップS80)。ホームコントローラ10Cは、当該充電により蓄電装置20の電池残量が目標電池残量に到達したか否かを判断する(ステップS82)。電池残量が目標電池残量に到達していない場合には(ステップS82においてNO)、ステップS78からの処理を繰り返す。電池残量が目標電池残量に到達した場合には(ステップS82においてYES)、ホームコントローラ10Cは双方向電力変換装置32を停止させて(ステップS84)、ステップS70の処理に戻る(リターン)。 Next, the home controller 10C charges the power storage device 20 with surplus power obtained by subtracting the power consumption P from the DC power output from the bidirectional power conversion device 32 to the DC bus 50 (step S80). Home controller 10C determines whether or not the remaining battery level of power storage device 20 has reached the target remaining battery level due to the charging (step S82). If the remaining battery level has not reached the target remaining battery level (NO in step S82), the processing from step S78 is repeated. When the remaining battery level reaches the target remaining battery level (YES in step S82), home controller 10C stops bidirectional power converter 32 (step S84) and returns to the process in step S70 (return).
 実施の形態4によると、ピーク時間帯に直流負荷群80を動作させるために必要な電力を事前に蓄電装置20に充電しておくことで、ピーク時間帯には買電を行なわないようにすることができる。これにより、電気料金の低減および電力需要圧迫時の地域全体の節電に貢献することができる。 According to the fourth embodiment, the power storage device 20 is charged in advance with the power necessary for operating the DC load group 80 during the peak time period, so that power is not purchased during the peak time period. be able to. Thereby, it can contribute to the reduction of an electricity bill and the power saving of the whole area at the time of electric power demand pressure.
 また、ピーク時間帯に必要な電力分だけ蓄電装置20に充電させるため、必要最小限の買電に留めることができるとともに買電による電力変換損失も抑制することができる。さらに、買電時には双方向電力変換装置32に高効率の電力変換動作を実行させるため、この点からも電力変換損失を抑制することができる。 In addition, since the power storage device 20 is charged by the power necessary for the peak time period, it is possible to keep the required minimum power purchase and to suppress power conversion loss due to power purchase. Furthermore, since the bidirectional power converter 32 performs a highly efficient power conversion operation at the time of power purchase, power conversion loss can be suppressed also from this point.
 [実施の形態5]
 <システム概要>
 (全体構成)
 図15は、実施の形態5に従う電力供給システム1500の全体の構成を概略的に示す図である。
[Embodiment 5]
<System overview>
(overall structure)
FIG. 15 schematically shows an overall configuration of power supply system 1500 according to the fifth embodiment.
 図15を参照して、電力供給システム1500は、ホームコントローラ10Dと、蓄電装置20と、AC/DC変換器30と、電力測定器40と、直流バス50とを含む。なお、本実施の形態では、直流バス50には直流負荷群80Aが接続されている。 Referring to FIG. 15, power supply system 1500 includes home controller 10 </ b> D, power storage device 20, AC / DC converter 30, power meter 40, and DC bus 50. In the present embodiment, a DC load group 80A is connected to the DC bus 50.
 直流負荷群80Aは、ピーク時間帯の電力使用を抑制するためのピークシフトモードを有する給湯器85(直流負荷)を直流負荷群80に追加したものである。給湯器85は、ネットワーク90を介してホームコントローラ10Dと通信可能に構成されており、ホームコントローラ10Dの指示を受け付ける。 The DC load group 80A is obtained by adding a water heater 85 (DC load) having a peak shift mode for suppressing power use during peak hours to the DC load group 80. The water heater 85 is configured to be able to communicate with the home controller 10D via the network 90, and receives an instruction from the home controller 10D.
 なお、ピークシフトモードを有する直流負荷とは、電力消費が最大となる時間帯を、電力需要が逼迫したピーク時間帯から緩慢な時間帯に移行できるモードを有する直流負荷である。たとえば、給湯器85は、ピーク時間帯には消費電力の大きいお湯を沸かす加熱運転を停止しておき、電力需要の低い例えば夜間(オフピーク時間帯)に加熱運転を行ない、お湯を沸かして貯めておくことができる。 Note that a DC load having a peak shift mode is a DC load having a mode in which a time zone in which power consumption is maximum can be shifted from a peak time zone in which power demand is tight to a slow time zone. For example, the water heater 85 stops the heating operation to boil hot water with high power consumption during peak hours, performs the heating operation at low power demand, for example, at night (off-peak hours), and boils and stores hot water. I can leave.
 (動作概要)
 電力供給システム1500の動作概要について説明する。ここでは、ホームコントローラ10Dが時間帯情報を利用して、給湯器85の動作を制御する場合について説明する。ここでは、最初の状態において、オフピーク時間帯以外の時間帯に蓄電装置20から直流負荷群80に電力が供給されているものとする。
(Overview of operation)
An outline of the operation of the power supply system 1500 will be described. Here, a case will be described in which home controller 10D controls the operation of water heater 85 using time zone information. Here, in the initial state, it is assumed that power is supplied from power storage device 20 to DC load group 80 in a time zone other than the off-peak time zone.
 図15を参照して、ホームコントローラ10Dは、AC/DC変換器30および給湯器85を停止させている(矢印Xd1)。また、ホームコントローラ10Dは、直流負荷群80に消費電力P(0.5kw)分の電力を供給するために(矢印Zd1)、蓄電装置20から直流負荷群80Aに消費電力P(0.5kw)分の電力を放電させる(矢印Yd1)。 Referring to Fig. 15, home controller 10D stops AC / DC converter 30 and water heater 85 (arrow Xd1). In addition, the home controller 10D uses the power consumption P (0.5 kW) from the power storage device 20 to the DC load group 80A in order to supply the DC load group 80 with power corresponding to the power consumption P (0.5 kW) (arrow Zd1). The power of the minute is discharged (arrow Yd1).
 オフピーク時間帯の開始時刻が到来すると、AC/DC変換器30は、電力系統60から交流電力の供給を受けて直流電力を直流バス50に出力する(矢印Xd2)。具体的には、AC/DC変換器30は、ホームコントローラ10Dの指示に従って変換効率が基準閾値(0.95)以上となる定格電力(3kw)で電力変換を実行して、直流バス50に直流電力(2.85kw)を出力する。また、給湯器85も、ホームコントローラ10Dの指示に従って動作を開始して1.5kwの電力を消費するため、直流負荷群80Aには消費電力P(2.0kw)分の電力が供給される(矢印Zd2)。このとき、蓄電装置20は、ホームコントローラ10Dの指示に従ってこの直流電力(2.85kw)から消費電力P(2.0kw)を減算した余剰電力(0.85kw)を充電する(矢印Yd2)。 When the start time of the off-peak time zone arrives, the AC / DC converter 30 receives supply of AC power from the power system 60 and outputs DC power to the DC bus 50 (arrow Xd2). Specifically, the AC / DC converter 30 performs power conversion at a rated power (3 kW) at which the conversion efficiency is equal to or higher than the reference threshold (0.95) according to an instruction from the home controller 10D, and directs the direct current to the direct current bus 50. Output power (2.85 kW). Moreover, since the water heater 85 starts operating according to the instruction of the home controller 10D and consumes 1.5 kW of power, the DC load group 80A is supplied with power equivalent to the power consumption P (2.0 kW) ( Arrow Zd2). At this time, the power storage device 20 charges the surplus power (0.85 kW) obtained by subtracting the power consumption P (2.0 kW) from the DC power (2.85 kW) according to the instruction of the home controller 10D (arrow Yd2).
 オフピーク時間帯の終了時刻が到来すると、ホームコントローラ10Dは、AC/DC変換器30および給湯器85を停止させて(矢印Xd1)、蓄電装置20から直流負荷群80Aに必要な電力を放電させる(矢印Yd1)。 When the end time of the off-peak time zone comes, the home controller 10D stops the AC / DC converter 30 and the hot water heater 85 (arrow Xd1), and discharges electric power necessary for the DC load group 80A from the power storage device 20 ( Arrow Yd1).
 <ホームコントローラ10Dの構成>
 ホームコントローラ10Dのハードウェア構成については、図3に示されるホームコントローラ10のそれと同一であるため、その詳細な説明は繰り返さない。
<Configuration of home controller 10D>
Since the hardware configuration of home controller 10D is the same as that of home controller 10 shown in FIG. 3, detailed description thereof will not be repeated.
 (機能構成)
 図16は、実施の形態5に従うホームコントローラ10Dの機能ブロック図である。
(Functional configuration)
FIG. 16 is a functional block diagram of home controller 10D according to the fifth embodiment.
 図16を参照して、ホームコントローラ10Dは、その主たる機能構成として、消費電力監視部150Dと、電力制御部152Dと、記憶部154Dと、入力部160Dと、機器制御部162Dとを含む。消費電力監視部150Dおよび記憶部154Dは、それぞれ図4に示す消費電力監視部150および記憶部154と実質的に同一の機能を有する。また、入力部160Dは、図13に示す入力部160Cと実質的に同一の機能を有する。 Referring to FIG. 16, home controller 10D includes a power consumption monitoring unit 150D, a power control unit 152D, a storage unit 154D, an input unit 160D, and a device control unit 162D as its main functional configuration. The power consumption monitoring unit 150D and the storage unit 154D have substantially the same functions as the power consumption monitoring unit 150 and the storage unit 154 shown in FIG. The input unit 160D has substantially the same function as the input unit 160C shown in FIG.
 機器制御部162Dは、時間帯情報に基づいて、前述したように、オフピーク時間帯に給湯器85を動作させ、オフピーク時間帯以外の時間帯(たとえば、ピーク時間帯)に給湯器85を停止するような制御を行なう。 Based on the time zone information, device control unit 162D operates water heater 85 in the off-peak time zone and stops water heater 85 in a time zone other than the off-peak time zone (for example, the peak time zone) as described above. Such control is performed.
 電力制御部152Dは、オフピーク時間帯には電力系統60から交流電力の供給を受けて直流バス50に直流電力を出力するようにAC/DC変換器30に指示する。また、電力制御部152Dは、当該直流電力から直流負荷群80Aの消費電力を減算した差分電力を蓄電装置20に充電させる。電力制御部152Dは、オフピーク時間帯以外の時間帯(たとえば、ピーク時間帯)にはAC/DC変換器30を停止させるとともに蓄電装置20から直流バス50に直流電力を放電させる。 The power control unit 152D instructs the AC / DC converter 30 to receive the AC power from the power system 60 and output the DC power to the DC bus 50 during the off-peak time period. In addition, the power control unit 152D charges the power storage device 20 with the differential power obtained by subtracting the power consumption of the DC load group 80A from the DC power. Power control unit 152D stops AC / DC converter 30 in a time zone other than the off-peak time zone (for example, a peak time zone) and discharges DC power from power storage device 20 to DC bus 50.
 <処理手順>
 次に、ホームコントローラ10Dが実行する具体的な処理手順について説明する。
<Processing procedure>
Next, a specific processing procedure executed by the home controller 10D will be described.
 図17は、実施の形態5に従うホームコントローラ10Dが実行する処理手順の一例を示すフローチャートである。なお、図17のフローチャートのスタート時は、オフピーク時間帯以外の時間帯でAC/DC変換器30および給湯器85は停止しているものとする。また、蓄電装置20は、直流負荷群80Aの消費電力を補うことが可能な充電状態であるとする。 FIG. 17 is a flowchart illustrating an example of a processing procedure executed by the home controller 10D according to the fifth embodiment. Note that at the start of the flowchart of FIG. 17, it is assumed that AC / DC converter 30 and water heater 85 are stopped in a time zone other than the off-peak time zone. Further, it is assumed that the power storage device 20 is in a charged state capable of supplementing the power consumption of the DC load group 80A.
 図17を参照して、ホームコントローラ10Dは、電力会社から時間帯情報を受信する(ステップS90)。ホームコントローラ10Dは、直流負荷群80の消費電力から発電装置70の発電電力Pgを減算した不足電力を蓄電装置20から放電させる(ステップS92)。 Referring to FIG. 17, home controller 10D receives time zone information from the power company (step S90). The home controller 10D discharges the insufficient power obtained by subtracting the generated power Pg of the power generation device 70 from the power consumption of the DC load group 80 from the power storage device 20 (step S92).
 ホームコントローラ10Dは、オフピーク時間帯の開始時刻が到来したか否かを判断する(ステップS94)。開始時刻が到来していない場合には(ステップS94においてNO)、ホームコントローラ10DはステップS94の処理を繰り返す。開始時刻が到来した場合には(ステップS94においてYES)、ホームコントローラ10DはAC/DC変換器30に電力系統60から交流電力の受給(買電)を開始させるとともに給湯器85を動作させる(ステップS96)。このとき、ホームコントローラ10Dは、変換効率が基準閾値以上となる定格電力でAC/DC変換器30に電力変換動作を実行させる。 The home controller 10D determines whether or not the start time of the off-peak time period has arrived (step S94). If the start time has not arrived (NO in step S94), home controller 10D repeats the process in step S94. When the start time has arrived (YES in step S94), home controller 10D causes AC / DC converter 30 to start receiving (purchasing) AC power from power system 60 and operate water heater 85 (step). S96). At this time, the home controller 10D causes the AC / DC converter 30 to execute the power conversion operation with the rated power at which the conversion efficiency is equal to or higher than the reference threshold.
 次に、ホームコントローラ10Dは、AC/DC変換器30から直流バス50に出力された直流電力から消費電力Pを減算した余剰電力を蓄電装置20に充電させる(ステップS98)。ホームコントローラ10Dは、オフピーク時間帯の終了時刻が到来したか否かを判断する(ステップS100)。終了時刻が到来していない場合には(ステップS100においてNO)、ホームコントローラ10DはステップS100の処理を繰り返す。終了時刻が到来した場合には(ステップS100においてYES)、ホームコントローラ10DはAC/DC変換器30を停止させて買電を終了するとともに給湯器85を停止させて(ステップS102)、ステップS90の処理に戻る(リターン)。 Next, the home controller 10D charges the power storage device 20 with surplus power obtained by subtracting the power consumption P from the DC power output from the AC / DC converter 30 to the DC bus 50 (step S98). Home controller 10D determines whether or not the end time of the off-peak time zone has arrived (step S100). If the end time has not come (NO in step S100), home controller 10D repeats the process of step S100. When the end time has arrived (YES in step S100), home controller 10D stops AC / DC converter 30 to end power purchase, and also stops water heater 85 (step S102). Return to processing (return).
 実施の形態5によると、オフピーク時間帯以外の時間帯にはAC/DC変換器30を停止させて蓄電装置20からの電力により直流負荷群80を動作させるため買電する必要がなくなる。また、ピークシフトモードを利用可能な給湯器85は、オフピーク時間帯以外の時間帯には停止しオフピーク時間帯に動作する。そのため、オフピーク時間帯以外の時間帯の直流負荷群80Aの消費電力を低減できる。これにより、電気料金の低減および電力需要圧迫時の大規模停電や計画停電の回避に貢献できる。さらに、買電時にはAC/DC変換器30に高効率の電力変換動作を実行させるため、電力変換損失を抑制することができる。 According to the fifth embodiment, it is not necessary to purchase power because the AC / DC converter 30 is stopped and the DC load group 80 is operated by electric power from the power storage device 20 in a time zone other than the off-peak time zone. In addition, the water heater 85 that can use the peak shift mode stops in a time zone other than the off-peak time zone and operates in the off-peak time zone. Therefore, the power consumption of the DC load group 80A in a time zone other than the off-peak time zone can be reduced. This can contribute to the reduction of electricity charges and the avoidance of large-scale power outages and planned power outages when power demand is under pressure. Furthermore, since power conversion operation with high efficiency is executed by the AC / DC converter 30 during power purchase, power conversion loss can be suppressed.
 [実施の形態6]
 <システム概要>
 (全体構成)
 図18は、実施の形態6に従う電力供給システム1600の全体の構成を概略的に示す図である。
[Embodiment 6]
<System overview>
(overall structure)
FIG. 18 schematically shows an overall configuration of power supply system 1600 according to the sixth embodiment.
 図18を参照して、電力供給システム1600は、ホームコントローラ10Eと、蓄電装置20と、双方向電力変換装置32と、電力測定器40,42と、直流バス50と、発電装置70とを含む。ホームコントローラ10E以外の構成は、電力供給システム1300の当該構成と実質的に同一であるため、その詳細な説明は繰り返さない。ただし、実施の形態6では、ホームコントローラ10Eは、ネットワーク90を介して直流負荷群80と通信可能に構成されているものとする。 Referring to FIG. 18, power supply system 1600 includes home controller 10E, power storage device 20, bidirectional power conversion device 32, power measuring devices 40 and 42, DC bus 50, and power generation device 70. . Since the configuration other than home controller 10E is substantially the same as the configuration of power supply system 1300, detailed description thereof will not be repeated. However, in the sixth embodiment, the home controller 10E is configured to be communicable with the DC load group 80 via the network 90.
 (動作概要)
 電力供給システム1600の動作概要について説明する。ここでは、ホームコントローラ10Eが電力会社などから受信した時間帯情報を利用して、電力系統60への売電時に直流負荷群80の一部を停止する動作について説明する。また、発電装置70の発電電力Pgは、直流負荷群80の消費電力よりも大きいものとする。ここでは、最初の状態において、ピーク時間帯以外の時間帯に発電装置70から蓄電装置20および直流負荷群80に電力が供給されているものとする。
(Overview of operation)
An outline of the operation of the power supply system 1600 will be described. Here, an operation of stopping a part of the DC load group 80 when selling power to the power system 60 using time zone information received by the home controller 10E from an electric power company or the like will be described. Further, it is assumed that the generated power Pg of the power generation device 70 is larger than the power consumption of the DC load group 80. Here, in the initial state, power is supplied from power generation device 70 to power storage device 20 and DC load group 80 in a time zone other than the peak time zone.
 図18を参照して、発電装置70は、直流バス50に発電電力Pg(2.5kw)を供給している(矢印We)。ホームコントローラ10Eは、ピーク時間帯の開始時刻が到来するまでは、双方向電力変換装置32を停止する(矢印Xe1)。直流負荷群80に消費電力P(1.5kw)分の電力が供給されている(矢印Ze1)。蓄電装置20は、発電電力Pgから直流負荷群80の消費電力Pを減算した直流電力(1.0kw)を蓄電装置20に充電させる(矢印Ye1)。 Referring to FIG. 18, the power generation device 70 supplies the generated power Pg (2.5 kW) to the DC bus 50 (arrow We). The home controller 10E stops the bidirectional power conversion device 32 until the start time of the peak time zone arrives (arrow Xe1). Power corresponding to power consumption P (1.5 kW) is supplied to the DC load group 80 (arrow Ze1). The power storage device 20 charges the power storage device 20 with DC power (1.0 kW) obtained by subtracting the power consumption P of the DC load group 80 from the generated power Pg (arrow Ye1).
 ピーク時間帯の開始時刻が到来した場合には、ホームコントローラ10Eは直流負荷群80のうち少なくとも1つの直流負荷を停止する。このとき、たとえば、直流負荷群80の消費電力Pは1.5kwから0.5kwに減少する(矢印Ze2)。また、双方向電力変換装置32は、ホームコントローラ10Eの指示に従って変換効率が基準閾値(0.95)以上となる入力電力(定格電力:3kw)を交流電力に変換して、電力系統60に交流電力(2.85kw)を出力する(矢印Xe2)。このとき、ホームコントローラ10Eは、当該入力電力が定格電力になるように、定格電力と、直流負荷群80の消費電力Pとの和(3.5kw)から発電電力Pg(2.5kw)を減算した直流電力(1kw)を蓄電装置20から放電させる(矢印Ye2)。 When the start time of the peak time period arrives, the home controller 10E stops at least one DC load in the DC load group 80. At this time, for example, the power consumption P of the DC load group 80 decreases from 1.5 kW to 0.5 kW (arrow Ze2). Further, the bidirectional power converter 32 converts the input power (rated power: 3 kW) whose conversion efficiency is equal to or higher than the reference threshold (0.95) into AC power according to the instruction of the home controller 10E, and supplies the AC power to the power system 60. Electric power (2.85 kW) is output (arrow Xe2). At this time, the home controller 10E subtracts the generated power Pg (2.5 kW) from the sum (3.5 kW) of the rated power and the power consumption P of the DC load group 80 so that the input power becomes the rated power. The direct current power (1 kW) thus discharged is discharged from the power storage device 20 (arrow Ye2).
 その後、ピーク時間帯の終了時刻が到来した場合には、ホームコントローラ10Eは停止させた直流負荷を動作させるとともに、双方向電力変換装置32を停止して(矢印Xe1)、余剰電力を蓄電装置20に充電させる(矢印Ye1)。 Thereafter, when the end time of the peak time period comes, the home controller 10E operates the stopped DC load, stops the bidirectional power conversion device 32 (arrow Xe1), and supplies the surplus power to the power storage device 20. Is charged (arrow Ye1).
 <ホームコントローラ10Eの構成>
 ホームコントローラ10Eのハードウェア構成については、図3に示されるホームコントローラ10のそれと同一であるため、その詳細な説明は繰り返さない。
<Configuration of home controller 10E>
Since the hardware configuration of home controller 10E is the same as that of home controller 10 shown in FIG. 3, detailed description thereof will not be repeated.
 (機能構成)
 図19は、実施の形態6に従うホームコントローラ10Eの機能ブロック図である。
(Functional configuration)
FIG. 19 is a functional block diagram of home controller 10E according to the sixth embodiment.
 図19を参照して、ホームコントローラ10Eは、その主たる機能構成として、消費電力監視部150Eと、電力制御部152Eと、記憶部154Eと、発電電力監視部158Eと、入力部160Eと、機器制御部162Eとを含む。消費電力監視部150Aおよび記憶部154Aは、それぞれ図4に示す消費電力監視部150および記憶部154と実質的に同一の機能を有する。また、発電電力監視部158Eは、図10に示す発電電力監視部158Bと実質的に同一の機能を有する。入力部160Eは、図13に示す入力部160Cと実質的に同一の機能を有する。 Referring to FIG. 19, home controller 10E has, as its main functional configuration, power consumption monitoring unit 150E, power control unit 152E, storage unit 154E, generated power monitoring unit 158E, input unit 160E, and device control. Part 162E. The power consumption monitoring unit 150A and the storage unit 154A have substantially the same functions as the power consumption monitoring unit 150 and the storage unit 154 shown in FIG. 4, respectively. Moreover, the generated power monitoring unit 158E has substantially the same function as the generated power monitoring unit 158B shown in FIG. The input unit 160E has substantially the same function as the input unit 160C shown in FIG.
 機器制御部162Eは、時間帯情報に基づいて、ピーク時間帯以外の時間帯(たとえば、オフピーク時間帯)に直流負荷群80に含まれる複数の直流負荷を動作させ、ピーク時間帯に直流負荷群80のうち予め定められた少なくとも1つの直流負荷を停止させる。実施の形態6では、機器制御部162Eは、たとえば、エアコン82を停止させるものとする。なお、停止させる直流負荷としては、省電力モードを有する電気機器や予め定められた優先順位が低い電気機器が選定される。 The device control unit 162E operates a plurality of DC loads included in the DC load group 80 in a time zone other than the peak time zone (for example, off-peak time zone) based on the time zone information, and the DC load group in the peak time zone. At least one predetermined DC load out of 80 is stopped. In the sixth embodiment, device control unit 162E stops air conditioner 82, for example. As the DC load to be stopped, an electric device having a power saving mode or an electric device having a low priority order is selected.
 電力制御部152Eは、ピーク時間帯以外の時間帯には双方向電力変換装置32を停止させるとともに発電電力Pgから消費電力を減算した差分電力を蓄電装置20に充電させる。電力制御部152Eは、ピーク時間帯には、直流バス50から直流電力の供給を受けて電力系統60に交流電力を出力するように双方向電力変換装置32に指示する。 The power control unit 152E stops the bidirectional power conversion device 32 in a time zone other than the peak time zone and charges the power storage device 20 with the differential power obtained by subtracting the power consumption from the generated power Pg. The power control unit 152E instructs the bidirectional power conversion device 32 to receive supply of DC power from the DC bus 50 and output AC power to the power system 60 during the peak time period.
 また、電力制御部152Eは、発電電力Pgおよび消費電力Pに基づいて蓄電装置20から直流バス50に放電する電力を調整することにより、変換効率が基準閾値以上となるように双方向電力変換装置32に電力変換を実行させる。 Further, the power control unit 152E adjusts the power discharged from the power storage device 20 to the DC bus 50 based on the generated power Pg and the power consumption P, so that the conversion efficiency becomes equal to or higher than the reference threshold value. 32 is caused to perform power conversion.
 <処理手順>
 次に、ホームコントローラ10Eが実行する具体的な処理手順について説明する。
<Processing procedure>
Next, a specific processing procedure executed by the home controller 10E will be described.
 図20は、実施の形態6に従うホームコントローラ10Eが実行する処理手順の一例を示すフローチャートである。なお、図20のフローチャートのスタート時は、ピーク時間帯以外の時間帯であり双方向電力変換装置32は停止しているものとする。 FIG. 20 is a flowchart showing an example of a processing procedure executed by home controller 10E according to the sixth embodiment. Note that at the start of the flowchart of FIG. 20, it is assumed that it is a time zone other than the peak time zone and the bidirectional power converter 32 is stopped.
 図20を参照して、ホームコントローラ10Eは、発電装置70の発電電力Pgにより直流負荷群80を動作させるとともに、発電電力Pgから消費電力Pを減算した余剰電力を蓄電装置20に充電させる(ステップS110)。 Referring to FIG. 20, home controller 10E operates DC load group 80 with generated power Pg of power generation device 70 and charges power storage device 20 with surplus power obtained by subtracting power consumption P from generated power Pg (step). S110).
 ホームコントローラ10Eは、ピーク時間帯の開始時刻が到来したか否かを判断する(ステップS112)。開始時刻が到来していない場合には(ステップS112においてNO)、ホームコントローラ10EはステップS112の処理を繰り返す。開始時刻が到来した場合には(ステップS112においてYES)、ホームコントローラ10Eは、ピーク時間帯に動作を停止するように予め設定されたエアコン82を停止させる(ステップS114)。 The home controller 10E determines whether or not the start time of the peak time period has arrived (step S112). If the start time has not arrived (NO in step S112), home controller 10E repeats the process of step S112. When the start time has arrived (YES in step S112), home controller 10E stops air conditioner 82 set in advance so as to stop the operation in the peak time zone (step S114).
 ホームコントローラ10Bは、双方向電力変換装置32への入力電力が定格電力になるように蓄電装置20の放電電力を調整する(ステップS116)。具体的には、ホームコントローラ10Bは、定格電力および消費電力Pの和から発電電力Pgを減算した差分電力を蓄電装置20から放電させる。そして、ホームコントローラ10Bは、直流バス50から直流電力の供給を受けて電力系統60に交流電力を供給(売電)するように双方向電力変換装置32に指示する(ステップS118)。 The home controller 10B adjusts the discharge power of the power storage device 20 so that the input power to the bidirectional power conversion device 32 becomes the rated power (step S116). Specifically, home controller 10 </ b> B discharges power difference from power storage device 20 by subtracting generated power Pg from the sum of rated power and power consumption P. Then, the home controller 10B instructs the bidirectional power conversion device 32 to receive the supply of DC power from the DC bus 50 and supply (sell) AC power to the power system 60 (step S118).
 ホームコントローラ10Eは、ピーク時間帯の終了時刻が到来したか否かを判断する(ステップS120)。終了時刻が到来していない場合には(ステップS120においてNO)、ホームコントローラ10EはステップS120の処理を繰り返す。終了時刻が到来した場合には(ステップS120においてYES)、ホームコントローラ10Eは、双方向電力変換装置32を停止して売電を終了させるとともにエアコン82を動作させて(ステップS122)、ステップS110の処理に戻る(リターン)。 The home controller 10E determines whether or not the end time of the peak time period has arrived (step S120). If the end time has not arrived (NO in step S120), home controller 10E repeats the process of step S120. When the end time has arrived (YES in step S120), home controller 10E stops bidirectional power conversion device 32 to end power sale and operates air conditioner 82 (step S122). Return to processing (return).
 実施の形態6によると、ピーク時間帯以外の時間帯には発電装置70の発電電力Pgにより直流負荷群80を動作させるため買電する必要がなくなるため双方向電力変換装置32による電力変換損失が発生しない。また、余剰電力を蓄電装置20に充電できる。また、ピーク時間帯にはエアコン82を停止するため、その分ピーク時間帯の直流負荷群80の消費電力を低減できる。これにより、ピーク時間帯により多くの電力を売電することが可能になる。高価格での売電が可能になるとともに、電力需要逼迫時での売電協力により地域全体の安定的な電力需要に貢献することができる。 According to the sixth embodiment, in the time zone other than the peak time zone, it is not necessary to purchase power because the DC load group 80 is operated by the generated power Pg of the power generation device 70, so that the power conversion loss by the bidirectional power conversion device 32 occurs. Does not occur. Further, the power storage device 20 can be charged with surplus power. Further, since the air conditioner 82 is stopped during the peak time period, the power consumption of the DC load group 80 during the peak time period can be reduced accordingly. Thereby, it becomes possible to sell more power in the peak time zone. Power selling at a high price becomes possible, and power sales cooperation when power demand is tight can contribute to stable power demand in the entire region.
 [まとめ]
 本発明の実施の形態は次のように要約することができる。
[Summary]
Embodiments of the present invention can be summarized as follows.
 (1) 電力供給システム1100は、電力系統60と直流バス50との間に設けられ、電力系統60から供給された交流電力を直流電力に変換するAC/DC変換器30と、直流バス50に接続されており、直流電力を充放電可能に構成された蓄電装置20と、AC/DC変換器30および蓄電装置20を制御するホームコントローラ10とを備える。ホームコントローラ10は、直流バス50から直流電力の供給を受ける直流負荷群80の消費電力Pを監視する消費電力監視部150と、AC/DC変換器30への入力電力と変換効率との関係を示す効率特性情報を記憶する記憶部154と、変換効率が基準閾値以上となるようにAC/DC変換器30に電力変換を実行させるとともに、消費電力Pに基づいて蓄電装置20の充放電動作を制御する電力制御部152とを含む。 (1) The power supply system 1100 is provided between the power system 60 and the DC bus 50, and includes an AC / DC converter 30 that converts AC power supplied from the power system 60 into DC power, and a DC bus 50. The power storage device 20 is connected and configured to be able to charge and discharge DC power, and the home controller 10 that controls the AC / DC converter 30 and the power storage device 20 is provided. The home controller 10 monitors the power consumption P of the DC load group 80 that receives DC power supplied from the DC bus 50, and the relationship between the input power to the AC / DC converter 30 and the conversion efficiency. Storage unit 154 for storing the efficiency characteristic information to be shown, and causing AC / DC converter 30 to perform power conversion so that the conversion efficiency is equal to or higher than a reference threshold, and charging / discharging operation of power storage device 20 based on power consumption P And a power control unit 152 to be controlled.
 上記構成によると、買電する場合であっても高効率の電力変換により変換損失を抑制することにより電力を効率よく活用することができる。 According to the above configuration, even when purchasing power, it is possible to efficiently use power by suppressing conversion loss by high-efficiency power conversion.
 (2) 電力制御部152は、消費電力Pが基準電力以上の場合には、電力系統60から交流電力の供給を受けて直流バス50に直流電力を出力するようにAC/DC変換器30に指示する。電力制御部152は、消費電力Pが基準電力未満の場合には、AC/DC変換器30を停止させるとともに蓄電装置20から直流バス50に直流電力を放電させる。 (2) When the power consumption P is greater than or equal to the reference power, the power control unit 152 receives the AC power from the power system 60 and outputs the DC power to the DC bus 50 to the AC / DC converter 30. Instruct. When the power consumption P is less than the reference power, the power control unit 152 stops the AC / DC converter 30 and discharges DC power from the power storage device 20 to the DC bus 50.
 上記構成によると、蓄電装置20からの電力では直流負荷群80を動作させることが困難になった場合にのみ買電することから変換損失の発生しない蓄電装置20の電力を最大限に利用できる。 According to the above configuration, since the power is purchased only when it is difficult to operate the DC load group 80 with the power from the power storage device 20, the power of the power storage device 20 in which no conversion loss occurs can be used to the maximum.
 (3) 電力制御部152は、AC/DC変換器30から直流バス50に出力される直流電力が消費電力P以上のときには、当該直流電力から消費電力Pを減算した差分電力を蓄電装置20に充電させる。 (3) When the DC power output from the AC / DC converter 30 to the DC bus 50 is equal to or greater than the power consumption P, the power control unit 152 supplies the power storage device 20 with the differential power obtained by subtracting the power consumption P from the DC power. Let it charge.
 上記構成によると、余剰電力が蓄電装置20に充電されるため電力の無駄がない。
 (4) 電力制御部152は、AC/DC変換器30から直流バス50に出力される直流電力が消費電力P未満のときには、消費電力Pから当該直流電力を減算した差分電力を蓄電装置20から直流バス50に放電させる。
According to the above configuration, since excess power is charged in the power storage device 20, there is no waste of power.
(4) When the DC power output from the AC / DC converter 30 to the DC bus 50 is less than the power consumption P, the power control unit 152 uses the power storage device 20 to calculate the difference power obtained by subtracting the DC power from the power consumption P. The DC bus 50 is discharged.
 上記構成によると、不足電力が蓄電装置20から放電されるため直流負荷群80を動作させることが可能となる。 According to the above configuration, since the insufficient power is discharged from the power storage device 20, the DC load group 80 can be operated.
 (5) ホームコントローラ10Aは、蓄電装置20の電池残量Qを監視する電池残量監視部156Aをさらに含む。電力制御部152Aは、電池残量Qが基準残量RQ1以上の場合には、AC/DC変換器30を停止させるとともに蓄電装置20から直流バス50に直流電力を放電させる。電力制御部152Aは、電池残量Qが基準残量RQ1未満の場合には、電力系統60から交流電力の供給を受けて直流バス50に直流電力を出力するようにAC/DC変換器30に指示するとともに、当該直流電力から消費電力Pを減算した差分電力を蓄電装置20に充電させる。 (5) The home controller 10A further includes a remaining battery level monitoring unit 156A that monitors the remaining battery level Q of the power storage device 20. When battery remaining amount Q is equal to or greater than reference remaining amount RQ1, power control unit 152A stops AC / DC converter 30 and discharges DC power from power storage device 20 to DC bus 50. When the remaining battery level Q is less than the reference remaining level RQ1, the power control unit 152A receives an AC power supply from the power system 60 and outputs the DC power to the DC bus 50 to the AC / DC converter 30. The power storage device 20 is charged with the difference power obtained by subtracting the power consumption P from the DC power.
 上記構成によると、電池残量Qに余裕がなくなり蓄電装置20から直流負荷群80への電力供給の継続が困難になった場合にのみ買電を行なうため、AC/DC変換器30による電力変換損失を最小限に抑えることができる。 According to the above configuration, power is purchased by the AC / DC converter 30 because power is purchased only when the remaining battery capacity Q is not sufficient and it is difficult to continue power supply from the power storage device 20 to the DC load group 80. Loss can be minimized.
 (6) 電力制御部152Aは、差分電力が蓄電装置20に充電されることにより電池残量Qが基準残量RQ1よりも大きい基準残量RQ2以上になった場合には、AC/DC変換器30を停止させるとともに蓄電装置20から直流バス50に直流電力を放電させる。 (6) The power control unit 152A determines that the AC / DC converter is used when the battery remaining amount Q becomes equal to or larger than the reference remaining amount RQ2 larger than the reference remaining amount RQ1 due to the difference power being charged into the power storage device 20. 30 is stopped and DC power is discharged from the power storage device 20 to the DC bus 50.
 上記構成によると、電池残量Qが余裕のある状態になり蓄電装置20から直流負荷群80への電力供給が可能になった場合にはAC/DC変換器30は停止されるため、再び変換損失が発生しない状態に戻すことができる。 According to the above configuration, the AC / DC converter 30 is stopped when the remaining battery capacity Q is in a sufficient state and power supply from the power storage device 20 to the DC load group 80 becomes possible. It is possible to return to a state where no loss occurs.
 (7) 電力供給システム1300は、直流バス50に直流電力として発電電力Pgを供給する発電装置70をさらに備える。ホームコントローラ10Bは、蓄電装置20の電池残量Qを監視する電池残量監視部156Bと、発電装置70の発電電力Pgを監視する発電電力監視部158Bとをさらに含む。電力制御部152Bは、電池残量Qが基準残量RQ3未満の場合には、双方向電力変換装置32を停止させるとともに、発電電力Pgから消費電力Pを減算した差分電力を蓄電装置20に充電させる。電力制御部152Bは、電池残量Qが基準残量RQ3以上の場合には、直流バス50から直流電力の供給を受けて電力系統60に交流電力を出力するように双方向電力変換装置32に指示する。 (7) The power supply system 1300 further includes a power generator 70 that supplies the generated power Pg to the DC bus 50 as DC power. Home controller 10B further includes a battery remaining amount monitoring unit 156B that monitors battery remaining amount Q of power storage device 20, and a generated power monitoring unit 158B that monitors generated power Pg of power generation device 70. When the battery remaining amount Q is less than the reference remaining amount RQ3, the power control unit 152B stops the bidirectional power conversion device 32 and charges the power storage device 20 with the difference power obtained by subtracting the power consumption P from the generated power Pg. Let When the remaining battery level Q is greater than or equal to the reference remaining level RQ3, the power control unit 152B receives the DC power from the DC bus 50 and outputs AC power to the power system 60 to the bidirectional power converter 32. Instruct.
 上記構成によると、変換損失の発生しない発電電力Pgおよび蓄電装置20の電力を最大限に利用して電力をより効率よく活用することができる。 According to the above configuration, it is possible to make more efficient use of power by making maximum use of the generated power Pg that does not cause conversion loss and the power of the power storage device 20.
 (8) 電力制御部152Bは、発電電力Pgおよび消費電力Pに基づいて蓄電装置20から直流バス50に放電される電力を調整することにより、変換効率が基準閾値以上となるように双方向電力変換装置32に電力変換を実行させる。 (8) The power control unit 152B adjusts the power discharged from the power storage device 20 to the DC bus 50 based on the generated power Pg and the consumed power P, so that the bidirectional power is set so that the conversion efficiency is equal to or higher than the reference threshold. The conversion device 32 is caused to perform power conversion.
 上記構成によると、高効率の電力変換を双方向電力変換装置32に実行させることが可能となるため、電力変換損失を抑制することができる。 According to the above configuration, since it is possible to cause the bidirectional power conversion device 32 to perform highly efficient power conversion, it is possible to suppress power conversion loss.
 (9) 電力制御部152Bは、蓄電装置20から直流バス50に直流電力が放電されることにより電池残量Qが基準残量RQ3よりも小さい基準残量RQ4未満になった場合には、双方向電力変換装置32を停止させるとともに発電電力Pgから消費電力Pを減算した差分電力を蓄電装置20に充電させる。 (9) When the DC power is discharged from the power storage device 20 to the DC bus 50, the power control unit 152B has both the battery remaining amount Q less than the reference remaining amount RQ4 smaller than the reference remaining amount RQ3. The power conversion device 32 is stopped, and the power storage device 20 is charged with the differential power obtained by subtracting the power consumption P from the generated power Pg.
 上記構成によると、電池残量Qが減少して蓄電装置20に電力を十分に充電可能な状態になるとAC/DC変換器30は停止されるため、再び電力変換損失が発生しない状態に戻すことができる。 According to the above configuration, the AC / DC converter 30 is stopped when the remaining battery capacity Q is reduced and the power storage device 20 is sufficiently charged with power, so that the power conversion loss is restored again. Can do.
 (10) 電力供給システム1400は、直流バス50に直流電力として発電電力Pgを供給する発電装置70をさらに備える。ホームコントローラ10Cは、時間帯情報の入力を受け付ける入力部160Cと、蓄電装置20の電池残量Qを監視する電池残量監視部156Cと、発電装置70の発電電力Pgを監視する発電電力監視部158Cと、現在時刻を計時する時計112とをさらに含む。電力制御部152Cは、発電電力Pgと消費電力Pと時間帯情報とに基づいて、ピーク時間帯に電力系統60から交流電力の供給を受けることなく、蓄電装置20から直流バス50に放電される直流電力および発電電力Pgにより直流負荷群80を動作させるために必要な蓄電装置20の目標電池残量を予測する。電力制御部152Cは、電力系統60から交流電力の供給を受けた場合に蓄電装置20に充電される充電電力に基づいて、ピーク時間帯の開始時刻までに電池残量Qが目標電池残量に到達するように双方向電力変換装置32に電力系統60からの交流電力の受給を開始させる。 (10) The power supply system 1400 further includes a power generator 70 that supplies the generated power Pg to the DC bus 50 as DC power. The home controller 10C includes an input unit 160C that receives input of time zone information, a remaining battery level monitoring unit 156C that monitors the remaining battery level Q of the power storage device 20, and a generated power monitoring unit that monitors the generated power Pg of the power generation device 70. 158C and a clock 112 that keeps the current time. Based on generated power Pg, consumed power P, and time zone information, power control unit 152C is discharged from power storage device 20 to DC bus 50 without receiving supply of AC power from power system 60 in a peak time zone. The target battery remaining amount of the power storage device 20 necessary for operating the DC load group 80 is predicted by the DC power and the generated power Pg. Based on the charging power charged in the power storage device 20 when AC power is supplied from the power system 60, the power control unit 152C sets the remaining battery level Q to the target remaining battery level by the start time of the peak time period. The bidirectional power conversion device 32 is made to start receiving AC power from the power system 60 so as to reach.
 上記構成によると、ピーク時間帯には買電を行なわずに済むため、電気料金の低減および電力需要圧迫時の地域全体の節電に貢献することができる。 According to the above configuration, since it is not necessary to purchase power during peak hours, it is possible to contribute to the reduction of electricity charges and the power saving of the entire region when power demand is compressed.
 (11) 充電電力は、電力系統60から交流電力の供給を受けた場合に双方向電力変換装置32から直流バス50に出力される直流電力および発電電力Pgの和から消費電力Pを減算した差分電力を含む。電力制御部152Cは、差分電力に基づいて電池残量Qが目標電池残量に到達するまでの時間T1を算出する。電力制御部152Cは、現在時刻からピーク時間帯の開始時刻までの時間T2が算出された時間T1未満となる直前のタイミングで双方向電力変換装置32に電力系統60からの交流電力の受給を開始させる。 (11) The charging power is a difference obtained by subtracting the power consumption P from the sum of the DC power and the generated power Pg output from the bidirectional power converter 32 to the DC bus 50 when AC power is supplied from the power system 60. Including power. The power control unit 152C calculates a time T1 until the remaining battery level Q reaches the target remaining battery level based on the differential power. The power control unit 152C starts receiving the AC power from the power system 60 to the bidirectional power conversion device 32 at a timing immediately before the time T2 from the current time to the start time of the peak time period becomes less than the calculated time T1. Let
 上記構成によると、無駄な買電時間を省いてピーク時間帯に必要な電力分だけ蓄電装置20に充電させることができる。 According to the above configuration, it is possible to charge the power storage device 20 by the amount of electric power necessary for the peak time period without using unnecessary power purchase time.
 (12) 電力制御部152Cは、差分電力が蓄電装置20に充電されることにより電池残量Qが目標電池残量に到達した場合には、双方向電力変換装置32を停止させるとともに蓄電装置20から直流バス50に直流電力を放電させる。 (12) The power control unit 152C stops the bidirectional power conversion device 32 and stores the power storage device 20 when the remaining power Q reaches the target battery remaining amount due to the difference power being charged in the power storage device 20. DC power is discharged to the DC bus 50.
 上記構成によると、買電による電力変換損失を抑制することができる。
 (13) 電力供給システム1500において、直流負荷群80Aは、電力需要が増大するピーク時間帯の電力使用を抑制するためのピークシフトモードを有する給湯器85を含む。ホームコントローラ10Dは、時間帯情報の入力を受け付ける入力部160Dと、ピーク時間帯以外の時間帯には給湯器85を動作させ、ピーク時間帯には給湯器85を停止するように制御する機器制御部162Dとを含む。電力制御部152Dは、ピーク時間帯以外の時間帯には電力系統60から交流電力の供給を受けて直流バス50に直流電力を出力するようにAC/DC変換器30に指示する。電力制御部152Dは、ピーク時間帯にはAC/DC変換器30を停止させる。
According to the said structure, the power conversion loss by power purchase can be suppressed.
(13) In the power supply system 1500, the DC load group 80A includes a water heater 85 having a peak shift mode for suppressing power use in a peak time zone in which power demand increases. The home controller 10D has an input unit 160D that accepts input of time zone information, and device control that controls the hot water heater 85 to operate during a time zone other than the peak time zone and to stop the hot water heater 85 during the peak time zone. Part 162D. The power control unit 152D instructs the AC / DC converter 30 to receive AC power from the power system 60 and output DC power to the DC bus 50 in a time zone other than the peak time zone. The power control unit 152D stops the AC / DC converter 30 during the peak time period.
 上記構成によると、ピーク時間帯には買電しないため電力変換損失が発生しないとともに、電気料金の低減および電力需要圧迫時の大規模停電や計画停電の回避に貢献できる。また、ピーク時間帯における給湯器85の消費電力を低減できるため、蓄電装置20から直流負荷群80Aへの電力供給可能な時間を長くすることができる。 According to the above configuration, power conversion loss does not occur because power is not purchased during peak hours, and it can contribute to reduction of electricity charges and avoidance of large-scale blackouts and planned blackouts when power demand is compressed. Moreover, since the power consumption of the water heater 85 in the peak time zone can be reduced, the time during which power can be supplied from the power storage device 20 to the DC load group 80A can be extended.
 (14) 電力供給システム1600は、直流バス50に直流電力として発電電力Pgを供給する発電装置70をさらに備える。直流負荷群80は、複数の電気機器を含む。ホームコントローラ10Eは、時間帯情報の入力を受け付ける入力部160Eと、発電装置70の発電電力Pgを監視する発電電力監視部158Eと、複数の電気機器の動作を制御する機器制御部162Eとをさらに含む、機器制御部162Eは、ピーク時間帯以外の時間帯には複数の電気機器を動作させ、ピーク時間帯には複数の電気機器のうち予め定められた少なくとも1つの電気機器を停止させる。電力制御部152Eは、ピーク時間帯以外の時間帯には、双方向電力変換装置32を停止させるとともに発電電力Pgから消費電力Pを減算した差分電力を蓄電装置20に充電させる。電力制御部152Eは、ピーク時間帯には、直流バス50から直流電力の供給を受けて電力系統60に交流電力を出力するように双方向電力変換装置32に指示する。 (14) The power supply system 1600 further includes a power generator 70 that supplies the generated power Pg to the DC bus 50 as DC power. The DC load group 80 includes a plurality of electric devices. Home controller 10E further includes an input unit 160E that receives input of time zone information, a generated power monitoring unit 158E that monitors the generated power Pg of the power generation apparatus 70, and a device control unit 162E that controls the operation of a plurality of electrical devices. The device control unit 162E includes a plurality of electrical devices that operate in a time zone other than the peak time zone, and stops at least one predetermined electrical device among the plurality of electrical devices in the peak time zone. The power control unit 152E stops the bidirectional power conversion device 32 and charges the power storage device 20 with differential power obtained by subtracting the power consumption P from the generated power Pg during a time zone other than the peak time zone. The power control unit 152E instructs the bidirectional power conversion device 32 to receive supply of DC power from the DC bus 50 and output AC power to the power system 60 during the peak time period.
 上記構成によると、ピーク時間帯には直流負荷群80のうちのエアコン82を停止するため、その分ピーク時間帯の直流負荷群80の消費電力を低減できる。これにより、ピーク時間帯により多くの電力を売電することができる。そのため、高価格での売電が可能になるとともに、電力需要逼迫時での売電協力により地域全体の安定的な電力需要に貢献することができる。 According to the above configuration, since the air conditioner 82 in the DC load group 80 is stopped during the peak time period, the power consumption of the DC load group 80 during the peak time period can be reduced accordingly. Thereby, more electric power can be sold by a peak time slot | zone. As a result, it is possible to sell power at a high price, and contribute to stable power demand in the entire region through power sale cooperation when power demand is tight.
 (15) ホームコントローラ10は、電力系統60と直流バス50との間に設けられ、電力系統60から供給された交流電力を直流電力に変換するAC/DC変換器30と、直流バス50に接続されており直流電力を充放電可能に構成された蓄電装置20とを制御する。ホームコントローラ10は、直流バス50から直流電力の供給を受ける直流負荷群80の消費電力Pを監視する消費電力監視部150と、AC/DC変換器30への入力電力と変換効率との関係を示す効率特性情報を記憶する記憶部154と、変換効率が基準閾値以上となるようにAC/DC変換器30に電力変換を実行させるとともに、消費電力Pに基づいて蓄電装置20の充放電動作を制御する電力制御部152とを含む。 (15) The home controller 10 is provided between the power system 60 and the DC bus 50, and is connected to the DC bus 50 and the AC / DC converter 30 that converts AC power supplied from the power system 60 into DC power. The power storage device 20 configured to be able to charge and discharge DC power is controlled. The home controller 10 monitors the power consumption P of the DC load group 80 that receives DC power supplied from the DC bus 50, and the relationship between the input power to the AC / DC converter 30 and the conversion efficiency. Storage unit 154 for storing the efficiency characteristic information to be shown, and causing AC / DC converter 30 to perform power conversion so that the conversion efficiency is equal to or higher than a reference threshold, and charging / discharging operation of power storage device 20 based on power consumption P And a power control unit 152 to be controlled.
 上記構成によると、買電する場合であっても高効率の電力変換により変換損失を抑制することにより電力を効率よく活用することができる。 According to the above configuration, even when purchasing power, it is possible to efficiently use power by suppressing conversion loss by high-efficiency power conversion.
 上述の実施の形態として例示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能である。 The configuration illustrated as the above-described embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and a part of the configuration is omitted without departing from the gist of the present invention. It is also possible to change the configuration.
 また、上述した実施の形態において、他の実施の形態で説明した処理や構成を適宜採用して実施する場合であってもよい。 Further, in the above-described embodiment, the processing and configuration described in the other embodiments may be adopted as appropriate.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10,10A,10B,10C,10D,10E ホームコントローラ、20 蓄電装置、30 AC/DC変換器、32 双方向電力変換装置、40,42 電力測定器、50 直流バス、60 電力系統、70 発電装置、72 太陽電池、74 変換器、80,80A 直流負荷群、81 冷蔵庫、82 エアコン、83 照明器具、84 テレビ、85 給湯器、90 ネットワーク、101 CPU、102 タッチパネル、103 ディスプレイ、104 タブレット、105 操作ボタン、106 通信インターフェイス、107 出力インターフェイス、108 入力インターフェイス、110 メモリ、111 スピーカ、112 時計、150,150A,150B,150C,150D,150E 消費電力監視部、152,152A,152B,152C,152D,152E 電力制御部、154,154A,154B,154C,154D,154E 記憶部、156A,156B,156C 電池残量監視部、158B,158C,158E 発電電力監視部、160C,160D,160E 入力部、162D,162E 機器制御部、1100,1200,1300,1400,1500,1600 電力供給システム。 10, 10A, 10B, 10C, 10D, 10E Home controller, 20 power storage device, 30 AC / DC converter, 32 bidirectional power converter, 40, 42 power meter, 50 DC bus, 60 power system, 70 power generator 72 solar cell, 74 converter, 80, 80A DC load group, 81 refrigerator, 82 air conditioner, 83 lighting fixture, 84 TV, 85 water heater, 90 network, 101 CPU, 102 touch panel, 103 display, 104 tablet, 105 operation Button, 106 Communication interface, 107 Output interface, 108 Input interface, 110 Memory, 111 Speaker, 112 Clock, 150, 150A, 150B, 150C, 150D, 150E Power consumption monitoring unit 152, 152A, 152B, 152C, 152D, 152E power control unit, 154, 154A, 154B, 154C, 154D, 154E storage unit, 156A, 156B, 156C remaining battery power monitoring unit, 158B, 158C, 158E power generation power monitoring unit, 160C, 160D, 160E input unit, 162D, 162E device control unit, 1100, 1200, 1300, 1400, 1500, 1600 power supply system.

Claims (5)

  1.  電力系統と直流バスとの間に設けられ、前記電力系統から供給された交流電力を直流電力に変換する順変換機能、および前記直流バスから供給された直流電力を交流電力に変換する逆変換機能の少なくとも一方の機能を有する電力変換装置と、
     前記直流バスに接続されており、直流電力を充放電可能に構成された蓄電装置と、
     前記電力変換装置および前記蓄電装置を制御するコントローラとを備え、
     前記コントローラは、
     前記直流バスから直流電力の供給を受ける負荷部の消費電力を監視する消費電力監視部と、
     前記電力変換装置への入力電力と変換効率との関係を示す効率特性情報を記憶する記憶部と、
     前記変換効率が基準閾値以上となるように前記電力変換装置に電力変換を実行させるとともに、前記消費電力に基づいて前記蓄電装置の充放電動作を制御する電力制御部とを含む、電力供給システム。
    A forward conversion function that is provided between the power system and the DC bus and converts AC power supplied from the power system into DC power, and an inverse conversion function that converts DC power supplied from the DC bus into AC power A power conversion device having at least one of the functions of
    A power storage device connected to the DC bus and configured to charge and discharge DC power; and
    A controller for controlling the power conversion device and the power storage device,
    The controller is
    A power consumption monitoring unit that monitors power consumption of a load unit that receives supply of DC power from the DC bus;
    A storage unit for storing efficiency characteristic information indicating a relationship between input power to the power conversion device and conversion efficiency;
    A power supply system including: a power control unit configured to cause the power conversion device to perform power conversion so that the conversion efficiency is equal to or higher than a reference threshold, and to control a charge / discharge operation of the power storage device based on the power consumption.
  2.  前記電力制御部は、
     前記消費電力が基準電力以上の場合には、前記電力系統から交流電力の供給を受けて前記直流バスに直流電力を出力するように前記電力変換装置に指示し、
     前記消費電力が前記基準電力未満の場合には、前記電力変換装置を停止させるとともに前記蓄電装置から前記直流バスに直流電力を放電させる、請求項1に記載の電力供給システム。
    The power control unit
    If the power consumption is greater than or equal to a reference power, the power converter is instructed to receive the supply of AC power from the power system and output DC power to the DC bus,
    2. The power supply system according to claim 1, wherein when the power consumption is less than the reference power, the power converter is stopped and DC power is discharged from the power storage device to the DC bus.
  3.  前記コントローラは、
     前記蓄電装置の電池残量を監視する電池残量監視部をさらに含み、
     前記電力制御部は、
     前記電池残量が第1の基準残量以上の場合には、前記電力変換装置を停止させるとともに前記蓄電装置から前記直流バスに直流電力を放電させ、
     前記電池残量が前記第1の基準残量未満の場合には、前記電力系統から交流電力の供給を受けて前記直流バスに直流電力を出力するように前記電力変換装置に指示するとともに、当該直流電力から前記消費電力を減算した差分電力を前記蓄電装置に充電させる、請求項1に記載の電力供給システム。
    The controller is
    A battery remaining amount monitoring unit for monitoring a remaining battery amount of the power storage device;
    The power control unit
    When the battery remaining amount is equal to or greater than a first reference remaining amount, the power conversion device is stopped and DC power is discharged from the power storage device to the DC bus,
    When the battery remaining amount is less than the first reference remaining amount, the power conversion device is instructed to receive the supply of AC power from the power system and output DC power to the DC bus, and The power supply system according to claim 1, wherein the power storage device is charged with differential power obtained by subtracting the power consumption from DC power.
  4.  前記直流バスに直流電力として発電電力を供給する発電装置をさらに備え、
     前記コントローラは、
     前記蓄電装置の電池残量を監視する電池残量監視部と、
     前記発電装置の発電電力を監視する発電電力監視部とをさらに含み、
     前記電力制御部は、
     前記電池残量が第1の基準残量未満の場合には、前記電力変換装置を停止させるとともに、前記発電電力から前記消費電力を減算した差分電力を前記蓄電装置に充電させ、
     前記電池残量が前記第1の基準残量以上の場合には、前記直流バスから直流電力の供給を受けて前記電力系統に交流電力を出力するように前記電力変換装置に指示する、請求項1に記載の電力供給システム。
    A power generator for supplying the DC bus with generated power as DC power;
    The controller is
    A battery level monitor for monitoring the battery level of the power storage device;
    A generated power monitoring unit that monitors the generated power of the power generation device,
    The power control unit
    When the battery remaining amount is less than the first reference remaining amount, the power conversion device is stopped, and the power storage device is charged with differential power obtained by subtracting the power consumption from the generated power,
    The power converter is instructed to receive supply of DC power from the DC bus and output AC power to the power system when the remaining battery level is equal to or greater than the first reference remaining capacity. The power supply system according to 1.
  5.  電力系統と直流バスとの間に設けられ、前記電力系統から供給された交流電力を直流電力に変換する順変換機能、および前記直流バスから供給された直流電力を交流電力に変換する逆変換機能の少なくとも一方の機能を有する電力変換装置と、前記直流バスに接続されており直流電力を充放電可能に構成された蓄電装置とを制御するコントローラであって、
     前記コントローラは、
     前記直流バスから直流電力の供給を受ける負荷部の消費電力を監視する消費電力監視部と、
     前記電力変換装置への入力電力と変換効率との関係を示す効率特性情報を記憶する記憶部と、
     前記変換効率が基準閾値以上となるように前記電力変換装置に電力変換を実行させるとともに、前記消費電力に基づいて前記蓄電装置の充放電動作を制御する電力制御部とを含む、コントローラ。
    A forward conversion function that is provided between the power system and the DC bus and converts AC power supplied from the power system into DC power, and an inverse conversion function that converts DC power supplied from the DC bus into AC power A controller for controlling a power conversion device having at least one of the functions and a power storage device connected to the DC bus and configured to charge and discharge DC power,
    The controller is
    A power consumption monitoring unit that monitors power consumption of a load unit that receives supply of DC power from the DC bus;
    A storage unit for storing efficiency characteristic information indicating a relationship between input power to the power conversion device and conversion efficiency;
    A controller including: a power control unit configured to cause the power conversion device to perform power conversion so that the conversion efficiency is equal to or higher than a reference threshold; and to control a charge / discharge operation of the power storage device based on the power consumption.
PCT/JP2015/060732 2014-06-26 2015-04-06 Power supply system and controller WO2015198678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-131667 2014-06-26
JP2014131667 2014-06-26

Publications (1)

Publication Number Publication Date
WO2015198678A1 true WO2015198678A1 (en) 2015-12-30

Family

ID=54937779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060732 WO2015198678A1 (en) 2014-06-26 2015-04-06 Power supply system and controller

Country Status (1)

Country Link
WO (1) WO2015198678A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192108A1 (en) * 2020-03-25 2021-09-30 Tdk株式会社 Power management device, power feeding system, and power management method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312499A (en) * 2006-05-18 2007-11-29 Kyocera Mita Corp Power supply device and image forming apparatus
JP2009159734A (en) * 2007-12-26 2009-07-16 Panasonic Electric Works Co Ltd Dc power distribution system
US20100219688A1 (en) * 2008-07-17 2010-09-02 Atomic Energy Council-Institute Of Nuclear Energy Research DC Power System for Household Appliances
WO2010125878A1 (en) * 2009-04-30 2010-11-04 シャープ株式会社 Control device and control method
JP2011076444A (en) * 2009-09-30 2011-04-14 Panasonic Electric Works Co Ltd Power distribution device
JP2011522503A (en) * 2008-03-25 2011-07-28 デルタ エレクトロニクス,インク. Power conversion system that operates efficiently over the full load range
JP2012228028A (en) * 2011-04-18 2012-11-15 Sharp Corp Power converter, dc power feeding system, and control method of the same
JP2014030334A (en) * 2012-06-29 2014-02-13 Sekisui Chem Co Ltd Power management device, power management method, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312499A (en) * 2006-05-18 2007-11-29 Kyocera Mita Corp Power supply device and image forming apparatus
JP2009159734A (en) * 2007-12-26 2009-07-16 Panasonic Electric Works Co Ltd Dc power distribution system
JP2011522503A (en) * 2008-03-25 2011-07-28 デルタ エレクトロニクス,インク. Power conversion system that operates efficiently over the full load range
US20100219688A1 (en) * 2008-07-17 2010-09-02 Atomic Energy Council-Institute Of Nuclear Energy Research DC Power System for Household Appliances
WO2010125878A1 (en) * 2009-04-30 2010-11-04 シャープ株式会社 Control device and control method
JP2011076444A (en) * 2009-09-30 2011-04-14 Panasonic Electric Works Co Ltd Power distribution device
JP2012228028A (en) * 2011-04-18 2012-11-15 Sharp Corp Power converter, dc power feeding system, and control method of the same
JP2014030334A (en) * 2012-06-29 2014-02-13 Sekisui Chem Co Ltd Power management device, power management method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192108A1 (en) * 2020-03-25 2021-09-30 Tdk株式会社 Power management device, power feeding system, and power management method

Similar Documents

Publication Publication Date Title
JP6195206B2 (en) Power supply system, power converter, measuring point switching device
JP5655167B2 (en) Power management apparatus and program
EP2479867B1 (en) Power distribution system
US9906025B2 (en) Electric power supply apparatus and system
JP5845066B2 (en) Power supply system
JP6668991B2 (en) Power supply device and power supply system
JP2015106962A (en) Charge discharge controller and charge discharge system
JP6005469B2 (en) DC power supply system
WO2015118844A1 (en) Energy management device and energy management method
JP2012191773A (en) Storage battery charge control system
EP3032682B1 (en) Power supply system, power conversion device, and distribution board
WO2015198678A1 (en) Power supply system and controller
JP2019118238A (en) Control device, power storage system, and program
JPWO2018047415A1 (en) Power storage device and power supply system
JP5507946B2 (en) Battery control unit
JP2013243794A (en) Power supply system and power supply method
JP5404686B2 (en) Battery charging system
JP6762297B2 (en) Equipment control system and control method
JP6694930B2 (en) Power control system control method, power control system, and power control device
JP7222318B2 (en) power conditioner
JP6355017B2 (en) Power supply control device and power supply control method
JP6728212B2 (en) Device control device, device control system, and device control method
JP2020054136A (en) Charge power calculation device and storage battery charging system
JP6208335B2 (en) Power control apparatus, power control method, and power control system
JP2016086594A (en) Power supply system, power supply apparatus and control method for power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15812398

Country of ref document: EP

Kind code of ref document: A1