WO2021190408A1 - 一种开放式可不间断供电的金属空气燃料电池系统 - Google Patents

一种开放式可不间断供电的金属空气燃料电池系统 Download PDF

Info

Publication number
WO2021190408A1
WO2021190408A1 PCT/CN2021/081746 CN2021081746W WO2021190408A1 WO 2021190408 A1 WO2021190408 A1 WO 2021190408A1 CN 2021081746 W CN2021081746 W CN 2021081746W WO 2021190408 A1 WO2021190408 A1 WO 2021190408A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
air fuel
metal
electrolyte
open
Prior art date
Application number
PCT/CN2021/081746
Other languages
English (en)
French (fr)
Inventor
董明明
梁靓
张钰
Original Assignee
唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心 filed Critical 唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心
Priority to SG11202106945T priority Critical patent/SG11202106945TA/en
Priority to US17/621,742 priority patent/US11349167B1/en
Priority to JP2021538137A priority patent/JP7114815B2/ja
Priority to GB2206028.9A priority patent/GB2603433B/en
Publication of WO2021190408A1 publication Critical patent/WO2021190408A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04477Concentration; Density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/0482Concentration; Density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0693Treatment of the electrolyte residue, e.g. reconcentrating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of metal air fuel cell stacks, in particular to an open metal air fuel cell system with uninterrupted power supply.
  • lithium-ion battery packs As a currently widely used power battery, lithium-ion battery packs have the characteristics of high power density and long cycle life, and are widely used in power equipment.
  • lithium-ion batteries also have their inherent shortcomings.
  • Second, lithium-ion batteries have higher requirements for charging and discharging temperatures. Generally, if the temperature is below 0°C, it cannot be charged, and if it is below -10°C, it cannot work, which causes great inconvenience to the use in cold areas in winter.
  • Air fuel cells are divided into hydrogen fuel cells and metal air fuel cells according to different anodes.
  • Hydrogen fuel cells use hydrogen as the anode, oxygen as the cathode, and the product is water.
  • the energy density of high-pressure hydrogen is very high, but the storage and transportation of high-pressure hydrogen is difficult, and there are also greater dangers. At present, many countries have stopped the development of hydrogen fuel cells.
  • the metal-air fuel cell stack has high power density, simple products, easy recycling, good environmental friendliness, high metal electrode energy density, convenient transportation and storage, and is a very promising energy equipment.
  • the metal-air fuel cell uses active metal as the anode, oxygen as the cathode, and the product is a metal salt or hydroxide.
  • the active metals currently used mainly include magnesium, aluminum and zinc. According to the pH value of the electrolyte used, it is divided into acid electrolyte batteries, alkaline electrolyte batteries and neutral electrolyte batteries. Among them, aluminum and zinc can only use acid or alkaline electrolyte. Due to the stronger metal activity of magnesium, a neutral salt solution (such as NaCl solution) can be used as the electrolyte.
  • Metal air fuel cell is a primary battery in principle.
  • the metal electrode of the metal air fuel cell will be worn out during use. After the wear is exhausted, it must be replaced.
  • the metal air fuel cell using acidic or alkaline electrolyte the acid in the electrolyte Alkali will be lost in the battery discharge process, resulting in a decrease in battery performance. When the loss reaches a certain level or the product reaches a certain concentration, it needs to be replaced.
  • Using a neutral electrolyte although the change of the solution properties will not be involved in the reaction process, the metal hydroxide in the product is insoluble in water, causing the fluidity of the electrolyte to decrease, thereby reducing the performance of the battery.
  • the product reaches a certain level When measuring, it must be cleaned up.
  • the existing metal-air fuel cell stack uses independent battery units, and the replacement of both the electrolyte and the metal anode is complicated.
  • the existing metal-air fuel cell stack also uses electrolyte circulation filtration, because each battery unit is independent, it is difficult to fully update the electrolyte in circulation filtration, there will be many dead spots, and it will take a long time to completely disassemble and maintain.
  • due to the limited electrolyte flow it is not easy to cool the battery cells through the electrolyte.
  • an additional air cooling system is required, which results in a complex structure and unreliable operation.
  • the BMS system The design difficulty increases.
  • the present invention provides the following solutions:
  • An open metal air fuel cell system with uninterrupted power supply including a metal air fuel cell stack, a sensing subsystem, a controller, and a circulating filter subsystem;
  • the metal-air fuel cell stack includes an electrolyte tank and a number of open-type metal-air fuel cell cells; the open-type metal-air fuel cell cells are sequentially arranged in the electrolyte tank, and each of the open-type metal-air fuel cells is arranged in the electrolyte tank.
  • the fuel cell units are connected in parallel; wherein, the open metal-air fuel cell unit includes a metal electrode and an air electrode; the metal electrode is located under the air electrode; the air electrode is a tank structure, And the concave surface of the tank structure faces upward; the height of the electrolyte in the electrolyte tank is immersed in the lower surface of the metal electrode and the air electrode, and is not higher than the upper edge of the air electrode;
  • the sensor subsystem is placed in the electrolyte tank; the sensor subsystem is used to obtain the temperature information, liquid level information, and concentration information of the electrolyte, and combine the temperature information and liquid level information of the electrolyte. And the concentration information is sent to the controller;
  • the liquid outlet of the electrolyte tank is in communication with the first liquid inlet of the circulating filter subsystem through a liquid outlet pipeline, and the liquid inlet of the electrolyte tank is connected to the circulating filter through the first liquid inlet pipeline.
  • the liquid outlet of the subsystem is connected;
  • the controller is electrically connected with the circulating filter subsystem; the controller is used for controlling the circulating flow of the circulating filter subsystem according to the temperature information of the electrolyte.
  • it further includes an electrolyte replenishment subsystem; the liquid outlet of the electrolyte replenishment subsystem is in communication with the second liquid inlet of the circulating filter subsystem through a second liquid inlet pipeline;
  • the controller is electrically connected with the electrolyte replenishment subsystem; the controller is used for controlling the replenishment flow of the electrolyte replenishment subsystem according to the level information and concentration information of the electrolyte.
  • the open metal air fuel cell unit further includes a fixing clip, a DCDC module and a bus plate;
  • One end of the air electrode is installed with the bus plate, and the other end of the air electrode is installed with the fixing clip; the metal electrode and the air electrode are both fixed to the bus plate by a copper sheet;
  • the positive and negative wires built in the busbar are electrically connected to the DCDC module;
  • the open metal air fuel cell unit is fixed in the electrolyte tank by a fixing clip.
  • a hollow support plate is provided in the middle of the electrolyte tank, and liquid inlets and outlets of different sizes are provided on both sides of the electrolyte tank; the hollow support plate is used to prevent the metal electrode from interacting with each other
  • the electrolyte tank is in direct contact.
  • the metal air fuel cell stack is provided with a positive electrode bus and a negative electrode bus; the positive electrode of each open metal air fuel cell unit is connected to the positive bus, and each open metal air fuel cell The negative electrode of the monomer is connected to the negative bus.
  • the bus plate is provided with two connection terminals, namely a first connection terminal and a second connection terminal;
  • the positive bus of the metal air fuel cell stack is fixed;
  • the second connecting terminal fixes the negative pole of the open metal air fuel cell unit and the negative bus of the metal air fuel cell stack through a nut.
  • the circulation filtration subsystem includes a sedimentation tank, a filter screen, a circulation pump, and a radiator;
  • the sedimentation tank is provided with a first liquid inlet and a liquid outlet; the filter screen is arranged in the sedimentation tank and is located at the liquid outlet;
  • the liquid outlet of the electrolyte tank communicates with the first liquid inlet of the sedimentation tank through a liquid outlet pipeline; the liquid outlet of the sedimentation tank passes through the first liquid inlet pipeline and is arranged at the first liquid inlet.
  • the circulation pump and the radiator on a liquid inlet pipeline are in communication with the liquid inlet of the electrolyte tank.
  • the electrolyte replenishment subsystem includes a replenishment tank, a replenishment pump, and a one-way valve;
  • the liquid outlet of the liquid supplement tank passes through the second liquid inlet pipeline, the liquid supplement pump and the one-way valve arranged on the second liquid inlet pipeline, and the sedimentation tank of the circulating filter subsystem The second liquid inlet is connected.
  • the controller is respectively electrically connected with a replenishing pump in the electrolyte replenishment subsystem and a circulating pump in the circulation filtering subsystem.
  • the sensing subsystem includes a temperature sensor, a liquid level sensor, and a liquid concentration sensor.
  • the battery unit of the open metal air fuel cell system with uninterrupted power supply provided by the present invention adopts an open structure and shares the electrolyte, so that only a set of electrolyte renewal system is needed to ensure the chemical properties, product content and temperature of the electrolyte. stability.
  • the use of weak coupling group technology that is, the direct relationship of each battery unit is not close
  • the electrode replacement and maintenance work of the battery unit can be performed on the premise of ensuring the power supply.
  • the horizontal structure that is, the batteries are connected in parallel and the electrolyte is shared
  • the air electrode terminal does not need to bear the internal pressure of the liquid, so only the air electrode needs to be fixed without sealing, which can speed up the production of the battery pack and ensure the work reliability.
  • Figure 1 is a schematic diagram of the structure of an open metal-air fuel cell unit of the present invention
  • FIG. 2 is a schematic diagram of the structure of the electrolyte tank of the present invention.
  • Figure 3 is a schematic diagram of the structure of the metal-air fuel cell stack of the present invention.
  • Fig. 4 is a schematic diagram of the structure of the metal-air fuel cell stack system of the present invention.
  • the purpose of the present invention is to provide an open metal air fuel cell system with uninterrupted power supply, which solves the problems of metal electrode replacement under the uninterrupted power supply of the existing metal air fuel cell stack, as well as electrolyte maintenance and cooling problems, and avoids sealing.
  • the structure greatly simplifies the maintenance of the metal air fuel cell and expands the use.
  • each battery cell of the metal air fuel cell stack is independent and each has a separate electrolyte.
  • Each battery cell of the metal air fuel cell stack composed of the present invention shares the electrolyte, and the electrolyte is placed in a common In the electrolytic cell.
  • the electrolyte can be renewed, especially for the magnesium-air fuel cell using neutral electrolyte, the product magnesium hydroxide is a viscous colloid.
  • electrolyte replacement is difficult, and it is not conducive to product recovery.
  • the acid and alkali in the electrolyte will continue to be lost during the power supply process, resulting in electrolyte
  • the change of PH value reduces the discharge power.
  • the circulating electrolyte can remove reaction products and supplement the consumed acid and alkali.
  • the circulating electrolyte can be used to cool the entire metal air fuel cell stack, especially for high-power power supply stations. The metal air fuel cell stack continues to discharge with high power.
  • Seal-free The structure of the magnesium-air fuel cell stack avoids the research and development problems of structural sealing. Because the structure is different from the vertical battery, in an open environment, the air electrode end does not need to bear the internal pressure of the liquid, so only the air electrode needs to be fixed. Without sealing, it can accelerate the production of the metal-air fuel cell stack and ensure the reliability of the work.
  • Uninterrupted power supply The metal anode of the metal air fuel cell stack will continue to wear out during the power supply process. When the metal electrode is exhausted, it needs to be replaced with a new metal electrode. The traditional metal air fuel cell stack needs to interrupt the power supply during the replacement process. , The procedures for replacing metal electrodes are cumbersome, and all electrodes need to be replaced at one time. For monomers with lower loss, it will cause metal waste.
  • each battery unit adopts weak coupling in parallel, and the electrodes of metal exhausted monomers can be replaced individually, without affecting the power supply of the entire system, and realizing continuous power supply. High-power power supply stations are very important.
  • the present invention provides an open metal air fuel cell system with uninterrupted power supply, including a metal air fuel cell stack, a sensing subsystem, a controller, and a circulating filter subsystem.
  • the metal air fuel cell stack includes an electrolyte tank and a number of open metal air fuel cell monomers (battery units).
  • the open metal air fuel cell cells are arranged in the electrolyte tank in sequence, and the open metal air fuel cell cells are connected in parallel.
  • the sensor subsystem is placed in the electrolyte tank; the sensor subsystem is used to obtain the temperature information, level information, and concentration information of the electrolyte, and send the temperature information, level information, and concentration information of the electrolyte to the controller.
  • the liquid outlet of the electrolyte tank is in communication with the first liquid inlet of the circulating filter subsystem through a liquid outlet pipe, and the liquid inlet of the electrolyte tank is in communication with the liquid outlet of the circulating filter subsystem through the first liquid inlet pipe;
  • the electrolyte replenishment subsystem communicates with the second liquid inlet of the circulating filter subsystem through the second liquid inlet pipeline.
  • the controller is electrically connected with the circulating filter subsystem; the controller is used for controlling the circulating flow of the circulating filter subsystem according to the temperature information of the electrolyte.
  • the controller is electrically connected to the electrolyte replenishment subsystem; the controller is used to control the replenishment flow of the electrolyte replenishment subsystem according to the level information and concentration information of the electrolyte.
  • the open metal-air fuel cell unit includes a fixing clip 1, an air electrode 2, a metal electrode 3, a DCDC module 4 and a bus plate 7.
  • the metal electrode 3 is a metal plate, and the metal electrode 3 is completely immersed in the electrolyte in the electrolyte tank in a horizontal manner.
  • An air electrode 2 is provided on the metal electrode 3, and an electrolyte is provided between the metal electrode 3 and the air electrode 2.
  • the air electrode 2 is a trough-shaped structure, the concave surface of the trough-shaped structure faces upwards and is in contact with the air; the trough-shaped structure is also immersed in the electrolyte in the electrolyte tank in a horizontal manner, and the electrolyte in the electrolyte tank is The height is required to immerse the lower surface of the air electrode 2 and not higher than the upper edge of the air electrode 2.
  • a bus plate 7 is installed at one end of the air electrode 2, and a fixing clip 1 is installed at the other end of the air electrode 2.
  • the metal electrode 3 and the air electrode 2 are fixed together with the bus plate 7 through the copper sheet 5; the positive and negative electrodes built in the bus plate 7 are electrically connected to the DCDC module 4.
  • the main purpose of the DCDC module 4 is to boost the voltage to facilitate the metal-air fuel cell stack to match the load input, while increasing the voltage, reducing the output current, and reducing the loss.
  • the open metal air fuel cell unit is fixed in the electrolyte tank by a fixing clip 1.
  • the present invention places the open metal air fuel cell unit as shown in FIG. 1 in the electrolyte tank 6 as shown in FIG. 2.
  • a hollow support plate is provided in the middle of the electrolyte tank 6 to avoid direct contact between the metal electrode 3 and the electrolyte tank 6.
  • Both sides of the electrolyte tank 6 are also provided with a liquid inlet 8 and a liquid outlet 9 of different sizes.
  • the air fuel cell stack is provided with a positive bus 10 and a negative bus 11, and there are two copper pillars on one side of the positive bus 10 and the negative bus 11, which are insulated from each other.
  • the positive bus 10 and the negative bus 11 are connected.
  • the role of the copper column is to converge the current of the positive or negative electrode of each battery unit, which is equivalent to connecting the positive or negative electrode of each battery unit together.
  • each bus plate 7 leads to two terminals, which are used as the input terminal of the open metal air fuel cell unit.
  • the input terminal can be used to connect the positive and negative electrodes of the open metal air fuel cell to the positive bus with a nut. 10 and the negative bus 11 are fixed.
  • an intelligent metal-air fuel cell system is formed, as shown in Figure 4.
  • the sensing subsystem includes a temperature sensor 21, a liquid level sensor 22, and a liquid concentration sensor 24.
  • the circulating filter subsystem includes a sedimentation tank 17, a filter screen 18, a circulating pump 19 and a radiator 20.
  • the sedimentation tank is provided with a first liquid inlet, a second liquid inlet and a liquid outlet; the filter screen 18 is arranged in the sedimentation tank 17 and is located at the liquid outlet of the sedimentation tank 17.
  • the liquid outlet 9 of the electrolyte tank communicates with the first liquid inlet of the sedimentation tank 17 through the liquid outlet pipeline; the liquid outlet of the sedimentation tank 17 passes through the first liquid inlet pipeline and the circulation provided on the first liquid inlet pipeline
  • the pump 19 and the radiator 20 are in communication with the liquid inlet 8 of the electrolyte tank.
  • the electrolyte replenishment subsystem includes a replenishment tank 14, a replenishment pump 15 and a one-way valve 16; the outlet of the replenishment tank 14 passes through the second liquid inlet pipeline and the liquid supplement pump 15 and the one-way valve arranged on the second liquid inlet pipeline , It is connected with the second liquid inlet of the sedimentation tank 17.
  • the controller 23 is electrically connected to the refill pump 15 and the circulation pump 19 respectively.
  • the circulation process of the metal air fuel cell system is: the temperature sensor 21, the liquid level sensor 22 and the liquid concentration sensor 24 in the electrolyte tank 6 enter the sensor signal into the controller 23 (in this embodiment, the controller 23 is preferentially used as the ECU control chip ).
  • the controller 23 controls the circulation pump 19 and the radiator 20 to work according to the temperature information collected by the temperature sensor 21.
  • the electrolyte in the electrolyte tank 6 enters the sedimentation tank 17 from the outlet and the exit pipeline.
  • the electrolyte in the sedimentation tank 17 is blocked by the filter screen 18, and the electrolyte
  • the precipitate is deposited at the bottom of the sedimentation tank 17 and can be removed and recovered.
  • the clear electrolyte passes through the circulation pump 19, flows through the radiator 20, and returns to the electrolyte tank 6. Among them, the circulating flow rate is determined by the controller 23 according to the temperature sensor 21.
  • the controller 23 controls the operation of the supplement pump 15 according to the liquid level information and concentration information collected by the liquid level sensor 22 and the liquid concentration sensor 24.
  • the concentrated electrolyte or pure water of the replenishment pool 14 (depending on the type of battery electrolyte, acid or alkaline electrolyte supplements the concentrated electrolyte, neutral electrolyte supplements the pure water) through the one-way valve 16 into the sedimentation tank 17.
  • the injected fluid supplement flow is calculated by the controller 23 according to the data of the liquid level sensor 22 and the liquid concentration sensor 24.
  • the circulating pump 19, the refill pump 15, the ECU control chip 23, the temperature sensor 21, the liquid level sensor 22 and the liquid concentration sensor 24 are all supplied by the metal air fuel cell stack, and the voltage required by different electrical appliances can be obtained through the power supply module.
  • the number of open-type metal-air fuel cell units is n.
  • round is the rounding function.
  • the heat sink can be designed.
  • the open metal-air fuel cell system with uninterrupted power supply of the present invention innovatively adopts a large cell, and the structure of the battery unit also adopts an open type, and each battery unit adopts a parallel connection mode to reduce the transmission current, increase the transmission voltage, and improve the efficiency;
  • Each battery unit has an independent DCDC module.
  • the output voltage and the power of the metal-air fuel cell stack are related to external power supply requirements. All battery units are placed in a large electrolyte tank, and the air side of the air electrode is exposed to the outside. To absorb oxygen in the air, the ion side of the air electrode is immersed in the electrolyte, and the metal electrode is immersed in the electrolyte.
  • the electrolyte tank is equipped with various sensors, including temperature sensors, liquid level sensors and liquid concentration sensors, which pass through the pipeline It is connected with the circulating pump and the replenishing pump, responsible for the liquid circulation, and controls the electrolyte replenishment according to the data of the liquid concentration sensor; for different metal air fuel cells, the composition of the replenishing liquid is different, and for the acidic electrolyte, it mainly replenishes high-concentration acid Solution; for alkaline electrolyte, it is mainly supplemented with high-concentration alkaline solution; for neutral electrolyte, it is supplemented with pure water.
  • the liquid level sensor is responsible for accurately controlling the height of the liquid level to ensure that the ion side of the air electrode is submerged, while the air side of the air electrode is exposed.
  • the air side is designed as a groove structure (or concave structure), which can deal with small liquid level fluctuations. Adaptive.
  • the present invention solves the electrolyte maintenance and cooling problems of the existing air metal battery pack, omits the sealing structure, can replace the battery metal electrode without interruption of power supply, greatly simplifies the maintenance of the air battery, and expands the application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Hybrid Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Primary Cells (AREA)

Abstract

一种开放式可不间断供电的金属空气燃料电池系统,包括传感子系统、控制器(23)、循环过滤子系统、电解液槽(6)和若干开放式金属空气燃料电池单体;开放式金属空气燃料电池单体依次排列在电解液槽(6)内,且各个开放式金属空气燃料电池单体之间采用并联方式连接;开放式金属空气燃料电池单体的空气电极(2)为槽体结构且槽体结构的凹面朝上;传感子系统放置在电解液槽(6)内;电解液槽(6)与循环过滤子系统连通;控制器(32)用于根据传感子系统采集的电解液温度信息,控制循环过滤子系统的循环流量。该金属空气燃料电池系统省却了密封结构,可在不间断供电时进行电池金属电极(3)更换,大大简化了金属空气燃料电池的维护。

Description

一种开放式可不间断供电的金属空气燃料电池系统
本申请要求于2020年03月27日提交中国专利局、申请号为202010227262.7、发明名称为“一种开放式可不间断供电的金属空气燃料电池系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及金属空气燃料电池组领域,特别是涉及一种开放式可不间断供电的金属空气燃料电池系统。
背景技术
锂离子电池组作为目前广泛应用的动力电池,具有功率密度高,循环寿命长的特点,在动力设备中,应用广泛。但是锂离子电池也有其固有缺陷,一是能量密度低,在广泛使用锂离子电池作为能源的电动车领域,锂离子电池的低能量密度,造成了纯电动车的续航里程一直不尽如人意;二是锂离子电池对于充放电的温度有较高要求,一般的要求摄氏0℃以下,就不能充电,低于摄氏-10℃,就不能工作,对于寒冷地区冬季的使用造成很大不便。同时,锂离子电池固有的安全性问题以及回收难题,都迫切需要其他形式的电池对锂电池进行替代。空气燃料电池除了在功率密度方面和锂电池有比较大的差距外,在能量密度,产物的环境友好性和安全性上,都比锂离子电池具有很大的优越性,是一个有前途的发展方向。
空气燃料电池按照阳极不同,分为氢气燃料电池和金属空气燃料电池,氢气燃料电池,采用氢气作为阳极,氧气作为阴极,产物是水。高压 氢气的能量密度很大,但是高压氢气的储存运输难度较大,也存在较大的危险性,目前很多国家都停止了氢气燃料电池的开发。
金属空气燃料电池组有较高的功率密度,产物简单,易于回收利用,具有良好的环境友好性,金属电极能量密度高,运输存储方便,是一种非常有前途的能源设备。金属空气燃料电池,以活泼金属作为阳极,氧气作为阴极,产物为金属的盐或者氢氧化物。目前主要使用的活泼金属包括:镁、铝和锌。按照使用的电解液pH值的不同,分为酸性电解液电池,碱性电解液电池和中性电解液电池,其中,铝和锌只能使用酸性或者碱性电解液。由于镁的金属活性更强,可以采用中性盐溶液(比如NaCl溶液)作为电解液。
金属空气燃料电池原则上属于一次电池,金属空气燃料电池的金属电极在使用过程中会损耗,损耗殆尽后,必须更换,采用酸性或者碱性电解液的金属空气燃料电池,电解液中的酸碱会在电池放电过程中损耗,导致电池的性能降低,当损耗到一定程度,或产物达到一定浓度,需要更换。采用中性电解液,虽然在反应过程中,不会涉及溶液性质的变化,但产物中的金属氢氧化物不溶于水,造成电解液的流动性降低,从而降低电池的性能,当产物达到一定量时,必须进行清理。
现有的金属空气燃料电池组采用独立的电池单元,无论是电解液还是金属阳极的更换都比较复杂。虽然现有的金属空气燃料电池组也有采用电解液循环过滤的方式,但是由于各个电池单元独立,循环过滤很难全面更新电解液,会有很多死角,时间长了,还要彻底拆卸保养。另外由于电解液流动受限,所以也不容易通过电解液冷却电池单元,为了保持大功率放 电时的电池单元的温度稳定性,需要额外增加空气冷却系统,造成结构复杂,工作不可靠,BMS系统的设计难度增大。
当金属电极耗尽,由于各个单体独立,而且采用串联或者混联的方式,在更换电极时,必须中断电力供应,这对于采用金属空气燃料电池组作为供电单元的大型电站,这是无法接受的。且更换手续也比较繁琐,不利于产物的回收。
发明内容
基于此,有必要提供一种开放式可不间断供电的金属空气燃料电池系统。
为实现上述目的,本发明提供了如下方案:
一种开放式可不间断供电的金属空气燃料电池系统,包括金属空气燃料电池组、传感子系统、控制器和循环过滤子系统;
所述金属空气燃料电池组包括电解液槽和若干开放式金属空气燃料电池单体;所述开放式金属空气燃料电池单体依次排列在所述电解液槽内,且各个所述开放式金属空气燃料电池单体之间采用并联方式连接;其中,所述开放式金属空气燃料电池单体包括金属电极和空气电极;所述金属电极位于所述空气电极下面;所述空气电极为槽体结构,且所述槽体结构的凹面朝上;所述电解液槽内的电解液的高度为浸没所述金属电极和所述空气电极的下表面,且不高于所述空气电极的上沿;
所述传感子系统放置在所述电解液槽内;所述传感子系统用于获取电解液的温度信息、液位信息以及浓度信息,并将所述电解液的温度信息、 液位信息以及浓度信息发送至所述控制器;
所述电解液槽的出液口通过出液管路与所述循环过滤子系统的第一进液口连通,所述电解液槽的进液口通过第一进液管路与所述循环过滤子系统的出液口连通;
所述控制器与所述循环过滤子系统电连接;所述控制器用于根据所述电解液的温度信息,控制所述循环过滤子系统的循环流量。
可选的,还包括电解液补充子系统;所述电解液补充子系统的出液口通过第二进液管路与所述循环过滤子系统的第二进液口连通;
所述控制器与所述电解液补充子系统电连接;所述控制器用于根据所述电解液的液位信息和浓度信息,控制所述电解液补充子系统的补充流量。
可选的,所述开放式金属空气燃料电池单体还包括固定夹、DCDC模块和汇流板;
所述空气电极的一端安装有所述汇流板,所述空气电极的另一端安装有所述固定夹;所述金属电极、所述空气电极均通过铜片与所述汇流板固定在一起;
所述汇流板内置的正负极导线与所述DCDC模块进行电气连接;
所述开放式金属空气燃料电池单体通过固定夹固定在所述电解液槽内。
可选的,所述电解液槽中间设有镂空支板,所述电解液槽的两侧设有不同尺寸的进液口和出液口;所述镂空支板用于避免所述金属电极与所述 电解液槽直接接触。
可选的,所述金属空气燃料电池组设有正极总线和负极总线;每个所述开放式金属空气燃料电池单体的正极与所述正极总线相连,每个所述开放式金属空气燃料电池单体的负极与所述负极总线相连。
可选的,所述汇流板设有两个接线端子,分别为第一接线端子和第二接线端子;所述第一接线端子通过螺母将所述开放式金属空气燃料电池单体的正极与所述金属空气燃料电池组的正极总线进行固定;所述第二接线端子通过螺母将所述开放式金属空气燃料电池单体的负极与所述金属空气燃料电池组的负极总线进行固定。
可选的,所述循环过滤子系统包括沉淀池、滤网、循环泵以及散热器;
所述沉淀池开设有第一进液口和出液口;所述滤网设置在所述沉淀池内且位于所述出液口处;
所述电解液槽的出液口通过出液管路与所述沉淀池的第一进液口连通;所述沉淀池的出液口通过所述第一进液管路以及设置在所述第一进液管路上的所述循环泵和所述散热器,与所述电解液槽的进液口连通。
可选的,所述电解液补充子系统包括补液池、补液泵和单向阀;
所述补液池的出液口通过所述第二进液管路以及设置在所述第二进液管路上的所述补液泵和所述单向阀,与所述循环过滤子系统的沉淀池的第二进液口连通。
可选的,所述控制器分别与所述电解液补充子系统中的补液泵、所述循环过滤子系统的循环泵电连接。
可选的,所述传感子系统包括温度传感器、液位传感器和液体浓度传感器。
与现有技术相比,本发明的有益效果是:
本发明提供的开放式可不间断供电的金属空气燃料电池系统的电池单元采用开放式结构,共用电解液,这样只需要一套电解液更新系统就可以保证电解液的化学性质、产物含量和温度的稳定性。采用弱耦合成组技术(即各个电池单元的直接关系不密切),可以在保证电能供应的前提下,进行电池单元的电极更换和保养工作。采用横置结构(即电池并联,电解液共用),在开放环境下,空气电极端不需承受液体内部压强,因此只需将空气电极固定,无需密封,可加速电池组的生产并且保证工作的可靠性。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明开放式金属空气燃料电池单体的结构示意图;
图2为本发明电解液槽的结构示意图;
图3为本发明金属空气燃料电池组的结构示意图;
图4为本发明金属空气燃料电池组系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种开放式可不间断供电的金属空气燃料电池系统,解决了现有金属空气燃料电池组的不间断供电下的金属电极更换,以及电解液维护和冷却问题,省却了密封结构,大大简化了金属空气燃料电池的维护,拓展了用途。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
开放式:通常金属空气燃料电池组的每个电池单元是独立的,各自有单独的电解液,本发明组成的金属空气燃料电池组的每个电池单元公用电解液,电解液放在一个公用的电解池中。通过一套电解液更新系统,即可对于电解液进行更新,特别是对于采用中性电解液的镁空气燃料电池,其产物氢氧化镁为粘稠的胶体。对于独立单体电池,电解液更换困难,同时不利于产物回收,对于采用碱性或者酸性电解液的金属空气燃料电池组,在供电过程中,电解液中的酸碱会持续损耗,造成电解液的PH值变化,使得放电功率降低。采用开放式的结构,可以通过电解液的循环流动,去除反应产物,补充消耗的酸碱,同时利用循环电解液对整个金属空气燃料电池组进行冷却,特别是对于大功率的供电站,可以保证金属空气燃料电池组持续大功率的放电。
免密封:镁空气燃料电池组结构避免了结构密封的研发难题,由于结构不同于竖置电池,在开放环境下,空气电极端不需要承受液体内部压强,因此只需将空气电极固定即可,无需密封,可加速金属空气燃料电池组的生产并且保证工作的可靠性。
不间断供电:金属空气燃料电池组的金属阳极在供电过程中会不断损耗,当金属电极损耗殆尽,需要更换新的金属电极,传统的金属空气燃料电池组在更换过程中,需要中断电力供应,更换金属电极手续繁琐,而且一次需要更换所有的电极,对于损耗较低的单体,会造成金属的浪费。本发明提供的金属空气燃料电池组,各个电池单元采用弱耦合并联,可以单独更换金属耗尽单体的电极,而不影响整个系统的供电,实现持续供电,这对于基于金属空气燃料电池组的大功率供电站非常重要。
基于以上原理,本发明提供了开放式可不间断供电的金属空气燃料电池系统包括金属空气燃料电池组、传感子系统、控制器和循环过滤子系统。其中,金属空气燃料电池组包括电解液槽和若干开放式金属空气燃料电池单体(电池单元)。
开放式金属空气燃料电池单体依次排列在电解液槽内,且各个开放式金属空气燃料电池单体之间采用并联方式连接。
传感子系统放置在电解液槽内;传感子系统用于获取电解液的温度信息、液位信息以及浓度信息,并将电解液的温度信息、液位信息以及浓度信息发送至控制器。
电解液槽的出液口通过出液管路与循环过滤子系统的第一进液口连通,电解液槽的进液口通过第一进液管路与循环过滤子系统的出液口连 通;电解液补充子系统通过第二进液管路与循环过滤子系统的第二进液口连通。
控制器与循环过滤子系统电连接;控制器用于根据电解液的温度信息,控制循环过滤子系统的循环流量。
控制器与电解液补充子系统电连接;控制器用于根据电解液的液位信息和浓度信息,控制电解液补充子系统的补充流量。
如图1所示,开放式金属空气燃料电池单体包括固定夹1、空气电极2、金属电极3、DCDC模块4和汇流板7。
金属电极3为一块金属板,金属电极3以水平形式完全浸在电解液槽内的电解液中。金属电极3上设置有空气电极2,且金属电极3与空气电极2之间是电解液。空气电极2为一个槽形结构,该槽形结构的凹面朝上,且与空气接触;该槽形结构也以水平形式浸在电解液槽内的电解液中,电解液槽内的电解液的高度要求浸没空气电极2的下表面且不能高于空气电极2的上沿。
空气电极2的一端安装有汇流板7,空气电极2的另一端安装有固定夹1。金属电极3、空气电极2均通过铜片5与汇流板7固定在一起;汇流板7内置的正负极导线与DCDC模块4进行电气连接。DCDC模块4的主要目的是升压,便于金属空气燃料电池组匹配负载输入,同时提高电压,减小输出电流,降低损耗。开放式金属空气燃料电池单体通过固定夹1固定在电解液槽内。
本发明将如图1所示的开放式金属空气燃料电池单体放置在如图2所示的电解液槽6中。其中,电解液槽6中间设有镂空的支板,避免金属电极3直接和电解液槽6接触,电解液槽6两侧还设有不同尺寸的进液口8和出液口9。
根据功率要求,电解液槽6中放置若干块开放式金属空气燃料电池单体,且开放式金属空气燃料电池单体之间采用并联方式,形成如图3所示的金属空气燃料电池组,金属空气燃料电池组上设有正极总线10和负极总线11,且正极总线10和负极总线11一侧有两根铜柱,彼此绝缘,每个开放式金属空气燃料电池单体的正极和负极分别和正极总线10和负极总线11相连。其中,铜柱的作用是汇流各个电池单元的正极或者负极的电流,相当于把各个电池单元的正极或者负极接在一起。
优先的,每个汇流板7分别引出两个接线端子,作为开放式金属空气燃料电池单体的输入接线柱,输入接线柱可用螺母将开放式金属空气燃料电池单体的正极和负极与正极总线10和负极总线11进行固定。
加入传感子系统、循环过滤子系统和电解液补充子系统后,组成智能化的金属空气燃料电池系统,如图4所示。
传感子系统包括有温度传感器21、液位传感器22和液体浓度传感器24。
循环过滤子系统包括沉淀池17、滤网18、循环泵19以及散热器20。
沉淀池开设有第一进液口、第二进液口和出液口;滤网18设置在沉淀池17内且位于沉淀池17的出液口处。电解液槽的出液口9通过出液管 路与沉淀池17的第一进液口连通;沉淀池17的出液口通过第一进液管路以及设置在第一进液管路上的循环泵19和散热器20,与电解液槽的进液口8连通。
电解液补充子系统包括补液池14、补液泵15和单向阀16;补液池14的出液口通过第二进液管路以及设置在第二进液管路上的补液泵15和单向阀,与沉淀池17的第二进液口连通。
控制器23分别与补液泵15、循环泵19电连接。
金属空气燃料电池系统的循环过程为:电解液槽6中的温度传感器21、液位传感器22和液体浓度传感器24将传感信号进入控制器23(本实施例中控制器23优先为ECU控制芯片)。控制器23根据温度传感器21采集的温度信息控制循环泵19和散热器20工作。当循环泵19和散热器20工作时,电解液槽6内的电解液从出液口、出液管路进入沉淀池17,沉淀池17内的电解液被滤网18阻挡,将电解液的沉淀沉积在沉淀池17的底部,可以移除和回收,清澈的电解液通过循环泵19,流经散热器20,返回电解液槽6。其中,循环流量由控制器23根据温度传感器21来确定。
控制器23根据液位传感器22和液体浓度传感器24采集的液位信息和浓度信息控制补液泵15工作。当补液泵15工作时,可以将补液池14的浓缩电解液或纯水(视电池电解液类型不同,酸、碱性电解液补充浓缩电解液,中性电解液补充纯净水)通过单向阀16注入沉淀池17。其中,注入的补液流量由控制器23根据液位传感器22和液体浓度传感器24的数据计算得到。
循环泵19、补液泵15、ECU控制芯片23、温度传感器21、液位传感器22和液体浓度传感器24的供电都由金属空气燃料电池组提供,通过电源模块,获得不同电器的所需的电压。
下面是主要计算过程:
1.开放式金属空气燃料电池单体数量的计算
设金属空气燃料电池组额度输出功率为P,开放式金属空气燃料电池单体的额定功率为P 0,则开放式金属空气燃料电池单体个数n。
Figure PCTCN2021081746-appb-000001
其中,round为取整函数。
2.散热器的设计
设金属空气燃料电池组发热系数为c,则发热功率为:P h=cP。
散热器额定流速为Q,出入口温差为ΔT,则额定散热功率为:P e=kQΔT,其中,k为电解液的比热容。
要求P e>P h,给定Q之后,k为已知,则可以得到
Figure PCTCN2021081746-appb-000002
已知ΔT和Q,就可以进行散热器的设计。
3.循环泵的计算
流量:Q p≥Q。
扬程:整个系统的阻力系数为λ,需要满足p≥λQ。
4.补液泵的计算
由于补液泵的流量和扬程较小,直须选择一个较小的潜水泵即可。
本发明的开放式可不间断供电的金属空气燃料电池系统创新性的采用大单体,电池单元的结构形式也采取开放式,各个电池单元采用并联方式,减低传输电流,提高传输电压,提高效率;各个电池单元带有独立的DCDC模块,输出的电压和金属空气燃料电池组的功率都与对外供电要求相关,所有电池单元都放置在一个大的电解液槽中,空气电极的空气侧暴露在外以便吸收空气中的氧气,空气电极的离子侧浸在电解液中,金属电极浸没在电解液中,电解液槽中配有各种传感器,包括温度传感器、液位传感器和液体浓度传感器,通过管路和循环泵、补液泵连接,负责液体循环,并根据液体浓度传感器的数据,控制电解液补充;对于不同的金属空气燃料电池,补充液的成分不同,对于酸性电解液,主要补充高浓度的酸溶液;对于碱性电解液,主要补充高浓度的碱溶液;对于中性电解液,补充纯净水。由液位传感器负责精确控制液位高度,保证浸没空气电极的离子侧,而露出空气电极的空气侧,空气侧设计成槽形结构(或者说内凹结构),可以对于较小的液面波动自适应。
概括的说,本发明,解决了现有空气金属电池组的电解液维护和冷却问题,省却了密封结构,可以无供电中断的电池金属电极更换,大大简化了空气电池的维护,拓展了用途。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上 实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种开放式可不间断供电的金属空气燃料电池系统,其特征在于,包括金属空气燃料电池组、传感子系统、控制器和循环过滤子系统;
    所述金属空气燃料电池组包括电解液槽和若干开放式金属空气燃料电池单体;所述开放式金属空气燃料电池单体依次排列在所述电解液槽内,且各个所述开放式金属空气燃料电池单体之间采用并联方式连接;其中,所述开放式金属空气燃料电池单体包括金属电极和空气电极;所述金属电极位于所述空气电极下面;所述空气电极为槽体结构,且所述槽体结构的凹面朝上;所述电解液槽内的电解液的高度为浸没所述金属电极和所述空气电极的下表面,且不高于所述空气电极的上沿;
    所述传感子系统放置在所述电解液槽内;所述传感子系统用于获取电解液的温度信息、液位信息以及浓度信息,并将所述电解液的温度信息、液位信息以及浓度信息发送至所述控制器;
    所述电解液槽的出液口通过出液管路与所述循环过滤子系统的第一进液口连通,所述电解液槽的进液口通过第一进液管路与所述循环过滤子系统的出液口连通;
    所述控制器与所述循环过滤子系统电连接;所述控制器用于根据所述电解液的温度信息,控制所述循环过滤子系统的循环流量。
  2. 根据权利要求1所述的一种开放式可不间断供电的金属空气燃料电池系统,其特征在于,还包括电解液补充子系统;所述电解液补充子系统的出液口通过第二进液管路与所述循环过滤子系统的第二进液口连通;
    所述控制器与所述电解液补充子系统电连接;所述控制器用于根据所 述电解液的液位信息和浓度信息,控制所述电解液补充子系统的补充流量。
  3. 根据权利要求1所述的一种开放式可不间断供电的金属空气燃料电池系统,其特征在于,所述开放式金属空气燃料电池单体还包括固定夹、DCDC模块和汇流板;
    所述空气电极的一端安装有所述汇流板,所述空气电极的另一端安装有所述固定夹;所述金属电极、所述空气电极均通过铜片与所述汇流板固定在一起;
    所述汇流板内置的正负极导线与所述DCDC模块进行电气连接;
    所述开放式金属空气燃料电池单体通过固定夹固定在所述电解液槽内。
  4. 根据权利要求1所述的一种开放式可不间断供电的金属空气燃料电池系统,其特征在于,所述电解液槽中间设有镂空支板,所述电解液槽的两侧设有不同尺寸的进液口和出液口;所述镂空支板用于避免所述金属电极与所述电解液槽直接接触。
  5. 根据权利要求1所述的一种开放式可不间断供电的金属空气燃料电池系统,其特征在于,所述金属空气燃料电池组设有正极总线和负极总线;每个所述开放式金属空气燃料电池单体的正极与所述正极总线相连,每个所述开放式金属空气燃料电池单体的负极与所述负极总线相连。
  6. 根据权利要求3所述的一种开放式可不间断供电的金属空气燃料电池系统,其特征在于,所述汇流板设有两个接线端子,分别为第一接线 端子和第二接线端子;所述第一接线端子通过螺母将所述开放式金属空气燃料电池单体的正极与所述金属空气燃料电池组的正极总线进行固定;所述第二接线端子通过螺母将所述开放式金属空气燃料电池单体的负极与所述金属空气燃料电池组的负极总线进行固定。
  7. 根据权利要求1所述的一种开放式可不间断供电的金属空气燃料电池系统,其特征在于,所述循环过滤子系统包括沉淀池、滤网、循环泵以及散热器;
    所述沉淀池开设有第一进液口和出液口;所述滤网设置在所述沉淀池内且位于所述出液口处;
    所述电解液槽的出液口通过出液管路与所述沉淀池的第一进液口连通;所述沉淀池的出液口通过所述第一进液管路以及设置在所述第一进液管路上的所述循环泵和所述散热器,与所述电解液槽的进液口连通。
  8. 根据权利要求2所述的一种开放式可不间断供电的金属空气燃料电池系统,其特征在于,所述电解液补充子系统包括补液池、补液泵和单向阀;
    所述补液池的出液口通过所述第二进液管路以及设置在所述第二进液管路上的所述补液泵和所述单向阀,与所述循环过滤子系统的沉淀池的第二进液口连通。
  9. 根据权利要求2所述的一种开放式可不间断供电的金属空气燃料电池系统,其特征在于,所述控制器分别与所述电解液补充子系统中的补液泵、所述循环过滤子系统的循环泵电连接。
  10. 根据权利要求1所述的一种开放式可不间断供电的金属空气燃料电池系统,其特征在于,所述传感子系统包括温度传感器、液位传感器和液体浓度传感器。
PCT/CN2021/081746 2020-03-27 2021-03-19 一种开放式可不间断供电的金属空气燃料电池系统 WO2021190408A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11202106945T SG11202106945TA (en) 2020-03-27 2021-03-19 Open metal-air fuel cell system capable of uninterruptible power supply
US17/621,742 US11349167B1 (en) 2020-03-27 2021-03-19 Open metal-air fuel cell system capable of uninterruptible power supply
JP2021538137A JP7114815B2 (ja) 2020-03-27 2021-03-19 電力供給を継続できる開放型金属空気燃料電池システム
GB2206028.9A GB2603433B (en) 2020-03-27 2021-03-19 Open metal-air fuel cell system capable of uninterruptible power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010227262.7 2020-03-27
CN202010227262.7A CN111403778B (zh) 2020-03-27 2020-03-27 一种开放式可不间断供电的金属空气燃料电池系统

Publications (1)

Publication Number Publication Date
WO2021190408A1 true WO2021190408A1 (zh) 2021-09-30

Family

ID=71432911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081746 WO2021190408A1 (zh) 2020-03-27 2021-03-19 一种开放式可不间断供电的金属空气燃料电池系统

Country Status (6)

Country Link
US (1) US11349167B1 (zh)
JP (1) JP7114815B2 (zh)
CN (1) CN111403778B (zh)
GB (1) GB2603433B (zh)
SG (1) SG11202106945TA (zh)
WO (1) WO2021190408A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403778B (zh) * 2020-03-27 2021-06-11 北京理工大学 一种开放式可不间断供电的金属空气燃料电池系统
CN112140914B (zh) * 2020-09-10 2022-06-24 军事科学院系统工程研究院军事新能源技术研究所 一种无人机供电系统
CN112234279B (zh) * 2020-10-16 2021-09-14 唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心 一种开放式阳极易更换的金属空气燃料电池组
CN112382775B (zh) * 2020-11-11 2022-06-07 唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心 一种自密封阴极易固定的金属空气燃料电池
CN112490541B (zh) * 2020-11-27 2022-02-11 唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心 一种金属空气燃料电池系统
CN112921338A (zh) * 2021-01-22 2021-06-08 阳光电源股份有限公司 一种电解制氢装置及电解液补充方法
CN113540522A (zh) * 2021-07-12 2021-10-22 张钰 一种镁燃料电池单体及镁燃料电池系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794890A (zh) * 2009-02-01 2010-08-04 张志平 开放式镁合金燃料电池
JP2010257839A (ja) * 2009-04-27 2010-11-11 Toyota Motor Corp 空気電池用正極及び空気電池
CN110313101A (zh) * 2017-02-03 2019-10-08 藤仓复合材料科技有限公司 金属空气电池及其使用方法
CN111403778A (zh) * 2020-03-27 2020-07-10 北京理工大学 一种开放式可不间断供电的金属空气燃料电池系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040137291A1 (en) * 2002-09-12 2004-07-15 Smedley Stuart I. Self-controlling fuel cell-power system
CN1538545A (zh) * 2003-04-16 2004-10-20 刘奥宇 可控金属燃料电池
US8423215B2 (en) * 2010-08-10 2013-04-16 Tesla Motors, Inc. Charge rate modulation of metal-air cells as a function of ambient oxygen concentration
CN102709623A (zh) * 2012-05-14 2012-10-03 上海尧豫实业有限公司 锌空气电池能量预警系统
US9379395B2 (en) * 2013-07-17 2016-06-28 Elwha Llc Active cathode temperature control for metal-air batteries
CN103531832B (zh) * 2013-09-26 2017-11-03 浙江吉利控股集团有限公司 电动汽车及其铝空气电池系统
DE112014005149B4 (de) * 2013-11-21 2021-08-05 Robert Bosch Gmbh System und Verfahren zur Minimierung von mit Transport zusammenhängenden Leistungsverlusten in einem Flussbatteriesystem
US10122029B2 (en) * 2015-08-03 2018-11-06 Nissan Motor Co., Ltd. Fuel cell system and method for controlling fuel cell system
JP6822787B2 (ja) * 2016-05-31 2021-01-27 古河電池株式会社 注液型電池システム
JP6695614B2 (ja) * 2017-03-10 2020-05-20 ineova株式会社 金属負極電池
CN206806471U (zh) * 2017-05-02 2017-12-26 武汉环达电子科技有限公司 一种铝‑空气燃料电池与电解液管理系统
CN207896212U (zh) * 2017-12-11 2018-09-21 西安华江环保科技股份有限公司 一种基于氢燃料电池的不间断电源系统
CN108172864A (zh) * 2018-01-05 2018-06-15 湘潭大学 一种基于相变材料的燃料电池余热储热装置
US10581100B2 (en) * 2018-06-06 2020-03-03 GM Global Technology Operations LLC Method of operating a fuel cell stack having a temporarily disabled bleed valve
WO2020006506A2 (en) * 2018-06-29 2020-01-02 Form Energy Inc. Rolling diaphragm seal
JP7404244B2 (ja) * 2018-08-24 2023-12-25 藤倉コンポジット株式会社 金属空気電池、及びその使用方法
CN110112439B (zh) * 2019-05-24 2021-06-11 北京理工大学 一种金属空气电池电解液动态循环过滤装置
CN110165341A (zh) * 2019-05-28 2019-08-23 武汉环达电子科技有限公司 一种便携式铝-空气燃料电池与热管理系统
CN110581293A (zh) * 2019-09-30 2019-12-17 西安新衡科测控技术有限责任公司 一种基于ht-pem的甲醇水燃料电池控制系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794890A (zh) * 2009-02-01 2010-08-04 张志平 开放式镁合金燃料电池
JP2010257839A (ja) * 2009-04-27 2010-11-11 Toyota Motor Corp 空気電池用正極及び空気電池
CN110313101A (zh) * 2017-02-03 2019-10-08 藤仓复合材料科技有限公司 金属空气电池及其使用方法
CN111403778A (zh) * 2020-03-27 2020-07-10 北京理工大学 一种开放式可不间断供电的金属空气燃料电池系统

Also Published As

Publication number Publication date
US20220158275A1 (en) 2022-05-19
JP2022531813A (ja) 2022-07-12
SG11202106945TA (en) 2021-10-28
CN111403778A (zh) 2020-07-10
JP7114815B2 (ja) 2022-08-08
GB2603433A (en) 2022-08-03
GB2603433B (en) 2023-01-04
US11349167B1 (en) 2022-05-31
CN111403778B (zh) 2021-06-11
GB202206028D0 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
WO2021190408A1 (zh) 一种开放式可不间断供电的金属空气燃料电池系统
CN211872097U (zh) 一种宽功率电解水制氢系统
CN102456939A (zh) 改进的大容量镁空气电池
CN102201590A (zh) 一种酸性锌单液流储能电池
CN2927331Y (zh) 一种流动态钒储能装置
CN101399334A (zh) 铅酸蓄电池极群制作工艺
CN108365301B (zh) 一种可充放电式液态金属电池
CN220099216U (zh) 一种aem电解水制氢一体化集成设备
CN102856573A (zh) 一种锌钒液流储能电池
CN108615961A (zh) 一种梯次互补电-热平衡储电充电系统及方法
CN113964359A (zh) 有机液流电池与全钒液流电池互补的储能系统及储能方法
CN208352484U (zh) 智能锂电池组
CN112234279B (zh) 一种开放式阳极易更换的金属空气燃料电池组
CN114068995B (zh) 全铁氧化液流电池系统
CN216864346U (zh) 一种双侧供水的pem电解槽制氢系统
CN219998328U (zh) 一种大圆柱液冷pack包
CN216250822U (zh) 有机液流电池与全钒液流电池互补的储能系统
CN114069005B (zh) 全钒液流电池的换热方法
CN211578916U (zh) 一种钛酸锂电池储能系统
CN213124642U (zh) 一种防水防漏的可充式锂电池
CN108400364A (zh) 抑制铅液流电池枝状铅生成的电解液添加剂及其制备方法、铅液流电池电解液及铅液流电池
CN117276614B (zh) 一种以双氧水为电子能量载体的储能系统
CN220224351U (zh) 一种aem电解水技术的系统化设备
CN114050358B (zh) 一种三腔室浓差铝空气电池系统
CN209626280U (zh) 一种电池箱冷却装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021538137

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202206028

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210319

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775704

Country of ref document: EP

Kind code of ref document: A1