WO2021190273A1 - 一种通信方法、装置及系统 - Google Patents

一种通信方法、装置及系统 Download PDF

Info

Publication number
WO2021190273A1
WO2021190273A1 PCT/CN2021/079159 CN2021079159W WO2021190273A1 WO 2021190273 A1 WO2021190273 A1 WO 2021190273A1 CN 2021079159 W CN2021079159 W CN 2021079159W WO 2021190273 A1 WO2021190273 A1 WO 2021190273A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
message
network device
identity
network
Prior art date
Application number
PCT/CN2021/079159
Other languages
English (en)
French (fr)
Inventor
雷中定
王海光
康鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21774861.5A priority Critical patent/EP4117320A4/en
Publication of WO2021190273A1 publication Critical patent/WO2021190273A1/zh
Priority to US17/952,879 priority patent/US20230014494A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/69Identity-dependent
    • H04W12/71Hardware identity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/69Identity-dependent
    • H04W12/75Temporary identity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a communication method, device and system.
  • remote identification means that the drone or remote control is When the aircraft is flying, it can provide identification information such as the identity and address of the drone or remote control, so that other devices on the ground or in the airspace where the drone is located can determine the identity and location of the drone or remote control.
  • the aircraft system is supervised to reduce the potential safety risks brought by the UAV system.
  • This application provides a communication method, device, and system to realize communication when the UAV system and the mobile communication network are combined, thereby achieving the purpose of safe and efficient communication.
  • an embodiment of the present application provides a communication method, including: a first network device receives a first message sent by a first user equipment, where the first message is used to request identity verification of a second user equipment; The first network device verifies whether the identity of the second user equipment is legal; the first network device sends a verification result to the first user equipment, and the verification result is used to indicate whether the identity of the second user equipment is legitimate.
  • the first network device may include the newly added UAV system traffic management UTM/UAV system service provision function USS in the mobile communication system.
  • the user equipment involved in the UAV system can use the advantages of the mobile communication network to request the network equipment to assist in the authentication of the user equipment during the communication process, and then can safely send and receive messages (messages can also use Key or security parameter encryption), which can effectively avoid the leakage of sensitive information of the drone.
  • messages can also use Key or security parameter encryption
  • the amount of symmetric key calculations is less, which can ensure the efficiency of the communication process.
  • the first message includes first credentials for verifying the first user equipment, and before the first network device verifies whether the identity of the second user equipment is legal, so The first network device may also verify that the first user equipment is legal according to the first credentials; the first network device verifies whether the identity of the second user equipment is legal, including: if the first user is verified If the device is legal, the first network device verifies whether the identity of the second user equipment is legal according to the first message.
  • the network device before the network device executes the request of the first user equipment, it can also authenticate the first user equipment first, and then process the request of the first user equipment when it is guaranteed that the first user equipment is legal. The security of the communication process is further ensured, and the waste of processing resources of the network equipment can also be avoided.
  • the first network device may also generate second credentials for the first user equipment, and/or The first network device may also receive second credentials generated by the first user equipment; the first network device verifies that the first user equipment is legal according to the first credentials, including: the first network device According to the first credentials and the second credentials, it is determined that the first user equipment is legal.
  • the first message includes identification information of the second user equipment, and the identification information of the second user equipment is a temporary identity; the first network device verifies the second user Whether the identity of the device is legal includes: the first network device determines the permanent identity of the second user equipment according to the temporary identity of the second user equipment; the first network device determines the permanent identity of the second user equipment according to the second user equipment The permanent identity of the device verifies whether the second user device is authenticated or authorized.
  • the first message includes information used for remote identification of the second user equipment, and further includes: the first network device may also receive information from the second user equipment for The information of the second user equipment remote identification; the first network equipment to verify whether the identity of the second user equipment is legal, including: the first network equipment judging from the second user equipment for all Whether the information of the second user equipment remote identification is consistent with the information included in the first message for the second user equipment remote identification.
  • an embodiment of the present application further provides a communication method, including: a first user equipment receives a second message sent by a second user equipment; the first user equipment sends a message to the first network in response to the second message The device sends a first message, the first message is used to request identity verification of the second user equipment; the first user equipment receives the verification result sent by the first network device, and if the verification result indicates The identity of the second user equipment is legal, and the first user equipment processes the second message.
  • the user equipment involved in the UAV system can use the advantages of the mobile communication network to request the network equipment to assist in the authentication of the user equipment during the communication process, and then can safely send and receive messages (messages can also use Key or security parameter encryption), which can effectively avoid the leakage of sensitive information of the drone.
  • the second user equipment broadcasts the second message.
  • the second message is encrypted with a symmetric key, which ensures the security in the communication process and avoids giving Second, the user equipment frequently pre-configures a large number of certificates, and compared with the asymmetric public-private key pair, the symmetric key encryption and decryption process requires less computation, which can improve the efficiency in the communication process.
  • the second message includes identification information of the second user equipment and/or information used for remote identification of the second user equipment;
  • the first message includes one of the following or Multiple types: identification information of the second user equipment, first credentials used to verify the first user equipment, the second message, or information used for remote identification of the second user equipment.
  • the first user equipment may also receive the second credentials generated by the first network device and/or the The first user equipment generates the second credentials.
  • the second credentials generated by the first network device are the same as the second credentials generated by the first user equipment.
  • the sending the first message to the first network device includes: sending the first message to the first network device for one or more received second messages broadcast by the second user equipment.
  • the first message is specifically used to request the identity verification of the one or more second user equipments.
  • the first user equipment may aggregate the second messages broadcast by one or more second user equipments. Specifically, the first user equipment may wait for a preset period of time, and collect one message received within the preset period of time. Or aggregate the second messages broadcast by multiple second user equipment, or the first user equipment may broadcast the set number of second user equipment after receiving the set number of second messages broadcast by the second user equipment The second message is aggregated.
  • the first user equipment may also determine the first user equipment and the second user equipment according to the second message Whether the distance between the first user equipment and the second user equipment is within the preset distance range; the first user equipment sending the first message to the first network equipment includes: if the distance between the first user equipment and the second user equipment is within the preset distance Within the range, the first user equipment sends a first message to the first network device.
  • the first user equipment can filter the second message (or the second user equipment) in advance according to its distance from the second user equipment, and filter the second user equipment whose distance is not within the preset distance range.
  • the device does not respond, thereby saving processing resources and ensuring high efficiency in the communication process.
  • the method before the sending the first message to the first network device, the method further includes:
  • the sending of the first message by the first user equipment to the first network device includes:
  • the first user equipment sends the first message to the first network device.
  • the first user equipment can filter the second message (or the second user equipment) in advance at the time when the second user equipment broadcasts the second message, and the time of broadcasting the second message is not within the preset time range
  • the second user equipment inside does not respond, thereby saving processing resources and ensuring high efficiency in the communication process.
  • an embodiment of the present application further provides a communication method, including: the second user equipment encrypts the second message to be sent according to the symmetric key generated for the second network device when the second user equipment enters the network; The second user equipment broadcasts the encrypted second message.
  • the second network device may include access and mobility management functions AMF/Unified Data Management UDM, or AMF/UDM and UTM/USS.
  • the second user equipment broadcasts the second message, and the second message is encrypted with the symmetric key, which ensures the security in the communication process, avoids frequent pre-configuration of certificates for the second user equipment, and compares with asymmetric public and private
  • the encryption and decryption process of the key pair and the symmetric key requires less calculations, which can improve the efficiency in the communication process.
  • the second user equipment encrypts the second message to be sent according to the symmetric key generated for the second network device when the second user equipment enters the network, including: the second user equipment Use the symmetric key generated for the second network device when the second user equipment accesses the network to encrypt the second message to be sent; or the second user equipment generates for the second network device when the second user equipment accesses the network
  • the symmetric key of is deduced to generate a subkey of the symmetric key; the second user equipment uses the subkey to encrypt the second message to be sent.
  • the key for encrypting the second message may be a symmetric key generated for the second network device when the second user equipment enters the network, or may be a subkey generated by deriving the symmetric key.
  • the second user equipment may also send a derivation parameter and/or a derivation algorithm for generating the subkey to the second network device.
  • the second message includes identification information of the second user equipment and/or information used for remote identification of the second user equipment.
  • the identification information of the second user equipment includes the temporary identification of the second user equipment and/or the permanent identification of the second user equipment; the information used for the remote identification of the second user equipment includes One or more of the following: the location information of the second user equipment, the time when the second user equipment broadcasts the second message, the manufacturer of the second user equipment, or the second user equipment access The operator (or the operator to which the mobile communication network belongs).
  • an embodiment of the present application also provides a communication method, including: a second network device receives a first message sent by a first user equipment, where the first message is used to request identity verification of the second user equipment; The second network device verifies whether the identity of the second user equipment is legal; the second network device sends a verification result to the first user equipment, and the verification result is used to indicate the identity of the second user equipment is it legal.
  • the second user equipment broadcasts the second message, and the second message is encrypted with the symmetric key, which ensures the security in the communication process, avoids frequent pre-configuration of certificates for the second user equipment, and compares with asymmetric public and private
  • the encryption and decryption process of the key pair and the symmetric key requires less calculations, which can improve the efficiency in the communication process.
  • the drone or inspection equipment is first authenticated, and then messages are sent and received safely (that is, encrypted with a key or security parameter), which can effectively prevent the drone's sensitive information from leaking.
  • the second network device may also receive an encrypted second message from the second user equipment.
  • the second message is encrypted using a symmetric key generated by the second network device when the second user equipment enters the network; or the second message is encrypted using a subkey generated by the symmetric key derivation.
  • the first message includes one or more of the following: identification information of the second user equipment, first credentials used to verify the first user equipment, and the second message , Or information used for remote identification of the second user equipment.
  • the second message includes identification information of the second user equipment and/or information used for remote identification of the second user equipment.
  • the first message is also used to request the second user equipment to encrypt the key used by the second message; and/or the first message is also used to request to generate the second The derivation parameter and/or the derivation algorithm of the subkey used by the user equipment to encrypt the second message; and/or the first message is also used to request the second network device to decrypt the second message.
  • the verification result further includes the key used by the second user equipment to encrypt the second message; and/or the derivation parameter and/or the derivation algorithm of the subkey used by the second user equipment to encrypt the second message; And/or the decrypted second message.
  • the second network device may also receive a derivation parameter and/or a derivation algorithm for generating a subkey from the second user equipment; the second network device may 2.
  • the symmetric key generated for the second network device when the user equipment enters the network is used to generate the derivation parameter and/or the derivation algorithm of the subkey, and generate the subkey of the symmetric key.
  • the first message includes first credentials for verifying the first user equipment, and before the second network device verifies whether the identity of the second user equipment is legal, the first The second network device may also verify that the first user equipment is legal according to the first credentials; the second network device verifies whether the identity of the second user equipment is legal, including: if verifying that the first user equipment is legal , The second network device verifies whether the identity of the second user equipment is legal according to the first message.
  • the network device before the network device executes the request of the first user equipment, it can also authenticate the first user equipment first, and then process the request of the first user equipment when it is guaranteed that the first user equipment is legal. The security of the communication process is further ensured, and the waste of processing resources of the network equipment can also be avoided.
  • the second network device may also generate second credentials for the first user equipment, and/or The second network device may also receive second credentials generated by the first user equipment; the second network device verifies that the first user equipment is legal according to the second credentials, including: the second network device According to the first credentials and the second credentials, it is determined that the first user equipment is legal.
  • the first message includes identification information of the second user equipment, and the identification information of the second user equipment is a temporary identity; the second network device verifies the second user Whether the identity of the device is legal includes: the second network device determines the permanent identity of the second user equipment according to the temporary identity of the second user equipment; the second network device determines the permanent identity of the second user equipment according to the second user equipment The permanent identity of the device verifies whether the second user device is authenticated or authorized.
  • the first message includes information used for remote identification of the second user equipment
  • the second network device may also receive information for the second user equipment from the second user equipment.
  • Information for remote identification of the user equipment the second network equipment verifying whether the identity of the second user equipment is legal, including: the second network equipment judging from the second user equipment for the second Whether the information of the remote identification of the user equipment is consistent with the information included in the first message for the remote identification of the second user equipment.
  • an embodiment of the present application also provides a communication method, including: a first user equipment receives a second message broadcast by a second user equipment, and the second message is directed to the second network when the second user equipment enters the network. Symmetric key encryption generated by the device; in response to the second message, the first user equipment sends a first message to the second network device, and the first message is used to request the identity of the second user equipment Verification; the first user equipment receives the verification result sent by the first network device, and if the verification result indicates that the identity of the second user equipment is legal, the first user equipment processes the second message .
  • the user equipment involved in the UAV system can use the advantages of the mobile communication network to request the network equipment to assist in the authentication of the user equipment during the communication process, and then can safely send and receive messages (messages can also use Key or security parameter encryption), which can effectively avoid the leakage of sensitive information of the drone.
  • the second user equipment broadcasts the second message.
  • the second message is encrypted with a symmetric key, which ensures the security in the communication process and avoids giving Second, the user equipment frequently pre-configures a large number of certificates, and compared with the asymmetric public-private key pair, the symmetric key encryption and decryption process requires less computation, which can improve the efficiency in the communication process.
  • the second message includes identification information of the second user equipment and/or information used for remote identification of the second user equipment.
  • the first message includes one or more of the following: identification information of the second user equipment, first credentials used to verify the first user equipment, the second message, or used for the second user equipment Information for remote identification of user equipment.
  • the first message is also used to request the second user equipment to encrypt the key used by the second message; and/or the first message is also used to request to generate the second The derivation parameter and/or the derivation algorithm of the subkey used by the user equipment to encrypt the second message; and/or the first message is also used to request the second network device to decrypt the second message.
  • the verification result further includes the key used by the second user equipment to encrypt the second message; and/or the derivation parameter and/or the derivation algorithm of the subkey used by the second user equipment to encrypt the second message; And/or the decrypted second message.
  • the first user equipment may also receive second credentials generated by the second network device, and/or The first user equipment can also generate second credentials.
  • the second credentials generated by the first network device are the same as the second credentials generated by the first user equipment.
  • the sending the first message to the second network device includes: sending the first message to the first network device for one or more received second messages broadcast by the second user equipment.
  • the first message is specifically used to request the identity verification of the one or more second user equipments.
  • the first user equipment may also determine the first user equipment and the second user equipment according to the second message Whether the distance between the first user equipment and the second network equipment is within a preset distance range; the first user equipment sending a first message to the second network equipment includes: if the distance between the first user equipment and the second user equipment is within the preset distance Within the range, the first user equipment sends a second message to the second network device.
  • the first user equipment may also determine, according to the second message, that the second user equipment broadcasts the second message Whether the time is within a preset time range; sending the first message to the second network device by the first user equipment includes: if the time when the second user equipment broadcasts the second message is within the preset time range , The first user equipment sends the first message to the second network equipment.
  • an embodiment of the present application also provides a communication method, including: a second user equipment receives a third message sent by the first user equipment, the third message is used to request the second user equipment to reply for remote Identity recognition information; the second user equipment sends a fourth message to the first user equipment, and the fourth message includes information for the remote identity of the second user equipment.
  • the third message further includes one or more of the following: a security token Token used to verify the first user equipment, identification information of the first user equipment, and the first user equipment sending the third The time of the message, the location information of the first user equipment, the cell information of the first user equipment, or the signal strength of the message received by the first user equipment from the network device.
  • a security token Token used to verify the first user equipment
  • identification information of the first user equipment and the first user equipment sending the third The time of the message, the location information of the first user equipment, the cell information of the first user equipment, or the signal strength of the message received by the first user equipment from the network device.
  • the first user equipment can request the second user equipment to send information for remote identification, and the second user equipment sends the remote identification information according to the request of the first user equipment, which reduces the channel resources occupied by the drone broadcast.
  • the message in the communication process is encrypted, which ensures the safety and efficiency of the communication process, and avoids the occupation of channel resources caused by continuous broadcasting by the second user equipment.
  • the second user equipment may also determine the first user equipment and the first user equipment according to the third message. Whether the distance of the second user equipment is within a preset distance range; the second user equipment sending a fourth message to the first user equipment includes: if the first user equipment and the second user equipment The distance of the device is within a preset distance range, and the second user equipment sends a fourth message to the first user equipment.
  • the second user equipment can filter the third message (or the first user equipment) in advance according to its distance from the first user equipment, and filter the first user equipment whose distance is within the preset distance range. Do not respond, thereby saving processing resources and ensuring high efficiency in the communication process.
  • the second user equipment may also determine whether the first user equipment is Is located in the cell where the second user equipment is located or is located in a neighboring cell of the cell where the second user equipment is located; sending a fourth message by the second user equipment to the first user equipment includes: if the first user equipment The user equipment is located in a cell where the second user equipment is located or is located in a neighboring cell of the cell where the second user equipment is located, and the second user equipment sends a fourth message to the first user equipment.
  • the second user equipment can filter the third message (or the first user equipment) in advance according to whether the first user equipment is located in its cell or neighboring cell, and filter the third message (or the first user equipment) that is not located in its cell or neighboring cell.
  • the first user equipment does not respond, thereby saving processing resources and ensuring high efficiency in the communication process.
  • the second user equipment may also send a fifth message to the network device, where the fifth message is used for Instruct the network equipment to verify the legitimacy of the first user equipment; the second user equipment receives a sixth message sent from the network equipment, the sixth message is used to indicate the identity of the first user equipment is it legal.
  • the second user equipment can take advantage of the mobile communication network to request the network equipment to assist in the authentication of the user equipment, and then can send and receive messages safely, which can effectively avoid the leakage of sensitive information from the drone.
  • the sixth message further includes the public key of the first user equipment, or the first symmetric key generated by the second network device when the first user equipment enters the network, or is used for Generate the derivation parameter and/or the derivation algorithm of the first subkey of the first symmetric key.
  • the third message further includes a first credential used to verify the identity of the first user equipment, and the first credential includes the first user equipment and the first network device A token generated by the first user equipment after authentication, or a digital certificate of the first user equipment signed by the first network equipment, the digital certificate including the public key of the first user equipment;
  • the second user equipment Before the second user equipment sends the fourth message to the first user equipment, the second user equipment may also perform identity verification on the first user equipment according to the first credential, and the second user equipment The device determines that the identity of the first user equipment is legal.
  • the second user equipment can verify whether the identity of the first user equipment is legal or not, which can ensure the security in the communication process.
  • the second user equipment may also use the public key of the first user equipment to send the fourth message to be sent.
  • Message encryption or the second user equipment may also use the first symmetric key generated by the network device when the first user equipment enters the network to encrypt the fourth message to be sent; or the second user equipment may also encrypt the fourth message to be sent according to the
  • the first symmetric key is deduced to obtain the first subkey; the fourth message to be sent is encrypted by using the first subkey.
  • an embodiment of the present application also provides a communication method, including: a first user equipment sends a third message to a second user equipment, the third message is used to request the second user equipment to reply for a remote identity Recognized information; the first user equipment receives a fourth message from the second user equipment, the fourth message including information used for remote identification of the second user equipment.
  • the third message further includes one or more of the following: a first credential used to verify the identity of the first user equipment, identification information of the first user equipment, and the first user equipment sending the third The time of the message, the total number of messages that the first user equipment has sent, count, the location information of the first user equipment, the cell information of the first user equipment, or the first user equipment to receive a message from the network device Signal strength.
  • the first user equipment can request the second user equipment to send information for remote identification, and the second user equipment sends the remote identification information according to the request of the first user equipment, which reduces the channel resources occupied by the drone broadcast.
  • the message in the communication process is encrypted, which ensures the safety and efficiency of the communication process, and avoids the occupation of channel resources caused by continuous broadcasting by the second user equipment.
  • the first credential used to verify the identity of the first user equipment includes a Token generated for the first user equipment after the first user equipment and the first network equipment are authenticated, or The digital certificate of the first user equipment signed by the first network device, and the digital certificate includes the public key of the first user equipment.
  • the fourth message is encrypted with the public key of the first user equipment, or the fourth message is encrypted with the second symmetric key generated for the second network device when the second user equipment enters the network. Encryption, or the fourth message is encrypted using a second subkey derived from the second symmetric key.
  • the present application provides a communication device, which has the function of implementing any of the foregoing aspects or the implementation method in any aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the present application provides a communication device including: a processor and a memory; the memory is used to store computer execution instructions, and when the device is running, the processor executes the computer execution instructions stored in the memory to enable the The device executes any aspect or the implementation method in any aspect described above.
  • the present application provides a communication device, including: including units or means for performing each step of any of the above aspects.
  • the present application provides a communication device including a processor and an interface circuit.
  • the processor is configured to communicate with other devices through the interface circuit and execute any method provided in any of the above aspects.
  • the processor includes one or more.
  • the present application provides a communication device, including a processor, configured to be connected to a memory, and configured to call a program stored in the memory to execute the method in any implementation manner of any of the foregoing aspects.
  • the memory can be located inside the device or outside the device.
  • the processor includes one or more.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, which when run on a computer, causes a processor to execute the method described in any of the foregoing aspects.
  • this application also provides a computer program product including instructions, which when run on a computer, causes the computer to execute the method described in any of the foregoing aspects.
  • this application also provides a chip system, including a processor, configured to execute the methods described in the foregoing aspects.
  • the present application also provides a communication system, including a first network device for executing the foregoing first aspect or any implementation method of the first aspect, and for executing any implementation of the foregoing second aspect or the second aspect The first user equipment and the second user equipment of the method.
  • the present application also provides a communication system, including a second user equipment configured to execute the foregoing third aspect or any implementation method of the third aspect, and configured to execute any implementation of the foregoing fourth aspect or the fourth aspect
  • the second network device of the method and the first user equipment used to implement the foregoing fifth aspect or any implementation method of the fifth aspect.
  • the present application also provides a communication system, including a second user equipment configured to execute any implementation method of the sixth aspect or the sixth aspect, and a second user equipment configured to execute any implementation of the seventh aspect or the seventh aspect.
  • the first user equipment of the method is not limited to the communication system.
  • FIG. 1 is a schematic diagram of a possible network architecture provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a possible network architecture provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of a possible network architecture provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a possible network architecture provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 8 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 9 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 10 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of a communication device provided by an example of this application.
  • the word "exemplary” is used to mean serving as an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. Rather, the term example is used to present the concept in a concrete way.
  • Unmanned aerial system which generally includes unmanned aerial vehicle (UAV) and drone remote control (UAV controller, UAVC).
  • UAV unmanned aerial vehicle
  • UAV controller UAV controller
  • UAV controller UAV controller
  • the drone can fly autonomously or without The man-machine can fly according to the received control instructions of the remote control.
  • the remote control can send control instructions to the drone, and the drone can send the captured photos and videos to the remote control after aerial photography.
  • the remote control and the drone are directly connected (point-to-point connection) through wireless signals (such as Wi-Fi).
  • the remote control of the unmanned aerial vehicle is also referred to as a remote control or remote control device for short.
  • the mobile communication network (or communication system) has many advantages, such as wide area coverage, high reliability, and the ability to support high-speed mobile services. If the UAV system is combined with the mobile communication network, the UAV system can achieve super vision. Distance high and reliable flight.
  • the prior art does not provide a solution for combining UAV systems and mobile communication networks to achieve communication. Especially after UAV systems and mobile communication systems are combined, how to achieve reliable supervision requires more attention, so as to ensure The safety of unmanned aerial vehicle systems and public safety (including flight-related safety and information-related security) prevent incidents such as unmanned aerial vehicles from interfering with aircraft flight operations and launching terrorist attacks through unmanned aerial vehicles.
  • Remote identification means that the drone or remote control can provide identification information (such as identity information, location information, time information, etc.) during the flight of the drone to enable other equipment located on the ground and/or in the airspace where the drone is located Able to determine the identity and location of the drone or remote control and other information.
  • the identity information can include one of the drone's identification code (such as UAV-ID), the remote control's identification code (such as UAVC-ID), or the drone system's identification code (such as UAS-ID) or Many kinds.
  • the mobile communication network can assign an identification code or a contract identification code (for example, UE-ID) to the drone.
  • UAV-ID and UE-ID are different, that is, a drone can Correspond to more than two identification codes (such as UAV-ID and UE-ID).
  • the location information can be represented by one or more types of information such as longitude information, latitude information, or atmospheric pressure.
  • the time information may be the timestamp when the UAV sends the identification information, etc.
  • the identification information may also include information such as the manufacturer of the drone and/or the operator accessed by the drone.
  • the operator accessed by the drone may be an operator to which the mobile communication network accessed by the drone belongs.
  • Network equipment refers to equipment that can provide wireless access functions for terminals.
  • the network equipment can support at least one wireless communication technology, such as long term evolution (LTE), new radio (NR), wideband code division multiple access (WCDMA), and so on.
  • LTE long term evolution
  • NR new radio
  • WCDMA wideband code division multiple access
  • the network device may include an access network device.
  • the network equipment includes but is not limited to: next-generation base stations in the fifth-generation mobile communication system (5th-generation, 5G) or next-generation node B (gNB), evolved node B (evolved node B, eNB) ), radio network controller (RNC), node B (node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved node B, or home node B, HNB, baseband unit (BBU), transmitting and receiving point (TRP), transmitting point (TP), mobile switching center, small station, micro Stand and wait.
  • 5G fifth-generation mobile communication system
  • gNB next-generation node B
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved node B, or home node B, HNB, baseband unit (
  • the network device can also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario, or the network device can They are relay stations, access points, in-vehicle devices, terminals, wearable devices, and network devices in future mobile communications or network devices in the future evolved public mobile land network (PLMN).
  • CU centralized unit
  • DU distributed unit
  • PLMN public mobile land network
  • the network equipment may include a core network (CN) equipment, and the core network equipment includes, for example, an access and mobility management function (AMF) and so on.
  • CN core network
  • AMF access and mobility management function
  • the network equipment can also include (new) equipment used to manage the UAV and remote control, or new equipment in the (existing) network equipment.
  • equipment that manages drones and remote controls can be called unmanned aerial system traffic management (UTM) network functions, and/or unmanned aerial system service suppliers (UAS service suppliers, USS).
  • UTM/USS can store the relevant information of the UAV system, such as authentication information. Based on the authentication information, UTM/USS can authenticate the UAV and the remote control.
  • the UAV supervision department can also supervise the UAV system through UTM/USS to ensure the safety of UAV flight control and public safety. In some possible cases, UTM/USS may have the function of remotely controlled drone flight.
  • UTM/USS may belong to or be deployed in an operator's network, or may belong to or be deployed in a third-party entity, which is not limited in the embodiment of the present application.
  • the embodiments of this application do not make distinctions, or take UTM/USS belonging to or deployed on the operator’s network as an example. It can be understood that for scenarios where UTM/USS belongs to or deployed on a third-party entity, this application implements The communication process provided in the example is also applicable.
  • the network device includes at least a first network device and/or a second network device, wherein the related descriptions of the first network device and the second network device can be See the subsequent examples.
  • UE refers to equipment with wireless transceiver functions, which can be called terminal equipment, mobile station (MS), mobile terminal (MT), terminal, etc.
  • the specific form of the user equipment may be UAV, inspection equipment used to supervise drones, airborne terminals, airplanes, high-speed rails, vehicle-mounted terminals, and so on.
  • UAV can be understood as a kind of aircraft that uses radio equipment for remote control or its own program to control and manipulate without manning.
  • the terminal can support at least one wireless communication technology, such as LTE, NR, WCDMA, future communication systems, and so on.
  • Credentials which can include one or more of cookies, tokens, tickets, keys, passwords, or certificates.
  • the key may include a symmetric key or an asymmetric public-private key pair. In the embodiment of the present application, it is mainly described that the key includes a symmetric key.
  • the "and/or” in this application describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone. This situation.
  • the character "/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the multiple involved in this application refers to two or more.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wide area network
  • general packet Wireless business general packet radio service, GPRS
  • LTE LTE frequency division duplex
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • Operator network can also be called PLMN network. It is a network established and operated by the government or operators approved by the government for the purpose of providing land mobile communication services to the public, mainly mobile network operators (MNO) A public network that provides users with mobile broadband access services.
  • MNO mobile network operators
  • the operator network or PLMN network described in the embodiments of this application may be a network that meets the requirements of the 3rd generation partnership project (3rd generation partnership project, 3GPP) standard, referred to as the 3GPP network.
  • 3rd generation partnership project 3rd generation partnership project
  • 3GPP networks are operated by operators, including but not limited to fifth-generation mobile communication (5th-generation, 5G) networks (referred to as 5G networks), and fourth-generation mobile communication (4th-generation, 4G) networks (referred to as 4G networks) , Third-generation mobile communication technology (3rd-generation, 3G) network (referred to as 3G network) and second-generation wireless telephone technology (2nd-generation wireless telephone technology, 2G) network (referred to as 2G network), etc.
  • 5G networks fifth-generation mobile communication
  • 4G networks fourth-generation mobile communication (4th-generation, 4G) networks
  • 3G network Third-generation mobile communication technology
  • 2G network second-generation wireless telephone technology
  • an operator network such as an MNO network
  • next-generation network ie, 5G network
  • 5G network has also adjusted its network architecture relative to 4G networks.
  • the 5G network splits the mobility management entity (MME) in the 4G network into multiple network functions including AMF and session management function (SMF).
  • MME mobility management entity
  • SMF session management function
  • the 5G network architecture shown in FIG. 1 is taken as an example to describe the application scenarios used in the present application. It is understandable that other communication networks are similar to the 5G network architecture, and therefore will not be repeated.
  • the network architecture may include: a terminal equipment (also referred to as user equipment) part, an operator network part, and a data network (DN) part.
  • DN data network
  • the terminal equipment part includes a terminal equipment 110, and the terminal equipment 110 may also be referred to as user equipment (UE).
  • the terminal device 110 involved in the embodiments of this application can be connected to an access network device in the (radio) access network ((radio) access network, (R) AN) 140 Or multiple core networks (core networks, CN) communicate.
  • the terminal device 110 may also be referred to as an access terminal, a terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a wireless network device, a user agent, or a user device.
  • the terminal device 110 can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as a ship, etc.); it can also be deployed in the air (such as a plane, a balloon, a satellite, etc.).
  • the terminal device 110 may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smart phone, a mobile phone, or a wireless local loop (WLL).
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • PDAs personal digital assistants
  • vehicle-mounted devices wearable devices, drones, or the Internet of Things
  • car Terminals in networking fifth generation (5G) networks, and terminals of any form in future networks, relay user equipment, or future evolution of public land mobile network (PLMN) A terminal, etc.
  • PLMN public land mobile network
  • the relay user equipment may be, for example, a 5G residential gateway (RG).
  • RG 5G residential gateway
  • the terminal device 110 may be a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control, a wireless terminal in self-driving (self-driving), and a remote Wireless terminals in medical (remote medical), wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, and smart homes Wireless terminals, etc.
  • VR virtual reality
  • AR augmented reality
  • remote Wireless terminals in medical remote Wireless terminals in medical
  • wireless terminals in smart grids wireless terminals in transportation safety
  • wireless terminals in smart cities and smart homes Wireless terminals, etc.
  • the terminal device 110 includes an unmanned aerial vehicle and an inspection device as an example for description.
  • the operator network may include network exposure function (NEF) 131, network storage function (network function repository function, NRF) 132, policy control function (PCF) 133, unified data management (unified data management, UDM) network element 134, application function (AF) 135, authentication server function (authentication server function, AUSF) 136, AMF 137, SMF 138, user plane function (UPF) 139, and (R) AN140 Wait.
  • NRF network exposure function
  • PCF policy control function
  • unified data management unified data management
  • UDM application function
  • AF authentication server function
  • AUSF authentication server function
  • UMF user plane function
  • R user plane function
  • the data network DN 120 may also be referred to as a packet data network (packet data network, PDN), and is usually a network outside the operator's network, such as a third-party network.
  • the operator network can access multiple data network DN 120, and multiple services can be deployed on the data network DN 120, which can provide services such as data and/or voice for the terminal device 110.
  • the data network DN 120 may be a private network of a smart factory, the sensors installed in the workshop of the smart factory may be terminal devices 110, and the control server of the sensor is deployed in the data network DN 120, and the control server may provide services for the sensors.
  • the sensor can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • the data network DN 120 may be the internal office network of a company.
  • the mobile phone or computer of the company's employee can be the terminal device 110, and the employee's mobile phone or computer can access information and data resources on the company's internal office network
  • the terminal device 110 may establish a connection with the operator's network through an interface (such as N1, etc.) provided by the operator's network, and use services such as data and/or voice provided by the operator's network.
  • the terminal device 110 may also access the data network DN 120 through the operator network, and use the operator services deployed on the data network DN 120, and/or services provided by a third party.
  • the aforementioned third party may be a service party other than the operator's network and the terminal device 110, and may provide other data and/or voice services for the terminal device 110.
  • the specific form of expression of the above-mentioned third party can be determined according to actual application scenarios, and is not limited here.
  • the (R)AN 140 can be regarded as a sub-network of the operator's network, which is an implementation system between the service node and the terminal device 110 in the operator's network.
  • the terminal device 110 To access the operator's network, the terminal device 110 first passes through the (R)AN 140, and then can connect to the service node of the operator's network through the (R)AN 140.
  • the access network equipment (RAN equipment) involved in the embodiments of the present application as a device that provides wireless communication functions for the terminal equipment 110, may also be referred to as a network equipment.
  • the RAN equipment includes, but is not limited to, the downlink in the 5G system.
  • RNC radio network controller
  • node B node B
  • BSC Base station controller
  • BTS base transceiver station
  • home base station for example, home evolved nodeB, or home node B, HNB
  • BBU base band unit
  • TRP transmitting and receiving point
  • TP small cell equipment
  • pico small cell equipment
  • mobile switching center or network equipment in the future
  • Access and mobility management function AMF also known as AMF network element, AMF network function or AMF network function entity
  • AMF network element also known as AMF network element, AMF network function or AMF network function entity
  • Access control and mobility management include, for example, mobility status management, assigning temporary user identities, authenticating and authorizing users and other functions.
  • the session management function SMF (also called SMF network element, SMF network function or SMF network function entity) 138 is a control plane network function provided by the operator network, responsible for managing the protocol data unit (protocol data unit, PDU) of the terminal device 110. ) Conversation.
  • the PDU session is a channel used to transmit PDUs, and the terminal device needs to transmit PDUs to each other through the PDU session and the data network DN 120.
  • the SMF network function 138 is responsible for establishing, maintaining, and deleting PDU sessions.
  • SMF network function 138 includes session management (such as session establishment, modification and release, including user plane function UPF 139 and (R)AN 140 tunnel maintenance), UPF network function 139 selection and control, service and session continuity ( service and session continuity (SSC) mode selection, roaming and other session-related functions.
  • session management such as session establishment, modification and release, including user plane function UPF 139 and (R)AN 140 tunnel maintenance
  • UPF network function 139 selection and control including service and session continuity ( service and session continuity (SSC) mode selection, roaming and other session-related functions.
  • SSC service and session continuity
  • the user plane function UPF (also referred to as UPF network element, UPF network function or UPF network function entity) 139 is a gateway provided by the operator, and is a gateway for communication between the operator's network and the data network DN 120.
  • the UPF network function 139 includes user plane-related functions such as data packet routing and transmission, data packet inspection, service usage reporting, quality of service (QoS) processing, lawful monitoring, uplink data packet detection, and downlink data packet storage.
  • QoS quality of service
  • the unified data management network element UDM also known as UDM network element, UDM network function or UDM network function entity
  • UDM subscriber permanent identifier
  • SUPI subscriber permanent identifier
  • credential credential
  • security context security context
  • subscription data subscription data and other information.
  • SUPI will be encrypted first during transmission, and the encrypted SUPI is called a subscription concealed identifier (SUCI).
  • SUCI subscription concealed identifier
  • the information stored in the UDM network function 134 can be used for authentication and authorization of the terminal device 110 accessing the operator's network.
  • the contracted users of the above-mentioned operator's network may specifically be users who use the services provided by the operator's network, such as users who use China Telecom's mobile phone core card, or users who use China Mobile's mobile phone core card.
  • the permanent contract identifier SUPI of the aforementioned subscriber may be the number of the mobile phone core card, etc.
  • the credential and security context of the aforementioned subscriber may be a small file stored such as the encryption key of the mobile phone core card or information related to the encryption of the mobile phone core card for authentication and/or authorization.
  • the aforementioned security context may be data (cookie) or token (token) stored on the user's local terminal (for example, mobile phone).
  • the contract data of the above-mentioned subscriber may be a supporting service of the mobile phone core card, such as the data package of the mobile phone core card or the use of the network. It should be noted that permanent identifiers, credentials, security contexts, authentication data (cookies), and tokens are equivalent to verification/authentication and authorization related information. In the embodiments of this application, no distinction or restriction is made for the convenience of description. .
  • Authentication server function AUSF (also called AUSF network element, AUSF network function or AUSF network function entity) 136 is a control plane function provided by the operator, usually used for first-level authentication, that is, the terminal device 110 (subscribed user) and the operator Authentication between business networks.
  • the AUSF network function 136 After the AUSF network function 136 receives the authentication request initiated by the subscriber, it can authenticate and/or authorize the subscriber through the authentication information and/or authorization information stored in the UDM network function 134, or generate the subscriber’s information through the UDM network function 134. Authentication and/or authorization information.
  • the AUSF network function 136 can feed back authentication information and/or authorization information to the subscriber.
  • the network open function NEF (also called NEF network element, NEF network function or NEF network function entity) 131 is a control plane function provided by the operator.
  • the NEF network function 131 opens the external interface of the operator's network to a third party in a secure manner.
  • the SMF network function 138 needs to communicate with a third-party network function
  • the NEF network function 131 can serve as a relay for the SMF network function 138 to communicate with a third-party network entity.
  • the NEF network function 131 is used as a relay, it can be used as the translation of the identification information of the subscriber and the translation of the identification information of the third-party network function.
  • the NEF network function 131 when the NEF network function 131 sends the SUPI of the subscriber from the operator network to the third party, it can translate the SUPI into its corresponding external identity (identity, ID). Conversely, when the NEF network function 131 sends the external ID (third-party network entity ID) to the operator's network, it can translate it into SUPI.
  • ID identity
  • the NEF network function 131 sends the external ID (third-party network entity ID) to the operator's network, it can translate it into SUPI.
  • the policy control function PCF (also referred to as a PCF network element, a PCF network function or a PCF network function entity) 133 is a control plane function provided by the operator, and is used to provide the SMF network function 138 with a PDU session policy.
  • Policies can include charging-related policies, QoS-related policies, and authorization-related policies.
  • Nnef, Nausf, Nnrf, Npcf, Nudm, Naf, Namf, Nsmf, N1, N2, N3, N4, and N6 are interface serial numbers.
  • the meaning of these interface serial numbers can be referred to the meaning defined in the 3GPP standard protocol, and will not be repeated here.
  • the terminal device 110 is used as an example for the UE.
  • the name of the interface between the various network functions in FIG. 1 is only an example. In a specific implementation, the name of the interface of the system architecture It may also be other names, which are not specifically limited in the embodiments of the present application.
  • the mobility management network function in the embodiment of the present application may be the AMF network function 137 shown in FIG. 1, or may be other network functions having the aforementioned AMF network function 137 in the future communication system.
  • the mobility management network function in this application may also be the MME in LTE and so on.
  • the mobility management network function is the AMF network function 137 as an example for description.
  • the AMF network function 137 is referred to as AMF for short, and the terminal device 110 is referred to as the UE. That is, the AMF described later in the embodiments of the present application can be replaced with a mobility management network function, and the UE can be replaced with a terminal device.
  • the network architecture shown in Figure 1 (such as the 5G network architecture) adopts a service-based architecture and common interfaces.
  • the traditional network element functions are split into several self-contained and self-managed based on network function virtualization (NFV) technology.
  • NFV network function virtualization
  • Reusable network function service module by flexibly defining the service module collection, customized network function reconstruction can be realized, and the business process can be formed through a unified service call interface externally.
  • the schematic diagram of the network architecture shown in FIG. 1 can be understood as a schematic diagram of a service-based 5G network architecture in a non-roaming scenario. For roaming scenarios, the embodiments of this application are also applicable.
  • FIG. 2 provides a schematic diagram of the connection between a 5G system and an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes an unmanned aerial vehicle (UAV) and an unmanned aerial vehicle remote control (UAVC) .
  • the terminal device 110 may include the remote control, the drone, and an authorized third party entity (Third Party Authorized Entity, TPAE).
  • the TPAE may be a newly-added entity in the communication system.
  • the TPAE may include an inspection device (inspector) and/or an inspection device (for convenience in the embodiment of the present application, it is usually an inspection device or TPAE).
  • the TPAE can receive messages sent by the drone, and is authorized to obtain the identity information of the drone.
  • the TPAE can connect to the UTM/USS by accessing the operator's network, and can also establish a connection with the UTM/USS in other ways (non-operator's network). In some possible application scenarios, the TPAE may also have the function of remotely controlling drones.
  • TPAE is currently only an entity in the 3GPP standardization research report, and its name and function are not completely fixed, and there is still the possibility of modification during the standardization process, and its name and function are not limited in the embodiments of this application.
  • the (R)AN 140 may include RAN1, RAN2, and RAN3.
  • the RAN1 is connected to the UAVC to provide services for the remote controller, and the RAN2 is connected to the drone to provide services for the drone.
  • the core network in the operator network may include CN1, CN2, and CN3, and specific network functions/network elements are not shown in FIG. 2.
  • the CN1 is connected to the RAN1 to provide services to the RAN1
  • the CN2 is connected to the RAN2 to provide services to the RAN2
  • the CN3 is connected to the RAN3 to provide services to the RAN3.
  • the control command issued by the remote control may reach the RAN1, the CN1, the CN2, and the RAN2. Drone.
  • the core network side of the operator network may also add network functions UTM and/or USS.
  • UTM/USS can store the relevant information of the UAV system, such as authentication information. Based on the authentication information, UTM/USS can authenticate the UAV and the remote control.
  • the UAV supervision department can also supervise the UAV system through UTM/USS to ensure the safety of UAV flight control and public safety. In some possible cases, UTM/USS may have the function of remotely controlled drone flight.
  • the remote identification of the terminal device 110 can be performed during the communication process of the UAV system.
  • remote identification means that the UAV can provide identification information such as identity, location, and time during flight, so that it can be located on the ground or Other equipment in the airspace where the drone is located can determine the identity of the drone and its location at a certain moment. This feature is very important for the supervision of the drone system and can reduce the potential safety risks brought by the drone system.
  • the communication can be completed by referring to the following methods. The following takes the sending of remote identification information during the communication process as an example for description.
  • Method 1 Refer to the base station broadcast method of the 3GPP network.
  • the base station can broadcast to the terminal equipment UE in the cell.
  • the drone refers to the base station broadcast method, that is, the drone is assumed to be a base station.
  • the drone can broadcast to the surrounding terminal equipment.
  • the broadcast message can carry the remote identification information of the drone, such as the identification information of the drone. And/or location information, etc.
  • the drone uses method one to broadcast, and there are the following problems: the message broadcast by the base station of the 3GPP network is in plain text (without encryption and integrity protection), so the remote identification information carried in the drone's broadcast message is easy Cause leakage, or even be maliciously tampered with; broadcast channels require special spectrum time resources, and other devices are not allowed to send messages during the broadcast period and frequency range.
  • the flying distance of the drone is relatively large, which may be required during the flight. Continuous broadcasting will occupy more channel resources (including spectrum resources and time resources). Therefore, based on the first method, remote identification information cannot be sent safely and efficiently.
  • Method 2 Refer to the certificate-based short-distance broadcast method of the V2X (vehicle to everything, such as 3GPP or the Internet of Vehicles in Wi-Fi) system.
  • V2X vehicle to everything, such as 3GPP or the Internet of Vehicles in Wi-Fi
  • each vehicle can be pre-configured with a large number of public and private key pairs and Certificate.
  • the private key corresponding to the certified public key in the certificate is used to encrypt the broadcast message, and then the encrypted message is broadcast.
  • the vehicle will replace a certificate and the public-private key pair in the certificate at regular intervals (such as 5 minutes). Therefore, a general vehicle needs to be configured with as many as thousands of certificates at a time. When it is almost exhausted, configure it again.
  • the drone refers to the vehicle broadcast method, that is, the drone is assumed to be a vehicle, a large number of certificates can also be configured in the drone, and the private key corresponding to the certified public key in the certificate is used to encrypt the broadcast message, and then the encrypted The news is broadcast.
  • the drone uses the second method to broadcast, and there are the following problems: the use of asymmetric private key for encryption has a large amount of calculation and higher calculation complexity, and the length of the data packet encrypted by the asymmetric key will increase significantly, thereby increasing Transmission overhead (overhead); the drone has a longer flying distance and a larger range, and it may need to continuously broadcast during the flight, which will occupy more channel resources. Therefore, the remote identification information cannot be sent efficiently based on the second method.
  • this application proposes a communication method to ensure safe and efficient communication.
  • the second user equipment broadcasts or unicasts the second message
  • the second message is encrypted with a symmetric key
  • the first user equipment responds to the second message and sends the first message to the network device for requesting the 2.
  • the user equipment performs identity verification, and the network device sends a verification result indicating whether the identity of the second user equipment is legal or not to the first user equipment, and the first user equipment processes the second message after determining that the identity of the second user equipment is legal , Because the second message is encrypted and encrypted with a symmetric key, and takes advantage of the network equipment to request the network equipment to assist in the authentication of the user equipment, it can avoid the leakage of the drone’s sensitive information, so it can ensure the safety of the communication process Efficient; or the first user equipment requests remote identification information from the second user equipment, and the second user equipment sends the information used for remote identification to the second user equipment according to the request of the first user equipment for remote identification
  • the information in is encrypted, and the second user equipment unicasts remote identification information on demand, so the security and efficiency in the communication process can also be ensured.
  • the embodiment of the present application provides a communication method, which can be applied to the communication system shown in FIG. 1 and FIG. 2.
  • the specific process of the communication method will be described in detail below with reference to FIG. 3. As shown in Figure 3, the process includes:
  • S301 The second user equipment sends (broadcast or unicast) a second message, and the first user equipment receives the second message from the second user equipment.
  • the second user equipment and the first user equipment are legal subscribers of the 3GPP network, for example, a subscriber identity module (SIM) card is installed in the second user equipment and the first user equipment .
  • SIM subscriber identity module
  • the second user equipment may be a drone (and/or a remote control) shown in FIG. 4
  • the first user equipment may be a TPAE (such as an inspection device) shown in FIG. 4.
  • the second user equipment may actively broadcast the second message, or the second user equipment may also broadcast or unicast the second message on demand, for example, other devices (such as the first user equipment) ) Request remote identification information from the second user equipment, and the second user equipment broadcasts or unicasts the second message in response to the request.
  • the second user equipment may use the second symmetric key to encrypt the second message to be sent.
  • the second symmetric key may be used to authenticate the second user equipment and the first network device (such as UTM/USS). After the authentication succeeds, the second symmetric key generated by the second user equipment or The second symmetric key (also referred to as the second shared key) generated by the first network device; or when the second user equipment accesses the network (that is, registers to access the 3GPP network) for the second network device (such as AMF/ UDM or AMF/UDM+UTM/USS or gNB) generated second symmetric key (such as non-access stratum (NAS) key K-amf and/or access stratum (AS) secret Key K-gNB); or a second subkey generated by deriving the second symmetric key generated for the second network device when the second user equipment enters the network.
  • the second network device such as UTM/USS
  • the second symmetric key also referred to as the second shared key
  • the second network device such
  • the second message includes one or more of the following information: identification information of the second user equipment, information used for remote identification of the second user equipment, or third information used for verifying the second user equipment. credentials.
  • the third credentials may be generated by the second user equipment or generated by the first network device after the second user equipment and the first network device are successfully authenticated. It can be understood that, according to actual communication requirements, the second message may also include other service data.
  • the second user equipment may encrypt the entire second message, or the second user equipment may encrypt part of the information in the second message, for example, only the second message
  • the sensitive information (such as the information used for remote identification of the second user equipment) in the second user equipment is protected.
  • the identification information of the second user equipment may include the temporary identification of the second user equipment and/or the permanent identification of the second user equipment, the temporary identification of the second user equipment and the second user equipment
  • the permanent identity of the user equipment has a corresponding relationship
  • the second user equipment and the network device may include the corresponding relationship.
  • the permanent identity of the second user equipment may include the subscriber permanent identifier (SUPI) used by the second user equipment in the network, and the ID of the second user equipment in the UAS system (such as the ID of the drone, UAV-ID or remote control ID, UAVC-ID), the factory serial number of the second user equipment or the public subscription identifier (GPSI) of the second user equipment
  • the temporary identity of the second user equipment may include a pseudo-identity that has been randomized, an identity that has been encrypted by the UAS system, and a network device (such as the first network device or the second network device) is the second user
  • the information used for remote identification of the second user equipment may also be referred to as remote identification information for short, and the information used for remote identification of the second user equipment may include one or more of the following information: the second user The time information when the device sends the second message, the location information of the second user equipment, the information of the manufacturer of the second user equipment, or the information of the operator accessed by the second user equipment, etc.
  • the location information of the second user equipment may be represented by longitude information, latitude information, atmospheric pressure information, altitude information, or the like.
  • the network device may also receive the second message from the second user equipment.
  • the network device may receive the second message sent by the second user equipment, or the first user equipment may forward the second message (or part of the information in the second message) To the network device.
  • the first user equipment sends a first message to a network device in response to the second message, and the network device receives the first message from the first user equipment.
  • the first message is used to request identity verification of the second user equipment.
  • the network device may include AMF/UDM and/or UTM/USS.
  • the network device may include a first network device and a second network device, and the first network device may include a newly added UTM. /USS, the second network device may include AMF/UDM, or AMF/UDM and UTM/USS.
  • the first message may include one or more of the following: identification information of the second user equipment, a second message, first credentials used to verify the first user equipment, or 2. Information for remote identification of user equipment. If the first message only includes the identification information of the second user equipment, the data volume of the first message is smaller, which saves transmission overhead.
  • the first user equipment receives the second credentials (such as the security command) generated by the network device.
  • Token the first credentials used to verify the first user equipment carried in the first message by the first user equipment include the identity information of the first user equipment (for example, the statement in the security token) claim), and contains information that can be verified by the first network device (for example, the digital signature of the first network device). If the Token is tampered with by an attacker during the transmission process, the first credentials carried in the first message received by the network device cannot pass the verification of the network device.
  • the first user equipment and the first network device respectively generate a (same) first symmetric key ( It may also be referred to as the first shared key); the first user equipment uses the first symmetric key to generate first credentials, including verification information (for example, Hash-based message authentication code (HMAC)) ).
  • the first network device may use the first symmetric key generated by the first network device to verify the authenticity of the first credentials or verification information.
  • the first user equipment may use the first symmetric key to encrypt the first message to be sent.
  • the first network device uses the first symmetric key generated by the first network device to decrypt the first message. If the first message can be decrypted correctly, it can be considered that the first network device successfully authenticates the first user equipment.
  • the first symmetric key generated after the network device (such as the second network device) and the first user equipment are successfully authenticated may also be used for the second network when the first user equipment accesses the network.
  • the first symmetric key generated by the device such as the NAS key K-amf and/or the AS key K-gNB); or derived from the first symmetric key generated for the second network device when the first user equipment accesses the network
  • the first subkey generated may also be used for the second network when the first user equipment accesses the network.
  • the first message may also be used to request the key used by the second user equipment to encrypt the second message; and/or the first message may also be used to request the generation of the encryption key used by the second user equipment to encrypt the second message.
  • the derivation parameter and/or the derivation algorithm and/or the key identification code of the adopted subkey; and/or the first message is also used to request the second network device to decrypt the second message.
  • the first user equipment may also aggregate second messages (such as broadcast or unicast) sent by one or more second user equipments. For example, the first user equipment may perform aggregation for one or more second messages received
  • the second message sent by the user equipment sends the first message to the first user equipment.
  • the first user equipment may aggregate the first message sent by one or more second user equipment received within a set time period.
  • Two messages, or the first user equipment may also aggregate a set number of received second messages sent by the second user equipment, and the set number is one or more.
  • the first message is specifically used to request identity verification of the one or more second user equipments, and the first message may include (aggregate) the identification information of the one or more second user equipments.
  • the set duration and the set number may be any value, which is not limited in the embodiment of the present application.
  • the first user equipment may further filter the second message, and the first user equipment does not respond to the filtered second message.
  • the first user equipment performs filtering according to the distance between the first user equipment and the second user equipment. For example, the first user equipment determines the Whether the distance between the first user equipment and the second user equipment is within a preset first distance range, if the distance between the first user equipment and the second user equipment is within a preset first distance range
  • the first user equipment sends a first message to the network equipment in response to the second message, and the distance between the first user equipment and the second user equipment may be based on the location of the first user equipment Information and the location information of the second user equipment, or determined according to the signal strength of the received second message, the preset first distance range may be any value, which is not limited in the embodiment of the present application .
  • the first user equipment performs filtering according to the time when the second user equipment sends the second message. For example, the first user equipment determines the time when the second message is sent. Whether the time when the second user equipment sends the second message is within the preset time range, if the time when the second user equipment sends the second message is within the preset time range, the first A user equipment responds to the second message, the first user equipment sends a first message to the network device, and the time at which the second user equipment sends the second message may be based on the second message carried Or may be determined according to the time when the first user equipment receives the second message, and the preset time range may be any value, which is not limited in the embodiment of the present application.
  • the first user equipment performs filtering according to the signal strength of the second message. For example, the first user equipment determines the signal of the second message according to the second message. Whether the strength is within a preset strength range, if the signal strength of the second message is within the preset strength range, the first user equipment responds to the second message, and the first user equipment
  • the network device sends the first message, and the preset intensity range may be any value, which is not limited in the embodiment of the present application.
  • S303 The network device verifies whether the identity of the second user equipment is legal.
  • the network device may also receive a derivation parameter and/or a derivation algorithm and/or a key identification code used to generate a second subkey from the second user equipment, and the second user equipment is used to generate a second subkey.
  • the derivation parameter and/or the derivation algorithm and/or the key identification code of the subkey may be carried in other messages (not the second message).
  • the network device may generate the second symmetric key for the second network device according to the second user equipment when it enters the network, and use it to generate The derivation parameter and/or the derivation algorithm and/or the key identification code of the second subkey are used to generate the second subkey of the second symmetric key.
  • the network device may also verify whether the first user equipment is legal according to the first credentials, and if the first user equipment is verified The user equipment is legal, and the network equipment may verify whether the identity of the second user equipment is legal according to the first message. For example, the network device stores a key used to verify the authenticity of the credentials of the first user equipment, and the network device may also determine whether the key can successfully decrypt the first message or the first credentials If the first user equipment is legal, if the key can successfully decrypt the first message or the first credentials, the network equipment determines that the first user equipment is legal; otherwise, the network equipment determines the first user The device is illegal.
  • the network device After the network device (such as the first network device) successfully authenticates with the first user equipment or after the network device (such as the first network device) successfully authenticates the first user equipment,
  • the network device generates second credentials (e.g., security token token) for the first user equipment, and the second credentials include the identity information of the first user equipment (e.g., the token contains a claim with identity information). ), and the information verifiable by the first network device (for example, the digital signature of the first network device).
  • the first network device sends it to the first user equipment when the authentication succeeds.
  • the first credentials used to verify the first user equipment are the same as the second credentials, or include the second credentials.
  • the network device receives the first credentials of the first user equipment, and the network device verifies the authenticity of the first credentials according to the key that generates the second credentials (for example, verifies whether the digital signature in the token is correct, and determines that the first Whether the user equipment is legal).
  • the first user equipment and the first network device respectively generate a (same) first symmetric key (also It may be referred to as the first shared key); the first user equipment uses the first symmetric key to generate first credentials, which include authentication information (such as HMAC).
  • the first network device may use the first symmetric key generated by the first network device to verify the authenticity of the first credentials or verification information (such as HMAC). If it is determined that the first credentials or verification information (such as HMAC) is correct, it can be determined that the first user equipment is legal.
  • the identification information of the second user equipment may be a temporary identity or a permanent identity. If the identification information of the second user equipment is a temporary identity, the network device may determine the permanent identity of the second user equipment according to the temporary identity of the second user equipment, and the network device may determine the permanent identity of the second user equipment according to The permanent identity of the second user equipment verifies whether the second user equipment has been authenticated or authorized. If the network device determines that the second user equipment is authenticated or authorized, it can determine that the identity of the second user equipment is legal; otherwise, it can determine that the identity of the second user equipment is illegal.
  • the network device may directly verify whether the second user equipment is authenticated or authorized according to the temporary identity of the second user equipment. If the network device determines that the second user equipment is authenticated or authorized, it can determine that the identity of the second user equipment is legal; otherwise, it can determine that the identity of the second user equipment is illegal. It is understandable that the verification that the identification information of the second user equipment is a permanent identity may be similar to the verification process of the temporary identity described above, and will not be repeated here.
  • the network device may also receive information used for remote identification of the second user equipment from the second user equipment, and the information used for remote identification of the second user equipment may be carried in the first user equipment.
  • the second message or can be carried in other messages (not the second message). If the other message includes the information used for remote identification of the second user equipment, the network device may determine that the information used for remote identification of the second user equipment from the second user equipment is different from the information used for remote identification of the second user equipment. Whether the information included in the first message for remote identification of the second user equipment is consistent. If they are consistent, the network device may determine that the identity of the second user equipment is legal; otherwise, it may determine that the identity of the second user equipment is illegal.
  • S304 The network device sends a verification result to the first user equipment, where the verification result is used to indicate whether the identity of the second user equipment is legal.
  • the first user equipment receives the verification result.
  • the verification result may also include the key used by the second user equipment to encrypt the second message; and/or the sub-key used by the second user equipment to encrypt the second message Key derivation parameters and/or derivation algorithm and/or key identification code; and/or the decrypted second message.
  • the first user equipment may decrypt the second message, and/or process the service data carried in the decrypted second message.
  • the first user equipment may not process the second message. Further, the first user equipment may also trigger an application layer message to notify the inspection device.
  • the second user equipment broadcasts the second message. If the second message is encrypted with a symmetric key, the security in the communication process can be ensured, and the second user equipment can be prevented from frequently pre-configuring a large number of certificates. Symmetric public and private key pairs, the symmetric key encryption and decryption process requires less calculations, which can improve the efficiency of the communication process. In addition, in the embodiments of this application, the advantages of the 3GPP network are used as much as possible to first authenticate the drone or inspection equipment, and then send and receive messages securely (that is, encrypted with a key or security parameter), which can effectively avoid unmanned The sensitive information of the computer is leaked.
  • Fig. 5 is a schematic diagram of another communication process provided by an embodiment of the application.
  • the drone can broadcast or unicast on demand, thereby alleviating the problem of broadcast messages occupying channel resources and further improving the efficiency of the communication process.
  • the process includes:
  • S501 The first user equipment sends a third message to the second user equipment, and the second user equipment receives the third message from the first user equipment.
  • the third message is used to request the second user equipment to reply to information used for remote identification.
  • the second user equipment does not need to continuously broadcast, and may perform broadcast or unicast on demand, that is, the second user equipment may perform the broadcast after receiving the third message sent by the first user equipment. Broadcast or unicast.
  • the second user equipment may be located within the coverage area of the operator's network (as shown in FIG. 4), or the second user equipment may not be located within the coverage area of the operator's network (as shown in FIG. 6). Shown).
  • the third message may also include one or more of the following information: a first credential used to verify the identity of the first user equipment, identification information of the first user equipment, and the first user equipment sending the The time of the third message, the total number of messages that the first user equipment has sent (count), the location information of the first user equipment, the cell information of the first user equipment, the first user equipment received The signal strength of the message of the network device or the information of the operator accessed by the first user equipment.
  • the first credential used to verify the identity of the first user equipment may include a token generated for the first user equipment after the first user equipment and the first network equipment are authenticated, or
  • the digital certificate of the first user equipment signed by the first network device (such as UTM/USS), the digital certificate may include the public key of the first user equipment, and the token may include the first user equipment’s public key.
  • the identification information of the first user equipment may include the temporary identity of the first user equipment and/or the permanent identity of the first user equipment.
  • the location information of the first user equipment may be represented by three-dimensional coordinates, longitude information, latitude information, atmospheric pressure information, or altitude information.
  • the cell information of the first user equipment may include cell global identifier (CGI) information, and/or system information block (SIB)/master information block (master information block) in the cell broadcast signal. , MIB) information.
  • CGI cell global identifier
  • SIB system information block
  • S502 The second user equipment sends a fourth message to the first user equipment, and the first user equipment receives the fourth message from the second user equipment.
  • the fourth message includes information used for remote identification of the second user equipment.
  • the fourth message may be similar to the above-mentioned second message, and the fourth message may also include the identification information of the second user equipment and/or the third user equipment used to verify the second user equipment. credentials. It can be understood that, according to actual communication requirements, the fourth message may also include other service data.
  • the second user equipment may encrypt the entire fourth message, or the second user equipment may encrypt part of the information in the fourth message.
  • the second user equipment may use the public key of the first user equipment to encrypt the fourth message to be sent; the second user equipment may use the symmetric subkey derived from the public key of the first user equipment Encrypt the fourth message to be sent; or the second user equipment may use the second symmetric key generated for the network device (such as the second network device) when the second user equipment enters the network, and the fourth message to be sent
  • the message is encrypted; or the second user equipment may use the private key of the second user equipment to encrypt the fourth message to be sent; or the second user equipment may be derived from the second symmetric key
  • the second user equipment uses the first symmetric key generated by the network device when the first user equipment enters the network to encrypt the fourth message to be sent; or
  • the second user equipment obtains the first subkey according to the derivation of the first symmetric key, and uses the first subkey to encrypt the fourth message to be sent.
  • the second user may also determine whether to perform other operations, and the other operations may be used to mitigate the network suffering from Denial of service (DoS denial of service attacks), Relay (referring to relay Or replay attack), Replay (refers to replay attack) and other attack risks.
  • DoS denial of service attacks DoS denial of service attacks
  • Relay referring to relay Or replay attack
  • Replay refers to replay attack
  • the second user equipment may further filter the third message, and the second user equipment does not reply to the fourth message for the filtered third message.
  • the second user equipment performs filtering according to the distance between the first user equipment and the second user equipment. For example, the second user equipment determines the Whether the distance between the first user equipment and the second user equipment is within a preset second distance range, if the distance between the first user equipment and the second user equipment is within a preset second distance range
  • the second user equipment sends a fourth message to the first user equipment, and the preset second distance range may be any value, which is not limited in the embodiment of the present application.
  • the preset first distance range The distance range and the preset second distance range may be the same or different.
  • the second user equipment determines, according to the third message, whether the first user equipment is located in a cell where the second user equipment is located or is located in a cell where the second user equipment is located. In a neighboring cell, if the first user equipment is located in the cell where the second user equipment is located or is located in the neighboring cell of the cell where the second user equipment is located, the second user equipment sends the first user equipment to the first user equipment.
  • the second user equipment may also aggregate third messages sent by one or more first user equipment.
  • the aggregation process may refer to the aggregation of the second messages sent by the first user equipment with respect to one or more second user equipments in S302, which is not repeated here.
  • the second user equipment sends a fifth message to the network equipment, where the fifth message is used to instruct the network equipment to verify the legitimacy of the first user equipment; the network equipment sends a sixth message
  • the second user equipment receives the sixth message sent from the network device, where the sixth message is used to indicate whether the identity of the first user equipment is legal, and if legal, the second user equipment may Go to S502.
  • the network device verifying the legitimacy of the first user equipment refer to the network device verifying the identity of the second user equipment in S303, which is not described here.
  • the second user equipment may be located within the coverage area of the operator's network.
  • the second user equipment may perform a treatment to the first user according to the first credential
  • the device performs identity verification, and the second user equipment determines whether the identity of the first user equipment is legal, and if legal, the second user equipment may perform S502.
  • the sixth message may also include the public key of the first user equipment, or the derivation parameter and/or the derivation algorithm required when the public key of the first user equipment derives the symmetric subkey. Or the first symmetric key generated by the second network device when the first user equipment accesses the network, or the derivation parameter and/or the derivation algorithm used to generate the first subkey of the first symmetric key.
  • the first user equipment can request the second user equipment to send information for remote identification, and the second user equipment sends the remote identification information according to the request of the first user equipment, which can reduce the UAV broadcast channel occupation Resources, and the message in the communication process is encrypted to ensure the safety and efficiency of the communication process.
  • the 3GPP network can be borrowed to protect the broadcast message of the drone, which specifically includes the following process:
  • a symmetric key used to protect the communication between the drone and the network device is generated between the network device and the drone, such as the NAS key K-amf or the AS key K-gNB (the AS key K-gNB is not shown in the figure). show).
  • a symmetric key is generated between the drone and UTM/USS and stored in the drone and UTM/USS respectively.
  • the symmetric key can perform security protection (encryption or integrity protection) for messages exchanged between the UAV and UTM/USS. It should be noted that the symmetric key is different from the aforementioned NAS key K-amf or AS key K-gNB for network authentication.
  • UTM/USS After the authentication between the drone and UTM/USS is completed, UTM/USS generates a Token (security token) for identity verification for the drone, which is stored in the drone, UTM/USS The authenticity can be verified.
  • the Token may include claim (declaration or generation parameters): UAV-ID, UAV-UEID, and UTM/USS signature.
  • the statement part in the token indicates the identity of the drone and other attributes, and the signature part is to allow other networks or terminal devices (such as UTM, USS, AMF or inspection equipment) to verify the authenticity and integrity of the token (and its statement) .
  • the drone obtains a sub-key (Kb) used for drone broadcasting according to the symmetric key derive (derive), wherein the derivation parameter used to derive the sub-key may include a random number (rand) And/or the UAV's identification information (UE-ID), etc.
  • Kb sub-key
  • the derivation parameter used to derive the sub-key may include a random number (rand) And/or the UAV's identification information (UE-ID), etc.
  • the drone involved in the embodiments of this application can also be replaced with a remote control of the drone.
  • the security protection in the embodiments of the present application is described by taking message encryption (including generating an encryption key, etc.) as an example, but it is also applicable to scenarios of message integrity protection (including generating an integrity protection key, etc.).
  • the second message is encrypted using the symmetric key generated after the drone and the network device are authenticated in step S700.
  • the second message is encrypted with a symmetric key (NAS key K-amf or AS key K-gNB) generated by the drone for the first network device (such as AMF, gNB).
  • the second message is encrypted with a symmetric key generated after the drone and UTM/USS authentication ends, where the symmetric key is different from the symmetric key generated by the drone for the first network device.
  • the drone obtains a sub-key (Kb) for drone broadcasting according to any one of the symmetric key derives (derive), wherein the derivation parameter used to derive the sub-key may include a random number (rand) and/or the UAV's identification information (UE-ID), etc.
  • Kb sub-key
  • the derivation parameter used to derive the sub-key may include a random number (rand) and/or the UAV's identification information (UE-ID), etc.
  • the second message includes information for remote identification of the drone (UE remote identification info), wherein the information of the remote identification of the drone includes the identity information of the drone in the drone system (E.g. UAV-ID), location information (e.g. longitude, latitude, altitude or air pressure value), time information, etc.
  • the information used for remote identification of the drone may be encrypted by the subkey (encrypted by K-b).
  • the second message may also include the identification information of the drone in the network (such as the temp UE ID of the drone in the network).
  • the drone is in the network.
  • the identification information in the UAV is different from the identification information in the UAV system in the remote identification information of the UAV.
  • the temporary identification of the UAV may not use a symmetric key or a sub-key for security protection, so
  • the temporary identity of the drone may be, for example, GUTI or a newly defined identity (newly defined).
  • the UAV uses the operator's network to unicast the NAS message to the network device.
  • the message can be secured by using the first symmetric key of the network generated in step S700.
  • the message may also include the derivation parameters of the subkey used to derive the encrypted second message in step S701 (such as the random number input for generating the subkey and/or the identification information of the drone (such as UE -ID and/or UAV-ID), etc.) and/or deduction algorithm and/or key identification code, key indication information or remote identification information (including UAV identity information (such as UAV-ID), location information) position and/or time information time), etc., where the key indication information can be used to indicate whether the key type is existing or needs to be further derived, or used to indicate whether to use the key K-amf or the key K-gNB.
  • the derivation parameters of the subkey used to derive the encrypted second message in step S701 such as the random number input for generating the subkey and/or the identification information of the drone (such as UE -ID and/or UAV-ID), etc.) and/or deduction algorithm and/or key identification code, key indication information or remote identification information (including UAV identity information (such as UAV
  • the network equipment includes AMF/UDM and UTM/USS.
  • the AMF can be replaced with a security anchor function (SEAF), authentication credential repository and processing function. , ARPF), or any combination with SEAF and ARPF.
  • SEAF security anchor function
  • ARPF authentication credential repository and processing function
  • SEAF SEAF/ARPF
  • This step may also be that the network device sends a request message, and the drone replies the NAS message to the network device.
  • the TPAE (such as the inspection device) sends the first message to the network device in response to the second message.
  • the network device receives and processes the first message.
  • the key Since the broadcast message of the drone is protected by the key between the drone and the network device, the key is shared by the drone and the network device, but TPAE does not save the key and cannot decrypt the first The second message or verify the authenticity/integrity of the second message.
  • the first message is used to request to verify whether the identity of the drone is legal, and/or the first message is used to request related information about the drone (Request for UAV info), optionally, the first A message includes the UAV-temp UE ID or the second message (broadcast msg).
  • the first message may use a key between the TPAE and the network device for security protection.
  • the TPAE may send the first message through other non-3GPP connections (such as a wired network, Wi-Fi, etc.).
  • the network device may verify the drone according to the identification information of the drone, such as verifying whether the drone corresponding to the identification information of the drone is It is a legal drone, for example, it is specifically verified whether the drone corresponding to the identification information of the drone is a registered drone and/or whether it has the authority to fly at the current location and time.
  • the network device verifies the key and/or generates the derivation parameters and/or the derivation algorithm and/or key identification of the subkey code. If the network device indicates the key used or the derivation parameter and/or the derivation algorithm and/or the key identification code for generating the subkey in the message received in S702, the network device determines and updates the corresponding key . If the network device does not receive the message of S702, the network device may determine that the drone has not updated the key.
  • the network device may The temporary identity of the drone, the terminal corresponding to the temporary identity of the drone (that is, the permanent identity) is determined, and the key used when the drone broadcasts the message is determined, and the network device can decrypt the second message (decipher) and/or verify (verify) the authenticity/integrity of the first message.
  • the network device replies the verification result to the TPAE.
  • the TPAE receives and processes the verification result.
  • the verification result may include information used to indicate whether the drone is legal.
  • the verification result may also include the reason why the drone is illegal, for example, the drone is not registered or contracted, or the drone is in its current location. Or time does not have flight permissions.
  • the verification result may also include relevant information of the drone, such as the key used by the drone, or the deduction parameter and/or deduction algorithm used by the drone to generate the sub-key. /Or the key identification code, etc., or the decrypted second message, etc.
  • the TPAE may use the key used by the drone to decrypt the second message, or the TPAE may use the deduction parameters and/or the deduction algorithm and/or the algorithm identification code used to generate the sub-key to generate the symmetric The subkey of the key, or the TPAE judges whether the UAV is legal or not according to the decryption information of the second message.
  • step S702 may not be restricted, that is, S702 may be before S701 or after the first message is sent in S703.
  • the broadcast message may not be changed in Figure 8
  • the 3GPP network assists in remote identification, which specifically includes the following steps:
  • S800 is the same as S700.
  • the second message includes information used for remote identification of the drone.
  • the drone may not use the operator's network, but instead use non-3GPP technology (such as Wi-Fi) to broadcast the second message.
  • non-3GPP technology such as Wi-Fi
  • the drone uses the operator's network to unicast a NAS or AS message to the first network device (such as AMF, gNB, UPF).
  • the first network device performs processing and sends the processed NAS message to UTM/USS.
  • UTM/USS verifies the drone based on the received NAS message.
  • the first network device includes AMF/UDM.
  • the AMF can be replaced with gNB, UPF, or any combination with gNB and UPF.
  • the NAS or AS message may include the temporary identity used by the drone in the network or/and the permanent identity used in the network or/and the remote identity identification information.
  • the remote identification information includes the UAV-ID (UAV-ID), location information, time information, etc. of the UAS.
  • the first network device may process the temporary identity identifier used by the drone in the network, for example, process GUTI to obtain SUPI/GPSI and so on. For example, if UTM/USS is deployed in the operator’s network, the processed message can carry SUPI. If UTM/USS is deployed outside the operator’s network, the processed message can carry GPSI. In this case, the When the network device forwards the message, it can also first determine whether the UTM/USS is deployed in the operator's network, and then choose to carry SUPI or GPSI.
  • the identity identifier (UAV-ID) in the UAV system is different from the identity information in the network (such as GUTI, SUPI, GPSI, etc.).
  • the identity information in the drone system is the identity information of the drone in the UAS, including the permanent identity ID of the drone in the UAS (such as the factory serial number) or/and the temporary identity of the drone in the UAS.
  • Identity ID (such as: pseudo-identity ID randomized by permanent identity ID, session address/session ID/IP address/navigation ID, etc.) generated by UAS (or allocated by UAS/UTM/USS).
  • the embodiments of this application are correct There are no restrictions on the form of permanent identity or temporary identity information used.
  • the drone sends an identity that is consistent with the identity in the second message in S801.
  • S802 also sends the temporary identity of the drone in the UAS.
  • sending the temporary identity of the drone can prevent the permanent identity of the drone from being leaked; It is easier to match messages from the same drone.
  • the UAV only sends a permanent identity in S802.
  • S802 still sends the permanent identity of the drone in the UAS.
  • the UTM/USS can verify whether the drone has been certified by UTM/USS or whether it has been authorized to fly by UTM/USS. For a legal drone that has been certified or authorized to fly, the UTM/USS store The relevant information of the UAV (such as the current position information position and time information time, etc.). Optionally, if what is received is the temporary identity of the drone in the UAS, find out the permanent identity ID of the corresponding drone in the UAS, and store relevant information (including location, time, etc.).
  • the UTM/USS can also verify whether the network identification information of the drone carried in the processed NAS or AS message is the network identification information that is allowed to be used, or whether it has an authorized binding relationship (such as In some application scenarios, the network identity of the drone and the UAS identity of the drone must be bound to be considered legal), where the UTM/USS stores the allowed network identification information and/or the authorized binding relation.
  • the UTM/USS can determine whether the UTM/USS currently belongs to the authorized flight area and flight time of the UAV according to remote identification information.
  • TPAE authenticates with network equipment and UTM/USS.
  • TPAE includes at least two kinds of identities, one is the identity in the network, and the other is the identity in the UAS.
  • the inspection device Before the inspection device uses the network, it needs to perform mutual authentication with the network based on the identity in the network, and generate a shared key for secure communication with the network.
  • the TPAE also needs to complete the authentication with the UTM/USS based on the identity in the UAS.
  • TPAE and UTM/USS can generate a shared key and store them in TPAE and UTM/USS respectively.
  • the shared key can perform security protection (encryption or integrity protection) for messages exchanged between TPAE and UTM/USS.
  • UTM/USS At the end of authentication, UTM/USS generates a Token (security token) for identity verification for TPAE, and sends and stores it in TPAE.
  • the claim in the Token may include: the identifier of TPAE in the network and the identifier of TPAE in UAS.
  • the Token also includes the UTM/USS signature, and other devices can verify the authenticity and integrity of the Token based on the signature.
  • S803 may occur before steps S801 and S202.
  • the TPAE sends the first message to the UTM/USS according to the received second message.
  • the UTM/USS receives and processes the first message.
  • the first message may be a forwarding message of the second message.
  • the first message may also include identification information (TPAE-ID) of the TPAE in the UAS and a credential (TPAE credential) used to verify the TPAE.
  • TPAE-ID identification information
  • TPAE credential credential
  • the first message also includes the location information of the TPAE itself, so that UTM/USS can use this location information to search for drones (search for drones near the location) or/and determine whether to authorize the TPAE ( For example, it can be restricted that TPAE can only obtain the information of drones in its vicinity, rather than the information of drones in any location).
  • the first message only includes identification information used for remote identification, and does not include information such as location and time, so as to achieve a small amount of data to be sent.
  • the TPAE may delay sending the first message to the network after receiving the second message.
  • TPAE can collect the second message from multiple drones, and then forward the message that aggregates the information of multiple drones to improve the effectiveness of message sending.
  • the first message only includes the identities of multiple drones that are aggregated.
  • the inspection equipment can first determine whether the drone location information or time information in the received drone broadcast message is within a reasonable range. In order to determine whether to forward the UAV’s message. This can prevent DoS attacks on the network caused by forwarding unnecessary messages.
  • TPAE can restrict the forwarding of drone messages within a certain geographical range based on its own location. For example, it can be judged by calculating the distance between the location sent by the drone and its own location. For time, you can limit the time period within a certain synchronization fault tolerance range.
  • the distance between the drone and the inspection equipment can be estimated based on the strength of the received drone signal. Only messages within a certain intensity range are forwarded.
  • the sending of the first message in S803 and S804 may occur before S802.
  • the UTM/USS can determine whether the identification information of the drone and the TPAE in the forwarded message is a temporary identification (such as a session identifier) or a permanent identification. For example, the forwarded message only includes one of a temporary identity or a permanent identity.
  • UTM/USS can pre-configure the drone and TPAE whether to use a temporary identity or a permanent identity, or the format of the temporary identity and the permanent identity are different, or the UTM/USS saves the drone and TPAE Temporary identity, or the forwarding message indicates whether to carry a temporary identity or a permanent identity. If the UTM/USS receives the temporary identity, the UTM/USS may determine the permanent identity corresponding to the temporary identity according to the information stored in the UTM/USS. Optionally, the temporary identity can be obtained by encrypting the permanent identity, or there is a correspondence between the temporary identity and the permanent identity.
  • the UTM/USS can verify whether the TPAE is authenticated/authorized/legitimate. For example, the UTM/USS can verify the legitimacy of the TPAE token, or the UTM/USS can use the stored key corresponding to the TPAE to decrypt the forwarded message or perform integrity verification, or the UTM/USS can verify SUPI / Whether the binding relationship between GPSI and the UAV’s permanent identity is valid/legal.
  • the UTM/USS can match whether the identification information of the drone received from the drone and the TPAE is the same.
  • the UTM/USS searches for the permanent ID corresponding to the drone according to the temporary ID, and determines the permanent ID corresponding to the identification information received from the drone and the identification information received from the TPAE Whether the corresponding permanent identities are the same.
  • the UTM/USS can also judge the remote identification information received from the drone and the remote identification information received from the TPAE Whether the remote identification information is the same or similar (for example, the distance/time difference is within a certain range).
  • S805 can refer to S704, and the repetition is not repeated.
  • broadcast or unicast can be performed on demand.
  • the drone can be located within the coverage of the operator's network.
  • the inspection device sends a request message to the drone to request the drone to reply to remote identification information, and the drone receives the request message.
  • the request message may also include information for verifying the identity of the inspection device, the time when the inspection device sends the request message, the total number of request messages sent by the inspection device, the location information of the inspection device, the One or more of the cell information of the inspection device or the signal strength of the base station received by the inspection device.
  • the UAV can also reduce the risk of attack through further challenge/response message interaction with the inspection device.
  • the drone can send a Challenge message to the inspection device, requesting other information of the inspection device (such as cell information (such as cell number CGI), current location, measured drone signal strength, random number, etc.), if the drone is not A response from the inspection device is received, or the relevant information in the response message received by the drone does not meet the predetermined conditions (for example, the cell number CGI is not in the same cell, the location of the inspection device is far from the drone, and the If the received signal strength does not reach the signal strength threshold, and the result calculated according to the random number is incorrect), the UAV does not perform S902.
  • the drone after the drone receives the request message, it does not immediately execute S902, but limits the execution of a delay for a period of time or sets the frequency of execution of S902.
  • the drone unicast sends a message to the network device, and the unicast message may request the network device to verify the inspection device, and the network device receives the message unicast by the drone.
  • the drone may filter the request message according to the location of the inspection device.
  • the drone may aggregate one or more request messages, and send a unicast message for the one or more request messages to the network device.
  • the UAV may use the key (symmetric key or subkey) in FIG. 7 or FIG. 8 to securely protect the unicast message.
  • S903 The network device unicasts a reply message (that is, the verification result) to the drone, and the drone receives the unicast reply message.
  • the network device may filter the unicast messages sent by the drone according to the location of the inspection device.
  • the network may aggregate one or more UAVs to send unicast messages and then process them, verify the one or more unicast messages and reply to the verification result.
  • the network device may verify the legitimacy and authority of the audit device.
  • the network device may send the key used when encrypting the request message or the parameters used to derive the key to the Man-machine.
  • S904 The drone replies a message to the inspection device, and the message includes remote identification information.
  • the drone may use the key obtained in S903 to securely protect the message, or derive the key according to the parameters obtained in S903, and use the deduced key to securely protect the message.
  • the inspection device sends a request message to request remote identification information.
  • the drone receives the request message.
  • the inspection device can be configured with a certificate/token or key issued by the network device, and the validity period of the token can be set to be shorter to improve the security of the communication process.
  • the inspection device uses the key issued by the network device to encrypt the request message.
  • the request message may also include an audit device certificate or token signed by the network.
  • S1002 The drone replies a message to the inspection device, and the message includes remote identification information.
  • the public key or certificate configured by the network device is pre-configured in the drone, which serves as the root of trust between the drone and the inspection device.
  • the drone can perform identity verification (verification signature) and validity period verification on the certificate or token in the request message according to the pre-configured public key. After the verification is passed, the drone can use the certificate or token in the certificate or token. The key decrypts the request message.
  • the reply message of the drone may include the identification information of the drone, and the identification information of the drone may be performed by using the symmetric key or subkey of the drone in the network.
  • Encryption where the derivation parameters and/or the derivation algorithm and/or the key identification code used to derive the subkey can be encrypted using the public key of the audit device, or the identification information of the drone can be encrypted using the audit.
  • the public key of the device and a symmetric key generated by a random number are encrypted, and the random number is carried in the reply message.
  • the inspection device receives the reply message, and the inspection device may obtain the symmetric key of the drone in the network or derive and generate a subkey, and use the symmetric key or subkey Perform decryption; or the audit device generates a symmetric key according to the key of the audit device and the random number, and decrypts using the generated symmetric key.
  • the communication device 1100 may exist in the form of software or hardware.
  • the communication device 1100 may include: a processing unit 1102 and a transceiving unit 1103.
  • the transceiver unit 1103 may include a receiving unit and a sending unit.
  • the processing unit 1102 is used to control and manage the actions of the communication device 1100.
  • the transceiver unit 1103 is used to support communication between the communication device 1100 and other network entities.
  • the communication device 1100 may further include a storage unit 1101 for storing program codes and data of the communication device 1100.
  • the processing unit 1102 may be a processor or a controller, for example, a CPU, a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the storage unit 1101 may be a memory.
  • the transceiver unit 1103 is an interface circuit of the device for receiving signals from other devices. For example, when the device is implemented as a chip, the transceiver unit 1103 is an interface circuit for the chip to receive signals from other chips or devices, or an interface circuit for the chip to send signals to other chips or devices.
  • the communication device 1100 may be the user equipment and/or network equipment in any of the foregoing embodiments, and may also be a chip for the user equipment and/or network equipment.
  • the processing unit 1102 may be, for example, a processor
  • the transceiving unit 1103 may be, for example, a transceiver.
  • the transceiver may include a radio frequency circuit
  • the storage unit may be, for example, a memory.
  • the processing unit 1102 may be, for example, a processor, and the transceiving unit 1103 may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit 1102 can execute computer-executable instructions stored in the storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be in the user equipment and/or network device.
  • the storage unit located outside the chip such as ROM or other types of static storage devices that can store static information and instructions, RAM, etc.
  • the communication device 1100 is applied to a first network device.
  • the transceiving unit 1103 is configured to receive a first message sent by a first user equipment, where the first message is used to request identity verification of the second user equipment;
  • the processing unit 1102 is configured to verify whether the identity of the second user equipment is legal;
  • the transceiving unit 1103 is further configured to send a verification result to the first user equipment, and the verification result is used to indicate whether the identity of the second user equipment is legal.
  • the first message includes a first credential used to verify the first user equipment
  • the processing unit 1102 is further configured to verify that the first user equipment is legal according to the first credentials before verifying whether the identity of the second user equipment is legal;
  • the processing unit 1102 is specifically configured to verify whether the identity of the second user equipment is legal according to the first message if the first user equipment is legal. .
  • the processing unit 1102 is further configured to: after successful authentication with the first user equipment, the first network device generates second credentials for the first user equipment;
  • the processing unit 1102 is specifically configured to determine that the first user equipment is legal according to the first credentials and the second credentials.
  • the first message includes identification information of the second user equipment, and the identification information of the second user equipment is a temporary identity identifier;
  • the processing unit 1102 When verifying whether the identity of the second user equipment is legal, the processing unit 1102 is specifically configured to determine the permanent identity of the second user equipment according to the temporary identity of the second user equipment; Second, the permanent identity of the user equipment verifies whether the second user equipment has been authenticated or authorized.
  • the first message includes information used for remote identification of the second user equipment
  • the transceiving unit 1103 is further configured to receive information from the second user equipment for remote identification of the second user equipment;
  • the processing unit 1102 is specifically configured to determine that the information from the second user equipment used for remote identification of the second user equipment is different from that of the first user equipment. Whether the information included in the message for remote identification of the second user equipment is consistent.
  • the communication device 1100 is applied to the first user equipment.
  • the transceiving unit 1103 is configured to receive a second message broadcast by the second user equipment; in response to the second message, send a first message to the first network device, and the first message is used to request the The second user equipment performs identity verification; receiving the verification result sent by the first network device;
  • the processing unit 1102 is configured to process the second message if the verification result indicates that the identity of the second user equipment is legal.
  • the second message includes identification information of the second user equipment and/or information used for remote identification of the second user equipment;
  • the first message includes one or more of the following: identification information of the second user equipment, first credentials for verifying the first user equipment, the second message, or Information for remote identification of the second user equipment.
  • the processing unit 1102 is further configured to generate second credentials after the first network device and the first user equipment are successfully authenticated; and/or
  • the transceiving unit 1103 is further configured to receive the second credentials generated by the first network device after the first network device and the first user equipment are successfully authenticated.
  • the second credentials generated by the first network device are the same as the second credentials generated by the first user equipment.
  • the transceiver unit 1103 when the transceiver unit 1103 sends the first message to the first network device, it is specifically configured to send the received second message broadcast by one or more second user equipment to the first network device.
  • the device sends a first message, where the first message is specifically used to request identity verification of the one or more second user devices.
  • the processing unit 1102 is further configured to determine the distance between the first user equipment and the second user equipment according to the second message before sending the first message to the first network equipment Whether it is within the preset distance range;
  • the transceiver unit 1103 When the transceiver unit 1103 sends the first message to the first network device, it is specifically configured to send to the first network device if the distance between the first user equipment and the second user equipment is within a preset distance range.
  • the first news When the transceiver unit 1103 sends the first message to the first network device, it is specifically configured to send to the first network device if the distance between the first user equipment and the second user equipment is within a preset distance range. The first news.
  • the processing unit 1102 is further configured to determine whether the second user equipment broadcasts the second message according to the second message before sending the first message to the first network device Located within the preset time range;
  • the transceiver unit 1103 When the transceiver unit 1103 sends the first message to the first network device, it is specifically configured to send the first message to the first network device if the time when the second user equipment broadcasts the second message is within a preset time range. A message.
  • the communication device 1100 is applied to a second user equipment.
  • the processing unit 1102 is configured to encrypt the second message to be sent according to the symmetric key generated for the second network device when the second user equipment enters the network;
  • the transceiver unit 1103 is configured to broadcast the encrypted second message.
  • the processing unit 1102 is specifically configured to use the symmetric key generated for the second network device when the second user equipment enters the network to encrypt the second message to be sent; or to encrypt the second user
  • the symmetric key generated by the second network device is deduced to generate a subkey of the symmetric key; the subkey is used to encrypt the second message to be sent.
  • the transceiving unit 1103 is further configured to send a derivation parameter and/or a derivation algorithm for generating the subkey to the second network device.
  • the second message includes identification information of the second user equipment and/or information used for remote identification of the second user equipment.
  • the identification information of the second user equipment includes the temporary identification of the second user equipment and/or the permanent identification of the second user equipment; the information used for the remote identification of the second user equipment includes The location information of the second user equipment and/or the time when the second user equipment broadcasts the second message.
  • the communication device 1100 is applied to a second network device.
  • the transceiving unit 1103 is configured to receive a first message sent by a first user equipment, where the first message is used to request identity verification of the second user equipment;
  • the processing unit 1102 is configured to verify whether the identity of the second user equipment is legal;
  • the transceiving unit 1103 is further configured to send a verification result to the first user equipment, and the verification result is used to indicate whether the identity of the second user equipment is legal.
  • the transceiving unit 1103 is further configured to receive an encrypted second message from the second user equipment.
  • the first message includes one or more of the following: identification information of the second user equipment, a first credential used to verify the first user equipment, and the second message , Or information used for remote identification of the second user equipment.
  • the second message includes identification information of the second user equipment and/or information used for remote identification of the second user equipment.
  • the first message is also used to request the second user equipment to encrypt the key used by the second message; and/or the first message is also used to request to generate the second user equipment
  • the derivation parameter and/or the derivation algorithm of the subkey used to encrypt the second message; and/or the first message is also used to request the second network device to decrypt the second message.
  • the verification result further includes the key used by the second user equipment to encrypt the second message; and/or the derivation parameter and/or the derivation algorithm of the subkey used by the second user equipment to encrypt the second message; And/or the decrypted second message.
  • the transceiving unit 1103 is further configured to receive a derivation parameter and/or a derivation algorithm for generating a subkey from the second user equipment;
  • the processing unit is further configured to generate the symmetric key used to generate the derivation parameter and/or the derivation algorithm of the subkey according to the symmetric key generated for the second network device when the second user equipment enters the network to generate the symmetric key.
  • the subkey of the key is further configured to generate the symmetric key used to generate the derivation parameter and/or the derivation algorithm of the subkey according to the symmetric key generated for the second network device when the second user equipment enters the network to generate the symmetric key.
  • the first message includes the first credentials used to verify the first user equipment, and the processing unit 1102 is also used to verify whether the identity of the second user equipment is legal or not according to the The first credentials, verify that the first user equipment is legal;
  • the processing unit 1102 verifies whether the identity of the second user equipment is legal, if verifying that the first user equipment is legal, verify whether the identity of the second user equipment is legal according to the first message.
  • processing unit 1102 is further configured to generate second credentials for the first user equipment after the second network device successfully authenticates with the first user equipment;
  • the transceiving unit 1103 is further configured to receive second credentials generated by the first user equipment after the second network device successfully authenticates with the first user equipment.
  • the processing unit 1102 verifies that the first user equipment is legal according to the second credentials, it is specifically configured to determine the first user according to the first credentials and the second credentials The equipment is legal.
  • the first message includes identification information of the second user equipment, and the identification information of the second user equipment is a temporary identity identifier;
  • the processing unit 1102 When verifying whether the identity of the second user equipment is legal, the processing unit 1102 is specifically configured to determine the permanent identity of the second user equipment according to the temporary identity of the second user equipment; Second, the permanent identity of the user equipment verifies whether the second user equipment has been authenticated or authorized.
  • the first message includes information used for remote identification of the second user equipment
  • the transceiving unit 1103 is further configured to receive information from the second user equipment for remote identification of the second user equipment;
  • the processing unit 1102 is verifying whether the identity of the second user equipment is legal, and is specifically configured to determine whether the information from the second user equipment used for remote identification of the second user equipment is related to the first message. Whether the included information used for remote identification of the second user equipment is consistent.
  • the communication device 1100 is applied to the first user equipment.
  • the transceiving unit 1103 is configured to receive a second message broadcast by the second user equipment, the second message being encrypted according to a symmetric key generated for the second network device when the second user equipment enters the network; The second message, sending a first message to the second network device, the first message being used to request identity verification of the second user equipment; receiving a verification result sent by the first network device;
  • the processing unit 1102 is configured to process the second message if the verification result indicates that the identity of the second user equipment is legal.
  • the second message includes identification information of the second user equipment and/or information used for remote identification of the second user equipment.
  • the first message includes one or more of the following: identification information of the second user equipment, first credentials for verifying the first user equipment, the second message, or Information for remote identification of the second user equipment.
  • the first message is also used to request the second user equipment to encrypt the key used by the second message; and/or the first message is also used to request to generate the second user equipment
  • the derivation parameter and/or the derivation algorithm of the subkey used to encrypt the second message; and/or the first message is also used to request the second network device to decrypt the second message.
  • the verification result further includes the key used by the second user equipment to encrypt the second message; and/or the derivation parameter and/or the derivation algorithm of the subkey used by the second user equipment to encrypt the second message; And/or the decrypted second message.
  • the processing unit 1102 is further configured to generate second credentials after the second network device and the first user equipment are successfully authenticated; and/or
  • the transceiving unit 1103 is further configured to receive the second credentials generated by the second network device after the second network device and the first user equipment are successfully authenticated.
  • the second credentials generated by the first network device are the same as the second credentials generated by the first user equipment.
  • the transceiver unit 1103 when the transceiver unit 1103 sends the first message to the second network device, it is specifically configured to send the received second message broadcast by one or more second user equipment to the first network device.
  • the device sends a first message, where the first message is specifically used to request identity verification of the one or more second user devices.
  • the processing unit 1102 is further configured to determine whether the distance between the first user equipment and the second user equipment is based on the second message before sending the first message to the second network equipment Located within the preset distance range;
  • the transceiver unit 1103 When the transceiver unit 1103 sends the first message to the second network device, it is specifically configured to send to the second network device if the distance between the first user equipment and the second user equipment is within a preset distance range. The second message.
  • the processing unit 1102 is further configured to determine whether the second user equipment broadcasts the second message at the time when the second user equipment broadcasts the second message according to the second message before sending the first message to the second network device Within the preset time range;
  • the transceiver unit 1103 When the transceiver unit 1103 sends the first message to the second network device, it is specifically configured to send the second message to the second network device if the time when the second user equipment broadcasts the second message is within a preset time range. A message.
  • the communication device 1100 is applied to the second user equipment.
  • the processing unit 1102 is configured to receive a third message sent by the first user equipment through the transceiving unit 1103, and the third message is used to request the second user equipment to reply with information for remote identification. ; Send a fourth message to the first user equipment through the transceiver unit 1103, where the fourth message includes information for the remote identity of the second user equipment.
  • the third message further includes one or more of the following: a security token Token used to verify the first user equipment, identification information of the first user equipment, and the first user equipment sending the third The time of the message, the location information of the first user equipment, the cell information of the first user equipment, or the signal strength of the message received by the first user equipment from the network device.
  • a security token Token used to verify the first user equipment
  • identification information of the first user equipment and the first user equipment sending the third The time of the message, the location information of the first user equipment, the cell information of the first user equipment, or the signal strength of the message received by the first user equipment from the network device.
  • the processing unit 1102 is further configured to determine the status of the first user equipment and the second user equipment according to the third message before sending the fourth message to the first user equipment Whether the distance is within the preset distance range;
  • the transceiving unit 1103 is specifically configured to send a message to the first user equipment if the distance between the first user equipment and the second user equipment is within a preset distance range. A user equipment sends a fourth message.
  • the processing unit 1102 is further configured to determine whether the first user equipment is located in the second user equipment according to the third message before sending the fourth message to the first user equipment In a cell or in a neighboring cell of the cell in which the second user equipment is located;
  • the transceiver unit 1103 When the transceiver unit 1103 sends the fourth message to the first user equipment, it is specifically configured to: if the first user equipment is located in the cell where the second user equipment is located or is located in the cell where the second user equipment is located Sending a fourth message to the first user equipment in the neighboring cell.
  • the transceiving unit 1103 is further configured to send a fifth message to the network device before sending the fourth message to the first user equipment, and the fifth message is used to instruct the network device to verify The legitimacy of the first user equipment; receiving a sixth message sent from the network device, where the sixth message is used to indicate whether the identity of the first user equipment is legal.
  • the sixth message further includes the public key of the first user equipment, or the first symmetric key generated by the second network device when the first user equipment enters the network, or is used to generate the public key of the first user equipment.
  • the derivation parameter and/or the derivation algorithm of the first subkey of the first symmetric key is used to generate the public key of the first user equipment.
  • the third message further includes a first credential used to verify the identity of the first user equipment, and the first credential includes the first user equipment and the first user equipment.
  • the processing unit 1102 is further configured to perform identity verification on the first user equipment according to the first credential before sending a fourth message to the first user equipment, and the second user equipment determines the first user equipment The identity of a user device is legal.
  • the processing unit 1102 is further configured to use the public key of the first user equipment to encrypt the fourth message to be sent before sending the fourth message to the first user equipment; or to use the The first symmetric key generated by the network device when the first user equipment enters the network encrypts the fourth message to be sent; or the first subkey is obtained by deriving the first symmetric key; the first subkey is used to be sent The fourth message is encrypted.
  • the communication device 1100 is applied to the first user equipment.
  • the processing unit 1102 is configured to send a third message to the second user equipment through the transceiving unit 1103, and the third message is used to request the second user equipment to reply to the information used for remote identification;
  • a fourth message from the second user equipment is received through the transceiver unit 1103, where the fourth message includes information used for remote identification of the second user equipment.
  • the third message also includes one or more of the following: a first credential used to verify the identity of the first user equipment, identification information of the first user equipment, and the first user equipment sending the The time of the third message, the total number of messages that the first user equipment has sent, count, the location information of the first user equipment, the cell information of the first user equipment, or the network equipment received by the first user equipment The signal strength of the message.
  • the first credential used to verify the identity of the first user equipment includes a token generated for the first user equipment after the first user equipment and the first network equipment are authenticated Token, or a digital certificate of the first user equipment signed by the first network device, and the digital certificate includes the public key of the first user equipment.
  • the fourth message is encrypted using the public key of the first user equipment, or the fourth message is encrypted using a second symmetric key generated for the second network device when the second user equipment enters the network. Or the fourth message is encrypted using a second subkey derived from the second symmetric key.
  • the communication device may be the above-mentioned mobility management network element or terminal equipment.
  • the communication device 1200 includes a processor 1202, a communication interface 1203, and a memory 1201.
  • the communication device 1200 may further include a communication line 1204.
  • the communication interface 1203, the processor 1202, and the memory 1201 may be connected to each other through a communication line 1204;
  • the communication line 1204 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (extended industry standard architecture). , Referred to as EISA) bus and so on.
  • the communication line 1204 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used to represent in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • the processor 1202 may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the program of the present application.
  • the communication interface 1203 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), and wired access networks.
  • a transceiver to communicate with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), and wired access networks.
  • the memory 1201 may be a ROM or other types of static storage devices that can store static information and instructions, RAM or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • read-only memory EEPROM
  • compact disc read-only memory, CD-ROM
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • magnetic disks A storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory can exist independently and is connected to the processor through the communication line 1204. The memory can also be integrated with the processor.
  • the memory 1201 is used to store computer-executable instructions for executing the solution of the present application, and the processor 1202 controls the execution.
  • the processor 1202 is configured to execute computer-executable instructions stored in the memory 1201, so as to implement the terminal device registration method provided in the foregoing embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • At least one refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one (piece, species) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or Multiple.
  • Multiple refers to two or more than two, and other quantifiers are similar.
  • a device means to one or more such devices.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. accomplish.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other storage medium in the art.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be arranged in the ASIC.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本申请实施例提供一种通信方法、装置及系统,用以保证无人机系统接入移动通信系统时的安全高效通信。该方法包括:第二用户设备发送第二消息,第一用户设备响应第二消息,向网络设备发送第一消息,请求对第二用户设备进行身份验证,网络设备验证第二用户设备的身份是否合法,将用于指示第二用户设备的身份是否合法的验证结果发送给第一用户设备;或者第一用户设备发送第三消息,用于第二用户设备回复用于远程身份识别的信息,第二用户设备回复第四消息,第四消息包括用于第二用户设备远程身份识别的信息,第三消息和第四消息采用相应的密钥进行加密。

Description

一种通信方法、装置及系统
相关申请的交叉引用
本申请要求在2020年03月27日提交中国专利局、申请号为202010231947.9、申请名称为“一种通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法、装置及系统。
背景技术
有关使用移动通信网络来实现无人机和其他设备之间通信的观点引起了关注,以无人机系统通信过程中进行远程身份识别为例,远程身份识别指无人机或遥控器在无人机飞行时能够提供无人机或遥控器的身份和地址等识别信息,使位于地面或无人机所在空域的其他设备能够确定无人机或遥控器的身份和位置等信息,从而对无人机系统进行监管,以减少无人机系统带来的潜在安全风险。
但是现有技术中还没有提出相应的解决方案,那么如何实现无人机系统和移动通信网络结合时的通信,尤其是如何安全高效地进行通信(如发送远程身份识别信息),仍是亟需解决的问题。
发明内容
本申请提供通信方法、装置及系统,用以实现无人机系统和移动通信网络结合时的通信,进而得到安全高效通信的目的。
第一方面,本申请实施例提供一种通信方法,包括:第一网络设备接收第一用户设备发送的第一消息,所述第一消息用于请求对第二用户设备进行身份验证;所述第一网络设备验证所述第二用户设备的身份是否合法;所述第一网络设备将验证结果发送给所述第一用户设备,所述验证结果用于指示所述第二用户设备的身份是否合法。
第一网络设备可以包括移动通信系统中新增的无人机系统流量管理UTM/无人机系统的服务提供功能USS。
通过上述方法,无人机系统中所涉及到的用户设备在通信过程中,可以利用移动通信网络的优势,请求网络设备协助对用户设备进行身份验证,然后可以安全地收发消息(消息还可以采用密钥或安全参数加密),能够有效避免无人机的敏感信息泄露,另外收发消息若采用对称钥进行加密,对称钥运算量更少,能够保证通信过程中的高效性。
在一种可能的设计中,所述第一消息包括用于验证所述第一用户设备的第一信任状credentials,所述第一网络设备验证所述第二用户设备的身份是否合法之前,所述第一网络设备还可以根据所述第一credentials,验证所述第一用户设备合法;所述第一网络设备验证所述第二用户设备的身份是否合法,包括:若验证所述第一用户设备合法,则所述第一网络设备根据所述第一消息验证所述第二用户设备的身份是否合法。
在该设计中,网络设备在执行第一用户设备的请求之前,还可以先对第一用户设备进 行身份验证,在保证第一用户设备合法时,再处理所述第一用户设备的请求,能够进一步保证通信过程的安全性,并且还可以避免网络设备处理资源的浪费。
在一种可能的设计中,所述第一网络设备与所述第一用户设备进行认证成功之后,所述第一网络设备还可以为所述第一用户设备生成第二credentials,和/或所述第一网络设备还可以接收所述第一用户设备生成的第二credentials;所述第一网络设备根据所述第一credentials,验证所述第一用户设备合法,包括:所述第一网络设备根据所述第一credentials和所述第二credentials,确定所述第一用户设备合法。
在一种可能的设计中,所述第一消息包括所述第二用户设备的标识信息,所述第二用户设备的标识信息为临时身份标识;所述第一网络设备验证所述第二用户设备的身份是否合法,包括:所述第一网络设备根据所述第二用户设备的临时身份标识,确定所述第二用户设备的永久身份标识;所述第一网络设备根据所述第二用户设备的永久身份标识,验证所述第二用户设备是否经过认证或授权。
在一种可能的设计中,所述第一消息包括用于所述第二用户设备远程身份识别的信息,还包括:所述第一网络设备还可以接收来自所述第二用户设备的用于所述第二用户设备远程身份识别的信息;所述第一网络设备验证所述第二用户设备的身份是否合法,包括:所述第一网络设备判断来自所述第二用户设备的用于所述第二用户设备远程身份识别的信息,与所述第一消息包括的用于所述第二用户设备远程身份识别的信息是否一致。
第二方面,本申请实施例还提供一种通信方法,包括:第一用户设备接收第二用户设备发送的第二消息;所述第一用户设备响应于所述第二消息,向第一网络设备发送第一消息,所述第一消息用于请求对所述第二用户设备进行身份验证;所述第一用户设备接收所述第一网络设备发送的验证结果,若所述验证结果指示所述第二用户设备的身份合法,所述第一用户设备对所述第二消息进行处理。
通过上述方法,无人机系统中所涉及到的用户设备在通信过程中,可以利用移动通信网络的优势,请求网络设备协助对用户设备进行身份验证,然后可以安全地收发消息(消息还可以采用密钥或安全参数加密),能够有效避免无人机的敏感信息泄露,第二用户设备广播第二消息,第二消息采用对称钥进行加密,保证了通信过程中的安全性,避免了给第二用户设备频繁大量预先配置证书,并且相对于非对称公私钥对,对称钥的加解密过程的运算量更少,能够提高通信过程中效率。
在一种可能的设计中,所述第二消息包括所述第二用户设备的标识信息和/或用于所述第二用户设备远程身份识别的信息;所述第一消息包括以下一种或多种:所述第二用户设备的标识信息、用于验证所述第一用户设备的第一credentials、所述第二消息、或用于所述第二用户设备远程身份识别的信息。
在一种可能的设计中,所述第一网络设备与所述第一用户设备认证成功之后,所述第一用户设备还可以接收所述第一网络设备生成的第二credentials和/或所述第一用户设备生成第二credentials。
其中,所述第一网络设备生成的第二credentials和所述第一用户设备生成的第二credentials相同。
在一种可能的设计中,所述向第一网络设备发送第一消息,包括:针对接收到的一个或多个第二用户设备广播的第二消息,向所述第一网络设备发送第一消息,所述第一消息具体用于请求对所述一个或多个第二用户设备进行身份验证。
在该设计中,第一用户设备可以针对一个或多个第二用户设备广播的第二消息进行聚合,具体而言,第一用户设备可以等待预设时长,将预设时长内接收到的一个或多个第二用户设备广播的第二消息进行聚合,或者第一用户设备可以在接收到设定数量个第二用户设备广播的第二消息后,将该设定数量个第二用户设备广播的第二消息进行聚合。
在一种可能的设计中,所述向第一网络设备发送第一消息之前,所述第一用户设备还可以根据所述第二消息,确定所述第一用户设备和所述第二用户设备的距离是否位于预设的距离范围内;所述第一用户设备向第一网络设备发送第一消息,包括:若所述第一用户设备和所述第二用户设备的距离位于预设的距离范围内,所述第一用户设备向第一网络设备发送第一消息。
在该设计中,第一用户设备可以根据其与第二用户设备的距离,预先针对第二消息(或第二用户设备)进行过滤,对与其距离不位于预设的距离范围内的第二用户设备不进行响应,从而节省处理资源,保证通信过程中的高效性。
在一种可能的设计中,所述向第一网络设备发送第一消息之前,还包括:
所述第一用户设备根据所述第二消息,确定所述第二用户设备广播所述第二消息的时间是否位于预设的时间范围内;
所述第一用户设备向第一网络设备发送第一消息,包括:
若所述第二用户设备广播所述第二消息的时间位于预设的时间范围内,所述第一用户设备向第一网络设备发送第一消息。
在该设计中,第一用户设备可以第二用户设备广播第二消息的时间,预先针对第二消息(或第二用户设备)进行过滤,对广播第二消息的时间不位于预设的时间范围内的第二用户设备不进行响应,从而节省处理资源,保证通信过程中的高效性。
第三方面,本申请实施例还提供一种通信方法,包括:第二用户设备根据所述第二用户设备入网时针对第二网络设备生成的对称钥,对待发送的第二消息进行加密;所述第二用户设备广播加密后的所述第二消息。
第二网络设备可以包括访问和移动管理功能AMF/统一数据管理UDM,或者AMF/UDM和UTM/USS。
通过上述方法,第二用户设备广播第二消息,第二消息采用对称钥进行加密,保证了通信过程中的安全性,避免了给第二用户设备频繁大量预先配置证书,并且相对于非对称公私钥对,对称钥的加解密过程的运算量更少,能够提高通信过程中效率。
在一种可能的设计中,所述第二用户设备根据所述第二用户设备入网时针对第二网络设备生成的对称钥,对待发送的第二消息进行加密,包括:所述第二用户设备采用所述第二用户设备入网时针对第二网络设备生成的对称钥,对待发送的第二消息进行加密;或者所述第二用户设备对所述第二用户设备入网时针对第二网络设备生成的对称钥进行推演,生成所述对称钥的子密钥;所述第二用户设备采用所述子密钥,对待发送的第二消息进行加密。
在该设计中,对第二消息进行加密的密钥可以为第二用户设备入网时针对第二网络设备生成的对称钥,或者可以为根据所述对称钥推演生成的子密钥。
在一种可能的设计中,所述第二用户设备还可以向所述第二网络设备发送用于生成所述子密钥的推演参数和/或推演算法。
在一种可能的设计中,所述第二消息包括所述第二用户设备的标识信息和/或用于所述 第二用户设备远程身份识别的信息。
所述第二用户设备的标识信息包括所述第二用户设备的临时身份标识和/或所述第二用户设备的永久身份标识;所述用于所述第二用户设备远程身份识别的信息包括以下一种或多种:所述第二用户设备的位置信息、所述第二用户设备广播所述第二消息的时间、所述第二用户设备的生产厂商或所述第二用户设备接入的运营商(或移动通信网络所属的运营商)。
第四方面,本申请实施例还提供一种通信方法,包括:第二网络设备接收第一用户设备发送的第一消息,所述第一消息用于请求对第二用户设备进行身份验证;所述第二网络设备验证所述第二用户设备的身份是否合法;所述第二网络设备将验证结果发送给所述第一用户设备,所述验证结果用于指示所述第二用户设备的身份是否合法。
通过上述方法,第二用户设备广播第二消息,第二消息采用对称钥进行加密,保证了通信过程中的安全性,避免了给第二用户设备频繁大量预先配置证书,并且相对于非对称公私钥对,对称钥的加解密过程的运算量更少,能够提高通信过程中效率。并且利用了3GPP网络的优势,对无人机或稽查设备先进行身份验证,然后安全地收发消息(即采用密钥或安全参数加密),能够有效避免无人机的敏感信息泄露。
在一种可能的设计中,所述第二网络设备还可以接收来自所述第二用户设备的加密后的第二消息。
所述第二消息采用所述第二用户设备入网时针对第二网络设备生成的对称钥进行加密;或者所述第二消息采用所述对称钥推演生成的子密钥进行加密。
在一种可能的设计中,所述第一消息包括以下一种或多种:所述第二用户设备的标识信息、用于验证所述第一用户设备的第一credentials、所述第二消息、或用于所述第二用户设备远程身份识别的信息。
所述第二消息包括所述第二用户设备的标识信息和/或用于所述第二用户设备远程身份识别的信息。
在一种可能的设计中,所述第一消息还用于请求所述第二用户设备加密第二消息所采用的密钥;和/或所述第一消息还用于请求生成所述第二用户设备加密第二消息所采用的子密钥的推演参数和/或推演算法;和/或所述第一消息还用于请求所述第二网络设备解密第二消息。
所述验证结果还包括所述第二用户设备加密第二消息所采用的密钥;和/或所述第二用户设备加密第二消息所采用的子密钥的推演参数和/或推演算法;和/或解密后的第二消息。
在一种可能的设计中,所述第二网络设备还可以接收来自所述第二用户设备的用于生成子密钥的推演参数和/或推演算法;所述第二网络设备根据所述第二用户设备入网时针对所述第二网络设备生成的对称钥,用于生成所述子密钥的推演参数和/或推演算法,生成所述对称钥的子密钥。
在一种可能的设计中,所述第一消息包括用于验证所述第一用户设备的第一credentials,所述第二网络设备验证所述第二用户设备的身份是否合法之前,所述第二网络设备还可以根据所述第一credentials,验证所述第一用户设备合法;所述第二网络设备验证所述第二用户设备的身份是否合法,包括:若验证所述第一用户设备合法,则所述第二网络设备根据所述第一消息验证所述第二用户设备的身份是否合法。
在该设计中,网络设备在执行第一用户设备的请求之前,还可以先对第一用户设备进 行身份验证,在保证第一用户设备合法时,再处理所述第一用户设备的请求,能够进一步保证通信过程的安全性,并且还可以避免网络设备处理资源的浪费。
在一种可能的设计中,所述第二网络设备与所述第一用户设备进行认证成功之后,所述第二网络设备还可以为所述第一用户设备生成第二credentials,和/或所述第二网络设备还可以接收所述第一用户设备生成的第二credentials;所述第二网络设备根据所述第二credentials,验证所述第一用户设备合法,包括:所述第二网络设备根据所述第一credentials和所述第二credentials,确定所述第一用户设备合法。
在一种可能的设计中,所述第一消息包括所述第二用户设备的标识信息,所述第二用户设备的标识信息为临时身份标识;所述第二网络设备验证所述第二用户设备的身份是否合法,包括:所述第二网络设备根据所述第二用户设备的临时身份标识,确定所述第二用户设备的永久身份标识;所述第二网络设备根据所述第二用户设备的永久身份标识,验证所述第二用户设备是否经过认证或授权。
在一种可能的设计中,所述第一消息包括用于所述第二用户设备远程身份识别的信息,所述第二网络设备还可以接收来自所述第二用户设备的用于所述第二用户设备远程身份识别的信息;所述第二网络设备验证所述第二用户设备的身份是否合法,包括:所述第二网络设备判断来自所述第二用户设备的用于所述第二用户设备远程身份识别的信息,与所述第一消息包括的用于所述第二用户设备远程身份识别的信息是否一致。
第五方面,本申请实施例还提供一种通信方法,包括:第一用户设备接收第二用户设备广播的第二消息,所述第二消息根据所述第二用户设备入网时针对第二网络设备生成的对称钥加密;所述第一用户设备响应于所述第二消息,向所述第二网络设备发送第一消息,所述第一消息用于请求对所述第二用户设备进行身份验证;所述第一用户设备接收所述第一网络设备发送的验证结果,若所述验证结果指示所述第二用户设备的身份合法,所述第一用户设备对所述第二消息进行处理。
通过上述方法,无人机系统中所涉及到的用户设备在通信过程中,可以利用移动通信网络的优势,请求网络设备协助对用户设备进行身份验证,然后可以安全地收发消息(消息还可以采用密钥或安全参数加密),能够有效避免无人机的敏感信息泄露,第二用户设备广播第二消息,第二消息采用对称钥进行加密,保证了通信过程中的安全性,避免了给第二用户设备频繁大量预先配置证书,并且相对于非对称公私钥对,对称钥的加解密过程的运算量更少,能够提高通信过程中效率。
在一种可能的设计中,所述第二消息包括所述第二用户设备的标识信息和/或用于所述第二用户设备远程身份识别的信息。
所述第一消息包括以下一种或多种:所述第二用户设备的标识信息、用于验证所述第一用户设备的第一credentials、所述第二消息、或用于所述第二用户设备远程身份识别的信息。
在一种可能的设计中,所述第一消息还用于请求所述第二用户设备加密第二消息所采用的密钥;和/或所述第一消息还用于请求生成所述第二用户设备加密第二消息所采用的子密钥的推演参数和/或推演算法;和/或所述第一消息还用于请求所述第二网络设备解密第二消息。
所述验证结果还包括所述第二用户设备加密第二消息所采用的密钥;和/或所述第二用户设备加密第二消息所采用的子密钥的推演参数和/或推演算法;和/或解密后的第二消息。
在一种可能的设计中,所述第二网络设备与所述第一用户设备认证成功之后,所述第一用户设备还可以接收所述第二网络设备生成的第二credentials,和/或所述第一用户设备还可以生成第二credentials。
其中,所述第一网络设备生成的第二credentials和所述第一用户设备生成的第二credentials相同。
在一种可能的设计中,所述向第二网络设备发送第一消息,包括:针对接收到的一个或多个第二用户设备广播的第二消息,向所述第一网络设备发送第一消息,所述第一消息具体用于请求对所述一个或多个第二用户设备进行身份验证。
在一种可能的设计中,所述向第二网络设备发送第一消息之前,所述第一用户设备还可以根据所述第二消息,确定所述第一用户设备和所述第二用户设备的距离是否位于预设的距离范围内;所述第一用户设备向第二网络设备发送第一消息,包括:若所述第一用户设备和所述第二用户设备的距离位于预设的距离范围内,所述第一用户设备向第二网络设备发送第二消息。
在一种可能的设计中,所述向第二网络设备发送第一消息之前,所述第一用户设备还可以根据所述第二消息,确定所述第二用户设备广播所述第二消息的时间是否位于预设的时间范围内;所述第一用户设备向第二网络设备发送第一消息,包括:若所述第二用户设备广播所述第二消息的时间位于预设的时间范围内,所述第一用户设备向第二网络设备发送第一消息。
第六方面,本申请实施例还提供一种通信方法,包括:第二用户设备接收第一用户设备发送的第三消息,所述第三消息用于请求所述第二用户设备回复用于远程身份识别的信息;所述第二用户设备向所述第一用户设备发送第四消息,所述第四消息包括用于所述第二用户设备远程身份的信息。
所述第三消息还包括以下一种或多种:用于验证所述第一用户设备的安全令牌Token、所述第一用户设备的标识信息、所述第一用户设备发送所述第三消息的时间、所述第一用户设备的位置信息、所述第一用户设备的小区信息或所述第一用户设备接收到网络设备的消息的信号强度。
通过上述方法,第一用户设备可以请求第二用户设备发送用于远程身份识别的信息,第二用户设备根据第一用户设备的请求发送远程身份识别信息,减少了无人机广播占用信道资源,并且通信过程中的消息进行加密,保证了通信过程的安全高效,避免了第二用户设备持续广播造成的信道资源占用。
在一种可能的设计中,所述第二用户设备向所述第一用户设备发送第四消息之前,所述第二用户设备还可以根据所述第三消息,确定所述第一用户设备和所述第二用户设备的距离是否位于预设的距离范围内;所述第二用户设备向所述第一用户设备发送第四消息,包括:若所述第一用户设备和所述第二用户设备的距离位于预设的距离范围内,所述第二用户设备向所述第一用户设备发送第四消息。
在该设计中,第二用户设备可以根据其与第一用户设备的距离,预先针对第三消息(或第一用户设备)进行过滤,对与其距离位于预设的距离范围内的第一用户设备不进行响应,从而节省处理资源,保证通信过程中的高效性。
在一种可能的设计中,所述第二用户设备向所述第一用户设备发送第四消息之前,所述第二用户设备还可以根据所述第三消息,确定所述第一用户设备是否位于所述第二用户 设备所在小区内或位于所述第二用户设备所在小区的邻小区内;所述第二用户设备向所述第一用户设备发送第四消息,包括:若所述第一用户设备位于所述第二用户设备所在小区内或位于所述第二用户设备所在小区的邻小区内,所述第二用户设备向所述第一用户设备发送第四消息。
在该设计中,第二用户设备可以根据第一用户设备是否位于其所在小区或邻小区,预先针对第三消息(或第一用户设备)进行过滤,对不位于其所在小区或邻小区内的第一用户设备不进行响应,从而节省处理资源,保证通信过程中的高效性。
在一种可能的设计中,所述第二用户设备向所述第一用户设备发送第四消息之前,所述第二用户设备还可以向网络设备发送第五消息,所述第五消息用于指示所述网络设备验证所述第一用户设备的合法性;所述第二用户设备接收来自所述网络设备发送的第六消息,所述第六消息用于指示所述第一用户设备的身份是否合法。
在该设计中,第二用户设备可以利用移动通信网络的优势,请求网络设备协助对用户设备进行身份验证,然后可以安全地收发消息,能够有效避免无人机的敏感信息泄露。
在一种可能的设计中,所述第六消息还包括所述第一用户设备的公钥,或者所述第一用户设备入网时所述第二网络设备生成的第一对称钥,或者用于生成所述第一对称钥的第一子密钥的推演参数和/或推演算法。
在一种可能的设计中,所述第三消息还包括用于验证所述第一用户设备身份的第一credential,所述第一credential中包括所述第一用户设备和所述第一网络设备认证之后为第一用户设备生成的令牌Token,或者经过第一网络设备签名的所述第一用户设备的数字证书,所述数字证书中包括第一用户设备的公钥;
所述第二用户设备向所述第一用户设备发送第四消息之前,所述第二用户设备还可以根据所述第一credential,对所述第一用户设备进行身份验证,所述第二用户设备确定所述第一用户设备的身份合法。
在该设计中,第二用户设备可以自身对第一用户设备的身份是否合法进行验证,能够保证通信过程中的安全性。
在一种可能的设计中,所述第二用户设备向所述第一用户设备发送第四消息之前,所述第二用户设备还可以采用所述第一用户设备的公钥对待发送的第四消息加密;或者所述第二用户设备还可以采用所述第一用户设备入网时网络设备生成的第一对称钥对待发送的第四消息加密;或者所述第二用户设备还可以根据对所述第一对称钥进行推演得到第一子密钥;采用所述第一子密钥对待发送的第四消息加密。
第七方面,本申请实施例还提供一种通信方法,包括:第一用户设备向第二用户设备发送第三消息,所述第三消息用于请求所述第二用户设备回复用于远程身份识别的信息;所述第一用户设备接收来自第二用户设备的第四消息,所述第四消息包括用于所述第二用户设备远程身份识别的信息。
所述第三消息还包括以下一种或多种:用于验证所述第一用户设备身份的第一credential、所述第一用户设备的标识信息、所述第一用户设备发送所述第三消息的时间、所述第一用户设备已经发送的消息的总数count、所述第一用户设备的位置信息、所述第一用户设备的小区信息或所述第一用户设备接收到网络设备的消息的信号强度。
通过上述方法,第一用户设备可以请求第二用户设备发送用于远程身份识别的信息,第二用户设备根据第一用户设备的请求发送远程身份识别信息,减少了无人机广播占用信 道资源,并且通信过程中的消息进行加密,保证了通信过程的安全高效,避免了第二用户设备持续广播造成的信道资源占用。
在一个可能的设计中,所述用于验证所述第一用户设备身份的第一credential中包括所述第一用户设备和所述第一网络设备认证之后为第一用户设备生成的Token,或者经过第一网络设备签名的所述第一用户设备的数字证书,所述数字证书中包括第一用户设备的公钥。
在一个可能的设计中,所述第四消息采用所述第一用户设备的公钥加密,或者所述第四消息采用所述第二用户设备入网时针对第二网络设备生成的第二对称钥加密,或者所述第四消息采用根据所述第二对称钥推演的第二子密钥加密。
第八方面,本申请提供一种通信装置,该装置具有实现上述任意方面或任意方面中的实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第九方面,本申请提供一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述任意方面或任意方面中的实现方法。
第十方面,本申请提供一种通信装置,包括:包括用于执行以上任意方面各个步骤的单元或手段(means)。
第十一方面,本申请提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行以上任意方面提供的任意方法。该处理器包括一个或多个。
第十二方面,本申请提供一种通信装置,包括处理器,用于与存储器相连,用于调用所述存储器中存储的程序,以执行上述任意方面的任意实现方式中的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
第十三方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得处理器执行上述任意方面所述的方法。
第十四方面,本申请还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任意方面所述的方法。
第十五方面,本申请还提供一种芯片系统,包括:处理器,用于执行上述各方面所述的方法。
第十六方面,本申请还提供一种通信系统,包括用于执行上述第一方面或第一方面任一实现方法的第一网络设备、用于执行上述第二方面或第二方面任一实现方法的第一用户设备和第二用户设备。
第十七方面,本申请还提供一种通信系统,包括用于执行上述第三方面或第三方面任一实现方法的第二用户设备、用于执行上述第四方面或第四方面任一实现方法的第二网络设备和用于执行上述第五方面或第五方面任一实现方法的第一用户设备。
第十八方面,本申请还提供一种通信系统,包括用于执行上述第六方面或第六方面任一实现方法的第二用户设备和用于执行上述第七方面或第七方面任一实现方法的第一用户设备。
附图说明
图1为本申请实施例提供的一种可能的网络架构示意图;
图2为本申请实施例提供的一种可能的网络架构示意图;
图3为本申请实施例提供的一种通信方法流程示意图;
图4为本申请实施例提供的一种可能的网络架构示意图;
图5为本申请实施例提供的一种通信方法流程示意图;
图6为本申请实施例提供的一种可能的网络架构示意图;
图7为本申请实施例提供的一种通信方法流程示意图;
图8为本申请实施例提供的一种通信方法流程示意图;
图9为本申请实施例提供的一种通信方法流程示意图;
图10为本申请实施例提供的一种通信方法流程示意图;
图11为本申请实施例提供的一种通信装置示意图;
图12为本申请实例提供的一种通信装置示意图。
具体实施方式
下面将结合附图对本发明作进一步地详细描述。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)无人机系统(unmanned aerial system,UAS),一般包括无人机(unmanned aerial vehicle,UAV)和无人机的遥控器(UAV controller,UAVC),无人机可以自主进行飞行,或者无人机可以根据接收到的遥控器的控制指令进行飞行。无人机和遥控器之间可以进行通信,例如,遥控器可以向无人机发送控制指令,无人机可以在航拍后将拍摄的照片视频发送给遥控器。通常地,遥控器和无人机之间通过无线信号(如Wi-Fi)直接连接(点到点连接)。所述无人机的遥控器也简称为遥控器或遥控设备等。
而移动通信网络(或通信系统)具有很多优势,如广域覆盖、可靠性高以及能够支持高速移动业务等,如果将无人机系统与移动通信网络相结合,无人机系统可以实现超视距高可靠的飞行。但是现有技术中还没有提供将无人机系统与移动通信网络相结合来实现通信的方案,尤其是无人机系统与移动通信系统结合后,如何实现可靠的监管更需要进行关注,从而保证无人机系统的安全以及公共安全(包括飞行相关的安全(Safety)和信息相关的安全(Security)),防止类似无人机干扰飞机航班运营和通过无人机发起恐怖袭击等事 件的发生。
2)远程身份识别,指无人机或遥控器在无人机飞行时可以提供识别信息(如身份信息、位置信息和时间信息等),使位于地面和/或无人机所在空域的其他设备能够确定无人机或遥控器的身份和位置等信息。身份信息可以包括无人机的身份识别码(如UAV-ID)、遥控器的身份识别码(如UAVC-ID)或无人机系统的身份识别码(如UAS-ID)中的一种或多种。无人机接入移动通信网络后,移动通信网络可以为无人机分配身份识别码或签约识别码(例如称为UE-ID),UAV-ID和UE-ID不同,即一个无人机可以对应两个以上的身份识别码(如UAV-ID和UE-ID)。位置信息可以通过经度信息、纬度信息或大气压力等一种或多种信息来表示。时间信息可以是无人机发送识别信息时的时间戳等。所述识别信息中还可以包括无人机的生产厂商和/或无人机接入的运营商等信息。所述无人机接入的运营商可以为无人机接入的移动通信网络所属的运营商。
3)网络设备,指可以为终端提供无线接入功能的设备。其中,网络设备可以支持至少一种无线通信技术,例如长期演进(long term evolution,LTE)、新无线(new radio,NR)、宽带码分多址(wideband code division multiple access,WCDMA)等。
例如网络设备可以包括接入网设备。示例的,网络设备包括但不限于:第五代移动通信系统(5th-generation,5G)中的下一代基站或下一代节点B(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B、或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心、小站、微型站等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)、和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点、车载设备、终端、可穿戴设备以及未来移动通信中的网络设备或者未来演进的公共移动陆地网络(public land mobile network,PLMN)中的网络设备等。
又如,网络设备可以包括核心网(core network,CN)设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)等。
另外,将无人机系统与移动通信网络相结合后,网络设备还可以包括(新增的)用于对无人机及遥控器进行管理的设备,或者在(已有的)网络设备中新增对无人机及遥控器进行管理的功能。例如,对无人机及遥控器进行管理的设备可以称为无人机系统流量管理(unmanned aerial system traffic management,UTM)网络功能,和/或无人机系统的服务提供功能(UAS service suppliers,USS)。UTM/USS可以存储无人机系统的相关信息,如认证信息,UTM/USS基于认证信息,可以对无人机及遥控器进行身份验证。无人机的监管部门也可以通过UTM/USS对无人机系统进行监管,来保证无人机飞行控制的安全及公共安全。在一些可能的情况下,UTM/USS可以具有遥控无人机飞行的功能。
需要说明的是,UTM/USS可以属于或部署在运营商网络中,也可以属于或部署在第三方实体中,在本申请实施例不进行限定。为了方便描述,本申请的实施例中不作区分,或者以UTM/USS属于或部署在运营商网络为例进行说明,可以理解,对于UTM/USS属于或部署在第三方实体的场景,本申请实施例提供的通信过程同样适用。
可以理解的是,除非特意说明,在本申请实施例中,网络设备至少包括第一网络设备 和/或第二网络设备,其中所述第一网络设备和所述第二网络设备的相关说明可以参见后续实施例。
4)用户设备(user equipment,UE),指具有无线收发功能的设备,可以称为终端设备、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、终端等。示例的,用户设备具体的形态可以是UAV、用于对无人机进行监管的稽查设备、机载终端、飞机、高铁、车载终端等。具体的,UAV可以理解为一种使用无线电设备遥控或自带程序控制操纵而不载人的飞行器。需要说明的是,终端可以支持至少一种无线通信技术,例如LTE、NR、WCDMA、未来通信系统等。
5)信任状(credentials),可以包括cookie、令牌(token)、票据(ticket)、密钥、密码、或证书等一种或多种。可选的,密钥可以包括对称钥或非对称公私钥对,在本申请实施例中主要以密钥包括对称钥进行说明。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中所涉及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、WCDMA系统、通用分组无线业务(general packet radio service,GPRS)、LTE系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或NR以及未来的第六代通信系统等。
各种通信系统中由运营者运营的部分可称为运营商网络。运营商网络也可称为PLMN网络,是由政府或政府所批准的经营者,以为公众提供陆地移动通信业务为目的而建立和经营的网络,主要是移动网络运营商(mobile network operator,MNO)为用户提供移动宽带接入服务的公共网络。本申请实施例中所描述的运营商网络或PLMN网络,可以为符合第三代合作伙伴项目(3rd generation partnership project,3GPP)标准要求的网络,简称3GPP网络。通常3GPP网络由运营商来运营,包括但不限于第五代移动通信(5th-generation,5G)网络(简称5G网络)、第四代移动通信(4th-generation,4G)网络(简称4G网络)、第三代移动通信技术(3rd-generation,3G)网络(简称3G网络)和第二代无线电话技术(2nd-generation wireless telephone technology,2G)网络(简称2G网络)等。为了方便描述,本申请实施例中将以运营商网络(如MNO网络)为例进行说明。
随着移动带宽接入服务的扩展,MNO的网络也会随之发展以便更好地支持多样化的商业模式,满足更加多样化的应用业务以及更多行业的需求。为了给更多的行业提供更好、更完善的服务,下一代网络(即5G网络)相对于4G网络也做了网络架构调整。例如,5G网络将4G网络中的移动管理实体(mobility management entity,MME)进行拆分,拆分为包括AMF和会话管理功能(session management function,SMF)等多个网络功能。
为了便于理解本申请实施例,以图1所示的5G网络架构为例对本申请使用的应用场景进行说明,可以理解的是对其他通信网络与5G网络架构相似,因此不做赘述。参阅图1所示,所述网络架构中可以包括:终端设备(也可以称为用户设备)部分、运营商网络部分和数据网络(data network,DN)部分。
终端设备部分包括终端设备110,终端设备110也可以称为用户设备(user equipment,UE)。本申请实施例中所涉及的终端设备110作为一种具有无线收发功能的设备,可以经(无线)接入网((radio)access network,(R)AN)140中的接入网设备与一个或多个核心网(core network,CN)进行通信。终端设备110也可称为接入终端、终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线网络设备、用户代理或用户装置等。终端设备110可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备110可以是蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、智能电话(smart phone)、手机(mobile phone)、无线本地环路(wireless localloop,WLL)站、个人数字处理(personal digital assistant,PDA),可以是具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备、无人机设备或物联网、车联网中的终端、第五代移动通信(fifth generation,5G)网络以及未来网络中的任意形态的终端、中继用户设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。例如终端设备110可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例对此并不限定。为方便说明,本申请实施例中以终端设备110包括无人机和稽查设备为例进行说明。
运营商网络可以包括网络开放功能(network exposure function,NEF)131、网络存储功能(network function repository function,NRF)132、策略控制功能(policy control function,PCF)133、统一数据管理(unified data management,UDM)网元134、应用功能(application function,AF)135、认证服务器功能(authentication server function,AUSF)136、AMF 137、SMF 138、用户面功能(user plane function,UPF)139以及(R)AN140等。上述运营商网络中,除(R)AN 140部分之外的其他部分可以称为核心网络(core network,CN)部分或核心网部分。为方便说明,本申请实施例中以(R)AN 140为RAN为例进行说明。
数据网络DN 120,也可以称为分组数据网络(packet data network,PDN),通常是位于运营商网络之外的网络,例如第三方网络。运营商网络可以接入多个数据网络DN 120,数据网络DN 120上可部署多种业务,可为终端设备110提供数据和/或语音等服务。例如,数据网络DN 120可以是某智能工厂的私有网络,智能工厂安装在车间的传感器可以是终端设备110,数据网络DN 120中部署了传感器的控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,数据网络DN 120可以是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备110,员工的手机或者电脑可以访问公司内部办公网 络上的信息、数据资源等。
终端设备110可通过运营商网络提供的接口(例如N1等)与运营商网络建立连接,使用运营商网络提供的数据和/或语音等服务。终端设备110还可通过运营商网络访问数据网络DN 120,使用数据网络DN 120上部署的运营商业务,和/或第三方提供的业务。其中,上述第三方可为运营商网络和终端设备110之外的服务方,可为终端设备110提供其他数据和/或语音等服务。其中,上述第三方的具体表现形式,具体可根据实际应用场景确定,在此不做限制。
下面对运营商网络中的网络功能进行简要介绍。
(R)AN 140可以看作是运营商网络的子网络,是运营商网络中业务节点与终端设备110之间的实施系统。终端设备110要接入运营商网络,首先是经过(R)AN 140,进而可通过(R)AN 140与运营商网络的业务节点连接。本申请实施例中所涉及的接入网设备(RAN设备),作为一种为终端设备110提供无线通信功能的设备,也可以称为网络设备,RAN设备包括但不限于:5G系统中的下一代基站或节点B(next generation node B,gNB)、LTE中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、小基站设备(pico)、移动交换中心,或者未来网络中的网络设备等。应理解,本文对接入网设备的具体类型不作限定。采用不同无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同。
接入与移动性管理功能AMF(也可以称为AMF网元、AMF网络功能或AMF网络功能实体)137是由运营商网络提供的控制面网络功能,负责终端设备110接入运营商网络的接入控制和移动性管理,例如包括移动状态管理,分配用户临时身份标识,认证和授权用户等功能。
会话管理功能SMF(也可以称为SMF网元、SMF网络功能或SMF网络功能实体)138是由运营商网络提供的控制面网络功能,负责管理终端设备110的协议数据单元(protocol data unit,PDU)会话。PDU会话是一个用于传输PDU的通道,终端设备需要通过PDU会话与数据网络DN 120互相传送PDU。PDU会话由SMF网络功能138负责建立、维护和删除等。SMF网络功能138包括会话管理(如会话建立、修改和释放,包含用户面功能UPF 139和(R)AN 140之间的隧道维护)、UPF网络功能139的选择和控制、业务和会话连续性(service and session continuity,SSC)模式选择、漫游等会话相关的功能。
用户面功能UPF(也可以称为UPF网元、UPF网络功能或UPF网络功能实体)139是由运营商提供的网关,是运营商网络与数据网络DN 120通信的网关。UPF网络功能139包括数据包路由和传输、数据包检测、业务用量上报、服务质量(quality of service,QoS)处理、合法监听、上行数据包检测、下行数据包存储等用户面相关的功能。
统一数据管理网元UDM(也可以称为UDM网元、UDM网络功能或UDM网络功能实体)134是由运营商提供的控制面功能,负责存储运营商网络中签约用户的用户永久标识符(subscriber permanent identifier,SUPI)、信任状(credential)、安全上下文(security context)、签约数据等信息。其中SUPI在传输过程中会先进行加密,加密后的SUPI被称为隐藏的用户签约标识符(subscription concealed identifier,SUCI)。UDM网络功能134所 存储的这些信息可用于终端设备110接入运营商网络的认证和授权。其中,上述运营商网络的签约用户具体可为使用运营商网络提供的业务的用户,例如使用中国电信的手机芯卡的用户,或者使用中国移动的手机芯卡的用户等。上述签约用户的永久签约标识SUPI可为该手机芯卡的号码等。上述签约用户的信任状、安全上下文可为该手机芯卡的加密密钥或者跟该手机芯卡加密相关的信息等存储的小文件,用于认证和/或授权。上述安全上下文可为存储在用户本地终端(例如手机)上的数据(cookie)或者令牌(token)等。上述签约用户的签约数据可为该手机芯卡的配套业务,例如该手机芯卡的流量套餐或者使用网络等。需要说明的是,永久标识符、信任状、安全上下文、认证数据(cookie)、以及令牌等同验证/认证、授权相关的信息,在本申请实施例中,为了描述方便起见不做区分、限制。
认证服务器功能AUSF(也可以称为AUSF网元、AUSF网络功能或AUSF网络功能实体)136是由运营商提供的控制面功能,通常用于一级认证,即终端设备110(签约用户)与运营商网络之间的认证。AUSF网络功能136接收到签约用户发起的认证请求之后,可通过UDM网络功能134中存储的认证信息和/或授权信息对签约用户进行认证和/或授权,或者通过UDM网络功能134生成签约用户的认证和/或授权信息。AUSF网络功能136可向签约用户反馈认证信息和/或授权信息。
网络开放功能NEF(也可以称为NEF网元、NEF网络功能或NEF网络功能实体)131是由运营商提供控制面功能。NEF网络功能131以安全的方式对第三方开放运营商网络的对外接口。在SMF网络功能138需要与第三方的网络功能通信时,NEF网络功能131可作为SMF网络功能138与第三方的网络实体通信的中继。NEF网络功能131作为中继时,可作为签约用户的标识信息的翻译,以及第三方的网络功能的标识信息的翻译。比如,NEF网络功能131将签约用户的SUPI从运营商网络发送到第三方时,可以将SUPI翻译成其对应的外部身份标识(identity,ID)。反之,NEF网络功能131将外部ID(第三方的网络实体ID)发送到运营商网络时,可将其翻译成SUPI。
策略控制功能PCF(也可以称为PCF网元、PCF网络功能或PCF网络功能实体)133是由运营商提供的控制面功能,用于向SMF网络功能138提供PDU会话的策略。策略可以包括计费相关策略、QoS相关策略和授权相关策略等。
图1中Nnef、Nausf、Nnrf、Npcf、Nudm、Naf、Namf、Nsmf、N1、N2、N3、N4,以及N6为接口序列号。这些接口序列号的含义可参见3GPP标准协议中定义的含义,在此不做赘述。需要说明的是,图1中仅以终端设备110为UE作出了示例性说明,图1中的各个网络功能之间的接口名称也仅仅是一个示例,在具体实现中,该系统架构的接口名称还可能为其他名称,本申请实施例对此不做具体限定。
本申请实施例中的移动性管理网络功能可以是图1所示的AMF网络功能137,也可以是未来通信系统中的具有上述AMF网络功能137的其他网络功能。或者,本申请中的移动性管理网络功能还可以是LTE中的MME等。
为方便说明,本申请实施例中以移动性管理网络功能为AMF网络功能137为例进行说明。进一步地,将AMF网络功能137简称为AMF,将终端设备110称为UE,即本申请实施例中后文所描述的AMF均可替换为移动性管理网络功能,UE均可替换为终端设备。
图1中示出的网络架构(例如5G网络架构)采用基于服务的架构和通用接口,传统网元功能基于网络功能虚拟化(network function virtualization,NFV)技术拆分成若干个自包含、自管理、可重用的网络功能服务模块,通过灵活定义服务模块集合,可以实现定制 化的网络功能重构,对外通过统一的服务调用接口组成业务流程。图1中示出的网络架构示意图可以理解为一种非漫游场景下基于服务的5G网络架构示意图。对于漫游场景,本申请实施例同样适用。
基于图1所示的网络架构,图2提供一种5G系统与无人机系统连接的示意图,无人机系统(UAS)中包括无人机(UAV)和无人机的遥控器(UAVC)。所述终端设备110可以包括所述遥控器、所述无人机和经授权的第三方实体(Third Party Authorized Entity,TPAE)。其中所述TPAE可以是通信系统中新增的实体,例如所述TPAE可以包括检查设备(inspector)和/或稽查设备(本申请的实施例为方便起见,通常为稽查设备或TPAE)。所述TPAE可以接收无人机发送的消息,并被授权可以获取无人机的身份信息。所述TPAE可以通过接入运营商网络连接UTM/USS,也可以与UTM/USS之间建立其他方式(非运营商网络)的连接。在一些可能的应用场景中,所述TPAE还可以具有遥控无人机的功能。
需要说明的是,TPAE目前只是3GPP标准化研究报告中的一个实体,其名称和功能还不完全固定,在标准化过程中还有修改的可能,本申请实施例中并不限定其名称与功能。
所述(R)AN 140可以包括RAN1、RAN2和RAN3,所述RAN1与所述UAVC连接,为所述遥控器提供服务,所述RAN2与所述无人机连接,为所述无人机提供服务,所述RAN3与所述TPAE连接,为所述TPAE提供服务。如果所述TPAE、所述无人机和所述遥控器在同一个RAN覆盖下(RAN3=RAN1=RAN2),那么所述RAN3、RAN1和RAN2也可以用同一个(R)AN 140表示。
所述运营商网络中的核心网可以包括CN1、CN2和CN3,具体的网络功能/网元未在图2中示出。所述CN1与所述RAN1连接,向所述RAN1提供服务,所述CN2与所述RAN2连接,向所述RAN2提供服务,所述CN3与所述RAN3连接,向RAN3提供服务。例如,所述遥控器通过运营商网络对所述无人机进行控制时,所述遥控器发出的控制指令可以经过所述RAN1、所述CN1、所述CN2和所述RAN2的路径达到所述无人机。如果同一个CN向所述RAN1、所述RAN2和所述RAN3提供服务(CN1=CN2=CN3),那么所述CN1、CN2和CN3也可以用同一个核心网CN表示。
所述运营商网络的核心网侧还可以新增网络功能UTM和/或USS。UTM/USS可以存储无人机系统的相关信息,如认证信息,UTM/USS基于认证信息,可以对无人机及遥控器进行身份验证。无人机的监管部门也可以通过UTM/USS对无人机系统进行监管,来保证无人机飞行控制的安全及公共安全。在一些可能的情况下,UTM/USS可以具有遥控无人机飞行的功能。
无人机系统的通信过程中可以进行终端设备110的远程身份识别,以无人机为例,远程身份识别指无人机在飞行时能够提供身份、位置、时间等识别信息,使位于地面或无人机所在空域的其他设备能够确定无人机的身份和某个时刻的位置,这一特征对无人机系统的监管非常重要,能够减少无人机系统带来的潜在安全风险。但是如何实现无人机系统和移动通信网络结合时的通信,现有技术中还没有提出相应的解决方案。可选的,可以参考以下方式完成通信,下面以在通信过程中发送远程身份识别信息为例进行说明。
方式一、参考3GPP网络的基站广播方法,在3GPP网络中,基站可以向小区内的终 端设备UE进行广播。
如果无人机参考基站广播方法,即将无人机设想为基站,无人机可以向周围的终端设备进行广播,广播消息中可以携带无人机的远程身份识别信息,如无人机的标识信息和/或位置信息等。
但是无人机采用方式一进行广播,存在以下问题:3GPP网络的基站广播的消息是明文的(没有经过加密和完整性保护),因此无人机的广播消息中携带的远程身份识别信息就容易造成泄漏,甚至被恶意篡改;广播信道需要专门的频谱时间资源,且在广播的时段频率段内,其他设备不允许发送消息,无人机飞行距离较远范围较大,在飞行过程中可能需要连续不断的进行广播,则会占用较多的信道资源(包括频谱资源和时间资源)。因此,基于方式一无法安全高效地发送远程身份识别信息。
方式二、参考V2X(vehicle to everything,如3GPP或Wi-Fi中的车联网)系统的基于证书的短距离广播方法,在V2X系统中,可以预先为每辆车配置大量的公私密钥对和证书。车辆进行广播之前,先使用证书中经过认证的公钥所对应的私钥对广播消息进行加密,然后将加密后的消息进行广播。为了保护车辆隐私、防止车辆被追踪,车辆每隔一段时间(如5分钟)就会更换一个证书以及证书中的公私密钥对,因此一般的车辆一次需要配置多达上千个证书,当证书快用尽时,再进行配置。
如果无人机参考车辆广播方法,即将无人机设想为车辆,无人机中也可以配置大量证书,使用证书中经过认证的公钥所对应的私钥对广播消息进行加密,然后将加密后的消息进行广播。
但是无人机采用方式二进行广播,存在以下问题:采用非对称方式的私钥进行加密运算量较大,运算复杂度较高,并且经过非对称钥加密的数据包长度会显著增加,从而增加传输的开销(overhead);无人机飞行距离较远范围较大,在飞行过程中可能需要连续不断的进行广播,则会占用较多的信道资源。因此,基于方式二无法高效地发送远程身份识别信息。
综上,如何实现无人机系统和移动通信网络结合时的通信,尤其是如何安全高效地进行通信(如发送远程身份识别信息),仍是亟需解决的问题。
鉴于此,本申请提出一种通信方法来保证安全高效地实现通信。在该方法中,第二用户设备广播或单播发送第二消息,第二消息采用对称钥进行加密,第一用户设备响应于第二消息,向网络设备发送第一消息,用于请求对第二用户设备进行身份验证,网络设备将指示第二用户设备的身份是否合法的验证结果发送给第一用户设备,第一用户设备在确定第二用户设备的身份合法后,对第二消息进行处理,由于第二消息经过加密且采用对称钥加密,并且利用了网络设备的优势,请求网络设备协助对用户设备进行身份验证,能够避免无人机的敏感信息泄露,因此可以保证通信过程中的安全高效;或者第一用户设备向第二用户设备请求远程身份识别信息,第二用户设备根据第一用户设备的请求,将用于远程身份识别的信息发送给第二用户设备,用于远程身份识别的信息经过加密,且第二用户设备为按需单播远程身份识别的信息,因此也可以保证通信过程中的安全高效。
本申请实施例提供了一种通信方法,该方法可以应用于图1和图2所示的通信系统中。下面参考图3,详细说明通信方法的具体过程。如图3所示,该过程包括:
S301:第二用户设备发送(广播或单播)第二消息,第一用户设备接收来自所述第二 用户设备的所述第二消息。
所述第二用户设备和所述第一用户设备为3GPP网络的合法签约用户,例如所述第二用户设备和所述第一用户设备中安装有用户身份识别模块(subscriber identity module,SIM)卡。示例性的,所述第二用户设备可以为图4所示的无人机(和/或遥控器),所述第一用户设备可以为图4所示的TPAE(如稽查设备)。
所述第二用户设备可以是主动广播所述第二消息,或者所述第二用户设备也可以是按需广播或单播所述第二消息,例如,其他设备(如所述第一用户设备)向所述第二用户设备请求远程身份识别信息,所述第二用户设备响应该请求,广播或单播所述第二消息。
在所述S301之前,所述第二用户设备可以采用第二对称钥对待发送的第二消息进行加密。可选的,所述第二对称钥可以为所述第二用户设备和第一网络设备(如UTM/USS)进行认证,在认证成功之后,所述第二用户设备生成的第二对称钥或所述第一网络设备生成的第二对称钥(也可以称为第二共享密钥);或者所述第二用户设备入网(即注册接入3GPP网络)时针对第二网络设备(如AMF/UDM或AMF/UDM+UTM/USS或gNB)生成的第二对称钥(如非接入层(Non-access stratum,NAS)密钥K-amf和/或接入层(Access stratum,AS)密钥K-gNB);或者根据所述第二用户设备入网时针对第二网络设备生成的第二对称钥推演生成的第二子密钥。
所述第二消息包括以下一种或多种信息:所述第二用户设备的标识信息、用于所述第二用户设备远程身份识别的信息或用于验证所述第二用户设备的第三credentials。其中所述第三credentials可以为所述第二用户设备和所述第一网络设备认证成功之后,所述第二用户设备生成的或所述第一网络设备生成的。可以理解的是,根据实际的通信需求,第二消息还可以包括其他业务数据。
可选的,所述第二用户设备可以对整个所述第二消息进行加密,或者所述第二用户设备可以对所述第二消息中的部分信息进行加密,例如仅对所述第二消息中的敏感信息(如用于所述第二用户设备远程身份识别的信息)进行保护。
所述第二用户设备的标识信息可以包括所述第二用户设备的临时身份标识和/或所述第二用户设备的永久身份标识,所述第二用户设备的临时身份标识和所述第二用户设备的永久身份标识存在对应关系,所述第二用户设备和网络设备中可以包括所述对应关系。其中所述第二用户设备的永久身份标识可以包括所述第二用户设备在网络中使用的签约用户永久身份标识(subscriber permanent identifier,SUPI),所述第二用户设备在UAS系统中的ID(如无人机的ID,UAV-ID或遥控器的ID,UAVC-ID),第二用户设备的出厂序列号或所述第二用户设备的公开使用的签约标识(generic public subscription identifier,GPSI),所述第二用户设备的临时身份标识可以包括经过随机化处理的伪身份标识、经过UAS系统加密的身份标识、网络设备(如第一网络设备或第二网络设备)为所述第二用户设备的会话分配的标识、网络设备(如第一网络设备或第二网络设备)为所述第二用户设备的航行业务分配的标识、或所述第二用户设备在网络中使用的全球唯一临时UE标识(globally unique temporary UE identity,GUTI)。
用于所述第二用户设备远程身份识别的信息也可以简称为远程身份识别信息,用于所述第二用户设备远程身份识别的信息可以包括以下一种或多种信息:所述第二用户设备发送所述第二消息的时间信息、所述第二用户设备的位置信息、所述第二用户设备的生产厂商的信息或所述第二用户设备接入的运营商的信息等,其中所述第二用户设备的位置信息 可以通过经度信息、纬度信息、大气压力信息或高度信息等进行表示。
可选的,网络设备(如第一网络设备或第二网络设备)也可以接收到来自第二用户设备的第二消息。例如,所述网络设备可以接收到所述第二用户设备发送的所述第二消息,或者所述第一用户设备可以将所述第二消息(或所述第二消息中的部分信息)转发给所述网络设备。
S302:所述第一用户设备响应于所述第二消息,向网络设备发送第一消息,网络设备接收来自所述第一用户设备的第一消息。
所述第一消息用于请求对所述第二用户设备进行身份验证。
如图4所示,所述网络设备可以包括AMF/UDM和/或UTM/USS,例如所述网络设备包括第一网络设备和第二网络设备,所述第一网络设备可以包括新增的UTM/USS,所述第二网络设备可以包括AMF/UDM,或AMF/UDM和UTM/USS。
所述第一消息可以包括以下一种或多种:所述第二用户设备的标识信息、第二消息、用于验证所述第一用户设备的第一信任状credentials、或用于所述第二用户设备远程身份识别的信息。若所述第一消息仅包括所述第二用户设备的标识信息,所述第一消息的数据量更小,更加节省传输开销。
可选的,所述网络设备(如第一网络设备)与所述第一用户设备认证或身份验证成功之后,所述第一用户设备接收所述网络设备生成的第二credentials(如,安全令牌token)。一般的,所述第一用户设备在所述第一消息中携带的用于验证所述第一用户设备的第一credentials包含了第一用户设备的身份信息(如,安全令牌token中的声明claim),并且包含第一网络设备可验证的信息(如,第一网络设备的数字签名)。若在传输过程中Token被攻击者篡改,所述网络设备接收到的所述第一消息中携带的第一credentials无法通过网络设备的验证。可选的,所述网络设备(如第一网络设备)与所述第一用户设备认证成功之后,所述第一用户设备和所述第一网络设备分别生成(相同的)第一对称钥(也可以称为第一共享密钥);所述第一用户设备利用所述第一对称钥生成第一credentials,包含验证信息(如,散列消息认证码(Hash-based message authentication code,HMAC))。所述第一网络设备可以使用所述第一网络设备生成的第一对称钥来验证所述第一credentials或验证信息的真实性。
可选的,所述第一用户设备可以采用所述第一对称钥对待发送的第一消息进行加密。所述第一网络设备利用所述第一网络设备生成的第一对称钥来解密所述第一消息。如果可以正确解密所述第一消息,可以认为第一网络设备成功验证所述第一用户设备。
可选的,所述网络设备(如第二网络设备)与所述第一用户设备认证成功后生成的所述第一对称钥还可以是所述第一用户设备入网时针对所述第二网络设备生成的第一对称钥(如NAS密钥K-amf和/或AS密钥K-gNB);或者根据所述第一用户设备入网时针对所述第二网络设备生成的第一对称钥推演生成的第一子密钥。
所述第一消息还可以用于请求所述第二用户设备加密第二消息所采用的密钥;和/或所述第一消息还用于请求生成所述第二用户设备加密第二消息所采用的子密钥的推演参数和/或推演算法和/或密钥识别码;和/或所述第一消息还用于请求所述第二网络设备解密第二消息。
所述第一用户设备还可以针对一个或多个第二用户设备发送(如广播或单播)的第二消息进行聚合,例如所述第一用户设备可以针对接收到的一个或多个第二用户设备发送的 第二消息,向所述第一用户设备发送第一消息,具体而言,所述第一用户设备可以聚合设定时长内接收到的一个或多个第二用户设备发送的第二消息,或者所述第一用户设备也可以聚合接收到的设定数量个第二用户设备发送的第二消息,所述设定数量个为一个或多个。所述第一消息具体用于请求对所述一个或多个第二用户设备进行身份验证,所述第一消息可以包括(聚合)有所述一个或多个第二用户设备的标识信息。其中所述设定时长、所述设定数量可以为任意值,在本申请实施例中不做限定。
所述第一用户设备接收到所述第二消息后,还可以对所述第二消息进行过滤,所述第一用户设备对过滤掉的所述第二消息不进行响应。一种可能的实现方式中,所述第一用户设备根据所述第一用户设备和所述第二用户设备的距离进行过滤,例如,所述第一用户设备根据所述第二消息,确定所述第一用户设备和所述第二用户设备的距离是否位于预设的第一距离范围内,若所述第一用户设备和所述第二用户设备的距离位于预设的第一距离范围内,所述第一用户设备响应于所述第二消息,向所述网络设备发送第一消息,所述第一用户设备和所述第二用户设备的距离可以根据所述第一用户设备和位置信息和所述第二用户设备的位置信息确定,或者根据接收到所述第二消息的信号强度确定,所述预设的第一距离范围可以为任意值,在本申请实施例中不做限定。另一种可能的实现方式中,所述第一用户设备根据所述第二用户设备发送所述第二消息的时间进行过滤,例如,所述第一用户设备根据所述第二消息,确定所述第二用户设备发送所述第二消息的时间是否位于所述预设的时间范围内,若所述第二用户设备发送所述第二消息的时间位于预设的时间范围内,所述第一用户设备响应于所述第二消息,所述第一用户设备向所述网络设备发送第一消息,所述第二用户设备发送所述第二消息的时间可以根据所述第二消息中携带的信息确定,或者可以根据所述第一用户设备接收到所述第二消息的时间确定,所述预设的时间范围可以为任意值,在本申请实施例中不做限定。又一种可能的实现方式中,所述第一用户设备根据所述第二消息的信号强度进行过滤,例如,所述第一用户设备根据所述第二消息,确定所述第二消息的信号强度是否位于预设的强度范围内,若所述第二消息的信号强度位于预设的强度范围内,所述第一用户设备响应于所述第二消息,所述第一用户设备向所述网络设备发送第一消息,所述预设的强度范围可以为任意值,在本申请实施例中不做限定。
S303:所述网络设备验证所述第二用户设备的身份是否合法。
可选的,所述网络设备还可以接收来自所述第二用户设备的用于生成第二子密钥的推演参数和/或推演算法和/或密钥识别码,所述用于生成第二子密钥的推演参数和/或推演算法和/或密钥识别码可以携带在其他消息(非所述第二消息)中。这样,在所述第二消息采用第二子密钥进行加密时,所述网络设备可以根据所述第二用户设备入网时针对所述第二网络设备生成的第二对称钥,以及用于生成第二子密钥的推演参数和/或推演算法和/或密钥识别码,生成所述第二对称钥的第二子密钥。
如果所述第一消息包括用于验证所述第一用户设备的第一credentials,所述网络设备还可以根据所述第一credentials,验证所述第一用户设备是否合法,若验证所述第一用户设备合法,所述网络设备可以根据所述第一消息验证所述第二用户设备的身份是否合法。例如,所述网络设备中保存有用于验证所述第一用户设备的credentials真实性的密钥,所述网络设备还可以根据该密钥是否能够成功解密所述第一消息或第一credentials,确定所述第一用户设备合法,如若该密钥能够成功解密所述第一消息或第一credentials,所述网络设备确定所述第一用户设备合法,否则,所述网络设备确定所述第一用户设备不合法。 又如,所述网络设备(如第一网络设备)与所述第一用户设备进行认证成功之后或所述网络设备(如第一网络设备)对所述第一用户设备进行身份验证成功之后,所述网络设备为所述第一用户设备生成第二credentials(如,安全令牌token),所述第二credentials包含了第一用户设备的身份信息(如,token中包含具有身份信息的声明claim),以及第一网络设备可验证的信息(如,第一网络设备的数字签名)。所述第一网络设备在所述认证成功时发送给第一用户设备。所述用于验证所述第一用户设备的第一credentials与第二credentials相同,或包括第二credentials。所述网络设备接收所述第一用户设备的第一credentials,所述网络设备根据生成第二credentials的密钥验证第一credentials的真实性(如,验证token中的数字签名是否正确,确定第一用户设备是否合法)。
又如,所述网络设备(如第一网络设备)与所述第一用户设备认证成功之后,所述第一用户设备和所述第一网络设备分别生成(相同的)第一对称钥(也可以称为第一共享密钥);所述第一用户设备利用所述第一对称钥生成第一credentials,包含验证信息(如HMAC)。所述第一网络设备可以使用所述第一网络设备生成的第一对称钥来验证所述第一credentials或验证信息(如HMAC)的真实性。如果确定第一credentials或验证信息(如HMAC)正确,则可确定所述第一用户设备合法。
如果所述第一消息包括所述第二用户设备的标识信息,则所述第二用户设备的标识信息可能为临时身份标识,可能为永久身份标识。如果所述第二用户设备的标识信息为临时身份标识,所述网络设备可以根据所述第二用户设备的临时身份标识,确定所述第二用户设备的永久身份标识,所述网络设备可以根据所述第二用户设备的永久身份标识,验证所述第二用户设备是否经过认证或授权。若所述网络设备确定所述第二用户设备经过认证或授权,则可以确定所述第二用户设备的身份合法,否则,则可以确定所述第二用户设备的身份不合法。可选的,如果所述第二用户设备的标识信息为临时身份标识,所述网络设备可以直接根据所述第二用户设备的临时身份标识,验证所述第二用户设备是否经过认证或授权。若所述网络设备确定所述第二用户设备经过认证或授权,则可以确定所述第二用户设备的身份合法,否则,则可以确定所述第二用户设备的身份不合法。可以理解的是,对于所述第二用户设备的标识信息为永久身份标识的验证,可以与上述临时身份标识的验证过程相似,在此不做赘述。
所述网络设备还可以接收来自所述第二用户设备的用于所述第二用户设备远程身份识别的信息,所述用于所述第二用户设备远程身份识别的信息可以携带在所述第二消息,或者可以携带在其他消息(非所述第二消息)中。如果所述其他消息包括用于所述第二用户设备远程身份识别的信息,所述网络设备可以判断来自所述第二用户设备的用于所述第二用户设备远程身份识别的信息,与所述第一消息中包括的用于所述第二用户设备远程身份识别的信息是否一致。若一致,所述网络设备可以确定所述第二用户设备的身份合法,否则,则可以确定所述第二用户设备的身份不合法。
S304:所述网络设备将验证结果发送给所述第一用户设备,所述验证结果用于指示所述第二用户设备的身份是否合法。所述第一用户设备接收验证结果。
和所述第一消息对应的,所述验证结果还可以包括所述第二用户设备加密第二消息所采用的密钥;和/或所述第二用户设备加密第二消息所采用的子密钥的推演参数和/或推演算法和/或密钥识别码;和/或解密后的第二消息。
S305:若验证结果指示所述第二用户设备的身份合法,所述第一用户设备对所述第二 消息进行处理。
示例性的,所述第一用户设备可以对所述第二消息进行解密,和/或对解密后的所述第二消息中携带的业务数据进行处理。
若验证结果指示所述第二用户设备的身份不合法,所述第一用户设备可以不对所述第二消息进行处理。进一步的,所述第一用户设备还可以触发应用层消息通知稽查设备。
在该实施例中,第二用户设备广播第二消息,第二消息如果采用对称钥进行加密,可保证通信过程中的安全性,避免给第二用户设备频繁大量预先配置证书,并且相对于非对称公私钥对,对称钥的加解密过程的运算量更少,能够提高通信过程中效率。并且,本申请实施例中尽可能的利用了3GPP网络的优势,对无人机或稽查设备先进行身份验证,然后安全地收发消息(即采用密钥或安全参数加密),能够有效避免无人机的敏感信息泄露。
图5为本申请实施例提供的另一种通信流程示意图,在图5中无人机可以按需进行广播或单播,从而可以缓解广播消息占用信道资源的问题,进一步提高通信过程的效率。该过程包括:
S501:第一用户设备向第二用户设备发送第三消息,所述第二用户设备接收来自所述第一用户设备的第三消息。
所述第三消息用于请求所述第二用户设备回复用于远程身份识别的信息。
在该实施例中,所述第二用户设备无需持续进行广播,可以按需进行广播或单播,即所述第二用户设备可以在接收所述第一用户设备发送的第三消息后,进行广播或单播。
可选的,所述第二用户设备可以位于运营商网络的覆盖范围内(如图4所示),或者所述第二用户设备可以不位于所述运营商网络的覆盖范围内(如图6所示)。
所述第三消息还可以包括以下一种或多种信息:用于验证所述第一用户设备身份的第一credential、所述第一用户设备的标识信息、所述第一用户设备发送所述第三消息的时间、所述第一用户设备已经发送的消息的总数(count)、所述第一用户设备的位置信息、所述第一用户设备的小区信息、所述第一用户设备接收到网络设备的消息的信号强度或所述第一用户设备接入的运营商的信息。
其中,所述用于验证所述第一用户设备身份的第一credential中可以包括所述第一用户设备和所述第一网络设备认证之后为第一用户设备生成的令牌(token),或者经过第一网络设备(如UTM/USS)签名的所述第一用户设备的数字证书,所述数字证书中可以包括第一用户设备的公钥,所述token可以包括所述第一用户设备的标识信息,token的权限或有效期等一种或多种。所述第一用户设备的标识信息可以包括所述第一用户设备的临时身份标识和/或所述第一用户设备的永久身份标识。所述第一用户设备的位置信息可以通过三维坐标、经度信息、纬度信息、大气压力信息或高度信息等进行表示。所述第一用户设备的小区信息可以包括全球小区识别码(cell global identifier,CGI)信息,和/或小区广播信号中的系统信息块(system information block,SIB)/主信息块(master information block,MIB)信息。
S502:第二用户设备向第一用户设备发送第四消息,第一用户设备接收来自第二用户设备的第四消息。
所述第四消息包括用于所述第二用户设备远程身份识别的信息。另外可选的,所述第四消息可以与上述第二消息相似,所述第四消息还可以包括所述第二用户设备的标识信息和/或用于验证所述第二用户设备的第三credentials。可以理解的是,根据实际的通信需求, 第四消息还可以包括其他业务数据。
可选的,所述第二用户设备可以对整个所述第四消息进行加密,或者所述第二用户设备可以对所述第四消息中的部分信息进行加密。
所述第二用户设备可以采用所述第一用户设备的公钥对待发送的第四消息进行加密;所述第二用户设备可以采用所述第一用户设备的公钥推演得到的对称子密钥对待发送的第四消息进行加密;或者所述第二用户设备可以采用所述第二用户设备入网时针对所述网络设备(如第二网络设备)生成的第二对称钥,对待发送的第四消息进行加密;或者所述第二用户设备可以采用所述第二用户设备的私钥,对待发送的第四消息进行加密;或者所述第二用户设备可以采用根据所述第二对称钥推演得到的第二子密钥,对待发送的第四消息进行加密;或者所述第二用户设备采用所述第一用户设备入网时网络设备生成的第一对称钥对待发送的第四消息加密;或者所述第二用户设备根据对所述第一对称钥进行推演得到第一子密钥,采用所述第一子密钥对待发送的第四消息加密。
可选的,所述第二用户在发送第四消息之前,还可以判断是否执行其他操作,所述其他操作可以用于减轻网络遭受Denial of service(指DoS拒绝服务攻击)、Relay(指中继或转放攻击)、Replay(指重放攻击)等攻击风险。
可选的,所述第二用户设备接收到第三消息后,还可以对所述第三消息进行过滤,所述第二用户设备针对过滤掉的第三消息不回复第四消息。一种可能的实现方式中,所述第二用户设备根据所述第一用户设备和所述第二用户设备的距离进行过滤,例如,所述第二用户设备根据所述第三消息,确定所述第一用户设备和所述第二用户设备的距离是否位于预设的第二距离范围内,若所述第一用户设备和所述第二用户设备的距离位于预设的第二距离范围内,所述第二用户设备向所述第一用户设备发送第四消息,所述预设的第二距离范围可以为任意值,在本申请实施例中不做限定,所述预设的第一距离范围和所述预设的第二距离范围可以相同或不同。另一种可能的实现方式中,所述第二用户设备根据所述第三消息,确定所述第一用户设备是否位于所述第二用户设备所在小区或位于所述第二用户设备所在小区的邻小区内,若所述第一用户设备位于所述第二用户设备所在小区或位于所述第二用户设备所在小区的邻小区内,所述第二用户设备向所述第一用户设备发送第四消息。
所述第二用户设备还可以针对一个或多个第一用户设备发送的第三消息进行聚合。该聚合过程可以参照上述S302中所述第一用户设备针对一个或多个第二用户设备发送的第二消息进行聚合,在此不进行赘述。
在该S502之前,所述第二用户设备向网络设备发送第五消息,所述第五消息用于指示所述网络设备验证所述第一用户设备的合法性;所述网络设备发送第六消息,所述第二用户设备接收来自所述网络设备发送的所述第六消息,所述第六消息用于指示所述第一用户设备的身份是否合法,若合法,所述第二用户设备可以执行S502。所述网络设备验证所述第一用户设备的合法性的过程,可以参见S303所述网络设备验证所述第二用户设备的身份是否合法,在此不进行赘述。此时,所述第二用户设备可以位于运营商网络的覆盖范围内。
若所述第二用户设备不位于所述运营商网络的覆盖范围内,如图6所示,在该S502之前,所述第二用户设备可以根据所述第一credential,对所述第一用户设备进行身份验证,所述第二用户设备确定所述第一用户设备的身份是否合法,若合法,所述第二用户设备可 以执行S502。
所述第六消息还可以包括所述第一用户设备的公钥,或者所述第一用户设备的公钥推演对称子密钥时所需的推演参数和/或推演算法。或者所述第一用户设备入网时所述第二网络设备生成的第一对称钥,或者用于生成所述第一对称钥的第一子密钥的推演参数和/或推演算法。
在该实施例中,第一用户设备可以请求第二用户设备发送用于远程身份识别的信息,第二用户设备根据第一用户设备的请求发送远程身份识别信息,可减少无人机广播占用信道资源,并且通信过程中的消息进行加密,保证通信过程的安全高效。
可以理解的是,本申请中的各实施例在不冲突的情况下,可以任意结合,以进一步提高通信过程中的安全性和高效性。
下面以几个详细的实施例对本申请上述各实施例进行说明。
首先,参见图7所示的通信流程示意图。在图7中可以借用3GPP网络保护无人机的广播消息,具体包括以下过程:
S700:无人机注册入网完成(Registration completed),并通过了网络设备(包括AMF/UDM或/和UTM/USS)的认证。
网络设备与无人机之间生成了用于保护无人机和网络设备之间通信的对称钥,例如NAS密钥K-amf或AS密钥K-gNB(AS密钥K-gNB图中未示出)。可选的,无人机和UTM/USS之间生成了对称钥,分别存储在无人机和UTM/USS。该对称钥可以对无人机和UTM/USS之间交互的消息进行安全保护(加密或完整性保护)。需要说明的是,该对称钥与前述网络认证的NAS密钥K-amf或AS密钥K-gNB不同。
可选的,无人机和UTM/USS之间认证结束后,UTM/USS为无人机生成了用于身份验证的Token(安全令牌),该Token存储于无人机中,UTM/USS可以验证其真实性。如,该Token可以包括claim(声明、或生成参数):UAV-ID、UAV-UEID和UTM/USS的签名。Token中的声明部分表示了无人机的身份等属性,签名部分是为了让其他网络或终端设备(如UTM、USS、AMF或稽查设备)可以验证token(以及其中的声明)的真实性完整性。
可选的,无人机根据所述对称钥推演(derive)得到用于无人机广播的子密钥(K-b),其中用于推演所述子密钥的推演参数可以包括随机数(rand)和/或无人机的标识信息(UE-ID)等。
本申请实施例中所涉及的无人机还可以替换成无人机的遥控器。本申请实施例中安全保护是以消息加密(包括生成加密密钥等)为例来描述的,但同样适用于对消息的完整性保护(包括生成完整性保护密钥等)的场景。
S701:无人机广播(broadcast)第二消息。
所述第二消息是采用了步骤S700中无人机和网络设备认证结束之后生成的对称钥来进行加密的。可选的,所述第二消息采用无人机针对第一网络设备(如AMF、gNB)生成的对称钥(NAS密钥K-amf或AS密钥K-gNB)进行加密。可选的,所述第二消息采用无人机和UTM/USS认证结束之后生成的对称钥进行加密,其中该对称钥与无人机针对第一网络设备所生成的对称钥不同。可选的,无人机根据所述任意一种对称钥推演(derive)得到用于无人机广播的子密钥(K-b),其中用于推演所述子密钥的推演参数可以包括随机数(rand)和/或无人机的标识信息(UE-ID)等。
所述第二消息中包括用于所述无人机远程身份识别的信息(UE remote identification info),其中所述无人机远程身份识别的信息包括无人机在无人机系统中的身份信息(如:UAV-ID)、位置信息(如:经度、纬度、高度或气压值)、时间信息等。可选的,所述用于无人机远程身份识别的信息可以采用所述子密钥加密(encrypted by K-b)。
所述第二消息中还可以包括所述无人机在网络中的标识信息(如所述无人机在网络中的临时身份标识(temp UE ID)。一般的,所述无人机在网络中的标识信息不同于所述无人机远程身份识别信息中的无人机系统中的标识信息。其中所述无人机的临时身份标识可以不采用对称钥或子密钥进行安全保护,所述无人机的临时身份标识例如可以为GUTI或新定义的身份标识(newly defined)。
S702:可选的,所述无人机利用运营商网络,单播发送NAS消息给网络设备。
该消息可以采用步骤S700所述生成的网络的第一对称钥进行安全保护。
可选的,该消息还可以包括步骤S701中用于推演加密第二消息的所述子密钥的推演参数(如生成子密钥输入的随机数和/或无人机的标识信息(如UE-ID和/或UAV-ID)等)和/或推演算法和/或密钥识别码,密钥指示信息或远程身份识别信息(包括无人机身份信息(如:UAV-ID)、位置信息position和/或时间信息time)等,其中密钥指示信息可以用于指示密钥类型是现有的还是需要进一步推演的,或者用于指示使用密钥K-amf还是密钥K-gNB。
所述网络设备包括AMF/UDM和UTM/USS,在实际的通信过程中,所述AMF可以替换为安全锚功能(security anchor function,SEAF)、认证凭证存储和处理功能(authentication credential repository and processing function,ARPF),或者和SEAF、ARPF的任意结合。
该步骤也可以是网络设备发送请求消息,所述无人机回复该NAS消息给所述网络设备的。
S703:TPAE(如稽查设备)响应于第二消息,向网络设备发送第一消息。所述网络设备接收并处理所述第一消息。
由于无人机的广播消息是利用无人机和网络设备之间的密钥进行保护的,该密钥由无人机和网络设备共享,但是TPAE并没有保存该密钥,无法解密所述第二消息或验证所述第二消息的真实性/完整性。
所述第一消息用于请求验证所述无人机的身份是否合法,和/或所述第一消息用于请求无人机的相关信息(Request for UAV info),可选的,所述第一消息包括所述无人机的临时身份标识(UAV-temp UE ID)或第二消息(broadcast msg)。
可选的,所述第一消息可以采用所述TPAE和所述网络设备之间的密钥进行安全保护。可选的,所述TPAE可以通过其他非3GPP连接(如有线网络,Wi-Fi等)发送第一消息。
所述网络设备处理所述第一消息时,所述网络设备可以根据所述无人机的标识信息,验证所述无人机,如验证所述无人机的标识信息对应的无人机是否为合法的无人机,例如具体验证所述无人机的标识信息对应的无人机是否为注册签约的无人机和/或是否有权限在当前位置时间飞行的无人机。
和/或,所述网络设备处理所述第一消息时,所述网络设备验证密钥和/或生成所述子密钥的推演参数(derivation parameters)和/或推演算法和/或密钥识别码。如果所述网络设备在S702接收的消息中指示了所使用的密钥或者生成子密钥的推演参数和/或推演算法和/ 或密钥识别码,所述网络设备确定并更新相应的密钥。若所述网络设备未接收到S702的消息,所述网络设备可以确定所述无人机没有更新密钥。
和/或,所述网络设备处理所述第一消息时,如果所述网络设备接收所述第一消息或和/或S702所述无人机发送的消息,所述网络设备可以根据无人机的临时身份标识,确定无人机的临时身份标识对应的终端(即永久身份标识),并确定所述无人机广播消息时所使用的密钥,所述网络设备可以对第二消息进行解密(decipher)和/或验证(verify)所述第一消息的真实性/完整性。
S704:所述网络设备将验证结果回复给所述TPAE。所述TPAE接收并进行处理所述验证结果。
所述验证结果中可以包括用于指示无人机是否合法的信息。可选的,对于不合法的无人机,所述验证结果中还可以包括所述无人机不合法的原因,如所述无人机未注册或签约,或者所述无人机在当前位置或时间不具有飞行权限。
所述验证结果中还可以包括所述无人机的相关信息,如所述无人机所使用的密钥,或者所述无人机生成子密钥所使用的推演参数和/或推演算法和/或密钥识别码等,或者解密后的所述第二消息等。
所述TPAE可以采用无人机所使用的密钥,解密所述第二消息,或者所述TPAE可以采用生成子密钥所使用的推演参数和/或推演算法和/或算法识别码,生成对称钥的子密钥,或者所述TPAE根据所述第二消息的解密信息判断所述无人机是否合法等。
需要说明的是步骤S702的步骤可以不作限制,即S702可以在S701之前或S703发送第一消息之后。
参见图8所示的通信流程示意图,图8中可以不更改广播消息,3GPP网络协助远程身份识别,具体包括以下步骤:
S800同S700。
S801:无人机广播第二消息。
所述第二消息中包括用于所述无人机远程身份识别的信息。
需要说明的是,步骤S801中,无人机也可以不利用运营商网络,而是采用非3GPP技术(如Wi-Fi)广播第二消息。
S802:所述无人机利用运营商网络,单播发送NAS或AS消息给第一网络设备(如AMF、gNB、UPF)。所述第一网络设备进行处理,将处理后的NAS消息发送给UTM/USS。UTM/USS根据接收到的NAS消息对无人机进行验证。
所述第一网络设备包括AMF/UDM,在实际的通信过程中,所述AMF可以替换为gNB、UPF,或者和gNB、UPF的任意组合。
所述NAS或AS消息可以包括无人机在网络中使用的临时身份标识或/和在网络中使用的永久身份标识或/和远程身份识别信息。其中所述远程身份识别信息包括无人机在UAS中的身份标识(UAV-ID)、位置信息、时间信息等。所述第一网络设备可以对无人机在网络中使用的临时身份标识进行处理,例如将GUTI进行处理得到SUPI/GPSI等。例如,如果UTM/USS部署在运营商网络中,处理后的消息中可以携带SUPI,如果UTM/USS部署在运营商网络之外,处理后的消息中可以携带GPSI,在此情况下,所述网络设备在转发消息时,还可以先判断UTM/USS是否部署在运营商网络中,然后选择携带SUPI还是GPSI。
需要说明的是,一般上,所述无人机系统中的身份标识(UAV-ID)与所述网络中的身 份信息(如GUTI、SUPI、GPSI等)不同。所述无人机系统中的身份信息是无人机在UAS中的身份信息,包括无人机在UAS中的永久身份ID(如:出厂序列号)或/和无人机在UAS中的临时身份ID(如:将永久身份ID随机化处理的伪身份ID,由UAS产生(或由UAS/UTM/USS分配)的会话地址/会话ID/IP地址/航行ID等。本申请实施例,对所使用的永久身份或临时身份信息形式不作限制。
可选的,所述无人机发送与S801中第二消息中的身份标识相一致的身份标识。例如,第二消息中包含的是无人机在UAS中的临时身份,则S802也发送无人机在UAS中的临时身份。这种方式有2方面好处。一方面,发送无人机的临时身份可以防止无人机的永久身份泄露;另一方面,当UTM/USS获取到第二消息中的无人机远程身份识别信息时,可以从所有收到的消息中更容易地匹配上源自同一个无人机的消息。
可选的,所述无人机在S802只发送永久的身份标识。例如,如果第二消息中包含的是无人机在UAS中的临时身份,S802仍然发送无人机在UAS中的永久身份。
可选的,所述UTM/USS可以验证无人机是否已经经过UTM/USS认证或者是否经过UTM/USS授权飞行,对于经过认证或经过授权飞行的合法无人机,所述UTM/USS存储所述无人机的相关信息(如当前的位置信息position和时间信息time等)。可选的,如果收到的是无人机在UAS中的临时身份标识,则查找出对应的无人机在UAS中的永久身份ID,并存储相关信息(还包括位置、时间等)。
可选的,所述UTM/USS还可以验证处理后的NAS或AS消息中携带的无人机的网络标识信息是否是被允许使用的网络标识信息,或者是否具有被授权的绑定关系(如一些应用场景中无人机的网络身份标识和无人机的UAS身份标识必须绑定才算合法),其中所述UTM/USS存储有被允许使用的网络标识信息和/或被授权的绑定关系。又如,所述UTM/USS可以根据远程身份识别信息,确定当前是否属于所述无人机被授权的飞行区域和飞行时间。
S803:可选的,TPAE与网络设备和UTM/USS进行认证(authentication)。
TPAE至少包括两种身份标识,一种是网络中的身份标识,一种是UAS中的身份标识。在稽查设备使用网络之前,需要基于网络中的身份标识与网络进行双向认证,并产生与网络安全通信的共享密钥。可选的,为了允许TPAE参与对无人机的远程身份识别,TPAE还需要完成与UTM/USS的基于UAS中的身份标识的认证。可选地,认证结束后,TPAE可以和UTM/USS之间生成共享密钥,分别存储在TPAE和UTM/USS。该共享密钥可以对TPAE和UTM/USS之间交互的消息进行安全保护(加密或完整性保护)。
可选地,认证结束时,UTM/USS为TPAE生成用于身份验证的Token(安全令牌),并发送存储于TPAE。该Token中的claim(声明)可以包括:TPAE在网络中的识别符、TPAE在UAS中的识别符。该Token中还包括UTM/USS的签名,其他设备可以根据签名验证Token的真实性和完整性。
可选的,S803可以发生在S801、S202步骤之前。
S804:所述TPAE根据接收到的第二消息,向UTM/USS发送第一消息。所述UTM/USS接收并处理所述第一消息。
所述第一消息可以为所述第二消息的转发消息。所述第一消息可以包括所述第二消息外,还可以包括所述TPAE在UAS中的标识信息(TPAE-ID)和用于验证所述TPAE的credential(TPAE credential)。
可选地,所述第一消息中还包括了TPAE自身的位置信息,使得UTM/USS可以利用此位置信息搜索无人机(位置附近搜索无人机)或/和判断是否授权所述TPAE(如可以限制TPAE只可获取其附近无人机的信息,而不是任意位置的无人机信息)。
可选地,所述第一消息中只包括用于远程身份识别的身份标识信息,而不包括位置、时间等信息,从而实现较小的数据发送量。
可选地,TPAE可以在收到第二消息后,延迟向网络发送第一消息。TPAE可以收集来自多个无人机的第二消息后,转发聚合了多个无人机信息的消息,提高消息发送的有效性。
可选地,所述第一消息中只包括聚合了多个无人机的身份标识。
如果TPAE可以解析无人机广播消息中的位置、时间等信息,可选地,稽查设备可以先判断收到的无人机广播消息中的无人机位置信息或时间信息等是否在合理范围之内,才确定是否转发该无人机的消息。这样可以防止转发不必要的消息,而造成的对网络的DoS攻击。TPAE可以根据自身的位置,限制转发一定地域范围内的无人机消息。例如,通过计算无人机发送的位置与自身位置的距离来判断。对于时间,可以限定在一定同步容错范围内的时间段。
可选地,可以通过收到的无人机信号的强度来估计该无人机与稽查设备的距离。只有在一定强度范围内的消息,才转发。
需要说明的是,可选的,S803和S804中第一消息的发送,可以发生在S802之前。
所述UTM/USS可以判断转发消息中无人机和TPAE的标识信息为临时身份标识(如会话标识符)还是永久身份标识。例如,所述转发消息中仅包括临时身份标识或永久身份标识中的一种。UTM/USS可以给无人机和TPAE预先配置是使用临时身份标识还是永久身份标识,或者是临时身份标识和永久身份标识的格式不同,或者所述UTM/USS中保存有无人机和TPAE的临时身份标识,或者所述转发消息中指示携带临时身份标识还是永久身份标识。如果所述UTM/USS接收到临时身份标识,所述UTM/USS可以根据UTM/USS存储的信息确定临时身份标识对应的永久身份标识。可选的,临时身份标识可以是对永久身份标识加密得到,或者临时身份标识和永久身份标识存在对应关系。
所述UTM/USS处理所述第一消息时,所述UTM/USS可以验证所述TPAE是否经过认证/授权/合法。例如,所述UTM/USS可以验证TPAE的token的合法性,或者所述UTM/USS可以利用存储的TPAE对应的密钥对转发消息解密或进行完整性校验,或者所述UTM/USS验证SUPI/GPSI与无人机的永久身份标识的绑定关系是否有效/合法。
和/或,所述UTM/USS可以匹配从无人机和TPAE处接收到无人机的标识信息是否相同。
和/或,所述UTM/USS根据临时身份标识查找无人机对应的永久身份标识(permanent ID),判断从无人机处接收的标识信息对应的永久身份标识和从TPAE处接收的标识信息对应的永久身份标识是否相同。
可选的,在判断从无人机和TPAE接收到的无人机的标识信息相同后,所述UTM/USS还可以判断从无人机处接收到的远程身份识别信息和从TPAE处接收到的远程身份识别信息是否相同或相近(如距离/时间相差在一定范围内)。
S805可以参照S704,重复之处不做赘述。
参见图9所示的通信流程示意图,图9中可以按需进行广播或单播,无人机可以位于运营商网络的覆盖范围内,以TPAE为稽查设备为例进行说明,具体包括以下步骤:
S901:稽查设备向无人机发送请求消息,用于请求无人机回复远程身份识别信息,所述无人机接收所述请求消息。
所述请求消息还可以包括用于验证稽查设备身份的信息、所述稽查设备发送所述请求消息的时间、所述稽查设备发送所述请求消息的总数、所述稽查设备的位置信息、所述稽查设备的小区信息或所述稽查设备接收到基站的信号强度等一种或多种。
可选地,所述无人机也可以通过与稽查设备进一步的挑战(challenge)/应答(response)消息交互来减轻攻击风险。无人机可以向稽查设备发送Challenge消息,请求稽查设备的其他信息(例如小区信息(如小区号CGI)、当前位置、测量无人机信号强度、随机数等),如果所述无人机未收到稽查设备的应答,或者所述无人机接收到的应答消息中的相关信息不满足预定的条件(如小区号CGI不在同一个小区、稽查设备的位置距离无人机较远、测量的接收信号强度达不到信号强度阈值、根据随机数计算得到的结果不正确),所述无人机不执行S902。
可选地,所述无人机接收所述请求消息后,不立即执行S902,而是限定延迟一段时间执行或设定执行S902的频率。
S902:无人机单播发送消息给网络设备,所述单播的消息可以请求所述网络设备验证稽查设备,所述网络设备接收所述无人机单播的消息。
无人机可以根据所述稽查设备的位置对所述请求消息进行过滤。
所述无人机可以聚合一条或多条请求消息,向所述网络设备发送针对所述一条或多条请求消息的单播消息。
所述无人机可以采用上述图7或图8中的所述密钥(对称钥或子密钥)来对所述单播的消息进行安全保护。
S903:所述网络设备单播回复消息(即验证结果)给无人机,所述无人机接收所述单播回复的消息。
所述网络设备可以根据所述稽查设备的位置对无人机发送的单播消息进行过滤。
所述网络可以聚合一条或多条无人机发送单播消息再进行处理,针对所述一条或多条单播消息进行验证并回复验证结果。
所述网络设备可以验证所述稽查设备的合法性和权限,可选的,所述网络设备可以将所述请求消息加密时所采用的密钥或用于推演密钥的参数发送给所述无人机。
S904:所述无人机回复消息给稽查设备,所述消息中包括远程身份识别信息。
所述无人机可以采用S903获得的密钥对所述消息进行安全保护,或根据S903获取到的参数推演密钥,采用推演得到的密钥对所述消息进行安全保护。
参见图10所示的通信流程示意图,图10中可以按需进行广播或单播,无人机可以不位于运营商网络的覆盖范围内,以TPAE为稽查设备为例进行说明,具体包括以下步骤:
S1001:稽查设备发送请求消息,用于请求远程身份识别信息。无人机接收到所述请求消息。
稽查设备中可以配置有网络设备颁发的证书/token或密钥,其中token的有效期可以设置的较短,以提高通信过程的安全性。
所述稽查设备使用所述网络设备颁发的密钥对请求消息进行加密。所述请求消息还可以包括网络签署的稽查设备证书或token。
S1002:所述无人机回复消息给所述稽查设备,所述消息中包括远程身份识别信息。
所述无人机中预先配置有网络设备配置的公钥或证书,作为无人机与所述稽查设备之间的信任根。
所述无人机可以根据预先配置的公钥,对所述请求消息中的证书或token进行身份验证(验证签名)和有效期验证,验证通过后,所述无人机可以利用证书或token中的密钥对所述请求消息进行解密。
可选的,所述无人机回复的消息中可以包括所述无人机的标识信息,所述无人机的标识信息可以采用所述无人机在网络中的对称钥或子密钥进行加密,其中用于推演子密钥的推演参数和/或推演算法和/或密钥识别码可以采用所述稽查设备的公钥进行加密,或者所述无人机的标识信息可以采用所述稽查设备的公钥和随机数生成的对称钥进行加密,所述随机数携带在所述回复的消息中。
对应可选的,所述稽查设备接收到所述回复的消息,所述稽查设备可以获取所述无人机在网络中的对称钥或推演生成子密钥,采用所述对称钥或子密钥进行解密;或者所述稽查设备根据所述稽查设备的密钥和所述随机数生成对称钥,采用生成的对称钥进行解密。
如图11所示,为本申请所涉及的通信装置的一种可能的示例性框图,该通信装置1100可以以软件或硬件的形式存在。通信装置1100可以包括:处理单元1102和收发单元1103。作为一种实现方式,该收发单元1103可以包括接收单元和发送单元。处理单元1102用于对通信装置1100的动作进行控制管理。收发单元1103用于支持通信装置1100与其他网络实体的通信。通信装置1100还可以包括存储单元1101,用于存储通信装置1100的程序代码和数据。
其中,处理单元1102可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。存储单元1101可以是存储器。收发单元1103是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该收发单元1103是该芯片用于从其它芯片或装置接收信号的接口电路,或者,是该芯片用于向其它芯片或装置发送信号的接口电路。
该通信装置1100可以为上述任一实施例中的用户设备和/或网络设备,还可以为用于用户设备和/或网络设备的芯片。例如,当通信装置1100为用户设备和/或网络设备时,该处理单元1102例如可以是处理器,该收发单元1103例如可以是收发器。可选的,该收发器可以包括射频电路,该存储单元例如可以是存储器。例如,当通信装置1100为用于用户设备和/或网络设备的芯片时,该处理单元1102例如可以是处理器,该收发单元1103例如可以是输入/输出接口、管脚或电路等。该处理单元1102可执行存储单元存储的计算机执行指令,可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该用户设备和/或网络设备内的位于该芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
在第一个实施例中,该通信装置1100应用于第一网络设备。
具体的,所述收发单元1103,用于接收第一用户设备发送的第一消息,所述第一消息用于请求对第二用户设备进行身份验证;
所述处理单元1102,用于验证所述第二用户设备的身份是否合法;
所述收发单元1103,还用于将验证结果发送给所述第一用户设备,所述验证结果用于指示所述第二用户设备的身份是否合法。
在一个实现方式中,所述第一消息包括用于验证所述第一用户设备的第一信任状credentials;
所述处理单元1102,还用于在验证所述第二用户设备的身份是否合法之前,根据所述第一credentials,验证所述第一用户设备合法;
所述处理单元1102在验证所述第二用户设备的身份是否合法时,具体用于若验证所述第一用户设备合法,则根据所述第一消息验证所述第二用户设备的身份是否合法。
在一个实现方式中,所述处理单元1102,还用于与所述第一用户设备进行认证成功之后,所述第一网络设备为所述第一用户设备生成第二credentials;
所述处理单元1102在根据所述第一credentials验证所述第一用户设备合法时,具体用于根据所述第一credentials和所述第二credentials,确定所述第一用户设备合法。
在一个实现方式中,所述第一消息包括所述第二用户设备的标识信息,所述第二用户设备的标识信息为临时身份标识;
所述处理单元1102在验证所述第二用户设备的身份是否合法时,具体用于根据所述第二用户设备的临时身份标识,确定所述第二用户设备的永久身份标识;根据所述第二用户设备的永久身份标识,验证所述第二用户设备是否经过认证或授权。
在一个实现方式中,所述第一消息包括用于所述第二用户设备远程身份识别的信息;
所述收发单元1103,还用于接收来自所述第二用户设备的用于所述第二用户设备远程身份识别的信息;
所述处理单元1102在验证所述第二用户设备的身份是否合法时,具体用于判断来自所述第二用户设备的用于所述第二用户设备远程身份识别的信息,与所述第一消息包括的用于所述第二用户设备远程身份识别的信息是否一致。
该通信装置1100应用于第一用户设备。
具体的,所述收发单元1103,用于接收第二用户设备广播的第二消息;响应于所述第二消息,向第一网络设备发送第一消息,所述第一消息用于请求对所述第二用户设备进行身份验证;接收所述第一网络设备发送的验证结果;
所述处理单元1102,用于若所述验证结果指示所述第二用户设备的身份合法,对所述第二消息进行处理。
在一个实现方式中,所述第二消息包括所述第二用户设备的标识信息和/或用于所述第二用户设备远程身份识别的信息;
所述第一消息包括以下一种或多种:所述第二用户设备的标识信息、用于验证所述第一用户设备的第一信任状credentials、所述第二消息、或用于所述第二用户设备远程身份识别的信息。
在一个实现方式中,所述处理单元1102,还用于所述第一网络设备与第一用户设备认证成功之后,生成第二credentials;和/或
所述收发单元1103,还用于所述第一网络设备与第一用户设备认证成功之后,接收所述第一网络设备生成的第二credentials。
其中,所述第一网络设备生成的第二credentials和所述第一用户设备生成的第二 credentials相同。
在一个实现方式中,所述收发单元1103在向第一网络设备发送第一消息时,具体用于针对接收到的一个或多个第二用户设备广播的第二消息,向所述第一网络设备发送第一消息,所述第一消息具体用于请求对所述一个或多个第二用户设备进行身份验证。
在一个实现方式中,所述处理单元1102,还用于在向第一网络设备发送第一消息之前,根据所述第二消息,确定所述第一用户设备和所述第二用户设备的距离是否位于预设的距离范围内;
所述收发单元1103在向第一网络设备发送第一消息时,具体用于若所述第一用户设备和所述第二用户设备的距离位于预设的距离范围内,向第一网络设备发送第一消息。
在一个实现方式中,所述处理单元1102,还用于在向第一网络设备发送第一消息之前,根据所述第二消息,确定所述第二用户设备广播所述第二消息的时间是否位于预设的时间范围内;
所述收发单元1103在向第一网络设备发送第一消息时,具体用于若所述第二用户设备广播所述第二消息的时间位于预设的时间范围内,向第一网络设备发送第一消息。
在第二个实施例中,该通信装置1100应用于第二用户设备。
具体的,所述处理单元1102,用于根据所述第二用户设备入网时针对第二网络设备生成的对称钥,对待发送的第二消息进行加密;
所述收发单元1103,用于广播加密后的所述第二消息。
在一个实现方式中,所述处理单元1102,具体用于采用所述第二用户设备入网时针对第二网络设备生成的对称钥,对待发送的第二消息进行加密;或者对所述第二用户设备入网时针对第二网络设备生成的对称钥进行推演,生成所述对称钥的子密钥;采用所述子密钥,对待发送的第二消息进行加密。
在一个实现方式中,所述收发单元1103,还用于向所述第二网络设备发送用于生成所述子密钥的推演参数和/或推演算法。
在一个实现方式中,所述第二消息包括所述第二用户设备的标识信息和/或用于所述第二用户设备远程身份识别的信息。
所述第二用户设备的标识信息包括所述第二用户设备的临时身份标识和/或所述第二用户设备的永久身份标识;所述用于所述第二用户设备远程身份识别的信息包括所述第二用户设备的位置信息和/或所述第二用户设备广播所述第二消息的时间。
该通信装置1100应用于第二网络设备。
所述收发单元1103,用于接收第一用户设备发送的第一消息,所述第一消息用于请求对第二用户设备进行身份验证;
所述处理单元1102,用于验证所述第二用户设备的身份是否合法;
所述收发单元1103,还用于将验证结果发送给所述第一用户设备,所述验证结果用于指示所述第二用户设备的身份是否合法。
在一个实现方式中,所述收发单元1103,还用于接收来自所述第二用户设备的加密后的第二消息。
在一个实现方式中,所述第一消息包括以下一种或多种:所述第二用户设备的标识信息、用于验证所述第一用户设备的第一信任状credentials、所述第二消息、或用于所述第二用户设备远程身份识别的信息。
所述第二消息包括所述第二用户设备的标识信息和/或用于所述第二用户设备远程身份识别的信息。
在一个实现方式中,所述第一消息还用于请求所述第二用户设备加密第二消息所采用的密钥;和/或所述第一消息还用于请求生成所述第二用户设备加密第二消息所采用的子密钥的推演参数和/或推演算法;和/或所述第一消息还用于请求所述第二网络设备解密第二消息。
所述验证结果还包括所述第二用户设备加密第二消息所采用的密钥;和/或所述第二用户设备加密第二消息所采用的子密钥的推演参数和/或推演算法;和/或解密后的第二消息。
在一个实现方式中,所述收发单元1103,还用于接收来自所述第二用户设备的用于生成子密钥的推演参数和/或推演算法;
所述处理单元,还用于根据所述第二用户设备入网时针对所述第二网络设备生成的对称钥,用于生成所述子密钥的推演参数和/或推演算法,生成所述对称钥的子密钥。
在一个实现方式中,所述第一消息包括用于验证所述第一用户设备的第一credentials,所述处理单元1102,还用于验证所述第二用户设备的身份是否合法之前,根据所述第一credentials,验证所述第一用户设备合法;
所述处理单元1102在验证所述第二用户设备的身份是否合法时,若验证所述第一用户设备合法,根据所述第一消息验证所述第二用户设备的身份是否合法。
在一个实现方式中,所述处理单元1102,还用于第二网络设备与所述第一用户设备进行认证成功之后,为所述第一用户设备生成第二credentials;
所述收发单元1103,还用于第二网络设备与所述第一用户设备进行认证成功之后,接收所述第一用户设备生成的第二credentials。
在一个实现方式中,所述处理单元1102在根据所述第二credentials验证所述第一用户设备合法时,具体用于根据所述第一credentials和所述第二credentials,确定所述第一用户设备合法。
在一个实现方式中,所述第一消息包括所述第二用户设备的标识信息,所述第二用户设备的标识信息为临时身份标识;
所述处理单元1102在验证所述第二用户设备的身份是否合法时,具体用于根据所述第二用户设备的临时身份标识,确定所述第二用户设备的永久身份标识;根据所述第二用户设备的永久身份标识,验证所述第二用户设备是否经过认证或授权。
在一个实现方式中,所述第一消息包括用于所述第二用户设备远程身份识别的信息;
所述收发单元1103,还用于接收来自所述第二用户设备的用于所述第二用户设备远程身份识别的信息;
所述处理单元1102在验证所述第二用户设备的身份是否合法,具体用于判断来自所述第二用户设备的用于所述第二用户设备远程身份识别的信息,与所述第一消息包括的用于所述第二用户设备远程身份识别的信息是否一致。
该通信装置1100应用于第一用户设备。
具体的,所述收发单元1103,用于接收第二用户设备广播的第二消息,所述第二消息根据所述第二用户设备入网时针对第二网络设备生成的对称钥加密;响应于所述第二消息,向所述第二网络设备发送第一消息,所述第一消息用于请求对所述第二用户设备进行身份验证;接收所述第一网络设备发送的验证结果;
所述处理单元1102,用于若所述验证结果指示所述第二用户设备的身份合法,对所述第二消息进行处理。
在一个实现方式中,所述第二消息包括所述第二用户设备的标识信息和/或用于所述第二用户设备远程身份识别的信息。
所述第一消息包括以下一种或多种:所述第二用户设备的标识信息、用于验证所述第一用户设备的第一信任状credentials、所述第二消息、或用于所述第二用户设备远程身份识别的信息。
在一个实现方式中,所述第一消息还用于请求所述第二用户设备加密第二消息所采用的密钥;和/或所述第一消息还用于请求生成所述第二用户设备加密第二消息所采用的子密钥的推演参数和/或推演算法;和/或所述第一消息还用于请求所述第二网络设备解密第二消息。
所述验证结果还包括所述第二用户设备加密第二消息所采用的密钥;和/或所述第二用户设备加密第二消息所采用的子密钥的推演参数和/或推演算法;和/或解密后的第二消息。
在一个实现方式中,所述处理单元1102,还用于所述第二网络设备与第一用户设备认证成功之后,生成第二credentials;和/或
所述收发单元1103,还用于所述第二网络设备与第一用户设备认证成功之后,接收所述第二网络设备生成的第二credentials。
其中,所述第一网络设备生成的第二credentials和所述第一用户设备生成的第二credentials相同。
在一个实现方式中,所述收发单元1103在向第二网络设备发送第一消息时,具体用于针对接收到的一个或多个第二用户设备广播的第二消息,向所述第一网络设备发送第一消息,所述第一消息具体用于请求对所述一个或多个第二用户设备进行身份验证。
在一个实现方式中,所述处理单元1102,还用于向第二网络设备发送第一消息之前,根据所述第二消息,确定所述第一用户设备和所述第二用户设备的距离是否位于预设的距离范围内;
所述收发单元1103在向第二网络设备发送第一消息时,具体用于若所述第一用户设备和所述第二用户设备的距离位于预设的距离范围内,向第二网络设备发送第二消息。
在一个实现方式中,所述处理单元1102,还用于向第二网络设备发送第一消息之前,根据所述第二消息,确定所述第二用户设备广播所述第二消息的时间是否位于预设的时间范围内;
所述收发单元1103在向第二网络设备发送第一消息时,具体用于若所述第二用户设备广播所述第二消息的时间位于预设的时间范围内,向第二网络设备发送第一消息。
在第三个实施例中,该通信装置1100应用于第二用户设备。
具体的,所述处理单元1102,用于通过所述收发单元1103接收第一用户设备发送的第三消息,所述第三消息用于请求所述第二用户设备回复用于远程身份识别的信息;通过所述收发单元1103向所述第一用户设备发送第四消息,所述第四消息包括用于所述第二用户设备远程身份的信息。
所述第三消息还包括以下一种或多种:用于验证所述第一用户设备的安全令牌Token、所述第一用户设备的标识信息、所述第一用户设备发送所述第三消息的时间、所述第一用户设备的位置信息、所述第一用户设备的小区信息或所述第一用户设备接收到网络设备的 消息的信号强度。
在一个实现方式中,所述处理单元1102,还用于向所述第一用户设备发送第四消息之前,根据所述第三消息,确定所述第一用户设备和所述第二用户设备的距离是否位于预设的距离范围内;
所述收发单元1103在向所述第一用户设备发送第四消息时,具体用于若所述第一用户设备和所述第二用户设备的距离位于预设的距离范围内,向所述第一用户设备发送第四消息。
在一个实现方式中,所述处理单元1102,还用于向所述第一用户设备发送第四消息之前,根据所述第三消息,确定所述第一用户设备是否位于所述第二用户设备所在小区内或位于所述第二用户设备所在小区的邻小区内;
所述收发单元1103在向所述第一用户设备发送第四消息时,具体用于若所述第一用户设备位于所述第二用户设备所在小区内或位于所述第二用户设备所在小区的邻小区内向所述第一用户设备发送第四消息。
在一个实现方式中,所述收发单元1103,还用于向所述第一用户设备发送第四消息之前,向网络设备发送第五消息,所述第五消息用于指示所述网络设备验证所述第一用户设备的合法性;接收来自所述网络设备发送的第六消息,所述第六消息用于指示所述第一用户设备的身份是否合法。
在一个实现方式中,所述第六消息还包括所述第一用户设备的公钥,或者所述第一用户设备入网时所述第二网络设备生成的第一对称钥,或者用于生成所述第一对称钥的第一子密钥的推演参数和/或推演算法。
在一个实现方式中,所述第三消息还包括用于验证所述第一用户设备身份的第一信任状credential,所述第一信任状credential中包括所述第一用户设备和所述第一网络设备认证之后为第一用户设备生成的令牌Token,或者经过第一网络设备签名的所述第一用户设备的数字证书,所述数字证书中包括第一用户设备的公钥;
所述处理单元1102,还用于向所述第一用户设备发送第四消息之前,根据所述第一credential,对所述第一用户设备进行身份验证,所述第二用户设备确定所述第一用户设备的身份合法。
在一个实现方式中,所述处理单元1102,还用于向所述第一用户设备发送第四消息之前,采用所述第一用户设备的公钥对待发送的第四消息加密;或者采用所述第一用户设备入网时网络设备生成的第一对称钥对待发送的第四消息加密;或者根据对所述第一对称钥进行推演得到第一子密钥;采用所述第一子密钥对待发送的第四消息加密。
该通信装置1100应用于第一用户设备。
具体的,所述处理单元1102,用于通过所述收发单元1103向第二用户设备发送第三消息,所述第三消息用于请求所述第二用户设备回复用于远程身份识别的信息;通过所述收发单元1103接收来自第二用户设备的第四消息,所述第四消息包括用于所述第二用户设备远程身份识别的信息。
所述第三消息还包括以下一种或多种:用于验证所述第一用户设备身份的第一信任状credential、所述第一用户设备的标识信息、所述第一用户设备发送所述第三消息的时间、所述第一用户设备已经发送的消息的总数count、所述第一用户设备的位置信息、所述第一用户设备的小区信息或所述第一用户设备接收到网络设备的消息的信号强度。
在一个实现方式中,所述用于验证所述第一用户设备身份的第一信任状credential中包括所述第一用户设备和所述第一网络设备认证之后为第一用户设备生成的令牌Token,或者经过第一网络设备签名的所述第一用户设备的数字证书,所述数字证书中包括第一用户设备的公钥。
在一个实现方式中,所述第四消息采用所述第一用户设备的公钥加密,或者所述第四消息采用所述第二用户设备入网时针对第二网络设备生成的第二对称钥加密,或者所述第四消息采用根据所述第二对称钥推演的第二子密钥加密。
可以理解的是,该通信装置用于上述通信方法时的具体实现过程以及相应的有益效果,可以参考前述方法实施例中的相关描述,这里不再赘述。
如图12所示,为本申请提供的一种通信装置示意图,该通信装置可以是上述移动性管理网元、或终端设备。该通信装置1200包括:处理器1202、通信接口1203、存储器1201。可选的,通信装置1200还可以包括通信线路1204。其中,通信接口1203、处理器1202以及存储器1201可以通过通信线路1204相互连接;通信线路1204可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路1204可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器1202可以是一个CPU,微处理器,ASIC,或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口1203,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器1201可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1204与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1201用于存储执行本申请方案的计算机执行指令,并由处理器1202来控制执行。处理器1202用于执行存储器1201中存储的计算机执行指令,从而实现本申请上述实施例提供的终端设备的注册方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任 意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。“多个”是指两个或两个以上,其它量词与之类似。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术 的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (18)

  1. 一种通信方法,其特征在于,包括:
    第一网络设备接收第一用户设备发送的第一消息,所述第一消息用于请求对第二用户设备进行身份验证;
    所述第一网络设备验证所述第二用户设备的身份是否合法;
    所述第一网络设备将验证结果发送给所述第一用户设备,所述验证结果用于指示所述第二用户设备的身份是否合法。
  2. 如权利要求1所述的方法,其特征在于,所述第一消息包括用于验证所述第一用户设备的第一信任状credentials,所述第一网络设备验证所述第二用户设备的身份是否合法之前,还包括:
    所述第一网络设备根据所述第一credentials,验证所述第一用户设备合法;
    所述第一网络设备验证所述第二用户设备的身份是否合法,包括:
    若验证所述第一用户设备合法,则所述第一网络设备根据所述第一消息验证所述第二用户设备的身份是否合法。
  3. 如权利要求2所述的方法,其特征在于,还包括:
    所述第一网络设备与所述第一用户设备进行认证成功之后,所述第一网络设备为所述第一用户设备生成第二credentials;
    所述第一网络设备根据所述第一credentials,验证所述第一用户设备合法,包括:
    所述第一网络设备根据所述第一credentials和所述第二credentials,确定所述第一用户设备合法。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第一消息包括所述第二用户设备的标识信息,所述第二用户设备的标识信息为临时身份标识;
    所述第一网络设备验证所述第二用户设备的身份是否合法,包括:
    所述第一网络设备根据所述第二用户设备的临时身份标识,确定所述第二用户设备的永久身份标识;
    所述第一网络设备根据所述第二用户设备的永久身份标识,验证所述第二用户设备是否经过认证或授权。
  5. 如权利要求1-3任一项所述的方法,其特征在于,所述第一消息包括用于所述第二用户设备远程身份识别的信息,还包括:
    所述第一网络设备接收来自所述第二用户设备的用于所述第二用户设备远程身份识别的信息;
    所述第一网络设备验证所述第二用户设备的身份是否合法,包括:
    所述第一网络设备判断来自所述第二用户设备的用于所述第二用户设备远程身份识别的信息,与所述第一消息包括的用于所述第二用户设备远程身份识别的信息是否一致。
  6. 一种通信方法,其特征在于,包括:
    第一用户设备接收第二用户设备发送的第二消息;
    所述第一用户设备响应于所述第二消息,向第一网络设备发送第一消息,所述第一消息用于请求对所述第二用户设备进行身份验证;
    所述第一用户设备接收所述第一网络设备发送的验证结果,若所述验证结果指示所述 第二用户设备的身份合法,所述第一用户设备对所述第二消息进行处理。
  7. 如权利要求6所述的方法,其特征在于,所述第二消息包括所述第二用户设备的标识信息和/或用于所述第二用户设备远程身份识别的信息;
    所述第一消息包括以下一种或多种:所述第二用户设备的标识信息、用于验证所述第一用户设备的第一信任状credentials、或用于所述第二用户设备远程身份识别的信息。
  8. 如权利要求6或7所述的方法,其特征在于,所述向第一网络设备发送第一消息之前,还包括:
    所述第一用户设备根据所述第二消息,确定所述第一用户设备和所述第二用户设备的距离是否位于预设的距离范围内;
    所述第一用户设备向第一网络设备发送第一消息,包括:
    若所述第一用户设备和所述第二用户设备的距离位于预设的距离范围内,所述第一用户设备向第一网络设备发送第一消息。
  9. 一种通信装置,其特征在于,包括收发单元和处理单元;
    所述收发单元,用于接收第一用户设备发送的第一消息,所述第一消息用于请求对第二用户设备进行身份验证;
    所述处理单元,用于验证所述第二用户设备的身份是否合法;
    所述收发单元,还用于将验证结果发送给所述第一用户设备,所述验证结果用于指示所述第二用户设备的身份是否合法。
  10. 如权利要求9所述的装置,其特征在于,所述第一消息包括用于验证所述第一用户设备的第一信任状credentials;
    所述处理单元,还用于在验证所述第二用户设备的身份是否合法之前,根据所述第一credentials,验证所述第一用户设备合法;
    所述处理单元在验证所述第二用户设备的身份是否合法时,具体用于若验证所述第一用户设备合法,则根据所述第一消息验证所述第二用户设备的身份是否合法。
  11. 如权利要求10所述的装置,其特征在于,所述处理单元,还用于与所述第一用户设备进行认证成功之后,所述第一网络设备为所述第一用户设备生成第二credentials;
    所述处理单元在根据所述第一credentials验证所述第一用户设备合法时,具体用于根据所述第一credentials和所述第二credentials,确定所述第一用户设备合法。
  12. 如权利要求9-11任一项所述的装置,其特征在于,所述第一消息包括所述第二用户设备的标识信息,所述第二用户设备的标识信息为临时身份标识;
    所述处理单元在验证所述第二用户设备的身份是否合法时,具体用于根据所述第二用户设备的临时身份标识,确定所述第二用户设备的永久身份标识;根据所述第二用户设备的永久身份标识,验证所述第二用户设备是否经过认证或授权。
  13. 如权利要求9-11任一项所述的装置,其特征在于,所述第一消息包括用于所述第二用户设备远程身份识别的信息;
    所述收发单元,还用于接收来自所述第二用户设备的用于所述第二用户设备远程身份识别的信息;
    所述处理单元在验证所述第二用户设备的身份是否合法时,具体用于判断来自所述第二用户设备的用于所述第二用户设备远程身份识别的信息,与所述第一消息包括的用于所述第二用户设备远程身份识别的信息是否一致。
  14. 一种通信装置,其特征在于,包括收发单元和处理单元;
    所述收发单元,用于接收第二用户设备广播的第二消息;响应于所述第二消息,向第一网络设备发送第一消息,所述第一消息用于请求对所述第二用户设备进行身份验证;接收所述第一网络设备发送的验证结果;
    所述处理单元,用于若所述验证结果指示所述第二用户设备的身份合法,对所述第二消息进行处理。
  15. 如权利要求14所述的装置,其特征在于,所述第二消息包括所述第二用户设备的标识信息和/或用于所述第二用户设备远程身份识别的信息;
    所述第一消息包括以下一种或多种:所述第二用户设备的标识信息、用于验证所述第一用户设备的第一信任状credentials、或用于所述第二用户设备远程身份识别的信息。
  16. 如权利要求14或15所述的装置,其特征在于,所述处理单元,还用于在向第一网络设备发送第一消息之前,根据所述第二消息,确定所述第一用户设备和所述第二用户设备的距离是否位于预设的距离范围内;
    所述收发单元在向第一网络设备发送第一消息时,具体用于若所述第一用户设备和所述第二用户设备的距离位于预设的距离范围内,向第一网络设备发送第一消息。
  17. 一种计算机可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1-5任一项所述的方法或者如权利要求6-8任一项所述的方法被执行。
  18. 一种通信系统,其特征在于,所述通信系统包括如权利要求9-13任一项所述的通信装置及如权利要求14-16任一项所述的通信装置。
PCT/CN2021/079159 2020-03-27 2021-03-04 一种通信方法、装置及系统 WO2021190273A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21774861.5A EP4117320A4 (en) 2020-03-27 2021-03-04 COMMUNICATION METHOD, APPARATUS AND SYSTEM
US17/952,879 US20230014494A1 (en) 2020-03-27 2022-09-26 Communication method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010231947.9A CN113518312B (zh) 2020-03-27 2020-03-27 一种通信方法、装置及系统
CN202010231947.9 2020-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/952,879 Continuation US20230014494A1 (en) 2020-03-27 2022-09-26 Communication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2021190273A1 true WO2021190273A1 (zh) 2021-09-30

Family

ID=77890933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079159 WO2021190273A1 (zh) 2020-03-27 2021-03-04 一种通信方法、装置及系统

Country Status (4)

Country Link
US (1) US20230014494A1 (zh)
EP (1) EP4117320A4 (zh)
CN (2) CN115767517A (zh)
WO (1) WO2021190273A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114638729A (zh) * 2022-05-18 2022-06-17 国网浙江省电力有限公司 基于能源互联网营销服务的双中台架构的电力稽查方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114222280B (zh) * 2022-02-22 2022-07-08 荣耀终端有限公司 一种紧急通信方法、设备及存储介质
WO2023185364A1 (zh) * 2022-03-26 2023-10-05 华为技术有限公司 一种通信控制方法及通信装置
CN114925406A (zh) * 2022-06-01 2022-08-19 北京百度网讯科技有限公司 数据校验方法、装置及计算机程序产品
CN117295062B (zh) * 2023-11-23 2024-02-27 南京傲翼飞控智能科技有限公司 基于蓝牙5.0的无人机身份id远程识别系统及识别方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109302415A (zh) * 2018-11-09 2019-02-01 四川虹微技术有限公司 一种认证方法、区块链节点及存储介质
CN109756447A (zh) * 2017-11-01 2019-05-14 华为技术有限公司 一种安全认证方法及相关设备
CN109995719A (zh) * 2017-12-29 2019-07-09 中移(杭州)信息技术有限公司 一种无人机认证方法、系统、无人机监管平台和第一设备
CN110299996A (zh) * 2018-03-22 2019-10-01 阿里巴巴集团控股有限公司 认证方法、设备及系统
US20190377864A1 (en) * 2018-06-07 2019-12-12 Capital One Services, Llc Multi-factor authentication devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109548039A (zh) * 2017-08-11 2019-03-29 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756447A (zh) * 2017-11-01 2019-05-14 华为技术有限公司 一种安全认证方法及相关设备
CN109995719A (zh) * 2017-12-29 2019-07-09 中移(杭州)信息技术有限公司 一种无人机认证方法、系统、无人机监管平台和第一设备
CN110299996A (zh) * 2018-03-22 2019-10-01 阿里巴巴集团控股有限公司 认证方法、设备及系统
US20190377864A1 (en) * 2018-06-07 2019-12-12 Capital One Services, Llc Multi-factor authentication devices
CN109302415A (zh) * 2018-11-09 2019-02-01 四川虹微技术有限公司 一种认证方法、区块链节点及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4117320A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114638729A (zh) * 2022-05-18 2022-06-17 国网浙江省电力有限公司 基于能源互联网营销服务的双中台架构的电力稽查方法

Also Published As

Publication number Publication date
CN115767517A (zh) 2023-03-07
CN113518312B (zh) 2022-11-11
CN113518312A (zh) 2021-10-19
EP4117320A4 (en) 2023-03-22
EP4117320A1 (en) 2023-01-11
US20230014494A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
Cao et al. A survey on security aspects for 3GPP 5G networks
WO2021190273A1 (zh) 一种通信方法、装置及系统
KR102595014B1 (ko) 유저 평면 트래픽 특성 및 네트워크 보안을 위한 방법 및 시스템
US9882894B2 (en) Secure authentication service
CN107018676B (zh) 用户设备与演进分组核心之间的相互认证
JP2019512942A (ja) 5g技術のための認証機構
WO2020207156A1 (zh) 认证方法、装置及设备
JP2013534754A (ja) 通信システムにおいて加入者認証とデバイス認証とをバインドするための方法および装置
US11082843B2 (en) Communication method and communications apparatus
KR20230054421A (ko) 셀룰러 슬라이싱된 네트워크들에서의 중계기 선택의 프라이버시
CN112512045B (zh) 一种通信系统、方法及装置
TW202118259A (zh) 在核心網路中的網路功能處的系統資訊保護
WO2022060288A2 (zh) 一种无人机与遥控器的安全通信方法以及相关装置
WO2021031055A1 (zh) 通信方法及装置
WO2023246942A1 (zh) 通信方法及装置
CN116235524A (zh) 一种安全通信方法以及装置
CN114600487A (zh) 身份认证方法及通信装置
Abdel-Malek et al. Enabling second factor authentication for drones in 5G using network slicing
Georgantas Fast initial authentication, a new mechanism to enable fast WLAN mobility
US11381387B2 (en) Proof-of-presence indicator
WO2024067619A1 (zh) 通信方法和通信装置
WO2021249325A1 (zh) 切片服务验证方法及其装置
WO2023213191A1 (zh) 安全保护方法及通信装置
US20240163670A1 (en) Wireless communication method and apparatus
WO2023216891A1 (zh) 通信方法和网元设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021774861

Country of ref document: EP

Effective date: 20221004

NENP Non-entry into the national phase

Ref country code: DE