WO2021190256A1 - 恢复路径配置的方法和装置 - Google Patents

恢复路径配置的方法和装置 Download PDF

Info

Publication number
WO2021190256A1
WO2021190256A1 PCT/CN2021/078633 CN2021078633W WO2021190256A1 WO 2021190256 A1 WO2021190256 A1 WO 2021190256A1 CN 2021078633 W CN2021078633 W CN 2021078633W WO 2021190256 A1 WO2021190256 A1 WO 2021190256A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
node
restoration
segment
working
Prior art date
Application number
PCT/CN2021/078633
Other languages
English (en)
French (fr)
Inventor
李�浩
谢刚
罗小林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21774761.7A priority Critical patent/EP4109821A4/en
Publication of WO2021190256A1 publication Critical patent/WO2021190256A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/247Multipath using M:N active or standby paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/34Signalling channels for network management communication
    • H04L41/344Out-of-band transfers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13141Hunting for free outlet, circuit or channel

Definitions

  • This application relates to the field of optical transmission, and more specifically, to a method and device for restoring path configuration.
  • optical transmission networks for example, automatically switched optical networks (ASON)
  • ASON is a new generation of standardized intelligent optical transmission network that completes the automatic switching function under signaling control.
  • the resource reservation protocol of the generalized multi-protocol label switching technology (generalized multi-protocol label switching, GMPLS) protocol can be automatically established end-to-end traffic engineering (resource reservation protocol traffic engineering, RSVP-TE)
  • RSVP-TE resource reservation protocol traffic engineering
  • This application provides a method and device for restoring path configuration, which are applied to service restoration, in order to improve batch service restoration performance.
  • a method for restoring path configuration is provided.
  • the method for restoring path configuration may be executed by a network device, or may also be executed by a chip or circuit provided in the network device, which is not limited in this application.
  • the network device involved in this application includes a path calculation element (PCE) (also referred to as a controller) or a node with path calculation capability.
  • PCE path calculation element
  • a PCE controller is configured on the node
  • a path calculation function unit is configured on the node. This application does not limit how the node has path calculation capabilities.
  • the method of restoring path configuration includes: a network device determines a first restoring path of a first working path and a second restoring path of a second working path.
  • the first working path performs service restoration
  • the second restoration path is used to perform service restoration on the second working path when the second working path fails, and the first restoration path and the second restoration path have the same Recovery path segment
  • the network device generates a first identification (identify, ID), and the first ID indicates that the recovery path segment is used to perform service recovery on the first working path and the second working path.
  • a network device In the restoration path configuration method provided by the present application, a network device generates a first ID, and the first ID identifies at least two restoration paths having the same restoration path segment, and at least two working paths respectively corresponding to the at least two restoration paths When a failure occurs, the same recovery path segment is used to perform service recovery on at least two working paths based on the first ID, so that the performance of batch service recovery can be improved.
  • the method further includes: the network device sending a first configuration message to the first node of the restoration path segment, the first configuration message carrying the first ID.
  • the first ID can be sent to the first node of the restoration path segment through the first configuration message, so that the path segment is restored during the subsequent service restoration process
  • the first node can activate the restoration path segment based on the first ID, and restore the above-mentioned first restoration path and second restoration path at the same time, so as to realize the performance of batch restoration.
  • the method further includes: the network device sends a second configuration message to the first node of the restoration path segment, the second configuration message carrying the route of the restoration path segment information.
  • the network device can send the routing information of the restoring path segment to the restoring path segment through the second configuration message.
  • the head node enables the head node of the restoration path segment to determine the head node of the restoration path segment and which nodes together constitute the restoration path segment, so that the head node of the restoration path segment can be based on the routing information of the restoration path segment in the subsequent execution of business recovery. Quickly initiate rerouting to increase the rate of service recovery.
  • the method further includes: the network device sends a third configuration message to a node on the restoration path segment, the third configuration message carrying the first restoration path
  • the first ID indicating that the restoration path section is used to perform service restoration on the first working path and the second working path includes: The first ID indicates that the channel resource of the restoration path segment in the first restoration path is used to perform service restoration on the first working path, and the channel resource of the restoration path segment in the second restoration path is used to perform service restoration on the second working path. Perform business recovery.
  • the network device pre-configures the channel resources required by the nodes on the restoring path segment in the service restoration process through the third configuration message, then when the above-mentioned first working path and second working path fail Under the circumstance, business recovery can be quickly realized based on pre-configured resources.
  • the method further includes: the network device sends a fourth configuration message to the end node of the restoration path segment, where the fourth configuration message carries the type of the end node,
  • the type of the end node includes the head node of the restoration path segment or the end node of the restoration path segment, and the head node of the restoration path segment or the end node of the restoration path segment has path restoration capability.
  • the network device notifies the end node of the restoring path segment to be the head node or the end node through the fourth configuration message, so that the end node of the restoring path segment can clearly know its identity in the restoring path segment Therefore, the end node of the restoration path segment can initiate rerouting based on its own identity and the first ID to realize service restoration.
  • the method further includes: when the network device is the first node of the restoration path segment, the network device determines that the first working path and the second working path are respectively When a failure occurs, the method further includes: the network device sends a path establishment request message to an adjacent downstream node of the restoration path segment, where the path establishment request message carries the first ID.
  • the network device in the scenario where the network device itself is the first node of the restoration path segment, the network device can dispense with the above-mentioned process of configuring related information for the first node of the restoration path segment, and in case of failure Just initiate path establishment, thereby saving signaling overhead.
  • the method further includes: when using the restoration path segment to perform service restoration on the first working path and the second working path, the method further includes: The network device receives a path establishment response message, where the path establishment response message indicates the service restoration result of the first working path and the service restoration result of the second working path.
  • the network device can learn whether the service restoration is successful through the path establishment response message, and complete the service restoration process.
  • a method for restoring path configuration is provided.
  • the method for restoring path configuration may be executed by the first node, or may also be executed by a chip or circuit provided in the first node, which is not limited in this application. .
  • the first node involved in this application includes the first node of the restoration path section, the intermediate node of the restoration path section, or the end node of the restoration path section.
  • the method for restoring path configuration includes: a first node receiving a first configuration message, the first configuration message carrying a first identification ID, the first ID indicating that a restoration path segment is used to perform service restoration on the first working path and the second working path ,
  • the recovery path segment is the same recovery path segment of the first recovery path and the second recovery path, and the first recovery path is used to perform service recovery on the first working path when the first working path fails.
  • the second restoration path is used to perform service restoration on the second working path when the second working path fails; the first node saves the first ID.
  • the first node receives and saves the first ID, so that in the subsequent process of performing service restoration, the first node can activate the restoration path segment based on the first ID and restore the above-mentioned first restoration path at the same time And the second recovery path, to achieve the performance of batch recovery.
  • the method further includes: the first node receiving a second configuration message from the network device, the second configuration message carrying routing information of the restoration path segment.
  • the network device can send the routing information of the restoring path segment to the first node through a second configuration message, This enables the first node to determine which nodes the first node and which nodes jointly constitute the restoration path segment, so that the first node can quickly initiate rerouting based on the routing information of the restoration path segment during the subsequent service restoration process, thereby increasing the rate of service restoration.
  • the method further includes: the first node receives a third configuration message from the network device, the third configuration message carrying the restoration in the first restoration path The channel resource of the path segment and the channel resource of the recovery path segment in the second recovery path; the first ID indicating that the recovery path segment is used to perform service recovery on the first working path and the second working path includes: the first The ID indicates that the channel resource of the restoration path segment in the first restoration path is used to restore the service of the first working path, and the channel resource of the restoration path segment in the second restoration path is used to restore the service of the second working path.
  • the network device pre-configures the channel resources required by the node on the restoring path segment in the service restoration process through the third configuration message, then when the above-mentioned first working path and the second working path fail Under the circumstance, business recovery can be quickly realized based on pre-configured resources.
  • the method further includes: the first node receives a fourth configuration message from the network device, the fourth configuration message carrying the type of the end node, and the end node
  • the types of nodes include the head node of the restoration path segment or the end node of the restoration path segment, and the head node of the restoration path segment or the end node of the restoration path segment has path restoration capability.
  • the network device notifies the end node of the restoring path segment to be the head node or the end node through the fourth configuration message, so that the end node of the restoring path segment can clearly know its identity in the restoring path segment Therefore, the end node of the restoration path segment can initiate rerouting based on its own identity and the first ID to realize service restoration.
  • the method further includes: when the first node determines that the first working path and the second working path are faulty, the method further includes: the first The node sends a path establishment request message to an adjacent downstream node of the restoration path segment, and the path establishment request message carries the first ID.
  • the network device in the scenario where the network device itself is the first node, the network device can dispense with the above-mentioned process of configuring related information for the first node, and just initiate path establishment in the event of a failure, Thereby saving signaling overhead.
  • the method when the recovery path segment is used to perform service recovery on the first working path and the second working path, the method further includes: the first node sends the The network device sends a path establishment response message, where the path establishment response message indicates the service restoration result of the first working path and the service restoration result of the second working path.
  • the network device can learn whether the service restoration is successful through the path establishment response message, and complete the service restoration process.
  • an apparatus for restoring path configuration includes a processor for implementing the function of the network device in the method described in the first aspect.
  • the device for restoring path configuration may further include a memory, which is coupled to the processor, and the processor is configured to implement the function of the network device in the method described in the first aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the network device in the method described in the first aspect.
  • the device for restoring path configuration may further include a communication interface, and the communication interface is used for the device for restoring path configuration to communicate with other devices.
  • the transceiver may be a communication interface or an input/output interface.
  • the device for restoring path configuration includes: a processor and a communication interface, used to implement the function of the network device in the method described in the first aspect, specifically including: the processor uses the communication interface to communicate with External communication; the processor is used to run a computer program, so that the device implements any of the methods described in the first aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or pin on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • an apparatus for restoring path configuration includes a processor configured to implement the function of the first node in the method described in the second aspect.
  • the device for restoring path configuration may further include a memory coupled to the processor, and the processor is configured to implement the function of the first node in the method described in the second aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the first node in the method described in the second aspect.
  • the device for restoring path configuration may further include a communication interface, and the communication interface is used for the device for restoring path configuration to communicate with other devices.
  • the transceiver may be a communication interface or an input/output interface.
  • the device for restoring path configuration includes: a processor and a communication interface, configured to implement the function of the first node in the method described in the second aspect, specifically including: the processor using the communication interface Communicating with the outside; the processor is used to run a computer program, so that the device implements any of the methods described in the second aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or pin on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a computer-readable storage medium is provided with a computer program stored thereon.
  • the computer program is executed by a communication device, the communication device realizes the first aspect and any one of the possible implementation manners of the first aspect method.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device When the computer program is executed by a communication device, the communication device enables the communication device to implement the second aspect and any of the possible implementation manners of the second aspect method.
  • a computer program product containing instructions when the instructions are executed by a computer, the communication device realizes the first aspect and the method in any possible implementation manner of the first aspect.
  • a computer program product containing instructions which when executed by a computer, causes a communication device to implement the second aspect and the method in any possible implementation manner of the second aspect.
  • a communication system including the device for restoring path configuration shown in the third aspect and the device for restoring path configuration shown in the fourth aspect.
  • Figure 1 is a schematic diagram of ASON.
  • Figure 2 is a schematic diagram of service recovery.
  • Figure 3 is a schematic diagram of another service recovery.
  • Fig. 4(a) is a schematic flowchart of a method for restoring path configuration provided by this application
  • Fig. 4(b) is a schematic diagram of node configuration in ASON to which the method for restoring path configuration provided by this application can be applied.
  • Fig. 5 is a schematic diagram of a first ID message format provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a route information format of a restoration path segment provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a message format of a third configuration message provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a message format of a fifth configuration message or a sixth configuration message provided by an embodiment of the present application.
  • FIG. 9 is a scene diagram to which the method for restoring path configuration provided by an embodiment of the present application can be applied.
  • FIG. 10 is another scene diagram to which the method for restoring path configuration provided by an embodiment of the present application can be applied.
  • FIG. 11 is another scene diagram to which the method for restoring path configuration provided by an embodiment of the present application can be applied.
  • FIG. 12 is another scene diagram to which the method for restoring path configuration provided by an embodiment of the present application can be applied.
  • FIG. 13 is another scene diagram to which the method for restoring path configuration provided by an embodiment of the present application can be applied.
  • FIG. 14 is another scene diagram to which the method for restoring path configuration provided by an embodiment of the present application can be applied.
  • FIG. 15 is a schematic block diagram of an apparatus 1500 for restoring path configuration according to an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of an apparatus 1600 for restoring path configuration according to an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of an apparatus 1700 for restoring path configuration according to an embodiment of the present application.
  • references described in this specification to "one embodiment” or “some embodiments”, etc. mean that one or more embodiments of the present application include a specific feature, structure, or characteristic described in combination with the embodiment. Therefore, the sentences “in one embodiment”, “in some embodiments”, “in some other embodiments”, “in some other embodiments”, etc. appearing in different places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless it is specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized.
  • FIG. 1 is a schematic diagram of an ASON provided by an embodiment of the present application.
  • ASON can include multiple ASON nodes (node #1, node #2, node #3, node #4 as shown in Figure 1), and each ASON node passes open shortest path first (OSPF)
  • OSPF shortest path first
  • the protocol obtains the information of other nodes in ASON, where the node information includes node identification and/or link identification, etc.
  • the node #1 shown in Figure 1 obtains the node identification and/or link identification information of the node #2, node #3, and node #4 shown in Figure 1 through the OSPF protocol; similarly, Figure 1
  • the node #2 shown in Figure 1 obtains the node ID and/or link ID information of the node #1, node #3, and node #4 shown in Figure 1, respectively, and the node #3 shown in Figure 1 through the OSPF protocol.
  • Figure 1 The node ID and/or link ID and other information of the node #1, node #2, and node #3 shown in FIG.
  • each ASON node in ASON After each ASON node in ASON obtains the information of other nodes in ASON, it can determine the path of the end-to-end service through the constraint-based shortest path first (CSPF) algorithm, and finally complete it through the RSVP-TE protocol The establishment of end-to-end business paths.
  • CSPF constraint-based shortest path first
  • a node Used to represent a hardware entity in ASON.
  • a node can be understood as a transport network device.
  • the ASON shown in Figure 1 includes four nodes, namely node #1, node #2, node #3, and node #4.
  • the number of nodes included in the ASON may be more than 4 nodes, or the number of nodes included in the ASON may also be greater than or equal to 2.
  • the node has a physical port for sending and/or receiving information.
  • the physical port on the node is referred to as an interface.
  • the information sent and/or received by the node through the interface may include network protocol messages, traffic data, and so on.
  • interface #1, interface #2, interface #3, interface #4, interface #5, interface #6, interface #7, and interface #8 There are 8 interfaces in the ASON shown in Figure 1: interface #1, interface #2, interface #3, interface #4, interface #5, interface #6, interface #7, and interface #8.
  • interface # 1 and interface #8 are the physical port of node #1
  • interface #2 and interface #3 are the physical port of node #2
  • interface #4 and interface #5 are the physical port of node #3
  • interface #6 and interface #7 It is the physical port of node #4.
  • node #1 shown in FIG. 1 The function of receiving and/or sending information between node #2 and node #4.
  • connection between two adjacent nodes is called a link.
  • a link can be represented by a link (node-interface, node-interface). Whether there is a link between two adjacent nodes can be used to indicate whether information such as network protocol messages and/or traffic data can be in the two Forwarding between adjacent nodes. For example, if there is a link between two adjacent nodes, information such as network protocol messages and/or traffic data can be forwarded between the two adjacent nodes; the same applies, If there is no link between two adjacent nodes, information such as network protocol messages and/or traffic data cannot be forwarded between the two adjacent nodes.
  • the link (node #1-interface #1, node #2-interface #2) indicates that information such as network protocol messages and/or traffic data can be sent from the interface #1 of the node #1, and the node #2 and the interface #2 was received on.
  • link 1-2 node #1-interface #1->node #2-interface #1
  • link 1-4 node #1-interface #8 ->Node#4-interface#7
  • link 2-1 node#2-interface#2->node#1-interface#1
  • link 2-3 node#2-interface#3-> Node#3-interface#4
  • link 3-2 node#3-interface#4->node#2-interface#3
  • link 3-4 node#3-interface#5->node# 4-interface #6
  • link 4-3 node#4-interface#6->node#3-interface#5
  • link 4-1 node#4-interface#7->node#1- Interface #8.
  • the service path may include a working path, a restoration path, a protection path, etc., and is used for data transmission of the bearer service.
  • the business path is the route from the first node to the last node, and there may be one or more nodes between the first node and the last node.
  • the first node of the service path indicates the sending node of the data in the connection
  • the end node of the service path indicates the receiving node of the data in the connection.
  • a service path can be represented by a service (first node-last node), and whether there is a service path between the first node and the last node can be used to indicate whether data can be sent from the first node to the last node.
  • the data can be sent from the first node to the end node; in the same way, if there is no business path between the first node and the end node, the data cannot be sent from the first node to the end node .
  • the connection between the first node and the last node formed by the service path or the transmission data carried on the service path can be called a service.
  • services 1-3 in the ASON shown in Figure 1 which means that there is a connectable data channel between node #1 and node #3, which is used to transmit data from node #1 to node #3. It can be called a path, that is, the path of data transmission.
  • the service path represents the route from the first node to the last node, it can also be called an end-to-end service path, where "end-to-end" means the first node to the last node.
  • ASON can provide end-to-end establishment, query, deletion, attribute modification, and recovery functions of service paths through the RSVP-TE protocol.
  • end-to-end can be understood as one node to another node.
  • the end-to-end establishment of the service path includes: the network manager issues a service path creation command to the first node, and then the first node implements routing calculation and initiates the service path configuration process through the RSVP-TE signaling protocol, and establishes a crossover point by point from the first node to the downstream node. Connect to complete the end-to-end establishment of the business path.
  • the end-to-end establishment of the service path makes full use of the routing and signaling functions of each node, and shortens the service path configuration time.
  • the specific steps for initiating service 1-3 establishment through the RSVP-TE signaling protocol include:
  • the network manager issues the service 1-3 creation command to the first node #1, and the first node #1 determines the service path of the service 1-3 through CSPF as follows: node #1-node #2-node #3, the first node #1 follows The determined service path sends a Path message to the adjacent node #2 through link 1-2 (node #1-interface #1->node #2-interface #2), specifically the interface of node #1 #1 sends the Path message (the Path message is a type of RSVP-TE protocol message) to the interface #2 of the intermediate node #2;
  • node #2 After node #2 receives the Path message, it solves the cross configuration associated information of node #2 and establishes a reverse cross connection, and then the intermediate node #2 passes through link 2-3 (node#2-interface#3->node#3 -Interface #4) Send a Path message to the adjacent node #3, specifically, the interface #3 of the node #2 sends a Path message to the interface #4 of the end node #3, and the corresponding cross configuration is solved at the end node #3 in the same way Message and establish a reverse cross-connection of this site.
  • the end node #3 sends a reservation request (reserved, Resv) message (a kind of RSVP-TE protocol message of the Resv message) to the head node #1 via the intermediate node #2, and establishes a forward cross-connection at each node along the way;
  • the first node #1 sends a Path message to the end node #3 via the intermediate node #2, turns on the alarm monitoring of the business path along the way, and the end node #3 sends a Resv message to the first node #1 via the intermediate node #2 to confirm. .
  • the above-mentioned end-to-end establishment of the service path is automatically completed by RSVP-TE signaling to automatically complete the end-to-end configuration establishment of services 1-3.
  • FIG. 1 is only an example to illustrate the applicable scenarios of the present application, and does not constitute any limitation to the protection scope of the present application.
  • the method for restoring path configuration provided in the embodiments of the present application can also be applied in other scenarios. For example, other optical transmission networks.
  • the nodes in the ASON can realize service path restoration through the RSVP-TE protocol.
  • Fig. 2 is a schematic diagram of service path restoration. As shown in Fig. 2, the node can realize the end-to-end automatic restoration of the service path through the RSVP-TE protocol.
  • the original service path for service 1-3 to automatically establish service 1-3 through RSVP-TE is: node#1-node#2-node#3, where the original service path can also be called work path. If the optical fiber between node #1 and node #2 is interrupted, the automatic restoration of end-to-end service path through RSVP-TE protocol includes:
  • Node #2 perceives the fault alarm information, and finds the affected service 1-3 according to the port alarm information carried in the fault alarm information, and then advertises the fault information to the affected service 1 through the RSVP notification (Notify) message.
  • the first node of 3 node #1).
  • node #2 can perceive the fault alarm information. It can be the fiber interruption between node #1 and node #2 (for example, the direction from node #1 to node #2). After the optical fiber is interrupted and the optical fiber in the direction from node #2 to node #1 is not interrupted), the bottom layer of node #2 perceives the optical fiber interruption (for example, it perceives the interruption of information transmission).
  • node #2 transmits the RSVP notification message to node #1. It can be through the optical fiber in the direction from node #2 to node #1, or when the direction from node #2 to node #1 is In the case of fiber interruption, the RSVP Notify message is transmitted to node #1 through other paths.
  • node #1 After node #1 receives the RSVP Notify message, it learns the affected business 1-3 through the fault information, and automatically determines the restoration path that can continue to realize the business 1-3 (node #1-node #4 shown in Figure 2 -Node #3). Then the nodes in ASON use RSVP-TE signaling (Path and Resv messages) to establish a cross-connection along the service recovery path (node#1-node#4-node#3) hop by hop, and automatically complete the end-to-end recovery path. After the establishment and restoration of the path is completed, services 1-3 are automatically restored.
  • RSVP-TE signaling Path and Resv messages
  • Fig. 3 is a schematic diagram of another service path restoration. As shown in Fig. 3, the nodes in the ASON can realize the section restoration of the service path through the RSVP-TE protocol.
  • Service 1-3 automatically establishes the original service path of Service 1-3 through RSVP-TE signaling (node #1-node #2-node #3 as shown in Figure 3), where , The original business path can also be called the work path.
  • Node #2 in FIG. 3 may be called a bifurcation node, and node #3 may be called a merge node. If the optical fiber between node #2 and node #3 is interrupted, the segment recovery of services 1-3 through the RSVP-TE protocol includes:
  • the node #2 and/or the node #3 perceive the fault alarm information (for example, the node #2 perceives the fault alarm information).
  • Node #2 finds the affected services 1-3 according to the port alarm information matching in the fault alarm information, and finds that the corresponding section recovery route information is node #2-Node#4-Node# as shown in Figure 3. 3.
  • service path restoration can also be understood as service restoration, because after the service path is restored, the services carried on the service path can also resume transmission accordingly.
  • the method for restoring path configuration provided by the embodiment of the present application can be applied to the ASON shown in FIG. 1 as an example, and does not constitute any limitation to the protection scope of the present application.
  • the method for restoring path configuration provided in this application can also be used in other optical transmission networks, for example, GMPLS.
  • GMPLS optical transmission networks
  • the steps performed by nodes in the network are similar to those performed by nodes in ASON when applied in ASON. Therefore, in order to facilitate the description of the embodiments of this application, the main steps Taking the method of restoring path configuration applied from ASON as an example for description, the application in other scenarios will not be described in detail.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the code of the method provided in the embodiments of the application can be run to follow
  • the method provided in the embodiment of the present application only needs to perform communication.
  • the execution subject of the method provided in the embodiment of the present application may be a device, or a functional module that can execute a program in a core/metropolitan area device.
  • this application provides a method and device for restoring path configuration.
  • the business recovery is realized for the business group, thereby improving the performance of batch business recovery.
  • used to indicate can include both used for direct indication and used for indirect indication.
  • the indication information can directly indicate A or indirectly indicate A, but it does not mean that A must be included in the indication information.
  • the information indicated by the instruction information is referred to as the information to be instructed.
  • the information to be indicated may be directly indicated, such as the information to be indicated itself or the index of the information to be indicated.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of a pre-arranged order (for example, stipulated in an agreement) of various information, so as to reduce the indication overhead to a certain extent. At the same time, it can also identify the common parts of each information and give unified instructions, so as to reduce the instruction overhead caused by separately indicating the same information.
  • the first, second, and various numerical numbers are only for easy distinction for description, and are not used to limit the scope of the embodiments of this application. For example, distinguish different nodes, distinguish different services, or distinguish different service groups.
  • preset may include indication by network device signaling, or pre-defined, for example, protocol definition.
  • pre-defined can be realized by pre-saving corresponding codes, tables, or other methods that can be used to indicate related information in the device (for example, including nodes or network devices), and this application does not limit its specific implementation mode. .
  • the "saving" referred to in the embodiments of the present application may refer to storing in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in a decoder, a processor, or a communication device.
  • the type of the memory can be any form of storage medium, which is not limited in this application.
  • the "protocol” involved in the embodiments of the present application may refer to a standard protocol in the optical transmission field, for example, it may include the protocol involved in ASON, the protocol involved in GMPLS, and related protocols applied in the optical transmission field in the future. , This application does not limit this.
  • Fig. 4(a) is a schematic flowchart of a method for restoring path configuration provided by the present application. It can be applied to ASON, and the ASON includes multiple nodes, as shown in FIG. 4(b), which is used to show a schematic diagram of the node configuration in the ASON that can be applied to the embodiment of the present application.
  • each node is deployed with a bundle mapping (BM) processing unit and resource reservation protocol (RSVP) control unit.
  • BM bundle mapping
  • RSVP resource reservation protocol
  • the ASON includes network equipment for path calculation.
  • the network device includes a PCE controller, that is, at least one PCE controller is provided in the ASON.
  • the network device includes a node, and the node has a path calculation function.
  • at least one node in the ASON is deployed with a PCE controller; also for example, at least one node in the ASON is deployed with a path calculation function module.
  • the network device is used to determine the restoration path corresponding to the working path carrying the multiple services when it is assumed that the working path carrying multiple services in the ASON fails, and restore the restoration path with the same restoration path segment
  • the path is marked as a group of restoration paths, and a first ID is generated for the group of restoration path network devices.
  • the first ID indicates that the restoration path segments are used to perform service restoration on the working paths respectively corresponding to the group of restoration paths.
  • the ID involved in the embodiments of this application can be understood as identification information, which is used to identify a group of restoration paths.
  • the identification information index (index) or indication information can also be called. For ease of description, it is referred to below as ID.
  • the restoration path corresponding to the working path means that when the working path fails, the restoration path is used to restore the business carried on the working path. It can also be understood as the restoration path and The services carried on the working path are the same. From this perspective, it is understood that the above-mentioned identification is a group of IDs of the restoration path. Furthermore, it can be understood that the above-mentioned identifier is the ID of the service carried on the working path corresponding to a group of restoration paths. Therefore, in the embodiment of the present application, the ID may also be referred to as a service group ID and is used to identify a group of services.
  • the "recovery path corresponding to the working path” referred to below means that the recovery path performs service recovery on the service carried on the working path, and the "recovery path corresponding to the service” represents the service that can be recovered by the recovery path.
  • the BM processing unit performs ID management, such as adding, deleting, or updating.
  • the RSVP control unit can manage the establishment, deletion or update of the service group ID to which a single service belongs; after a failure, it determines the affected service group ID and initiates link establishment.
  • FIG. 4(b) is only a schematic diagram provided to facilitate the understanding of the application, and does not constitute any limitation to the protection scope of the application.
  • the names of the various units mentioned above are just examples, and other units that can achieve the same function Or the module can be used as a substitute to replace the unit shown in Figure 4(b).
  • two services form the first service group as an example.
  • a service is carried on the first working path, the head node of the first working path is called the first head node, the second service is carried on the second working path, and the head node of the second working path is called the second head node.
  • first working path and the second working path may be the same working path, that is, multiple services are carried on the working path.
  • first restoration path corresponding to the first working path and the second restoration path corresponding to the second working path may also be the same restoration path, and the restoration path may restore multiple services carried on a certain working path.
  • the method for restoring path configuration includes at least all or part of the following steps:
  • S410 The network device determines the restoration path.
  • the network device determines a first restoration path of the first working path and a second restoration path of the second working path, where the first restoration path is used to perform a fault on the first working path when the first working path fails.
  • a working path performs service restoration
  • the second restoration path is used to perform service restoration on the second working path when the second working path fails, the first restoration path and the second restoration path Have the same recovery path segment.
  • the network device can obtain the services and topology in the network, determine the recovery path corresponding to the working path of the bearer service based on the failure link and recovery path strategy, and pass multiple services with the same recovery path segment through the service group ID binding association, the service group ID identifies that the restoration paths corresponding to the multiple services have the same restoration path segment.
  • the failure link and recovery path strategy refers to that when a network device assumes that a certain link in the network fails, when determining the recovery paths corresponding to the working paths affected by the failed link, make as many as possible
  • the recovery path has the same recovery path segment.
  • the same recovery path segment involved in the embodiments of the present application is the common partial path segment or the overlap partial path segment of the first recovery path and the second recovery path, and can also be understood as the overlap recovery path segment, the shared recovery path segment, etc., In the text, it is referred to as the recovery path section for short.
  • the first recovery path and the second recovery path have the same recovery path segment, and the same recovery path segment may be a part of the first recovery path or the second recovery path, or may be the first recovery path or the second recovery path. Restore all path segments of the path.
  • the specific cause of the failure of the working path is not limited.
  • the failure of the first working path mentioned above may be that one or more links in the first working path fails, or a node on the first working path fails, or an interface of a node on the first working path fails, etc.;
  • the failure of the second working path mentioned above includes the failure of one or more links in the second working path, or the failure of the node on the second working path, or the failure of the interface of the node on the second working path. Wait.
  • the failed link on the first working path is the same as the failed link on the second working path.
  • the first working path and the second working path have the same first link, and when the first link fails, both the first working path and the second working path will fail.
  • the first link that failed is the first failed link.
  • the failure of the first link may be the failure of at least one of the two nodes on the first link, or the failure of the interface of at least one of the two nodes on the first link.
  • the optical fiber between the two nodes on the first link fails (for example, the fiber is broken).
  • the network device determines the above-mentioned first recovery path and second recovery path with the same recovery path segment, the network device generates a first ID.
  • the first ID can indicate that multiple services on the recovery path segment perform business recovery at the same time, or it can indicate that multiple recovery paths on the recovery path segment perform business recovery at the same time, which is equivalent to compressing the messages of multiple services or multiple recovery paths into A message can improve the efficiency of business recovery.
  • the method flow shown in FIG. 4 further includes S420, generating a first ID.
  • the first ID indicates that the recovery path segment is used to perform service recovery on the first working path and the second working path.
  • the first restoration path is used to restore the first service carried on the first working path
  • the second restoration path is used to restore the second service carried on the second working path.
  • the first ID is used to identify the first service.
  • the ID in this embodiment of the application may be referred to as the service group ID.
  • the above-mentioned first working path may be referred to as the original path carrying the first service, and the second working path may be referred to as the original path carrying the second service.
  • the first business can include one or more businesses, and the second business can also include one or more businesses.
  • the network device may determine at least one restoration path for the restoration of a certain service based on different failed links in the working path of each service in the bearer network.
  • the network device can form the multiple services into a service group, and generate the ID of the service group.
  • the network device can group the multiple services into a service group and generate the ID of the service group.
  • multiple links in the network are less likely to fail at the same time or at a short interval.
  • the main It involves a scenario where a certain link in the network fails, which affects the transmission of multiple services.
  • the method of restoring path configuration provided by this application cannot be applied to scenarios where multiple links in the network fail.
  • the application processes in different application scenarios are similar. For ease of description, the following mainly refers to a certain network A link failure (for example, the first failed link) affecting multiple services will be described as an example.
  • the method flow shown in Figure 4(a) also includes S430: The network device sends a first configuration message to the third node, where the first configuration message carries the first ID.
  • the first configuration message may be a path calculation element communication protocol (PCEP) message, or the first configuration message may be a protocol message with the same function as PCEP, or the first configuration message may This is achieved through a newly added field (such as an extended PCEP field) in the original signaling between the network device and the first node of the restoration path segment.
  • PCEP path calculation element communication protocol
  • the network device can also notify the first node of the restoration path segment (the third node as shown in Figure 4(a)) of the routing information of the restoration path segment, and the method flow shown in Figure 4(a) also includes S431: The network device sends a second configuration message to the third node, where the second configuration message carries routing information of the restoration path segment.
  • the second configuration message may be a PCEP message, or the second configuration message may be a protocol message with the same function as PCEP, or the second configuration message may pass through the original signaling between the network device and the first node of the restoration path segment
  • the newly added fields for example, the extended PCEP field
  • first configuration message and the second configuration message may be the same message, or the first configuration message and the second configuration message may be two different messages, which is not limited in this application.
  • the above-mentioned first ID may also be notified to the first first node of the first working path and the second first node of the second working path, specifically based on the identity of the above-mentioned network device in the network, divided into The following ways:
  • Method 1 The network equipment is PCE
  • the network device is a PCE controller set in the network, and the PCE controller is a device deployed independently of the first node of the working path and the first and last nodes of the restoration path segment.
  • the network device After the network device generates the above-mentioned first ID, the first ID needs to be notified to the first node of the first working path and the second working path, and the method flow shown in Figure 4(a) is also Including S432, the network device sends the first message to the first head node and S433, the PCE node sends the second message to the second head node.
  • the first message and the second message can be understood as a PCEP message, or a protocol message that implements a similar function to the PCEP message, and can also be a piece of existing signaling between the PCE controller and the node.
  • the above-mentioned first head node and the second head node may be the same node, that is, the first node of the above-mentioned first working path and the second working path are the same, then the first message and the second message may be The same message sent to the same node in the network.
  • the first message and the second message need to include at least the first ID, so that the first node of the first working path and the second working path can learn the first ID.
  • the first message may also include at least one of the identification of the first service, the identification of the first faulty link, and the routing information of the first restoration path; the second message may also include the information of the second service. At least one of the identification, the identification of the first failed link, and the routing information of the second restoration path.
  • the identifier of the first service may be the label switch path (LSP) ID of the first service, and the identifier of the second service may be the LSP ID of the second service.
  • LSP label switch path
  • the embodiment of the present application does not limit the identification of the faulty link. You can refer to the identification scheme of the faulty link in the existing optical transmission field. For example, if the faulty link is the link between the third node and the fourth node, then The identification of the failed link may be the third node-the fourth node of the failed link.
  • the above-mentioned first message may be a single message or a collective term of multiple messages, that is, the above-mentioned first ID, the identifier of the first service, the identifier of the first faulty link, and the routing information of the first restoration path can be passed through one message It can be sent to the first node, or it can be sent to the first node through multiple messages; in the same way, the above-mentioned second message can be one message or the collective name of multiple messages, that is, the above-mentioned first ID, second The service identifier, the identifier of the first failed link, and the routing information of the second restoration path may be sent to the second first node through one message, or may be sent to the second first node through multiple messages.
  • the first head node can determine that it is the head node of the first working path that carries the first service. For example, if the first head node is the head node of a working path, after the first head node receives the first message, even if the first message does not carry the identifier of the first service, the first head node can still learn the first working path The first service carried on the network. If the first head node can serve as the head node of multiple working paths, and the services carried by the multiple working paths are different, the first message needs to carry the identifier of the first service.
  • the first first node can determine that the failed link is the first link. For example, the first first node learns the first working path and the first recovery path. By comparing the node changes on the first working path and the first recovery path, the first link that has failed can be inferred.
  • first message does not carry the routing information of the first restoration path, it means that the first head node can determine the first restoration path.
  • One recovery path One recovery path.
  • the foregoing second message does not carry the identifier of the second service, the identifier of the first faulty link, or the routing information of the second restoration path
  • the first message does not carry the identifier of the first service, the identifier of the first faulty link, or the first
  • the routing information of the restoration path is similar, so I won't repeat it here.
  • first message and/or second message may also carry routing information of the restoration path segment, so that the first head node and/or the second head node can learn which restoration path segment pair is indicated by the first ID.
  • the first working path and the second working path perform business recovery.
  • TLV is a variable format, meaning: Type, Length, and Value.
  • the Type field is the information about the label and encoding format; the Length field defines the length of the value; the Value field Represents the actual value.
  • the length of Type and Length is generally fixed, for example, 2 or 4 bytes.
  • the message format of the first message and the second message involved in this application may be as follows:
  • TLV TLV information of the segment recovery path corresponding to the service group ID
  • FIG. 5 is a schematic diagram of a first ID message format provided in an embodiment of the present application.
  • the meanings and values of the fields included in FIG. 5 are shown in Table 1 below.
  • FIG. 6 is a schematic diagram of the routing information format of a restoration path segment provided in an embodiment of the present application.
  • the meanings and values of the fields included in FIG. 6 are shown in Table 2 below.
  • the network device After the network device notifies the above-mentioned first ID to the first head node and the second head node, in mode one, in order to quickly restore the service during the subsequent execution of the service restoration process, resources can be pre-configured for the nodes on the restoration path segment. Therefore, when the above-mentioned first working path and the second working path fail, the nodes on the restoration path segment can quickly realize service restoration based on the pre-configured resources.
  • the pre-configuration of node resources on the restoration path segment in the first method includes the following two possibilities, which can be implemented in one of the possible ways:
  • the network device pre-configures resources for the nodes on the recovery path segment.
  • the method flow described in Figure 4(a) further includes S440, the network device sends the nodes on the restoration path segment (the third node, the fourth node and the fifth node as shown in Figure 4(a)) Sending a third configuration message, the third configuration message carrying the channel resource of the restoration path segment in the first restoration path and the channel resource of the restoration path segment in the second restoration path.
  • the third configuration message may be a PCEP message, or the third configuration message may be a protocol message with the same function as PCEP, or the third configuration message may be in the signaling transmitted along the recovery path segment by the network device
  • the newly added fields for example, the extended PCEP field
  • the third configuration message may also include at least one of the identification of the first service, the identification of the second service, the routing information of the restoration path segment, and the first ID.
  • the network device may not need to send the above-mentioned first configuration message to the first node of the restoration path segment; in the same way, when the third configuration message includes the restoration path In the case of routing information of the segment, the network device may not need to send the above-mentioned second configuration message to the first node of the restoration path segment.
  • the third configuration message may also carry the above-mentioned first ID and routing information of the restoration path segment.
  • the above-mentioned first configuration message and the second configuration message do not need to be sent, or it can also be understood as the first configuration
  • the message, the second configuration message, and the third configuration message are the same message (for example, the third configuration message carries the first ID, the routing information of the restoration path segment, and the channel resources and all the resources of the restoration path segment in the first restoration path. Channel resources of the restoration path segment in the second restoration path).
  • the above-mentioned third node is the first node on the recovery path segment
  • the fourth node is the last node on the recovery path segment
  • the fifth node is the intermediate node on the recovery path segment.
  • the fifth node can be a multi-node. One, that is, there can be multiple intermediate nodes on the recovery path segment.
  • the format of the third configuration message can be as follows:
  • the message format of the first ID is shown in FIG. 5, and the meanings and values of the fields included in FIG. 5 are as shown in Table 1 above, which will not be repeated here.
  • FIG. 7 is a schematic diagram of a third configuration message format provided by an embodiment of the present application.
  • the meanings and values of the fields included in FIG. 7 are shown in Table 3 below.
  • Possibility 2 The first node of the working path pre-configures resources for the nodes on the recovery path segment.
  • the first head node and the second head node pre-configure resources for the nodes on the restoration path segment.
  • the method flow described in Figure 4(a) further includes S441.
  • the nodes (the third node, the fourth node, and the fifth node as shown in FIG. 4(a)) send a fifth configuration message, and the fifth configuration message carries the channel resource of the restoration path segment in the first restoration path.
  • the fifth configuration message may also include the identification and/or the first ID of the first service.
  • the network device may not need to send the above-mentioned first configuration message to the first node of the restoration path segment.
  • the fifth configuration message may be an RSVP Path message, a message with a function similar to the RSVP Path message, or other signaling transmitted by the first head node along the first restoration path.
  • first head node may also send the above-mentioned fifth configuration message to other nodes on the first recovery path (nodes other than the nodes on the recovery path segment).
  • nodes on the first recovery path nodes other than the nodes on the recovery path segment. The steps involved in the execution of the nodes on the recovery path segment when the first link fails, the specific content included in the fifth configuration message received by other nodes on the first recovery path will not be repeated.
  • the method flow described in Figure 4(a) below may further include S442, where the second first node sends to the nodes on the restoration path segment (the third node, the fourth node and the fourth node as shown in Figure 4(a)).
  • the fifth node sends a sixth configuration message, where the sixth configuration message carries the channel resource of the restoration path segment in the second restoration path.
  • the sixth configuration message may also include the identifier of the second service and/or the first ID.
  • the network device may not need to send the above-mentioned first configuration message to the first node of the restoration path segment.
  • the sixth configuration message may be an RSVP Path message, a message with a function similar to the RSVP Path message, or other signaling transmitted by the second head node along the second restoration path.
  • the above-mentioned second head node may also send the above-mentioned sixth configuration message to other nodes on the second recovery path (nodes other than the nodes on the recovery path segment).
  • nodes on the second recovery path nodes other than the nodes on the recovery path segment.
  • the format of the fifth configuration message or the sixth configuration message is as follows:
  • the message format of the first ID is shown in FIG. 5, and the meanings and values of the fields included in FIG. 5 are as shown in Table 1 above, which will not be repeated here.
  • FIG. 8 is a schematic diagram of a message format of a fifth configuration message or a sixth configuration message provided by an embodiment of the present application.
  • the meanings and values of the fields included in Fig. 8 are shown in Table 4 below.
  • the method for restoring path configuration provided in this application can also configure path restoring capabilities for the first node and the last node on the restoring path segment.
  • the sequence between configuring the path recovery capability for the first node and the last node on the recovery path segment and pre-configured resources for the nodes on the recovery path segment there is no limitation on the sequence between configuring the path recovery capability for the first node and the last node on the recovery path segment and pre-configured resources for the nodes on the recovery path segment.
  • the configuration of the restoration capability for the first node and the last node on the restoration path segment includes the following two possibilities, which can be implemented in any possible manner:
  • the network device configures the path restoration capability for the first node and the end node on the restoration path segment, then in Mode 1, the method process described in Figure 4(a) also includes S450, the network device sends the end node of the restoration path segment (The third node and the fourth node as shown in Figure 4 (a)) send a fourth configuration message, the fourth configuration message carries the type of the end node, the type of the end node includes the restoration path segment The head node and the end node of the restoration path segment, the head node of the restoration path segment or the end node of the restoration path segment has path restoration capability.
  • the end node type can be used to determine that the end node is capable of path recovery. For example, after the first node of the restoration path segment receives the fourth configuration message, the first node of the restoration path segment based on its end node type can determine that it has path restoration capability; for example, the end node of the restoration path segment receives the fourth configuration message. After configuring the message, the end node of the restoration path segment based on its end node type can determine that it has the path restoration capability.
  • the fourth configuration message may be a PCEP message, or the fourth configuration message may be a protocol message with the same function as PCEP, or the fourth configuration message may be in the signaling transmitted along the recovery path segment by the network device
  • the newly added fields for example, the extended PCEP field
  • the fourth configuration message may also include at least one of the identification of the first faulty link, the routing information of the restoration path segment, the identification of the first service, the identification of the second service, and the first ID.
  • the third node may save the first fault based on its own end node type.
  • the identification of the link, the routing information of the restoration path segment, and the identification indicating that it has the path restoration capability, where the identification indicating that it has the path restoration capability may be the identification of the first node of the restoration path segment or other fields;
  • the fourth node after receiving the fourth configuration message, the fourth node can save the identification of the first faulty link, the routing information of the restoration path segment, and the identification indicating that it has the path restoration capability based on its end node type, where:
  • the identifier indicating that it has the path restoration capability may be the identifier of the end node of the restoration path segment or other fields.
  • the foregoing third configuration message and the fourth configuration message may be the same message, or the third configuration message and the fourth configuration message may be two different messages, which is not limited in this application.
  • the network device may also send the identification of the first node of the recovery path segment to the node where the first faulty link is located (for example, the third node The identification of the first faulty link), which informs which node is the first node of the restoration path segment with the path restoration capability of the node where the first failed link is located.
  • the failure notification can be sent to the node upstream of the node where the first failure link is located (for example, single-hop transmission mode), until the failure notification is transmitted to the recovery path segment with path recovery capability The first node.
  • Possibility two The first node and the second node configure the recovery capabilities for the first node and the last node on the restoration path. Then in Possibility 2, the method process described in Figure 4 also includes S451, the first node is directed to restore The end nodes of the path segment (the third node and the fourth node as shown in Figure 4(a)) send a seventh configuration message, the seventh configuration message carries the type of the end node, and the type of the end node includes all The first node of the restoration path segment and the end node of the restoration path segment.
  • the end node type can be used to determine that the end node is capable of path recovery.
  • the seventh configuration message may be an RSVP Path message, or the seventh configuration message may be a protocol message with the same function as the RSVP Path message, or the seventh configuration message is a first node along the first working path Transmission of other signaling.
  • the seventh configuration message may also include at least one of the identification of the first failed link, the routing information of the restoration path segment, the identification of the second service, and the first ID.
  • the third node can save the first fault based on its own end node type.
  • the identification of the link, the routing information of the restoration path segment, and the identification indicating that it has path restoration capability, where the identification indicating that it has the path restoration capability may be the identification of the first node of the restoration path segment or other fields;
  • the fourth node can save the identification of the first faulty link, the routing information of the restoration path segment, and the identification indicating that it has path restoration capability based on its end node type, where:
  • the identifier indicating that it has the path restoration capability may be the identifier of the end node of the restoration path segment or other fields.
  • the network device may not need to send the above-mentioned first configuration message to the first node of the restoration path segment.
  • first head node may also send the above-mentioned seventh configuration message to other nodes on the first working path (nodes other than the nodes on the restoration path segment).
  • nodes on the first working path nodes other than the nodes on the restoration path segment.
  • the steps involved in the execution of the nodes on the recovery path segment when the first link fails, the specific content included in the seventh configuration message received by other nodes on the first working path will not be repeated.
  • the method flow described in Figure 4 in the second mode may further include S452.
  • the second head node sends eight to the end nodes of the restoration path segment (the third node and the fourth node as shown in Figure 4(a)).
  • the end node type can be used to determine that the end node is capable of path recovery.
  • the eighth configuration message may be an RSVP Path message, or the eighth configuration message may be a protocol message with the same function as the RSVP Path message, or the eighth configuration message is that the second head node is along the second working path Transmission of other signaling.
  • the eighth configuration message may also include at least one of the identification of the first faulty link, the routing information of the restoration path segment, the identification of the second service, and the first ID.
  • the third node may save the first fault based on its own end node type.
  • the identification of the link, the routing information of the restoration path segment, and the identification indicating that it has path restoration capability, where the identification indicating that it has the path restoration capability may be the identification of the first node of the restoration path segment or other fields;
  • the fourth node can save the identification of the first faulty link, the routing information of the restoration path segment, and the identification indicating that it has the path restoration capability based on its own end node type, where:
  • the identifier indicating that it has the path restoration capability may be the identifier of the end node of the restoration path segment or other fields.
  • the network device may not need to send the above-mentioned first configuration message to the first node of the restoration path segment.
  • the above-mentioned second head node may also send the above-mentioned eighth configuration message to other nodes on the second working path (nodes other than the nodes on the restoration path segment).
  • nodes on the second working path nodes other than the nodes on the restoration path segment.
  • S451 and S452 indicate that the first node of different working paths executes the end node capability configuration on the recovery path segment.
  • the capability configuration can be completed by executing one of S451 and S452, or both S451 and S452 can be executed. .
  • Method 2 The network device is the first node of the first working path
  • the above-mentioned network device is the first node of the first working path, and the first node of the first working path can learn the first ID.
  • the difference from the first method above is that the network device does not need to send the first message to the first first node in the second method. , That is, there is no need to perform S432.
  • Method 3 The network device is the first node of the second working path
  • the above-mentioned network device is the first node of the second working path, and the first node of the second working path can learn the first ID.
  • the difference from the above-mentioned method one is that the network device does not need to send a second message to the second first node in the third method. , That is, there is no need to perform S433.
  • Method 4 The network device is the first node of the restoration path segment
  • the above-mentioned network equipment is the first node on the recovery path segment, and the first node on the recovery path segment can learn the first ID, the routing information of the recovery path segment, and the routing information of the recovery path.
  • the difference from the above-mentioned method one is the fourth method.
  • the downstream network device does not need to send a configuration message to the first node of the restoration path segment, that is, the network device does not need to send the first configuration message, the second configuration message, the third configuration message, and the fourth configuration message to the first node of the restoration path segment.
  • the signaling interaction flow between the other nodes (the first head node, the second head node, and the end node of the restoration path segment) and the network device is the same as that in the first manner, and will not be repeated here.
  • Method 5 The network device is the end node of the restoration path segment
  • the above-mentioned network equipment is the end node of the restoration path segment, and the end node of the restoration path segment can learn the first ID, the routing information of the restoration path segment, and the routing information of the restoration path.
  • the difference from the above-mentioned method 1 is that the method 5 is the network The device does not need to send a configuration message to the end node of the restoration path segment, that is, the network device does not need to send the third configuration message and the fourth configuration message to the end node of the restoration path segment.
  • the signaling interaction flow between other nodes (the first head node, the second head node, and the head node of the restoration path segment) and the network device is the same as that in the first method, and will not be repeated here.
  • the method for restoring path configuration provided in the embodiment of the present application can realize service restoration in the case of a link failure.
  • the method flow shown in Figure 4(a) also includes: business recovery.
  • the node where it is determined that the first working path and the second working path respectively fail may be the node where the first failed link is located.
  • the above-mentioned service recovery includes the following possibilities:
  • the nodes at both ends of the first failed link may be the third node and the fourth node, respectively.
  • the method process shown in FIG. 4(a) further includes S460.
  • the third node senses that the first failed link has failed, and determines that the first service and the second service are affected. It can be seen from the above process that the third node is configured with recovery capability, and the third node determines that there is no need to send the failure notification to the first first node and the second first node.
  • the third node sends a path establishment request message to an adjacent downstream node of the restoration path segment, where the path establishment request message includes the first ID.
  • the path establishment request message also includes the routing information of the restoration path segment, so that the intermediate node and the end node of the restoration path segment can learn the information of the entire restoration path segment.
  • the path establishment request message may be an RSVP Path message, a message similar in function to the RSVP Path message, or other signaling transmitted by the third node along the restoration path segment.
  • the network device in the embodiment of the present application may be the first node of the restoration path segment, and the network device determines that when the first working path and the second working path respectively fail, the network device will move to the adjacent downstream of the restoration path segment.
  • the node sends a path establishment request message.
  • the third node initiates a path establishment request message along the restoration path segment, and the nodes on the restoration path segment (the third node, the fourth node, and the fifth node) determine based on the first ID in the path establishment request message Self-reserved resources establish cross-connections based on reserved resources and establish paths.
  • the third node may send a path establishment response message to the network device, where the path establishment response message indicates the service restoration result of the first working path and the service restoration result of the second working path.
  • the method flow shown in FIG. 4(a) further includes S462.
  • the third node sends a path establishment response message to the network device.
  • the third node may send path establishment response messages to the first first node and the second first node respectively.
  • the method flow shown in FIG. 4(a) further includes S463.
  • the third node sends a path establishment response message to the first first node and S464, and the third node sends a path establishment response message to the second first node.
  • the above-mentioned first ID may be updated.
  • a node on the restoration path segment may receive the first update message and the second update message sent by the first head node and the second head node respectively, and the first update message and the second update message are respectively used to indicate the restoration path segment Update the first working path and the second working path that carry the first service and the second service (for example, the first recovery path for the first service and the second recovery path for the second service), and delete The first ID saved locally.
  • the node on the restoration path segment may receive a third update message sent by the network device, and the third update message is used to instruct the node on the restoration path segment to update the first working path and the first working path that carries the first service and the second service.
  • the second working path (for example, the first restoration path that carries the first service, and the second restoration path that carries the second service), and the locally saved first ID is deleted.
  • the node where the first faulty link is located is not the same node as the third node, and the last node of the first faulty link and the fourth node are the same node.
  • the method flow shown in FIG. 4(a) further includes S470.
  • the node where the first faulty link is located senses that the first faulty link is faulty, and determines that the first working path and the second working path are respectively faulty. It can be seen from the above process that the third node is configured with recovery capability, and the node where the first failed link is located is not configured with recovery capability, and the node where the first failed link is located in the second possibility determines that it needs to send a failure notification to the first failure link.
  • the method flow shown in Fig. 4(a) further includes S471, the third node receives the failure notification information.
  • the execution process is the same as the above-mentioned possible one, which will not be repeated here.
  • the aforementioned network device may also update the restoration path group to which the restoration path belongs based on changes in restoration paths corresponding to different working paths.
  • the network device re-determines the third recovery path corresponding to the first working path, and the network device The node determines based on the third restoration path that the third restoration path belongs to the second and third restoration path group, and the identifier of the second and third restoration path group is the second ID.
  • FIG. 9 is a scene diagram to which the method for restoring path configuration provided by an embodiment of the present application can be applied.
  • the ASON network shown in FIG. 9 includes six ASON nodes: node #A, node #B, node #C, node #D, node #E, and node #F, and 160 services.
  • the working path of the bearer service 1-80 is the same: node#A-node#C-node#E-node#F; the working path of the bearer service 81-160 is the same: node#B-node#C-node#E-
  • the above-mentioned first service can be regarded as any one or more of the services 1-80, and the second service can be regarded as any one or more of the services 81-160; or, the aforementioned
  • the second business is regarded as any one or more of the business 1-80, and the first business is regarded as any one or more of the business 81-160.
  • the above-mentioned first working path is node #A-node #C-Node#E-Node#F
  • the second working path is node#B-Node#C-Node#E-Node#F
  • the first working path includes at least one link: link AC, chain Road CE, link EF
  • at least one link included in the second working path includes: link BC, link CE, and link EF.
  • the above-mentioned second working path is node# A-Node#C-Node#E-Node#F
  • the first working path is Node#B-Node#C-Node#E-Node#F
  • at least one link included in the second working path is: link AC, link CE, link EF
  • at least one link included in the first working path includes: link BC, link CE, and link EF.
  • the foregoing first failed link is a link C-E included in both the first working path and the second working path.
  • the link CE transmission fiber is disconnected, or the interface for sending information to node #E in node #C is faulty, or the interface for sending information to node #C in node #E is faulty, or one or more of the item.
  • the method for restoring path configuration includes the following steps:
  • the network device determines that the restoration path corresponding to the working path of the bearer service 1-80 is: node#A-node#C-node#D-node#E-node#F, bearer service 81-160
  • the restoration path corresponding to the working path is: Node#B-Node#C-Node#D-Node#E-Node#F; That is, the above-mentioned first restoration path is: Node#A-Node#C-Node#D-Node #E-Node#F, the above-mentioned second restoration path is: node#B-node#C-node#D-node#E-node#F.
  • the network device determines that the first recovery path and the second recovery path have the same recovery path segment as: node#C-Node#D-Node#E, because the recovery path segment: node# C-Node#D-Node#E occupies a certain section path on the first restoration path and the second restoration path.
  • this restoration path segment may also be referred to as a section restoration path.
  • the above-mentioned third node is node #C
  • the fifth node is node #D
  • the fourth node is node #E.
  • the network device On the premise that the above-mentioned first recovery path and the second recovery path have the same recovery path segment: node#C-Node#D-Node#E, the network device generates ID#1, which indicates the use of the recovery path segment : Node#C-Node#D-Node#E performs service recovery on the services 1-80 carried on the first working path and the services 81-160 carried on the second working path. It can be understood that the network device identifies the same recovery path segment of the recovery path corresponding to the service 1-160 through the service group ID#1.
  • the network device issues the routing information of the restoration path and the service group ID to the first node of the working path through the PCEP protocol.
  • the network device issues a PCEP message through the PCEP protocol to notify the first node of the working path of the routing information of the restoration path.
  • the PCEP message carries the label switch path (LSP) ID of the service and the identifier of the failed link ( For example, link CE) and routing information of the restoration path corresponding to the service.
  • LSP label switch path
  • PCEP message also needs to carry service group ID#1, and can also carry routing information of the restoration path segment (node#C-node#D-node#E).
  • the PCEP message sent by the network device to the first node (node #A) of the first working path carrying service 1-80 carries: the LSP ID corresponding to each of services 1-80 (for example, the LSP ID of service 1 is 1, The LSP ID of service 2 is 2,..., the LSP ID of service 79 is 79, and the LSP ID of service 80 is 80, then the PCEP message carries LSP ID1-80), the identification CE of the first failed link, and the first recovery Route information of the path (node#A-node#C-node#D-node#E-node#F) and the service group ID (for example, ID#1).
  • the PCEP message may also carry routing information of the restoration path segment (node#C-node#D-node#E);
  • the PCEP message sent by the network device to the first node (node #B) of the second working path carrying services 81-160 carries: the LSP ID corresponding to each of the services 81-160 (for example, the LSP ID of the service 81 is 81, The LSP ID of the service 82 is 82..., the LSP ID of the service 159 is 159, and the LSP ID of the service 160 is 160, then the PCEP message carries the LSP ID81-160), the identification CE of the first faulty link, and the second recovery Route information of the path (node#B-node#C-node#D-node#E-node#F) and the service group ID (for example, ID#1).
  • the PCEP message may also carry routing information of the restoration path segment (node#C-node#D-node#E).
  • ID#1 After ID#1 is notified to the first node of the first working path and the second working path, the ID#1 needs to be notified to the first node and the last node of the restoration path segment. Specifically, it also needs to be the restoration path segment.
  • node #A and The node #B can obtain information such as the first failure link identifier CE, the node #C and the node #E have path recovery capabilities, and the recovery path segment is: node #C-node#D-node#E.
  • the node #C and the node #E have path recovery capabilities, and the network device can also be directly configured to the node #C and the node #E through the PCEP message.
  • node #C is called a fork node
  • node #E is called a merge node
  • the fork node may also be called the first node of the section recovery path
  • the merge node is called the end node of the section recovery path.
  • the node #A initiates the path restoration capability configuration with the first node as the node #A and the end node as the node #F through the RSVP Path message.
  • the RSVP Path message carries service 1-80 LSP ID, node #C and node #E path restoration capability configuration information.
  • the configuration information received by the node #C includes: the first failure link identifier C-E, the routing information of the restoration path segment (node#C-Node#D-Node#E), and the first node label information of the restoration path segment;
  • the configuration information received by the node #E includes: the first failure link identifier C-E, the routing information of the restoration path segment (node#C-Node#D-Node#E), and the end node label information of the restoration path segment;
  • the configuration information received by node #F includes: LSP ID of service 1-80.
  • the node #B initiates the path restoration capability configuration of the first node as the node #B, and the end node as the node #F through the RSVP Path message.
  • the configuration information carried in the RSVP Path message for each node is the same as that of the first node #A, and will not be repeated here.
  • node #C After node #C receives the RSVP Path message initiated for each service, it stores the first failure link identification CE and the routing information of the restored path segment according to the path recovery capability configuration information (node#C-Node#D-Node#E), The label information of the first node of the path segment is restored, and node #C does not perform cross configuration at this time. Since node #C is the first node of the restoration path segment, node #C needs to store the channel resources of each node on the restoration path segment (for example, the aforementioned channel resources of node #C, node #D, and node #E);
  • node #E After node #E receives the RSVP Path message initiated for each service, it stores the first failure link identification CE and the routing information of the restored path segment (node#C-Node#D-Node#E) according to the path recovery capability configuration information. Restore the tag information of the end node of the path segment, and node #E does not perform cross configuration at this time. Since node #E is the end node of the section recovery path, node #E can store the channel resources of the end node on the recovery path segment;
  • Node #F does not need path recovery capability related configuration, and the specific steps performed by node #F after receiving the RSVP Path message initiated for each service will not be repeated here.
  • the newly added RSVP protocol completes the pre-configuration process of node resources on the restoration path segment.
  • the first node-node#A of the working path carrying service 1-80 completes the first restoration path (node#A-node#C-node#D-node#E-node#F) through the RSVP Path message, Restore the pre-configuration of node resources in the path segment.
  • the node #A initiates the pre-configuration of the resources of the first node as the node #A and the end node as the node #F through the RSVP Path message.
  • the RSVP Path message carries the LSP ID of the service 1-80, the service recovery time slot channel/wavelength resource of the node #D, the service group ID, and the indication information of the resource pre-configuration (not really establishing the service).
  • the service group ID and the indication information of resource pre-configuration may be called extended TLV information.
  • step 3 The service group ID on node #C and node #E can also be configured in step 3 above. If step 3 has notified node #C and node #E of the service group ID, step 4 (a) only needs to D configure the service group ID.
  • node #C After node #C receives the RSVP path message, it parses the RSVP path message, obtains the LSP ID and service group ID information of services 1-80, and saves it locally. Since this message indicates resource pre-configuration, node #C does not perform cross-configuration after parsing the RSVP path message.
  • node #D After node #D receives the RSVP path message, it parses the RSVP path message, obtains the LSP ID of service 1-80, service group ID, and restores the time slot channel/wavelength resource (intermediate node #D only needs to store its own information on the restoration path segment). Resource), save it locally. Since this message indicates resource pre-configuration, node #D does not perform cross-configuration after parsing the RSVP path message.
  • the processing after node #E receives the RSVP path message is the same as the processing of node #C, and will not be repeated here.
  • node #F After node #F receives the RSVP path message, since node #F has no section recovery service configuration processing, it directly responds to the RESV message to indicate that the RSVP path message is received successfully.
  • the first node-node#B of the second working path carrying services 81-160 completes the second restoration path through the RSVP Path message (node#B-node#C-node#D-node#E-node#F) Above, restore the pre-configuration of node resources in the path segment.
  • the specific process is similar to the pre-configuration of node resources in the restoration path segment on the node #A completing the first restoration path (node#A-node#C-node#D-node#E-node#F), which will not be repeated here. .
  • the network device directly performs the pre-configuration of the node resources on the recovery path segment through the PCEP message.
  • each node in the recovery path segment (for example, node#C-node#D-node#E) is pre-configured, and the PCEP message carries the LSP ID of the service 1-160, the recovery time slot channel/wavelength resource, and the service group ID And the indication information of resource pre-configuration (not really establishing a service), where the service group ID and the indication information of resource pre-configuration can be called extended TLV information.
  • step 3 The service group ID on node #C and node #E can also be configured in step 3 above. If step 3 has notified node #C and node #E of the service group ID, step 4 (b) only needs to D configure the service group ID.
  • the rerouting method provided in the embodiment of the present application can also realize service recovery.
  • node #C senses that the failure has occurred, and based on the failure of node #C and node #E Link ID, find the ID of the affected business group. Further, if it is determined that the node #C corresponding to the failed link has the path recovery capability, the warning notification is suppressed to the first node of the working path carrying the affected service (for example, node #A and node #B), that is, Notify does not need to be sent to The first node of the working path reduces the notification time;
  • the node #C initiates the establishment process of the restoration path segment (node #C-node#D-node#E).
  • the process includes:
  • the first node of the restoration path segment initiates the establishment of the restoration path segment with the first node as node #C and the end node as node #E through the RSVP Path message.
  • the RSVP Path message carries the service group ID and the routing information of the restoration path segment (node#C-node#D-node#E).
  • the format of the RSVP Path message is the same as the format of the RSVP Path message shown in step 4 (a) above, and will not be repeated here.
  • the first node of the restoration path segment-node #C finds the associated service 1-160 according to the service group ID matching, restores time slot channel/wavelength resources, and reserves resources. After node #C receives the Resv message, it executes the batch service 1- 160 cross-connection establishment; or, the cross-connection establishment of the batch service 1-160 can also be performed before the Resv message is received. This application does not limit the sequence between node #C receiving the Resv message and establishing the cross-connection.
  • the intermediate node of the restoration path segment-Node#D finds the associated service 1-160 according to the service group ID matching, restores time slot channel/wavelength resources, and reserves resources, and Node#D receives the Resv message After that, the cross-connection establishment of the batch service 1-160 is performed; or the cross-connection establishment of the batch service 1-160 can also be performed before the Resv message is received.
  • This application is for node #D to receive the Resv message and establish the cross-connection. The precedence relationship is not limited.
  • the last node of the restoration path segment-Node#E finds the associated service 1-160 according to the service group ID matching, restores time slot channel/wavelength resources, reserves resources, and performs batch service 1-160 The cross connection is established. And send a Resv message in response to the success of the first node Resv of the section recovery path.
  • node #C-node#D-node#E the first node of the working path (for example, node #A and node #B) where all services associated with the service group ID are carried are successfully established. ) Notify the restoration of the restoration path segment is successful, and the notification message carries the identification of the failed link, the restoration success indication information of the restoration path segment, and the routing information of the restoration path segment.
  • each service for example, service 1-160
  • receives the Notify message that the restoration path segment is successfully restored from node #C it will be based on the failure link
  • the identification of the and the routing information of the restoration path segment matches the restoration path to be found, and the service is taken over.
  • Node #A initiates a Path message refresh along the first recovery path (Node#A-Node#C-Node#E-Node#F), and the Path message refresh is used to indicate the first recovery path corresponding to business 1-80
  • the node except the first node deletes the business group ID currently configured for business 1-80 according to the business attributes; in the same way, node #B follows the second recovery path (node#B-Node#C-Node#E-Node #F)
  • Initiate a Path message refresh which is used to instruct the nodes on the second recovery path corresponding to the services 81-160, except the first node, to delete the currently configured service group IDs for the services 81-160 according to the service attributes .
  • the intermediate node and the end node (node #C, node #E, and node #F) on the first working path carrying service 1-80 update the end-to-end service attributes and delete the locally stored service group ID information; the same is true
  • the intermediate node and the end node (node #C, node #E, and node #F) on the second working path carrying services 81-160 update the end-to-end service attributes, and delete the locally stored service group ID information.
  • the network equipment After all service recovery paths are successfully switched, the network equipment automatically collects the working path information of the entire network service, and according to the current path of the service has been refreshed and changed, it will go to the first node of the working path that carries the service (for example, node #A and node #B) Send a delete message. After receiving the delete message, the first node locally deletes the original service group ID (for example, ID#1);
  • the network equipment collects the link information of the entire network in real time, recalculates the recovery path corresponding to the service affected by the link resource change and updates the service group ID, and then sends it to the first working path of the bearer service.
  • the node updates the configuration of the business group ID.
  • the fast rerouting process of the entire zone binding mapping shown in Figure 9 mainly includes the following three key points: 1) Perform the same recovery path strategy calculation based on the services affected by the same fault link, and will have the same recovery path segment The services corresponding to the recovery paths are bundled and mapped to a business group ID association; 2) The configuration of the business group ID: including creation, update, or deletion, the business group ID is newly added and configured to the first node of the business in the business recovery path, by The first node or network device configures the service group ID to each node on the recovery path. When network resources change, the service group ID needs to be updated and modified; 3) After a failure, the batch associated with the affected service group ID The business is quickly established, and the original business group ID on the original working path is deleted after the business is successfully restored.
  • Figure 9 shows the service recovery of two-channel batch services at the same recovery path.
  • the above-mentioned first service can be regarded as one of the two-channel batch services; in the same way, the above-mentioned second service can be regarded as two batch services.
  • the other batch service in the road batch service that is, the scenario shown in Figure 9 can be understood as the first working path and the second working path have different first nodes and the same end nodes, and the corresponding first recovery path and second recovery path There are partial overlapping restoration paths (called restoration path segments) between them.
  • restoration path segments There are partial overlapping restoration paths (called restoration path segments).
  • the ASON network shown in FIG. 10 includes five ASON nodes: node #A, node #C, node #D, node #E, and node #F, and 80 services.
  • the working path of the bearer service 1-80 is the same as: node#A-node#C-node#E-node#F
  • the first service can be regarded as any one or more of the services 1-80
  • the first The second business is regarded as one business or more than the first business in business 1-80
  • the above-mentioned first working path and second working path are the same working path.
  • the link C-E fails.
  • the link CE transmission fiber is disconnected, or the interface for sending information to node #E in node #C is faulty, or the interface for sending information to node #C in node #E is faulty, or one or more of the item.
  • the method for restoring path configuration includes the following steps:
  • the network device determines that the restoration path corresponding to the working path of the service 1-80 is: node#A-node#C-node#D-node#E-node#F;
  • the network device determines that the restoration path corresponding to the working path of the bearing service 1-80 has the same restoration path segment: node#C-Node#D-Node#E.
  • the network device On the premise that the above recovery path has the same recovery path segment: node#C-Node#D-Node#E, the network device generates ID#1, which indicates the use of the recovery path segment: node#C-Node# D-Node#E performs service recovery on service 1-80 carried on the working path. It can be understood that the network device identifies the same restoration path segment that the restoration path corresponding to the service 1-80 has through the service group ID#1.
  • step one in the scenario shown in FIG. 10 and step one in the scenario shown in FIG. 9 lies in that there is only one service head node-node #A, and the amount of service data is small.
  • the network device issues the routing information of the restoration path and the service group ID to the first node of the working path through the PCEP protocol.
  • step 2 in the scenario shown in FIG. 10 The difference between step 2 in the scenario shown in FIG. 10 and step 2 in the scenario shown in FIG. 9 is that the network device only sends a PCEP message to the first node-node #A.
  • step 3 in the scenario shown in FIG. 10 The difference between step 3 in the scenario shown in FIG. 10 and step 3 in the scenario shown in FIG. 9 is that only the first node-node #A performs path restoration capability configuration.
  • the newly added RSVP protocol completes the pre-configuration process of node resources on the restoration path segment.
  • step four (a) in the scenario shown in Figure 10 and step four (a) in the scenario shown in Figure 9 is that only the first node-node #A completes the restoration path (node#) through the RSVP Path message.
  • the network device directly performs the pre-configuration of the node resources of the restoration path section through the PCEP message.
  • the method for restoring path configuration provided by this application also includes service restoration.
  • node #C senses that the failure has occurred, and based on the failure of node #C and node #E Link ID, find the ID of the affected business group. Further, if it is determined that the node #C corresponding to the failed link has the path recovery capability, the alarm notification is suppressed to the first node of the working path carrying the affected service (for example, node #A), that is, Notify does not need to be notified to the first node of the working path. Nodes, reduce the notification time;
  • the node #C initiates the establishment process of the restoration path segment (node #C-node#D-node#E).
  • the difference between the second step in the service recovery in the scenario shown in FIG. 10 and the second step in the service recovery in the scenario shown in FIG. 9 is that the cross-connection establishment of batch services 1-80 is performed.
  • the first node of the working path (for example, node #A) where all services associated with the service group ID are carried is Notify the restoration path If the segment is restored successfully, the notification message carries the identifier of the failed link, the indication information of the successful restoration of the restored path segment, and the routing information of the restored path segment.
  • each service for example, service 1-80
  • receives the Notify message that the restoration path segment is successfully restored from node #C it will be based on the identification and restoration of the failed link.
  • the route information of the route segment is matched to find the service recovery route, and the service is taken over.
  • the network equipment After all service recovery paths are successfully switched, the network equipment automatically collects the working path information of the entire network service, and according to the current path of the service has been refreshed and changed, it will issue a delete message to the first node of the working path that carries the service (for example, node #A). After receiving the delete message, the first node locally deletes the original service group ID (for example, ID#1);
  • the network equipment collects the link information of the entire network in real time, recalculates the recovery path corresponding to the service affected by the link resource change and updates the service group ID, and then sends it to the working path node that carries the service. Update the configuration of the business group ID.
  • the following describes the service recovery of the two-way batch service and the recovery path segment with reference to FIG. 11, and the first node of the recovery path segment is the upstream node of the node where the failed link is located.
  • the ASON network shown in FIG. 11 includes seven ASON nodes: node #A, node #B, node #C, node #D, node #E, node #F, and node #G, and 160 services.
  • the working path of the bearer service 1-80 is the same as: node#A-node#C-node#E-node#F-Node#G; the working path of the bearer service 81-160 is the same as: node#B-Node# C-Node#E-Node#F-Node#G, the first business can be regarded as any one or more of business 1-80, and the second business can be regarded as any one or more of business 81-160 Business; or, the second business can be regarded as any one or more of the business 1-80, and the first business can be regarded as any one or more of the business 81-160.
  • the link E-F fails. For example, the link EF transmission fiber is disconnected, or the interface in node #E that sends information to node #F is faulty, or the interface in node #F that sends information to node #E is faulty. item.
  • the process of restoring path configuration includes the following steps:
  • the network device determines that the first recovery path corresponding to the working path of the bearer service 1-80 is: node#A-node#C-node#D-node#F-node#G, bearer service 81-
  • the second restoration path corresponding to the 160 working path is: node#B-node#C-node#D-node#F-node#G;
  • the network device determines that the first recovery path and the second recovery path have the same recovery path segment as: node#C-Node#D-Node#F.
  • the network device On the premise that the above-mentioned first recovery path and the second recovery path have the same recovery path segment: node#C-Node#D-Node#F, the network device generates ID#1, which indicates the use of the recovery path segment : Node#C-Node#D-Node#F performs service recovery on the services 1-80 carried on the first working path and the services 81-160 carried on the second working path. It can be understood that the network device identifies the same recovery path segment that the recovery path corresponding to the service 1-160 has through the service group ID#1.
  • the network device issues the routing information of the restoration path and the service group ID to the first node of the working path through the PCEP protocol.
  • Step two in the scenario shown in FIG. 11 is the same as step two in the scenario shown in FIG. 9, and will not be repeated here.
  • the first node and the end node of the restoration path segment (for example, the Node #C and node #F) path recovery capability configuration.
  • the specific configuration process is similar to step 3 in the scenario shown in Figure 9, except that in the scenario shown in Figure 11, the RSVP Path message also carries the configuration information of node #E's non-path recovery capability, and node #E resolves RSVP Path. After the message, for the failed link EF, node #E cannot perform section recovery.
  • the RSVP Path message also carries the identification of the head node of the restoration path segment, so that the node #E learns that the head node of the restoration path segment capable of path restoration is the node #C.
  • step four add the RSVP protocol to complete the pre-configuration process of node resources on the restoration path segment; or perform step 4 (b): the network device directly performs the pre-configuration of the node resources on the restoration path segment through the PCEP message Configuration.
  • Step four (a) and step four (b) in the scenario shown in FIG. 11 are the same as step four (a) and step four (b) in the scenario shown in FIG. 9, and will not be repeated here.
  • the method for restoring path configuration provided by the present application also includes service restoration.
  • Step 1 In the case of a link failure between node #E and node #F (for example, a fiber break occurs between node #E and node #F), node #E senses that the failure has occurred, and according to node #E and node #F Failure link identification, find the ID of the affected business group. Further, the node #E determines that the node #E corresponding to the failed link does not have the section recovery capability, and needs to advertise the information of the failed link to the first node-node #C of the recovery path segment with path recovery capability.
  • Step two in service recovery in the scenario shown in FIG. 11 is the same as step two in service recovery in the scenario shown in FIG. 9 (step six), and will not be repeated here.
  • the ASON network shown in FIG. 12 includes six ASON nodes: node #A, node #B, node #C, node #D, node #E, and node #F, and 80 services.
  • the working path of the bearer service 1-80 is the same as: node#A-node#C-node#E-node#F.
  • the link C-E fails.
  • the link CE transmission fiber is disconnected, or the interface for sending information to node #E in node #C is faulty, or the interface for sending information to node #C in node #E is faulty, or one or more of the item.
  • the method for restoring path configuration includes the following steps:
  • the network device determines that the third recovery path corresponding to the working path of the bearer service 1-40 is: node#A-node#C-node#D-node#E-node#F; determine bearer service 41
  • the fourth restoration path corresponding to the working path of -80 is: node#A-node#C-node#B-node#E-node#F
  • the first business can be regarded as one or more of business 1-40
  • the business and the second business are regarded as one or more businesses in addition to the first business in business 1-40; alternatively, the first business can be regarded as one or more business and the second business in business 41-80.
  • the network device determines that the restoration path corresponding to the working path of the bearer service 1-40 has the same restoration path segment as: node#C-Node#D-Node#E; the network device determines based on the fourth restoration path
  • the restoration path corresponding to the working path of the bearer service 41-80 has the same restoration path segment as: node#C-node#B-node#E.
  • the network device On the premise that the above-mentioned third restoration path has the same restoration path segment: node#C-Node#D-Node#E, the network device generates ID#1, which indicates that the restoration path segment is adopted: node#C- The node #D-node #E restores the services 1-40 carried on the working path. It can be understood that the network device identifies the same recovery path segment that the recovery path corresponding to the service 1-40 has through the service group ID#1.
  • the network device Under the premise that the above-mentioned third restoration path has the same restoration path segment: node#C-Node#B-Node#E, the network device generates ID#2, which indicates that the restoration path segment is adopted: node #C-Node#B-Node#E restores the service 41-80 carried on the working path. It can be understood that the network device identifies the same recovery path segment of the services 41-80 through the service group ID#2.
  • step one in the scenario shown in Figure 12 is that ASON resources are not enough, and the services affected by the same faulty link will be divided into two recovery paths for recovery, which are mapped into two Road service group ID.
  • the network device issues the routing information of the restoration path and the service group ID to the first node of the working path through the PCEP protocol.
  • step 2 in the scenario shown in FIG. 12 and step 2 in the scenario shown in FIG. 9 is that the service group IDs of services 1-80 are not the same value, but are associated with two service group IDs.
  • step two in the scenario shown in Figure 12 the difference between step two in the scenario shown in Figure 12 and step two in the scenario shown in Figure 9 is that the node #C identifies the service 1-80 affected by the CE for the faulty link, and the service 1-40 corresponds to the recovery
  • the path segment is node #C-Node#D-Node#E
  • the restoration path segment corresponding to service 41-80 is node #C-Node#B-Node#E, and the two restoration path segments are inconsistent.
  • the newly added RSVP protocol completes the pre-configuration process of node resources on the restoration path segment.
  • step four (a) in the scenario shown in Figure 12 lies in the fact that in addition to the recovery path segment corresponding to the configuration service 1-40 (node#C-Node #D-Node#E) In addition to the pre-configuration, the pre-configuration on the recovery path segment of service 41-80 (node#C-Node#B-Node#E) must be performed.
  • the network device directly performs the pre-configuration of the node resources on the recovery path segment through the PCEP message.
  • step four (b) in the scenario shown in Figure 12 differs from step four (b) in the scenario shown in Figure 9 in addition to the recovery path segment corresponding to the configuration service 1-40 (node#C-Node #D-Node#E)
  • the pre-configuration of (node#C-Node#B-Node#E) on the recovery path segment corresponding to service 41-80 is also performed.
  • the method for restoring path configuration provided by this application also includes service restoration.
  • node #C senses that the failure has occurred, and based on the failure of node #C and node #E Link ID, find the ID of the affected business group. Further, if it is determined that the node #C corresponding to the failed link has the path recovery capability, the alarm notification is suppressed to the first node of the working path carrying the affected service (for example, node #A), that is, Notify does not need to be notified to the first node of the working path. Nodes, reduce the notification time;
  • the node #C initiates the establishment process of the restoration path segment (node #C-node#D-node#E and node #C-node#B-node#E).
  • node #C After node #C completes the restoration path segment (node#C-node#D-node#E and node#C-node#B-node#E), it will be connected to the head of the working path where the service associated with the service group ID is carried.
  • the node (for example, node #A) Notify the successful restoration of the restoration path segment, and the notification message carries the identification of the failed link, the restoration success indication information of the restoration path segment, and the routing information of the restoration path segment.
  • Step four and step six in the service recovery in the scenario shown in FIG. 12 are the same as the step four and step six in the service recovery in the scenario shown in FIG. 10, and will not be repeated here.
  • the ASON network shown in Figure 13 includes nine ASON nodes: node #A, node #B, node #C, node #D, node #E, node #F, node #G, node #H, and node #I, and 240 businesses.
  • the working path of the bearer service 1-80 is the same: node#A-node#C-node#E-node#F; the working path of the bearer service 81-160 is the same: node#B-node#C-node#E- Node #F; the working path of the bearer services 161-240 is the same: node#H-node#C-node#E-node#I.
  • the first business can be regarded as any one or more of the business 1-80, and the second business can be regarded as any one or more of the business 81-160 or the business 161-240.
  • the link C-E fails.
  • the link CE transmission fiber is disconnected, or the interface for sending information to node #E in node #C is faulty, or the interface for sending information to node #C in node #E is faulty, or one or more of the item.
  • the method for restoring path configuration includes the following steps:
  • the network device determines that the first recovery path corresponding to the working path of the bearer service 1-80 is: node#A-node#C-node#D-node#E-node#F, bearer service 81-
  • the second restoration path corresponding to the working path of 160 is: Node#B-Node#C-Node#D-Node#E-Node#F
  • the fifth restoration path corresponding to the working path of bearing service 161-240 is: Node# H-Node#C-Node#D-Node#E-Node#I;
  • the network device determines that the first recovery path, the second recovery path, and the fifth recovery path have the same recovery path segment: node#C-Node#D-Node# E.
  • the network device On the premise that the above-mentioned first recovery path, second recovery path, and fifth recovery path have the same recovery path segment: node#C-Node#D-Node#E, the network device generates ID#1, which ID#1 Indicate the recovery path segment: Node#C-Node#D-Node#E for services 1-80 carried on the first working path, services 81-160 carried on the second working path, and services carried on the second working path On the business 161-240 to resume business. It can be understood that the network device identifies the same recovery path segment that the recovery path corresponding to the service 1-240 has through the service group ID#1.
  • the network device issues the routing information of the restoration path and the service group ID to the first node of the working path through the PCEP protocol.
  • step two in the scenario shown in Figure 13 and step two in the scenario shown in Figure 9 is that in addition to sending a PCEP message to node #A and node #B, it also needs to send a PCEP message to node # H sends a PCEP message.
  • the work path is completed through the RSVP protocol (for example, node#A-node#C-node#E-node#F, node#B-node#C-node#E-node#F and node#H shown in Figure 13 -Node#C-Node#E-Node#I) restore the path restoration capability configuration of the first node and the last node of the path segment (for example, node #C and node #E shown in FIG. 13).
  • the RSVP protocol for example, node#A-node#C-node#E-node#F, node#B-node#C-node#E-node#F and node#H shown in Figure 13 -Node#C-Node#E-Node#I
  • step three in the scenario shown in Figure 13 The difference between step three in the scenario shown in Figure 13 and step three in the scenario shown in Figure 9 is that the first node is changed from two nodes of node #A and node #B to node #A, node #B and node. #H three nodes, the number of services has been changed from 160 to 240.
  • the newly added RSVP protocol completes the pre-configuration process of node resources on the restoration path segment.
  • step four (a) in the scenario shown in Figure 13 and step four (a) in the scenario shown in Figure 9 respectively complete the first step through RSVP Path messages.
  • Recovery path node#A-node#C-node#D-node#E-node#F
  • second recovery path node#B-node#C-node#D-node#E-node#F
  • the pre-configuration of node resources on the fifth restoration path (node#H-node#C-node#D-node#E-node#I) in the restoration path segment (node#C-node#D-node#E).
  • the network device directly performs the pre-configuration of the node resources on the recovery path segment through the PCEP message.
  • step four (b) in the scenario shown in Figure 13 The difference between step four (b) in the scenario shown in Figure 13 and step four (b) in the scenario shown in Figure 9 is that the network device completes the first recovery path through the PCEP message (Node#A-Node#C-Node #D-Node#E-Node#F), the second recovery path (Node#B-Node#C-Node#D-Node#E-Node#F), the fifth recovery path (Node#H-Node#C -Node#D-Node#E-Node#I) restore the pre-configuration of node resources on the path segment (Node#C-Node#D-Node#E).
  • the network device completes the first recovery path through the PCEP message (Node#A-Node#C-Node #D-Node#E-Node#F), the second recovery path (Node#B-Node#C-Node#D-Node#E-Node#F), the fifth recovery path (Node#H
  • the method for restoring path configuration provided by this application also includes service restoration.
  • node #C senses that the failure has occurred, and based on the failure of node #C and node #E Link ID, find the ID of the affected business group. Further, if it is determined that the node #C corresponding to the failed link has the path recovery capability, the alarm notification is suppressed to the first node of the working path carrying the affected service (for example, node #A, node #B, and node #H), that is Notify does not need to notify the first node of the working path, reducing the notification time;
  • the first node of the working path carrying the affected service for example, node #A, node #B, and node #H
  • the node #C initiates the establishment process of the restoration path segment (node #C-node#D-node#E).
  • the difference between the second step in the service recovery in the scenario shown in Figure 13 and the second step in the service recovery in the scenario shown in Figure 9 lies in the configuration of the number of services associated with the service group ID, from 160 services to 240 services The business resumed cross-configuration.
  • the node #C After the node #C completes the restoration path segment (node#C-node#D-node#E) is successfully established, the first node of the working path (for example, node#A, node#B) where all services associated with the service group ID are carried. And the node #H) Notify that the restoration path segment is successfully restored, and the notification message carries the identifier of the failed link, the restoration success indication information of the restoration path segment, and the routing information of the restoration path segment.
  • the first node of the working path for example, node#A, node#B
  • the node #H Notify that the restoration path segment is successfully restored, and the notification message carries the identifier of the failed link, the restoration success indication information of the restoration path segment, and the routing information of the restoration path segment.
  • each service for example, service 1-240
  • the first node of the working path for example, node #A, node #B, and node #H
  • the Notify message that the restoration path segment is successfully restored from node #C According to the identification of the failed link and the routing information of the restoration path segment, the restoration path is found, and the service is taken over.
  • Steps 5 and 6 in the service restoration in the scenario shown in FIG. 13 are the same as the steps 5 and 6 in the service restoration in the scenario shown in FIG. 10, and will not be repeated here.
  • the ASON network shown in FIG. 14 includes five ASON nodes: node #A, node #B, node #C, node #D, and node #E, and 80 services.
  • the working path of the bearer service 1-80 is the same: node#A-node#B-node#D-node#E.
  • the first business can be regarded as one or more businesses in business 1-80, and the second business can be regarded as one or more businesses in business 1-80 except for the first business.
  • the method for restoring path configuration includes the following steps:
  • Node #A and/or network equipment determines the recovery path corresponding to the working path of carrying service 1-80 based on the link failure: node#A-Node#C-Node#E;
  • the node #A and/or the network device determines that the restoration path corresponding to the working path of the bearer service 1-80 is the same: node #A-node#C-node#E.
  • the node #A and/or the network device On the premise that the restoration path mentioned above is the same, the node #A and/or the network device generates ID#1, and the ID#1 indicates that the restoration path is adopted: node#A-node#C-node#E paired with the working path Business 1-80 performs business recovery. It can be understood that the node #A and/or the network device identifies the same restoration path for the services 1-80 through the service group ID#1.
  • the network device issues the routing information of the restoration path and the service group ID to the first node of the working path through the PCEP protocol.
  • step 2 may not be executed.
  • the newly added RSVP protocol completes the pre-configuration process of the resources of the restoration path node (node#A-node#C-node#E).
  • step three (a) in the scenario shown in FIG. 14 is the same as step four (a) in the scenario shown in FIG. 9, and will not be repeated here.
  • the network device directly performs the pre-configuration of the resources of the restoration path node (node#A-node#C-node#E) through the PCEP message.
  • step three (b) in the scenario shown in FIG. 14 is the same as that of step four (b) in the scenario shown in FIG. 9, and will not be repeated here.
  • the method for restoring path configuration provided by the present application also includes service restoration.
  • node #B perceives the occurrence of the failure, and based on the failure of node #B and node #D Link ID, find the ID of the affected business group. Further, if it is determined that the node #B corresponding to the failed link has no path recovery capability, and in this embodiment, the node #B is not notified of the path recovery capability of the first node identifier of the recovery path segment, then the node #B directly advertises to the bearer The first node of the working path of the affected business (for example, node #A);
  • node #A After node #A receives the notification, it matches and finds the affected service group ID, and initiates the establishment of a restoration path with the first node as node #A and the end node as node #E through the RSVP Path message.
  • the RSVP Path message carries the service group ID and the routing information of the restoration path (node#A-node#C-node#E) to complete the establishment of the restoration path cross configuration corresponding to the service 1-80 associated with the service group ID.
  • the format of the RSVP Path message is the same as the format of the RSVP Path message shown in step 4 (a) in the scenario shown in FIG. 9, and will not be repeated here.
  • Step three and step five in service recovery in the scenario shown in FIG. 11 are the same as step four and step six in service recovery in the scenario shown in FIG. 9, and will not be repeated here.
  • the network device or node in the ASON in the foregoing method embodiment can perform some or all of the steps in the embodiment. These steps or operations are only examples. The embodiments of the present application may also include performing other operations or variations of various operations. .
  • FIG. 15 is a schematic diagram of an apparatus 1500 for restoring path configuration provided by the present application.
  • the apparatus 1500 includes a path determining unit 1510, a receiving unit 1520, a sending unit 1530, and an identification generating unit 1540.
  • the path determining unit 1510 and the identification generating unit 1540 may be collectively referred to as a processing unit.
  • the path determining unit 1510 is configured to determine a first restoration path of the first working path and a second restoration path of the second working path, where the first restoration path is used to perform a check on the first working path when the first working path fails.
  • the first working path performs service restoration
  • the second restoration path is used to perform service restoration on the second working path when the second working path fails.
  • the first restoration path and the second restoration path are The recovery path has the same recovery path segment;
  • the identification generating unit 1540 is further configured to generate a first identification ID, where the first ID indicates that the recovery path segment is used to perform service recovery on the first working path and the second working path.
  • the sending unit 1530 is configured to send a configuration message to the first node of the restoration path segment.
  • the receiving unit 1520 is configured to receive a path establishment response message.
  • the apparatus 1500 corresponds to the network device in the method embodiment, and the apparatus 1500 may be the network device in the method embodiment, or a chip or functional module inside the network device in the method embodiment.
  • the corresponding unit of the apparatus 1500 is used to execute the corresponding steps executed by the network device in the method embodiment shown in FIG. 4(a).
  • the path determination unit 1510 in the apparatus 1500 executes the steps related to path determination in the network device in the method embodiment.
  • the identification generating unit 1540 is configured to perform steps related to identification generation corresponding to the network device in the method embodiment.
  • the receiving unit 1520 in the apparatus 1500 executes the steps of the network device receiving in the method embodiment.
  • the sending unit 1530 in the apparatus 1500 executes the steps of sending by the network device in the method embodiment.
  • the receiving unit 1520 and the sending unit 1530 may constitute a transceiver unit, and have the functions of receiving and sending at the same time.
  • the path determining unit 1510 and the identification generating unit 1540 may be collectively referred to as a processing unit, and the processing unit may be at least one processor.
  • the sending unit 1530 may be a transmitter or an interface circuit
  • the receiving unit 1520 may be a receiver or an interface circuit.
  • the receiver and transmitter can be integrated to form a transceiver or interface circuit.
  • the device 1500 may further include a storage unit for storing data and/or signaling.
  • the path determining unit 1510, the identification generating unit 1540, the sending unit 1530, and the receiving unit 1520 may interact or couple with the storage unit, such as reading Fetch or call the data and/or signaling in the storage unit, so that the method of the above-mentioned embodiment is executed.
  • Each of the above units can exist independently, or can be fully or partially integrated.
  • FIG. 16 is a schematic diagram of an apparatus 1600 for restoring path configuration provided by the present application.
  • the device 1600 includes a storage unit 1610, a receiving unit 1620, and a sending unit 1630.
  • the receiving unit 1620 is configured to receive a first configuration message from a network device, where the first configuration message carries a first identification ID, and the first ID indicates that a recovery path segment is used to perform services on the first working path and the second working path recover,
  • the restoration path segment is the same restoration path segment of the first restoration path and the second restoration path, and the first restoration path is used to perform the operation on the first working path when the first working path fails.
  • Service restoration where the second restoration path is used to perform service restoration on the second working path when the second working path fails;
  • the saving unit 1610 is configured to save the first ID.
  • the sending unit 1630 is configured to send a configuration message to the first node of the restoration path segment.
  • the receiving unit 1620 is configured to receive a path establishment response message.
  • the apparatus 1600 corresponds to the node in the method embodiment (for example, the third node in FIG. 4(a)).
  • the apparatus 1600 may be the node in the method embodiment, or a chip or functional module inside the node in the method embodiment.
  • the corresponding unit of the device 1600 is used to execute the corresponding steps executed by the node in the method embodiment shown in FIG. 4(a).
  • the saving unit 1610 in the device 1600 is configured to execute the steps related to saving corresponding to the node in the method embodiment.
  • the receiving unit 1620 in the device 1600 executes the steps of node receiving in the method embodiment.
  • the sending unit 1630 in the apparatus 1600 executes the steps of node sending in the method embodiment.
  • the receiving unit 1620 and the sending unit 1630 may constitute a transceiver unit, and have the functions of receiving and sending at the same time.
  • the storage unit 1610 may be at least one memory.
  • the sending unit 1630 may be a transmitter or an interface circuit
  • the receiving unit 1620 may be a receiver or an interface circuit.
  • the receiver and transmitter can be integrated to form a transceiver or interface circuit.
  • the sending unit 1630 and the receiving unit 1620 may interact or be coupled with the storage unit 1610, for example, read or call data and/or signaling in the storage unit, so that the method of the foregoing embodiment is executed.
  • Each of the above units can exist independently, or can be fully or partially integrated.
  • FIG. 17 is a schematic diagram of an apparatus 1700 for restoring path configuration provided by the present application.
  • the device 1700 for restoring path configuration includes a processor 1710, the processor 1710 is coupled with a memory 1720, the memory 1720 is used to store computer programs or instructions or and/or data, and the processor 1710 is used to execute computer programs or instructions stored in the memory 1720 and / Or data, so that the method in the above method embodiment is executed.
  • the device 1700 for restoring path configuration includes one or more processors 1710.
  • the apparatus 1700 for restoring path configuration may further include a memory 1720.
  • the memory 1720 included in the communication device 1700 may be one or more.
  • the memory 1720 may be integrated with the processor 1710 or provided separately.
  • the device 1700 for restoring path configuration may further include a transceiver 1730, which is used for signal reception and/or transmission.
  • the processor 1710 is configured to control the transceiver 1730 to receive and/or send signals.
  • the device 1700 for restoring path configuration is used to implement operations performed by each unit in the network device in the foregoing method embodiment.
  • the processor 1710 is configured to implement processing-related operations performed by the network device processing unit (for example, the path determination unit 1510 and the identifier generation unit 1540) in the above method embodiment.
  • the network device processing unit for example, the path determination unit 1510 and the identifier generation unit 1540
  • the device 1700 for restoring path configuration is used to implement the operations performed by each unit in the node in the foregoing method embodiment.
  • the transceiver 1730 is used to implement the processing-related operations performed by the node receiving unit 1620 and the sending unit 1630 in the above method embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium, on which is stored for implementing the method executed by the sending device (for example, the pre-compensation parameter update unit 170) in the above method embodiment, or by the sending device (for example, the pre-compensation parameter update unit 170). Compensation parameter update unit 170) computer instructions for the method executed.
  • the sending device for example, the pre-compensation parameter update unit 170
  • the sending device for example, the pre-compensation parameter update unit 170
  • Compensation parameter update unit 170 computer instructions for the method executed.
  • the embodiments of the present application also provide a computer program product.
  • the computer program When the computer program is executed by a computer, the computer can implement the method executed by the network device in the foregoing method embodiment.
  • the embodiments of the present application also provide a communication system, which includes the network equipment and nodes in the above embodiments.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the term "and/or” in this application is only an association relationship that describes associated objects, which means that there can be three types of relationships, for example, A and/or B, which can mean that A alone exists, and both A and B exist. , There are three cases of B alone.
  • the character "/" in this document generally means that the associated objects before and after are in an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A At least one of, B and C can mean: A alone exists, B alone exists, C alone exists, A and B exist alone, A and C exist at the same time, C and B exist at the same time, A and B and C exist at the same time, this Seven situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供了一种恢复路径配置的方法和装置。该方法包括:确定光传输网络中承载多条业务的工作路径对应的恢复路径,通过第一标识ID将具有相同的恢复路径段的多条恢复路径绑定成一组恢复路径,该第一ID指示采用该恢复路径段对该一组恢复路径分别对应的工作路径上承载的业务进行业务恢复。本申请提供的恢复路径配置的方法可以提高业务恢复的性能。

Description

恢复路径配置的方法和装置
本申请要求于2020年3月26日提交中国国家知识产权局、申请号为202010224986.6、发明名称为“恢复路径配置的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光传输领域,并且更具体地,涉及一种恢复路径配置的方法和装置。
背景技术
随着光传输网络的发展,光传输网络的保护和恢复成为当前光传输网络设计、运行和维护等操作中需要重要关注的内容。高效灵活地保护和恢复手段成为了光传输网络(例如,自动交换光网络(automatically switched optical network,ASON))的重要特征。
其中,ASON是在信令控制下完成自动交换功能的新一代标准化的智能光传输网络。在ASON中,网络断纤后可通过通用多协议标签交换技术(generalized multi-protocol label switching,GMPLS)协议的资源预留协议流量工程(resource reservation protocol traffic engineering,RSVP-TE)自动建立端到端恢复路径,为业务提供实时重路由恢复能力。但是随着业务数量逐渐增加,用于业务重路由的报文大小会随着业务数量的增加而增加,延长传输时间,业务恢复性能会劣化,因此如何提高批量业务恢复性能成为亟待解决的问题。
发明内容
本申请提供一种恢复路径配置的方法和装置,应用于业务恢复,以期提高批量业务恢复性能。
第一方面,提供了一种恢复路径配置的方法,该恢复路径配置的方法可以由网络设备执行,或者,也可以由设置于网络设备中的芯片或电路执行,本申请对此不作限定。
示例性地,本申请中涉及的网络设备包括路径计算单元(path computation element,PCE)(也可以称为控制器)或具有路径计算能力的节点。其中,某节点具备路径计算能力,可以理解为该节点上配置有PCE控制器,或者该节点上配置有路径计算功能的单元,本申请对于该节点如何具备路径计算能力不做限定。
该恢复路径配置的方法包括:网络设备确定第一工作路径的第一恢复路径,以及第二工作路径的第二恢复路径,该第一恢复路径用于当该第一工作路径发生故障时,对该第一工作路径进行业务恢复,该第二恢复路径用于当该第二工作路径发生故障时,对该第二工作路径进行业务恢复,该第一恢复路径和该第二恢复路径具有相同的恢复路径段;网络设备生成第一标识(identify,ID),该第一ID指示采用该恢复路径段对该第一工作路径和该第二工作路径进行业务恢复。
本申请提供的恢复路径配置的方法,网络设备生成第一ID,该第一ID标识具有相同的恢复路径段的至少两条恢复路径,在该至少两条恢复路径分别对应的至少两条工作路径发生故障时,基于第一ID采用该相同的恢复路径段对至少两条工作路径进行业务恢复,从而能够提高批量业务恢复的性能。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该网络设备向该恢复路 径段的首节点发送第一配置消息,该第一配置消息携带该第一ID。
本申请提供的恢复路径配置的方法,网络设备在生成第一ID之后,可以将该第一ID通过第一配置消息发送给恢复路径段的首节点,从而后续执行业务恢复的过程中恢复路径段的首节点能够基于该第一ID激活恢复路径段,同时恢复上述的第一恢复路径和第二恢复路径,实现批量恢复的性能。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该网络设备向该恢复路径段的首节点发送第二配置消息,该第二配置消息携带该恢复路径段的路由信息。
本申请提供的恢复路径配置的方法,网络设备获知第一恢复路径和第二恢复路径具有相同的恢复路径段之后,可以将该恢复路径段的路由信息通过第二配置消息发送给恢复路径段的首节点,使得恢复路径段的首节点能够确定恢复路径段的首节点与哪些节点共同构成恢复路径段,从而后续执行业务恢复的过程中恢复路径段的首节点能够基于该恢复路径段的路由信息快速发起重路由,提高业务恢复的速率。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该网络设备向该恢复路径段的上的节点发送第三配置消息,该第三配置消息携带该第一恢复路径中该恢复路径段的通道资源和该第二恢复路径中该恢复路径段的通道资源;该第一ID指示采用该恢复路径段对该第一工作路径和该第二工作路径进行业务恢复包括:该第一ID指示采用该第一恢复路径中该恢复路径段的通道资源对该第一工作路径进行业务恢复,以及采用该第二恢复路径中该恢复路径段的通道资源对该第二工作路径进行业务恢复。
本申请提供的恢复路径配置的方法,网络设备通过第三配置消息预配置业务恢复过程中恢复路径段上的节点所需的通道资源,则当上述的第一工作路径和第二工作路径发生故障的情况下,可以基于预配置的资源快速实现业务恢复。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该网络设备向该恢复路径段的端节点发送第四配置消息,该第四配置消息携带该端节点的类型,该端节点的类型包括该恢复路径段的首节点或该恢复路径段的末节点,该恢复路径的段的首节点或该恢复路径段的末节点具有路径恢复能力。
本申请提供的恢复路径配置的方法,网络设备通过第四配置消息通知恢复路径段的端节点具体为首节点还是末节点,使得恢复路径段的端节点能够明确获知自身在该恢复路径段中的身份,从而恢复路径段的端节点能够基于自身的身份以及第一ID发起重路由实现业务的恢复。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:当该网络设备为该恢复路径段的首节点,该网络设备确定该第一工作路径和该第二工作路径分别发生故障时,该方法还包括:该网络设备向该恢复路径段的相邻下游节点发送路径建立请求消息,该路径建立请求消息携带该第一ID。
本申请提供的恢复路径配置的方法,网络设备自身为恢复路径段的首节点的场景下,网络设备可以免去上述的为恢复路径段的首节点配置相关信息的流程,在发生故障的情况下发起路径建立即可,从而节省信令开销。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:当采用该恢复路径段对该第一工作路径和该第二工作路径进行业务恢复时,该方法还包括:该网络设备接收路径建立响应消息,该路径建立响应消息指示该第一工作路径的业务恢复结果和该第二工作路径的业务恢复结果。
本申请提供的恢复路径配置的方法,网络设备可以通过路径建立响应消息获知业务恢复是否成功,完成业务恢复流程。
第二方面,提供了一种恢复路径配置的方法,该恢复路径配置的方法可以由第一节点执行,或者,也可以由设置于第一节点中的芯片或电路执行,本申请对此不作限定。
示例性地,本申请中涉及的第一节点包括上述恢复路径段的首节点、恢复路径段的中间节点或恢复路径段的末节点,为了区分实施例中将恢复路径段的首节点称为第三节点、恢复路径段的末节点称为第四节点、恢复路径段的中间节点称为第五节点。
该恢复路径配置的方法包括:第一节点接收第一配置消息,该第一配置消息携带第一标识ID,该第一ID指示采用恢复路径段对第一工作路径和第二工作路径进行业务恢复,
其中,该恢复路径段为第一恢复路径和第二恢复路径的相同恢复路径段,该第一恢复路径用于当该第一工作路径发生故障时,对该第一工作路径进行业务恢复,该第二恢复路径用于当该第二工作路径发生故障时,对该第二工作路径进行业务恢复;该第一节点保存该第一ID。
本申请提供的恢复路径配置的方法,第一节点接收并保存第一ID,从而后续执行业务恢复的过程中第一节点能够基于该第一ID激活恢复路径段,同时恢复上述的第一恢复路径和第二恢复路径,实现批量恢复的性能。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该第一节点接收来自该网络设备的第二配置消息,该第二配置消息携带该恢复路径段的路由信息。
本申请提供的恢复路径配置的方法,网络设备获知第一恢复路径和第二恢复路径具有相同的恢复路径段之后,可以将该恢复路径段的路由信息通过第二配置消息发送给第一节点,使得第一节点能够确定第一节点与哪些节点共同构成恢复路径段,从而后续执行业务恢复的过程中第一节点能够基于该恢复路径段的路由信息快速发起重路由,提高业务恢复的速率。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该第一节点接收来自该网络设备的第三配置消息,该第三配置消息携带该第一恢复路径中该恢复路径段的通道资源和该第二恢复路径中该恢复路径段的通道资源;该第一ID指示采用该恢复路径段对该第一工作路径和该第二工作路径进行业务恢复包括:该第一ID指示采用该第一恢复路径中该恢复路径段的通道资源对该第一工作路径进行业务恢复,以及采用该第二恢复路径中该恢复路径段的通道资源对该第二工作路径进行业务恢复。
本申请提供的恢复路径配置的方法,网络设备通过第三配置消息预配置业务恢复过程中恢复路径段上的节点所需的通道资源,则当上述的第一工作路径和第二工作路径发生故障的情况下,可以基于预配置的资源快速实现业务恢复。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该第一节点接收来自该网络设备的第四配置消息,该第四配置消息携带该端节点的类型,该端节点的类型包括该恢复路径段的首节点或该恢复路径段的末节点,该恢复路径的段的首节点或该恢复路径段的末节点具有路径恢复能力。
本申请提供的恢复路径配置的方法,网络设备通过第四配置消息通知恢复路径段的端节点具体为首节点还是末节点,使得恢复路径段的端节点能够明确获知自身在该恢复路径段中的身份,从而恢复路径段的端节点能够基于自身的身份以及第一ID发起重路由实现业务的恢复。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该第一节点确定该第一 工作路径和该第二工作路径分别发生故障时,该方法还包括:该第一节点向该恢复路径段的相邻下游节点发送路径建立请求消息,该路径建立请求消息携带该第一ID。
本申请提供的恢复路径配置的方法,网络设备自身为第一节点的场景下,网络设备可以免去上述的为第一节点配置相关信息的流程,在发生故障的情况下发起路径建立即可,从而节省信令开销。
结合第二方面,在第二方面的某些实现方式中,当采用该恢复路径段对该第一工作路径和该第二工作路径进行业务恢复时,该方法还包括:该第一节点向该网络设备发送路径建立响应消息,该路径建立响应消息指示该第一工作路径的业务恢复结果和该第二工作路径的业务恢复结果。
本申请提供的恢复路径配置的方法,网络设备可以通过路径建立响应消息获知业务恢复是否成功,完成业务恢复流程。
第三方面,提供一种恢复路径配置的装置,该恢复路径配置的装置包括处理器,用于实现上述第一方面描述的方法中网络设备的功能。
可选地,该恢复路径配置的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第一方面描述的方法中网络设备的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一方面描述的方法中网络设备的功能。
可选地,该恢复路径配置的装置还可以包括通信接口,该通信接口用于该恢复路径配置的装置与其它设备进行通信。当该恢复路径配置的装置为网络设备时,该收发器可以是通信接口,或,输入/输出接口。
在一种可能的设计中,该恢复路径配置的装置包括:处理器和通信接口,用于实现上述第一方面描述的方法中网络设备的功能,具体地包括:该处理器利用该通信接口与外部通信;该处理器用于运行计算机程序,使得该装置实现上述第一方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种实现方式中,该恢复路径配置的装置为芯片或芯片系统时,该通信接口可以是是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第四方面,提供一种恢复路径配置的装置,该恢复路径配置的装置包括处理器,用于实现上述第二方面描述的方法中第一节点的功能。
可选地,该恢复路径配置的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第二方面描述的方法中第一节点的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第二方面描述的方法中第一节点的功能。
可选地,该恢复路径配置的装置还可以包括通信接口,该通信接口用于该恢复路径配置的装置与其它设备进行通信。当该恢复路径配置的装置为第一节点时,该收发器可以是通信接口,或,输入/输出接口。
在一种可能的设计中,该恢复路径配置的装置包括:处理器和通信接口,用于实现上述第二方面描述的方法中第一节点的功能,具体地包括:该处理器利用该通信接口与外部通信; 该处理器用于运行计算机程序,使得该装置实现上述第二方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种实现方式中,该恢复路径配置的装置为芯片或芯片系统时,该通信接口可以是是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第五方面,提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被通信装置执行时,使得该通信装置实现第一方面以及第一方面的任一可能的实现方式中的方法。
第六方面,提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被通信装置执行时,使得该通信装置实现第二方面以及第二方面的任一可能的实现方式中的方法。
第七方面,提供一种包含指令的计算机程序产品,该指令被计算机执行时使得通信装置实现第一方面以及第一方面的任一可能的实现方式中的方法。
第八方面,提供一种包含指令的计算机程序产品,该指令被计算机执行时使得通信装置实现第二方面以及第二方面的任一可能的实现方式中的方法。
第九方面,提供了一种通信系统,包括第三方面所示的恢复路径配置的装置和第四方面所示的恢复路径配置的装置。
附图说明
图1是ASON的示意图。
图2是一种业务恢复的示意图。
图3是另一种业务恢复的示意图。
图4中(a)是本申请提供的恢复路径配置的方法一种示意性流程图,图4中(b)是本申请提供的恢复路径配置的方法够应用的ASON中的节点配置示意图。
图5是本申请实施例提供的一种第一ID消息格式的示意图。
图6是本申请实施例提供的一种恢复路径段的路由信息格式的示意图。
图7是本申请实施例提供的一种第三配置消息的消息格式示意图。
图8是本申请实施例提供的一种第五配置消息或第六配置消息的消息格式的示意图。
图9是本申请实施例提供的恢复路径配置的方法能够应用的一种场景图。
图10是本申请实施例提供的恢复路径配置的方法能够应用的另一种场景图。
图11是本申请实施例提供的恢复路径配置的方法能够应用的又一种场景图。
图12是本申请实施例提供的恢复路径配置的方法能够应用的又一种场景图。
图13是本申请实施例提供的恢复路径配置的方法能够应用的又一种场景图。
图14是本申请实施例提供的恢复路径配置的方法能够应用的又一种场景图。
图15是本申请实施例的恢复路径配置的装置1500示意性框图。
图16是本申请实施例的恢复路径配置的装置1600示意性框图。
图17是本申请实施例的恢复路径配置的装置1700示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括。例如“一个或多个”这种 表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例的技术方案可以应用于ASON中。下面首先结合图1说明ASON,图1是本申请实施例提供的一种ASON的示意图。
ASON中可以包括多个ASON节点(如图1中所示的节点#1、节点#2、节点#3、节点#4),每个ASON节点通过开放最短路径优先(open shortest path first,OSPF)协议获取ASON中其它节点的信息,其中,节点的信息包括节点标识和/或链路标识等。
例如,图1中所示的节点#1通过OSPF协议分别获取图1中所示的节点#2、节点#3和节点#4的节点标识和/或链路标识等信息;同理,图1中所示的节点#2通过OSPF协议分别获取图1中所示的节点#1、节点#3和节点#4的节点标识和/或链路标识等信息、图1中所示的节点#3通过OSPF协议分别获取图1中所示的节点#1、节点#2和节点#4的节点标识和/或链路标识等信息、图1中所示的节点#4通过OSPF协议分别获取图1中所示的节点#1、节点#2和节点#3的节点标识和/或链路标识等信息。
ASON中的每个ASON节点获取ASON中其它节点的信息之后,可以通过基于约束的最短路径优先算法(constrained shortest path first,CSPF)确定出端到端业务的路径,最后再通过RSVP-TE协议完成端到端业务路径的建立。
为了便于理解,简单介绍上述ASON中涉及的几个基本概念:
1、节点。
用于表示ASON中的一个硬件实体。例如,节点可以理解为一个传送网设备。图1中所示的ASON中包括四个节点,分别为节点#1、节点#2、节点#3、节点#4。
应理解,图1所示的ASON只是一种举例,对本申请的保护范围不构成任何的限定。ASON中包括的节点个数可以为4个节点以上,或者ASON中包括的节点个数还可以为大于或者等于2个。
2、接口。
节点上具有发送和/或接收信息的物理端口,本申请中称节点上的物理端口为接口,其中,节点通过接口发送和/或接收的信息可以包括网络协议消息、流量数据等。
图1所示的ASON中有8个接口:分别为接口#1、接口#2、接口#3、接口#4、接口#5、接口#6、接口#7和接口#8,其中,接口#1和接口#8为节点#1的物理端口、接口#2和接口#3为节点#2的物理端口、接口#4和接口#5为节点#3的物理端口、接口#6和接口#7为节点#4的物理端口。
需要说明的是,图1中所示的各个节点的物理端口只是举例,对本申请的保护范围不构成任何的限定,例如,图1中所示的节点#1可以只具备一个物理端口,同时完成与节点#2和节点#4之间的信息的接收和/或发送功能。
3、链路。
本申请实施例中,相邻的两个节点之间的连接称为链路。一个链路可以用链路(节点-接口,节点-接口)表示,相邻的两个节点之间是否存在链路可以用于表明网络协议消息和/或流量数据等信息是否能够在该两个相邻的节点之间转发,例如,若相邻的两个节点之间存在链路,则网络协议消息和/或流量数据等信息能够在该两个相邻的节点之间转发;同理,若相邻的两个节点之间不存在链路,则网络协议消息和/或流量数据等信息不能够在该两个相邻的节点之间转发。
例如,链路(节点#1-接口#1,节点#2-接口#2)表示网络协议消息和/或流量数据等信息能够从节点#1的接口#1发出后,在节点#2和接口#2上被收到。
图1所示的ASON中有8条链路:链路1-2(节点#1-接口#1->节点#2-接口#1)、链路1-4(节点#1-接口#8->节点#4-接口#7)、链路2-1(节点#2-接口#2->节点#1-接口#1)、链路2-3(节点#2-接口#3->节点#3-接口#4)、链路3-2(节点#3-接口#4->节点#2-接口#3)、链路3-4(节点#3-接口#5->节点#4-接口#6)、链路4-3(节点#4-接口#6->节点#3-接口#5)、链路4-1(节点#4-接口#7->节点#1-接口#8)。
4、业务路径。
业务路径可以包括工作路径、恢复路径、保护路径等,用于承载业务的数据传输。业务路径为首节点到末节点之间的路由,首节点和末节点之间可能存在一个或多个节点。其中,业务路径的首节点表示连接中数据的发送节点、业务路径的末节点表示连接中数据的接收节点。一个业务路径可以用业务(首节点-末节点)表示,首节点和末节点之间是否存在业务路径可以用于表明数据是否能够从首节点发送至末节点。若首节点和末节点之间存在业务路径,则数据能够从首节点发送至末节点;同理,若首节点和末节点之间不存在业务路径,则数据不能够从首节点发送至末节点。业务路径形成的首节点到末节点之间的连接或业务路径上承载的传输数据可以称为业务。
例如,图1所示的ASON中有业务1-3,表示节点#1到节点#3之间有一条可连接的数据通道,用于将数据从节点#1传输至节点#3,该数据通道可以称之为路径,即数据传输的路径。
由于业务路径表示首节点到末节点之间的路由,也可以称之为端到端业务路径,其中,“端到端”表示首节点到末节点。
5、RSVP-TE协议。
ASON通过RSVP-TE协议可提供业务路径的端到端建立、查询、删除、属性修改和恢复功能,其中,端到端可以理解为一个节点到另外一个节点。
业务路径的端到端建立包括:网管下发业务路径创建命令到首节点,然后首节点实现路由计算并通过RSVP-TE信令协议发起业务路径配置过程,从首节点到下游节点逐点建立交叉连接,从而完成业务路径的端到端建立。
业务路径的端到端建立充分利用了各个节点的路由和信令功能,缩短了业务路径配置时间。如在图1中,通过RSVP-TE信令协议发起业务1-3建立具体步骤包括:
网管下发业务1-3创建命令到首节点#1,首节点#1通过CSPF确定出业务1-3的业务路径为:节点#1-节点#2-节点#3,首节点#1沿着确定出的业务路径通过链路1-2(节点#1-接口#1->节点#2-接口#2)向相邻的节点#2发送路径(Path)消息,具体地节点#1的接口#1向中间节点#2的接口#2发送该Path消息(该Path消息为RSVP-TE协议报文的一种);
节点#2收到Path消息后,解出节点#2交叉配置关联信息并建立反向交叉连接,再由中间节点#2通过链路2-3(节点#2-接口#3->节点#3-接口#4)向相邻的节点#3发送Path消息, 具体地节点#2的接口#3向末节点#3的接口#4发送Path消息,同理在末节点#3解出对应交叉配置消息并建立本站反向交叉连接。
末节点#3经由中间节点#2向首节点#1方向发送预留请求(reserved,Resv)消息(该Resv消息RSVP-TE协议报文的一种),在沿途各节点建立正向交叉连接;同样过程首节点#1经由中间节点#2向末节点#3方向发送Path消息,沿途打开对业务路径的告警监视,末节点#3经由中间节点#2向首节点#1方向发送Resv消息进行确认。
上述的业务路径的端到端建立整个过程由RSVP-TE信令自动完成业务1-3的端到端配置建立。
应理解,图1只是举例说明本申请能够应用的场景,对本申请的保护范围不构成任何的限定,本申请实施例提供的恢复路径配置的方法还可以应用在其他的场景下。例如,其他的光传输网络。
图1所示的ASON中如果发生网络断纤,ASON中的节点可以通过RSVP-TE协议实现业务路径恢复。下面结合图2和图3简单介绍当图1所示的ASON中发生断纤的情况下如何实现业务路径恢复。
图2是一种业务路径恢复的示意图,如图2所示节点可以通过RSVP-TE协议实现业务路径的端到端自动恢复。
从图2中可以看出,业务1-3通过RSVP-TE自动建立业务1-3的原始业务路径为:节点#1-节点#2-节点#3,其中,原始业务路径也可以称为工作路径。若节点#1和节点#2之间的光纤中断,通过RSVP-TE协议实现端到端业务路径自动恢复包括:
节点#2感知到故障告警信息,并根据故障告警信息中携带的端口告警信息匹配查找到受影响的业务1-3,然后通过RSVP通告(Notify)消息将故障信息通告到受影响的业务1-3的首节点(节点#1)。
需要说明的是,本申请实施例中对于节点#2如何感知到故障告警信息并不限定,可以是节点#1和节点#2之间的光纤中断(如,节点#1到节点#2方向的光纤中断、节点#2到节点#1方向的光纤未发生中断)之后,节点#2的底层感知到光纤中断(如,感知到信息传输的中断)。另外,本申请实施例中对于节点#2如何将RSVP通告消息传输到节点#1不限定,可以是通过节点#2到节点#1方向的光纤,或者,当节点#2到节点#1方向的光纤也发生的中断的情况下,通过其他的路径将RSVP Notify消息传输到节点#1。
节点#1收到RSVP Notify消息之后,通过故障信息获知受影响的业务1-3,自动确定出能够继续实现业务1-3的恢复路径(如图2中所示的节点#1-节点#4-节点#3)。然后ASON中的节点再通过RSVP-TE信令(Path和Resv消息)沿着业务恢复路径(节点#1-节点#4-节点#3)逐跳建立交叉连接,自动完成端到端恢复路径的建立,恢复路径建立完成后,业务1-3自动恢复。
图3是另一种业务路径恢复的示意图,如图3所示ASON中的节点可以通过RSVP-TE协议实现业务路径的区段恢复。
从图3中可以看出,业务1-3通过RSVP-TE信令自动建立业务1-3的原始业务路径(如图3中所示的节点#1-节点#2-节点#3),其中,原始业务路径也可以称为工作路径。图3中的节点#2可以称为分叉节点、节点#3可以称为合并节点。若节点#2和节点#3之间的光纤中断,通过RSVP-TE协议实现业务1-3的区段恢复包括:
节点#2和/或节点#3感知到故障告警信息(例如,节点#2感知到故障告警信息)。节点#2 根据故障告警信息中的端口告警信息匹配查找到受影响的业务1-3,并查到到对应区段恢复路由信息为如图3所示的节点#2-节点#4-节点#3。
然后再通过发起首节点为节点#2,末节点为节点#3的RSVP-TE信令(Path和Resv消息)沿着区段恢复路径节点#2-节点#4-节点#3逐跳建立恢复交叉连接,自动完成区段恢复路径的建立,区段恢复路径建立完成后,业务1-3自动恢复,并通告业务1-3的首节点(节点#1)业务1-3的端到端传输路径已切换(由节点#1-节点#2-节点#3切换为节点#1-节点#2-节点#4-节点#3)。
上述图2和图3所示的业务恢复方法,当ASON中的业务数量增加时,重路由报文大小会随着业务数量的增加而增加,延长传输性能,业务路径恢复的性能也会逐步劣化。例如,图2中所述的ASON中如果40条业务路径发生断纤需要40倍图2中所述的重路由报文。
需要说明的是,业务路径恢复也可以理解为业务恢复,因为业务路径恢复之后,业务路径上承载的业务也能相应的恢复传输。
上文结合图1简单介绍了本申请实施例提供的恢复路径配置的方法能够应用的场景,以及介绍了本申请实施例中可能涉及到的基本概念,下面将结合附图详细说明本申请实施例提供的恢复路径配置的方法。
需要说明的是,本申请实施例提供的恢复路径配置的方法能够应用于如图1中所示的ASON中只是举例,对本申请的保护范围不构成任何的限定。本申请提供的恢复路径配置的方法还可以用于其他光传输网络,例如,GMPLS中。应用在除ASON之外的其他光传输网络中的情况下,网络中的节点执行的步骤与应用在ASON中的情况下ASON中的节点执行的步骤类似,所以为了便于描述本申请实施例中主要以该恢复路径配置的方法应用自ASON中为例进行说明,对于应用在其他的场景下不进行赘述。
还应理解,下文中示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是设备,或者,是核心/城域设备中能够执行程序的功能模块。
为了提高批量业务恢复性能,本申请提供一种恢复路径配置的方法和装置。通过将具有相同恢复路径的业务组成业务组,针对业务组实现业务的恢复,从而提高批量业务恢复性能。
为了便于理解本申请实施例,做出以下几点说明。
第一,在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定包括有A。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种。例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。
第二,在本申请中第一、第二以及各种数字编号(例如,“#1”、“#2”)仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的节点、区分不同的业务 或区分不同的业务组。
第三,在本申请中,“预设的”可包括由网络设备信令指示,或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括节点或网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第四,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第五,本申请实施例中涉及的“协议”可以是指光传输领域的标准协议,例如,可以包括ASON中涉及的协议、GMPLS中涉及的协议以及应用于未来的光传输领域中的相关协议,本申请对此不做限定。
图4(a)是本申请提供的恢复路径配置的方法一种示意性流程图。可以应用于ASON中,该ASON中包括多个节点,如图4(b)所示,图4(b)用于表示本申请实施例能够应用的ASON中的节点配置示意图。
该ASON中包括的多个节点都具备ASON功能,从图4(b)可以看出每个节点都部署捆绑映射(bundle mapping,BM)处理单元和资源预留协议(resource reservation protocol,RSVP)控制单元。
该ASON中包括用于路径计算的网络设备。示例性地,该网络设备包括PCE控制器,即该ASON中设置有至少一个PCE控制器。或者,示例性地,该网络设备包括节点,该节点具备路径计算功能。例如,该ASON中至少一个节点部署有PCE控制器;还例如,该ASON中至少一个节点部署有路径计算功能模块。
本申请实施例中,网络设备用于假设ASON中的承载多条业务的工作路径发生故障的时候,确定承载该多条业务的工作路径对应的恢复路径,并将具有相同的恢复路径段的恢复路径标记为一组恢复路径,针对该一组恢复路径网络设备生成第一ID,第一ID指示采用恢复路径段对该一组恢复路径分别对应的工作路径进行业务恢复。
本申请实施例中涉及的ID可以理解为标识信息,用于标识一组恢复路径,本申请实施例中还可以称该标识信息索引(index)或指示信息,为了便于描述,下文中称之为ID。
另外,需要说明的是恢复路径与工作路径相对应指的是当该工作路径发生故障的情况下,该恢复路径用于对该工作路径上承载的业务进行业务恢复,也可以理解为恢复路径与工作路径上承载的业务相同,从这个角度理解上述的标识为一组恢复路径的ID。进一步地还可以理解上述标识为一组恢复路径分别对应的工作路径上承载的业务的ID,因此本申请实施例中该ID也可以称为业务组ID,用于标识一组业务。
下文中涉及的“工作路径相对应的恢复路径”表示该恢复路径对该工作路径上承载的业务进行业务恢复、“业务对应的恢复路径”表示该恢复路径能够恢复的业务。
BM处理单元进行ID的管理,例如,增加、删除或者更新等。
RSVP控制单元能够管理单条业务所属的业务组ID的建立、删除或者更新;在出现故障后,确定受影响的业务组ID并发起链路建立。
应理解,图4(b)只是为了便于理解本申请而提供的一种示意图,对本申请的保护范围不构成任何的限定,上述的各种单元的名称也只是举例,其他能够实现相同功能的单元或模 块可以作为替代品,替代图4(b)中所示的单元。
本申请实施例中以两条业务(第一业务和第二业务)组成第一业务组为例进行说明,本申请实施例中将具有路径计算功能的节点和PCE控制器统称为网络设备,第一业务承载于第一工作路径,第一工作路径的首节点称为第一首节点,第二业务承载于第二工作路径,第二工作路径的首节点称为第二首节点。
需要说明的是,第一工作路径和第二工作路径可以为同一条工作路径,即该工作路径上承载有多条业务。另外,第一工作路径对应的第一恢复路径和第二工作路径对应的第二恢复路径也可以为同一条恢复路径,该恢复路径可以恢复某条工作路径上承载的多条业务。
图4(a)该恢复路径配置的方法至少包括以下步骤中的全部或者部分步骤:
S410,网络设备确定恢复路径。
具体地,网络设备确定第一工作路径的第一恢复路径,以及第二工作路径的第二恢复路径,所述第一恢复路径用于当所述第一工作路径发生故障时,对所述第一工作路径进行业务恢复,所述第二恢复路径用于当所述第二工作路径发生故障时,对所述第二工作路径进行业务恢复,所述第一恢复路径和所述第二恢复路径具有相同的恢复路径段。
本申请实施例中,网络设备能够获取网络中的业务和拓扑,基于故障链路同恢复路径策略确定承载业务的工作路径对应的恢复路径,将具有相同的恢复路径段的多条业务通过业务组ID捆绑关联,该业务组ID标识该多条业务对应的恢复路径具有相同的恢复路径段。
其中,故障链路同恢复路径策略指的是网络设备在假设网络中的某个链路故障的前提下,确定受该故障链路影响的工作路径分别对应的恢复路径时,尽可能使得多条恢复路径具有相同的恢复路径段。
本申请实施例中涉及的相同的恢复路径段即为第一恢复路径和第二恢复路径的公共部分路径段或重合部分路径段,也可以理解为重合恢复路径段、共享恢复路径段等,下文中简称为恢复路径段。另外,第一恢复路径和第二恢复路径具有相同的恢复路径段,该相同的恢复路径段可以为第一恢复路径或第二恢复路径的部分路径段,也可以为第一恢复路径或第二恢复路径的全部路径段。
本申请实施例中对于工作路径发生故障的具体原因不做限定。上述的第一工作路径发生故障可以是第一工作路径中的一条或者多条链路发生故障,或者第一工作路径上的节点发生故障,或者第一工作路径上的节点的接口发生故障等;同理,上述的第二工作路径发生故障包括第二工作路径中的一条或者多条链路发生故障,或者第二工作路径上的节点发生故障,或者第二工作路径上的节点的接口发生故障等。
作为一种可能的实现方式,上述第一工作路径上发生故障的链路与第二工作路径上发生故障的链路相同。例如,第一工作路径和第二工作路径具有相同的第一链路,当该第一链路发生故障的情况下,第一工作路径和第二工作路径均发生故障,本申请实施例中称发生故障的第一链路为第一故障链路。
示例性地,第一链路发生故障可以是第一链路上的两个节点中的至少一个节点发生故障,还可以是第一链路上的两个节点中的至少一个节点的接口发生故障,还可以是第一链路上的两个节点之间的光纤发生故障(如,断纤)。
进一步地,网络设备确定上述的具有相同的恢复路径段的第一恢复路径和第二恢复路径之后,网络设备生成第一ID,第一ID指示采用恢复路径段对第一工作路径和第二工作路径进行业务恢复。第一ID可以指示恢复路径段上的多条业务同时进行业务恢复,或者可以指示 恢复路径段上的多条恢复路径同时进行业务恢复,相当于将多条业务或多条恢复路径的消息压缩为一条消息,可以提高业务恢复的效率。
即图4所示的方法流程还包括S420,生成第一ID。
该第一ID指示采用所述恢复路径段对所述第一工作路径和所述第二工作路径进行业务恢复。
应理解,第一恢复路径用于恢复第一工作路径上承载的第一业务、第二恢复路径用于恢复第二工作路径上承载的第二业务,可以理解为第一ID用于标识第一业务和第二业务组成的业务组,本申请实施例中ID可以称为业务组ID。
示例性地,上述的第一工作路径可以称为承载第一业务的原始路径、第二工作路径可以称为承载第二业务的原始路径。第一业务可以包括一条或多条业务,第二业务也可以包括一条或多条业务。
网络设备可以基于承载网络中每条业务的工作路径中的不同故障链路,确定用于某条业务恢复的至少一条恢复路径。
作为一种可能的实现方式,若网络中的某条链路发生故障,该条链路影响多条业务传输,且分别承载该多条业务的工作路径对应的恢复路径具有相同的恢复路径段,网络设备可以将该多条业务组成业务组,生成该业务组的ID。
作为另一种可能的实现方式,若网络中的多条链路发生故障,该多条链路分别影响多条业务传输,且分别承载该多条业务的工作路径对应的恢复路径具有相同的恢复路径段,网络设备可以将该多条业务组成业务组,并生成该业务组的ID。
需要说明的是,在网络中多条链路同时,或间隔较短时间发生故障的可能性较小,一般是某条链路故障时,同时影响到多条业务,所以本申请实施例中主要涉及当网络中的某条链路发生故障,影响多条业务传输的场景。但是并不限定本申请提供的恢复路径配置的方法不能应用于网络中的多条链路发生故障的场景,不同应用场景中的应用流程类似,为了便于描述,下文中主要以网络中的某条链路发生故障(如,第一故障链路)影响多条业务为例进行说明。
网络设备生成第一ID之后,需要将该第一ID通知到恢复路径段的首节点(如图4(a)所示的第三节点),则图4(a)所示的方法流程还包括S430,网络设备向第三节点发送第一配置消息,所述第一配置消息携带所述第一ID。
示例性地,第一配置消息可以为路径计算单元通信协议(path computation element communication protocol,PCEP)消息,或者,第一配置消息可以为与PCEP具有相同功能的协议消息,或者,第一配置消息可以通过网络设备与恢复路径段的首节点之间原有信令中新增的字段(如,扩展PCEP字段)实现。
进一步地,网络设备还可以将恢复路径段的路由信息通知到恢复路径段的首节点(如图4(a)所示的第三节点),则图4(a)所示的方法流程还包括S431,网络设备向第三节点发送第二配置消息,所述第二配置消息携带所述恢复路径段的路由信息。
第二配置消息可以为PCEP消息,或者,第二配置消息可以为与PCEP具有相同功能的协议消息,或者,第二配置消息可以通过网络设备与恢复路径段的首节点之间原有信令中新增的字段(如,扩展PCEP字段)实现。
需要说明的是,上述的第一配置消息和第二配置消息可以为同一条消息,或者,第一配置消息和第二配置消息可以为两条不同的消息,本申请对此不限定。
本申请实施例中,还可以将上述的第一ID通知到第一工作路径的第一首节点和第二工作路径的第二首节点,具体地基于上述网络设备在网络中的身份,分为以下几种方式:
方式一:网络设备为PCE
网络设备为网络中设置的PCE控制器,并且该PCE控制器为独立于上述的工作路径的首节点以及恢复路径段的首末节点部署的设备。
则在方式一中,在网络设备生成上述的第一ID之后,需要将该第一ID通知到第一工作路径和第二工作路径的首节点,则图4(a)所示的方法流程还包括S432,网络设备向第一首节点发送第一消息和S433,PCE节点向第二首节点发送第二消息。
其中,第一消息和第二消息可以理解为PCEP消息,或者与PCEP消息实现类似功能的协议消息,还可以是PCE控制器与节点之间已有的某条信令。
作为示例而非限定,上述的第一首节点和第二首节点可以为同一个节点,即上述的第一工作路径和第二工作路径的首节点相同,则第一消息和第二消息可以为发送给网络中的同一个节点的同一条消息。
上述第一消息和第二消息中至少需要包括上述的第一ID,使得第一工作路径和第二工作路径的首节点获知上述的第一ID。
进一步地,该第一消息中还可以包括第一业务的标识、第一故障链路的标识和第一恢复路径的路由信息中的至少一项;该第二消息中还可以包括第二业务的标识、第一故障链路的标识和第二恢复路径的路由信息中的至少一项。其中,第一业务的标识可以为第一业务的标签交换路径(label switch path,LSP)ID,第二业务的标识可以为第二业务的LSP ID。本申请实施例中对于故障链路的标识不做限定,可以参考现有光传输领域中故障链路的标识方案,例如,故障链路为第三节点和第四节点之间的链路,则故障链路的标识可以为故障链路第三节点-第四节点。
上述的第一消息可以为一条消息也可以为多条消息的统称,即上述的第一ID、第一业务的标识、第一故障链路的标识和第一恢复路径的路由信息可以通过一条消息发送给第一首节点,也可以通过多条消息发送给第一首节点;同理,上述的第二消息可以为一条消息也可以为多条消息的统称,即上述的第一ID、第二业务的标识、第一故障链路的标识和第二恢复路径的路由信息可以通过一条消息发送给第二首节点,也可以通过多条消息发送给第二首节点。
需要说明的是,当上述的第一消息中未携带第一业务的标识的情况下,说明第一首节点能够确定自身为承载第一业务的第一工作路径的首节点。例如,第一首节点作为一条工作路径的首节点,则第一首节点收到第一消息之后即使该第一消息中未携带第一业务的标识,第一首节点仍然能够获知第一工作路径上承载的第一业务。若第一首节点可以作为多条工作路径的首节点,且多条工作路径承载的业务不同,则第一消息需要携带第一业务的标识。
当上述的第一消息中未携带第一故障链路的标识,说明第一首节点能够确定发生故障的链路为第一链路,例如第一首节点获知第一工作路径和第一恢复路径,通过比较第一工作路径和第一恢复路径上的节点变化,能够推断出发生故障的第一链路。
当上述的第一消息中未携带第一恢复路径的路由信息,说明第一首节点能够确定第一恢复路径,例如第一首节点获知第一工作路径和第一故障链路,本地计算得到第一恢复路径。
上述第二消息中未携带第二业务的标识、第一故障链路的标识或第二恢复路径的路由信息与第一消息未携带第一业务的标识、第一故障链路的标识或第一恢复路径的路由信息类似,这里不再赘述。
进一步地,上述的第一消息和/或第二消息中还可以携带恢复路径段的路由信息,以使得第一首节点和/或第二首节点获知第一ID指示采用哪段恢复路径段对第一工作路径和第二工作路径进行业务恢复。
本申请实施例中第一ID和恢复路径段的路由信息可以称为扩展TLV信息。TLV是一种可变的格式,意为:类型(Type)、长度(Length)、值(Value),其中,Type字段是关于标签和编码格式的信息;Length字段是定义数值的长度;Value字段表示实际的数值。Type和Length的长度一般是固定,例如为2或4个字节。
本申请中涉及的第一消息和第二消息的报文格式可以为如下所示:
<PCUpd Message>::=<Message Common Header>
<SRP对象>
<LSP对象>
新增<业务组ID>TLV“业务对象属性,新增本业务捆绑映射的业务组ID的TLV信息,字节长度为4字节”
<ERO对象>
新增<区段恢复路径>TLV“可选信息:业务组ID对应的区段恢复路径TLV信息”
业务组ID的消息格式如图5所示,图5是本申请实施例提供的一种第一ID消息格式的示意图,图5中包括的字段含义和取值如下表1所示。
表1
字段名 含义 取值
Type TLV类型,新增业务组ID类型 一个16bit位数值
Length TLV长度,以字节为单位。 一个16bit位的数值
Service Group ID 业务组ID 一个32bit位数值
重合恢复路径的信息格式如图6所示,图6是本申请实施例提供的一种恢复路径段的路由信息格式的示意图,图6中包括的字段含义和取值如下表2所示。
表2
Figure PCTCN2021078633-appb-000001
网络设备将上述的第一ID通知到第一首节点和第二首节点之后,方式一中为了后续执行业务恢复的过程中能够快速实现业务的恢复,可以为恢复路径段上的节点预配置资源,从而当上述的第一工作路径和第二工作路径发生故障的情况下,恢复路径段上的节点可以基于预配置的资源快速实现业务恢复。
方式一中恢复路径段上的节点资源预配置包括以下两种可能,可以任选一种可能的方式实现:
可能一、网络设备为恢复路径段上的节点预配置资源。
在可能一中,图4(a)所述的方法流程还包括S440,网络设备向恢复路径段上的节点(如 图4(a)所示的第三节点、第四节点和第五节点)发送第三配置消息,所述第三配置消息携带第一恢复路径中所述恢复路径段的通道资源和所述第二恢复路径中所述恢复路径段的通道资源。
示例性地,该第三配置消息可以为PCEP消息,或者,第三配置消息可以为与PCEP具有相同功能的协议消息,或者,第三配置消息可以通过网络设备沿恢复路径段传输的信令中新增的字段(如,扩展PCEP字段)实现。
进一步地,该第三配置消息中还可以包括第一业务的标识、第二业务的标识、恢复路径段的路由信息和第一ID中的至少一项。
可以理解,当第三配置消息中包括有第一ID的情况下,网络设备可以无需向恢复路径段的首节点发送上述的第一配置消息;同理,当第三配置消息中包括有恢复路径段的路由信息的情况下,网络设备可以无需向恢复路径段的首节点发送上述的第二配置消息。第三配置消息还可以携带上述的第一ID和恢复路径段的路由信息,则在该情况下可以理解为上述的第一配置消息和第二配置消息无需发送,或者还可以理解为第一配置消息、第二配置消息和第三配置消息为同一条消息(如,第三配置消息中携带第一ID、恢复路径段的路由信息和第一恢复路径中所述恢复路径段的通道资源和所述第二恢复路径中所述恢复路径段的通道资源)。
需要说明的是,上述的第三节点为恢复路径段上的首节点,第四节点为恢复路径段上的末节点,第五节点为恢复路径段上的中间节点,该第五节点可以为多个,即恢复路径段上的中间节点可以为多个。
第三配置消息报文格式可以为如下所示:
<PCUpd Message>::=<Message Common Header>
<SRP对象>
<LSP对象>“扩展flag操作类型新增LSP预配置类型”
新增<业务组ID>TLV“业务对象属性,新增本业务捆绑映射的业务组ID的TLV信息,字节长度为4字节”
<ERO对象>
第一ID的消息格式如图5所示,图5中包括的字段含义和取值如上述的表1所示这里不再赘述。
第三配置消息格式如图7所示。图7是本申请实施例提供的一种第三配置消息格式示意图,图7中包括的字段含义和取值如下表3所示。
表3
Figure PCTCN2021078633-appb-000002
可能二、工作路径的首节点为恢复路径段上的节点预配置资源。第一首节点和第二首节点为恢复路径段上的节点预配置资源,则在可能二中,图4(a)所述的方法流程还包括S441,第一首节点向恢复路径段上的节点(如图4(a)所示的第三节点、第四节点和第五节点)发送第五配置消息,第五配置消息携带第一恢复路径中所述恢复路径段的通道资源。
示例性地,该第五配置消息中还可以包括第一业务的标识和/或第一ID。
可以理解,当第五配置消息中包括有第一ID的情况下,网络设备可以无需向恢复路径段的首节点发送上述的第一配置消息。
示例性地,该第五配置消息可以是RSVP Path消息、与RSVP Path消息功能类似的消息、或第一首节点沿第一恢复路径传输的其他信令。
需要说明的是,上述的第一首节点还可以向第一恢复路径上的其他节点(除恢复路径段上的节点之外的节点)发送上述的第五配置消息,由于本申请实施例中主要涉及到恢复路径段上的节点在第一链路发生故障的情况下的执行步骤,对于第一恢复路径上的其他节点接收到的第五配置消息中包括的具体内容不进行赘述。
同理,在方可能下图4(a)所述的方法流程还包括S442,第二首节点向恢复路径段上的节点(如图4(a)所示的第三节点、第四节点和第五节点)发送第六配置消息,第六配置消息携带第二恢复路径中所述恢复路径段的通道资源。
示例性地,该第六配置消息中还可以包括第二业务的标识和/或第一ID。
可以理解,当第六配置消息中包括有第一ID的情况下,网络设备可以无需向恢复路径段的首节点发送上述的第一配置消息。
示例性地,该第六配置消息可以是RSVP Path消息、与RSVP Path消息功能类似的消息、或第二首节点沿第二恢复路径传输的其他信令。
需要说明的是,上述的第二首节点还可以向第二恢复路径上的其他节点(除恢复路径段上的节点之外的节点)发送上述的第六配置消息,由于本申请实施例中主要涉及到恢复路径段上的节点在第一链路发生故障的情况下的执行步骤,对于第二恢复路径上的其他节点接收到的第六配置消息中包括的具体内容不进行赘述。
第五配置消息或第六配置消息报文格式具体如下所示:
RSVP<path Message>::=
<Common Header>
<Message ID>
新增<业务组ID>TLV“业务对象属性,新增本业务捆绑映射的业务组ID的TLV信息,字节长度为4字节”
<SESSION>对象
Figure PCTCN2021078633-appb-000003
<LABEL REQUEST>对象
<EXPLICIT_ROUTE>对象
<sender descriptor>
其中<sender descriptor>::=
<SENDER_TEMPLATE>
<SENDER TSPEC>
<RECORD ROUTE>…
第一ID的消息格式如图5所示,图5中包括的字段含义和取值如上述的表1所示这里不再赘述。
第五配置消息或第六配置消息格式如图8所示,通过扩展HOP类型实现。图8是本申请 实施例提供的一种第五配置消息或第六配置消息的消息格式的示意图,图8中包括的字段含义和取值如下表4所示。
表4
Figure PCTCN2021078633-appb-000004
本申请提供的恢复路径配置的方法还可以为恢复路径段上的首节点和末节点配置路径恢复能力。
需要说明的是,本申请实施例中对于为恢复路径段上的首节点和末节点配置路径恢复能力和为恢复路径段上的节点预配置资源之间的先后关系不做限定。例如,可以是先为恢复路径段上的首节点和末节点配置路径恢复能力,然后再为恢复路径段上的节点预配置资源;还例如,可以是先为恢复路径段上的节点预配置资源,然后再为恢复路径段上的首节点和末节点配置路径恢复能力;还例如,可以同时为恢复路径段上的节点预配置资源和为恢复路径段上的首节点和末节点配置路径恢复能力。
具体地,在方式一中本申请实施例中为恢复路径段上的首节点和末节点配置恢复能力包括以下两种可能,可以任选一种可能的方式实现:
可能一、网络设备为恢复路径段上的首节点和末节点配置路径恢复能力,则在方式一中,图4(a)所述的方法流程还包括S450,网络设备向恢复路径段的端节点(如图4(a)所示的第三节点和第四节点)发送第四配置消息,所述第四配置消息携带所述端节点的类型,该端节点的类型包括所述恢复路径段的首节点和所述恢复路径段的末节点,该恢复路径的段的首节点或该恢复路径段的末节点具有路径恢复能力。
其中,端节点类型能够用于确定端节点具备具备路径恢复能力。例如,恢复路径段的首节点接收到第四配置消息之后,基于自身的端节点类型为恢复路径段的首节点能够确定自身具备路径恢复能力;还例如,恢复路径段的末节点接收到第四配置消息之后,基于自身的端节点类型为恢复路径段的末节点能够确定自身具备路径恢复能力。
示例性地,该第四配置消息可以为PCEP消息,或者,第四配置消息可以为与PCEP具有相同功能的协议消息,或者,第四配置消息可以通过网络设备沿恢复路径段传输的信令中新增的字段(如,扩展PCEP字段)实现。
进一步地,该第四配置消息中还可以包括第一故障链路的标识、恢复路径段的路由信息、第一业务的标识、第二业务的标识和第一ID中的至少一项。
当该第四配置消息中包括第一故障链路的标识和恢复路径段的路由信息的情况下,第三节点接收到上述的第四配置消息之后,可以基于自身的端节点类型保存第一故障链路的标识、 恢复路径段的路由信息、指示自身具备路径恢复能力的标识,其中,指示自身具备路径恢复能力的标识可以为恢复路径段的首节点的标识或其他的字段;
同理,第四节点接收到上述的第四配置消息之后,可以基于自身的端节点类型保存第一故障链路的标识、恢复路径段的路由信息、指示自身具备路径恢复能力的标识,其中,指示自身具备路径恢复能力的标识可以为恢复路径段的末节点的标识或其他的字段。
上述的第三配置消息和第四配置消息可以为同一条消息,或者,第三配置消息和第四配置消息可以为两条不同的消息,本申请对此不限定。
示例性地,第一故障链路所在的节点不具备业务恢复能力的情况下,网络设备还可以向第一故障链路所在的节点发送该恢复路径段的首节点的标识(如,第三节点的标识),告知该第一故障链路所在的节点具备路径恢复能力的恢复路径段的首节点为哪一个节点。
示例性地,可以无需将恢复路径段的首节点的标识通知到第一故障链路所在的节点,当第一故障链路发生故障的情况下,第一故障链路所在的节点获知自身无路径恢复能力时,可以将故障通告发送给第一故障链路所在的节点上游的节点(如,单跳(hop)传输的方式),直至将该故障通告传输到具备路径恢复能力的恢复路径段的首节点。
可能二、第一首节点和第二首节点为恢复路径段上的首节点和末节点配置恢复能力,则在可能二中,图4所述的方法流程还包括S451,第一首节点向恢复路径段的端节点(如图4(a)所示的第三节点和第四节点)发送第七配置消息,所述第七配置消息携带所述端节点的类型,该端节点的类型包括所述恢复路径段的首节点和所述恢复路径段的末节点。
其中,端节点类型能够用于确定端节点具备具备路径恢复能力。
示例性地,该第七配置消息可以为RSVP Path消息,或者,第七配置消息可以为与RSVP Path消息具有相同功能的协议消息,或者,第七配置消息为第一首节点沿第一工作路径传输的其他信令。
进一步地,第七配置消息中还可以包括第一故障链路的标识、恢复路径段的路由信息、第二业务的标识和第一ID中的至少一项。
当该第七配置消息中包括第一故障链路的标识和恢复路径段的路由信息的情况下,第三节点接收到上述的第七配置消息之后,可以基于自身的端节点类型保存第一故障链路的标识、恢复路径段的路由信息、指示自身具备路径恢复能力的标识,其中,指示自身具备路径恢复能力的标识可以为恢复路径段的首节点的标识或其他的字段;
同理,第四节点接收到上述的第七配置消息之后,可以基于自身的端节点类型保存第一故障链路的标识、恢复路径段的路由信息、指示自身具备路径恢复能力的标识,其中,指示自身具备路径恢复能力的标识可以为恢复路径段的末节点的标识或其他的字段。
可以理解,当第七配置消息中包括有第一ID的情况下,网络设备可以无需向恢复路径段的首节点发送上述的第一配置消息。
需要说明的是,上述的第一首节点还可以向第一工作路径上的其他节点(除恢复路径段上的节点之外的节点)发送上述的第七配置消息,由于本申请实施例中主要涉及到恢复路径段上的节点在第一链路发生故障的情况下的执行步骤,对于第一工作路径上的其他节点接收到的第七配置消息中包括的具体内容不进行赘述。
同理,在方式二中图4所述的方法流程还可以包括S452,第二首节点向恢复路径段的端节点(如图4(a)所示的第三节点和第四节点)发送八配置消息,所述第八配置消息携带所述端节点的类型,该端节点的类型包括所述恢复路径段的首节点和所述恢复路径段的末节点。
其中,端节点类型能够用于确定端节点具备具备路径恢复能力。
示例性地,该第八配置消息可以为RSVP Path消息,或者,第八配置消息可以为与RSVP Path消息具有相同功能的协议消息,或者,第八配置消息为第二首节点沿第二工作路径传输的其他信令。
进一步地,第八配置消息中还可以包括第一故障链路的标识、恢复路径段的路由信息、第二业务的标识和第一ID中的至少一项。
当该第八配置消息中包括第一故障链路的标识和恢复路径段的路由信息的情况下,第三节点接收到上述的第八配置消息之后,可以基于自身的端节点类型保存第一故障链路的标识、恢复路径段的路由信息、指示自身具备路径恢复能力的标识,其中,指示自身具备路径恢复能力的标识可以为恢复路径段的首节点的标识或其他的字段;
同理,第四节点接收到上述的第八配置消息之后,可以基于自身的端节点类型保存第一故障链路的标识、恢复路径段的路由信息、指示自身具备路径恢复能力的标识,其中,指示自身具备路径恢复能力的标识可以为恢复路径段的末节点的标识或其他的字段。
可以理解,当第八配置消息中包括有第一ID的情况下,网络设备可以无需向恢复路径段的首节点发送上述的第一配置消息。
需要说明的是,上述的第二首节点还可以向第二工作路径上的其他节点(除恢复路径段上的节点之外的节点)发送上述的第八配置消息,由于本申请实施例中主要涉及到恢复路径段上的节点在第二链路发生故障的情况下的执行步骤,对于第二工作路径上的其他节点接收到的第八配置消息中包括的具体内容不进行赘述。
应理解,当第一业务和第二业务的首节点为第三节点、第一业务和第二业务的末节点为第四节点为的情况下,上述的S451和S452可以无需执行。
还应理解,上述的S451和S452表示不同的工作路径的首节点执行恢复路径段上的端节点能力配置,可以执行S451和S452其中之一即可完成能力配置,或者S451和S452也可以都执行。
方式二:网络设备为第一工作路径的首节点
上述的网络设备为第一工作路径的首节点,则第一工作路径的首节点能够获知第一ID,与上述的方式一不同的是方式二中网络设备无需向第一首节点发送第一消息,即无需执行S432。
其他的预配置资源流程、恢复路径段上的首节点和末节点配置路径恢复能力的配置流程与方式一中相同,这里不再赘述。
方式三:网络设备为第二工作路径的首节点
上述的网络设备为第二工作路径的首节点,则第二工作路径的首节点能够获知第一ID,与上述的方式一不同的是方式三下网络设备无需向第二首节点发送第二消息,即无需执行S433。
其他的预配置资源流程、恢复路径段上的首节点和末节点配置路径恢复能力的配置流程与方式一中相同,这里不再赘述。
方式四:网络设备为恢复路径段的首节点
上述的网络设备为恢复路径段上的首节点,则恢复路径段上的首节点能够获知第一ID、恢复路径段的路由信息、恢复路径的路由信息,与上述的方式一不同的是方式四下网络设备无需向恢复路径段的首节点发送配置消息,即网络设备无需向恢复路径段的首节点发送第一 配置消息、第二配置消息、第三配置消息以及第四配置消息。
其他节点(第一首节点、第二首节点以及恢复路径段的末节点)与网络设备之间的信令交互流程与方式一中相同,这里不再赘述。
方式五:网络设备为恢复路径段的末节点
上述的网络设备为恢复路径段的末节点,则恢复路径段的末节点能够获知第一ID、恢复路径段的路由信息、恢复路径的路由信息,与上述的方式一不同的是方式五下网络设备无需向恢复路径段的末节点发送配置消息,即网络设备无需向恢复路径段的末节点发送第三配置消息和第四配置消息。
其他节点(第一首节点、第二首节点以及恢复路径段的首节点)与网络设备之间的信令交互流程与方式一中相同,这里不再赘述。
具体地,本申请实施例提供的恢复路径配置的方法,在发生链路故障的情况下可以实现业务恢复。则图4(a)所示的方法流程还包括:业务恢复。
本申请实施例中,确定第一工作路径和第二工作路径分别发生故障的节点可以是第一故障链路所在的节点。
根据第一故障链路所在的节点和第三节点、第一故障链路所在的节点和第四节点之间的关系,上述的业务恢复包括以下几种可能:
可能一、第一故障链路两端的节点可以分别为第三节点和第四节点。图4(a)所示的方法流程还包括S460,第三节点感知第一故障链路发生故障,确定第一业务和第二业务受到影响。由上述流程可知,第三节点被配置有恢复能力,则第三节点确定无需将故障通告发送给第一首节点和第二首节点。
S461,第三节点向恢复路径段的相邻下游节点发送路径建立请求消息,该路径建立请求消息中包括第一ID。
进一步地,路径建立请求消息中还包括该恢复路径段的路由信息,使得恢复路径段的中间节点和末节点能够获知整个恢复路径段的信息。
示例性地,该路径建立请求消息可以是RSVP Path消息、与RSVP Path消息功能类似的消息、或第三节点沿恢复路径段传输的其他信令。
另外,由上述可知本申请实施例中的网络设备可以为恢复路径段的首节点,则网络设备确定第一工作路径和第二工作路径分别发生故障时,网络设备向恢复路径段的相邻下游节点发送路径建立请求消息。
在可能一中,第三节点沿恢复路径段发起路径建立请求消息,则恢复路径段上的节点(第三节点、第四节点和第五节点)基于该路径建立请求消息中的第一ID确定自身的预留资源,基于预留资源建立交叉连接,建立路径。
作为一种可能的实现方式,第三节点可以向网络设备发送路径建立响应消息,路径建立响应消息指示所述第一工作路径的业务恢复结果和所述第二工作路径的业务恢复结果。在该方式下,图4(a)所示的方法流程还包括S462,第三节点向网络设备发送路径建立响应消息。
作为另一种可能的实现方式,第三节点可以向第一首节点和第二首节点分别发送路径建立响应消息。在该方式下,图4(a)所示的方法流程还包括S463,第三节点向第一首节点发送路径建立响应消息和S464,第三节点向第二首节点发送路径建立响应消息。
可选地,业务恢复成功之后,上述的第一ID可以进行更新。例如,恢复路径段上的节点可以接收到第一首节点和第二首节点分别发送的第一更新消息和第二更新消息,该第一更新 消息和第二更新消息分别用于指示恢复路径段上的节点更新承载第一业务和第二业务的第一工作路径和第二工作路径(如,承载第一业务的为第一恢复路径、承载第二业务的为第二恢复路径),并删除本地保存的第一ID。还例如,恢复路径段上的节点可以接收到网络设备发送的第三更新消息,该第三更新消息用于指示恢复路径段上的节点更新承载第一业务和第二业务的第一工作路径和第二工作路径(如,承载第一业务的为第一恢复路径、承载第二业务的为第二恢复路径),并删除本地保存的第一ID。
可能二、第一故障链路所在的节点和第三节点不是同一个节点、第一故障链路的末节点和第四节点为同一个节点。图4(a)所示的方法流程还包括S470,第一故障链路所在的节点感知第一故障链路发生故障,确定第一工作路径和第二工作路径分别发生故障。由上述流程可知,第三节点被配置有恢复能力,第一故障链路所在的节点并未被配置恢复能力,所述可能二中第一故障链路所在的节点确定需将故障通告发送给第三节点。
图4(a)所示的方法流程还包括S471,第三节点接收故障通告信息。
具体地,第三节点获知第一故障链路故障之后,执行流程与上述的可能一相同,这里不再赘述。
上述的网络设备还可以基于不同工作路径对应的恢复路径的变化,更新恢复路径所属的恢复路径组。
例如,当第一恢复路径路径上节点资源发生改变的情况下,第一恢复路径无法恢复第一工作路径上承载的业务,则网络设备重新确定第一工作路径对应的第三恢复路径,网络设备节点基于第三恢复路径确定第三恢复路径属于第二第三恢复路径组,第二第三恢复路径组的标识为第二ID。
下面结合具体的场景介绍图4(a)下所示的方法流程。下述场景中主要考虑图4(a)中方式一所示的流程。
图9是本申请实施例提供的恢复路径配置的方法能够应用的一种场景图。
图9所示的ASON网络中包括节点#A、节点#B、节点#C、节点#D、节点#E、节点#F六个ASON节点,以及160条业务。
其中,承载业务1-80的工作路径相同:节点#A-节点#C-节点#E-节点#F;承载业务81-160的工作路径相同:节点#B-节点#C-节点#E-节点#F,可以将上述的第一业务看成业务1-80中的任意一条或者多条业务、第二业务看成业务81-160中的任意一条或者多条业务;或者,可以将上述的第二业务看成业务1-80中的任意一条或者多条业务、第一业务看成业务81-160中的任意一条或者多条业务。
当第一业务为业务1-80中的任意一条或者多条业务、第二业务为业务81-160中的任意一条或者多条业务的情况下,上述的第一工作路径为节点#A-节点#C-节点#E-节点#F,第二工作路径为节点#B-节点#C-节点#E-节点#F,则第一工作路径包括的至少一条链路有:链路A-C、链路C-E、链路E-F,第二工作路径包括的至少一条链路有:链路B-C、链路C-E、链路E-F。
当第二业务为业务1-80中的任意一条或者多条业务的情况下,第一业务为业务81-160中的任意一条或者多条业务的情况下,上述的第二工作路径为节点#A-节点#C-节点#E-节点#F,第一工作路径为节点#B-节点#C-节点#E-节点#F,则第二工作路径包括的至少一条链路有:链路A-C、链路C-E、链路E-F,第一工作路径包括的至少一条链路有:链路B-C、链路C-E、链路E-F。
示例性地,上述的第一故障链路为第一工作路径和第二工作路径均包括的链路C-E。例如,链路C-E传输光纤断开,或者,节点#C中的向节点#E发送信息的接口故障,或者,节点#E中的向节点#C发送信息的接口故障等中的一项或者多项。
图9所示的场景下,本申请实施例提供的恢复路径配置的方法包括以下步骤:
步骤一:
网络设备基于链路C-E发生故障,确定承载业务1-80的工作路径对应的恢复路径为:节点#A-节点#C-节点#D-节点#E-节点#F、承载业务81-160的工作路径对应的恢复路径为:节点#B-节点#C-节点#D-节点#E-节点#F;即上述的第一恢复路径为:节点#A-节点#C-节点#D-节点#E-节点#F、上述的第二恢复路径为:节点#B-节点#C-节点#D-节点#E-节点#F。
网络设备基于第一恢复路径和第二恢复路径,确定第一恢复路径和第二恢复路径具有相同的恢复路径段为:节点#C-节点#D-节点#E,由于恢复路径段:节点#C-节点#D-节点#E占第一恢复路径和第二恢复路径上的某个区段路径,在图9所示的实施例中该恢复路径段也可以称为区段恢复路径。上述的第三节点为节点#C、第五节点为节点#D、第四节点为节点#E。
在上述的第一恢复路径和第二恢复路径具有相同的恢复路径段:节点#C-节点#D-节点#E的前提下,网络设备生成ID#1,该ID#1指示采用恢复路径段:节点#C-节点#D-节点#E对承载于第一工作路径上的业务1-80和承载于第二工作路径上的业务81-160进行业务恢复。可以理解为网络设备通过业务组ID#1关联标识业务1-160对应的恢复路径具有的相同的恢复路径段。
步骤二:
网络设备通过PCEP协议下发恢复路径的路由信息及业务组ID到工作路径的首节点。
具体地,网络设备通过PCEP协议下发PCEP消息,将恢复路径的路由信息通知给工作路径的首节点,PCEP消息携带业务的标签交换路径(label switch path,LSP)ID、故障链路的标识(如,链路C-E)以及业务对应的恢复路径的路由信息。
进一步地,该PCEP消息还需要携带业务组ID#1,还可以携带恢复路径段(节点#C-节点#D-节点#E)的路由信息。
1)网络设备给承载业务1-80的第一工作路径的首节点(节点#A)发送的PCEP消息中携带:业务1-80各自对应的LSP ID(例如,业务1的LSP ID为1、业务2的LSP ID为2、……、业务79的LSP ID为79、业务80的LSP ID为80,则PCEP消息中携带LSP ID1-80)、第一故障链路的标识C-E、第一恢复路径(节点#A-节点#C-节点#D-节点#E-节点#F)的路由信息以及业务组ID(例如,ID#1)。另外,可选地该PCEP消息中还可以携带恢复路径段(节点#C-节点#D-节点#E)的路由信息;
2)网络设备给承载业务81-160的第二工作路径的首节点(节点#B)发送的PCEP消息中携带:业务81-160各自对应的LSP ID(例如,业务81的LSP ID为81、业务82的LSP ID为82、……、业务159的LSP ID为159、业务160的LSP ID为160,则PCEP消息中携带LSP ID81-160)、第一故障链路的标识C-E、第二恢复路径(节点#B-节点#C-节点#D-节点#E-节点#F)的路由信息以及业务组ID(例如,ID#1)。另外,可选地该PCEP消息中还可以携带恢复路径段(节点#C-节点#D-节点#E)的路由信息。
进一步地,ID#1通知到第一工作路径和第二工作路径的首节点之后,需要将该ID#1通知到恢复路径段的首节点和末节点上,具体地,还需要为恢复路径段的首节点和末节点配置恢复能力。
步骤三:
通过RSVP协议完成工作路径(例如,图9中所示的节点#A-节点#C-节点#E-节点#F和节点#B-节点#C-节点#E-节点#F)上恢复路径段的首节点和末节点(例如,图9中所示的节点#C和节点#E)的路径恢复能力的配置。
承载业务1-80的第一工作路径的首节点-节点#A和承载业务81-160的第二工作路径的首节点-节点#B收到网络设备下发的PCEP消息后,节点#A和节点#B可获取到:第一故障链路标识C-E、节点#C和节点#E有路径恢复能力以及恢复路径段为:节点#C-节点#D-节点#E等信息。
可选地,节点#C和节点#E有路径恢复能力也可以由网络设备通过PCEP消息直接配置到节点#C和节点#E。
标准中,节点#C称为分叉节点,节点#E称为合并节点,本申请中也可以将分叉节点称为区段恢复路径首节点,合并节点称之为区段恢复路径末节点。
下面详细介绍承载业务1-80和承载业务81-160的工作路径上每个节点的所需要执行的步骤或接收到的信息:
节点#A通过RSVP Path消息发起以首节点为节点#A,末节点为节点#F的路径恢复能力配置。该RSVP Path消息中携带业务1-80的LSP ID、节点#C和节点#E的路径恢复能力配置信息。
节点#C接收到的配置信息包括:第一故障链路标识C-E、恢复路径段的路由信息(节点#C-节点#D-节点#E)和恢复路径段的首节点标记信息;
节点#E接收到的配置信息包括:第一故障链路标识C-E、恢复路径段的路由信息(节点#C-节点#D-节点#E)和恢复路径段的末节点标记信息;
节点#F接收到的配置信息包括:业务1-80的LSP ID。
节点#B通过RSVP Path消息发起首节点为节点#B,末节点为节点#F的路径恢复能力配置。RSVP Path消息携带给各节点的配置信息同首节点#A一致,这里不再赘述。
节点#C收到针对各业务发起的RSVP Path消息后,根据路径恢复能力配置信息存储第一故障链路标识C-E、恢复路径段的路由信息(节点#C-节点#D-节点#E)、恢复路径段的首节点标记信息,此时节点#C不执行交叉配置。由于节点#C为恢复路径段的首节点,则节点#C需要存储恢复路径段上各个节点的通道资源(例如,上述的节点#C、节点#D以及节点#E的通道资源);
节点#E收到针对各业务发起的RSVP Path消息后,根据路径恢复能力配置信息存储第一故障链路标识C-E、恢复路径段的路由信息(节点#C-节点#D-节点#E)、恢复路径段的末节点标记信息,此时节点#E不执行交叉配置。由于节点#E为区段恢复路径的末节点,则节点#E存储恢复路径段上末节点的通道资源即可;
节点#F无需路径恢复能力相关配置,节点#F收到针对各业务发起的RSVP Path消息后具体执行的步骤这里不再赘述。
一种可能的实现方式,上述的工作路径上的各个节点完成配置之后,还包括资源的预配置:
步骤四(a):
新增RSVP协议完成恢复路径段上节点资源的预配置流程。
具体地,承载业务1-80的工作路径的首节点-节点#A通过RSVP Path消息完成第一恢复 路径(节点#A-节点#C-节点#D-节点#E-节点#F)上,恢复路径段节点资源的预配置。
例如,节点#A通过RSVP Path消息发起以首节点为节点#A,末节点为节点#F的资源的预配置。该RSVP Path消息中携带业务1-80的LSP ID、节点#D业务恢复时隙通道/波长资源、业务组ID和资源预配置(并非真正建立业务)的指示信息。其中,业务组ID,资源预配置的指示信息可以称为扩展TLV信息。
节点#C和节点#E上的业务组ID也可以在上述的步骤三中配置,如果步骤三已将业务组ID通知给节点#C和节点#E,步骤四(a)仅需要对节点#D配置业务组ID即可。
节点#C接收到RSVP path消息之后,解析RSVP path消息,获取业务1-80的LSP ID、业务组ID信息,进行本地保存。由于该消息指示资源预配置,所以节点#C解析RSVP path消息后不执行交叉配置。
节点#D接收到RSVP path消息之后,解析RSVP path消息,获取业务1-80的LSP ID、业务组ID,以及恢复时隙通道/波长资源(中间节点#D只需存储恢复路径段上自身的资源),进行本地保存。由于该消息指示资源预配置,所以节点#D解析RSVP path消息后不执行交叉配置。
节点#E接收到RSVP path消息之后的处理同节点#C处理一致,这里不再赘述。
节点#F接收到RSVP path消息之后,由于节点#F无区段恢复业务配置处理,直接响应RESV消息,指示RSVP path消息接收成功即可。
进一步地,承载业务81-160的第二工作路径的首节点-节点#B通过RSVP Path消息完成第二恢复路径(节点#B-节点#C-节点#D-节点#E-节点#F)上,恢复路径段节点资源的预配置。具体流程与上述节点#A完成第一恢复路径(节点#A-节点#C-节点#D-节点#E-节点#F)上,恢复路径段节点资源的预配置的类似,这里不再赘述。
另一种可能的实现方式,上述的工作路径上的各个节点完成配置之后,还包括资源的预配置:
步骤四(b):
网络设备通过PCEP消息直接进行恢复路径段上节点资源的预配置。
具体地,对恢复路径段(例如,节点#C-节点#D-节点#E)各节点进行预配置,PCEP消息携带业务1-160的LSP ID、恢复时隙通道/波长资源、业务组ID和资源预配置(并非真正建立业务)的指示信息,其中,业务组ID,资源预配置的指示信息可以称为扩展TLV信息。
节点#C和节点#E上的业务组ID也可以在上述的步骤三中配置,如果步骤三已将业务组ID通知给节点#C和节点#E,步骤四(b)仅需要对节点#D配置业务组ID即可。
具体地,在发生链路故障的情况下,本申请实施例提供的重路由的方法还可以实现业务恢复。
业务恢复包括以下步骤:
步骤一:
节点#C和节点#E之间的链路故障的情况下(例如,节点#C和节点#E之间发生断纤),节点#C感知故障发生,并根据节点#C和节点#E故障链路标识,查找到受影响的业务组的ID。进一步地,确定对应于该故障链路节点#C有路径恢复能力,则抑制告警通告到承载受影响业务的工作路径的首节点(例如,节点#A和节点#B),即Notify无需发送到工作路径的首节点,减少通告时间;
步骤二:
节点#C发起恢复路径段(节点#C-节点#D-节点#E)的建立过程。
具体地,该过程包括:
恢复路径段的首节点-节点#C通过RSVP Path消息发起以首节点为节点#C,末节点为节点#E恢复路径段的建立。该RSVP Path消息中携带业务组ID、恢复路径段的路由信息(节点#C-节点#D-节点#E)。该RSVP Path消息报文格式与上述的步骤四(a)中所示RSVP Path消息报文格式相同,这里不再赘述。
恢复路径段的首节点-节点#C根据业务组ID匹配查找到关联的业务1-160恢复时隙通道/波长资源,进行资源预留,节点#C收到Resv消息后,执行批量业务1-160的交叉连接建立;或者,批量业务1-160的交叉连接建立也可在收到Resv消息前执行,本申请对于节点#C收到Resv消息和建立交叉连接之间的先后关系不做限定。
恢复路径段的中间节点-节点#D接收到RSVP Path消息之后,根据业务组ID匹配查找到关联的业务1-160恢复时隙通道/波长资源,进行资源预留,节点#D收到Resv消息后,执行批量业务1-160的交叉连接建立;或者,批量业务1-160的交叉连接建立也可在收到Resv消息前执行,本申请对于节点#D收到Resv消息和建立交叉连接之间的先后关系不做限定。
恢复路径段的末节点-节点#E接收到RSVP Path消息之后,根据业务组ID匹配查找到关联的业务1-160恢复时隙通道/波长资源,进行资源预留,执行批量业务1-160的交叉连接建立。并发送Resv消息,响应区段恢复路径的首节点Resv成功。
步骤三:
节点#C完成恢复路径段(节点#C-节点#D-节点#E)建立成功后,向业务组ID关联的所有业务承载于的工作路径的首节点(例如,节点#A和节点#B)Notify恢复路径段恢复成功,该通告消息中携带故障链路的标识、恢复路径段恢复成功指示信息以及恢复路径段的路由信息。
步骤四:
各业务(例如,业务1-160)承载于的工作路径的首节点(例如,节点#A和节点#B)收到节点#C发送的恢复路径段恢复成功的Notify消息后,根据故障链路的标识和恢复路径段的路由信息匹配查找到恢复路径,并进行业务接管。
1)节点#A沿第一恢复路径(节点#A-节点#C-节点#E-节点#F)发起Path消息刷新,该Path消息刷新用于指示业务1-80对应的第一恢复路径上的节点除首节点外的其他节点根据业务属性删除当前为业务1-80配置的业务组ID;同理,节点#B沿第二恢复路径(节点#B-节点#C-节点#E-节点#F)发起Path消息刷新,该Path消息刷新用于指示业务81-160对应的第二恢复路径上的节点除首节点外的其他节点根据业务属性删除当前为业务81-160配置的业务组ID。
2)承载业务1-80的第一工作路径上的中间节点和末节点(节点#C、节点#E和节点#F)更新端到端业务属性,删除本地保存的业务组ID信息;同理,承载业务81-160的第二工作路径上的中间节点和末节点(节点#C、节点#E和节点#F)更新端到端业务属性,删除本地保存的业务组ID信息。
步骤五:
所有业务恢复路径切换成功后,网络设备自动收集全网业务的工作路径信息,根据业务的当前路径已刷新变化,会向承载业务的工作路径首节点(例如,节点#A和节点#B)下发删除消息,首节点收到该删除消息后,本地删除原业务组ID(例如,ID#1);
步骤六:
当网络资源变化时,网络设备实时收集全网链路信息,会将链路资源变化影响的业务对应的恢复路径重新计算并进行业务组ID更新修改,然后再下发到承载业务的工作路径首节点进行业务组ID的配置更新。
图9所示的在整个区段捆绑映射的快速重路由过程中,主要包括以下3个关键点:1)基于同故障链路影响的业务进行同恢复路径策略计算,并将具有相同恢复路径段的恢复路径分别对应的业务进行捆绑映射为一个业务组ID关联;2)业务组ID的配置:包括创建、更新、或删除,业务组ID新增在业务恢复路径中配置到业务首节点,由首节点或网络设备将业务组ID配置到恢复路径段上各个节点,当网络资源有变化时,需要将业务组ID进行更新修改;3)故障后,将受影响的业务组ID所关联的批量业务进行快速建立,业务恢复成功后将原工作路径上的原业务组ID进行删除。
图9中所示的为两路批量业务同恢复路径段的业务恢复,可以将上述第一业务看成是两路批量业务中的一路批量业务;同理可以将上述第二业务看成是两路批量业务中另一路批量业务,即图9所示的场景可以理解为上述的第一工作路径和第二工作路径的首节点不同、末节点相同,对应的第一恢复路径和第二恢复路径之间存在部分的重合恢复路径(称为恢复路径段)。
下面结合图10说明一路批量业务同恢复路径段的业务恢复,即上述的第一工作路径和第二工作路径的首节点相同、末节点相同,对应的第一恢复路径和第二恢复路径之间存在部分的重合恢复路径(称为恢复路径段)。
图10所示的ASON网络中包括节点#A、节点#C、节点#D、节点#E、节点#F五个ASON节点,以及80条业务。
其中,承载业务1-80的工作路径相同为:节点#A-节点#C-节点#E-节点#F,可以将第一业务看成业务1-80中的任意一条或者多条业务、第二业务看成业务1-80中的除第一业务之外的一条业务或者多条,上述的第一工作路径和第二工作路径为相同的工作路径。
假设,链路C-E发生故障。例如,链路C-E传输光纤断开,或者,节点#C中的向节点#E发送信息的接口故障,或者,节点#E中的向节点#C发送信息的接口故障等中的一项或者多项。
图10所示的场景下,本申请实施例提供的恢复路径配置的方法包括以下步骤:
步骤一:
网络设备基于链路C-E发生故障,确定承载业务1-80的工作路径对应的恢复路径为:节点#A-节点#C-节点#D-节点#E-节点#F;
网络设备基于恢复路径,确定承载业务1-80的工作路径对应的恢复路径具有相同的恢复路径段:节点#C-节点#D-节点#E。
在上述的恢复路径具有相同的恢复路径段:节点#C-节点#D-节点#E的前提下,网络设备生成ID#1,该ID#1指示采用恢复路径段:节点#C-节点#D-节点#E对承载于工作路径上的业务1-80进行业务恢复。可以理解为网络设备通过业务组ID#1标识业务1-80对应的恢复路径具有的相同的恢复路径段。
在图10所示的场景下的步骤一与在图9所示的场景下的步骤一的区别在于仅有一个业务的首节点-节点#A,业务数据量少。
步骤二:
网络设备通过PCEP协议下发恢复路径的路由信息及业务组ID到工作路径的首节点。
在图10所示的场景下的步骤二与在图9所示的场景下的步骤二的区别在于网络设备仅 向首节点-节点#A发送PCEP消息。
步骤三:
通过RSVP协议完成业务工作路径(例如,图10中所示的节点#A-节点#C-节点#E-节点#F)上恢复路径段的首节点和末节点(例如,图10中所示的节点#C和节点#E)的路径恢复能力配置。
在图10所示的场景下的步骤三与在图9所示的场景下的步骤三的区别在于仅有首节点-节点#A执行路径恢复能力配置。
步骤四(a):
新增RSVP协议完成恢复路径段上节点资源的预配置流程。
在图10所示的场景下的步骤四(a)与在图9所示的场景下的步骤四(a)的区别在于仅由首节点-节点#A通过RSVP Path消息完成恢复路径(节点#A-节点#C-节点#D-节点#E-节点#F)上以及恢复路径段上节点资源的预配置。
步骤四(b):
网络设备通过PCEP消息直接进行恢复路径段节点资源的预配置。
在图10所示的场景下本申请提供的恢复路径配置的方法还包括业务恢复。
业务恢复包括以下步骤:
步骤一:
节点#C和节点#E之间的链路故障的情况下(例如,节点#C和节点#E之间发生断纤),节点#C感知故障发生,并根据节点#C和节点#E故障链路标识,查找到受影响的业务组的ID。进一步地,确定对应于该故障链路节点#C有路径恢复能力,则抑制告警通告到承载受影响业务的工作路径的首节点(例如,节点#A),即Notify无需通告到工作路径的首节点,减少通告时间;
步骤二:
节点#C发起恢复路径段(节点#C-节点#D-节点#E)的建立过程。
在图10所示的场景下业务恢复中的步骤二与在图9所示的场景下业务恢复中的步骤二的区别在于执行批量业务1-80的交叉连接建立。
步骤三:
节点#C完成恢复路径段(节点#C-节点#D-节点#E)建立成功后,向业务组ID关联的所有业务承载于的工作路径的首节点(例如,节点#A)Notify恢复路径段恢复成功,该通告消息中携带故障链路的标识、恢复路径段恢复成功指示信息以及恢复路径段的路由信息。
步骤四:
各业务(例如,业务1-80)承载于的工作路径的首节点(例如,节点#A)收到节点#C发送的恢复路径段恢复成功的Notify消息后,根据故障链路的标识和恢复路径段的路由信息匹配查找到业务恢复路径,并进行业务接管。
步骤五:
所有业务恢复路径切换成功后,网络设备自动收集全网业务的工作路径信息,根据业务的当前路径已刷新变化,会向承载业务的工作路径首节点(例如,节点#A)下发删除消息,首节点收到该删除消息后,本地删除原业务组ID(例如,ID#1);
步骤六:
当网络资源变化时,网络设备实时收集全网链路信息,会将链路资源变化影响的业务对 应的恢复路径重新计算并进行业务组ID更新修改,然后再下发到承载业务的工作路径节点进行业务组ID的配置更新。
下面结合图11说明两路批量业务同恢复路径段的业务恢复,且恢复路径段的首节点为故障链路所在的节点的上游节点。
图11所示的ASON网络中包括节点#A、节点#B、节点#C、节点#D、节点#E、节点#F、节点#G七个ASON节点,以及160条业务。
其中,承载业务1-80的工作路径相同为:节点#A-节点#C-节点#E-节点#F-节点#G;承载业务81-160的工作路径相同为:节点#B-节点#C-节点#E-节点#F-节点#G,可以将第一业务看成业务1-80中的任意一条或者多条业务、第二业务看成业务81-160中的任意一条或者多条业务;或者,可以将第二业务看成业务1-80中的任意一条或者多条业务、第一业务看成业务81-160中的任意一条或者多条业务。
假设,链路E-F发生故障。例如,链路E-F传输光纤断开,或者,节点#E中的向节点#F发送信息的接口故障,或者,节点#F中的向节点#E发送信息的接口故障等中的一项或者多项。
图11所示的场景下,恢复路径配置的流程包括以下步骤:
步骤一:
网络设备基于链路E-F发生故障,确定承载业务1-80的工作路径对应的第一恢复路径为:节点#A-节点#C-节点#D-节点#F-节点#G、承载业务81-160的工作路径对应的第二恢复路径为:节点#B-节点#C-节点#D-节点#F-节点#G;
网络设备基于第一恢复路径和第二恢复路径,确定第一恢复路径和第二恢复路径具有相同的恢复路径段为:节点#C-节点#D-节点#F。
在上述的第一恢复路径和第二恢复路径具有相同的恢复路径段:节点#C-节点#D-节点#F的前提下,网络设备生成ID#1,该ID#1指示采用恢复路径段:节点#C-节点#D-节点#F对承载于第一工作路径上的业务1-80和承载于第二工作路径上的业务81-160进行业务恢复。可以理解为网络设备通过业务组ID#1标识业务1-160对应的恢复路径具有的相同的恢复路径段。
步骤二:
网络设备通过PCEP协议下发恢复路径的路由信息及业务组ID到工作路径的首节点。
在图11所示的场景下的步骤二与在图9所示的场景下的步骤二相同,这里不再赘述。
步骤三:
通过RSVP协议完成工作路径(例如,图11中所示的节点#A-节点#C-节点#E-节点#F)上恢复路径段的首节点和末节点(例如,图11中所示的节点#C和节点#F)的路径恢复能力配置。具体配置流程与图9所示的场景下的步骤三类似,不同的是图11所示的场景下RSVP Path消息中还携带有节点#E的无路径恢复能力配置信息,节点#E解析RSVP Path消息后,对于故障链路E-F,节点#E无法进行区段恢复。可选地,该RSVP Path消息中还携带有恢复路径段的首节点的标识,使得节点#E获知具有路径恢复能力的恢复路径段的首节点为节点#C。
进一步地,执行步骤四(a):新增RSVP协议完成恢复路径段上节点资源的预配置流程;或者,执行步骤四(b):网络设备通过PCEP消息直接进行恢复路径段上节点资源的预配置。
在图11所示的场景下的步骤四(a)、步骤四(b)与在图9所示的场景下的步骤四(a)、步骤四(b)相同,这里不再赘述。
在图11所示的场景下本申请提供的恢复路径配置的方法还包括业务恢复。
业务恢复包括以下步骤:
步骤一:节点#E和节点#F之间的链路故障的情况下(例如,节点#E和节点#F之间发生断纤),节点#E感知故障发生,并根据节点#E和节点#F故障链路标识,查找到受影响的业务组的ID。进一步地,节点#E确定对应于该故障链路节点#E不具备区段恢复能力,需要将故障链路的信息通告到具有路径恢复能力的恢复路径段的首节点-节点#C。
在图11所示的场景下业务恢复中的步骤二ˉ步骤六与在图9所示的场景下业务恢复中的步骤二ˉ步骤六相同,这里不再赘述。
下面结合图12说明一路批量业务,两路不同恢复路径的业务恢复。
图12所示的ASON网络中包括节点#A、节点#B、节点#C、节点#D、节点#E、节点#F六个ASON节点,以及80条业务。
其中,承载业务1-80的工作路径相同为:节点#A-节点#C-节点#E-节点#F。
假设,链路C-E发生故障。例如,链路C-E传输光纤断开,或者,节点#C中的向节点#E发送信息的接口故障,或者,节点#E中的向节点#C发送信息的接口故障等中的一项或者多项。
图12所示的场景下,本申请实施例提供的恢复路径配置的方法包括以下步骤:
步骤一:
网络设备基于链路C-E发生故障,确定承载业务1-40的工作路径对应的第三恢复路径为:节点#A-节点#C-节点#D-节点#E-节点#F;确定承载业务41-80的工作路径对应的第四恢复路径为:节点#A-节点#C-节点#B-节点#E-节点#F,可以将第一业务看成业务1-40中的一条或者多条业务、第二业务看成业务1-40中除第一业务之外的一条或者多条业务;或者,可以将第一业务看成业务41-80中的一条或者多条业务、第二业务看成业务41-80中除第一业务之外的一条或者多条业务。
网络设备基于第三恢复路径,确定承载业务1-40的工作路径对应的恢复路径具有相同的恢复路径段为:节点#C-节点#D-节点#E;网络设备基于第四恢复路径,确定承载业务41-80的工作路径对应的恢复路径具有相同的恢复路径段为:节点#C-节点#B-节点#E。
在上述的第三恢复路径具有相同的恢复路径段:节点#C-节点#D-节点#E的前提下,网络设备生成ID#1,该ID#1指示采用恢复路径段:节点#C-节点#D-节点#E对承载于工作路径上的业务1-40进行业务恢复。可以理解为网络设备通过业务组ID#1标识业务1-40对应的恢复路径具有的相同的恢复路径段。
同理,在上述的第三恢复路径具有相同的恢复路径段:节点#C-节点#B-节点#E的前提下,网络设备生成ID#2,该ID#2指示采用恢复路径段:节点#C-节点#B-节点#E对承载于工作路径上的业务41-80进行业务恢复。可以理解为网络设备通过业务组ID#2标识业务41-80具有的相同的恢复路径段。
在图12所示的场景下的步骤一与在图9所示的场景下的步骤一的区别在于ASON资源不够,同故障链路影响的业务会分为两路恢复路径进行恢复,映射为两路业务组ID。
步骤二:
网络设备通过PCEP协议下发恢复路径的路由信息及业务组ID到工作路径的首节点。
在图12所示的场景下的步骤二与在图9所示的场景下的步骤二的区别在于业务1-80的业务组ID不是同一个值,而是分为两个业务组ID关联。
步骤三:
通过RSVP协议完成工作路径(例如,图12中所示的节点#A-节点#C-节点#E-节点#F)上 恢复路径段的首节点和末节点(例如,图12中所示的节点#C和节点#E)的路径恢复能力配置。
在图12所示的场景下的步骤二与在图9所示的场景的步骤二的区别在于节点#C对于故障链路标识C-E所影响的业务1-80,其中业务1-40对应的恢复路径段为节点#C-节点#D-节点#E,业务41-80对应的恢复路径段为节点#C-节点#B-节点#E,两者恢复路径段不一致。
步骤四(a):
新增RSVP协议完成恢复路径段上节点资源的预配置流程。
在图12所示的场景下的步骤四(a)与在图9所示的场景下的步骤四(a)的区别在于除配置业务1-40对应的恢复路径段上(节点#C-节点#D-节点#E)预配置外,还要进行业务41-80的恢复路径段上(节点#C-节点#B-节点#E)的预配置。
步骤四(b):
网络设备通过PCEP消息直接进行恢复路径段上节点资源的预配置。
在图12所示的场景下的步骤四(b)与在图9所示的场景下的步骤四(b)的区别在于除配置业务1-40对应的恢复路径段上(节点#C-节点#D-节点#E)预配置外,还要进行业务41-80对应的恢复路径段上(节点#C-节点#B-节点#E)的预配置。
在图12所示的场景下本申请提供的恢复路径配置的方法还包括业务恢复。
业务恢复包括以下步骤:
步骤一:
节点#C和节点#E之间的链路故障的情况下(例如,节点#C和节点#E之间发生断纤),节点#C感知故障发生,并根据节点#C和节点#E故障链路标识,查找到受影响的业务组的ID。进一步地,确定对应于该故障链路节点#C有路径恢复能力,则抑制告警通告到承载受影响业务的工作路径的首节点(例如,节点#A),即Notify无需通告到工作路径的首节点,减少通告时间;
步骤二:
节点#C发起恢复路径段(节点#C-节点#D-节点#E和节点#C-节点#B-节点#E)的建立过程。
在图12所示的场景下业务恢复中的步骤二与在图9所示的场景下业务恢复中的步骤二的区别在于需建立两路恢复路径段。
步骤三:
节点#C完成恢复路径段(节点#C-节点#D-节点#E和节点#C-节点#B-节点#E)建立成功后,向业务组ID关联的业务承载于的工作路径的首节点(例如,节点#A)Notify恢复路径段恢复成功,该通告消息中携带故障链路的标识、恢复路径段恢复成功指示信息以及恢复路径段的路由信息。
在图12所示的场景下业务恢复中的步骤四ˉ步骤六与在图10所示的场景下业务恢复中的步骤四ˉ步骤六相同,这里不再赘述。
下面结合图13说明多路批量业务同区段恢复路径的业务恢复。
图13所示的ASON网络中包括节点#A、节点#B、节点#C、节点#D、节点#E、节点#F、节点#G、节点#H、节点#I九个ASON节点,以及240条业务。
其中,承载业务1-80的工作路径相同:节点#A-节点#C-节点#E-节点#F;承载业务81-160的工作路径相同:节点#B-节点#C-节点#E-节点#F;承载业务161-240的工作路径相同:节点#H-节点#C-节点#E-节点#I。可以将第一业务看成业务1-80中的任意一条或者多条业务、 第二业务看成业务81-160或业务161-240中的任意一条或者多条业务。
假设,链路C-E发生故障。例如,链路C-E传输光纤断开,或者,节点#C中的向节点#E发送信息的接口故障,或者,节点#E中的向节点#C发送信息的接口故障等中的一项或者多项。
图13所示的场景下,本申请实施例提供的恢复路径配置的方法包括以下步骤:
步骤一:
网络设备基于链路C-E发生故障,确定承载业务1-80的工作路径对应的第一恢复路径为:节点#A-节点#C-节点#D-节点#E-节点#F、承载业务81-160的工作路径对应的第二恢复路径为:节点#B-节点#C-节点#D-节点#E-节点#F、承载业务161-240的工作路径对应的第五恢复路径为:节点#H-节点#C-节点#D-节点#E-节点#I;
网络设备基于第一恢复路径、第二恢复路径以及第五恢复路径,确定第一恢复路径、第二恢复路径以及第五恢复路径具有相同的恢复路径段:节点#C-节点#D-节点#E。
在上述的第一恢复路径、第二恢复路径和第五恢复路径具有相同的恢复路径段:节点#C-节点#D-节点#E的前提下,网络设备生成ID#1,该ID#1指示采用恢复路径段:节点#C-节点#D-节点#E对承载于第一工作路径上的业务1-80、承载于第二工作路径上的业务81-160和承载于第二工作路径上的业务161-240进行业务恢复。可以理解为网络设备通过业务组ID#1标识业务1-240对应的恢复路径具有的相同的恢复路径段。
步骤二:
网络设备通过PCEP协议下发恢复路径的路由信息及业务组ID到工作路径的首节点。
在图13所示的场景下的步骤二与在图9所示的场景下的步骤二的区别在于除向节点#A下发PCEP消息、节点#B下发PCEP消息外,还需要向节点#H下发PCEP消息。
步骤三:
通过RSVP协议完成工作路径(例如,图13中所示的节点#A-节点#C-节点#E-节点#F、节点#B-节点#C-节点#E-节点#F和节点#H-节点#C-节点#E-节点#I)上恢复路径段的首节点和末节点(例如,图13中所示的节点#C和节点#E)的路径恢复能力的配置。
在图13所示的场景下的步骤三与在图9所示的场景下的步骤三的区别在于首节点由节点#A和节点#B两个节点变为节点#A、节点#B和节点#H三个节点,业务数量由160条变为240条。
步骤四(a):
新增RSVP协议完成恢复路径段上节点资源的预配置流程。
在图13所示的场景下步骤四(a)与在图9所示的场景下步骤四(a)的区别在于由节点#A、节点#B和节点#H分别通过RSVP Path消息完成第一恢复路径(节点#A-节点#C-节点#D-节点#E-节点#F)、第二恢复路径(节点#B-节点#C-节点#D-节点#E-节点#F)、第五恢复路径(节点#H-节点#C-节点#D-节点#E-节点#I)上恢复路径段(节点#C-节点#D-节点#E)节点资源的预配置。
步骤四(b):
网络设备通过PCEP消息直接进行恢复路径段上节点资源的预配置。
在图13所示的场景下步骤四(b)与在图9所示的场景下步骤四(b)的区别在于网络设备通过PCEP消息完成第一恢复路径(节点#A-节点#C-节点#D-节点#E-节点#F)、第二恢复路径(节点#B-节点#C-节点#D-节点#E-节点#F)、第五恢复路径(节点#H-节点#C-节点#D-节点#E-节点#I)上恢复路径段(节点#C-节点#D-节点#E)节点资源的预配置。
在图13所示的场景下本申请提供的恢复路径配置的方法还包括业务恢复。
业务恢复包括以下步骤:
步骤一:
节点#C和节点#E之间的链路故障的情况下(例如,节点#C和节点#E之间发生断纤),节点#C感知故障发生,并根据节点#C和节点#E故障链路标识,查找到受影响的业务组的ID。进一步地,确定对应于该故障链路节点#C有路径恢复能力,则抑制告警通告到承载受影响业务的工作路径的首节点(例如,节点#A、节点#B和节点#H),即Notify无需通告到工作路径的首节点,减少通告时间;
步骤二:
节点#C发起恢复路径段(节点#C-节点#D-节点#E)的建立过程。
在图13所示的场景下业务恢复中的步骤二与在图9所示的场景下业务恢复中的步骤二的区别在于业务组ID关联的业务数量配置,由业务160条变为业务240条的业务恢复交叉配置。
步骤三:
节点#C完成恢复路径段(节点#C-节点#D-节点#E)建立成功后,向业务组ID关联的所有业务承载于的工作路径的首节点(例如,节点#A、节点#B和节点#H)Notify恢复路径段恢复成功,该通告消息中携带故障链路的标识、恢复路径段恢复成功指示信息以及恢复路径段的路由信息。
步骤四:
各业务(例如,业务1-240)的承载于的工作路径首节点(例如,节点#A、节点#B和节点#H)收到节点#C发送的恢复路径段恢复成功的Notify消息后,根据故障链路的标识和恢复路径段的路由信息匹配查找到恢复路径,并进业务接管。
在图13所示的场景下业务恢复中的步骤五和步骤六与在图10所示的场景下业务恢复中的步骤五和步骤六相同,这里不再赘述。
下面结合图14说明一路批量业务端到端同恢复路径的业务恢复。
图14所示的ASON网络中包括节点#A、节点#B、节点#C、节点#D、节点#E五个ASON节点,以及80条业务。
其中,承载业务1-80的工作路径相同:节点#A-节点#B-节点#D-节点#E。可以将第一业务看成业务1-80中的一条业务或者多条、第二业务看成业务1-80中的除第一业务之外的一条或者多条业务。
假设,链路A-B、链路B-D和链路D-E中的至少一个链路发生故障。
图14所示的场景下,本申请实施例提供的恢复路径配置的方法包括以下步骤:
步骤一:
节点#A和/或网络设备基于链路发生故障,确定承载业务1-80的工作路径对应的恢复路径为:节点#A-节点#C-节点#E;
节点#A和/或网络设备基于恢复路径,确定承载业务1-80的工作路径对应的恢复路径相同:节点#A-节点#C-节点#E。
在上述的恢复路径相同的前提下,节点#A和/或网络设备生成ID#1,该ID#1指示采用恢复路径:节点#A-节点#C-节点#E对承载于工作路径上的业务1-80进行业务恢复。可以理解为节点#A和/或网络设备通过业务组ID#1标识业务1-80的恢复路径相同。
步骤二:
网络设备通过PCEP协议下发恢复路径的路由信息及业务组ID到工作路径的首节点。
需要说明的是,如果上述的步骤一中由节点#A进行业务组ID捆绑映射关联,则步骤二可以不执行。
步骤三(a):
新增RSVP协议完成恢复路径节点(节点#A-节点#C-节点#E)资源的预配置流程。
在图14所示的场景下的步骤三(a)具体预配置流程与在图9所示的场景下的步骤四(a)相同,这里不再赘述。
步骤三(b):
网络设备通过PCEP消息直接进行恢复路径节点(节点#A-节点#C-节点#E)资源的预配置。
在图14所示的场景下的步骤三(b)具体预配置流程与在图9所示的场景下的步骤四(b)相同,这里不再赘述。
在图14示的场景下本申请提供的恢复路径配置的方法还包括业务恢复。
业务恢复包括以下步骤:
步骤一:
节点#B和节点#D之间的链路故障的情况下(例如,节点#B和节点#D之间发生断纤),节点#B感知故障发生,并根据节点#B和节点#D故障链路标识,查找到受影响的业务组的ID。进一步地,确定对应于该故障链路节点#B无路径恢复能力,且该实施例中也没有通知节点#B具备路径恢复能力的恢复路径段的首节点标识,则节点#B直接通告到承载受影响业务的工作路径的首节点(例如,节点#A);
步骤二:
节点#A收到通告后,匹配查找受影响的业务组ID,通过RSVP Path消息发起以首节点为节点#A,末节点为节点#E恢复路径的建立。该RSVP Path消息中携带业务组ID、恢复路径的路由信息(节点#A-节点#C-节点#E),完成业务组ID关联的业务1-80对应的恢复路径交叉配置建立。该RSVP Path消息报文格式与上述图9所示的场景下的步骤四(a)中所示RSVP Path消息报文格式相同,这里不再赘述。
在图11所示的场景下业务恢复中的步骤三ˉ步骤五与在图9所示的场景下业务恢复中的步骤四ˉ步骤六相同,这里不再赘述。
应理解,上述方法实施例中ASON中的网络设备或节点可以执行实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以包括执行其它操作或者各种操作的变形。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述可以具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
上面结合图4-图14详细介绍了本申请实施例提供的恢复路径配置的方法,下面结合图15-图17详细介绍本申请实施例提供的恢复路径配置的装置。
参见图15,图15是本申请提供的恢复路径配置的装置1500的示意图。如图15所示,装置1500包括路径确定单元1510、接收单元1520、发送单元1530和标识生成单元1540。其中,路径确定单元1510和标识生成单元1540可以统称为处理单元。
路径确定单元1510,用于确定第一工作路径的第一恢复路径,以及第二工作路径的第二 恢复路径,所述第一恢复路径用于当所述第一工作路径发生故障时,对所述第一工作路径进行业务恢复,所述第二恢复路径用于当所述第二工作路径发生故障时,对所述第二工作路径进行业务恢复,所述第一恢复路径和所述第二恢复路径具有相同的恢复路径段;
标识生成单元1540,还用于生成第一标识ID,所述第一ID指示采用所述恢复路径段对所述第一工作路径和所述第二工作路径进行业务恢复。
示例性地,发送单元1530,用于向所述恢复路径段的首节点发送配置消息。
示例性地,接收单元1520,用于接收路径建立响应消息。
装置1500和方法实施例中的网络设备对应,装置1500可以是方法实施例中的网络设备,或者方法实施例中的网络设备内部的芯片或功能模块。装置1500的相应单元用于执行图4(a)所示的方法实施例中由网络设备执行的相应步骤。
其中,装置1500中的路径确定单元1510于执行方法实施例中网络设备对应与路径确定相关的步骤。标识生成单元1540用于执行方法实施例中网络设备对应与标识生成相关的步骤。装置1500中的接收单元1520执行方法实施例中网络设备接收的步骤。装置1500中的发送单元1530执行方法实施例中网络设备发送的步骤。
接收单元1520和发送单元1530可以组成收发单元,同时具有接收和发送的功能。其中,路径确定单元1510和标识生成单元1540可以统称为处理单元,处理单元可以是至少一个处理器。发送单元1530可以是发射器或者接口电路,接收单元1520可以是接收器或者接口电路。接收器和发射器可以集成在一起组成收发器或者接口电路。
可选的,装置1500还可以包括存储单元,用于存储数据和/或信令,路径确定单元1510、标识生成单元1540、发送单元1530、和接收单元1520可以与存储单元交互或者耦合,例如读取或者调用存储单元中的数据和/或信令,以使得上述实施例的方法被执行。
以上各个单元可以独立存在,也可以全部或者部分集成。
参见图16,图16是本申请提供的恢复路径配置的装置1600的示意图。如图16所示,装置1600包括保存单元1610、接收单元1620、发送单元1630。
接收单元1620,用于接收来自网络设备的第一配置消息,所述第一配置消息携带第一标识ID,所述第一ID指示采用恢复路径段对第一工作路径和第二工作路径进行业务恢复,
其中,所述恢复路径段为第一恢复路径和第二恢复路径的相同恢复路径段,所述第一恢复路径用于当所述第一工作路径发生故障时,对所述第一工作路径进行业务恢复,所述第二恢复路径用于当所述第二工作路径发生故障时,对所述第二工作路径进行业务恢复;
保存单元1610,用于保存所述第一ID。
示例性地,发送单元1630,用于向所述恢复路径段的首节点发送配置消息。
示例性地,接收单元1620,用于接收路径建立响应消息。
装置1600和方法实施例中的节点(例如,图4(a)中的第三节点)对应,装置1600可以是方法实施例中的节点,或者方法实施例中的节点内部的芯片或功能模块。装置1600的相应单元用于执行图4(a)所示的方法实施例中由节点执行的相应步骤。
其中,装置1600中的保存单元1610用于执行方法实施例中节点对应与保存相关的步骤。装置1600中的接收单元1620执行方法实施例中节点接收的步骤。装置1600中的发送单元1630执行方法实施例中节点发送的步骤。
接收单元1620和发送单元1630可以组成收发单元,同时具有接收和发送的功能。其中,保存单元1610可以是至少一个存储器。发送单元1630可以是发射器或者接口电路,接收单 元1620可以是接收器或者接口电路。接收器和发射器可以集成在一起组成收发器或者接口电路。
可选的,发送单元1630和接收单元1620可以与保存单元1610交互或者耦合,例如读取或者调用存储单元中的数据和/或信令,以使得上述实施例的方法被执行。
以上各个单元可以独立存在,也可以全部或者部分集成。
如图17所示,图17是本申请提供的恢复路径配置的装置1700的示意图。该恢复路径配置的装置1700包括处理器1710,处理器1710与存储器1720耦合,存储器1720用于存储计算机程序或指令或者和/或数据,处理器1710用于执行存储器1720存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
可选地,该恢复路径配置的装置1700包括的处理器1710为一个或多个。
可选地,如图17所示,该恢复路径配置的装置1700还可以包括存储器1720。
可选地,该通信装置1700包括的存储器1720可以为一个或多个。
可选地,该存储器1720可以与该处理器1710集成在一起,或者分离设置。
可选地,如图17所示,该恢复路径配置的装置1700还可以包括收发器1730,收发器1730用于信号的接收和/或发送。例如,处理器1710用于控制收发器1730进行信号的接收和/或发送。
作为一种方案,该恢复路径配置的装置1700用于实现上文方法实施例中网络设备中的各单元执行的操作。
例如,处理器1710用于实现上文方法实施例中由网络设备处理单元(如,路径确定单元1510和标识生成单元1540)执行的处理相关的操作。
作为一种方案,该恢复路径配置的装置1700用于实现上文方法实施例中节点中的各单元执行的操作。
例如,收发器1730用于实现上文方法实施例中由节点接收单元1620和发送单元1630执行的处理相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由发送设备(例如,预补偿参数更新单元170)执行的方法,或由发送设备(例如,预补偿参数更新单元170)执行的方法的计算机指令。
本申请实施例还提供一种计算机程序产品,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由网络设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备和节点。
本申请中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置 和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种恢复路径配置的方法,其特征在于,所述方法包括:
    网络设备确定第一工作路径的第一恢复路径,以及第二工作路径的第二恢复路径,所述第一恢复路径用于当所述第一工作路径发生故障时,对所述第一工作路径进行业务恢复,所述第二恢复路径用于当所述第二工作路径发生故障时,对所述第二工作路径进行业务恢复,所述第一恢复路径和所述第二恢复路径具有相同的恢复路径段;
    所述网络设备生成第一标识ID,所述第一ID指示采用所述恢复路径段对所述第一工作路径和所述第二工作路径进行业务恢复。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述恢复路径段的首节点发送第一配置消息,所述第一配置消息携带所述第一ID。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述恢复路径段的首节点发送第二配置消息,所述第二配置消息携带所述恢复路径段的路由信息。
  4. 如权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述恢复路径段的上的节点发送第三配置消息,所述第三配置消息携带所述第一恢复路径中所述恢复路径段的通道资源和所述第二恢复路径中所述恢复路径段的通道资源;
    所述第一ID指示采用所述恢复路径段对所述第一工作路径和所述第二工作路径进行业务恢复包括:
    所述第一ID指示采用所述第一恢复路径中所述恢复路径段的通道资源对所述第一工作路径进行业务恢复,以及采用所述第二恢复路径中所述恢复路径段的通道资源对所述第二工作路径进行业务恢复。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述恢复路径段的端节点发送第四配置消息,所述第四配置消息携带所述端节点的类型,所述端节点的类型包括所述恢复路径段的首节点或所述恢复路径段的末节点,所述恢复路径的段的首节点或所述恢复路径段的末节点具有路径恢复能力。
  6. 如权利要求1-5中任一项所述的方法,其特征在于,当所述网络设备为所述恢复路径段的首节点,所述网络设备确定所述第一工作路径和所述第二工作路径分别发生故障时,所述方法还包括:
    所述网络设备向所述恢复路径段的相邻下游节点发送路径建立请求消息,所述路径建立请求消息携带所述第一ID。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,当采用所述恢复路径段对所述第一工作路径和所述第二工作路径进行业务恢复时,所述方法还包括:
    所述网络设备接收路径建立响应消息,所述路径建立响应消息指示所述第一工作路径的业务恢复结果和所述第二工作路径的业务恢复结果。
  8. 一种恢复路径配置的方法,其特征在于,所述方法包括:
    第一节点接收来自网络设备的第一配置消息,所述第一配置消息携带第一标识ID,所述第一ID指示采用恢复路径段对第一工作路径和第二工作路径进行业务恢复,
    其中,所述恢复路径段为第一恢复路径和第二恢复路径的相同恢复路径段,所述第一恢 复路径用于当所述第一工作路径发生故障时,对所述第一工作路径进行业务恢复,所述第二恢复路径用于当所述第二工作路径发生故障时,对所述第二工作路径进行业务恢复;
    所述第一节点保存所述第一ID。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收来自所述网络设备的第二配置消息,所述第二配置消息携带所述恢复路径段的路由信息。
  10. 如权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收来自所述网络设备的第三配置消息,所述第三配置消息携带所述第一恢复路径中所述恢复路径段的通道资源和所述第二恢复路径中所述恢复路径段的通道资源;
    所述第一ID指示采用所述恢复路径段对所述第一工作路径和所述第二工作路径进行业务恢复包括:
    所述第一ID指示采用所述第一恢复路径中所述恢复路径段的通道资源对所述第一工作路径进行业务恢复,以及采用所述第二恢复路径中所述恢复路径段的通道资源对所述第二工作路径进行业务恢复。
  11. 如权利要求8-10中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收来自所述网络设备的第四配置消息,所述第四配置消息携带所述第一节点的类型,所述第一节点的类型包括所述恢复路径段的首节点或所述恢复路径段的末节点,所述恢复路径的段的首节点或所述恢复路径段的末节点具有路径恢复能力。
  12. 如权利要求8-11中任一项所述的方法,其特征在于,所述第一节点确定所述第一工作路径和所述第二工作路径分别发生故障时,所述方法还包括:
    所述第一节点向所述恢复路径段的相邻下游节点发送路径建立请求消息,所述路径建立请求消息携带所述第一ID。
  13. 如权利要求8-12中任一项所述的方法,其特征在于,当采用所述恢复路径段对所述第一工作路径和所述第二工作路径进行业务恢复时,所述方法还包括:
    所述第一节点向所述网络设备发送路径建立响应消息,所述路径建立响应消息指示所述第一工作路径的业务恢复结果和所述第二工作路径的业务恢复结果。
  14. 一种恢复路径配置的装置,其特征在于,所述装置包括:
    路径确定单元,用于确定第一工作路径的第一恢复路径,以及第二工作路径的第二恢复路径,所述第一恢复路径用于当所述第一工作路径发生故障时,对所述第一工作路径进行业务恢复,所述第二恢复路径用于当所述第二工作路径发生故障时,对所述第二工作路径进行业务恢复,所述第一恢复路径和所述第二恢复路径具有相同的恢复路径段;
    标识生成单元,还用于生成第一标识ID,所述第一ID指示采用所述恢复路径段对所述第一工作路径和所述第二工作路径进行业务恢复。
  15. 如权利要求14所述的装置,其特征在于,所述装置还包括:
    发送单元,用于向所述恢复路径段的首节点发送第一配置消息,所述第一配置消息携带所述第一ID。
  16. 如权利要求14或15所述的装置,其特征在于,所述装置还包括:
    发送单元,用于向所述恢复路径段的首节点发送第二配置消息,所述第二配置消息携带所述恢复路径段的路由信息。
  17. 如权利要求14-16中任一项所述的装置,其特征在于,所述装置还包括:
    发送单元,用于向所述恢复路径段的上的节点发送第三配置消息,所述第三配置消息携 带所述第一恢复路径中所述恢复路径段的通道资源和所述第二恢复路径中所述恢复路径段的通道资源;
    所述第一ID指示采用所述恢复路径段对所述第一工作路径和所述第二工作路径进行业务恢复包括:
    所述第一ID指示采用所述第一恢复路径中所述恢复路径段的通道资源对所述第一工作路径进行业务恢复,以及采用所述第二恢复路径中所述恢复路径段的通道资源对所述第二工作路径进行业务恢复。
  18. 如权利要求14-17中任一项所述的装置,其特征在于,所述装置还包括:
    发送单元,用于向所述恢复路径段的端节点发送第四配置消息,所述第四配置消息携带所述端节点的类型,所述端节点的类型包括所述恢复路径段的首节点或所述恢复路径段的末节点,所述恢复路径的段的首节点或所述恢复路径段的末节点具有路径恢复能力。
  19. 如权利要求14-18中任一项所述的装置,其特征在于,当所述装置为所述恢复路径段的首节点,所述路径确定单元确定所述第一工作路径和所述第二工作路径分别发生故障时,所述装置还包括:
    发送单元,用于向所述恢复路径段的相邻下游节点发送路径建立请求消息,所述路径建立请求消息携带所述第一ID。
  20. 如权利要求14-19中任一项所述的装置,其特征在于,当采用所述恢复路径段对所述第一工作路径和所述第二工作路径进行业务恢复时,所述装置还包括:
    接收单元,用于接收路径建立响应消息,所述路径建立响应消息指示所述第一工作路径的业务恢复结果和所述第二工作路径的业务恢复结果。
  21. 一种恢复路径配置的装置,其特征在于,所述装置包括:
    接收单元,用于接收来自网络设备的第一配置消息,所述第一配置消息携带第一标识ID,所述第一ID指示采用恢复路径段对第一工作路径和第二工作路径进行业务恢复,
    其中,所述恢复路径段为第一恢复路径和第二恢复路径的相同恢复路径段,所述第一恢复路径用于当所述第一工作路径发生故障时,对所述第一工作路径进行业务恢复,所述第二恢复路径用于当所述第二工作路径发生故障时,对所述第二工作路径进行业务恢复;
    保存单元,用于保存所述第一ID。
  22. 如权利要求21所述的装置,其特征在于,所述接收单元,还用于接收来自所述网络设备的第二配置消息,所述第二配置消息携带所述恢复路径段的路由信息。
  23. 如权利要求21或22所述的装置,其特征在于,所述接收单元,还用于接收来自所述网络设备的第三配置消息,所述第三配置消息携带所述第一恢复路径中所述恢复路径段的通道资源和所述第二恢复路径中所述恢复路径段的通道资源;
    所述第一ID指示采用所述恢复路径段对所述第一工作路径和所述第二工作路径进行业务恢复包括:
    所述第一ID指示采用所述第一恢复路径中所述恢复路径段的通道资源对所述第一工作路径进行业务恢复,以及采用所述第二恢复路径中所述恢复路径段的通道资源对所述第二工作路径进行业务恢复。
  24. 如权利要求21-23中任一项所述的装置,其特征在于,所述接收单元,还用于接收来自所述网络设备的第四配置消息,所述第四配置消息携带所述恢复路径段的端节点类型,所述端节点的类型包括所述恢复路径段的首节点或所述恢复路径段的末节点,所述恢复路径的段的首节点或所述恢复路径段的末节点具有路径恢复能力。
  25. 如权利要求21-24中任一项所述的装置,其特征在于,当所述装置为所述网络设备,所述装置确定所述第一工作路径和所述第二工作路径分别发生故障时,所述装置还包括:
    发送单元,用于向所述恢复路径段的相邻下游节点发送路径建立请求消息,所述路径建立请求消息携带所述第一ID。
  26. 如权利要求21-25中任一项所述的装置,其特征在于,当采用所述恢复路径段对所述第一工作路径和所述第二工作路径进行业务恢复时,所述装置还包括:
    发送单元,用于向所述网络设备发送路径建立响应消息,所述路径建立响应消息指示所述第一工作路径的业务恢复结果和所述第二工作路径的业务恢复结果。
  27. 一种光信号传输设备,其特征在于,包括如权利要求14至20中任一项所述的恢复路径配置的装置,或者包括如权利要求21至26中任一项所述的恢复路径配置的装置。
  28. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得如权利要求1至7中任一项所述的方法被执行,或者使得如权利要求8至13中任一项所述的方法被执行。
  29. 根据权利要求28所述的装置,其特征在于,所述存储器集成于所述处理器中。
  30. 根据权利要求28或29所述的装置,其特征在于,所述通信装置为芯片。
  31. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,所述计算机程序或指令用于实现如权利要求1至7中任一项所述的方法,或者实现如权利要求8至13中任一项所述的方法。
  32. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序被运行时,使得计算机执行如权利要求1至7中任一项所述的方法,或者执行如权利要求8至13中任一项所述的方法。
PCT/CN2021/078633 2020-03-26 2021-03-02 恢复路径配置的方法和装置 WO2021190256A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21774761.7A EP4109821A4 (en) 2020-03-26 2021-03-02 METHOD AND APPARATUS FOR CONFIGURING RESTORE PATHS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010224986.6A CN113453095B (zh) 2020-03-26 2020-03-26 恢复路径配置的方法和装置
CN202010224986.6 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021190256A1 true WO2021190256A1 (zh) 2021-09-30

Family

ID=77807615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078633 WO2021190256A1 (zh) 2020-03-26 2021-03-02 恢复路径配置的方法和装置

Country Status (3)

Country Link
EP (1) EP4109821A4 (zh)
CN (1) CN113453095B (zh)
WO (1) WO2021190256A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1953396A (zh) * 2006-11-13 2007-04-25 华为技术有限公司 一种实现流媒体保护倒换的方法及系统
CN101753409A (zh) * 2008-12-01 2010-06-23 华为技术有限公司 一种资源共享的方法、装置和系统
CN102104495A (zh) * 2009-12-18 2011-06-22 华为技术有限公司 共享Mesh保护的实现方法和设备及光网络系统
CN102668474A (zh) * 2010-01-04 2012-09-12 瑞典爱立信有限公司 共享路径恢复方案
EP2905971A1 (en) * 2014-02-05 2015-08-12 Alcatel Lucent Method for controlling protection switching in a communication network
CN111092813A (zh) * 2019-12-18 2020-05-01 新华三半导体技术有限公司 一种等价多路径ecmp切换方法、网络设备及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3705222B2 (ja) * 2002-02-06 2005-10-12 日本電気株式会社 パス設定方法及びそれを用いる通信ネットワーク並びにノード装置
CN100563354C (zh) * 2006-07-03 2009-11-25 华为技术有限公司 一种自动交换光网络中实现业务保护的方法
WO2011157130A2 (zh) * 2011-05-31 2011-12-22 华为技术有限公司 路径建立方法和装置
CN117856883A (zh) * 2020-09-27 2024-04-09 华为技术有限公司 一种业务保护方法和网络节点

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1953396A (zh) * 2006-11-13 2007-04-25 华为技术有限公司 一种实现流媒体保护倒换的方法及系统
CN101753409A (zh) * 2008-12-01 2010-06-23 华为技术有限公司 一种资源共享的方法、装置和系统
CN102104495A (zh) * 2009-12-18 2011-06-22 华为技术有限公司 共享Mesh保护的实现方法和设备及光网络系统
CN102668474A (zh) * 2010-01-04 2012-09-12 瑞典爱立信有限公司 共享路径恢复方案
EP2905971A1 (en) * 2014-02-05 2015-08-12 Alcatel Lucent Method for controlling protection switching in a communication network
CN111092813A (zh) * 2019-12-18 2020-05-01 新华三半导体技术有限公司 一种等价多路径ecmp切换方法、网络设备及系统

Also Published As

Publication number Publication date
CN113453095A (zh) 2021-09-28
EP4109821A4 (en) 2023-08-16
EP4109821A1 (en) 2022-12-28
CN113453095B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
US10432427B2 (en) Border gateway protocol for communication among software defined network controllers
KR101643911B1 (ko) 원격통신 네트워크에서 링크―다이버스 트래픽 경로들을 확립하기 위한 방법 및 관련 장치
US7680029B2 (en) Transmission apparatus with mechanism for reserving resources for recovery paths in label-switched network
EP2495918B1 (en) Method, system and node device for establishing label switch path
CN101997765B (zh) 多层网络中转发邻接的属性继承方法及相应的多层网络
EP1755240B1 (en) Method for performing association in automatic switching optical network
JP3830953B2 (ja) 伝送システム
KR20050036977A (ko) 네트워크 시스템, 스패닝 트리 구성 방법, 스패닝 트리 구성 노드, 및 스패닝 트리 구성 프로그램
US20140348028A1 (en) Method for creating ring network label switched path, related device, and communications system
CN102480368B (zh) 一种聚合链路的保护方法及系统
US20230254245A1 (en) Data Frame Sending Method and Network Device
WO2022063010A1 (zh) 一种业务保护方法和网络节点
WO2011157130A2 (zh) 路径建立方法和装置
JP2007500955A (ja) 伝送ネットワークにおける固定接続及び相手先選択接続間の移行のための方法
CN101588288A (zh) 链路属性信息的配置方法、通信设备与通信系统
US10135715B2 (en) Buffer flush optimization in Ethernet ring protection networks
CN100579025C (zh) 一种自动交换光网络的路由信息维护方法
CN102143410B (zh) 一种光网络中的路径计算方法及路径计算单元
WO2021190256A1 (zh) 恢复路径配置的方法和装置
JP2003318983A (ja) 光クロスコネクト網の障害回復方法
WO2015032203A1 (zh) 网元和环网保护的方法
WO2016165263A1 (zh) 路径的保护倒换处理方法、装置、系统及转发设备
CN105553864B (zh) 降低lmp中消息数量的方法及装置
KR100467327B1 (ko) 경로 설정 메시지를 이용한 네트워크 경로 정보 전달 방법
CN1889397B (zh) 一种智能光网络中的业务路径建立方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021774761

Country of ref document: EP

Effective date: 20220919

NENP Non-entry into the national phase

Ref country code: DE