WO2021189472A1 - Electrochemical device - Google Patents

Electrochemical device Download PDF

Info

Publication number
WO2021189472A1
WO2021189472A1 PCT/CN2020/081836 CN2020081836W WO2021189472A1 WO 2021189472 A1 WO2021189472 A1 WO 2021189472A1 CN 2020081836 W CN2020081836 W CN 2020081836W WO 2021189472 A1 WO2021189472 A1 WO 2021189472A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
porous layer
inorganic particles
electrochemical device
layer
Prior art date
Application number
PCT/CN2020/081836
Other languages
French (fr)
Chinese (zh)
Inventor
张益博
胡乔舒
王斌
邵颖
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202080096453.2A priority Critical patent/CN115088127B/en
Priority to PCT/CN2020/081836 priority patent/WO2021189472A1/en
Publication of WO2021189472A1 publication Critical patent/WO2021189472A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

An electrochemical device, comprising: a first pole piece, a first porous layer arranged on a surface of the first pole piece, and a second pole piece, wherein the first porous layer includes first polymer fibers and first inorganic particles. In the thickness direction of the first porous layer, the average pore diameter of pores formed by the first polymer fibers in a region away from the first pole piece is A μm, and the average pore diameter of pores formed by the first polymer fibers in a region close to the first pole piece is B μm; the average particle diameter of the first inorganic particles in the region away from the first pole piece is C μm, and the average particle diameter of the first inorganic particles in the region close to the first pole piece is D μm; and the following relationships are satisfied: (a) A > B; and (b) C > D. By means of the electrochemical device, the self-discharge problem and the electrical performance are both improved.

Description

电化学装置Electrochemical device 技术领域Technical field
本申请涉及一种电化学装置和包含所述电化学装置的电子装置,更具体地,本申请涉及一种锂离子电池及包含锂离子电池的电子装置。The present application relates to an electrochemical device and an electronic device including the electrochemical device. More specifically, the present application relates to a lithium ion battery and an electronic device including the lithium ion battery.
背景技术Background technique
锂离子电池具有能量密度高、循环寿命长、标称电压高(>3.7V)、自放电率低等许多优点,在消费电子领域具有广泛的应用。随着近年来电动汽车和可移动电子设备的高速发展,人们对锂离子电池的能量密度、安全性、循环性能等相关要求越来越高,期待着综合性能全面提升的新型锂离子电池的出现。其中,在锂离子电池的正负极之间设置一纤维多孔层代替传统的普通隔离膜是一种备受瞩目的新型技术。Lithium-ion batteries have many advantages, such as high energy density, long cycle life, high nominal voltage (>3.7V), and low self-discharge rate. They are widely used in the field of consumer electronics. With the rapid development of electric vehicles and portable electronic devices in recent years, people have higher and higher requirements for the energy density, safety, and cycle performance of lithium-ion batteries, and are looking forward to the emergence of new lithium-ion batteries with comprehensive performance improvements. . Among them, setting a fiber porous layer between the positive and negative electrodes of a lithium-ion battery to replace the traditional ordinary separator is a new technology that has attracted much attention.
采用纺丝的方法在电极极片表面制备的纤维多孔层可直接集成至电极极片的表面,无需传统工艺中单独制作隔离膜的步骤,可简化锂离子电池的生产流程,同时由于纺丝制备的纤维多孔层的厚度可以做得更薄,从而能够提高锂离子电池的能量密度;同时,纺丝制备的纤维多孔层还具有比传统隔离膜更高的孔隙率,从而可以提高锂离子电池的保液能力,因此受到了广泛关注。The fiber porous layer prepared on the surface of the electrode pole piece by the spinning method can be directly integrated into the surface of the electrode pole piece, without the need for a separate production step of the isolation membrane in the traditional process, which can simplify the production process of lithium ion batteries, and at the same time, due to the spinning preparation The thickness of the fiber porous layer can be made thinner, which can increase the energy density of the lithium ion battery; at the same time, the fiber porous layer prepared by spinning also has a higher porosity than the traditional separator, which can improve the lithium ion battery The ability to retain liquid has therefore received widespread attention.
现有纺丝技术制备的纤维多孔层的弊端明显。纤维多孔层孔径较小时,则纤维分布更加密集,与电极极片的界面粘结力好,抵挡颗粒刺穿的能力更强,但此时纤维多孔层孔隙率较低,不利于离子传输,组装成锂离子电池后对电学性能产生不利影响;纤维多孔层孔径较大时,纤维分布更加稀疏,孔隙率更高,有利于离子传输,组装成锂离子电池后对电学性能产生有利影响,但由于此时纤维多孔层孔隙率较大且机械强度较低,使得其抵挡电极极片中的颗粒刺穿的能力较弱,容易导致内短路发生,组装成锂离子电池后会有自放电过大的问题。The disadvantages of the fiber porous layer prepared by the existing spinning technology are obvious. When the pore size of the fiber porous layer is smaller, the fiber distribution is denser, the interface adhesion with the electrode pads is good, and the ability to resist particle piercing is stronger. However, the porosity of the fiber porous layer is low at this time, which is not conducive to ion transmission and assembly. After being formed into a lithium-ion battery, the electrical performance will be adversely affected; when the pore size of the fiber porous layer is larger, the fiber distribution is more sparse and the porosity is higher, which is conducive to ion transmission. At this time, the porous fiber layer has a large porosity and low mechanical strength, which makes its ability to withstand the penetration of particles in the electrode pads weak, which is likely to cause internal short circuits. After being assembled into a lithium-ion battery, there will be excessive self-discharge. problem.
发明内容Summary of the invention
本申请的目的是提供一种在电极表面设置多孔层的电化学装置,具有较强的抗穿刺能力和较高的电化学性能。The purpose of this application is to provide an electrochemical device with a porous layer provided on the surface of the electrode, which has strong puncture resistance and high electrochemical performance.
本申请第一方面提供了一种电化学装置,包括:The first aspect of the application provides an electrochemical device, including:
第一极片,以及设置在所述第一极片表面上的第一多孔层;A first pole piece, and a first porous layer disposed on the surface of the first pole piece;
第二极片;Second pole piece
其中,所述第一多孔层包含第一聚合物纤维和第一无机颗粒,在所述第一多孔层的厚度方向上,所述第一聚合物纤维在远离所述第一极片的区域形成的孔的平均孔径为Aμm,所述第一聚合物纤维在靠近所述第一极片的区域形成的孔的平均孔径为Bμm,所述第一无机颗粒在远离所述第一极片的区域的平均粒径为Cμm,所述第一无机颗粒在靠近所述第一极片的区域的平均粒径为Dμm,且满足如下关系:Wherein, the first porous layer includes first polymer fibers and first inorganic particles. In the thickness direction of the first porous layer, the first polymer fibers are located far away from the first pole piece. The average pore diameter of the pores formed in the region is Aμm, the average pore diameter of the pores formed by the first polymer fiber in the region close to the first pole piece is Bμm, and the first inorganic particles are moving away from the first pole piece. The average particle size of the region of is Cμm, and the average particle size of the first inorganic particles in the region close to the first pole piece is Dμm, and the following relationship is satisfied:
(a)A>B;(a) A>B;
(b)C>D。(b) C>D.
在本申请第一方面的一些实施方式中,所述第一多孔层包括第一层和第二层,所述第一层为靠近所述第一极片的区域,所述第二层为远离所述第一极片的区域。In some embodiments of the first aspect of the present application, the first porous layer includes a first layer and a second layer, the first layer is an area close to the first pole piece, and the second layer is The area away from the first pole piece.
在本申请第一方面的一些实施方式中,所述A的取值范围为0.05~5,所述B的取值范围为0.02~3,所述C的取值范围为0.01~10,所述D的取值范围为0.01~10。In some embodiments of the first aspect of the present application, the value range of A is 0.05-5, the value range of B is 0.02-3, and the value range of C is 0.01-10. The value of D ranges from 0.01 to 10.
在本申请第一方面的一些实施方式中,所述A、所述B、所述C和所述D满足以下关系中的至少一者:In some implementations of the first aspect of the present application, said A, said B, said C, and said D satisfy at least one of the following relationships:
(a)1.01≤A/B≤250;(a) 1.01≤A/B≤250;
(b)1.01≤C/D≤500;(b) 1.01≤C/D≤500;
(c)0.1≤C/A≤20;(c) 0.1≤C/A≤20;
(d)0.1≤D/B≤20。(d) 0.1≤D/B≤20.
在本申请第一方面的一些实施方式中,在所述第一多孔层的厚度方向上,所述第一无机颗粒的平均粒径从靠近所述第一极片的区域向远离所述第一极片的区域连续增大。In some embodiments of the first aspect of the present application, in the thickness direction of the first porous layer, the average particle size of the first inorganic particles ranges from a region close to the first pole piece to a distance away from the first pole piece. The area of a pole piece continuously increases.
在本申请第一方面的一些实施方式中,在所述第一多孔层的厚度方向上,所述第一聚合物纤维形成的孔的平均孔径从靠近所述第一极片的区域向远离所述第一极片的区域连续增大。In some embodiments of the first aspect of the present application, in the thickness direction of the first porous layer, the average pore diameter of the pores formed by the first polymer fiber moves away from the area close to the first pole piece. The area of the first pole piece continuously increases.
在本申请第一方面的一些实施方式中,其中所述第一聚合物纤维的直径为0.1nm~10μm。In some embodiments of the first aspect of the present application, the diameter of the first polymer fiber is 0.1 nm to 10 μm.
在本申请第一方面的一些实施方式中,所述第一多孔层的孔隙率为30%~95%;所述 第一多孔层的厚度为1μm~20μm。In some embodiments of the first aspect of the present application, the porosity of the first porous layer is 30% to 95%; the thickness of the first porous layer is 1 μm to 20 μm.
在本申请第一方面的一些实施方式中,每单位面积所述第一多孔层中所述第一无机颗粒的重量为0.004g/m 2~60g/m 2In some embodiments of the first aspect of the present application, the weight of the first inorganic particles in the first porous layer per unit area is 0.004 g/m 2 to 60 g/m 2 .
在本申请第一方面的一些实施方式中,所述第一聚合物纤维的成分包括聚偏二氟乙烯、聚酰亚胺、聚酰胺、聚丙烯腈、聚乙二醇、聚苯醚、聚碳酸亚丙酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚偏二氟乙烯-六氟丙烯、聚偏二氟乙烯-三氟氯乙烯或聚环氧乙烷中的至少一种。In some embodiments of the first aspect of the present application, the composition of the first polymer fiber includes polyvinylidene fluoride, polyimide, polyamide, polyacrylonitrile, polyethylene glycol, polyphenylene ether, poly Among the propylene carbonate, polymethyl methacrylate, polyethylene terephthalate, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-chlorotrifluoroethylene or polyethylene oxide At least one.
在本申请第一方面的一些实施方式中,所述第一无机颗粒包括HfO 2、SrTiO 3、SnO 2、CeO 2、MgO、NiO、CaO、BaO、ZnO、ZrO 2、Y 2O 3、Al 2O 3、TiO 2、SiO 2、勃姆石、氢氧化镁、氢氧化铝、磷酸锂、锂钛磷酸盐、锂铝钛磷酸盐、锂镧钛酸盐、锂锗硫代磷酸盐、锂氮化物、SiS 2玻璃、P 2S 5玻璃、Li 2O、LiF、LiOH、Li 2CO 3、LiAlO 2、Li 2O-Al 2O 3-SiO 2-P 2O 5-TiO 2-GeO 2陶瓷或石榴石陶瓷中的至少一种。 In some embodiments of the first aspect of the present application, the first inorganic particles include HfO 2 , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, BaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiO 2 , boehmite, magnesium hydroxide, aluminum hydroxide, lithium phosphate, lithium titanium phosphate, lithium aluminum titanium phosphate, lithium lanthanum titanate, lithium germanium thiophosphate, lithium Nitride, SiS 2 glass, P 2 S 5 glass, Li 2 O, LiF, LiOH, Li 2 CO 3 , LiAlO 2 , Li 2 O-Al 2 O 3 -SiO 2 -P 2 O 5 -TiO 2 -GeO 2 At least one of ceramics or garnet ceramics.
在本申请第一方面的一些实施方式中,所述第二极片还包括设置在所述第二极片表面上的第二多孔层,所述第二多孔层包括第二聚合物纤维和第二无机颗粒,所述第二聚合物纤维形成的孔的平均孔径为Eμm,所述第二无机颗粒的平均粒径为Fμm,且满足如下关系式:In some embodiments of the first aspect of the present application, the second pole piece further includes a second porous layer disposed on the surface of the second pole piece, and the second porous layer includes second polymer fibers And second inorganic particles, the average pore diameter of the pores formed by the second polymer fiber is Eμm, the average particle diameter of the second inorganic particles is Fμm, and the following relationship is satisfied:
(a)A>E;(a) A>E;
(b)C>F。(b) C>F.
在本申请第一方面的一些实施方式中,所述第一多孔层和所述第二多孔层相接触。In some embodiments of the first aspect of the present application, the first porous layer and the second porous layer are in contact.
本申请第二方面提供了一种电子装置,包含本申请第一方面所提供的电化学装置。The second aspect of the present application provides an electronic device, including the electrochemical device provided in the first aspect of the present application.
本申请的方案所提供的电化学装置,在极片表面设置多孔层,靠近极片的区域孔径小,纤维分布密集,因而与极片的粘结力强、抵挡正负极颗粒刺穿的能力强;远离极片的区域孔径大,离子传导能力强,有利于提高电化学装置的电学性能;采用粒径不同的无机颗粒填充于孔径不同的区域,从而进一步提高多孔层的机械强度,并优化多孔层的孔径分布,降低平均孔径,进而改善电化学装置自放电的问题。The electrochemical device provided by the solution of the present application has a porous layer on the surface of the pole piece, and the area close to the pole piece has a small pore size and dense fiber distribution. Therefore, it has strong adhesion to the pole piece and has the ability to resist the piercing of the positive and negative particles. Strong; the area far from the pole piece has a large pore size and strong ion conductivity, which is conducive to improving the electrical performance of the electrochemical device; using inorganic particles with different diameters to fill the areas with different pore diameters to further improve the mechanical strength of the porous layer and optimize The pore size distribution of the porous layer reduces the average pore size, thereby improving the self-discharge of the electrochemical device.
本申请中,术语“平均粒径”即指Dv50,Dv50表示在无机颗粒的体积基准的粒度分布中,从小粒径侧起、达到体积累计50%的粒径。In the present application, the term "average particle size" refers to Dv50, and Dv50 represents the particle size that reaches 50% of the cumulative volume from the small particle size side in the volume-based particle size distribution of inorganic particles.
附图说明Description of the drawings
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present application and the technical solutions of the prior art more clearly, the following briefly introduces the drawings that need to be used in the embodiments and the prior art. Obviously, the drawings in the following description are merely the present invention. For some of the embodiments of the application, for those of ordinary skill in the art, other drawings can be obtained based on these drawings without creative work.
图1为实施例1的电化学装置第一多孔层第二层的SEM图像。FIG. 1 is an SEM image of the first porous layer and the second layer of the electrochemical device of Example 1. FIG.
具体实施方式Detailed ways
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图和实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the objectives, technical solutions, and advantages of the present application clearer, the following further describes the present application in detail with reference to the accompanying drawings and embodiments. Obviously, the described embodiments are only a part of the embodiments of the present application, rather than all the embodiments. Based on the embodiments in this application, all other embodiments obtained by those skilled in the art without creative work shall fall within the protection scope of this application.
本申请的电化学装置可以是使用极片和多孔层的任何电化学装置,例如锂离子电池、超级电容器等,以下以锂离子电池为例进行说明。本领域技术人员应当理解,以下说明仅为举例说明,并不限定本申请的保护范围。The electrochemical device of the present application may be any electrochemical device using pole pieces and porous layers, such as lithium ion batteries, super capacitors, etc. The following uses lithium ion batteries as an example for description. Those skilled in the art should understand that the following description is only an example and does not limit the protection scope of the present application.
本申请第一方面提供了一种电化学装置,包括:The first aspect of the application provides an electrochemical device, including:
第一极片,以及设置在所述第一极片表面上的第一多孔层;A first pole piece, and a first porous layer disposed on the surface of the first pole piece;
第二极片;Second pole piece
其中,所述第一多孔层包含第一聚合物纤维和第一无机颗粒,在所述第一多孔层的厚度方向上,所述第一聚合物纤维在远离所述第一极片的区域形成的孔的平均孔径为Aμm,所述第一聚合物纤维在靠近所述第一极片的区域形成的孔的平均孔径为Bμm,所述第一无机颗粒在远离所述第一极片的区域的平均粒径为Cμm,所述第一无机颗粒在靠近所述第一极片的区域的平均粒径为Dμm,且满足如下关系:Wherein, the first porous layer includes first polymer fibers and first inorganic particles. In the thickness direction of the first porous layer, the first polymer fibers are located far away from the first pole piece. The average pore diameter of the pores formed in the region is Aμm, the average pore diameter of the pores formed by the first polymer fiber in the region close to the first pole piece is Bμm, and the first inorganic particles are moving away from the first pole piece. The average particle size of the region of is Cμm, and the average particle size of the first inorganic particles in the region close to the first pole piece is Dμm, and the following relationship is satisfied:
(a)A>B;(a) A>B;
(b)C>D。(b) C>D.
本申请中的电化学装置包括正极极片和负极极片,所述的第一极片可以是正极极片也可以是负极极片;所述的第一多孔层可以设置在正极极片表面上,也可以设置于负极极片的表面上;所述第一多孔层可以设置在正极极片和负极极片的一个表面,也可以形成于正极极片或负极极片的两个表面。The electrochemical device in this application includes a positive pole piece and a negative pole piece. The first pole piece may be a positive pole piece or a negative pole piece; the first porous layer may be provided on the surface of the positive pole piece. The upper part can also be arranged on the surface of the negative electrode piece; the first porous layer can be arranged on one surface of the positive electrode piece and the negative electrode piece, or can be formed on both surfaces of the positive electrode piece or the negative electrode piece.
本申请中,第一多孔层形成于第一极片上,其一面与第一极片接触,另一面不与第一极片接触;所述的“靠近所述第一极片的区域”是指多孔层从与第一极片接触的一面起,向多孔层中部延伸的区域,其厚度可以为多孔层厚度的10%~90%;所述的“远离所述第一极片的区域”是指从多孔层不与第一极片接触的一面起,向多孔层中部延伸的区域,其厚度可以为多孔层厚度的10%~90%;其中,靠近所述第一极片的区域与远离所述第一极片的区域可以直接连接,也可以在靠近所述第一极片的区域与远离所述第一极片的区域之间还包括中间区域,所述中间区域的平均孔径本申请不做限定,示例性的,中间区域的孔径可以介于A和B之间。In this application, the first porous layer is formed on the first pole piece, one side of which is in contact with the first pole piece, and the other side is not in contact with the first pole piece; the "area close to the first pole piece" is Refers to the area where the porous layer extends from the side in contact with the first pole piece to the middle of the porous layer, and its thickness can be 10% to 90% of the thickness of the porous layer; the “area away from the first pole piece” It refers to the area extending from the side of the porous layer that is not in contact with the first pole piece to the middle of the porous layer, and its thickness can be 10% to 90% of the thickness of the porous layer; wherein, the area close to the first pole piece is The area far away from the first pole piece may be directly connected, or an intermediate area may be included between the area close to the first pole piece and the area far away from the first pole piece. The average pore size of the intermediate area is The application is not limited. By way of example, the aperture of the middle region may be between A and B.
本申请中的多孔层,由聚合物纤维构成多孔基体,无机颗粒分布于所述多孔基体中。本申请中,聚合物纤维在不同区域形成的孔的孔径可以理解为不同区域中,多孔基体的孔径。发明人在研究中发现,不限于任何理论,本申请的多孔层,在靠近所述第一极片的区域,多孔基体平均孔径较小,聚合物纤维分布密集,可以实现与极片的高粘结,并同时保证其抵挡正负极颗粒刺穿的能力;远离所述第一极片的区域,多孔基体平均孔径较大,聚合物纤维分布疏松,提供高离子传导能力。同时,填充具有与多孔基体的孔径相匹配的粒径的无机颗粒,可以有效填充多孔基体的空隙,进一步提高了多孔层的机械强度、优化多孔层的孔径分布、降低平均孔径,进而改善电化学装置自放电的问题。The porous layer in the present application consists of a porous matrix composed of polymer fibers, and inorganic particles are distributed in the porous matrix. In this application, the pore diameters of the pores formed by the polymer fibers in different regions can be understood as the pore diameters of the porous matrix in different regions. The inventor found in research that, without being limited to any theory, the porous layer of the present application, in the area close to the first pole piece, the porous matrix has a smaller average pore size and densely distributed polymer fibers, which can achieve high adhesion to the pole piece. At the same time, the ability to withstand the piercing of the positive and negative electrodes is ensured; the area far away from the first pole piece has a larger average pore size of the porous matrix, a loose distribution of polymer fibers, and provides high ion conductivity. At the same time, filling inorganic particles with a particle size matching the pore size of the porous matrix can effectively fill the voids of the porous matrix, further improve the mechanical strength of the porous layer, optimize the pore size distribution of the porous layer, reduce the average pore size, and improve electrochemistry. The problem of self-discharge of the device.
在本申请第一方面的一些实施方式中,1.01≤A/B≤250。In some embodiments of the first aspect of the present application, 1.01≤A/B≤250.
在本申请第一方面的一些实施方式中,1.01≤C/D≤500。In some embodiments of the first aspect of the present application, 1.01≤C/D≤500.
所述聚合物纤维在不同区域形成的平均孔径没有特别限制,只要能够实现本申请目的即可;例如第一聚合物纤维在远离所述第一极片的区域形成的孔的平均孔径可以为50nm~5μm,即A的取值范围为0.05~5;第一聚合物纤维在靠近所述第一极片的区域形成的孔的平均孔径可以为20nm~3μm,B的取值范围为0.02~3。The average pore diameter of the polymer fiber formed in different regions is not particularly limited, as long as the purpose of the application can be achieved; for example, the average pore diameter of the pores formed by the first polymer fiber in the region away from the first pole piece may be 50 nm ~5μm, that is, the value range of A is 0.05-5; the average pore diameter of the holes formed by the first polymer fiber in the region close to the first pole piece can be 20nm-3μm, and the value of B is 0.02-3 .
所述无机颗粒的平均粒径没有特别限制,只要能够实现本申请目的即可;例如第一无机颗粒在远离所述第一极片的区域的平均粒径可以为10nm~10μm,即C的取值范围为0.01~10,第一无机颗粒在靠近所述第一极片的区域的平均粒径可以为10nm~10μm,即D的取值范围为0.01~10。The average particle diameter of the inorganic particles is not particularly limited, as long as the purpose of the application can be achieved; for example, the average particle diameter of the first inorganic particles in the region far away from the first pole piece may be 10 nm to 10 μm, that is, the value of C The value range is 0.01-10, and the average particle diameter of the first inorganic particles in the region close to the first pole piece may be 10 nm-10 μm, that is, the value range of D is 0.01-10.
发明人在研究中还发现,不同区域中,无机颗粒的平均粒径与多孔基体的平均孔径之间需要具备一定的匹配关系,无机颗粒的平均粒径过小,则无法有效填充多孔基体的孔隙, 无法起到改善多孔层机械强度,以及降低多孔层平均孔径的目的;而无机颗粒的平均粒径过大,不仅无法有效将多孔层的多孔基体的孔隙填充,还会导致多孔层整体厚度被撑大,厚度均一性遭到破坏;在本申请第一方面的一些实施方式中,0.1≤C/A≤20;优选为0.5≤C/A≤3.0;更优选为1.5;在本申请第一方面的另一些实施方式中,0.1≤D/B≤20;优选为0.5~3.0;更优选为1.5。The inventor also found in the research that in different regions, the average particle size of the inorganic particles and the average pore size of the porous matrix need to have a certain matching relationship. If the average particle size of the inorganic particles is too small, the pores of the porous matrix cannot be effectively filled. , It cannot achieve the purpose of improving the mechanical strength of the porous layer and reducing the average pore diameter of the porous layer; and the average particle size of the inorganic particles is too large, not only cannot effectively fill the pores of the porous matrix of the porous layer, but also causes the overall thickness of the porous layer to be reduced. In some embodiments of the first aspect of this application, 0.1≤C/A≤20; preferably 0.5≤C/A≤3.0; more preferably 1.5; in some embodiments of the first aspect of this application, In other embodiments of the aspect, 0.1≤D/B≤20; preferably 0.5 to 3.0; more preferably 1.5.
在本申请第一方面的一些实施方式中,在所述第一多孔层的厚度方向上,所述第一无机颗粒的平均粒径从靠近所述第一极片的区域向远离所述第一极片的区域连续增大;例如可以线性增大或非线性增大,例如多孔基体孔径变化的方式可以是梯度变化:即由小孔径区域逐渐过渡到大孔径与小孔径混杂区域,再过渡到大孔径区域,大孔径区域与小孔径区域无明显界面。In some embodiments of the first aspect of the present application, in the thickness direction of the first porous layer, the average particle size of the first inorganic particles ranges from a region close to the first pole piece to a distance away from the first pole piece. The area of a pole piece increases continuously; for example, it can increase linearly or non-linearly. For example, the pore size of the porous matrix can be changed in a gradient way: that is, it gradually transitions from a small pore area to a mixed area of large pores and small pores, and then transitions In the large aperture area, there is no obvious interface between the large aperture area and the small aperture area.
在本申请第一方面的一些实施方式中,在所述第一多孔层的厚度方向上,所述第一无机颗粒的平均粒径从靠近所述第一极片的区域向远离所述第一极片的区域连续增大。In some embodiments of the first aspect of the present application, in the thickness direction of the first porous layer, the average particle size of the first inorganic particles ranges from a region close to the first pole piece to a distance away from the first pole piece. The area of a pole piece continuously increases.
在本申请第一方面的一些实施方式中,所述第一多孔层包括第一层和第二层,所述第一层为靠近所述第一极片的区域,所述第二层为远离所述第一极片的区域。In some embodiments of the first aspect of the present application, the first porous layer includes a first layer and a second layer, the first layer is an area close to the first pole piece, and the second layer is The area away from the first pole piece.
在本申请第一方面的另一些实施方式中,所述第一多孔层还包含中间层,所述中间层位于第一层和第二层之间,第一层、中间层、第二层的平均孔径层依次增大,可以理解为,多孔基体平均孔径的变化是急剧变化,即大孔径区域与小孔径区域有明显界面。在本申请第一方面的一些实施方式中,所述第一聚合物纤维的直径为0.1nm~10μm。聚合物纤维的直径过小,纤维本身的强度太低,在锂离子电池制备或使用过程中,容易导致聚合物纤维断开,多孔层被正负极活性物质颗粒刺穿,发生自放电;聚合物纤维直径过大,则多孔层中聚合物纤维占据的体积太大,在多孔层含有相同重量的纳米纤维时,可能导致多孔层的孔径过大。在多孔层保持相同孔隙率的情况下,纳米纤维含量降低,导致多孔层强度降低,孔径尺寸过大。In other embodiments of the first aspect of the present application, the first porous layer further includes an intermediate layer, the intermediate layer is located between the first layer and the second layer, the first layer, the intermediate layer, and the second layer The average pore size of the layer increases successively, which can be understood as the change of the average pore size of the porous matrix is a sharp change, that is, there is an obvious interface between the large pore area and the small pore area. In some embodiments of the first aspect of the present application, the diameter of the first polymer fiber is 0.1 nm-10 μm. The diameter of the polymer fiber is too small and the strength of the fiber itself is too low. During the preparation or use of the lithium-ion battery, the polymer fiber is easily broken, and the porous layer is pierced by the positive and negative active material particles, causing self-discharge; polymerization; If the diameter of the material fiber is too large, the volume occupied by the polymer fibers in the porous layer is too large. When the porous layer contains nanofibers of the same weight, the pore size of the porous layer may be too large. In the case that the porous layer maintains the same porosity, the content of nanofibers decreases, resulting in a decrease in the strength of the porous layer and an excessively large pore size.
在本申请第一方面的一些实施方式中,所述第一多孔层的孔隙率为30%~95%。发明人在研究中发现,孔隙率过小,会导致离子传输通路堵塞,阻碍电化学装置正常充放电;孔隙率过大,会导致多孔层结构不稳定,机械强度太差,无法抵抗极片表面颗粒的刺穿。In some embodiments of the first aspect of the present application, the porosity of the first porous layer is 30%-95%. The inventor found in the research that too small porosity will cause blockage of the ion transmission path and hinder the normal charging and discharging of the electrochemical device; too large porosity will cause the porous layer structure to be unstable, and the mechanical strength is too poor to resist the surface of the pole piece. Piercing of particles.
所述第一多孔层的厚度没有特别限制,优选小于现有技术隔离膜的厚度,例如本申请的多孔层的厚度可以为1μm~20μm,优选为5μm~10μm。第一多孔层的厚度小,可以提高 电化学装置的能量密度。The thickness of the first porous layer is not particularly limited, and is preferably smaller than the thickness of the prior art isolation membrane. For example, the thickness of the porous layer of the present application may be 1 μm to 20 μm, preferably 5 μm to 10 μm. The thickness of the first porous layer is small, which can increase the energy density of the electrochemical device.
在本申请第一方面的一些实施方式中,每单位面积所述第一多孔层中所述第一无机颗粒的重量为0.004g/m 2~60g/m 2In some embodiments of the first aspect of the present application, the weight of the first inorganic particles in the first porous layer per unit area is 0.004 g/m 2 to 60 g/m 2 .
所述第一聚合物纤维的聚合物类型没有特别限制,只要可以形成本申请的第一多孔层即可。例如所述第一聚合物纤维的成分可以包括聚偏二氟乙烯(PVDF)、聚酰亚胺(PI)、聚酰胺(PA)、聚丙烯腈(PAN)、聚乙二醇(PEG)、聚苯醚(PPE)、聚碳酸亚丙酯(PPC)、聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二醇酯(PET),聚偏二氟乙烯-六氟丙烯(PVDF-HFP)、聚偏二氟乙烯-三氟氯乙烯、聚环氧乙烷(PEO)或衍生物中的至少一种;优选为聚偏二氟乙烯-六氟丙烯(PVDF-HFP)、聚偏二氟乙烯(PVDF)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯(PMMA)、聚苯醚(PPO)、聚碳酸亚丙酯(PPC)、聚环氧乙烷(PEO)中的至少一种。这些聚合物可以单独使用一种,也可以两种以上组合使用。The polymer type of the first polymer fiber is not particularly limited, as long as it can form the first porous layer of the present application. For example, the composition of the first polymer fiber may include polyvinylidene fluoride (PVDF), polyimide (PI), polyamide (PA), polyacrylonitrile (PAN), polyethylene glycol (PEG), Polyphenylene ether (PPE), polypropylene carbonate (PPC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyvinylidene fluoride-hexafluoropropylene (PVDF) -HFP), polyvinylidene fluoride-chlorotrifluoroethylene, polyethylene oxide (PEO) or at least one of its derivatives; preferably polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP), poly Vinylidene fluoride (PVDF), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), polyphenylene ether (PPO), polypropylene carbonate (PPC), polyethylene oxide (PEO) At least one of. These polymers may be used alone or in combination of two or more kinds.
所述第一无机颗粒没有特别限制,例如可以选自HfO 2、SrTiO 3、SnO 2、CeO 2、MgO、NiO、CaO、BaO、ZnO、ZrO 2、Y 2O 3、Al 2O 3、TiO 2、SiO 2、勃姆石、氢氧化镁、氢氧化铝、磷酸锂(Li 3PO 4)、锂钛磷酸盐(Li xTi y(PO 4) 3,其中0<x<2且0<y<3)、锂铝钛磷酸盐(Li xAl yTi z(PO 4) 3,其中0<x<2,0<y<1,且0<z<3)、Li 1+x+y(Al,Ga) x(Ti,Ge) 2-xSi yP 3-yO 12,其中0≤x≤1且0≤y≤1、锂镧钛酸盐(Li xLa yTiO 3,其中0<x<2且0<y<3)、锂锗硫代磷酸盐(Li xGe yP zS w,其中0<x<4,0<y<1,0<z<1,且0<w<5)、锂氮化物(Li xN y,其中0<x<4,0<y<2)、SiS 2玻璃(Li xSi yS z,其中0≤x<3,0<y<2,且0<z<4)、P 2S 5玻璃(Li xP yS z,其中0≤x<3,0<y<3,且0<z<7)、Li 2O、LiF、LiOH、Li 2CO 3、LiAlO 2、Li 2O-Al 2O 3-SiO 2-P 2O 5-TiO 2-GeO 2陶瓷或石榴石陶瓷(Li 3+xLa 3M 2O 12,其中0≤x≤5,且M为Te、Nb、或Zr)中的任意一种或至少两种的混合物。 The first inorganic particles are not particularly limited. For example, they can be selected from HfO 2 , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, BaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2. SiO 2 , boehmite, magnesium hydroxide, aluminum hydroxide, lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , where 0<x<2 and 0<y<3), lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , where 0<x<2, 0<y<1, and 0<z<3), Li 1+x+y (Al,Ga) x (Ti,Ge) 2-x Si y P 3-y O 12 , where 0≤x≤1 and 0≤y≤1, lithium lanthanum titanate (Li x La y TiO 3 , where 0<x<2 and 0<y<3), lithium germanium thiophosphate (Li x Ge y P z S w , where 0<x<4, 0<y<1, 0<z<1, and 0 <w<5), lithium nitride (Li x N y , where 0<x<4, 0<y<2), SiS 2 glass (Li x Si y S z , where 0≤x<3, 0<y <2, and 0<z<4), P 2 S 5 glass (Li x P y S z , where 0≤x<3, 0<y<3, and 0<z<7), Li 2 O, LiF , LiOH, Li 2 CO 3 , LiAlO 2 , Li 2 O-Al 2 O 3 -SiO 2 -P 2 O 5 -TiO 2 -GeO 2 ceramics or garnet ceramics (Li 3+x La 3 M 2 O 12 , Wherein 0≤x≤5, and M is any one of Te, Nb, or Zr) or a mixture of at least two of them.
在本申请第一方面的一些实施方式中,所述第二极片还包括设置在所述第二极片表面上的第二多孔层,所述第二多孔层包括第二聚合物纤维和第二无机颗粒,所述第二聚合物纤维形成的孔的平均孔径为Eμm,所述第二无机颗粒的平均粒径为Fμm,且满足如下关系式:In some embodiments of the first aspect of the present application, the second pole piece further includes a second porous layer disposed on the surface of the second pole piece, and the second porous layer includes second polymer fibers And second inorganic particles, the average pore diameter of the pores formed by the second polymer fiber is Eμm, the average particle diameter of the second inorganic particles is Fμm, and the following relationship is satisfied:
(a)A>E;(a) A>E;
(b)C>F。(b) C>F.
本申请中,第一多孔层可以直接在第一极片表面加工获得,在组装电化学装置时,其与第二极片接触并粘结;在本申请的一个优选的实施方式中,在第二极片的表面设置第二 多孔层,组装电化学装置时,第二多孔层与第一多孔层相接触,能够进一步提高极片和多孔层之间的粘结力。In this application, the first porous layer can be directly processed on the surface of the first pole piece. When assembling the electrochemical device, it contacts and bonds with the second pole piece; in a preferred embodiment of the present application, The surface of the second pole piece is provided with a second porous layer. When the electrochemical device is assembled, the second porous layer is in contact with the first porous layer, which can further improve the adhesion between the pole piece and the porous layer.
在本申请第一方面的一些实施方式中,所述第二聚合物纤维的直径可以为0.1nm~10μm。所述第二聚合物纤维的直径可以和第一聚合物纤维相同或不同。In some embodiments of the first aspect of the present application, the diameter of the second polymer fiber may be 0.1 nm to 10 μm. The diameter of the second polymer fiber may be the same as or different from that of the first polymer fiber.
在本申请第一方面的一些实施方式中,所述第二多孔层的孔隙率为30%~95%。所述第二多孔层的孔隙率可以和所述第一多孔层相同或者不同。In some embodiments of the first aspect of the present application, the porosity of the second porous layer is 30%-95%. The porosity of the second porous layer may be the same as or different from that of the first porous layer.
所述第二多孔层的厚度没有特别限制,例如可以为1μm~5μm。The thickness of the second porous layer is not particularly limited, and may be, for example, 1 μm to 5 μm.
所述第二多孔层中第二无机颗粒的重量没有特别限定,例如可以为0.004g/m 2~60g/m 2,所述第二无机颗粒的的重量可以与第一无机颗粒的重量相同或者不同。 The weight of the second inorganic particles in the second porous layer is not particularly limited, for example, it may be 0.004 g/m 2 to 60 g/m 2 , and the weight of the second inorganic particles may be the same as the weight of the first inorganic particles. Or different.
所述第二聚合物纤维的聚合物类型没有特别限制,只要可以形成本申请的第二多孔层即可。例如所述第二聚合物纤维的成分可以包括聚偏二氟乙烯(PVDF)、聚酰亚胺(PI)、聚酰胺(PA)、聚丙烯腈(PAN)、聚乙二醇(PEG)、聚苯醚(PPE)、聚碳酸亚丙酯(PPC)、聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二醇酯(PET),聚偏二氟乙烯-六氟丙烯(PVDF-HFP)、聚偏二氟乙烯-三氟氯乙烯、聚环氧乙烷(PEO)或衍生物中的至少一种;优选为聚偏二氟乙烯-六氟丙烯(PVDF-HFP)、聚偏二氟乙烯(PVDF)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯(PMMA)、聚苯醚(PPO)、聚碳酸亚丙酯(PPC)、聚环氧乙烷(PEO)中的至少一种。这些聚合物可以单独使用一种,也可以两种以上组合使用;第二聚合物纤维所采用的聚合物可以和第一聚合物纤维相同,也可以不同。The polymer type of the second polymer fiber is not particularly limited, as long as it can form the second porous layer of the present application. For example, the composition of the second polymer fiber may include polyvinylidene fluoride (PVDF), polyimide (PI), polyamide (PA), polyacrylonitrile (PAN), polyethylene glycol (PEG), Polyphenylene ether (PPE), polypropylene carbonate (PPC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyvinylidene fluoride-hexafluoropropylene (PVDF) -HFP), polyvinylidene fluoride-chlorotrifluoroethylene, polyethylene oxide (PEO) or at least one of its derivatives; preferably polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP), poly Vinylidene fluoride (PVDF), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), polyphenylene ether (PPO), polypropylene carbonate (PPC), polyethylene oxide (PEO) At least one of. These polymers may be used alone or in combination of two or more; the polymer used in the second polymer fiber may be the same as or different from the first polymer fiber.
所述第二无机颗粒没有特别限制,例如可以选自HfO 2、SrTiO 3、SnO 2、CeO 2、MgO、NiO、CaO、BaO、ZnO、ZrO 2、Y 2O 3、Al 2O 3、TiO 2、SiO 2、勃姆石、氢氧化镁、氢氧化铝、磷酸锂(Li 3PO 4)、锂钛磷酸盐(Li xTi y(PO 4) 3,其中0<x<2且0<y<3)、锂铝钛磷酸盐(Li xAl yTi z(PO 4) 3,其中0<x<2,0<y<1,且0<z<3)、Li 1+x+y(Al,Ga) x(Ti,Ge) 2-xSi yP 3-yO 12,其中0≤x≤1且0≤y≤1、锂镧钛酸盐(Li xLa yTiO 3,其中0<x<2且0<y<3)、锂锗硫代磷酸盐(Li xGe yP zS w,其中0<x<4,0<y<1,0<z<1,且0<w<5)、锂氮化物(Li xN y,其中0<x<4,0<y<2)、SiS 2玻璃(Li xSi yS z,其中0≤x<3,0<y<2,且0<z<4)、P 2S 5玻璃(Li xP yS z,其中0≤x<3,0<y<3,且0<z<7)、Li 2O、LiF、LiOH、Li 2CO 3、LiAlO 2、Li 2O-Al 2O 3-SiO 2-P 2O 5-TiO 2-GeO 2陶瓷或石榴石陶瓷(Li 3+xLa 3M 2O 12,其中0≤x≤5,且M为Te、Nb、或Zr)中的任意一种或至少两种的混合物。 The second inorganic particles are not particularly limited. For example, they can be selected from HfO 2 , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, BaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2. SiO 2 , boehmite, magnesium hydroxide, aluminum hydroxide, lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , where 0<x<2 and 0<y<3), lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , where 0<x<2, 0<y<1, and 0<z<3), Li 1+x+y (Al,Ga) x (Ti,Ge) 2-x Si y P 3-y O 12 , where 0≤x≤1 and 0≤y≤1, lithium lanthanum titanate (Li x La y TiO 3 , where 0<x<2 and 0<y<3), lithium germanium thiophosphate (Li x Ge y P z S w , where 0<x<4, 0<y<1, 0<z<1, and 0 <w<5), lithium nitride (Li x N y , where 0<x<4, 0<y<2), SiS 2 glass (Li x Si y S z , where 0≤x<3, 0<y <2, and 0<z<4), P 2 S 5 glass (Li x P y S z , where 0≤x<3, 0<y<3, and 0<z<7), Li 2 O, LiF , LiOH, Li 2 CO 3 , LiAlO 2 , Li 2 O-Al 2 O 3 -SiO 2 -P 2 O 5 -TiO 2 -GeO 2 ceramics or garnet ceramics (Li 3+x La 3 M 2 O 12 , Wherein 0≤x≤5, and M is any one of Te, Nb, or Zr) or a mixture of at least two of them.
本申请的电化学装置中,第二无机颗粒可以和第一无机颗粒相同,也可以不同。In the electrochemical device of the present application, the second inorganic particles may be the same as or different from the first inorganic particles.
本申请中,沉积聚合物纤维和无机颗粒的方法没有特别限制,可以采用本领域公知的沉积方法进行,例如,所述多孔基体通过电纺丝、气纺丝或离心纺丝制备而成,所述无机颗粒通过电沉积法填充于多孔基体中。沉积聚合物纤维和无机颗粒的顺序没有特别限制,只要能够形成本申请的多孔层即可,本申请的多孔层包含聚合物纤维形成的多孔基体和分布在所述多孔基体中的无机颗粒。例如,所述聚合物纤维和对应粒径尺寸的无机颗粒可以同时沉积。In this application, the method of depositing polymer fibers and inorganic particles is not particularly limited, and can be carried out by using deposition methods known in the art. For example, the porous matrix is prepared by electrospinning, air spinning or centrifugal spinning, so The inorganic particles are filled in the porous matrix by electrodeposition. The order of depositing polymer fibers and inorganic particles is not particularly limited, as long as the porous layer of the present application can be formed, and the porous layer of the present application includes a porous matrix formed by polymer fibers and inorganic particles distributed in the porous matrix. For example, the polymer fibers and inorganic particles of corresponding particle size can be deposited at the same time.
本申请的多孔层可以用本领域已知的任何纺丝设备实施,没有特别限制,只要能实现本申请目的即可,可以使用本领域已知的任何纺丝设备,例如电纺丝设备可以为永康乐业Elite系列等;气纺丝设备可以为南京捷纳思新材料的气喷纺丝机等;离心纺丝设备可以为四川致研科技的离心纺丝机等。所述电沉积法可以用本领域已知的任何设备实施,没有特别限制,只要能实现本申请的目的即可。例如可以使用法国萨麦斯的静电喷涂设备。The porous layer of the present application can be implemented with any spinning equipment known in the art, and is not particularly limited, as long as the purpose of the application can be achieved, and any spinning equipment known in the art can be used. For example, the electrospinning equipment can be Yongkang Leye Elite series, etc.; the air spinning equipment can be the air jet spinning machine of Nanjing Genus New Material; the centrifugal spinning equipment can be the centrifugal spinning machine of Sichuan Zhiyan Technology. The electrodeposition method can be implemented with any equipment known in the art, and is not particularly limited, as long as the purpose of the application can be achieved. For example, the electrostatic spraying equipment of Samez, France can be used.
根据本申请的锂离子电池的型式没有限制,可以为任何型式的锂离子电池,例如纽扣型、圆柱形、软包型锂离子电池等任何型式。根据本申请的锂离子电池包括正极、负极、电解液和根据本申请的多孔层。在本申请的一种实施方式中,第一多孔层可以形成在正极极片的两个表面上,然后按照负极极片、第一多孔层+正极极片+第一多孔层的方式进行叠层,形成锂离子电池层叠体,其中负极极片表面上没有多孔层。在本申请的另一种实施方式中,第一多孔层可以形成在负极极片的两个表面上,然后按照第一多孔层+负极极片+第一多孔层、正极极片的方式进行层叠,形成锂离子电池层叠体。在本申请的另一些实施方式中,第一多孔层可以形成在正极极片的两个表面上,第二多孔层形成于负极极片上,然后按照第二多孔层+负极极片+第二多孔层、第一多孔层+正极极片+第一多孔层的方式进行叠层,形成锂离子电池层叠体;或者第一多孔层形成在负极极片的两个表面上,第二多孔层形成于正极极片上,然后按照第二多孔层+正极极片+第二多孔层、第一多孔层+负极极片+第一多孔层的方式进行叠层,形成锂离子电池层叠体。在上述实施方式中形成的层叠体,可以继续按照上述顺序层叠,也可以直接卷绕,形成多层的锂离子电池层叠体。本申请对于层叠方式没有限制,本领域技术人员可以根据实际情况进行选择。The type of the lithium ion battery according to the present application is not limited, and can be any type of lithium ion battery, such as button type, cylindrical type, soft pack type lithium ion battery and the like. The lithium ion battery according to the present application includes a positive electrode, a negative electrode, an electrolyte, and a porous layer according to the present application. In an embodiment of the present application, the first porous layer may be formed on both surfaces of the positive pole piece, and then follow the manner of the negative pole piece, the first porous layer + the positive pole piece + the first porous layer The lamination is carried out to form a lithium ion battery laminate in which there is no porous layer on the surface of the negative electrode piece. In another embodiment of the present application, the first porous layer may be formed on both surfaces of the negative electrode piece, and then follow the order of the first porous layer + negative electrode piece + first porous layer and positive electrode piece. Lithium-ion battery laminates are formed by stacking in the same manner. In other embodiments of the present application, the first porous layer may be formed on both surfaces of the positive pole piece, the second porous layer is formed on the negative pole piece, and then the second porous layer + negative pole piece + The second porous layer, the first porous layer + the positive pole piece + the first porous layer are laminated to form a lithium ion battery laminate; or the first porous layer is formed on both surfaces of the negative pole piece , The second porous layer is formed on the positive pole piece, and then laminated in the manner of second porous layer + positive pole piece + second porous layer, first porous layer + negative pole piece + first porous layer , Forming a lithium ion battery laminate. The laminated body formed in the above-mentioned embodiment may continue to be laminated in the above-mentioned order, or it may be directly wound to form a multilayer lithium ion battery laminated body. This application does not limit the stacking mode, and those skilled in the art can make a selection according to the actual situation.
在本申请的实施方案中,正极极片没有特别限制,只要能够实现本申请目的即可。例如,所述正极极片通常包含正极集电体和正极活性材料层,正极活性材料层包括正极活性材料。其中,所述正极集电体没有特别限制,可以为本领域公知的任何正极集电体,例如 铜箔、铝箔、铝合金箔以及复合集电体等。所述正极活性材料没有特别限制,可以为现有技术的任何正极活性材料,例如,所述活性物质选自镍钴锰酸锂、镍钴铝酸锂、磷酸铁锂、钴酸锂、锰酸锂、磷酸锰铁锂中的至少一种。In the embodiments of the present application, the positive pole piece is not particularly limited, as long as the purpose of the present application can be achieved. For example, the positive pole piece usually includes a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer includes a positive electrode active material. Wherein, the positive electrode current collector is not particularly limited, and may be any positive electrode current collector known in the art, such as copper foil, aluminum foil, aluminum alloy foil, and composite current collector. The positive electrode active material is not particularly limited, and can be any positive electrode active material in the prior art. For example, the active material is selected from lithium nickel cobalt manganate, lithium nickel cobalt aluminate, lithium iron phosphate, lithium cobalt oxide, and manganese acid. At least one of lithium and lithium iron manganese phosphate.
任选地,所述正极极片还可以包含导电层,所述导电层位于正极集电体和正极活性材料之间。所述导电层的组成没有特别限制,可以是本领域常用的导电层。Optionally, the positive pole piece may further include a conductive layer located between the positive electrode current collector and the positive electrode active material. The composition of the conductive layer is not particularly limited, and may be a conductive layer commonly used in the art.
在本申请的实施方案中,负极极片没有特别限制,只要能够实现本申请目的即可。例如,所述负极极片通常包含负极集电体和负极活性材料层,正极活性材料层包括正极活性材料。其中,所述负极集电体没有特别限制,可以使用本领域公知的任何负极集电体,例如铜箔、铝箔、铝合金箔以及复合集电体等。所述负极活性材料没有特别限制,可以使用本领域公知的任何负极活性材料。例如,可以包括人造石墨、天然石墨、中间相碳微球、硅、硅碳、硅氧化合物、软碳、硬碳、钛酸锂或钛酸铌等中的至少一种。In the embodiments of the present application, the negative pole piece is not particularly limited, as long as it can achieve the purpose of the present application. For example, the negative electrode sheet generally includes a negative electrode current collector and a negative electrode active material layer, and the positive electrode active material layer includes a positive electrode active material. Wherein, the negative electrode current collector is not particularly limited, and any negative electrode current collector known in the art can be used, such as copper foil, aluminum foil, aluminum alloy foil, and composite current collectors. The negative active material is not particularly limited, and any negative active material known in the art can be used. For example, it may include at least one of artificial graphite, natural graphite, mesophase carbon microspheres, silicon, silicon carbon, silicon oxygen compound, soft carbon, hard carbon, lithium titanate, or niobium titanate.
锂离子电池的电解液没有特别限制,可以使用本领域公知的任何电解液,所述可以是凝胶态、固态和液态中的任一种。例如,所述液态电解液包括锂盐和非水溶剂。The electrolyte of the lithium ion battery is not particularly limited, and any electrolyte known in the art can be used, and the electrolyte can be any of a gel state, a solid state, and a liquid state. For example, the liquid electrolyte includes a lithium salt and a non-aqueous solvent.
所述锂盐没有特别限制,可以使用本领域公知的任何锂盐,只要能实现本申请的目的即可。例如,锂盐可以选自LiPF 6、LiBF 4、LiAsF 6、LiClO 4、LiB(C 6H 5) 4、LiCH 3SO 3、LiCF 3SO 3、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3和LiPO 2F 2中的至少一种。例如,锂盐可选用LiPF 6The lithium salt is not particularly limited, and any lithium salt known in the art can be used as long as the purpose of the application can be achieved. For example, the lithium salt can be selected from LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB(C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 and at least one of LiPO 2 F 2. For example, LiPF 6 can be used as the lithium salt.
所述非水溶剂没有特别限定,只要能实现本申请的目的即可。例如,非水溶剂可以选择碳酸酯化合物、羧酸酯化合物、醚化合物、腈化合物、其它有机溶剂中的至少一种。The non-aqueous solvent is not particularly limited, as long as it can achieve the purpose of the present application. For example, as the non-aqueous solvent, at least one of carbonate compounds, carboxylate compounds, ether compounds, nitrile compounds, and other organic solvents can be selected.
例如,碳酸酯化合物可以选择碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸甲乙酯(MEC)、碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸乙烯基亚乙酯(VEC)、碳酸氟代亚乙酯(FEC)、碳酸1,2-二氟亚乙酯、碳酸1,1-二氟亚乙酯、碳酸1,1,2-三氟亚乙酯、碳酸1,1,2,2-四氟亚乙酯、碳酸1-氟-2-甲基亚乙酯、碳酸1-氟-1-甲基亚乙酯、碳酸1,2-二氟-1-甲基亚乙酯、碳酸1,1,2-三氟-2-甲基亚乙酯、碳酸三氟甲基亚乙酯中的至少一种。For example, the carbonate compound can be selected from diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethylene propyl carbonate (EPC), methyl ethyl carbonate Ester (MEC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinyl ethylene carbonate (VEC), fluoroethylene carbonate (FEC), carbonic acid 1 ,2-Difluoroethylene, 1,1-difluoroethylene carbonate, 1,1,2-trifluoroethylene carbonate, 1,1,2,2-tetrafluoroethylene carbonate, 1 -Fluoro-2-methylethylene, 1-fluoro-1-methylethylene carbonate, 1,2-difluoro-1-methylethylene carbonate, 1,1,2-trifluorocarbonate- At least one of 2-methylethylene and trifluoromethylethylene carbonate.
本申请的另一个方面提供一种电子装置,其包含根据本申请的电化学装置。Another aspect of the present application provides an electronic device including the electrochemical device according to the present application.
测试方法:Test Methods:
单位面积多孔层中的无机颗粒重量:Weight of inorganic particles per unit area of porous layer:
将锂离子电池放电后拆解,获得表面带有多孔层的电极极片,截取面积为S m 2的多孔层样品,然后将该样品中的无机颗粒分离出来,110℃烘干,然后进行称重,重量为m g,m/S所得的值即为单位面积多孔层中的无机颗粒的重量。 Disassemble the lithium-ion battery after discharging to obtain an electrode pad with a porous layer on the surface. A sample of the porous layer with a cross-sectional area of S m 2 is taken, and then the inorganic particles in the sample are separated, dried at 110 ℃, and then weighed. Weight, the weight is mg, and the value of m/S is the weight of the inorganic particles in the porous layer per unit area.
多孔层孔隙率:Porosity of porous layer:
将锂离子电池放电后拆解,获得表面带有多孔层的电极极片,截取一部分多孔层样品,通过常规的压汞法测试多孔层的孔隙率。The lithium ion battery is disassembled after discharge to obtain an electrode pad with a porous layer on the surface, a part of the porous layer sample is cut, and the porosity of the porous layer is tested by a conventional mercury intrusion method.
锂离子电池自放电速率K值:Self-discharge rate K value of lithium ion battery:
将锂离子电池以0.5C的电流放电至3.0V,静置5min,接着将锂离子电池以0.5C的电流恒定电流充电至3.85V,然后以3.85V的电压恒定电压充电至电流为0.05C,在25℃±3℃的环境中静置两天,测试并记录此时的电压OCV1。接着,将锂离子电池继续在25℃±3℃的环境静置两天,测试并记录此时的电压OCV2,通过如下公式获得K值:K(mV/h)=(OCV2-OCV1)/48h*1000。Discharge the lithium-ion battery to 3.0V at a current of 0.5C, let it stand for 5 minutes, then charge the lithium-ion battery at a constant current of 0.5C to 3.85V, and then charge a constant voltage of 3.85V to a current of 0.05C, Let it stand for two days in an environment of 25℃±3℃, test and record the voltage OCV1 at this time. Next, let the lithium ion battery continue to stand in an environment of 25℃±3℃ for two days, test and record the voltage OCV2 at this time, and obtain the K value by the following formula: K(mV/h)=(OCV2-OCV1)/48h *1000.
容量保持率:Capacity retention rate:
将锂离子电池以0.5C的电流恒定电流充电至4.4V,然后以4.4V的电压恒定电压充电至电流为0.05C,在25℃±3℃的环境中静置10min,然后以0.5C的电流放电至3.0V,记录首次放电容量为Q 1,如此重复循环50次,记录此时放电容量为Q 50,通过如下公式得到50次循环后的容量保持率η:η=Q 50/Q 1*100%。 Charge the lithium-ion battery at a constant current of 0.5C to 4.4V, and then charge at a constant voltage of 4.4V to a current of 0.05C, let it stand for 10 minutes in an environment of 25℃±3℃, and then use a current of 0.5C Discharge to 3.0V, record the first discharge capacity as Q 1 , repeat the cycle for 50 times, record the discharge capacity at this time as Q 50 , obtain the capacity retention rate η after 50 cycles by the following formula: η=Q 50 /Q 1 * 100%.
实施例Example
制备例1:负极极片的制备Preparation Example 1: Preparation of negative pole piece
将负极活性材料人造石墨、导电炭黑、丁苯橡胶按照重量比96:1.5:2.5进行混合,加入去离子水作为溶剂,调配成固含量为0.7的浆料,搅拌均匀。将浆料均匀涂覆在厚度为10μm的负极集电体铜箔的一个表面上,110℃条件下烘干,得到厚度为150μm的单面涂覆负极活性材料层的负极极片。在该负极集电体的另一个表面上重复以上步骤,得到双面涂覆有150μm厚的负极活性材料层的负极极片。然后,将负极极片裁切成41mm×61mm的规格待用。The negative active material artificial graphite, conductive carbon black, and styrene-butadiene rubber are mixed in a weight ratio of 96:1.5:2.5, and deionized water is added as a solvent to prepare a slurry with a solid content of 0.7, and stir it evenly. The slurry was uniformly coated on one surface of a copper foil of a negative electrode current collector with a thickness of 10 μm and dried at 110° C. to obtain a negative electrode piece with a thickness of 150 μm on a single side coated with a negative electrode active material layer. The above steps were repeated on the other surface of the negative electrode current collector to obtain a negative electrode sheet coated with a 150 μm thick negative electrode active material layer on both sides. Then, cut the negative pole piece into a size of 41mm×61mm for later use.
制备例2:正极极片的制备Preparation Example 2: Preparation of positive pole piece
将正极活性材料钴酸锂、导电炭黑、聚偏二氟乙烯按照重量比97.5:1.0:1.5进行混合,加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成为固含量为0.75的浆料,搅拌均匀。将浆料均匀涂覆在正极集电体铝箔的一个表面上,90℃条件下烘干,在正极集电体的一面上形成厚度为100μm的正极活性材料层。在正极集电体铝箔的另一个表面上,重复以上步骤,得到双面涂覆有100μm正极活性材料层的正极极片。涂覆完成后,将正极极片裁切成38mm×58mm的规格待用。The positive electrode active material lithium cobalt oxide, conductive carbon black, and polyvinylidene fluoride are mixed in a weight ratio of 97.5:1.0:1.5, and N-methylpyrrolidone (NMP) is added as a solvent to prepare a slurry with a solid content of 0.75. Stir well. The slurry was uniformly coated on one surface of the positive electrode current collector aluminum foil and dried at 90° C. to form a positive electrode active material layer with a thickness of 100 μm on one side of the positive electrode current collector. Repeat the above steps on the other surface of the aluminum foil of the positive electrode current collector to obtain a positive electrode piece coated with a positive electrode active material layer of 100 μm on both sides. After the coating is completed, cut the positive pole piece into a size of 38mm×58mm for use.
制备例3:电解液的制备Preparation Example 3: Preparation of electrolyte
在干燥氩气气氛中,首先将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)以质量比EC:EMC:DEC=30:50:20混合为溶剂,然后向溶剂中加入六氟磷酸锂,溶解并混合均匀,得到锂盐浓度为1.15mol/L的电解液。In a dry argon atmosphere, first mix ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) as a solvent at a mass ratio EC:EMC:DEC=30:50:20, and then Add lithium hexafluorophosphate to the solvent, dissolve and mix uniformly, and obtain an electrolyte with a lithium salt concentration of 1.15 mol/L.
以下实施例举例说明根据本申请的多孔层的制备。这些实施例以负极极片为例进行说明,并且在负极极片的两个表面上沉积第一多孔层。应当理解,所述第一多孔层也可以沉积在正极极片的两个表面上,或者在负极极片的一个表面上和正极极片的一个表面上分别沉积一层第一多孔层,这些实施方案同样可以实现本申请的目的。本领域技术人员,应当理解,这些实施方案同样在本申请的保护范围内。The following examples illustrate the preparation of the porous layer according to the present application. In these embodiments, a negative pole piece is taken as an example for description, and a first porous layer is deposited on both surfaces of the negative pole piece. It should be understood that the first porous layer may also be deposited on both surfaces of the positive pole piece, or a first porous layer may be deposited on one surface of the negative pole piece and one surface of the positive pole piece, respectively, These embodiments can also achieve the purpose of this application. Those skilled in the art should understand that these embodiments are also within the protection scope of the present application.
实施例1Example 1
浆料A的制备:将第一无机颗粒三氧化二铝(Al 2O 3)和粘结剂聚偏氟乙烯(PVDF),按照重量比90:10进行混合,加入溶剂N-甲基吡咯烷酮(NMP),调配成为固含量为0.4的浆料A,其中第一无机颗粒的平均粒径为60nm。 Preparation of slurry A: The first inorganic particles of aluminum oxide (Al 2 O 3 ) and the binder polyvinylidene fluoride (PVDF) were mixed in a weight ratio of 90:10, and the solvent N-methylpyrrolidone ( NMP), formulated into slurry A with a solid content of 0.4, in which the average particle size of the first inorganic particles is 60 nm.
浆料B的制备:将第一无机颗粒三氧化二铝(Al 2O 3)和粘结剂聚偏氟乙烯(PVDF),按照重量比90:10进行混合,加入溶剂N-甲基吡咯烷酮(NMP),调配成为固含量为0.4的浆料B,其中第一无机颗粒的平均粒径为300nm。 Preparation of slurry B: The first inorganic particles of aluminum oxide (Al 2 O 3 ) and the binder polyvinylidene fluoride (PVDF) were mixed in a weight ratio of 90:10, and the solvent N-methylpyrrolidone ( NMP), formulated into slurry B with a solid content of 0.4, in which the average particle size of the first inorganic particles is 300 nm.
将聚偏氟乙烯分散在二甲基甲酰胺/丙酮(7:3)溶剂中,搅拌均匀至浆料粘度稳定,得到质量分数为25%的溶液,用以上溶液通过电纺丝的方法在制备例1中得到的负极极片的一个表面先制备一层厚度为3μm,平均孔径为20nm的第一层;在电纺丝的同时,以上述浆料A为原料,采用电喷雾的方法将在将Al 2O 3颗粒填充于第一层,其中,Al 2O 3颗粒的平均粒径为60nm;随后通过气纺丝的方法,在其上方制备一层厚度为9μm,平均孔径为100nm 的第二层,在气纺丝的同时,以上述浆料B为原料,采用电喷雾的方法将在将Al 2O 3颗粒填充于第二层中,其中,Al 2O 3颗粒的平均粒径为300nm(第一多孔层的第二层显微照片如图1所示); Disperse polyvinylidene fluoride in dimethylformamide/acetone (7:3) solvent, stir evenly until the slurry viscosity is stable, and obtain a solution with a mass fraction of 25%. Use the above solution to prepare by electrospinning. A first layer with a thickness of 3μm and an average pore diameter of 20nm was prepared on one surface of the negative electrode piece obtained in Example 1. While electrospinning, using the above-mentioned slurry A as the raw material, the electrospray method was used to the Al 2 O 3 particles filled in the first layer, wherein an average particle size of Al 2 O 3 particles was 60 nm; gas is then spun through a method of preparing a thickness 9μm thereabove, the average pore size of 100nm In the second layer, while air-spinning, using the above-mentioned slurry B as the raw material, the Al 2 O 3 particles are filled in the second layer by the electrospray method, wherein the average particle size of the Al 2 O 3 particles is 300nm (the micrograph of the second layer of the first porous layer is shown in Figure 1);
其中,各第一层和第二层中聚合物纤维(成分为PVDF)的直径为100nm,由第一层和第二层形成的第一多孔层的孔隙率为80%,由第一层和第二层形成的第一多孔层中的第一无机颗粒单位面积的重量为4.5g/m 2Among them, the diameter of the polymer fiber (component is PVDF) in the first layer and the second layer is 100nm, and the porosity of the first porous layer formed by the first layer and the second layer is 80%. The weight per unit area of the first inorganic particles in the first porous layer formed with the second layer is 4.5 g/m 2 .
以完全一致的方法,在该负极极片的另一个表面也完成上述步骤,即得到双面涂覆有第一多孔层的负极极片。In a completely consistent method, the above steps are also completed on the other surface of the negative pole piece to obtain a negative pole piece coated with the first porous layer on both sides.
在制备例2中得到的正极极片的一个表面通过电纺丝的方法,制备一层厚度为3μm,平均孔径为20nm的第二多孔层(成分为PVDF),在纺丝的同时,使用浆料A,采用电喷雾的方法在第二聚合物纤维间填充Al 2O 3无机颗粒,颗粒的平均粒径为60nm; One surface of the positive electrode sheet obtained in Preparation Example 2 was electrospinned to prepare a second porous layer (component PVDF) with a thickness of 3 μm and an average pore diameter of 20 nm. While spinning, use Slurry A, using electrospray method to fill Al 2 O 3 inorganic particles between the second polymer fibers, the average particle size of the particles is 60 nm;
其中,第二多孔层的聚合物纤维的直径为100nm;第二多孔层孔隙率为80%。Wherein, the diameter of the polymer fiber of the second porous layer is 100 nm; the porosity of the second porous layer is 80%.
以完全一致的方法,在该正极极片的另一个表面也完成上述步骤,即得到双面涂布完成的正极极片。In a completely consistent method, the above steps are also completed on the other surface of the positive pole piece to obtain a positive pole piece with double-sided coating.
实施例2Example 2
除了负极极片表面的第一多孔层的第一层填充的无机颗粒的平均粒径为400nm;第二层填充的无机颗粒的平均粒径为2000nm;The average particle size of the inorganic particles filled in the first layer except the first porous layer on the surface of the negative electrode piece is 400 nm; the average particle size of the inorganic particles filled in the second layer is 2000 nm;
正极极片表面第二多孔层填充的无机颗粒的平均粒径为400nm;The average particle size of the inorganic particles filled in the second porous layer on the surface of the positive pole piece is 400 nm;
其余与实施例1相同。The rest is the same as in Example 1.
实施例3Example 3
除了负极极片表面的第一多孔层第一层的平均孔径为50nm,填充无机颗粒的平均粒径为100nm;第二层的平均孔径为500nm,填充无机颗粒的平均粒径为1000nm;Except for the first porous layer on the surface of the negative electrode, the average pore size of the first layer is 50nm, and the average particle size of the filled inorganic particles is 100nm; the average pore size of the second layer is 500nm, and the average particle size of the filled inorganic particles is 1000nm;
正极极片表面的第二多孔层平均孔径为50nm,填充无机颗粒的平均粒径为100nm;The average pore diameter of the second porous layer on the surface of the positive pole piece is 50 nm, and the average particle diameter of the filled inorganic particles is 100 nm;
其余与实施例1相同。The rest is the same as in Example 1.
实施例4Example 4
除了负极极片第一多孔层的第二层的平均孔径为1000nm,填充无机颗粒的平均粒径为2000nm;其余与实施例3相同。Except that the average pore size of the second layer of the first porous layer of the negative electrode piece is 1000 nm, and the average particle size of the filled inorganic particles is 2000 nm; the rest is the same as in Example 3.
实施例5Example 5
除了负极极片第一多孔层的第二层的平均孔径为5000nm,填充无机颗粒的平均粒径为10000nm;其余与实施例3相同。Except that the average pore diameter of the second layer of the first porous layer of the negative electrode piece is 5000 nm, and the average particle diameter of the filled inorganic particles is 10000 nm; the rest is the same as in Example 3.
实施例6Example 6
除了负极极片表面的第一多孔层的第一层的平均孔径为80nm,填充无机颗粒的平均粒径为300nm;第二纤层的平均孔径为400nm,填充无机颗粒的平均粒径为1500nm;Except for the first porous layer on the surface of the negative electrode, the average pore size of the first layer is 80nm, and the average particle size of the filled inorganic particles is 300nm; the average pore size of the second fiber layer is 400nm, and the average particle size of the filled inorganic particles is 1500nm ;
正极极片表面的第二多孔层平均孔径为80nm,填充无机颗粒的平均粒径为300nm;The average pore diameter of the second porous layer on the surface of the positive pole piece is 80 nm, and the average particle diameter of the filled inorganic particles is 300 nm;
其余与实施例1相同。The rest is the same as in Example 1.
实施例7Example 7
除了负极极片表面的第一多孔层的一层平均孔径为100nm,填充无机颗粒的平均粒径为10nm;第二层的平均孔径为1000nm,填充无机颗粒的平均粒径为100nm;Except for the surface of the negative pole piece, the first porous layer has an average pore size of 100 nm, and the average particle size of the filled inorganic particles is 10 nm; the average pore size of the second layer is 1000 nm, and the average particle size of the filled inorganic particles is 100 nm;
正极极片表面的第二多孔层平均孔径为100nm,填充无机颗粒的平均粒径为10nm;The average pore diameter of the second porous layer on the surface of the positive pole piece is 100 nm, and the average particle diameter of the filled inorganic particles is 10 nm;
其余与实施例1相同。The rest is the same as in Example 1.
实施例8Example 8
除了负极极片表面的第一多孔层的第一层平均孔径为100nm,填充无机颗粒的平均粒径为200nm;第二纤层的平均孔径为500nm,填充无机颗粒的平均粒径为1000nm;Except for the first porous layer on the surface of the negative pole piece, the average pore diameter of the first layer is 100 nm, and the average particle diameter of the filled inorganic particles is 200 nm; the average pore diameter of the second fiber layer is 500 nm, and the average particle diameter of the filled inorganic particles is 1000 nm;
正极极片表面的第二多孔层层平均孔径为100nm,填充无机颗粒的平均粒径为200nm;The average pore diameter of the second porous layer on the surface of the positive pole piece is 100 nm, and the average particle diameter of the filled inorganic particles is 200 nm;
其余与实施例1相同。The rest is the same as in Example 1.
实施例9Example 9
除了负极极片表面的第一多孔层的第一层平均孔径为120nm,填充无机颗粒的平均粒径为12nm;第二层的平均孔径为600nm,填充无机颗粒的平均粒径为60nm;Except for the first porous layer on the surface of the negative pole piece, the average pore size of the first layer is 120nm, and the average particle size of the filled inorganic particles is 12nm; the average pore size of the second layer is 600nm, and the average particle size of the filled inorganic particles is 60nm;
正极极片表面的第二多孔层平均孔径为120nm,填充无机颗粒的平均粒径为12nm;The average pore size of the second porous layer on the surface of the positive pole piece is 120nm, and the average particle size of the filled inorganic particles is 12nm;
其余与实施例1相同。The rest is the same as in Example 1.
实施例10Example 10
除了负极极片上第一多孔层的第一层填充的无机颗粒的平均粒径为120nm,第二层填充无机颗粒的平均粒径为600nm;Except for the first porous layer on the negative electrode sheet, the average particle size of the inorganic particles filled in the first layer is 120 nm, and the average particle diameter of the inorganic particles filled in the second layer is 600 nm;
正极极片表面的第二多孔层填充无机颗粒的平均粒径为120nm;The average particle size of the second porous layer filled with inorganic particles on the surface of the positive pole piece is 120 nm;
其余与实施例9相同。The rest is the same as in Example 9.
实施例11Example 11
除了负极极片上第一多孔层的第一层填充的无机颗粒的平均粒径为400nm,第二层填 充无机颗粒的平均粒径为2000nm;Except for the first porous layer on the negative electrode, the average particle size of the inorganic particles filled in the first layer is 400 nm, and the average particle size of the inorganic particles filled in the second layer is 2000 nm;
正极极片表面的第二多孔层填充无机颗粒的平均粒径为400nm;The average particle size of the second porous layer filled with inorganic particles on the surface of the positive pole piece is 400 nm;
其余与实施例9相同。The rest is the same as in Example 9.
实施例12Example 12
除了负极极片上第一多孔层的第一层填充的无机颗粒的平均粒径为1200nm,第二层填充无机颗粒的平均粒径为6000nm;Except for the first porous layer on the negative electrode, the average particle size of the inorganic particles filled in the first layer is 1200 nm, and the average particle diameter of the inorganic particles filled in the second layer is 6000 nm;
正极极片表面的第二多孔层填充无机颗粒的平均粒径为1200nm;The average particle size of the second porous layer filled with inorganic particles on the surface of the positive pole piece is 1200 nm;
其余与实施例9相同。The rest is the same as in Example 9.
实施例13Example 13
除了负极极片表面的第一多孔层的第一层平均孔径为180nm,填充无机颗粒的平均粒径为2000m;第二层的平均孔径为500nm,填充无机颗粒的平均粒径为10000nm;Except for the first porous layer on the surface of the negative pole piece, the average pore size of the first layer is 180nm, and the average particle size of the filled inorganic particles is 2000m; the average pore size of the second layer is 500nm, and the average particle size of the filled inorganic particles is 10000nm;
正极极片表面的第二多孔层平均孔径为180nm,填充无机颗粒的平均粒径为2000nm;The average pore size of the second porous layer on the surface of the positive pole piece is 180 nm, and the average particle size of the filled inorganic particles is 2000 nm;
其余与实施例1相同。The rest is the same as in Example 1.
实施例14Example 14
除了负极极片表面的第一多孔层的第一层平均孔径为1000nm,填充无机颗粒的平均粒径为100m;第二层的平均孔径为5000nm,填充无机颗粒的平均粒径为5000nm;Except for the first porous layer on the surface of the negative pole piece, the average pore diameter of the first layer is 1000 nm, and the average particle diameter of the filled inorganic particles is 100 m; the average pore diameter of the second layer is 5000 nm, and the average particle diameter of the filled inorganic particles is 5000 nm;
正极极片表面的第二多孔层平均孔径为1000nm,填充无机颗粒的平均粒径为100nm;The average pore diameter of the second porous layer on the surface of the positive pole piece is 1000 nm, and the average particle diameter of the filled inorganic particles is 100 nm;
其余与实施例1相同。The rest is the same as in Example 1.
实施例15Example 15
除了负极极片表面的第一多孔层的第一层平均孔径为3000nm,填充无机颗粒的平均粒径为8000m;第二层的平均孔径为5000nm,填充无机颗粒的平均粒径为10000nm;Except for the first porous layer on the surface of the negative pole piece, the average pore size of the first layer is 3000nm, and the average particle size of the filled inorganic particles is 8000m; the average pore size of the second layer is 5000nm, and the average particle size of the filled inorganic particles is 10000nm;
正极极片表面的第二多孔层平均孔径为3000nm,填充无机颗粒的平均粒径为8000nm;The average pore diameter of the second porous layer on the surface of the positive pole piece is 3000 nm, and the average particle diameter of the filled inorganic particles is 8000 nm;
其余与实施例1相同。The rest is the same as in Example 1.
实施例16Example 16
除了不设置第二多孔层,其余与实施例6相同。Except that the second porous layer is not provided, the rest is the same as in Example 6.
实施例17Example 17
除了控制第一多孔层中无机颗粒的重量为4mg/m 2In addition to controlling the weight of inorganic particles in the first porous layer to 4 mg/m 2 ;
其余与实施例6相同。The rest is the same as in Example 6.
实施例18Example 18
除了控制第一多孔层中无机颗粒的重量为60g/m 2In addition to controlling the weight of inorganic particles in the first porous layer to 60 g/m 2 ;
其余与实施例6相同。The rest is the same as in Example 6.
实施例19Example 19
除了以聚丙烯腈(PAN)为原料,制备第一多孔层和第二多孔层,其余与实施例6相同。Except that polyacrylonitrile (PAN) is used as the raw material to prepare the first porous layer and the second porous layer, the rest is the same as in Example 6.
实施例20Example 20
除了以聚氧化乙烯(PEO)为原料,制备第一多孔层和第二多孔层,其余与实施例6相同。Except that polyethylene oxide (PEO) is used as a raw material to prepare the first porous layer and the second porous layer, the rest is the same as in Example 6.
全电池制备:Full battery preparation:
将各实施例制备的具有第一多孔层的负极极片和制备例中制备的正极极片相对并叠好。用胶带将整个叠片结构的四个角固定好后,置入铝塑膜中,经顶侧封、注液、封装后,最终得到锂离子叠片电池。The negative pole piece with the first porous layer prepared in each embodiment and the positive pole piece prepared in the preparation example are opposed and stacked. After fixing the four corners of the entire laminated structure with adhesive tape, it is placed in an aluminum plastic film, and after top-side sealing, liquid injection, and packaging, a lithium-ion laminated battery is finally obtained.
对比例1Comparative example 1
除了第一多孔层和第二多孔层中均不填充无机颗粒;其余与实施例11相同。Except that neither the first porous layer nor the second porous layer is filled with inorganic particles; the rest is the same as in Example 11.
对比例2Comparative example 2
除了第一多孔层的第一层、第二层和第二多孔层均填充平均粒径为2000nm的无机颗粒;其余与实施例11相同。Except that the first layer, the second layer and the second porous layer of the first porous layer are all filled with inorganic particles with an average particle size of 2000 nm; the rest is the same as in Example 11.
对比例3Comparative example 3
除了第一多孔层的第一层、第二层和第二多孔层均填充平均粒径为400nm的无机颗粒;其余与实施例11相同。Except that the first layer, the second layer and the second porous layer of the first porous layer are all filled with inorganic particles with an average particle size of 400 nm; the rest is the same as in Example 11.
对比例4Comparative example 4
除了负极极片表面的第一多孔层的第一层中填充平均粒径为80nm的无机颗粒;其余与实施例14相同。Except that the first layer of the first porous layer on the surface of the negative pole piece is filled with inorganic particles with an average particle size of 80 nm; the rest is the same as in Example 14.
对比例5Comparative example 5
除了负极极片表面的第一多孔层的第二层中填充平均粒径为2500nm的无机颗粒;其余与实施例2相同。Except that the second layer of the first porous layer on the surface of the negative electrode piece is filled with inorganic particles with an average particle size of 2500 nm; the rest is the same as in Example 2.
各实施例和对比例的数据和测试结果见表1。The data and test results of each embodiment and comparative example are shown in Table 1.
Figure PCTCN2020081836-appb-000001
Figure PCTCN2020081836-appb-000001
Figure PCTCN2020081836-appb-000002
Figure PCTCN2020081836-appb-000002
通过本申请的实施例11与对比例1、2、3相比,可以看出,当向多孔层不同孔径的区域中填充不同粒径的无机颗粒时,其自放电问题得到了明显改善(K值降低);电池的循环性能也得到了提高(循环容量保持率高)。By comparing Example 11 of the present application with Comparative Examples 1, 2, and 3, it can be seen that when inorganic particles of different particle diameters are filled into the regions of the porous layer with different pore diameters, the self-discharge problem is significantly improved (K Value decreased); the cycle performance of the battery has also been improved (high cycle capacity retention rate).
实施例14与对比例4相比较,实施例2与对比例5相比较可以看出,当填充的无机颗粒粒径过大或者过小,其自放电问题或者循环性能都得不到很好地改善,而只有当填充的无机颗粒的粒径与多孔层的孔径之比满足0.1~20时,才能使自放电问题和循环效率均得到改善或提高。Comparing Example 14 with Comparative Example 4, and comparing Example 2 with Comparative Example 5, it can be seen that when the particle size of the filled inorganic particles is too large or too small, the self-discharge problem or cycle performance cannot be achieved. Improvement, and only when the ratio of the particle diameter of the filled inorganic particles to the pore diameter of the porous layer satisfies 0.1-20, can the self-discharge problem and cycle efficiency be improved or improved.
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。The above are only preferred embodiments of this application, and are not intended to limit this application. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included in the protection of this application. Within the range.

Claims (14)

  1. 一种电化学装置,其包括:An electrochemical device, which includes:
    第一极片,以及设置在所述第一极片表面上的第一多孔层;A first pole piece, and a first porous layer disposed on the surface of the first pole piece;
    第二极片;Second pole piece
    其中,所述第一多孔层包含第一聚合物纤维和第一无机颗粒,在所述第一多孔层的厚度方向上,所述第一聚合物纤维在远离所述第一极片的区域形成的孔的平均孔径为Aμm,所述第一聚合物纤维在靠近所述第一极片的区域形成的孔的平均孔径为Bμm,所述第一无机颗粒在远离所述第一极片的区域的平均粒径为Cμm,所述第一无机颗粒在靠近所述第一极片的区域的平均粒径为Dμm,且满足如下关系:Wherein, the first porous layer includes first polymer fibers and first inorganic particles. In the thickness direction of the first porous layer, the first polymer fibers are located far away from the first pole piece. The average pore diameter of the pores formed in the region is Aμm, the average pore diameter of the pores formed by the first polymer fiber in the region close to the first pole piece is Bμm, and the first inorganic particles are moving away from the first pole piece. The average particle size of the region of is Cμm, and the average particle size of the first inorganic particles in the region close to the first pole piece is Dμm, and the following relationship is satisfied:
    (a)A>B;(a) A>B;
    (b)C>D。(b) C>D.
  2. 根据权利要求1所述的电化学装置,其中,所述第一多孔层包括第一层和第二层,所述第一层为靠近所述第一极片的区域,所述第二层为远离所述第一极片的区域。The electrochemical device according to claim 1, wherein the first porous layer comprises a first layer and a second layer, the first layer is a region close to the first pole piece, and the second layer Is the area away from the first pole piece.
  3. 根据权利要求1所述的电化学装置,其中,所述A的取值范围为0.05~5,所述B的取值范围为0.02~3,所述C的取值范围为0.01~10,所述D的取值范围为0.01~10。The electrochemical device according to claim 1, wherein the value range of A is 0.05 to 5, the value range of B is 0.02 to 3, and the value range of C is 0.01 to 10. The value range of D is 0.01~10.
  4. 根据权利要求1-3中任一项所述的电化学装置,其中,所述A、所述B、所述C和所述D满足以下关系中的至少一者:The electrochemical device according to any one of claims 1 to 3, wherein the A, the B, the C, and the D satisfy at least one of the following relationships:
    (a)1.01≤A/B≤250;(a) 1.01≤A/B≤250;
    (b)1.01≤C/D≤500;(b) 1.01≤C/D≤500;
    (c)0.1≤C/A≤20;(c) 0.1≤C/A≤20;
    (d)0.1≤D/B≤20。(d) 0.1≤D/B≤20.
  5. 根据权利要求1所述的电化学装置,其中,在所述第一多孔层的厚度方向上,所述第一无机颗粒的平均粒径从靠近所述第一极片的区域向远离所述第一极片的区域连续增大。The electrochemical device according to claim 1, wherein in the thickness direction of the first porous layer, the average particle size of the first inorganic particles is from a region close to the first pole piece to a distance away from the The area of the first pole piece continuously increases.
  6. 根据权利要求1所述的电化学装置,其中,在所述第一多孔层的厚度方向上,所述第一聚合物纤维形成的孔的平均孔径从靠近所述第一极片的区域向远离所述第一极片 的区域连续增大。The electrochemical device according to claim 1, wherein, in the thickness direction of the first porous layer, the average pore diameter of the pores formed by the first polymer fiber is from a region close to the first pole piece to The area away from the first pole piece continuously increases.
  7. 根据权利要求1所述的电化学装置,其中,所述第一聚合物纤维的直径为0.1nm~10μm。The electrochemical device according to claim 1, wherein the diameter of the first polymer fiber is 0.1 nm to 10 μm.
  8. 根据权利要求1所述的电化学装置,其中,The electrochemical device according to claim 1, wherein:
    所述第一多孔层的孔隙率为30%~95%;所述第一多孔层的厚度为1μm~20μm。The porosity of the first porous layer is 30% to 95%; the thickness of the first porous layer is 1 μm to 20 μm.
  9. 根据权利要求1所述的电化学装置,其中,每单位面积所述第一多孔层中所述第一无机颗粒的重量为0.004g/m 2~60g/m 2The electrochemical device according to claim 1, wherein the weight of the first inorganic particles in the first porous layer per unit area is 0.004 g/m 2 to 60 g/m 2 .
  10. 根据权利要求1所述的电化学装置,其中,所述第一聚合物纤维的成分包括聚偏二氟乙烯、聚酰亚胺、聚酰胺、聚丙烯腈、聚乙二醇、聚苯醚、聚碳酸亚丙酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯,聚偏二氟乙烯-六氟丙烯、聚偏二氟乙烯-三氟氯乙烯或聚环氧乙烷中的至少一种。The electrochemical device according to claim 1, wherein the composition of the first polymer fiber includes polyvinylidene fluoride, polyimide, polyamide, polyacrylonitrile, polyethylene glycol, polyphenylene ether, Polypropylene carbonate, polymethyl methacrylate, polyethylene terephthalate, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-chlorotrifluoroethylene or polyethylene oxide At least one of.
  11. 根据权利要求1所述的电化学装置,其中,所述第一无机颗粒包括HfO 2、SrTiO 3、SnO 2、CeO 2、MgO、NiO、CaO、BaO、ZnO、ZrO 2、Y 2O 3、Al 2O 3、TiO 2、SiO 2、勃姆石、氢氧化镁、氢氧化铝、磷酸锂、锂钛磷酸盐、锂铝钛磷酸盐、锂镧钛酸盐、锂锗硫代磷酸盐、锂氮化物、SiS 2玻璃、P 2S 5玻璃、Li 2O、LiF、LiOH、Li 2CO 3、LiAlO 2、Li 2O-Al 2O 3-SiO 2-P 2O 5-TiO 2-GeO 2陶瓷或石榴石陶瓷中的至少一种。 The electrochemical device according to claim 1, wherein the first inorganic particles comprise HfO 2 , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, BaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiO 2 , boehmite, magnesium hydroxide, aluminum hydroxide, lithium phosphate, lithium titanium phosphate, lithium aluminum titanium phosphate, lithium lanthanum titanate, lithium germanium thiophosphate, Lithium nitride, SiS 2 glass, P 2 S 5 glass, Li 2 O, LiF, LiOH, Li 2 CO 3 , LiAlO 2 , Li 2 O-Al 2 O 3 -SiO 2 -P 2 O 5 -TiO 2- At least one of GeO 2 ceramics or garnet ceramics.
  12. 根据权利要求1所述的电化学装置,其中,所述第二极片还包括设置在所述第二极片表面上的第二多孔层,所述第二多孔层包括第二聚合物纤维和第二无机颗粒,所述第二聚合物纤维形成的孔的平均孔径为Eμm,所述第二无机颗粒的平均粒径为Fμm,且满足如下关系式:The electrochemical device according to claim 1, wherein the second pole piece further comprises a second porous layer disposed on the surface of the second pole piece, and the second porous layer comprises a second polymer Fibers and second inorganic particles, the average pore diameter of the pores formed by the second polymer fiber is Eμm, the average particle diameter of the second inorganic particles is Fμm, and the following relationship is satisfied:
    (a)A>E;(a) A>E;
    (b)C>F。(b) C>F.
  13. 根据权利要求12所述的电化学装置,其中,所述第一多孔层和所述第二多孔层相接触。The electrochemical device according to claim 12, wherein the first porous layer and the second porous layer are in contact.
  14. 一种电子装置,其包含权利要求1-13中任一项所述的电化学装置。An electronic device comprising the electrochemical device according to any one of claims 1-13.
PCT/CN2020/081836 2020-03-27 2020-03-27 Electrochemical device WO2021189472A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080096453.2A CN115088127B (en) 2020-03-27 2020-03-27 Electrochemical device
PCT/CN2020/081836 WO2021189472A1 (en) 2020-03-27 2020-03-27 Electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081836 WO2021189472A1 (en) 2020-03-27 2020-03-27 Electrochemical device

Publications (1)

Publication Number Publication Date
WO2021189472A1 true WO2021189472A1 (en) 2021-09-30

Family

ID=77890914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081836 WO2021189472A1 (en) 2020-03-27 2020-03-27 Electrochemical device

Country Status (2)

Country Link
CN (1) CN115088127B (en)
WO (1) WO2021189472A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802083A (en) * 2019-03-29 2019-05-24 宁德新能源科技有限公司 Electrochemical appliance
CN109802071A (en) * 2017-11-16 2019-05-24 苹果公司 The slider and forming process directly coated
CN109950460A (en) * 2019-03-29 2019-06-28 宁德新能源科技有限公司 Coaxial fibrous material and the electrochemical appliance including it
CN109980164A (en) * 2019-03-18 2019-07-05 宁德新能源科技有限公司 Isolation film and electrochemical appliance
CN110247009A (en) * 2019-07-03 2019-09-17 珠海冠宇电池有限公司 A kind of anti-overcharge diaphragm and preparation method thereof and lithium ion battery
CN110364662A (en) * 2018-04-11 2019-10-22 宁德新能源科技有限公司 Isolation film and electrochemical appliance
US20200052277A1 (en) * 2018-08-13 2020-02-13 National Taiwan University Battery and method of fabricating porous membrane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107516725A (en) * 2016-06-16 2017-12-26 宁德新能源科技有限公司 Battery core and energy storage device
CN110364667B (en) * 2018-04-11 2022-04-22 宁德新能源科技有限公司 Porous film and lithium ion battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802071A (en) * 2017-11-16 2019-05-24 苹果公司 The slider and forming process directly coated
CN110364662A (en) * 2018-04-11 2019-10-22 宁德新能源科技有限公司 Isolation film and electrochemical appliance
US20200052277A1 (en) * 2018-08-13 2020-02-13 National Taiwan University Battery and method of fabricating porous membrane
CN109980164A (en) * 2019-03-18 2019-07-05 宁德新能源科技有限公司 Isolation film and electrochemical appliance
CN109802083A (en) * 2019-03-29 2019-05-24 宁德新能源科技有限公司 Electrochemical appliance
CN109950460A (en) * 2019-03-29 2019-06-28 宁德新能源科技有限公司 Coaxial fibrous material and the electrochemical appliance including it
CN110247009A (en) * 2019-07-03 2019-09-17 珠海冠宇电池有限公司 A kind of anti-overcharge diaphragm and preparation method thereof and lithium ion battery

Also Published As

Publication number Publication date
CN115088127A (en) 2022-09-20
CN115088127B (en) 2024-03-19

Similar Documents

Publication Publication Date Title
US11211594B2 (en) Composite current collector and composite electrode and electrochemical device comprising the same
US11509019B2 (en) Electrochemical device
KR102119801B1 (en) Flexible current collector and secondary battery using the same
CN101926024B (en) Separator for progressing united force to electrode and electrochemical containing the same
JP2017084822A (en) Separator and battery
WO2021189454A1 (en) Electrode assembly, and electrochemical device and electronic device having same
WO2021189459A1 (en) Electrochemical device and electronic device comprising electrochemical device
WO2021189465A1 (en) Electrode assembly, electrochemical device including same, and electronic device
WO2022000328A1 (en) Electrochemical device and electronic device
WO2022000307A1 (en) Electrochemical apparatus and electronic apparatus including electrochemical apparatus
WO2022000309A1 (en) Current collector, electrochemical device comprising same, and electronic device
CN111900316A (en) Diaphragm and lithium ion battery
WO2021189472A1 (en) Electrochemical device
WO2021189469A1 (en) Electrochemical device
JP4664455B2 (en) Non-aqueous electrolyte secondary battery
WO2021189476A1 (en) Electrochemical device
JP2023513813A (en) ELECTRODE ASSEMBLY, ELECTROCHEMICAL APPARATUS WITH THE ELECTRODE ASSEMBLY, AND ELECTRONIC DEVICE
CN1790571A (en) High voltage asymmetric super-capacitor and its negative pole preparation method
CN112117418A (en) Composite pole piece and battery cell with same
WO2022000312A1 (en) Separator, electrochemical device comprising same, and electronic device
US11909042B2 (en) Positive electrode enabling fast charging
WO2021189450A1 (en) Electrochemical device and electronic apparatus comprising same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926573

Country of ref document: EP

Kind code of ref document: A1