WO2021189333A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021189333A1
WO2021189333A1 PCT/CN2020/081230 CN2020081230W WO2021189333A1 WO 2021189333 A1 WO2021189333 A1 WO 2021189333A1 CN 2020081230 W CN2020081230 W CN 2020081230W WO 2021189333 A1 WO2021189333 A1 WO 2021189333A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
dft
ofdm waveform
precoding
layer
Prior art date
Application number
PCT/CN2020/081230
Other languages
English (en)
French (fr)
Inventor
任海豹
徐波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080098130.7A priority Critical patent/CN115211086A/zh
Priority to EP20926955.4A priority patent/EP4113926A4/en
Priority to PCT/CN2020/081230 priority patent/WO2021189333A1/zh
Publication of WO2021189333A1 publication Critical patent/WO2021189333A1/zh
Priority to US17/952,047 priority patent/US20230036558A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2615Reduction thereof using coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3444Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power by applying a certain rotation to regular constellations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying

Definitions

  • the embodiments of the present invention relate to the field of communication technology, and in particular to a communication method and device.
  • Peak to average power ratio/peak to average power ratio refers to the signal peak to average power ratio, which is used to evaluate signal amplitude fluctuations.
  • the signal peak value may fall into the non-linear region of the power amplifier, causing signal distortion.
  • a high PAPR may require the terminal equipment to reduce the transmission power, which reduces the coverage of the network (or cell), thereby causing coverage loss. Therefore, how to reduce PAPR has become an urgent technical problem to be solved.
  • the embodiment of the invention discloses a communication method and device for reducing PAPR.
  • the first aspect discloses a communication method, which processes first information, and sends the processed first information to a network device.
  • the processing process can include ⁇ /2 binary phase shift keying (BPSK) modulation, layer mapping, discrete Fourier transform (discrete fourier transform, DFT) precoding, precoding, and orthogonal frequency division multiplexing ( Orthogonal frequency division multiplexing, OFDM) waveform generation.
  • BPSK binary phase shift keying
  • DFT discrete Fourier transform
  • OFDM orthogonal frequency division multiplexing
  • the terminal device before sending the first information, modulates the first information by using ⁇ /2 BPSK, because the phase difference between any two adjacent modulation symbols in the ⁇ /2 BPSK modulation symbol sequence is 90 °, therefore, it can be ensured that the modulated first information has a lower PAPR, so that the PAPR can be reduced.
  • the terminal device before sending the first information, performs DFT precoding and OFDM waveform generation on the first information. It can be seen that the processed first information is the first information of the DFT-spread (spread, s)-OFDM waveform.
  • the PAPR of the DFT-s-OFDM waveform is low, so it can be guaranteed that the transmitted waveform has a low PAPR. Further, a low PAPR can ensure that the terminal device backs off less power when sending a signal, thereby improving the uplink coverage.
  • the first information when processing the first information, can be modulated according to the number of transmission layers and ⁇ /2BPSK, the modulated first information can be layer-mapped, and the layer-mapped information can be layer-mapped.
  • the first information is DFT pre-coded, the DFT-precoded first information is pre-coded, and the pre-coded first information is generated into an OFDM waveform to obtain the first information of the DFT-s-OFDM waveform.
  • Sending the processed first information to the network device that is, sending the first information of the DFT-s-OFDM waveform to the network device.
  • the number of transport layers is greater than or equal to 1.
  • the phase difference between any two adjacent modulation symbols in the ⁇ /2 BPSK modulation symbol sequence is 90°
  • the phase difference between adjacent symbols in the same transmission layer may be 0 after layer mapping. ° or 180 °. Therefore, when the first information is modulated, it is modulated according to the number of transmission layers and ⁇ /2BPSK, taking into account the influence of layer mapping on the phase difference between adjacent symbols, which can ensure that the transmission layer in each layer of different transmission layers
  • the phase difference between adjacent symbols is 90°, which can avoid the influence of layer mapping on the phase difference between adjacent symbols, thereby reducing PAPR.
  • the number of transmission layers can be greater than or equal to 1, so that single-stream or multi-stream transmission can be realized when ⁇ /2BPSK is used for modulation.
  • modulated symbols corresponding to adjacent bits in the first information are layer-mapped to different transmission layers.
  • phase difference between adjacent symbols before layer mapping may be 0° or 180°, for two symbols, if the number of transmission layers is separated by one symbol, the phase difference between the two symbols is 90°. °.
  • the modulated symbols corresponding to adjacent bits are layer-mapped to different transmission layers, which can ensure that the phase difference between adjacent symbols in each transmission layer in different transmission layers is 90°, which can avoid layer mapping between adjacent symbols.
  • the influence of phase difference can reduce PAPR.
  • the processing procedure may also include interleaving.
  • ⁇ /2BPSK is used to modulate the first information
  • the modulated first information is interleaved
  • the interleaved first information is interleaved.
  • the information is layer-mapped, the first information after the layer mapping is DFT pre-coded, the first information after the DFT pre-coding is pre-coded, and the pre-coded first information is generated into an OFDM waveform to obtain a DFT-s-OFDM waveform First information.
  • Sending the processed first information to the network device that is, sending the first information of the DFT-s-OFDM waveform to the network device.
  • the phase difference between any two adjacent modulation symbols in the ⁇ /2 BPSK modulation symbol sequence is 90°
  • the phase difference between adjacent symbols in the same transmission layer may be 0 after layer mapping. ° or 180 °. Therefore, the first information can be sequentially modulated and interleaved, and then the interleaved first information can be layer-mapped to ensure that the phase difference between adjacent symbols in each transmission layer in different transmission layers is 90°. Avoid the influence of layer mapping on the phase difference between adjacent symbols, thereby reducing PAPR.
  • the modulated first information when interleaving the modulated first information, may be interleaved according to the number of transmission layers and the number of bits included in the first information.
  • the modulated first information is interleaved according to the number of transmission layers and the number of bits included in the first information, which can ensure that the phase difference between adjacent symbols in each transmission layer of different transmission layers is 90°, which can reduce PAPR.
  • layer mapping may be performed on the first information, using ⁇ /2BPSK to modulate the layer-mapped first information, and performing DFT pre-processing on the modulated first information.
  • the phase difference between any two adjacent modulation symbols in the ⁇ /2 BPSK modulation symbol sequence is 90°
  • the phase difference between adjacent symbols in the same transmission layer after the modulated symbol is layer-mapped
  • the difference may be 0° or 180°. Therefore, the first information can be layer-mapped first, and then the layer-mapped first information can be modulated according to ⁇ /2BPSK, which can avoid the influence of layer mapping on the phase difference between modulated adjacent symbols and ensure that different transmission layers
  • the phase difference between adjacent symbols in each transmission layer in each layer is 90°, which can reduce PAPR.
  • the processing process may also include resource element (resource element, RE) mapping.
  • RE resource element
  • the precoded first information may also be subjected to RE mapping, and then the RE is mapped.
  • the first information of the OFDM waveform is generated to obtain the first information of the DFT-s-OFDM waveform.
  • the first information after DFT precoding may be precoded according to the precoding matrix, and the number of rows of the precoding matrix is equal to the transmit antenna port.
  • the number of columns of the precoding matrix is equal to the number of layers of the transmission layer, and the codewords included in the precoding matrix are non-coherent codewords or partially coherent codewords.
  • the information needs to be pre-encoded.
  • a non-phase intervention coding matrix or a part of the phase intervention coding matrix can be used to perform precoding processing on the information to be sent.
  • the codewords included in the precoding matrix are non-coherent codewords or partially coherent codewords, which can ensure that the precoding matrix is a non-phase interference coding matrix or a partial phase interference coding matrix, so that the PAPR can not be affected while ensuring multi-stream transmission. Make an impact.
  • the first indication information used to indicate that the modulation mode is ⁇ /2 BPSK and allows transmission of more than 1 layer may be received from the network device, and the modulation mode is determined to be ⁇ /2 BPSK according to the first indication information.
  • the terminal device may determine that the modulation mode is ⁇ /2 BPSK according to the first indication information. In addition, the terminal device may also determine, according to the first indication information, that the transmission may be multi-stream transmission when the ⁇ /2 BPSK modulation mode is adopted.
  • the second indication information used to indicate the precoding matrix from the network device may be received, and the DFT precoded first information may be precoded according to the precoding matrix indicated by the second indication information.
  • a communication method is disclosed.
  • the second information is received from a terminal device, and the second information is processed to obtain the first information.
  • the first information is the information sent by the terminal device. Layer mapping, de-DFT precoding and de-OFDM waveform.
  • the terminal device before the terminal device sends the first information to the network device, the terminal device performs ⁇ /2 BPSK modulation, layer mapping, DFT precoding, and OFDM waveform generation on the first information. Therefore, the network device receives After the second information from the terminal device, the second information needs to be processed by ⁇ /2 BPSK modulation, layer mapping, DFT precoding, and OFDM waveform decoding, so as to obtain the first information sent by the terminal device. In addition, before sending the first information, the terminal device modulates the first information by using ⁇ /2 BPSK.
  • the terminal device performs DFT precoding and OFDM waveform generation on the first information. It can be seen that the processed first information is the first information of the DFT-spread (s)-OFDM waveform.
  • the PAPR of the DFT-s-OFDM waveform is low, therefore, the PAPR of the transmitted waveform can be guaranteed to be low. Further, a lower PAPR can ensure that the terminal device backs off less power when sending a signal, thereby improving the uplink coverage.
  • the second information when the second information is processed to obtain the first information, the second information can be decoded in the OFDM waveform, the second information after the decoded OFDM waveform can be DFT precoded, and the DFT precoded can be decoded.
  • the second information de-layer mapping is to demodulate the de-layer-mapped second information according to the number of transmission layers and ⁇ /2BPSK to obtain the first information, and the number of transmission layers is greater than or equal to 1.
  • the network device since the terminal device performs ⁇ /2BPSK modulation, layer mapping, DFT precoding, and OFDM waveform generation on the first information before sending the first information to the network device, the network device receives the information from the terminal device After the second information, the second information needs to be de-OFDM waveform, de-DFT pre-coding, de-layer mapping and de- ⁇ /2BPSK-modulation decomposed, so as to obtain the first information sent by the terminal device. Since the phase difference between any two adjacent modulation symbols in the ⁇ /2 BPSK modulation symbol sequence is 90°, the phase difference between adjacent symbols in the same transmission layer may be 0° or 180° after layer mapping.
  • the first information when the first information is modulated, it is modulated according to the number of transmission layers and ⁇ /2 BPSK, taking into account the influence of layer mapping on the phase difference between adjacent symbols, which can ensure that the transmission layer of each layer in different transmission layers
  • the phase difference between adjacent symbols is 90°, which can avoid the influence of layer mapping on the phase difference between adjacent symbols, thereby reducing PAPR.
  • the number of transmission layers can be greater than or equal to 1, so that single-stream or multi-stream transmission can be achieved when ⁇ /2 BPSK is used for modulation.
  • adjacent bits in the first information are obtained by de-layer mapping and demodulation of symbols from different transmission layers in the second information after de-DFT precoding.
  • adjacent bits in the first information are obtained by de-layer mapping and demodulation of symbols from different transmission layers in the second information after de-DFT precoding, indicating that the adjacent bits in the first information correspond to
  • the modulated symbols are layer-mapped to different transmission layers.
  • the phase difference between adjacent symbols before layer mapping may be 0° or 180°, for two symbols, if the number of transmission layers is less than one symbol, the two symbols
  • the phase difference of each symbol is 90° so that the modulated symbols corresponding to adjacent bits are layer-mapped to different transmission layers, which can ensure that the phase difference between adjacent symbols in each transmission layer in different transmission layers is 90°. Avoid the influence of layer mapping on the phase difference between adjacent symbols, thereby reducing PAPR.
  • the processing process may also include de-interleaving.
  • the second information When the second information is processed to obtain the first information, the second information may be decoded in the OFDM waveform, and the second information after the decoded OFDM waveform may be decoded in DFT precoding. De-map the second information after de-DFT precoding, de-interleave the de-layer-mapped second information, and demodulate the de-interleaved second information according to ⁇ /2BPSK to obtain the first information.
  • the network device since the terminal device performs ⁇ /2BPSK modulation, interleaving, layer mapping, DFT precoding, and OFDM waveform generation on the first information before sending the first information to the network device, the network device receives the information from the terminal After the second information of the device, the second information needs to be de-OFDM waveform, de-DFT precoding, de-layer mapping, de-interleaving, and de- ⁇ /2 BPSK modulation, in order to obtain the first information sent by the terminal device. Since the phase difference between any two adjacent modulation symbols in the ⁇ /2 BPSK modulation symbol sequence is 90°, the phase difference between adjacent symbols in the same transmission layer may be 0° or 180° after layer mapping.
  • the first information can be sequentially modulated and interleaved, and then the interleaved first information can be layer-mapped to ensure that the phase difference between adjacent symbols in each transmission layer in different transmission layers is 90°. Avoid the influence of layer mapping on the phase difference between adjacent symbols, thereby reducing PAPR.
  • the de-layer-mapped second information may be de-interleaved according to the number of layers of the transmission layer and the number of bits included in the first information.
  • the first information is interleaved according to the number of transmission layers and the number of bits included in the first information. Therefore, the network device receives After the second information from the terminal device, the deinterleaving of the second information also needs to be performed according to the number of transmission layers and the number of bits included in the first information. Interleaving the modulated first information according to the number of transmission layers and the number of bits included in the first information can ensure that the phase difference between adjacent symbols in each transmission layer in different transmission layers is 90°, thereby reducing PAPR .
  • the second information when the second information is processed to obtain the first information, the second information may be decoded in the OFDM waveform, and the second information after the decoded OFDM waveform may be DFT-precoded, and the solution may be decoded according to ⁇ /2BPSK.
  • the second information after the DFT precoding is demodulated, and the second information after the demodulation is layer-mapped to obtain the first information.
  • the network device since the terminal device performs layer mapping, ⁇ /2 BPSK modulation, DFT precoding, and OFDM waveform generation on the first information before sending the first information to the network device, the network device receives the information from the terminal device. After the second information, the second information needs to be decoded OFDM waveform, DFT precoding, ⁇ /2 BPSK modulation, and layer mapping, so as to obtain the first information sent by the terminal device. Since the phase difference between any two adjacent modulation symbols in the ⁇ /2 BPSK modulation symbol sequence is 90°, the phase difference between adjacent symbols in the same transmission layer may be 0° or after the modulated symbol is layer-mapped. 180°.
  • the first information can be layer-mapped first, and then the layer-mapped first information can be modulated according to ⁇ /2 BPSK, which can avoid the influence of layer mapping on the phase difference between modulated adjacent symbols and ensure different transmissions
  • the phase difference between adjacent symbols in each transmission layer in each layer is 90°, which can reduce PAPR.
  • the processing procedure may further include de-RE mapping
  • processing the second information to obtain the first information may further include: de-mapping the second information after the de-OFDM waveform.
  • the DFT precoding is performed on the second information after the OFDM waveform is de-mapped, and the DFT precoding can be performed on the second information after the RE mapping is de-mapped.
  • ⁇ /2 BPSK may be determined as the modulation mode of the terminal device, and the first indication information used to indicate that the modulation mode is ⁇ /2 BPSK and allowing greater than layer 1 transmission is sent to the terminal device.
  • the first indication information may enable the terminal device to determine that the modulation mode is ⁇ /2 BPSK.
  • the first indication information may enable the terminal device to determine that in the case where the ⁇ /2 BPSK modulation mode is adopted, the transmission may be multi-stream transmission.
  • a communication device including:
  • the processing unit is configured to process the first information, and the processing process includes ⁇ /2BPSK modulation, layer mapping, DFT precoding, precoding, and OFDM waveform generation;
  • the sending unit is configured to send the processed first information to the network device.
  • the processing unit is specifically configured to:
  • the sending unit is specifically configured to send the first information of the DFT-s-OFDM waveform to a network device.
  • modulated symbols corresponding to adjacent bits in the first information are layer-mapped to different transmission layers.
  • the processing procedure further includes interleaving, and the processing unit is specifically configured to:
  • the sending unit is specifically configured to send the first information of the DFT-s-OFDM waveform to a network device.
  • the interleaving of the modulated first information by the processing unit includes:
  • the processing unit is specifically configured to:
  • the sending unit is specifically configured to send the first information of the DFT-s-OFDM waveform to a network device.
  • the processing process further includes RE mapping
  • the processing unit is specifically further configured to perform RE mapping on the precoded first information
  • the processing unit generates an OFDM waveform from the precoded first information, and the first information obtained by the DFT-s-OFDM waveform includes:
  • the first information after the RE mapping is generated into an OFDM waveform, and the first information of the DFT-s-OFDM waveform is obtained.
  • the precoding of the DFT-precoded first information by the processing unit includes:
  • the first information after DFT precoding is precoded according to a precoding matrix, the number of rows of the precoding matrix is equal to the number of transmit antenna ports, the number of columns of the precoding matrix is equal to the number of layers of the transmission layer, and the number of rows of the precoding matrix is equal to the number of transmission layers.
  • the codewords included in the coding matrix are non-coherent codewords or partially coherent codewords.
  • the device further includes:
  • the receiving unit is configured to receive the first indication information from the network device that is used to indicate that the modulation mode is ⁇ /2 BPSK and allows more than layer 1 transmission;
  • the determining unit is configured to determine that the modulation mode is ⁇ /2 BPSK according to the first indication information.
  • the receiving unit is further configured to receive second indication information used to indicate the precoding matrix from the network device;
  • the precoding of the DFT-precoded first information by the processing unit according to the precoding matrix includes:
  • a communication device including:
  • a receiving unit configured to receive second information from a terminal device
  • the processing unit is configured to process the second information to obtain the first information, the first information is the information sent by the terminal device, and the processing process includes de- ⁇ /2BPSK modulation, de-layer mapping, de-DFT pre-coding, and de-OFDM Waveform.
  • the processing unit is specifically configured to:
  • the second information after de-layer mapping is demodulated to obtain the first information, and the number of transmission layers is greater than or equal to 1.
  • adjacent bits in the first information are obtained by de-layer mapping and demodulation of symbols from different transmission layers in the second information after de-DFT precoding.
  • the processing process further includes de-interleaving, and the processing unit is specifically configured to:
  • the deinterleaving of the second information after de-layer mapping by the processing unit includes:
  • the second information after de-layer mapping is de-interleaved.
  • the processing unit is specifically configured to:
  • the processing process further includes de-RE mapping, and the processing unit is specifically further configured to de-RE-map the second information after the de-OFDM waveform;
  • the de-DFT precoding of the second information after de-OFDM waveform by the processing unit includes:
  • the device further includes:
  • a determining unit configured to determine ⁇ /2 BPSK as the modulation mode of the terminal device
  • the sending unit is configured to send the first indication information used to indicate that the modulation mode is ⁇ /2 BPSK and allow more than 1 layer transmission to the terminal device.
  • a fifth aspect discloses a communication device, which may be a terminal device or a module (for example, a chip) in the terminal device.
  • the communication device may include a processor, a memory, an input interface, and an output interface.
  • the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to the outside of the communication device.
  • the processor executes the computer program stored in the memory, the processor executes the communication method disclosed in the first aspect or any implementation manner of the first aspect.
  • a sixth aspect discloses a communication device, which may be a network device or a module (for example, a chip) in the network device.
  • the communication device may include a processor, a memory, an input interface, and an output interface.
  • the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to the outside of the communication device.
  • the processor executes the computer program stored in the memory, the processor executes the communication method disclosed in the second aspect or any implementation manner of the second aspect.
  • a computer-readable storage medium stores a computer program or computer instruction, and when the computer program or computer instruction runs, it implements the first aspect or any one of the first aspect. Or the communication method disclosed in the second aspect or any implementation manner of the second aspect.
  • An eighth aspect provides a computer program product.
  • the computer program product includes computer program code.
  • the communication method of the first aspect or the second aspect is executed.
  • a ninth aspect discloses a communication system, which includes the communication device of the above-mentioned fifth aspect and the communication device of the above-mentioned sixth aspect.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention
  • Fig. 2 is a processing flow required before sending information disclosed in an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a flow of processing first information by a terminal device disclosed in an embodiment of the present invention.
  • FIG. 5 is a layer mapping mode with a transmission layer of 2 disclosed in an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of another terminal device processing first information disclosed in an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of another terminal device processing first information disclosed in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a flow of processing second information by a network device disclosed in an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of another network device processing second information disclosed in an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of another network device processing second information disclosed in an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • Fig. 14 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the embodiment of the invention discloses a communication method and device for reducing PAPR. Detailed descriptions are given below.
  • PAPR refers to the signal peak-to-average power ratio, which is a common indicator used to evaluate signal amplitude fluctuations.
  • the signal peak value may fall into the non-linear region of the power amplifier, causing signal distortion.
  • a high PAPR may require the terminal equipment to reduce the transmission power, which reduces the coverage of the network (or cell), thereby causing coverage loss. Therefore, for the coverage edge of the network (or cell), the PAPR of the signal sent by the terminal device needs to be considered.
  • Cubic metric is a criterion similar to PAPR to measure signal amplitude changes, and its impact is similar to PAPR. Generally speaking, the lower the CM, the better the coverage.
  • the new generation of radio access technology (new radio access technology, NR), namely 5G, supports DFT-s-OFDM waveforms in the uplink.
  • the DFT-s-OFDM waveform has a lower PAPR, which can ensure that the terminal device backs off less power when sending signals, and can improve the uplink coverage.
  • NR also supports ⁇ /2BPSK modulation. ⁇ /2 BPSK modulation can be performed using the following formula:
  • b(i) is the bit of the information to be modulated.
  • Each of these bits is a value in ⁇ 0,1 ⁇ , where the bit can be a coded bit or a processed bit of the coded bit.
  • the processing can be scrambling, interleaving, etc. .
  • i is the index of the network (or cell), generally an integer starting from 0.
  • j is d(i) is the symbol after ⁇ /2 BPSK modulation.
  • mod is a modulo operation. It can be seen that the phase difference between any two adjacent modulation symbols in the ⁇ /2 BPSK modulation symbol sequence is 90°, which can ensure that the modulated information has a relatively low PAPR or CM after the baseband processing procedure.
  • the baseband processing procedure can be one or more of layer mapping (only single-stream transmission is supported), RE mapping, precoding (only single-stream transmission is supported, and the precoding matrix includes only one column), OFDM waveform generation, and the like.
  • Precoding refers to multiple-input multiple-output (MIMO) precoding.
  • the LTE uplink also supports DFT-s-OFDM waveforms.
  • the information to be transmitted needs to be pre-coded.
  • a non-phase intervention coding matrix or a part of the phase intervention coding matrix can be used to perform precoding processing on the information to be sent.
  • the precoding matrix may be as shown in Table 1:
  • ⁇ /2 BPSK modulation has lower PAPR/CM than quadrature phase shift keying (QPSK) modulation. Therefore, through ⁇ /2 BPSK modulation and DFT-s-OFDM waveform, NR has a certain improvement in uplink coverage compared with long term evolution (LTE). Since the DFT-s-OFDM waveform supports multi-stream transmission, the information to be sent needs to be pre-encoded, and the information to be sent after pre-encoding is compared with the information to be sent before pre-encoding. When the number of transmission layers is When it is greater than 1, there may be multiple layers of signals superimposed on a single antenna, resulting in high PAPR, which reduces the coverage of the network (or cell). Therefore, in order to ensure low PAPR, the DFT-s-OFDM waveform in NR only supports uplink single-stream transmission, that is, the maximum uplink transmission rank is 1.
  • LTE and NR DFT-s-OFDM waveforms only support single-stream transmission. This is in the actual transmission of information, the modulated symbols also need to be processed by layer mapping, RE mapping, etc. These operations will destroy the existing ⁇ /2 BPSK phase jump +/-90° characteristics, resulting in an increase in PAPR. As a result, the coverage of the network (or cell) is reduced.
  • the modulated symbol d(i) is layer-mapped, and the modulated symbol of the k-th layer is mapped as d(floor(i/v)*v+(i mod v)),
  • the phase difference between adjacent symbols in the original d(i) is +/-90°, but the mapping symbol d(floor(i/v)*v+(i mod v)) of the k-th layer may have a phase of 0° or 180° Change, thereby destroying the ⁇ /2 BPSK characteristic, leading to an increase in PAPR.
  • mapping relationship between codewords (CW) and layers in the 3rd generation partnership project (3GPP) can be shown in Table 2:
  • NR uplink also supports OFDM waveforms. By using OFDM waveforms and superimposing multi-antenna technology, NR uplink can support 4-stream transmission to a single user.
  • the transmission rate using the OFDM waveform may be higher than the transmission rate using the DFT-s-OFDM waveform.
  • the terminal device will report the supported uplink precoding codebook type according to its own hardware implementation capabilities.
  • the type of uplink precoding codebook supported by the terminal device can be non-coherent, partial/non-coherent, or full/partial/non-coherent. partial/non-coherent).
  • DFT-s-OFDM waveform plus ⁇ /2 BPSK modulation can be used; for network (or cell) center or uplink receive signal to noise ratio (signal to interference plus noise ratio, SINR) )
  • SINR signal to interference plus noise ratio
  • Higher terminal equipment can use OFDM waveform plus MIMO multi-stream transmission. For scenarios where the uplink receiving SINR is low, how to make full use of the multi-antenna ports of the terminal equipment under the premise of ensuring coverage has become an urgent problem to be solved.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • the network architecture may include one or more terminal devices 101 (one is shown in FIG. 1) and one or more network devices 102 (one is shown in FIG. 1).
  • the device 102 may form a MIMO system, or may form another communication system, which is not limited here.
  • the communication between the terminal device 101 and the network device 102 includes uplink (that is, the terminal device 101 to the network device 102) communication and the downlink (that is, the network device 102 to the terminal device 101) communication.
  • uplink communication the terminal device 101 is used to send an uplink signal to the network device 102; the network device 102 is used to receive an uplink signal from the terminal device 101.
  • downlink communication the network device 102 is used to send a downlink signal to the terminal device 101; the terminal device 101 is used to receive a downlink signal from the network device 102.
  • the uplink signal sent by the terminal device 101 to the network device 102 needs to be pre-coded.
  • the terminal device can precode the first information using a precoding manner instructed by the network device.
  • the terminal device 101 sends an uplink reference signal for channel measurement to the network device 102.
  • the network device 102 receives the uplink reference signal from the terminal device 101, it performs channel measurement according to the uplink reference signal, and provides the terminal device 101 according to the measurement result.
  • the precoding matrix is selected, and information indication information for indicating the precoding matrix is sent to the terminal device 101 through downlink signaling.
  • the terminal device 101 may precode the first information according to the precoding matrix indicated in the instruction information, and then send the precoded information to the network device 102.
  • the network device 102 indicates the precoding information used for uplink transmission, and indicates the selection of sounding reference signal (sounding reference signal, SRS) resources (time, frequency, comb, code, port, beam and other resources), and the terminal device 101 can perform channel measurement according to the channel state information reference signal (CSI-RS) sent by the network device 102, and perform precoding transmission of the SRS based on the measurement result, and according to the precoding information corresponding to the SRS resource indicated by the network device
  • SRS sounding reference signal
  • CSI-RS channel state information reference signal
  • the uplink single-carrier transmission uses ⁇ /2 BPSK modulation, that is, the uplink uses DFT-s-OFDM waveform transmission.
  • the information to be sent needs to go through some or all of the processes of scrambling, modulation, layer mapping, DFT precoding, precoding, RE mapping, waveform generation, etc.
  • the specific sequence can be adjusted as needed.
  • RE includes time domain resources and frequency domain resources, and is the smallest unit used to carry modulation symbols, including one time domain symbol and one frequency domain subcarrier.
  • scrambling and modulation are performed first in this process, and OFDM waveform generation is performed last.
  • FIG. 2 is a processing flow required before information is sent according to an embodiment of the present invention.
  • the terminal device 101 before the uplink communication, the terminal device 101 needs to perform one or more processing procedures of information scrambling, modulation, layer mapping, DFT precoding, precoding, RE mapping, and waveform generation.
  • the terminal device 101 may be user equipment (UE), customer premise equipment (CPE), access terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal, mobile equipment, UE terminal, terminal, wireless communication equipment, UE agent or UE device, etc.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in the future 5G network or terminals in the future evolved public land mobile network (PLMN) network Wait.
  • UE user equipment
  • CPE customer premise equipment
  • PDA personal digital assistant
  • the network device 102 is a device that can communicate with the terminal device 101, and may be a base station, a relay station, or an access point.
  • the base station can be a base transceiver station (BTS) in the global system for mobile communication (GSM) or code division multiple access (CDMA) network, or it can be a broadband code division
  • BTS base transceiver station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • NB in wideband code division multiple access
  • WCDMA wideband code division multiple access
  • eNB or eNodeB in long term evolution (LTE)
  • LTE long term evolution
  • It can also be It is the wireless controller in the cloud radio access network (CRAN) scenario.
  • CRAN cloud radio access network
  • It can also be the base station equipment in the future 5G network or the network equipment in the future evolved PLMN network. It can also be a wearable device or a vehicle. equipment.
  • FIG. 3 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention.
  • the steps executed by the terminal device below can also be executed by the module (for example, chip) of the terminal device, and the steps executed by the following network device can also be executed by the module (for example, chip) of the network device.
  • the communication method may include the following steps.
  • the terminal device processes the first information.
  • the processing process can include ⁇ /2BPSK modulation, layer mapping, DFT precoding, precoding and OFDM waveform generate.
  • the first information is information to be sent by the terminal device, which may be data, signaling or control information, or other information, which is not limited here.
  • the terminal device sends information to the network device.
  • the terminal device After the terminal device processes the first information, it can send the information to the network device.
  • the information sent by the terminal device is the processed first information
  • the information received by the network device is the second information.
  • the second information is information after the processed first information is transmitted through the channel.
  • the network device processes the second information to obtain the first information.
  • the network device After the network device receives the information from the terminal device, that is, the second information, it can process the second information to obtain the first information.
  • the first information here is the first information that the above terminal device needs to send.
  • the processing procedure of the network device may include ⁇ /2 BPSK modulation, layer mapping, DFT precoding, and OFDM waveform decoding.
  • the process of processing the second information by the network device is the reverse process of the process of processing the first information by the terminal device.
  • Decoding ⁇ /2 BPSK modulation is the inverse process of ⁇ /2BPSK modulation
  • de-layer mapping is the inverse process of layer mapping
  • de-DFT precoding is the inverse process of DFT precoding
  • de-OFDM waveform is the inverse process of OFDM waveform generation
  • MIMO equalization It is the reverse process of precoding.
  • FIG. 4 is a schematic flowchart of processing the first information by a terminal device disclosed in an embodiment of the present invention. Among them, the following steps executed by the terminal device may also be executed by a module (for example, a chip) of the terminal device. As shown in Figure 4, step 301 may include the following steps:
  • the terminal device may modulate the first information first. Specifically, it can be modulated according to the number of transmission layers and ⁇ /2BPSK.
  • ⁇ /2BPSK is the modulation method, and the number of transmission layers is greater than or equal to 1.
  • the embodiment of the present invention can realize single-stream transmission or multi-stream transmission.
  • the following formula can be used to modulate the first information according to the number of transmission layers and ⁇ /2BPSK:
  • C is a parameter related to the number of layers of the transport layer.
  • C can be the number of layers of the transport layer, and C can be indicated by the network device or pre-configured.
  • C can be indicated by downlink control information (DCI), media access control (media access control, MAC) information, or radio resource control (radiore source control, RRC) messages.
  • DCI downlink control information
  • MAC media access control
  • RRC radio resource control
  • d(i) is the symbol of the modulated first information. To round down, Is rounded up.
  • the formula for modulating the first information according to the number of transmission layers and ⁇ /2BPSK can also be various modifications of the above formula (2) or formula (3).
  • phase difference between any two adjacent modulation symbols in the ⁇ /2 BPSK modulation symbol sequence is 90°, but the phase difference between adjacent symbols in the same transmission layer may be 0° or 180° after layer mapping. 90° again. Therefore, when the first information is modulated, it is modulated according to the number of transmission layers and ⁇ /2BPSK, taking into account the influence of layer mapping on the phase difference between adjacent symbols after modulation, which can ensure that the transmission layer of each layer in different transmission layers
  • the phase difference between adjacent symbols is 90°, which can avoid the influence of layer mapping on the phase difference between adjacent symbols, thereby reducing PAPR.
  • the number of transmission layers can be greater than or equal to 1, so that single-stream or multi-stream transmission can be realized when ⁇ /2BPSK is used for modulation.
  • the terminal device After the terminal device modulates the first information according to the number of transmission layers and ⁇ /2BPSK, it may perform layer mapping on the modulated first information. Specifically, the modulated symbols can be mapped to different transmission layers according to the number of transmission layers and the codeword-to-layer mapping relationship.
  • the modulated symbols corresponding to adjacent bits in the first information may be layer-mapped to different transmission layers.
  • the phase difference before layer mapping may be 0° or 180°. However, for two symbols, if the number of transmission layers is reduced by one symbol, the phase difference between the two symbols is 90°. In this way, the modulated symbols corresponding to adjacent bits are layer-mapped to different transmission layers, which can ensure that the phase difference between adjacent symbols in each transmission layer in different transmission layers is 90°, which can avoid layer mapping between adjacent symbols.
  • FIG. 5 is a layer mapping manner in which the number of transmission layers (ie, the rank) is 2 disclosed in an embodiment of the present invention.
  • the modulated symbol of the first information includes 6 symbols.
  • the first symbol, the third symbol, and the fifth symbol are mapped to a transmission layer.
  • the second symbol and the fourth symbol And the sixth symbol is mapped to another transport layer. Therefore, even if the phase difference between the adjacent six symbols may be 0° or 180°, because the adjacent symbols are mapped to different transmission layers, they are mapped to the first symbol and the third symbol of the same transmission layer.
  • the phase difference between the symbol and the fifth symbol and the adjacent symbols in the second, fourth and sixth symbols is 90°. Therefore, the influence of layer mapping on PAPR can be avoided.
  • the terminal device may perform DFT precoding on the layer mapped first information. Specifically, DFT transformation is performed on the symbols of each transmission layer in the different transmission layers after the layer mapping.
  • the symbols of each transmission layer may include not only the symbols corresponding to the first information, but also phase tracking reference signals (PTRS) and demodulation reference signals (DMRS). ), SRS, physical uplink control channel (physical uplink control channel, PUCCH) and other corresponding symbols.
  • PTRS phase tracking reference signals
  • DMRS demodulation reference signals
  • SRS physical uplink control channel
  • PUCCH physical uplink control channel
  • the terminal device After the terminal device performs DFT precoding on the layer-mapped first information, it may perform precoding on the DFT precoded first information.
  • the DFT-precoded first information can be precoded according to the precoding matrix, that is, the symbols of the DFT precoded first information in different transmission layers can be coded to the transmitting antenna port according to the precoding matrix.
  • the number of rows of the precoding matrix is equal to the number of transmitting antenna ports, the number of transmitting antenna ports is greater than or equal to 1, the number of columns of the precoding matrix is equal to the number of layers of the transmission layer, and the codewords included in the precoding matrix are non-coherent codewords or parts Coherent codewords.
  • the precoding matrix is a non-coherent coding matrix.
  • the precoding matrix is a partially interfering coding matrix.
  • Non-coherent codewords include only one non-zero element in each column and the rows of non-zero elements in any two columns of each precoding matrix are different.
  • Partially coherent codewords include at least one column that includes at least one zero element and at least two Non-zero elements.
  • a non-phase intervention coding matrix or a part of the phase intervention coding matrix can be used to precode the information to be sent, so that the PAPR will not be affected while ensuring multi-stream transmission.
  • the precoding here is MIMO precoding.
  • the precoding matrix may be directly instructed by the network device, and the terminal device may precode the first information according to the precoding matrix indicated by the network device; or, the SRS resource indication information may also be indicated by the network device, and the terminal device may indicate according to the SRS resource indication information.
  • the precoding on the SRS determines the precoding matrix corresponding to the first information.
  • the terminal device After the terminal device precodes the first information precoded by the DFT, it can generate the OFDM waveform from the precoded first information to obtain the first information of the DFT-s-OFDM waveform, that is, each of the transmit antenna ports will be transmitted.
  • the symbols above respectively generate the OFDM waveform to obtain the first information of the DFT-s-OFDM waveform.
  • FIG. 6 is a schematic flowchart of processing the first information by another terminal device disclosed in an embodiment of the present invention. Among them, the following steps executed by the terminal device may also be executed by a module (for example, a chip) of the terminal device. As shown in Fig. 6, step 301 may include the following steps:
  • the terminal device may first use ⁇ /2BPSK to modulate the first information, and when using ⁇ /2BPSK to modulate the first information, formula (1) may be used.
  • the formula for modulating the first information by using ⁇ /2BPSK can also be various modifications of the above formula (1). For detailed description, please refer to the related description of step 401.
  • the modulated first information can be interleaved.
  • the modulated first information may be interleaved according to the number of transmission layers and the number of bits included in the first information.
  • the terminal device can use the formula as shown in the interleaving of the modulated first information:
  • d'(i) is the symbol of the first information after interleaving.
  • C is the number of transport layers.
  • the number of bits of the first information is T, and S can be T, or a positive integer greater than T and capable of dividing C.
  • the modulated first information can be interleaved through the following interleaving matrix:
  • d(i) in the above-mentioned interleaving matrix it can be input in the order of row first, and then read in the order of column first to obtain d′(i).
  • the terminal device may perform layer mapping on the interleaved first information.
  • the modulated symbols can be mapped to different transmission layers according to the number of transmission layers and the codeword-to-layer mapping relationship. Since the phase difference between any two adjacent modulation symbols in the ⁇ /2 BPSK modulation symbol sequence is 90°, the phase difference between adjacent symbols in the transmission layer of the same layer may be 0° or 180° after layer mapping. Therefore, the first information can be sequentially modulated and interleaved, and then the interleaved first information can be layer-mapped to ensure that the phase difference between adjacent symbols in each transmission layer in different transmission layers is 90°. Avoid the influence of layer mapping on the phase difference between adjacent symbols, thereby reducing PAPR.
  • step 604 is the same as step 403, and the detailed description can refer to the description of step 403.
  • step 605 is the same as step 404, and the detailed description can refer to the description of step 404.
  • step 606 is the same as step 405, and the detailed description can refer to the description of step 405.
  • FIG. 7 is a schematic flowchart of another terminal device processing first information disclosed in an embodiment of the present invention.
  • the following steps executed by the terminal device may also be executed by a module (for example, a chip) of the terminal device.
  • step 301 may include the following steps:
  • the terminal device may first perform layer mapping on the first information. Specifically, the bits of the first information may be mapped to different transmission layers according to the number of transmission layers and the codeword-to-layer mapping relationship.
  • the bits of the first information can be b((k-1)*C), b((k-1)*C+1),..., b((k-1)*C+C-1) continuous C
  • C is the number of transmission layers
  • k is a positive integer.
  • ⁇ /2BPSK may be used to modulate the layer-mapped first information.
  • the bits of the first information in each transmission layer of different transmission layers can be mapped to the bits of the transmission layer by using ⁇ /2 BPSK to modulate the first information after the layer mapping, that is, to modulate the first information after the layer mapping.
  • They are respectively modulated by ⁇ /2BPSK, that is, the modulations of different transmission layers are independent of each other, but the modulation methods adopted by different transmission layers are all ⁇ /2BPSK.
  • the formula for modulating the first information by using ⁇ /2 BPSK can be formula (1), or various variations of formula (1). For detailed description, please refer to the related description of step 401.
  • the terminal device After the terminal device modulates the layer-mapped first information by using ⁇ /2BPSK, it can perform DFT precoding on the modulated first information. Wherein, performing DFT precoding on the modulated first information is the same as step 403, and the detailed description can refer to the description of step 403.
  • step 704 is the same as step 404, and the detailed description can refer to the description of step 404.
  • step 705 is the same as step 405, and the detailed description can refer to the description of step 405.
  • the process of processing the first information by the terminal device may also include RE mapping.
  • the terminal device precodes the DFT precoded first information, it can first perform RE mapping on the precoded first information, i.e. The symbols on the transmitting antenna port are subjected to RE mapping in the frequency domain first and then the time domain. Then, the first information after the RE mapping is generated to generate the OFDM waveform to obtain the first information of the DFT-s-OFDM waveform, that is, the symbols after the RE mapping on each transmitting antenna port in the transmitting antenna port are respectively generated to generate the OFDM waveform. That is, when the pre-coded first information is subjected to RE mapping, the frequency domain mapping is performed first, and then the time domain mapping is performed.
  • FIG. 8 is a schematic flowchart of processing the second information by a network device disclosed in an embodiment of the present invention.
  • the following steps executed by the network device can also be executed by a module (for example, a chip) of the network device.
  • step 303 may include the following steps:
  • the process in which the terminal device processes the first information may be instructed by the network device, or may be pre-configured. Therefore, after the network device receives the second information from the terminal device, the network device can determine the processing procedure of the terminal device for the information according to the terminal device, so that the corresponding processing procedure for the second information can be determined. Therefore, after receiving the second information, the network device may first decode the OFDM waveform of the second information, and obtain the precoded first information.
  • MIMO equalization may be performed on the second information after the decoded OFDM waveform, and the first information after DFT precoding may be obtained.
  • MIMO equalization is the inverse process of precoding.
  • the network device After the network device decodes the OFDM waveform of the second information, it may perform DFT precoding on the second information after the OFDM waveform is decoded, that is, perform inverse DFT transformation on the second information after the OFDM waveform is decoded.
  • the network device after the network device performs MIMO equalization on the second information after the de-OFDM waveform, it can de-DFT precoding the second information after the MIMO equalization, that is, perform inverse DFT transformation on the second information after the MIMO equalization.
  • the network device After the network device de-DFT-precodes the second information after the de-DFT waveform, it can de-map the second information de-DFT-precoded, that is, de-DFT pre-code based on the number of transmission layers and the codeword-to-layer mapping relationship. De-layer mapping of the encoded second information.
  • Step 804 is the reverse process of step 401, and the related description can refer to step 401.
  • the process of processing the second information by the network device shown in FIG. 8 is the inverse process of the process of processing the first information by the terminal device shown in FIG. 4, and the detailed description can refer to the relevant description above.
  • FIG. 9 is a schematic flowchart of processing the second information by another network device disclosed in an embodiment of the present invention.
  • the following steps executed by the network device can also be executed by a module (for example, a chip) of the network device.
  • step 303 may include the following steps:
  • step 901 is the same as step 801, and the detailed description can refer to the description of step 801.
  • step 902 is the same as step 802, and the detailed description can refer to the description of step 802.
  • step 903 is the same as step 803, and for detailed description, please refer to the description of step 803.
  • Step 904 is the reverse process of step 602. For related description, refer to step 602.
  • Step 905 is the inverse process of step 601. For related description, please refer to step 601. .
  • the processing process of the second information by the network device shown in FIG. 9 is the inverse process of the processing process of the first information by the terminal device shown in FIG. 6, and the detailed description can refer to the relevant description above.
  • FIG. 10 is a schematic flowchart of another network device processing second information disclosed in an embodiment of the present invention.
  • the following steps executed by the network device can also be executed by a module (for example, a chip) of the network device.
  • step 303 may include the following steps:
  • step 1001 is the same as step 801, and the detailed description can refer to the description of step 801.
  • step 1002 is the same as step 802, and the detailed description can refer to the description of step 802.
  • Step 1003 is the inverse process of step 702. For related description, please refer to step 702. .
  • Step 1004 is the inverse process of step 701. For related description, please refer to Step 701.
  • the process of processing the second information by the network device shown in FIG. 10 is the inverse process of the process of processing the first information by the terminal device shown in FIG. 7.
  • the process of processing the second information by the network device shown in FIG. 10 is the inverse process of the process of processing the first information by the terminal device shown in FIG. 7.
  • the process of processing the second information by the network device may further include de-RE mapping.
  • the network device may first de-map the second information after de-OFDM waveform, and then de-DFT the second information after de-RE mapping. Precoding. When de-mapping the RE, the time domain is first followed by the frequency domain. De-RE mapping is the reverse process of RE mapping. For a detailed description, please refer to the relevant description of RE mapping above.
  • the ⁇ /2 BPSK modulation mode used by the terminal equipment is configured by the network equipment.
  • the network equipment can be configured through high-level signaling, or indicated through physical layer control signaling, or configured through other methods. limited.
  • the network device may determine ⁇ /2 BPSK as the modulation mode of the terminal device, and then may send to the terminal device the first indication information for indicating that the modulation mode is ⁇ /2 BPSK and permitting greater than layer 1 transmission.
  • the terminal device may determine that the modulation mode is ⁇ /2 BPSK according to the first indication information.
  • the terminal device may also determine, according to the first indication information, that the transmission may be multi-stream transmission when the ⁇ /2 BPSK modulation mode is adopted.
  • the network device may send second indication information for indicating the precoding matrix to the terminal device, where the second indication information at least indicates the precoding information.
  • the precoding codebook corresponding to the precoding information only includes the precoding codewords in the non-coherent codebook or the partially coherent codebook.
  • the precoding information can be indicated by SRS resources.
  • the terminal device may report the capability information of the terminal device to the network device.
  • the capability information of the terminal device may include different types of precoding codebooks.
  • the type of the precoding codebook may be incoherent waves, partial/incoherent waves, full/partial/incoherent waves, or other types of precoding codebooks.
  • the network device After the network device receives the capability information reported from the terminal device, it can send configuration information according to the capability information reported by the terminal device.
  • the configuration information is used to indicate the codebook used by the terminal device.
  • the codebook indicated by the configuration information may include a non-coherent codebook or a partially coherent codebook.
  • the phase difference between two modulation symbols mapped on adjacent REs in the frequency domain is ⁇ 90°.
  • the precoding matrix uses non-coherent codewords or partial non-coherent codewords, so that finally the symbols transmitted on each transmit antenna port still meet the low PAPR/CM characteristics of ⁇ /2 BPSK modulation and DFT-s-OFDM waveform.
  • FIG. 11 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention. As shown in FIG. 11, the communication device may include:
  • the processing unit 1101 is configured to process the first information, and the processing process includes ⁇ /2BPSK modulation, layer mapping, DFT precoding, precoding, and OFDM waveform generation;
  • the sending unit 1102 is configured to send the processed first information to the network device.
  • processing unit 1101 is specifically configured to:
  • the first information is modulated according to the number of transmission layers and ⁇ /2BPSK, and the number of transmission layers is greater than or equal to 1;
  • the sending unit 1102 is specifically configured to send the first information of the DFT-s-OFDM waveform to the network device.
  • the modulated symbols corresponding to adjacent bits in the first information are layer-mapped to different transmission layers.
  • processing process further includes interleaving, and the processing unit 1101 is specifically configured to:
  • the sending unit 1102 is specifically configured to send the first information of the DFT-s-OFDM waveform to the network device.
  • the processing unit 1101 interleaving the modulated first information includes:
  • the modulated first information is interleaved according to the number of transmission layers and the number of bits included in the first information.
  • processing unit 1101 is specifically configured to:
  • the sending unit 1102 is specifically configured to send the first information of the DFT-s-OFDM waveform to the network device.
  • the processing process further includes RE mapping, and the processing unit 1101 is specifically further configured to perform RE mapping on the precoded first information;
  • the processing unit 1101 generates an OFDM waveform from the precoded first information, and the first information obtained by the DFT-s-OFDM waveform includes:
  • the first information after the RE mapping is generated into an OFDM waveform, and the first information of the DFT-s-OFDM waveform is obtained.
  • the processing unit 1101 precoding the first information after DFT precoding includes:
  • the number of rows of the precoding matrix is equal to the number of transmitting antenna ports
  • the number of columns of the precoding matrix is equal to the number of layers of the transmission layer
  • the codewords included in the precoding matrix It is a non-coherent code word or a partially coherent code word.
  • the communication device further includes:
  • the receiving unit 1103 is configured to receive first indication information from a network device that is used to indicate that the modulation mode is ⁇ /2 BPSK and allows transmission of more than layer 1;
  • the determining unit 1104 is configured to determine the modulation mode as ⁇ /2 BPSK according to the first indication information.
  • the receiving unit 1103 is further configured to receive second indication information used to indicate the precoding matrix from the network device;
  • the processing unit 1101 precoding the DFT precoded first information according to the precoding matrix includes:
  • processing unit 1101 the sending unit 1102, the receiving unit 1103, and the determining unit 1104
  • FIG. 12 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device may include:
  • the receiving unit 1201 is configured to receive second information from a terminal device
  • the processing unit 1202 is configured to process the second information to obtain the first information.
  • the first information is information sent by the terminal device.
  • the processing process includes de- ⁇ /2 BPSK modulation, de-layer mapping, de-DFT precoding, and de-OFDM waveform.
  • processing unit 1202 is specifically configured to:
  • the second information after de-layer mapping is demodulated to obtain the first information, and the number of transmission layers is greater than or equal to 1.
  • adjacent bits in the first information are obtained by de-layer mapping and demodulation of symbols from different transmission layers in the second information after de-DFT precoding.
  • processing process further includes de-interleaving, and the processing unit 1202 is specifically configured to:
  • the processing unit 1202 deinterleaving the second information after de-layer mapping includes:
  • the second information after de-layer mapping is de-interleaved.
  • processing unit 1202 is specifically configured to:
  • the processing process further includes de-RE mapping, and the processing unit 1202 is specifically further configured to de-map the second information after de-OFDM waveform;
  • the processing unit 1202 de-DFT precoding the second information after de-OFDM waveform includes:
  • the communication device may further include:
  • the determining unit 1203 is configured to determine ⁇ /2 BPSK as the modulation mode of the terminal device
  • the sending unit 1204 is configured to send the first indication information used to indicate that the modulation mode is ⁇ /2 BPSK and allow more than 1 layer transmission to the terminal device.
  • receiving unit 1201, processing unit 1202, determining unit 1203, and sending unit 1204 can be obtained directly by referring to the relevant description of the network device in the method embodiment shown in FIG. 3 and FIGS. 8-10. Add more details.
  • FIG. 13 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device may include a processor 1301, a memory 1302, an input interface 1303, an output interface 1304, and a bus 1305.
  • the processor 1301 may be a general-purpose central processing unit (CPU), multiple CPUs, microprocessors, application-specific integrated circuits (ASICs), or one or more programs for controlling the execution of the program of the present invention. integrated circuit.
  • the memory 1102 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory 1302 may exist independently, and may be connected to the processor 1301 through the bus 1305.
  • the memory 1302 may also be integrated with the processor 1301. Among them, the bus 1305 is used to realize the connection between these components.
  • the communication device may be a terminal device or a module (for example, a chip) of the terminal device, where:
  • the processor 1301 is configured to call a computer program stored in the memory 1302 to perform the following operations:
  • Process the first information includes ⁇ /2 BPSK modulation, layer mapping, DFT precoding, precoding and OFDM waveform generation;
  • the output interface 1304 is used to send the processed first information to the network device.
  • the processor 1301 processing the first information includes:
  • the first information is modulated according to the number of transmission layers and ⁇ /2BPSK, and the number of transmission layers is greater than or equal to 1;
  • the output interface 1304 sending the processed first information to the network device includes:
  • the modulated symbols corresponding to adjacent bits in the first information are layer-mapped to different transmission layers.
  • processing procedure may further include interleaving, and the processor 1301 processing the first information includes:
  • the output interface 1304 sending the processed first information to the network device includes:
  • the processor 1301 interleaving the modulated first information includes:
  • the modulated first information is interleaved according to the number of transmission layers and the number of bits included in the first information.
  • the processor 1301 processing the first information includes:
  • the output interface 1304 sending the processed first information to the network device includes:
  • processing procedure may further include RE mapping
  • processing the first information by the processor 1301 further includes:
  • the processor 1301 generates an OFDM waveform from the precoded first information, and the first information obtained by the DFT-s-OFDM waveform includes:
  • the first information after the RE mapping is generated into an OFDM waveform, and the first information of the DFT-s-OFDM waveform is obtained.
  • the processor 1301 precoding the first information pre-coded by DFT includes:
  • the number of rows of the precoding matrix is equal to the number of transmitting antenna ports
  • the number of columns of the precoding matrix is equal to the number of layers of the transmission layer
  • the codewords included in the precoding matrix It is a non-coherent code word or a partially coherent code word.
  • the input interface 1303 is used to receive the first indication information from the network device that is used to indicate that the modulation mode is ⁇ /2BPSK and allows greater than layer 1 transmission;
  • the processor 1301 is further configured to call a computer program stored in the memory 1302 to perform the following operations:
  • the modulation mode is ⁇ /2 BPSK.
  • the input interface 1303 is also used to receive second indication information used to indicate the precoding matrix from the network device;
  • the processor 1301 precoding the DFT precoded first information according to the precoding matrix includes:
  • step 301 may be performed by the processor 1301 and the memory 1302, the step of receiving information from the network device by the terminal device may be performed by the input interface 1303, and the step of sending information from the terminal device to the network device may be performed by the output interface 1304.
  • the processing unit 1101 and the determining unit 1104 can be implemented by the processor 1301 and the memory 1302, the receiving unit 1103 can be implemented by the input interface 1303, and the sending unit 1102 can be implemented by the output interface 1304.
  • the above-mentioned terminal device or the module of the terminal device may also be used to execute various methods executed by the terminal device in the foregoing method embodiments, and details are not described herein again.
  • the communication device may be a network device or a chip in the network device, where:
  • the input interface 1303 is used to receive the second information from the terminal device
  • the processor 1301 is configured to call a computer program stored in the memory 1302 to perform the following operations:
  • the second information is processed to obtain the first information.
  • the first information is the information sent by the terminal device.
  • the processing process includes de- ⁇ /2 BPSK modulation, de-layer mapping, DFT precoding, and OFDM waveform.
  • the processor 1301 processes the second information to obtain the first information including:
  • the second information after de-layer mapping is demodulated to obtain the first information, and the number of transmission layers is greater than or equal to 1.
  • adjacent bits in the first information are obtained by de-layer mapping and demodulation of symbols from different transmission layers in the second information after de-DFT precoding.
  • the processing process further includes de-interleaving, and the processor 1301 processes the second information to obtain the first information including:
  • the processor 1301 deinterleaving the second information after de-layer mapping includes:
  • the second information after de-layer mapping is de-interleaved.
  • the processor 1301 processes the second information to obtain the first information including:
  • the processing process further includes de-RE mapping
  • the processor 1301 processes the second information, and obtaining the first information further includes:
  • the processor 1301 de-DFT precoding the second information after de-OFDM waveform includes:
  • the processor 1301 is further configured to call a computer program stored in the memory 1302 to perform the following operations:
  • the output interface 1304 is used to send the first indication information used to indicate that the modulation mode is ⁇ /2 BPSK and allow more than 1 layer transmission to the terminal device.
  • step 303 may be performed by the processor 1301 and the memory 1302, the step of receiving information from the terminal device by the network device may be performed by the input interface 1303, and the step of sending information from the network device to the terminal device may be performed by the output interface 1304.
  • the processing unit 1202 and the determining unit 1203 can be implemented by the processor 1301 and the memory 1302, the receiving unit 1201 can be implemented by the input interface 1303, and the sending unit 1204 can be implemented by the output interface 1304.
  • the above-mentioned terminal device or the module of the terminal device may also be used to execute various methods executed by the terminal device in the foregoing method embodiments, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device may include an input interface 1401, a logic circuit 1402, and an output interface 1403.
  • the input interface 1401 and the output interface 1403 are connected through a logic circuit 1402.
  • the input interface 1401 is used to receive information from other communication devices, and the output interface 1403 is used to output, schedule, or send information to other communication devices.
  • the logic circuit 1402 is used to perform operations other than the operations of the input interface 1401 and the output interface 1403, for example, to implement the functions implemented by the processor 1301 in the foregoing embodiment.
  • the communication device may be a terminal device or a module in a terminal device, or may be a network terminal device or a module in a network device.
  • a more detailed description of the input interface 1401, the logic circuit 1402, and the output interface 1403 can be directly obtained by referring to the relevant description of the terminal device or the module in the terminal device and the network device or the module in the network device in the above method embodiment, here Do not repeat it.
  • the embodiment of the present invention also discloses a computer-readable storage medium with an instruction stored thereon, and the method in the foregoing method embodiment is executed when the instruction is executed.
  • the embodiment of the present invention also discloses a computer program product containing instructions, which execute the method in the foregoing method embodiment when the instruction is executed.
  • the embodiment of the present invention also discloses a communication system.
  • the communication system includes a terminal device and a network device.
  • a terminal device for a detailed description, reference may be made to the communication method shown in FIG. 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明实施例公开一种通信方法及设备,对第一信息进行处理,处理过程包括π/2二进制相移键控BPSK调制、层映射、离散傅里叶变换DFT预编码、预编码和正交频分复用OFDM波形生成;向网络设备发送处理后的第一信息。本发明实施例,可以降低PAPR。

Description

一种通信方法及装置 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
峰值均值功率比/峰均比(peak to average power ratio,PAPR)是指信号峰值均值功率比,用于评价信号幅度波动。PAPR越高表明信号幅度变化越大。在PAPR较大的情况下,信号峰值可能会落入功率放大器的非线性区域,以致引起信号畸变。此外,PAPR较大可能需要终端设备降低发送功率,以致缩小了网络(或者小区)覆盖范围,从而引起覆盖损失。因此,如何降低PAPR已成为一个亟待解决的技术问题。
发明内容
本发明实施例公开了一种通信方法及装置,用于降低PAPR。
第一方面公开一种通信方法,对第一信息进行处理,向网络设备发送处理后的第一信息。处理过程可以包括π/2二进制相移键控(binary phase shift keying,BPSK)调制、层映射、离散傅里叶变换(discrete fourier transform,DFT)预编码、预编码和正交频分复用(orthogonal frequency division multiplexing,OFDM)波形生成。
本发明实施例中,在发送第一信息之前,终端设备对第一信息采用π/2 BPSK进行了调制,由于π/2 BPSK调制符号序列中任意两个相邻调制符号间的相位差为90°,因此,可以保证调制后的第一信息有较低的PAPR,从而可以降低PAPR。此外,在发送第一信息之前,终端设备对第一信息进行了DFT预编码和OFDM波形生成,可见,处理后的第一信息为DFT-扩展(spread,s)-OFDM波形的第一信息,DFT-s-OFDM波形的PAPR较低,因此,可以保证发送的波形是低PAPR。进一步地,PAPR较低可以保证终端设备在发送信号时回退较少功率,从而可以提升上行覆盖范围。
作为一种可能的实施方式,对第一信息进行处理时,可以根据传输层的层数和π/2BPSK对第一信息进行调制,对调制后的第一信息进行层映射,对层映射后的第一信息进行DFT预编码,对DFT预编码后的第一信息进行预编码,将预编码后的第一信息生成OFDM波形得到DFT-s-OFDM波形的第一信息。向网络设备发送处理后的第一信息,即向网络设备发送DFT-s-OFDM波形的第一信息。传输层的层数大于或等于1。
本发明实施例中,由于π/2 BPSK调制符号序列中任意两个相邻调制符号间的相位差为90°,但在经过层映射后同一传输层内相邻符号间的相位差可能为0°或180°。因此,对第一信息进行调制时是根据传输层的层数和π/2BPSK进行调制的,考虑了层映射对相邻符号间相位差的影响,可以保证不同传输层中每层传输层内的相邻符号间的相位差为90°,可以避免层映射对相邻符号间相位差的影响,从而可以降低PAPR。此外,传输层的层数可以大于或等于1,从而可以实现在采用π/2BPSK进行调制的情况下,可以实现单流或多流传输。
作为一种可能的实施方式,第一信息中相邻比特对应的调制后的符号被层映射到不同传输层。
本发明实施例中,层映射前相邻符号间的相位差虽然可能为0°或180°,但是针对两个符号,如果间隔传输层数减一个符号,则该两个符号的相位差为90°。这样相邻比特对应的调制后的符号被层映射到不同传输层,可以保证不同传输层中每层传输层内的相邻符号间的相位差为90°,可以避免层映射对相邻符号间相位差的影响,从而可以降低PAPR。
作为一种可能的实施方式,处理过程还可以包括交织,对第一信息进行处理时,采用π/2BPSK对第一信息进行调制,对调制后的第一信息进行交织,对交织后的第一信息进行层映射,对层映射后的第一信息进行DFT预编码,对DFT预编码后的第一信息进行预编码,将预编码后的第一信息生成OFDM波形得到DFT-s-OFDM波形的第一信息。向网络设备发送处理后的第一信息,即向网络设备发送DFT-s-OFDM波形的第一信息。
本发明实施例中,由于π/2 BPSK调制符号序列中任意两个相邻调制符号间的相位差为90°,但在经过层映射后同一传输层内相邻符号间的相位差可能为0°或180°。因此,可以先对第一信息依次进行调制和交织,再对交织后的第一信息进行层映射,可以保证不同传输层中每层传输层内的相邻符号间的相位差为90°,可以避免层映射对相邻符号间相位差的影响,从而可以降低PAPR。
作为一种可能的实施方式,对调制后的第一信息进行交织时,可以根据传输层的层数以及第一信息包括的比特数对调制后的第一信息进行交织。
本发明实施例中,根据传输层的层数以及第一信息包括的比特数对调制后的第一信息进行交织,可以保证不同传输层中每层传输层内的相邻符号间的相位差为90°,从而可以降低PAPR。
作为一种可能的实施方式,对第一信息进行处理时,可以对第一信息进行层映射,采用π/2BPSK对层映射后的第一信息进行调制,对调制后的第一信息进行DFT预编码,对DFT预编码后的第一信息进行预编码,将预编码后的第一信息生成OFDM波形得到DFT-s-OFDM波形的第一信息。向网络设备发送处理后的第一信息,即向网络设备发送DFT-s-OFDM波形的第一信息。
本发明实施例中,由于π/2 BPSK调制符号序列中任意两个相邻调制符号间的相位差为90°,但在调制后的符号经过层映射后同一传输层内相邻符号间的相位差可能为0°或180°。因此,可以先对第一信息进行层映射,再根据π/2BPSK对层映射后的第一信息进行调制,可以避免层映射对调制后的相邻符号间相位差的影响,可以保证不同传输层中每层传输层内的相邻符号间的相位差为90°,从而可以降低PAPR。
作为一种可能的实施方式,处理过程还可以包括资源单元(resource element,RE)映射,对第一信息进行处理时,还可以将预编码后的第一信息进行RE映射,再将RE映射后的第一信息生成OFDM波形得到DFT-s-OFDM波形的第一信息。
作为一种可能的实施方式,对DFT预编码后的第一信息进行预编码时,可以根据预编码矩阵对DFT预编码后的第一信息进行预编码,预编码矩阵的行数等于发送天线端口的数量,预编码矩阵的列数等于传输层的层数,预编码矩阵包括的码字为非相干码字或部分相干码字。
本发明实施例中,当终端设备有多个发送天线端口时,需要对信息进行预编码处理。为了保证预编码处理前后的PAPR不变,可以使用非相干预编码矩阵或者部分相干预编码矩 阵对待发送信息进行预编码处理。预编码矩阵包括的码字为非相干码字或部分相干码字,可以保证预编码矩阵为非相干预编码矩阵或者部分相干预编码矩阵,从而可以在保证多流传输的情况下不会对PAPR产生影响。
作为一种可能的实施方式,可以接收来自网络设备的用于指示调制方式为π/2 BPSK且允许大于1层传输的第一指示信息,根据第一指示信息确定调制方式为π/2 BPSK。
本发明实施例中,终端设备可以根据第一指示信息确定调制方式为π/2 BPSK。此外,终端设备还可以根据第一指示信息确定采用π/2 BPSK调制方式的情况下,传输可以为多流传输。
作为一种可能的实施方式,可以接收来自网络设备的用于指示预编码矩阵的第二指示信息,根据第二指示信息指示的预编码矩阵对DFT预编码后的第一信息进行预编码。
第二方面公开一种通信方法,接收来自终端设备第二信息,对第二信息进行处理得到第一信息,第一信息为端设备发送的信息,处理过程可以包括解π/2 BPSK调制、解层映射、解DFT预编码和解OFDM波形。
本发明实施例中,由于终端设备向网络设备发送第一信息之前,终端设备对第一信息进行了π/2 BPSK调制、层映射、DFT预编码、OFDM波形生成等处理,因此,网络设备接收到来自终端设备的第二信息之后,需要对第二信息进行解π/2 BPSK调制、解层映射、解DFT预编码和解OFDM波形等处理,以便得到终端设备发送的第一信息。此外,在发送第一信息之前,终端设备对第一信息采用π/2 BPSK进行了调制,由于π/2 BPSK调制符号序列中任意两个相邻调制符号间的相位差为90°,因此,可以保证调制后的第一信息有较低的PAPR,从而可以降低PAPR。此外,在发送第一信息之前,终端设备对第一信息进行了DFT预编码和OFDM波形生成,可见,处理后的第一信息为DFT-扩展(spread,s)-OFDM波形的第一信息,DFT-s-OFDM波形的PAPR较低,因此,可以保证发送的波形PAPR较低。进一步地,PAPR较低可以保证终端设备在发送信号时回退较少功率,从而可以提升上行覆盖范围。
作为一种可能的实施方式,对第二信息进行处理得到第一信息时,可以对第二信息解OFDM波形,对解OFDM波形后的第二信息解DFT预编码,对解DFT预编码后的第二信息解层映射,根据传输层的层数和π/2BPSK对解层映射后的第二信息解调制得到第一信息,传输层的层数大于或等于1。
本发明实施例中,由于终端设备向网络设备发送第一信息之前,对第一信息进行了π/2BPSK调制、层映射、DFT预编码和OFDM波形生成,因此,网络设备接收到来自终端设备的第二信息之后,需要对第二信息进行解OFDM波形、解DFT预编码、解层映射和解π/2BPSK调制,以便得到终端设备发送的第一信息。由于π/2 BPSK调制符号序列中任意两个相邻调制符号间的相位差为90°,但在经过层映射后同一传输层内相邻符号间的相位差可能为0°或180°。因此,对第一信息进行调制时是根据传输层的层数和π/2 BPSK进行调制的,考虑了层映射对相邻符号间相位差的影响,可以保证不同传输层中每层传输层内的相邻符号间的相位差为90°,可以避免层映射对相邻符号间相位差的影响,从而可以降低PAPR。此外,传输层的层数可以大于或等于1,从而可以实现在采用π/2 BPSK进行调制的情况下,可 以实现单流或多流传输。
作为一种可能的实施方式,第一信息中的相邻比特由解DFT预编码后的第二信息中来自于不同传输层的符号经解层映射和解调制得到。
本发明实施例中,第一信息中的相邻比特由解DFT预编码后的第二信息中来自于不同传输层的符号经解层映射和解调制得到,表明第一信息中相邻比特对应的调制后的符号被层映射到不同传输层,在层映射前相邻符号间的相位差虽然可能为0°或180°,但是针对两个符号,如果间隔传输层数减一个符号,则该两个符号的相位差为90°这样相邻比特对应的调制后的符号被层映射到不同传输层,可以保证不同传输层中每层传输层内的相邻符号间的相位差为90°,可以避免层映射对相邻符号间相位差的影响,从而可以降低PAPR。
作为一种可能的实施方式,处理过程还可以包括解交织,对第二信息进行处理得到第一信息时,可以对第二信息解OFDM波形,对解OFDM波形后的第二信息解DFT预编码,对解DFT预编码后的第二信息解层映射,对解层映射后的第二信息解交织,根据π/2BPSK对解交织后的第二信息解调制得到第一信息。
本发明实施例中,由于终端设备向网络设备发送第一信息之前,对第一信息进行了π/2BPSK调制、交织、层映射、DFT预编码和OFDM波形生成,因此,网络设备接收到来自终端设备的第二信息之后,需要对第二信息进行解OFDM波形、解DFT预编码、解层映射、解交织和解π/2 BPSK调制,以便得到终端设备发送的第一信息。由于π/2 BPSK调制符号序列中任意两个相邻调制符号间的相位差为90°,但在经过层映射后同一传输层内相邻符号间的相位差可能为0°或180°。因此,可以先对第一信息依次进行调制和交织,再对交织后的第一信息进行层映射,可以保证不同传输层中每层传输层内的相邻符号间的相位差为90°,可以避免层映射对相邻符号间相位差的影响,从而可以降低PAPR。
作为一种可能的实施方式,对解层映射后的第二信息解交织,可以根据传输层的层数以及第一信息包括的比特数对解层映射后的第二信息解交织。
本发明实施例中,由于终端设备向网络设备发送第一信息之前,对第一信息进行交织时是根据传输层的层数以及第一信息包括的比特数进行的,因此,在网络设备接收到来自终端设备的第二信息之后,对第二信息解交织时也需要根据传输层的层数以及第一信息包括的比特数进行。根据传输层的层数以及第一信息包括的比特数对调制后的第一信息进行交织,可以保证不同传输层中每层传输层内的相邻符号间相位差为90°,从而可以降低PAPR。
作为一种可能的实施方式,对第二信息进行处理得到第一信息时,可以为对第二信息解OFDM波形,对解OFDM波形后的第二信息解DFT预编码,根据π/2BPSK对解DFT预编码后的第二信息解调制,对解调制后的第二信息解层映射得到第一信息。
本发明实施例中,由于终端设备向网络设备发送第一信息之前,对第一信息进行了层映射、π/2 BPSK调制、DFT预编码和OFDM波形生成,因此,网络设备接收到来自终端设备的第二信息之后,需要对第二信息进行解OFDM波形、解DFT预编码、解π/2 BPSK调制和解层映射,以便得到终端设备发送的第一信息。由于π/2 BPSK调制符号序列中任意两个相邻调制符号间的相位差为90°,但在调制后的符号经过层映射后同一传输层内相邻符号间的相位差可能为0°或180°。因此,可以先对第一信息进行层映射,再根据π/2 BPSK对层映射后的第一信息进行调制,可以避免层映射对调制后的相邻符号间相位差的影响,可以保 证不同传输层中每层传输层内的相邻符号间的相位差为90°,从而可以降低PAPR。
作为一种可能的实施方式,处理过程还可以包括解RE映射,对第二信息进行处理得到第一信息还包括:对解OFDM波形后的第二信息解RE映射。对解OFDM波形后的第二信息解DFT预编码,可以对解RE映射后的第二信息解DFT预编码。
作为一种可能的实施方式,可以将π/2 BPSK确定为终端设备的调制方式,向终端设备发送用于指示调制方式为π/2 BPSK且允许大于1层传输的第一指示信息。
本发明实施例中,第一指示信息可以使终端设备确定调制方式为π/2 BPSK。此外,第一指示信息可以使终端设备确定采用π/2 BPSK调制方式的情况下,传输可以为多流传输。
第三方面公开一种通信装置,包括:
处理单元,用于对第一信息进行处理,处理过程包括π/2BPSK调制、层映射、DFT预编码、预编码和OFDM波形生成;
发送单元,用于向网络设备发送处理后的第一信息。
作为一种可能的实施方式,所述处理单元具体用于:
根据传输层的层数和π/2BPSK对第一信息进行调制,所述传输层的层数大于或等于1;
对调制后的第一信息进行层映射;
对层映射后的第一信息进行DFT预编码;
对DFT预编码后的第一信息进行预编码;
将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息;
所述发送单元,具体用于向网络设备发送所述DFT-s-OFDM波形的第一信息。
作为一种可能的实施方式,所述第一信息中相邻比特对应的调制后的符号被层映射到不同传输层。
作为一种可能的实施方式,所述处理过程还包括交织,所述处理单元具体用于:
采用π/2BPSK对第一信息进行调制;
对调制后的第一信息进行交织;
对交织后的第一信息进行层映射;
对层映射后的第一信息进行DFT预编码;
对DFT预编码后的第一信息进行预编码;
将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息;
所述发送单元,具体用于向网络设备发送所述DFT-s-OFDM波形的第一信息。
作为一种可能的实施方式,所述处理单元对调制后的第一信息进行交织包括:
根据传输层的层数以及所述第一信息包括的比特数对调制后的第一信息进行交织。
作为一种可能的实施方式,所述处理单元具体用于:
对第一信息进行层映射;
采用π/2BPSK对层映射后的第一信息进行调制;
对调制后的第一信息进行DFT预编码;
对DFT预编码后的第一信息进行预编码;
将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息;
所述发送单元,具体用于向网络设备发送所述DFT-s-OFDM波形的第一信息。
作为一种可能的实施方式,所述处理过程还包括RE映射,所述处理单元,具体还用于将预编码后的第一信息进行RE映射;
所述处理单元将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息包括:
将RE映射后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息。
作为一种可能的实施方式,所述处理单元对DFT预编码后的第一信息进行预编码包括:
根据预编码矩阵对DFT预编码后的第一信息进行预编码,所述预编码矩阵的行数等于发送天线端口的数量,所述预编码矩阵的列数等于传输层的层数,所述预编码矩阵包括的码字为非相干码字或部分相干码字。
作为一种可能的实施方式,所述装置还包括:
接收单元,用于接收来自所述网络设备的用于指示调制方式为π/2 BPSK且允许大于1层传输的第一指示信息;
确定单元,用于根据所述第一指示信息确定调制方式为π/2 BPSK。
作为一种可能的实施方式,所述接收单元,还用于接收来自所述网络设备的用于指示所述预编码矩阵的第二指示信息;
所述处理单元根据预编码矩阵对DFT预编码后的第一信息进行预编码包括:
根据所述第二指示信息指示的预编码矩阵对DFT预编码后的第一信息进行预编码。
第四方面公开一种通信装置,包括:
接收单元,用于接收来自终端设备的第二信息;
处理单元,用于对第二信息进行处理,得到第一信息,所述第一信息为所述终端设备发送的信息,处理过程包括解π/2BPSK调制、解层映射、解DFT预编码和解OFDM波形。
作为一种可能的实施方式,所述处理单元具体用于:
对所述第二信息解OFDM波形;
对解OFDM波形后的第二信息解DFT预编码;
对解DFT预编码后的第二信息解层映射;
根据传输层的层数和π/2BPSK对解层映射后的第二信息解调制,得到第一信息,所述传输层的层数大于或等于1。
作为一种可能的实施方式,所述第一信息中的相邻比特由所述解DFT预编码后的第二信息中来自于不同传输层的符号经解层映射和解调制得到。
作为一种可能的实施方式,所述处理过程还包括解交织,所述处理单元具体用于:
对所述第二信息解OFDM波形;
对解OFDM波形后的第二信息解DFT预编码;
对解DFT预编码后的第二信息解层映射;
对解层映射后的第二信息解交织;
根据π/2BPSK对解交织后的第二信息解调制,得到第一信息。
作为一种可能的实施方式,所述处理单元对解层映射后的第二信息解交织包括:
根据传输层的层数以及所述第一信息包括的比特数,对解层映射后的第二信息解交织。
作为一种可能的实施方式,所述处理单元具体用于:
对所述第二信息解OFDM波形;
对解OFDM波形后的第二信息解DFT预编码;
根据π/2BPSK对解DFT预编码后的第二信息解调制;
对解调制后的第二信息解层映射,得到第一信息。
作为一种可能的实施方式,所述处理过程还包括解RE映射,所述处理单元,具体还用于对解OFDM波形后的第二信息解RE映射;
所述处理单元对解OFDM波形后的第二信息解DFT预编码包括:
对解RE映射后的第二信息解DFT预编码。
作为一种可能的实施方式,所述装置还包括:
确定单元,用于将π/2 BPSK确定为所述终端设备的调制方式;
发送单元,用于向所述终端设备发送用于指示调制方式为π/2 BPSK且允许大于1层传输的第一指示信息。
第五方面公开一种通信装置,该通信装置可以是终端设备或者终端设备内的模块(例如,芯片)。该通信装置可以包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第一方面或第一方面的任一实现方式公开的通信方法。
第六方面公开一种通信装置,该通信装置可以是网络设备或者网络设备内的模块(例如,芯片)。该通信装置可以包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第二方面或第二方面的任一实现方式公开的通信方法。
第七方面公开一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序或计算机指令,当该计算机程序或计算机指令运行时,实现如第一方面或第一方面的任一实现方式公开的通信方法,或者第二方面或第二方面的任一实现方式公开的通信方法。
第八方面提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码被运行时,使得上述第一方面或者第二方面的通信方法被执行。
第九方面公开一种通信系统,该通信系统包括上述第五方面的通信装置和上述第六方面的通信装置。
附图说明
图1是本发明实施例公开的一种网络架构示意图;
图2是本发明实施例公开的一种信息发送之前所需处理流程;
图3是本发明实施例公开的一种通信方法的流程示意图;
图4是本发明实施例公开的一种终端设备对第一信息进行处理的流程示意图;
图5是本发明实施例公开的一种传输层的层数为2的层映射方式;
图6是本发明实施例公开的另一种终端设备对第一信息进行处理的流程示意图;
图7是本发明实施例公开的又一种终端设备对第一信息进行处理的流程示意图;
图8是本发明实施例公开的一种网络设备对第二信息进行处理的流程示意图;
图9是本发明实施例公开的另一种网络设备对第二信息进行处理的流程示意图;
图10是本发明实施例公开的又一种网络设备对第二信息进行处理的流程示意图;
图11是本发明实施例公开的一种通信装置的结构示意图;
图12是本发明实施例公开的另一种通信装置的结构示意图;
图13是本发明实施例公开的又一种通信装置的结构示意图;
图14是本发明实施例公开的又一种通信装置的结构示意图。
具体实施方式
本发明实施例公开了一种通信方法及装置,用于降低PAPR。以下分别进行详细说明。
为了更好地理解本发明实施例公开的一种通信方法及装置,下面先对本发明实施例的应用场景进行描述。PAPR是指信号峰值均值功率比,是用于评价信号幅度波动的一个常用指标。PAPR越高表明信号幅度变化越大。在PAPR较大的情况下,信号峰值可能会落入功率放大器的非线性区域,以致引起信号畸变。此外,PAPR较大可能需要终端设备降低发送功率,以致缩小了网络(或者小区)覆盖范围,从而引起覆盖损失。因此,对于网络(或者小区)覆盖边缘,需要考虑终端设备发送信号的PAPR。立方度量(cubic metric,CM)是类似PAPR的一种度量信号幅度变化的准则,影响与PAPR类似,一般而言CM越低,覆盖越好。
新一代无线接入技术(new radio access technology,NR),即5G,上行支持DFT-s-OFDM波形。相比OFDM波形,DFT-s-OFDM波形的PAPR较低,可以保证终端设备在发送信号时回退较少功率,可以提升上行覆盖范围。为了进一步降低PAPR/CM,NR还支持π/2BPSK调制。π/2 BPSK调制可以使用如下公式进行:
Figure PCTCN2020081230-appb-000001
其中,b(i)为待调制信息的比特。这些比特中的每个比特为{0,1}中的一个值,此处的比特可以为编码后的比特,也可以为编码后的比特经过处理后的比特,处理可以为加扰、交织等。i为网络(或者小区)的索引,一般为从0开始的整数。j为
Figure PCTCN2020081230-appb-000002
d(i)为经过π/2 BPSK调制后的符号。mod为取模运算。可以看出,π/2 BPSK调制符号序列中任意两个相邻调制符号间的相位差为90°,从而可以保证调制后的信息经过基带处理流程后有比较低的PAPR或者CM。基带处理流程可以为层映射(仅支持单流传输)、RE映射、预编码(仅支持单流传输,预编码矩阵仅包括一列)、OFDM波形生成等中的一个或者多个。预编码即多输入多输出(multiple-input multiple-output,MIMO)预编码。
LTE上行也支持DFT-s-OFDM波形,当终端设备设置有多个发送天线端口时,需要对待发送信息进行预编码处理。为了保证预编码处理前后的PAPR不变,可以使用非相干预编码 矩阵或部分相干预编码矩阵对待发送信息进行预编码处理。例如,当终端设备设置有四个发送天线端口且传输秩(即传输层的层数)为2时,预编码矩阵可以如表1所示:
Figure PCTCN2020081230-appb-000003
表1 预编码矩阵
通过表1可知,预编码矩阵的每一行仅存在一个非0值,以便保证经过预编码后的待发送信息是预编码前的待发送信息乘以一个模值相同的系数。通过表1可知,预编码矩阵的行数等于发送天线端口的数量,预编码矩阵的列数等于传输层的层数。
π/2 BPSK调制与正交相移键控(quadrature phase shift keying,QPSK)调制相比PAPR/CM更低。因此,通过π/2 BPSK调制加上DFT-s-OFDM波形,NR与长期演进(long term evolution,LTE)相比上行覆盖范围得到一定提升。由于在DFT-s-OFDM波形支持多流传输的情况下,需要对待发送信息进行预编码处理,而预编码后的待发送信息与预编码前的待发送信息相比,当传输层的层数大于1时,单个天线上可能会有多个层的信号叠加,导致PAPR较高,以致缩小了网络(或者小区)的覆盖范围。因此,为了保证PAPR较低,NR中DFT-s-OFDM波形仅支持上行单流传输,即上行最大传输秩为1。
进一步地,考虑π/2 BPSK调制,LTE和NR DFT-s-OFDM波形仅支持单流传输。这是在实际的发送信息中,调制的符号还需要经过层映射、RE映射等处理,这些操作会破坏现有π/2 BPSK的相位跳变+/-90°的特性,从而导致PAPR提升,以致缩小了网络(或者小区)的覆盖范围。
例如:假设传输层的层数为v,调制后的符号d(i)在经过层映射后,第k层映射的调制符号为d(floor(i/v)*v+(i mod v)),其中,floor(x)为不大于x的最大整数且满足i mod v=k。原始d(i)中相邻符号的相位差为+/-90°,但是第k层的映射符号d(floor(i/v)*v+(i mod v))可能出现0°或者180°相位变化,从而破坏π/2 BPSK特性,导致PAPR增加。
第三代合作伙伴计划(3rd generation partnership project,3GPP)中码字(codeword, CW)到层的映射关系可以如表2所示:
Figure PCTCN2020081230-appb-000004
Figure PCTCN2020081230-appb-000005
表2 码字到层的映射关系
NR上行还支持OFDM波形。通过使用OFDM波形,以及叠加多天线技术,NR上行可以支持到单用户的4流传输。在终端设备的发送天线端口的数量大于1的情况下,使用OFDM波形的传输速率可以高于使用DFT-s-OFDM波形的传输速率。当终端设备的发送天线端口的数量大于1时,终端设备会根据自身的硬件实现能力,上报支持的上行预编码码本类型。终端设备支持的上行预编码码本类型可以为非相干波(non-coherent),也可以为部分/非相干波(partial/non-coherent),还可以为全部/部分/非相干波(full/partial/non-coherent)。
然而,多载波传输中不同子载波的信号的随机叠加,导致OFDM波形相比DFT-s-OFDM波形的PAPR较高。因此,对于网络(或者小区)边缘覆盖场景,可以使用DFT-s-OFDM波形加上π/2 BPSK调制;对于网络(或者小区)中心或者上行接收信噪比(signal to interference plus noise ratio,SINR)较高的终端设备,可以使用OFDM波形加上MIMO多流传输。针对上行接收SINR较低的场景,如何在保证覆盖范围的前提下充分利用终端设备的多天线端口已成为一个亟待解决的问题。
为了更好地理解本发明实施例公开的一种通信方法及装置,下面先对本发明实施例使用的网络架构进行描述。请参阅图1,图1是本发明实施例公开的一种网络架构示意图。如图1所示,该网络架构可以包括一个或多个终端设备101(图1中示意出了一个)和一个或多个网络设备102(图1中示意出了一个),终端设备101与网络设备102可以组成MIMO系统,也可以组成其他通信系统,在此不加限定。
终端设备101与网络设备102之间的通信包括上行(即终端设备101到网络设备102)通信和下行(即网络设备102到终端设备101)通信。在上行通信中,终端设备101,用于向网络设备102发送上行信号;网络设备102,用于接收来自终端设备101的上行信号。在下行通 信中,网络设备102,用于向终端设备101发送下行信号;终端设备101,用于接收来自网络设备102的下行信号。
在上行通信中,终端设备101向网络设备102发送的上行信号需要进行预编码。一种方式是终端设备可以使用网络设备指示预编码的方式对第一信息进行预编码。具体地,终端设备101向网络设备102发送用于信道测量的上行参考信号,网络设备102接收到来自终端设备101的上行参考信号之后,根据上行参考信号进行信道测量,根据测量结果为终端设备101选择预编码矩阵,通过下行信令向终端设备101发送用于指示预编码矩阵的信息指示信息。终端设备101接收到来自网络设备101的指示信息之后,可以根据指示信息中指示的预编码矩阵对第一信息进行预编码,之后向网络设备102发送预编码后的信息。另一种方式是网络设备102指示用于上行传输的预编码信息,指示选择探测参考信号(sounding reference signal,SRS)资源(时、频、梳齿、码、端口、波束等资源),终端设备101可以根据网络设备102发送的信道状态参考信号(channel state information reference signal,CSI-RS)进行信道测量,并基于测量结果对SRS进行预编码发送,根据网络设备指示的SRS资源对应的预编码信息对第一信息进行预编码,之后向网络设备102发送预编码后的信息。
上行单载波传输且使用π/2 BPSK调制,即上行使用DFT-s-OFDM波形传输。一般而言,待发送信息需经过加扰、调制、层映射、DFT预编码、预编码、RE映射、波形生成等中的部分或全部过程,具体顺序可以根据需要调整。RE包括时域资源和频域资源,是用于承载调制符号的最小单位,包括一个时域符号和一个频域子载波。一般而言加扰和调制是该流程中最先进行,OFDM波形生成是最后进行的。请参阅图2,图2是本发明实施例公开的一种信息发送之前所需处理流程。如图2所示,在上行通信之前,终端设备101需要对信息进行加扰、调制、层映射、DFT预编码、预编码、RE映射、波形生成中的一个或多个处理流程。
终端设备101可以是用户设备(user equipment,UE)、客户终端设备(customer premise equipment,CPE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端等。
网络设备102是能和终端设备101进行通信的设备,可以是基站、中继站或接入点。基站可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的节点基站(nodebase station,NB),还可以是长期演进(long term evolution,LTE)中的演进型(evolutional)NB(eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,还可以是未来5G网络中的基站设备或者未来演进的PLMN网络中的网络设备,还可以是可穿戴设备或车载设备。
基于图1所示的网络架构,请参阅图3,图3是本发明实施例公开的一种通信方法的流程示意图。其中,下面终端设备执行的步骤也可以由终端设备的模块(例如,芯片)来执行,下面网络设备执行的步骤也可以由网络设备的模块(例如,芯片)来执行。如图3,该通信方法可以包括如下步骤。
301、终端设备对第一信息进行处理。
终端设备需要向网络设备发送第一信息时,为了保证信息传输的可靠性,需要先对第一信息进行处理,处理过程可以包括π/2BPSK调制、层映射、DFT预编码、预编码和OFDM波形生成。第一信息为终端设备待发送的信息,可以为数据,也可以为信令或控制信息,还可以为其他信息,在此不加限定。
302、终端设备向网络设备发送信息。
终端设备对第一信息进行处理之后,可以向网络设备发送信息。终端设备发送的信息为处理后的第一信息,网络设备接收到的信息为第二信息。第二信息是处理后的第一信息经过信道传输后的信息。
303、网络设备对第二信息进行处理得到第一信息。
网络设备接收到来自终端设备的信息,即第二信息之后,可以对第二信息进行处理得到第一信息。这儿的第一信息即上面终端设备需要发送的第一信息。网络设备的处理过程可以包括解π/2 BPSK调制、解层映射、解DFT预编码和解OFDM波形。网络设备对第二信息的处理过程为终端设备对第一信息的处理过程的逆过程。解π/2 BPSK调制是π/2BPSK调制的逆过程,解层映射是层映射的逆过程,解DFT预编码为DFT预编码的逆过程,解OFDM波形为OFDM波形生成的逆过程,MIMO均衡为预编码的逆过程。
可选地,请参阅图4,图4是本发明实施例公开的一种终端设备对第一信息进行处理的流程示意图。其中,下面终端设备执行的步骤也可以由终端设备的模块(例如,芯片)来执行。如图4所示,步骤301可以包括以下步骤:
401、根据传输层的层数和π/2BPSK对第一信息进行调制。
终端设备可以先对第一信息进行调制。具体地,可以根据传输层的层数和π/2BPSK进行调制。π/2BPSK为调制方式,传输层的层数大于或等于1。在传输层的层数为1的情况下,传输为单流传输,在传输层的层数大于1的情况下,传输为多流传输。因此,本发明实施例可以实现单流传输或多流传输。根据传输层的层数和π/2BPSK对第一信息进行调制可以使用如下公式:
Figure PCTCN2020081230-appb-000006
Figure PCTCN2020081230-appb-000007
b(i)为第一信息的比特。C为与传输层的层数有关的参数,较优的,C可以为传输层的层数,C可以是网络设备指示的,也可以是预配置的。例如,C可以通过下行控制信息(downlinkcontrol information,DCI)、媒体接入控制(mediaaccess control,MAC)信息或者无线资源控制消息(radioresource control,RRC)指示。d(i)为调制后的第一信息的符号。
Figure PCTCN2020081230-appb-000008
为向下取整,
Figure PCTCN2020081230-appb-000009
为向上取整。根据传输层的层数和π/2BPSK对第一信息进行调制的公式也可以为上述公式(2)或公式(3)的各种变形。π/2 BPSK调制符号序列中任意两个相邻调制符号间的相位差为90°,但在经过层映射后同一传输层内相邻符号间的相位差可能为0°或180°,而不再是90°。因此,对第一信息进行调制时根据传输层的层数和π/2BPSK进行调制,考虑了层映射对调制后的相邻符号间相位差的影响,可以保证不同传输层中每层传输层内的相邻符号间的相位差为90°,可以避免层映射对相邻符号间相位差的影响,从而可以降低PAPR。此外,传输层的层数可以大于或等于1,从而可以实现在采用π/2BPSK进行调制的情况下,可以实现单流或多流传输。
402、对调制后的第一信息进行层映射。
终端设备根据传输层的层数和π/2BPSK对第一信息进行调制之后,可以对调制后的第一信息进行层映射。具体地,可以根据传输层的层数以及码字到层映射关系将调制后的符号映射到不同传输层上。第一信息中相邻比特对应的调制后的符号可以被层映射到不同传输层。层映射前的相位差可能为0°或180°。但是针对两个符号,如果间隔传输层数减一个符号,则该两个符号的相位差为90°。这样相邻比特对应的调制后的符号被层映射到不同传输层,可以保证不同传输层中每层传输层内的相邻符号间的相位差为90°,可以避免层映射对相邻符号间相位差的影响,从而可以降低PAPR。例如,请参阅图5,图5是本发明实施例公开的一种传输层的层数(即秩)为2的层映射方式。如图5所示,调制后的第一信息的符号包括6个符号,第一个符号、第三个符号和第五个符号被映射到一层传输层,第二个符号、第四个符号和第六个符号被映射到另一层传输层。因此,即使这6个符号相邻间的相位差可能为0°或180°,但由于相邻符号被映射到不同传输层,即被映射到同一层传输层的第一个符号、第三个符号和第五个符号以及第二个符号、第四个符号和第六个符号中相邻符号间的相位差为90°,因此,可以避免层映射对PAPR的影响。
403、对层映射后的第一信息进行DFT预编码。
终端设备对调制后的第一信息进行层映射之后,可以对层映射后的第一信息进行DFT预编码。具体地,对层映射后的不同传输层中每层传输层的符号进行DFT变换。在进行DFT预编码时,每层传输层的符号除了包括第一信息对应的符号之外,还可能包括相位跟踪参考信号(phase tracking reference signal,PTRS)、解调参考信号(demodulation reference signal,DMRS)、SRS、物理上行控制信道(physical uplink control channel,PUCCH)等对应的符号。
404、对DFT预编码后的第一信息进行预编码。
终端设备对层映射后的第一信息进行DFT预编码之后,可以对DFT预编码后的第一信息进行预编码。具体地,可以根据预编码矩阵对DFT预编码后的第一信息进行预编码,即可以根据预编码矩阵将不同传输层中DFT预编码后的第一信息的符号编码到发送天线端口。预编码矩阵的行数等于发送天线端口的数量,发送天线端口的数量大于或等于1,预编码矩阵的列数等于传输层的层数,预编码矩阵包括的码字为非相干码字或部分相干码字。当预编码矩阵包括的码字为非相干码字时,预编码矩阵为非相干预编码矩阵。当预编码矩阵包括的码字为部分相干码字时,预编码矩阵为部分相干预编码矩阵。非相干码字为每列仅包括一个非零元素且每个预编码矩阵中任意两个列中的非零元素所在的行不同,部分相干码 字为至少一个列包括至少一个零元素和至少两个非零元素。当终端设备有多个发送天线端口时,需要对信息进行预编码处理。为了保证预编码处理前后的PAPR不变,可以使用非相干预编码矩阵或部分相干预编码矩阵对待发送信息进行预编码处理,从而可以在保证多流传输的情况下不会对PAPR产生影响。此处的预编码即MIMO预编码。预编码矩阵可以通过网络设备直接指示,终端设备根据网络设备指示的预编码矩阵对第一信息进行预编码;或者,也可以通过网络设备指示SRS资源指示信息,终端设备根据SRS资源指示信息指示的SRS上的预编码,确定第一信息对应的预编码矩阵。
405、将预编码后的第一信息生成OFDM波形得到DFT-s-OFDM波形的第一信息。
终端设备对DFT预编码后的第一信息进行预编码之后,可以将预编码后的第一信息生成OFDM波形得到DFT-s-OFDM波形的第一信息,即将发送天线端口中每个发送天线端口上的符号分别生成OFDM波形得到DFT-s-OFDM波形的第一信息。
可选地,请参阅图6,图6是本发明实施例公开的另一种终端设备对第一信息进行处理的流程示意图。其中,下面终端设备执行的步骤也可以由终端设备的模块(例如,芯片)来执行。如图6所示,步骤301可以包括以下步骤:
601、采用π/2BPSK对第一信息进行调制。
终端设备可以先采用π/2BPSK对第一信息进行调制,采用π/2BPSK对第一信息进行调制时可以使用公式(1)。采用π/2BPSK对第一信息进行调制的公式也可以为上述公式(1)的各种变形。详细描述可以参考步骤401的相关描述。
602、对调制后的第一信息进行交织。
终端设备采用π/2BPSK对第一信息进行调制之后,可以对调制后的第一信息进行交织。对调制后的第一信息进行交织时,可以根据传输层的层数以及第一信息包括的比特数对调制后的第一信息进行交织。终端设备对调制后的第一信息进行交织可以使用公式所示:
Figure PCTCN2020081230-appb-000010
d′(i)为交织后的第一信息的符号。C为传输层的层数。第一信息的比特数为T,S可以为T,也可以为大于T且能整除C的正整数。
例如,可以通过如下交织矩阵对调制后的第一信息进行交织:
Figure PCTCN2020081230-appb-000011
针对上述交织矩阵中的d(i)可以按照先行后列的顺序输入,再按照先列后行的顺序读出即可得到d′(i)。
603、对交织后的第一信息进行层映射。
终端设备对调制后的第一信息进行交织之后,可以对交织后的第一信息进行层映射。具体地,可以根据传输层的层数以及码字到层映射关系将调制后的符号映射到不同传输层上。由于π/2 BPSK调制符号序列中任意两个相邻调制符号间的相位差为90°,但在经过层映 射后同一层传输层内相邻符号间的相位差可能为0°或180°。因此,可以先对第一信息依次进行调制和交织,再对交织后的第一信息进行层映射,可以保证不同传输层中每层传输层内的相邻符号间的相位差为90°,可以避免层映射对相邻符号间相位差的影响,从而可以降低PAPR。
604、对层映射后的第一信息进行DFT预编码。
其中,步骤604与步骤403相同,详细描述可以参考步骤403的描述。
605、对DFT预编码后的第一信息进行预编码。
其中,步骤605与步骤404相同,详细描述可以参考步骤404的描述。
606、将预编码后的第一信息生成OFDM波形得到DFT-s-OFDM波形的第一信息。
其中,步骤606与步骤405相同,详细描述可以参考步骤405的描述。
可选地,请参阅图7,图7是本发明实施例公开的又一种终端设备对第一信息进行处理的流程示意图。其中,下面终端设备执行的步骤也可以由终端设备的模块(例如,芯片)来执行。如图7所示,步骤301可以包括以下步骤:
701、对第一信息进行层映射。
终端设备可以先对第一信息进行层映射。具体地,可以根据传输层的层数以及码字到层映射关系,将第一信息的比特映射到不同传输层上。可以将第一信息的比特中b((k-1)*C)、b((k-1)*C+1)、…、b((k-1)*C+C-1)连续C个比特分别映射到不同的C层传输层。C为传输层的层数,k为正整数。也可以先根据传输层的层数和第一信息的比特数确定每个传输层需要映射的比特的数量M(t),t=1,2,…,C,之后跟码字到层映射关系将第一信息的比特中前面的M(1)个比特映射在第一层传输层上,将第一信息的比特中第M(1)+1个比特到第M(2)个比特映射在第二层传输层上,直到将第一信息的比特中最后第M(C)个比特映射在第C层传输层上。还可以为其他映射方式,在此不加限定。
702、采用π/2BPSK对层映射后的第一信息进行调制。
终端设备对第一信息进行层映射之后,可以采用π/2BPSK对层映射后的第一信息进行调制。具体地,可以对不同传输层中每层传输层内第一信息的比特被映射到该传输层的比特分别采用π/2 BPSK对层映射后的第一信息进行调制,即对不同的传输层分别采用π/2BPSK进行调制的,也即不同传输层的调制是相互独立的,但不同传输层采用的调制方式均为采用π/2 BPSK。采用π/2 BPSK对第一信息进行调制的公式可以为公式(1),也可以为公式(1)的各种变形。详细描述可以参考步骤401的相关描述。
703、对调制后的第一信息进行DFT预编码。
终端设备采用π/2BPSK对层映射后的第一信息进行调制之后,可以对调制后的第一信息进行DFT预编码。其中,对调制后的第一信息进行DFT预编码与步骤403相同,详细描述可以参考步骤403的描述。
704、对DFT预编码后的第一信息进行预编码。
其中,步骤704与步骤404相同,详细描述可以参考步骤404的描述。
705、将预编码后的第一信息生成OFDM波形得到DFT-s-OFDM波形的第一信息。
其中,步骤705与步骤405相同,详细描述可以参考步骤405的描述。
可选地,终端设备对第一信息的处理过程还可以包括RE映射,终端设备对DFT预编码后的第一信息进行预编码之后,可以先将预编码后的第一信息进行RE映射,即将发送天线端口上的符号按照先频域后时域的方式进行RE映射。之后才将RE映射后的第一信息生成OFDM波形得到DFT-s-OFDM波形的第一信息,即将发送天线端口中每个发送天线端口上RE映射后的符号分别生成OFDM波形。即将预编码后的第一信息进行RE映射时,是先进行频域映射后进行时域映射的。
可选地,请参阅图8,图8是本发明实施例公开的一种网络设备对第二信息进行处理的流程示意图。其中,下面网络设备执行的步骤也可以由网络设备的模块(例如,芯片)来执行。如图8所示,步骤303可以包括以下步骤:
801、对第二信息解OFDM波形。
终端设备对第一信息进行处理的过程可以是网络设备指示的,也可以是预配置的。因此,网络设备在接收到来自终端设备的第二信息之后,网络设备可以根据终端设备确定出该终端设备对信息的处理过程,从而可以确定出对第二信息的相应处理过程。因此,网络设备接收到第二信息之后,可以先对第二信息解OFDM波形,可以得到预编码后的第一信息。
可选地,对第二信息解OFDM波形之后,可以对解OFDM波形后的第二信息进行MIMO均衡,可以得到DFT预编码后的第一信息。MIMO均衡即预编码的逆过程。
802、对解OFDM波形后的第二信息解DFT预编码。
网络设备对第二信息解OFDM波形之后,可以对解OFDM波形后的第二信息解DFT预编码,即对解OFDM波形后的第二信息进行DFT逆变换。
可选地,网络设备对解OFDM波形后的第二信息进行MIMO均衡之后,可以对MIMO均衡后的第二信息解DFT预编码,即对MIMO均衡后的第二信息进行DFT逆变换。
803、对解DFT预编码后的第二信息解层映射。
网络设备对解OFDM波形后的第二信息解DFT预编码之后,可以对解DFT预编码后的第二信息解层映射,即根据传输层的层数以及码字到层映射关系对解DFT预编码后的第二信息解层映射。
804、根据传输层的层数和π/2BPSK对解层映射后的第二信息解调制得到第一信息。
网络设备对解DFT预编码后的第二信息解层映射之后,可以根据π/2BPSK和传输层的层数对解层映射后的第二信息解调制得到第一信息。传输层的层数大于或等于1。第一信息中的相邻比特由解DFT预编码后的第二信息中来自于不同传输层的符号经解层映射和解调制得到。步骤804是步骤401的逆过程,相关描述可以参考步骤401。
其中,图8所示的网络设备对第二信息的处理过程是图4所示的终端设备对第一信息的处理过程的逆过程,详细描述可以参考上面的相关描述。
可选地,请参阅图9,图9是本发明实施例公开的另一种网络设备对第二信息进行处理的流程示意图。其中,下面网络设备执行的步骤也可以由网络设备的模块(例如,芯片)来执行。如图9所示,步骤303可以包括以下步骤:
901、对第二信息解OFDM波形。
其中,步骤901与步骤801相同,详细描述可以参考步骤801的描述。
902、对解OFDM波形后的第二信息解DFT预编码。
其中,步骤902与步骤802相同,详细描述可以参考步骤802的描述。
903、对解DFT预编码后的第二信息解层映射。
其中,步骤903与步骤803相同,详细描述可以参考步骤803的描述。
904、对解层映射后的第二信息解交织。
网络设备对解DFT预编码后的第二信息解层映射之后,可以对解层映射后的第二信息解交织,得到调制后的第一信息。具体地,可以根据传输层的层数以及第一信息包括的比特数对解层映射后的第二信息解交织,步骤904是步骤602的逆过程,相关描述可以参考步骤602。
905、根据π/2BPSK对解交织后的第二信息解调制得到第一信息。
网络设备对解层映射后的第二信息解交织之后,可以根据π/2BPSK对解交织后的第二信息解调制得到第一信息,步骤905是步骤601的逆过程,相关描述可以参考步骤601。
其中,图9所示的网络设备对第二信息的处理过程是图6所示的终端设备对第一信息的处理过程的逆过程,详细描述可以参考上面的相关描述。
可选地,请参阅图10,图10是本发明实施例公开的又一种网络设备对第二信息进行处理的流程示意图。其中,下面网络设备执行的步骤也可以由网络设备的模块(例如,芯片)来执行。如图10所示,步骤303可以包括以下步骤:
1001、对第二信息解OFDM波形。
其中,步骤1001与步骤801相同,详细描述可以参考步骤801的描述。
1002、对解OFDM波形后的第二信息解DFT预编码。
其中,步骤1002与步骤802相同,详细描述可以参考步骤802的描述。
1003、根据π/2BPSK对解DFT预编码后的第二信息解调制。
网络设备对解OFDM波形后的第二信息解DFT预编码之后,可以根据π/2BPSK对解DFT预编码后的第二信息解调制,步骤1003是步骤702的逆过程,相关描述可以参考步骤702。
1004、对解调制后的第二信息解层映射得到第一信息。
网络设备根据π/2BPSK对解DFT预编码后的第二信息解调制之后,可以对解调制后的第二信息解层映射得到第一信息,步骤1004是步骤701的逆过程,相关描述可以参考步骤701。
其中,图10所示的网络设备对第二信息的处理过程是图7所示的终端设备对第一信息的处理过程的逆过程,详细描述可以参考上面的相关描述。
可选地,网络设备对第二信息的处理过程还可以包括解RE映射,网络设备可以先对解OFDM波形后的第二信息解RE映射,之后再对解RE映射后的第二信息解DFT预编码。解RE映射时是先时域后频域。解RE映射是RE映射的逆过程,详细描述可以参考上面RE映射的相关描述。
可选地,终端设备使用的π/2 BPSK调制方式是网络设备配置的,网络设备可以通过高 层信令配置,也可以通过物理层控制信令指示,还可以通过其他方式配置,在此不加限定。例如,网络设备可以将π/2 BPSK确定为终端设备的调制方式,之后可以向终端设备发送用于指示调制方式为π/2 BPSK且允许大于1层传输的第一指示信息。终端设备接收到来自网络设备的第一指示信息之后,可以根据第一指示信息确定调制方式为π/2 BPSK。此外,终端设备还可以根据第一指示信息确定采用π/2 BPSK调制方式的情况下,传输可以为多流传输。
可选地,网络设备可以向终端设备发送用于指示预编码矩阵的第二指示信息,第二指示信息至少指示预编码信息。对于基于码本的上行传输方式,预编码信息对应的预编码码本仅包括非相干码本或部分相干码本中的预编码码字。对于基于非相干码本的上行传输方式,预编码信息可以通过SRS资源进行指示。终端设备接收到来自终端设备的第二指示信息之后,可以根据第二指示信息确定预编码矩阵。
可选地,终端设备可以向网络设备上报终端设备的能力信息。终端设备的能力信息可以包括不同类型的预编码码本。预编码码本类型可以为非相干波,也可以为部分/非相干波,还可以为全部/部分/非相干波,还可以为其他类型预编码码本。网络设备接收到来自终端设备上报的能力信息之后,可以根据终端设备上报的能力信息,发送配置信息。该配置信息用于指示终端设备使用的码本。配置信息指示的码本可以包括非相干码本或部分相干码本。
上述通信方法中,可以满足在同一MIMO层(即传输层)上,频域相邻RE上映射的两个调制符号之间的相位差为±90°。预编码矩阵使用非相干码字或部分非相干码字,使得最终每个发送天线端口上发送的符号仍然满足π/2 BPSK调制和DFT-s-OFDM波形的低PAPR/CM特征。
上面几个实施例之间的内容可以相互参考,每个实施例的内容不局限于本实施例,也可以适用于其它实施例中的相应内容。
基于图1所示的网络架构,以及上述实施例中的通信方法的同一构思,请参阅图11,图11是本发明实施例公开的一种通信装置的结构示意图。如图11所示,该通信装置可以包括:
处理单元1101,用于对第一信息进行处理,处理过程包括π/2BPSK调制、层映射、DFT预编码、预编码和OFDM波形生成;
发送单元1102,用于向网络设备发送处理后的第一信息。
在一个实施例中,处理单元1101具体用于:
根据传输层的层数和π/2BPSK对第一信息进行调制,传输层的层数大于或等于1;
对调制后的第一信息进行层映射;
对层映射后的第一信息进行DFT预编码;
对DFT预编码后的第一信息进行预编码;
将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息;
发送单元1102,具体用于向网络设备发送DFT-s-OFDM波形的第一信息。
在一个实施例中,第一信息中相邻比特对应的调制后的符号被层映射到不同传输层。
在一个实施例中,处理过程还包括交织,处理单元1101具体用于:
采用π/2BPSK对第一信息进行调制;
对调制后的第一信息进行交织;
对交织后的第一信息进行层映射;
对层映射后的第一信息进行DFT预编码;
对DFT预编码后的第一信息进行预编码;
将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息;
发送单元1102,具体用于向网络设备发送DFT-s-OFDM波形的第一信息。
在一个实施例中,处理单元1101对调制后的第一信息进行交织包括:
根据传输层的层数以及第一信息包括的比特数对调制后的第一信息进行交织。
在一个实施例中,处理单元1101具体用于:
对第一信息进行层映射;
采用π/2BPSK对层映射后的第一信息进行调制;
对调制后的第一信息进行DFT预编码;
对DFT预编码后的第一信息进行预编码;
将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息;
发送单元1102,具体用于向网络设备发送DFT-s-OFDM波形的第一信息。
在一个实施例中,处理过程还包括RE映射,处理单元1101,具体还用于将预编码后的第一信息进行RE映射;
处理单元1101将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息包括:
将RE映射后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息。
在一个实施例中,处理单元1101对DFT预编码后的第一信息进行预编码包括:
根据预编码矩阵对DFT预编码后的第一信息进行预编码,预编码矩阵的行数等于发送天线端口的数量,预编码矩阵的列数等于传输层的层数,预编码矩阵包括的码字为非相干码字或部分相干码字。
在一个实施例中,该通信装置还包括:
接收单元1103,用于接收来自网络设备的用于指示调制方式为π/2 BPSK且允许大于1层传输的第一指示信息;
确定单元1104,用于根据第一指示信息确定调制方式为π/2 BPSK。
在一个实施例中,接收单元1103,还用于接收来自网络设备的用于指示预编码矩阵的第二指示信息;
处理单元1101根据预编码矩阵对DFT预编码后的第一信息进行预编码包括:
根据第二指示信息指示的预编码矩阵对DFT预编码后的第一信息进行预编码。
有关上述处理单元1101、发送单元1102、接收单元1103和确定单元1104更详细的描述可以直接参考上述图3-图4以及图6-图7所示的方法实施例中终端设备的相关描述直接得到,这里不加赘述。
基于图1所示的网络架构,以及上述实施例中的通信方法的同一构思,请参阅图12,图12是本发明实施例公开的另一种通信装置的结构示意图。如图12所示,该通信装置可以包 括:
接收单元1201,用于接收来自终端设备的第二信息;
处理单元1202,用于对第二信息进行处理,得到第一信息,第一信息为终端设备发送的信息,处理过程包括解π/2 BPSK调制、解层映射、解DFT预编码和解OFDM波形。
在一个实施例中,处理单元1202具体用于:
对第二信息解OFDM波形;
对解OFDM波形后的第二信息解DFT预编码;
对解DFT预编码后的第二信息解层映射;
根据传输层的层数和π/2BPSK对解层映射后的第二信息解调制,得到第一信息,传输层的层数大于或等于1。
在一个实施例中,第一信息中的相邻比特由解DFT预编码后的第二信息中来自于不同传输层的符号经解层映射和解调制得到。
在一个实施例中,处理过程还包括解交织,处理单元1202具体用于:
对第二信息解OFDM波形;
对解OFDM波形后的第二信息解DFT预编码;
对解DFT预编码后的第二信息解层映射;
对解层映射后的第二信息解交织;
根据π/2BPSK对解交织后的第二信息解调制,得到第一信息。
在一个实施例中,处理单元1202对解层映射后的第二信息解交织包括:
根据传输层的层数以及第一信息包括的比特数,对解层映射后的第二信息解交织。
在一个实施例中,处理单元1202具体用于:
对第二信息解OFDM波形;
对解OFDM波形后的第二信息解DFT预编码;
根据π/2BPSK对解DFT预编码后的第二信息解调制;
对解调制后的第二信息解层映射,得到第一信息。
在一个实施例中,处理过程还包括解RE映射,处理单元1202,具体还用于对解OFDM波形后的第二信息解RE映射;
处理单元1202对解OFDM波形后的第二信息解DFT预编码包括:
对解RE映射后的第二信息解DFT预编码。
在一个实施例中,该通信装置还可以包括:
确定单元1203,用于将π/2 BPSK确定为终端设备的调制方式;
发送单元1204,用于向终端设备发送用于指示调制方式为π/2 BPSK且允许大于1层传输的第一指示信息。
有关上述接收单元1201、处理单元1202、确定单元1203和发送单元1204更详细的描述可以直接参考上述图3以及图8-图10所示的方法实施例中网络设备的相关描述直接得到,这里不加赘述。
基于图1所描述的网络架构,请参阅图13,图13是本发明实施例公开的又一种通信装置 的结构示意图。如图13所示,该通信装置可以包括处理器1301、存储器1302、输入接口1303、输出接口1304和总线1305。处理器1301可以是一个通用中央处理器(CPU),多个CPU,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。存储器1102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1302可以是独立存在,可以通过总线1305与处理器1301相连接。存储器1302也可以与处理器1301集成在一起。其中,总线1305用于实现这些组件之间的连接。
在一种情况下,该通信装置可以为终端设备或者终端设备的模块(例如,芯片),其中:
处理器1301用于调用存储器1302中存储的计算机程序执行以下操作:
对第一信息进行处理,处理过程包括π/2 BPSK调制、层映射、DFT预编码、预编码和OFDM波形生成;
输出接口1304,用于向网络设备发送处理后的第一信息。
在一个实施例中,处理器1301对第一信息进行处理包括:
根据传输层的层数和π/2BPSK对第一信息进行调制,传输层的层数大于或等于1;
对调制后的第一信息进行层映射;
对层映射后的第一信息进行DFT预编码;
对DFT预编码后的第一信息进行预编码;
将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息;
输出接口1304向网络设备发送处理后的第一信息包括:
向网络设备发送DFT-s-OFDM波形的第一信息。
在一个实施例中,第一信息中相邻比特对应的调制后的符号被层映射到不同传输层。
在一个实施例中,处理过程还可以包括交织,处理器1301对第一信息进行处理包括:
采用π/2BPSK对第一信息进行调制;
对调制后的第一信息进行交织;
对交织后的第一信息进行层映射;
对层映射后的第一信息进行DFT预编码;
对DFT预编码后的第一信息进行预编码;
将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息;
输出接口1304向网络设备发送处理后的第一信息包括:
向网络设备发送DFT-s-OFDM波形的第一信息。
在一个实施例中,处理器1301对调制后的第一信息进行交织包括:
根据传输层的层数以及第一信息包括的比特数对调制后的第一信息进行交织。
在一个实施例中,处理器1301对第一信息进行处理包括:
对第一信息进行层映射;
采用π/2BPSK对层映射后的第一信息进行调制;
对调制后的第一信息进行DFT预编码;
对DFT预编码后的第一信息进行预编码;
将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息;
输出接口1304向网络设备发送处理后的第一信息包括:
向网络设备发送DFT-s-OFDM波形的第一信息。
在一个实施例中,处理过程还可以包括RE映射,处理器1301对第一信息进行处理还包括:
将预编码后的第一信息进行RE映射;
处理器1301将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息包括:
将RE映射后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息。
在一个实施例中,处理器1301对DFT预编码后的第一信息进行预编码包括:
根据预编码矩阵对DFT预编码后的第一信息进行预编码,预编码矩阵的行数等于发送天线端口的数量,预编码矩阵的列数等于传输层的层数,预编码矩阵包括的码字为非相干码字或部分相干码字。
在一个实施例中,输入接口1303,用于接收来自网络设备的用于指示调制方式为π/2BPSK且允许大于1层传输的第一指示信息;
处理器1301还用于调用存储器1302中存储的计算机程序执行以下操作:
根据第一指示信息确定调制方式为π/2 BPSK。
在一个实施例中,输入接口1303,还用于接收来自网络设备的用于指示预编码矩阵的第二指示信息;
处理器1301根据预编码矩阵对DFT预编码后的第一信息进行预编码包括:
根据第二指示信息指示的预编码矩阵对DFT预编码后的第一信息进行预编码。
其中,步骤301可以由处理器1301和存储器1302来执行,终端设备接收来自网络设备的信息的步骤可以由输入接口1303来执行,终端设备向网络设备发送信息的步骤可以由输出接口1304来执行。
其中,处理单元1101和确定单元1104可以由处理器1301和存储器1302来实现,接收单元1103可以由输入接口1303来实现,发送单元1102可以由输出接口1304来实现。
上述终端设备或者终端设备的模块还可以用于执行前述方法实施例中终端设备执行的各种方法,不再赘述。
在一种情况下,该通信装置可以为网络设备或者网络设备内的芯片,其中:
输入接口1303,用于接收来自终端设备的第二信息;
处理器1301用于调用存储器1302中存储的计算机程序执行以下操作:
对第二信息进行处理,得到第一信息,第一信息为终端设备发送的信息,处理过程包括解π/2 BPSK调制、解层映射、DFT预编码和OFDM波形。
在一个实施例中,处理器1301对第二信息进行处理,得到第一信息包括:
对第二信息解OFDM波形;
对解OFDM波形后的第二信息解DFT预编码;
对解DFT预编码后的第二信息解层映射;
根据传输层的层数和π/2BPSK对解层映射后的第二信息解调制,得到第一信息,传输层的层数大于或等于1。
在一个实施例中,第一信息中的相邻比特由解DFT预编码后的第二信息中来自于不同传输层的符号经解层映射和解调制得到。
在一个实施例中,处理过程还包括解交织,处理器1301对第二信息进行处理,得到第一信息包括:
对第二信息解OFDM波形;
对解OFDM波形后的第二信息解DFT预编码;
对解DFT预编码后的第二信息解层映射;
对解层映射后的第二信息解交织;
根据π/2BPSK对解交织后的第二信息解调制,得到第一信息。
在一个实施例中,处理器1301对解层映射后的第二信息解交织包括:
根据传输层的层数以及第一信息包括的比特数,对解层映射后的第二信息解交织。
在一个实施例中,处理器1301对第二信息进行处理,得到第一信息包括:
对第二信息解OFDM波形;
对解OFDM波形后的第二信息解DFT预编码;
根据π/2BPSK对解DFT预编码后的第二信息解调制;
对解调制后的第二信息解层映射,得到第一信息。
在一个实施例中,处理过程还包括解RE映射,处理器1301对第二信息进行处理,得到第一信息还包括:
对解OFDM波形后的第二信息解RE映射;
处理器1301对解OFDM波形后的第二信息解DFT预编码包括:
对解RE映射后的第二信息解DFT预编码。
在一个实施例中,处理器1301还用于调用存储器1302中存储的计算机程序执行以下操作:
将π/2 BPSK确定为终端设备的调制方式;
输出接口1304,用于向终端设备发送用于指示调制方式为π/2 BPSK且允许大于1层传输的第一指示信息。
其中,步骤303可以由处理器1301和存储器1302来执行,网络设备接收来自终端设备的信息的步骤可以由输入接口1303来执行,网络设备向终端设备发送信息的步骤可以由输出接口1304来执行。
其中,处理单元1202和确定单元1203可以由处理器1301和存储器1302来实现,接 收单元1201可以由输入接口1303来实现,发送单元1204可以由输出接口1304来实现。
上述终端设备或者终端设备的模块还可以用于执行前述方法实施例中终端设备执行的各种方法,不再赘述。
基于图1所示的网络架构,请参阅图14,图14是本发明实施例公开的又一种通信装置的结构示意图。如图14所示,该通信装置可以包括输入接口1401、逻辑电路1402和输出接口1403。输入接口1401与输出接口1403通过逻辑电路1402相连接。其中,输入接口1401用于接收来自其它通信装置的信息,输出接口1403用于向其它通信装置输出、调度或者发送信息。逻辑电路1402用于执行除输入接口1401与输出接口1403的操作之外的操作,例如实现上述实施例中处理器1301实现的功能。其中,该通信装置可以为终端设备或者终端设备内的模块,也可以为网络端设备或者网络设备内的模块。其中,有关输入接口1401、逻辑电路1402和输出接口1403更详细的描述可以直接参考上述方法实施例中终端设备或者终端设备内的模块以及网络设备或者网络设备内的模块的相关描述直接得到,这里不加赘述。
本发明实施例还公开一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的方法。
本发明实施例还公开一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
本发明实施例还公开一种通信系统,该通信系统包括终端设备和网络设备,具体描述可以参考图3所示的通信方法。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    对第一信息进行处理,处理过程包括π/2二进制相移键控BPSK调制、层映射、离散傅里叶变换DFT预编码、预编码和正交频分复用OFDM波形生成;
    向网络设备发送处理后的第一信息。
  2. 根据权利要求1所述的方法,其特征在于,所述对第一信息进行处理包括:
    根据传输层的层数和π/2BPSK对第一信息进行调制,所述传输层的层数大于或等于1;
    对调制后的第一信息进行层映射;
    对层映射后的第一信息进行DFT预编码;
    对DFT预编码后的第一信息进行预编码;
    将预编码后的第一信息生成OFDM波形,得到离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形的第一信息;
    所述向网络设备发送处理后的第一信息包括:
    向网络设备发送所述DFT-s-OFDM波形的第一信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息中相邻比特对应的调制后的符号被层映射到不同传输层。
  4. 根据权利要求1所述的方法,其特征在于,所述处理过程还包括交织,所述对第一信息进行处理包括:
    采用π/2BPSK对第一信息进行调制;
    对调制后的第一信息进行交织;
    对交织后的第一信息进行层映射;
    对层映射后的第一信息进行DFT预编码;
    对DFT预编码后的第一信息进行预编码;
    将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息;
    所述向网络设备发送处理后的第一信息包括:
    向网络设备发送所述DFT-s-OFDM波形的第一信息。
  5. 根据权利要求4所述的方法,其特征在于,所述对调制后的第一信息进行交织包括:
    根据传输层的层数以及所述第一信息包括的比特数对调制后的第一信息进行交织。
  6. 根据权利要求1所述的方法,其特征在于,所述对第一信息进行处理包括:
    对第一信息进行层映射;
    采用π/2BPSK对层映射后的第一信息进行调制;
    对调制后的第一信息进行DFT预编码;
    对DFT预编码后的第一信息进行预编码;
    将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息;
    所述向网络设备发送处理后的第一信息包括:
    向网络设备发送所述DFT-s-OFDM波形的第一信息。
  7. 根据权利要求2-6任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的用于指示调制方式为π/2BPSK且允许大于1层传输的第一指示信息;
    根据所述第一指示信息确定调制方式为π/2BPSK。
  8. 一种通信方法,其特征在于,包括:
    接收来自终端设备的第二信息;
    对所述第二信息进行处理,得到第一信息,所述第一信息为所述终端设备发送的信息,处理过程包括解π/2二进制相移键控BPSK调制、解层映射、解离散傅里叶变换DFT预编码和解正交频分复用OFDM波形。
  9. 根据权利要求8所述的方法,其特征在于,所述对所述第二信息进行处理,得到第一信息包括:
    对所述第二信息解OFDM波形;
    对解OFDM波形后的第二信息解DFT预编码;
    对解DFT预编码后的第二信息解层映射;
    根据传输层的层数和π/2BPSK对解层映射后的第二信息解调制,得到第一信息,所述传输层的层数大于或等于1。
  10. 根据权利要求9所述的方法,其特征在于,所述第一信息中的相邻比特由所述解DFT预编码后的第二信息中来自于不同传输层的符号经解层映射和解调制得到。
  11. 根据权利要求8所述的方法,其特征在于,所述处理过程还包括解交织,所述对所述第二信息进行处理,得到第一信息包括:
    对所述第二信息解OFDM波形;
    对解OFDM波形后的第二信息解DFT预编码;
    对解DFT预编码后的第二信息解层映射;
    对解层映射后的第二信息解交织;
    根据π/2BPSK对解交织后的第二信息解调制,得到第一信息。
  12. 根据权利要求11所述的方法,其特征在于,所述对解层映射后的第二信息解交织包括:
    根据传输层的层数以及所述第一信息包括的比特数,对解层映射后的第二信息解交织。
  13. 根据权利要求8所述的方法,其特征在于,所述对所述第二信息进行处理,得到第一信息包括:
    对所述第二信息解OFDM波形;
    对解OFDM波形后的第二信息解DFT预编码;
    根据π/2BPSK对解DFT预编码后的第二信息解调制;
    对解调制后的第二信息解层映射,得到第一信息。
  14. 根据权利要求9-13任一项所述的方法,其特征在于,所述方法还包括:
    将π/2BPSK确定为所述终端设备的调制方式;
    向所述终端设备发送用于指示调制方式为π/2BPSK且允许大于1层传输的第一指示信息。
  15. 一种通信装置,其特征在于,包括:
    处理单元,用于对第一信息进行处理,处理过程包括π/2二进制相移键控BPSK调制、层映射、离散傅里叶变换DFT预编码、预编码和正交频分复用OFDM波形生成;
    发送单元,用于向网络设备发送处理后的第一信息。
  16. 根据权利要求15所述的装置,其特征在于,所述处理单元具体用于:
    根据传输层的层数和π/2BPSK对第一信息进行调制,所述传输层的层数大于或等于1;
    对调制后的第一信息进行层映射;
    对层映射后的第一信息进行DFT预编码;
    对DFT预编码后的第一信息进行预编码;
    将预编码后的第一信息生成OFDM波形,得到离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形的第一信息;
    所述发送单元,具体用于向网络设备发送所述DFT-s-OFDM波形的第一信息。
  17. 根据权利要求16所述的装置,其特征在于,所述第一信息中相邻比特对应的调制后的符号被层映射到不同传输层。
  18. 根据权利要求15所述的装置,其特征在于,所述处理过程还包括交织,所述处理单元具体用于:
    采用π/2BPSK对第一信息进行调制;
    对调制后的第一信息进行交织;
    对交织后的第一信息进行层映射;
    对层映射后的第一信息进行DFT预编码;
    对DFT预编码后的第一信息进行预编码;
    将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息;
    所述发送单元,具体用于向网络设备发送所述DFT-s-OFDM波形的第一信息。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元对调制后的第一信息进行交织包括:
    根据传输层的层数以及所述第一信息包括的比特数对调制后的第一信息进行交织。
  20. 根据权利要求15所述的装置,其特征在于,所述处理单元具体用于:
    对第一信息进行层映射;
    采用π/2BPSK对层映射后的第一信息进行调制;
    对调制后的第一信息进行DFT预编码;
    对DFT预编码后的第一信息进行预编码;
    将预编码后的第一信息生成OFDM波形,得到DFT-s-OFDM波形的第一信息;
    所述发送单元,具体用于向网络设备发送所述DFT-s-OFDM波形的第一信息。
  21. 根据权利要求16-20任一项所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收来自所述网络设备的用于指示调制方式为π/2BPSK且允许大于1层传输的第一指示信息;
    确定单元,用于根据所述第一指示信息确定调制方式为π/2BPSK。
  22. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自终端设备第二信息;
    处理单元,用于对所述第二信息进行处理,得到第一信息,所述第一信息为所述终端设备发送的信息,处理过程包括解π/2二进制相移键控BPSK调制、解层映射、解离散傅里叶变换DFT预编码和解正交频分复用OFDM波形。
  23. 根据权利要求22所述的装置,其特征在于,所述逆处理单元具体用于:
    对所述第二信息解OFDM波形;
    对解OFDM波形后的第二信息解DFT预编码;
    对解DFT预编码后的第二信息解层映射;
    根据传输层的层数和π/2BPSK对解层映射后的第二信息解调制,得到第一信息,所述传输层的层数大于或等于1。
  24. 根据权利要求23所述的装置,其特征在于,所述第一信息中的相邻比特由所述解DFT预编码后的第二信息中来自于不同传输层的符号经解层映射和解调制得到。
  25. 根据权利要求22所述的装置,其特征在于,所述处理过程还包括解交织,所述处理单元具体用于:
    对所述第二信息解OFDM波形;
    对解OFDM波形后的第二信息解DFT预编码;
    对解DFT预编码后的第二信息解层映射;
    对解层映射后的第二信息解交织;
    根据π/2BPSK对解交织后的第二信息解调制,得到第一信息。
  26. 根据权利要求25所述的装置,其特征在于,所述处理单元对解层映射后的第二信息解交织包括:
    根据传输层的层数以及所述第一信息包括的比特数,对解层映射后的第二信息解交织。
  27. 根据权利要求22所述的装置,其特征在于,所述处理单元具体用于:
    对所述第二信息解OFDM波形;
    对解OFDM波形后的第二信息解DFT预编码;
    根据π/2BPSK对解DFT预编码后的第二信息解调制;
    对解调制后的第二信息解层映射,得到第一信息。
  28. 一种通信装置,其特征在于,包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程序实现如权利要求1-14任一项所述的方法。
  29. 一种通信系统,其特征在于,包括:
    如权利要求15-21任一项所述的通信装置以及如权利要求22-27任一项所述的通信装置。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被运行时,实现如权利要求1-14任一项所述的方法。
PCT/CN2020/081230 2020-03-25 2020-03-25 一种通信方法及装置 WO2021189333A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080098130.7A CN115211086A (zh) 2020-03-25 2020-03-25 一种通信方法及装置
EP20926955.4A EP4113926A4 (en) 2020-03-25 2020-03-25 COMMUNICATION METHOD AND DEVICE
PCT/CN2020/081230 WO2021189333A1 (zh) 2020-03-25 2020-03-25 一种通信方法及装置
US17/952,047 US20230036558A1 (en) 2020-03-25 2022-09-23 Communication Method and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081230 WO2021189333A1 (zh) 2020-03-25 2020-03-25 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/952,047 Continuation US20230036558A1 (en) 2020-03-25 2022-09-23 Communication Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021189333A1 true WO2021189333A1 (zh) 2021-09-30

Family

ID=77891501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081230 WO2021189333A1 (zh) 2020-03-25 2020-03-25 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20230036558A1 (zh)
EP (1) EP4113926A4 (zh)
CN (1) CN115211086A (zh)
WO (1) WO2021189333A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023025082A1 (zh) * 2021-08-23 2023-03-02 华为技术有限公司 一种通信方法和通信装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220408438A1 (en) * 2021-06-21 2022-12-22 Qualcomm Incorporated Channel aware tone reservation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120224660A1 (en) * 2011-03-03 2012-09-06 Lg Electronics Inc. Method and Apparatus for Performing Demapping in Wireless Communication System
US20180324005A1 (en) * 2017-05-04 2018-11-08 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signal for low peak-to-average power ratio in wireless communication system
CN109728840A (zh) * 2017-10-30 2019-05-07 华为技术有限公司 数据传输方法和装置
CN109756440A (zh) * 2017-11-06 2019-05-14 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US20190158339A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Reference signal for pi/2 binary phase shift keying (bpsk) modulation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8982978B2 (en) * 2010-08-23 2015-03-17 Lg Electronics Inc. Method and apparatus for transceiving a precoded signal in a multiple antenna supported wireless communication system
CN104378178B (zh) * 2013-08-16 2018-09-11 电信科学技术研究院 一种确认信息的传输方法及设备
US20180083666A1 (en) * 2016-09-21 2018-03-22 Huawei Technologies Co., Ltd. Methods for multiple access transmission
CN107888533B (zh) * 2016-09-30 2020-11-06 华为技术有限公司 一种数据处理方法、装置和系统
CN109995692A (zh) * 2017-12-30 2019-07-09 华为技术有限公司 发送数据的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120224660A1 (en) * 2011-03-03 2012-09-06 Lg Electronics Inc. Method and Apparatus for Performing Demapping in Wireless Communication System
US20180324005A1 (en) * 2017-05-04 2018-11-08 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signal for low peak-to-average power ratio in wireless communication system
CN109728840A (zh) * 2017-10-30 2019-05-07 华为技术有限公司 数据传输方法和装置
CN109756440A (zh) * 2017-11-06 2019-05-14 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US20190158339A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Reference signal for pi/2 binary phase shift keying (bpsk) modulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4113926A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023025082A1 (zh) * 2021-08-23 2023-03-02 华为技术有限公司 一种通信方法和通信装置

Also Published As

Publication number Publication date
US20230036558A1 (en) 2023-02-02
EP4113926A4 (en) 2023-04-05
EP4113926A1 (en) 2023-01-04
CN115211086A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
US10887139B2 (en) Methods for configurable non-orthogonal multiple access transmission
JP5992597B2 (ja) アップリンク多重アンテナ伝送を支援する無線通信システムにおいてアップリンク伝送のための制御情報を提供する方法及び装置
JP4865871B2 (ja) 組合された循環遅延ダイバーシティと無線信号のプリコーディングの方法およびシステム
JP5587397B2 (ja) 共通及び個別パイロットを使用した送信
JP2023052571A (ja) データ処理方法、端末デバイス及びネットワークデバイス
CA3045272A1 (en) Method and apparatus for multistream transmission
CN116112140A (zh) 传输信号的方法、终端设备和网络设备
WO2018054280A1 (en) Methods for multiple access transmission
CN102414999A (zh) 用于在无线通信系统中发射参考信号的装置和方法
US20230036558A1 (en) Communication Method and Apparatus
US10826652B2 (en) Adaptive interleaver for wireless communication systems
CN111937319B (zh) 通信方法、通信装置和系统
WO2019029716A1 (zh) 处理数据的方法和装置
KR101358301B1 (ko) 다중 안테나 통신 시스템의 기지국 수신 장치 및 그것의 상향 링크 적응 방법
US11838225B2 (en) Precoding wireless communications
US20200059278A1 (en) Data sending method, data receiving method, network device, and terminal device
US9866292B2 (en) Base station apparatus, terminal device, transmission method, and reception method
US20230388172A1 (en) Dual Carrier Index Modulation (DC-IM)
US11601318B2 (en) Contention-based payload transmissions using differential coding
CN111836368B (zh) 用于数据传输的方法和装置
WO2023174505A1 (en) Pairing modulation
RU2491721C2 (ru) Формирование таблицы mimo-кодирования

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020926955

Country of ref document: EP

Effective date: 20220927

NENP Non-entry into the national phase

Ref country code: DE