WO2021189231A1 - 通信方法、装置及系统、计算机存储介质 - Google Patents

通信方法、装置及系统、计算机存储介质 Download PDF

Info

Publication number
WO2021189231A1
WO2021189231A1 PCT/CN2020/080820 CN2020080820W WO2021189231A1 WO 2021189231 A1 WO2021189231 A1 WO 2021189231A1 CN 2020080820 W CN2020080820 W CN 2020080820W WO 2021189231 A1 WO2021189231 A1 WO 2021189231A1
Authority
WO
WIPO (PCT)
Prior art keywords
request
time
resource
frequency
scheduling
Prior art date
Application number
PCT/CN2020/080820
Other languages
English (en)
French (fr)
Inventor
高磊
马莎
朱杰作
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080018464.9A priority Critical patent/CN114097191B/zh
Priority to JP2022557950A priority patent/JP7469505B2/ja
Priority to KR1020227036319A priority patent/KR20220156592A/ko
Priority to CN202310330081.0A priority patent/CN116418476A/zh
Priority to EP20926429.0A priority patent/EP4113880A4/en
Priority to PCT/CN2020/080820 priority patent/WO2021189231A1/zh
Publication of WO2021189231A1 publication Critical patent/WO2021189231A1/zh
Priority to US17/951,783 priority patent/US20230014202A1/en
Priority to JP2024060541A priority patent/JP2024099543A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/48Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for in-vehicle communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink

Definitions

  • This application relates to the field of wireless communication technology, in particular to a communication method, device and system, and computer storage medium, and is particularly suitable for short-range wireless communication, such as cockpit domain communication.
  • the development of global communication technology is changing with each passing day.
  • the development speed and application fields of wireless communication technology have surpassed that of wired communication technology, showing a trend of development in full swing.
  • the development and application of in-vehicle communication technology has attracted more and more attention.
  • the vehicle-mounted wireless can further reduce the number, length and weight of the wiring harness in the vehicle, as well as the corresponding installation, maintenance and maintenance costs, and the vehicle-mounted communication technology has a gradually wireless trend.
  • the diversification of in-vehicle applications has increased the number and types of in-vehicle communication nodes, and has put forward higher requirements for the ability of in-vehicle communication.
  • the communication domain refers to a system composed of a group of communication nodes with a communication relationship and a communication connection relationship (ie, communication link) between the communication nodes.
  • a communication domain includes a master communication node (may be abbreviated as the master node) and at least one slave communication node (may be abbreviated as a slave node).
  • the master node manages the time-frequency resources of the communication domain and has a communication link between the master and slave nodes The function of scheduling resources.
  • the time-frequency resources managed by the master node include access request resources, scheduling request resources, and resources used for other control signaling and/or service data transmission.
  • the access request resource is used for a node that does not belong to the communication domain (may be referred to as an external node) to send an access request to the master node of the communication domain, and the access request is used to request to initiate the process of the external node joining the communication domain; scheduling request resources Used to send a scheduling request (scheduling request, SR) from the node to the master node.
  • the scheduling request is used to request the allocation of resources from the master node.
  • the resources are used for control signaling and/or service data between the master node and the slave node. transmission.
  • the master node allocates its own scheduling request resources to the slave nodes.
  • the present application provides a communication method, device, system, and computer storage medium, which can solve the problem of low overall utilization of time-frequency resources in related technologies.
  • a communication method includes: the target device determines a first time-frequency sub-resource, and the first time-frequency sub-resource belongs to the first time-frequency resource.
  • the target device sends a first request on the first time-frequency sub-resource, where the first request is used to request access or request scheduling.
  • the first time-frequency resource is a pre-defined or pre-configured resource used to carry the request of the target device.
  • the request of the target device includes a request for requesting access and a request for requesting scheduling.
  • the target device is an external node or a slave node in the communication domain.
  • a request for requesting access is called an access request
  • a request for requesting scheduling is called a scheduling request.
  • external nodes refer to devices that currently do not belong to the communication domain, including devices that have not joined the communication domain and devices that have joined the communication domain and then exit the communication domain.
  • the above method includes: the target device determines a first time-frequency sub-resource, and the first time-frequency sub-resource belongs to the first time-frequency resource.
  • the target device sends an access request or a scheduling request on the first time-frequency sub-resource.
  • the first time-frequency resource is a pre-defined or pre-configured resource used to carry an access request and a scheduling request of at least one target device.
  • the access request is used in a process in which an external node requests to join the communication domain where the master node is located (that is, used to request access).
  • the scheduling request is used for the slave node to request the master node to allocate resources (that is, for requesting scheduling), and the resource is used for the transmission of control signaling and/or service data between the master node and the slave node.
  • the target device sends the access request and the scheduling request, the relationship with the communication domain is different. For example: the target device does not belong to the communication domain when sending an access request, and is an external node for this communication domain; when the target device sends a scheduling request, it is a slave node of the communication domain.
  • the target device since the target device multiplexes the first time-frequency resource when sending the access request and/or scheduling request, compared with the target device using different time-frequency resources to send the access request and the scheduling request, the time-frequency resource is improved.
  • the utilization rate does not need to be configured or defined separately for the resources of the access request and the scheduling request.
  • the first time-frequency resource is used to carry requests from multiple target devices. That is, multiple target devices may send access requests and/or scheduling requests on the first time-frequency resource.
  • the first time-frequency resource is reused, and the target device uses different time-frequency resources to send access requests and scheduling requests, and different target devices use different time-frequency resources.
  • the utilization rate of time-frequency resources can be improved, and there is no need to configure or define the resources of the access request and the scheduling request corresponding to each target device separately.
  • the first request is used to request access (that is, the first request is an access request), and the first request includes the first identifier.
  • the above method further includes: the target device sends a second request on the second time-frequency sub-resource, and the second request is used to request scheduling (that is, the second request is a scheduling request).
  • the second time-frequency sub-resource belongs to the first time-frequency resource, the second request includes a second identifier, and the second identifier is different from the first identifier.
  • the first identifier is used to indicate that the device sending the first request is an external node in the communication system, and the first request is an access request, or in other words, the first identifier is used to indicate that the external node requests to access the master node or Enter the communication domain where the master node is located.
  • the second identifier is used to indicate that the device that sends the second request is a slave node in the communication domain, and the second identifier uniquely identifies the device that sends the second request in the communication domain.
  • the communication system reserves one or more reserved identifiers, which are different from the second identifier, but the first identifier must be a reserved identifier to ensure that the second identifier is different from the first identifier. According to whether the identifier contained in the request is a reserved identifier, it can be distinguished whether the type of the request is an access request. Moreover, if the first request is a scheduling request, since the second identifier uniquely identifies the device that sends the scheduling request in the communication domain, the master node in the communication domain can determine the device that sends the scheduling request according to the second identifier contained in the scheduling request. equipment.
  • the one or more reserved identifiers may be pre-defined, such as standard or protocol definition, or pre-configured, such as pre-configured by the master node.
  • the first request is used to request access, and the first request includes the first identifier.
  • the above method further includes: the target device receives a broadcast message, the broadcast message contains information about one or more reserved identifiers, and the first identifier belongs to the one or more reserved identifiers.
  • the first time-frequency resource may be pre-defined or pre-configured.
  • the first time-frequency resource is predefined, including: the first time-frequency resource is defined by a standard or protocol.
  • the first time-frequency resource is pre-configured, including: the first time-frequency resource is pre-configured by the master node in the communication domain through a broadcast message.
  • the first time-frequency resource is pre-configured.
  • the above method further includes: the target device receives a broadcast message, and the broadcast message includes configuration information of the first time-frequency resource.
  • the implementation mechanism is simple. Or, the first time-frequency resource is pre-configured through the master node, which has high flexibility and rich application scenarios.
  • the above-mentioned broadcast message is a system message.
  • the master node may carry the information of one or more reserved identifiers and the configuration information of the first time-frequency resource in a broadcast message for transmission; or , The master node can carry the information of one or more reserved identifiers in one broadcast message for sending, and carry the configuration information of the first time-frequency resource in another broadcast message for sending, that is, the master node uses two broadcast messages to send separately Carry the information of the reserved identifier and the configuration information of the first time-frequency resource. This application does not limit this.
  • the first request is used to request access.
  • the above method further includes: the target device receives a target message, the target message includes information of a second identifier, the second identifier is carried in a second request, and the second request is used to request scheduling.
  • the second identifier is used to uniquely identify the target device in the communication domain.
  • the target message is an access response (that is, a response to an access request), and the access response is received through a second time-frequency resource, and the second time-frequency resource is determined based on the first time-frequency sub-resource.
  • the target device sends an access request on the first time-frequency sub-resource, and the second time-frequency resource for receiving the access response may be determined according to the first time-frequency sub-resource.
  • the response resource corresponding to each time-frequency sub-resource in the first time-frequency resource is pre-defined in the standard or protocol, or the master node pre-configures.
  • the target device may determine that the response resource corresponding to the first time-frequency sub-resource is the second time-frequency resource according to the definition in the standard or protocol, or the configuration of the master node.
  • the first request is used to request scheduling (that is, the first request is a scheduling request).
  • the above method further includes: the target device receives a scheduling response through a third time-frequency resource, where the scheduling response includes configuration information of a fourth time-frequency resource, and the fourth time-frequency resource is used to transmit service data and/or control information.
  • the scheduling response may include the second identifier. The second identifier is used to indicate that the scheduling response is a response to a scheduling request sent by the target device.
  • the third time-frequency resource is determined based on the first time-frequency sub-resource, or the third time-frequency resource is determined based on the first time-frequency sub-resource and the scheduling type of the first request. Since the processing time required for scheduling responses of different scheduling types and the amount of resources required to transmit the scheduling responses may be different, the response resources that need to be transmitted for scheduling responses of different scheduling types are also different, so the third time-frequency resource in this application may be based on The first time-frequency sub-resource and the scheduling type of the first request are determined.
  • the target device sends a scheduling request on the first time-frequency sub-resource
  • the third time-frequency resource for receiving the scheduling response may be determined according to the first time-frequency sub-resource.
  • the response resource corresponding to each time-frequency sub-resource in the first time-frequency resource is pre-defined in the standard or protocol, or the master node pre-configures.
  • the target device may determine that the response resource corresponding to the first time-frequency sub-resource is the third time-frequency resource according to the definition in the standard or protocol, or the configuration of the master node.
  • a communication method includes: a first device receives a first request on a first time-frequency sub-resource, where the first request is used to request access or request scheduling, and the first time-frequency sub-resource belongs to the first time-frequency resource.
  • the first time-frequency resource is a pre-defined or pre-configured resource used to carry the request of the target device, and the request of the target device includes a request for requesting access and a request for requesting scheduling.
  • the first device is a master node in the communication domain, and the target device is an external node or a slave node in the communication domain.
  • the first device receives a second request on the second time-frequency sub-resource, where the second request is used to request access or request scheduling, and the second time-frequency sub-resource belongs to the first time-frequency resource.
  • the first request and the second request can come from different devices. That is, the first time-frequency resource can be used to carry requests from multiple target devices.
  • the first request is used to request access, and the first request includes the first identifier.
  • the above method further includes: the first device receives a second request on the second time-frequency sub-resource, the second request is used to request scheduling, the second time-frequency sub-resource belongs to the first time-frequency resource, and the second request includes a second identifier , The second identification is different from the first identification. According to the second identifier in the second request, the first device determines that the device sending the second request is a slave node in the communication domain.
  • the first request is used to request access, and the first request includes the first identifier.
  • the above method further includes: the first device sends a broadcast message, the broadcast message contains information about one or more reserved identifiers, and the first identifier belongs to the one or more reserved identifiers.
  • the above method further includes: the first device sends a broadcast message, and the broadcast message includes configuration information of the first time-frequency resource.
  • the above-mentioned broadcast message is a system message.
  • the first request is used to request access.
  • the above method further includes: the first device sends a target message, the target message includes information of a second identifier, the second identifier is carried in a second request, and the second request is used to request scheduling.
  • the target message is an access response
  • the access response is sent through a second time-frequency resource
  • the second time-frequency resource is determined based on the first time-frequency sub-resource.
  • the first request is used to request scheduling.
  • the above method further includes: the first device generates a scheduling response according to the first request; and the first device sends the scheduling response through the third time-frequency resource.
  • the scheduling response includes the configuration information of the fourth time-frequency resource, and the fourth time-frequency resource is used to transmit service data and/or control information.
  • the third time-frequency resource is determined based on the first time-frequency sub-resource, or the third time-frequency resource is determined based on the first time-frequency sub-resource and the scheduling type of the first request.
  • a communication device in the third aspect, includes a plurality of functional modules, and the plurality of functional modules interact with each other to implement the above-mentioned first aspect and the methods in various embodiments thereof.
  • Multiple functional modules can be implemented based on software, hardware, or a combination of software and hardware, and multiple functional modules can be combined or divided arbitrarily based on specific implementations.
  • a communication device in a fourth aspect, includes a plurality of functional modules, and the plurality of functional modules interact with each other to implement the above-mentioned second aspect and the methods in various embodiments thereof.
  • Multiple functional modules can be implemented based on software, hardware, or a combination of software and hardware, and multiple functional modules can be combined or divided arbitrarily based on specific implementations.
  • a communication device including: a processor, a memory, and a transceiver;
  • the memory is used to store a computer program, and the computer program includes program instructions
  • the processor is configured to call the computer program and cooperate with the transceiver to implement the communication method according to any one of the first aspects.
  • a communication device including: a processor, a memory, and a transceiver;
  • the memory is used to store a computer program, and the computer program includes program instructions
  • the processor is configured to call the computer program and cooperate with the transceiver to implement the communication method according to any one of the second aspect.
  • a communication system including: a first device and a second device, the first device is a master communication node, and the second device is a slave communication node or an external node;
  • the first device includes the communication device according to the fourth aspect or the sixth aspect;
  • the second device includes the communication device according to the third aspect or the fifth aspect.
  • a computer storage medium is provided, and instructions are stored on the computer storage medium.
  • the instructions are executed by a processor of a computer device, the communication according to any one of the first aspect or the second aspect is implemented. method.
  • a chip in a ninth aspect, includes a programmable logic circuit and/or program instructions. When the chip is running, the communication method according to any one of the first aspect or the second aspect is implemented.
  • the same time-frequency resource is used to carry the access request and scheduling request of one or more devices. Since the device multiplexes the same time-frequency resource when sending the access request and/or the scheduling request, compared with the device using different time-frequency resources to send the access request and the scheduling request, the utilization rate of the time-frequency resource is improved. Multiple devices multiplex the same time-frequency resource to send scheduling requests. Compared with different devices using different time-frequency resources to send scheduling requests, the utilization rate of time-frequency resources is improved. In addition, multiple devices use the same time-frequency resource competitively, and there is no need to design different time-frequency resources for the access request and the scheduling request corresponding to each device, which simplifies the communication mechanism.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a first time-frequency resource provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of yet another communication device provided by an embodiment of the present application.
  • FIG. 11 is a block diagram of a communication device provided in an embodiment of the present application.
  • the embodiment of the present application provides a communication system, and the communication system includes one or more communication domains.
  • Each communication domain includes a master communication node (abbreviated as: master node) and one or more slave communication nodes (abbreviated as: slave node).
  • master node a master communication node
  • slave node a slave communication node
  • Each slave node in the communication domain establishes a communication link with the master node.
  • the slave node in one communication domain can be used as the master node in another communication domain.
  • the communication system also includes external nodes.
  • An external node refers to a node that has not joined any communication domain in the communication system, that is, the external node has not established a communication link with the master node in any communication domain in the communication system, that is, the external node does not currently belong to the communication domain.
  • the master node manages the time-frequency resources of the communication domain and has the function of scheduling resources for the communication link between the master and slave nodes.
  • the time-frequency resources managed by the master node include access request resources, scheduling request resources, and resources used for other control signaling and/or service data transmission.
  • the access request resource is used by the external node to send an access request to the master node of the communication domain, and the access request is used to request to initiate a process for the external node to join the communication domain.
  • the scheduling request resource is used to send a scheduling request from the node to the master node, the scheduling request is used to request the master node to allocate resources, and the resource is used for the transmission of control signaling and/or service data between the master node and the slave node.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes a first device 110, a second device 120A-120B (collectively referred to as the second device 120), and a third device 130A-130B (collectively referred to as the third device 130).
  • the first device 110 is a master node in the communication domain
  • the second device 120 is a slave node in the communication domain
  • the third device 130 is an external node.
  • the numbers of the second device and the third device in FIG. 1 are only used as an example, and not as a limitation on the communication system provided in the embodiment of the present application.
  • the number of third devices may also be 0, that is, the third device is not included in the communication system.
  • the communication system provided in the embodiment of the present application may be applied to wireless networks such as a vehicle-mounted network, a wireless local area network (WLAN), or a cellular network.
  • the first device 110 may be a cockpit domain controller (CDC)
  • the second device 120 and the third device 130 may be terminals such as microphones, speakers, or mobile phones; or, the first device 110 may be a cockpit domain controller (CDC).
  • the first device 110 may be a passive entry and passive start (PEPS) system, and the second device 120 and the third device 130 may be mobile phone keys or car keys, etc.; or, the first device 110 may be a mobile phone.
  • PEPS passive entry and passive start
  • the second device 120 and the third device 130 may be earphones or wearable devices or the like.
  • the first device 110 may be an access point (AP), and the second device 120 and the third device 130 may be stations (STA).
  • AP access point
  • STA stations
  • the first device 110 may be a base station
  • the second device and the third device may be user equipment (UE).
  • UE user equipment
  • FIG. 2 is a schematic structural diagram of another communication system provided by an embodiment of the present application. As shown in Figure 2, the communication system includes three communication domains C1-C3.
  • the communication domain C1 includes a CDC 101, a microphone 102, a speaker 103, and a mobile phone 104.
  • CDC 101 is the master node, and the microphone 102, speaker 103, and mobile phone 104 are all slave nodes.
  • the microphone 102, the speaker 103 and the mobile phone 104 are wirelessly connected to the CDC 101 respectively.
  • CDC 101 can also be wired to the display screen of the vehicle system.
  • the communication domain C2 includes PEPS 105, mobile phone key 106, and car key 107.
  • PEPS 105 is the master node, and both the mobile phone key 106 and the car key 107 are slave nodes.
  • the mobile phone key 106 and the car key 107 are wirelessly connected to the PEPS 105 respectively.
  • the PEPS 105 can also be wiredly connected to a body control module (BCM).
  • BCM body control module
  • the communication domain C3 includes a mobile phone 104, a headset 108, and a wearable device 109.
  • the mobile phone 104 is the master node
  • the headset 108 and the wearable device 109 are both slave nodes.
  • the earphone 108 and the wearable device 109 are wirelessly connected to the mobile phone 104 respectively.
  • the mobile phone 104 is both a slave node in the communication domain C1 and a master node in the communication domain C3.
  • the frequency of external nodes sending access requests to the master node is low, and the frequency of sending scheduling requests from slave nodes to the master node is also low.
  • the scenarios in which the external node sends an access request to the master node include: when the mobile phone key or car key approaches or enters the vehicle, it will send an access request to the PEPS; when the speakers or microphones in the vehicle are turned on manually or the mobile phone wants to access In CDC, an access request will be sent to CDC. Due to the low frequency of these events, the frequency of external nodes in the vehicle network sending access requests to the master node is low.
  • the scenario in which the slave node sends a scheduling request to the master node includes: when the slave node needs to initiate a new service or initiate a semi-persistent scheduling (SPS) service change, it will send a scheduling request to the master node.
  • the business in the in-vehicle network includes the main business and a small amount of burst business.
  • the business volume of the main business is relatively stable, and the SPS method is generally used for scheduling, and there is no need to frequently initiate new business.
  • the burst business occurs at random times, and dynamic scheduling is generally used. Since the business volume of the burst business is very small, it will not cause frequent launching of new services.
  • SPS service changes are generally caused by changes in service volume or changes in modulation and coding schemes (MCS) caused by changes in channel conditions. Because the distance between the nodes in the vehicle is short and the relative movement is relatively slow, the wireless channel in the vehicle network has the characteristics of flat frequency domain and slow time domain transformation, that is, the channel condition is relatively stable. Therefore, the frequency that the slave node triggers the sending of the scheduling request due to the need to initiate an SPS service change is low.
  • MCS modulation and coding schemes
  • a group of time-frequency resources are allocated for external nodes to send access requests, and each slave node is allocated a group of time-frequency resources for the corresponding slave nodes to send scheduling requests, that is, the time-frequency resources used to carry access requests and scheduling requests.
  • the resources are different, and the time-frequency resources used to carry the scheduling requests sent by different slave nodes are also different. Since the frequency of sending access requests by external nodes and the frequency of sending scheduling requests by slave nodes are both low, the overall utilization of time-frequency resources is currently low.
  • the same set of time-frequency resources is used to carry the request for requesting access (ie, access request) and the request for requesting scheduling (ie, scheduling request).
  • the scheduling request is carried in the same group of time-frequency resources, so the utilization rate of the time-frequency resources is improved.
  • multiple devices may share the same group of time-frequency resources to send scheduling requests, which further improves the utilization rate of time-frequency resources.
  • Fig. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application. This method can be applied to the communication system shown in FIG. 1 or FIG. 2. As shown in Figure 3, the method includes:
  • Step 301 The target device determines the first time-frequency sub-resource.
  • the first time-frequency sub-resource belongs to the first time-frequency resource.
  • the first time-frequency resource is a pre-defined or pre-configured resource used to carry the request of the target device.
  • the request of the target device includes a request for requesting access and a request for requesting scheduling.
  • the first time-frequency resource mentioned in the embodiment of this application is not used to transmit service data, and is not all the resources available to the target device.
  • a request for requesting access is called an access request
  • a request for requesting scheduling is called a scheduling request.
  • the target device is a slave node or an external node in the communication system.
  • the target device may be the second device 120 or the third device 130 in the communication system as shown in FIG. 1.
  • the first time-frequency resource is predefined, including: the first time-frequency resource is defined by a standard or protocol.
  • the first time-frequency resource is pre-configured, and includes: the first time-frequency resource is pre-configured by the first device through a broadcast message.
  • the first device is the master node in the communication system.
  • the first device may be the first device 110 in the communication system as shown in FIG. 1.
  • the first time-frequency resource is a resource used to bear the request of the target device, that is, the first time-frequency resource is used to bear the access request and scheduling request of the target device.
  • the access request is used to request access to the first device
  • the scheduling request is used to request scheduling request resources from the first device
  • the scheduling request resources are used to transmit service data and/or control information to the target device.
  • the first time-frequency resource is pre-configured by the first device.
  • the first device sends a broadcast message in the communication system.
  • the first device may periodically send a broadcast message in the communication system.
  • the broadcast message includes configuration information of the first time-frequency resource.
  • the target device determines the first time-frequency sub-resource in the first time-frequency resource.
  • the first time-frequency resource includes one or more time-frequency sub-resources.
  • the target device may determine any time-frequency sub-resource in the first time-frequency resource as the first time-frequency sub-resource, that is, the first time-frequency sub-resource
  • the time-frequency sub-resource may be any time-frequency resource in the first time-frequency resource.
  • the target device may determine the first time-frequency sub-resource in the first time-frequency resource as the first time-frequency sub-resource, that is, the first time-frequency sub-resource may be the first time-frequency sub-resource in the first time-frequency resource.
  • the broadcast message is a system message.
  • the configuration information of the first time-frequency resource includes time-domain information and frequency-domain information of each time-frequency sub-resource in the first time-frequency resource.
  • a time-frequency sub-resource may correspond to an orthogonal frequency division multiplexing (OFDM) symbol in the time domain, and may correspond to a sub-carrier in the frequency domain, that is, One time-frequency sub-resource may consist of one OFDM symbol and one sub-carrier.
  • the time-frequency resource is usually a periodic resource.
  • the time-frequency sub-resource in the first time-frequency resource can be composed of the i-th OFDM symbol and the j-th subcarrier in a period.
  • Both i and j are positive integers, and i is less than or equal to The total number of OFDM symbols in a period, j is less than or equal to the total number of subcarriers in a period.
  • the configuration information of the first time-frequency resource is ⁇ (i 1 , j 1 ); (i 2 , j 2 ); ...; (i n , j n ) ⁇ , indicating that the first time-frequency resource includes n Time-frequency sub-resources, i n indicates that the n-th time-frequency sub-resource corresponds to the i n- th OFDM symbol in the time domain, and j n indicates that the n-th time-frequency sub-resource corresponds to the j n- th sub-carrier in the frequency domain , N is a positive integer, and n is less than or equal to the product of the total number of OFDM symbols in a period and the total number of subcarriers in a period.
  • FIG. 4 is a schematic diagram of the first time-frequency resource provided by an embodiment of the present application.
  • the abscissa represents the time domain
  • the ordinate represents the frequency domain
  • each time-frequency sub-resource corresponds to a small square.
  • the total time-frequency resource includes multiple time-frequency sub-resources arranged in a matrix
  • the first time-frequency resource includes multiple time-frequency sub-resources.
  • the implementation mechanism is simple.
  • the first time-frequency resource is pre-configured through the master node, which has high flexibility and rich application scenarios.
  • the first time-frequency resource is used to carry requests from multiple target devices.
  • the multiple target devices may be located in the same communication domain of the communication system, or may be located in different communication domains of the communication system.
  • multiple target devices multiplex the first time-frequency resource when sending access requests and/or scheduling requests, and use different time-frequency resources to send access requests and scheduling requests separately from the target device, and different target devices use different time-frequency resources.
  • the utilization rate of time-frequency resources can be improved, and there is no need to configure or define the resources of the access request and the scheduling request corresponding to each target device separately.
  • the first time-frequency resource can also be used to carry other requests in addition to the access request and the scheduling request, for example, a request for obtaining system information or a request for obtaining channel information, etc.
  • a request for obtaining system information for example, a request for obtaining system information or a request for obtaining channel information, etc.
  • the embodiment of the present application There is no restriction on this.
  • Step 302 The target device sends a first request on the first time-frequency sub-resource.
  • the first device receives the first request on the first time-frequency sub-resource.
  • the first device may determine at least one of the request type of the first request, the node that sent the first request, or the node type, and other information.
  • the first request is used to request access or request scheduling. That is, the first request is an access request or a scheduling request.
  • the target device is an external node in the communication system
  • the first request is an access request for requesting access to the first device, that is, the first request is used for requesting to establish a communication link with the first device.
  • the target device is a slave node in the communication domain where the first device is located
  • the first request is a scheduling request, which is used to request a scheduling request resource from the first device.
  • the scheduling request resource is a time-frequency resource used to transmit service data and/or control information.
  • the control information includes, but is not limited to, service change instructions, MCS change instructions, scheduling signaling, and channel quality indication information.
  • the target device since the target device multiplexes the first time-frequency resource when sending the access request and/or the scheduling request, compared with the target device using different time-frequency resources to send the access request and the scheduling request, the time-frequency resource is improved. There is no need to configure or define resources for access requests and scheduling requests separately.
  • the access request includes a first identity (identity, ID).
  • the scheduling request includes the second identifier.
  • the second identification is different from the first identification.
  • the first identifier is used to indicate that the device sending the request is an external node in the communication system, and the request is an access request, or in other words, the first identifier is used to indicate that the external node requests to access the master node or access the communication where the master node is located area.
  • the second identifier is used to indicate that the device that sends the request is a slave node in the communication domain, and the second identifier uniquely identifies the device that sends the request in the communication domain.
  • the communication system reserves one or more reserved identifiers, which are different from the second identifier, but the first identifier must be a reserved identifier to ensure that the second identifier is different from the first identifier. According to whether the identifier contained in the request is a reserved identifier, it can be distinguished whether the type of the request is an access request. Also, if the first request is a scheduling request, since the second identifier uniquely identifies the device that sends the scheduling request in the communication domain, the first device (ie, the master node in the communication domain) can, according to the second identifier contained in the scheduling request, Determine the device that sent the scheduling request.
  • Both the reserved identifier and the second identifier may be allocated by the first device, for example, the first device is pre-configured with one or more reserved identifiers.
  • the reserved identifier may be defined by a standard or protocol, and the second identifier is allocated by the first device.
  • the external node obtains one of the one or more reserved identifiers defined by the standard or protocol, and carries the reserved identifier as the first identifier in the access request.
  • the reserved identifier and the second identifier provided in the embodiment of the present application may be as shown in Table 1, where n is a positive integer, and m is an integer greater than n.
  • the first device or protocol reserves n reserved identifiers, namely ID1 to IDn.
  • the first device allocates a second identifier to (m-n) slave nodes connected to the first device, respectively, IDn+1 to IDm.
  • the second identifier may be the MAC address of the slave node, or the second identifier may be determined by the first device, for example, it may be letters, numbers, characters, and combinations thereof, and is used to uniquely identify one in the communication domain where the first device is located. equipment.
  • the reserved identifier is allocated by the first device.
  • the first device sends a broadcast message in the communication system.
  • the first device may periodically send a broadcast message in the communication system, and the broadcast message includes information of one or more reserved identifiers.
  • the information of the reserved identifier may be the reserved identifier or the indication information of the reserved identifier, and the reserved identifier can be obtained through the indication information.
  • the target device After receiving the broadcast message, the target device obtains a reserved identifier from the one or more reserved identifiers as the first identifier, that is, the first identifier belongs to the one or more reserved identifiers.
  • the broadcast message is a system message.
  • a broadcast message refers to a message sent in a broadcast manner.
  • a system message is a message that is sent by broadcast and contains system configuration, that is, a system message is a broadcast message.
  • the broadcast message may also be a message sent in a broadcast manner except for a system message, which is not limited in the embodiment of the present application.
  • the first device when both the reserved identifier and the configuration information of the first time-frequency resource are allocated by the first device, the first device may carry the information of one or more reserved identifiers and the configuration information of the first time-frequency resource on It is sent in a broadcast message; or, the first device can carry one or more reserved identifiers in a broadcast message and send it, and carry the configuration information of the first time-frequency resource in another broadcast message for sending, that is, The first device uses two broadcast messages to respectively carry the information of the reserved identifier and the configuration information of the first time-frequency resource.
  • the embodiment of the application does not limit this.
  • the first device allocates a second identifier to each target device that accesses the first device.
  • the first device may send a target message to the target device, where the target message includes the information of the second identifier.
  • the first device may allocate the second identifier to the target device during the process in which the target device accesses the first device (that is, the target device joins the communication domain of the first device as the master node).
  • the target message may be a response to the access request (ie, access response). Alternatively, the target message may not be an access response.
  • the first device may reply to a target message that is only used to carry the information of the second identifier. For example, after determining that the target device has successfully accessed the first device, the first device sends the The target device sends a target message carrying the second identifier.
  • various types of information are carried in messages for transmission.
  • the configuration information of the first time-frequency resource is carried in the broadcast message for transmission
  • the information of the reserved identifier is carried in the broadcast message for transmission
  • the information of the second identifier allocated by the first device to the slave node is carried in the target message for transmission.
  • the above-mentioned message involved in the embodiments of the present application may include the header and/or data field of a protocol data unit (PDU), that is, the message may be a data packet including only the data field, or the message may also be a PDU
  • the packet header may also include the PDU packet header and data fields.
  • the above message may also be a signal that carries information.
  • the message may be a signal composed of a sequence in the time domain, and the cyclic shift of the sequence indicates the information carried by the signal.
  • the embodiment of the application does not limit the type of the message.
  • the present application provides the following two optional embodiments, respectively taking the foregoing target device as an external node and a slave node in a communication system as examples to illustrate the implementation process of the foregoing communication method.
  • the target device is an external node in the communication system
  • the first request is an access request.
  • Fig. 5 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the communication system to which this method is applied includes at least device 1 and device 2, where device 1 is the master node, and device 2 is an external node.
  • the device 1 may be the first device 110 in the communication system as shown in FIG. 1, and the device 2 may be the third device 130 in the communication system as shown in FIG. 1.
  • the method may be specifically used to implement the method shown in the corresponding embodiment in FIG. 3, for example, the device 1 may be the first device, and the device 2 may be the target device.
  • the method includes:
  • Step 501 Device 2 determines the first time-frequency sub-resource.
  • the first time-frequency sub-resource belongs to the first time-frequency resource.
  • the process of the device 2 determining the first time-frequency sub-resource reference may be made to the process of determining the first time-frequency sub-resource by the target device in step 301, which will not be repeated in this embodiment of the application.
  • Step 502 Device 2 sends an access request on the first time-frequency sub-resource.
  • the access request includes the first identifier.
  • the first identifier is used to indicate that the device 2 is an external node and that the request type of the sent request is an access request.
  • the device 1 tries to receive the request on each time-frequency sub-resource of the first time-frequency resource.
  • Device 2 sends an access request on the first time-frequency sub-resource, then device 1 may receive the access request on the first time-frequency sub-resource.
  • the first time-frequency sub-resource is any time-frequency sub-resource in the first time-frequency resource.
  • Device 2 sends an access request on the first time-frequency sub-resource in a competitive manner, that is, device 2 first attempts to send an access request on the first time-frequency sub-resource, if device 2 fails to succeed on the first time-frequency sub-resource Sending an access request, for example, if the device 2 determines that the first time-frequency sub-resource is busy or the device 2 fails to access the device 1, then the device 2 determines a new time-frequency sub-resource in the first time-frequency resource to try to send the access request again.
  • the method for determining the new time-frequency sub-resource is to randomly select the back-off duration, and select a time-frequency sub-resource (for example, the first time-frequency sub-resource) after the back-off duration.
  • device 2 Since devices in the current communication system initiate access requests and scheduling requests with low frequency, when device 2 sends an access request on the first time-frequency sub-resource, it conflicts with access requests or scheduling requests sent by other devices. The probability is low, and the device has a higher probability of successfully sending a request on the time-frequency sub-resource in the first time-frequency resource. Even in the case of conflict, device 2 can still determine a new sending request one or more times. Enter the requested time-frequency sub-resources to complete the sending of the access request.
  • Step 503 Device 1 sends an access response on the second time-frequency resource.
  • the second time-frequency resource is determined based on the first time-frequency sub-resource.
  • the device 1 may determine the second time-frequency resource for sending the access response according to the first time-frequency sub-resource.
  • the response resource corresponding to each time-frequency sub-resource in the first time-frequency resource may be pre-defined in the standard or protocol, or the master node may pre-configure the response resource corresponding to each time-frequency sub-resource in the first time-frequency resource.
  • the response resource corresponding to the first time-frequency sub-resource can be determined as the second time-frequency resource according to the definition in the standard or protocol, or the configuration of the master node.
  • the device 2 when it sends an access request on the first time-frequency sub-resource, it can also determine the second time-frequency resource corresponding to the first time-frequency sub-resource according to the same rule (the rule adopted by the device 1), and set it on the second time-frequency sub-resource. Try to receive the access response on the time-frequency resource.
  • the method of pre-defined in the standard or protocol, or pre-configured by the master node for the response resource corresponding to each time-frequency sub-resource in the first time-frequency resource may refer to the above-mentioned pre-defined in the standard or protocol, or pre-defined by the master node.
  • the manner of configuring the first time-frequency resource will not be repeated in the embodiment of the present application.
  • the access response includes the second identifier.
  • Step 504 Device 2 determines the second time-frequency sub-resource.
  • the second time-frequency sub-resource belongs to the first time-frequency resource.
  • the second time-frequency sub-resource and the first time-frequency sub-resource may be the same or different.
  • Step 505 Device 2 sends a scheduling request on the second time-frequency sub-resource.
  • the scheduling request is used to request the device 1 for time-frequency resources for transmitting service data and/or control information.
  • the scheduling request includes the second identifier.
  • the second identifier is used to indicate that the device 2 is a slave node of the device 1, and the second identifier is used to uniquely identify the device 2 in the communication domain where the device 1 and the device 2 are located.
  • the device 1 tries to receive the request on each time-frequency sub-resource of the first time-frequency resource.
  • Device 2 sends a scheduling request on the second time-frequency sub-resource, then device 1 may receive the access request on the second time-frequency sub-resource.
  • the second time-frequency sub-resource is any time-frequency sub-resource in the first time-frequency resource.
  • Device 2 sends a scheduling request on the second time-frequency sub-resource in a competitive manner. For the process in which device 2 sends a scheduling request on the second time-frequency sub-resource in a competitive manner, refer to the process in step 502 in which device 2 sends an access request on the first time-frequency sub-resource in a competitive manner. This will not be repeated here.
  • Step 506 Device 1 sends a scheduling response on the third time-frequency resource.
  • the scheduling response includes configuration information of the fourth time-frequency resource, where the fourth time-frequency resource is used to transmit service data and/or control information.
  • the scheduling response also includes a second identifier. Since device 1 may receive access requests and/or scheduling requests sent by multiple devices, by carrying the second identifier in the scheduling response, it can indicate that the response is a response to the scheduling request and which device is the specific scheduling request. The response to the request. For example, if the second identifier corresponding to device 2 is carried in the scheduling response, it may indicate that the scheduling response is a response to the scheduling request sent by device 2.
  • the third time-frequency resource is determined based on the second time-frequency sub-resource, or the third time-frequency resource is determined based on the second time-frequency sub-resource and the type of the scheduling request.
  • the type of the scheduling request is used to indicate the specific content that the scheduling request resource requested by the scheduling request needs to be transmitted.
  • the type of scheduling request is used to indicate the transmission of service data or control information; or the type of scheduling request is used to indicate the specific type of transmission control information, including but not limited to service change instructions, MCS change instructions, scheduling signaling or channel Quality instruction information.
  • the third time-frequency resource is determined based on the second time-frequency sub-resource.
  • the device 1 receives the scheduling request sent by the device 2 on the second time-frequency sub-resource, it determines the third time-frequency resource for sending the scheduling response according to the second time-frequency sub-resource.
  • the response resource corresponding to each time-frequency sub-resource in the first time-frequency resource may be pre-defined in the standard or protocol, or the master node may pre-configure the response resource corresponding to each time-frequency sub-resource in the first time-frequency resource.
  • the response resource corresponding to the second time-frequency sub-resource is the third time-frequency resource according to the definition in the standard or protocol, or the configuration of the master node.
  • device 2 when device 2 sends a scheduling request on the second time-frequency sub-resource, it can also determine the third time-frequency resource corresponding to the second time-frequency sub-resource according to the same rule (the rule adopted by device 1), and perform the scheduling request at the third time-frequency sub-resource. Try to receive the scheduling response on the frequency resource.
  • the method of pre-defined in the standard or protocol, or pre-configured by the master node for the response resource corresponding to each time-frequency sub-resource in the first time-frequency resource may refer to the above-mentioned pre-defined in the standard or protocol, or pre-defined by the master node.
  • the manner of configuring the first time-frequency resource will not be repeated in the embodiment of the present application.
  • the third time-frequency resource is determined based on the second time-frequency sub-resource and the scheduling type of the scheduling request. Since the processing time required for scheduling responses of different scheduling types and the amount of resources required to transmit the scheduling responses may be different, the response resources that need to be transmitted for scheduling responses of different scheduling types are also different, so the third time-frequency resource in the embodiment of the present application It may be determined based on the second time-frequency sub-resource and the scheduling type of the scheduling request. After the device 1 receives the scheduling request sent by the device 2 on the second time-frequency sub-resource, it determines the third time-frequency resource for sending the scheduling response according to the second time-frequency sub-resource and the type of the scheduling request.
  • the response resource corresponding to each time-frequency sub-resource in the first time-frequency resource may be pre-defined in a standard or protocol, or the master node may pre-configure the response resource corresponding to each time-frequency sub-resource in the first time-frequency resource.
  • one time-frequency sub-resource corresponds to one or more response resources.
  • the master node can pre-configure the request type corresponding to each response resource, for example, response resource 1 corresponds to an access request, and response resource 2 Corresponding to scheduling request 1, response resource 3 corresponds to scheduling request 2, and scheduling request 1 and scheduling request 2 are of different types.
  • device 1 After device 1 receives the scheduling request on the second time-frequency sub-resource, it can determine that the response resource corresponding to the second time-frequency sub-resource and the type of the scheduling request is according to the definition in the standard or protocol, or the configuration of the master node.
  • the third time-frequency resource when device 2 sends a scheduling request on the second time-frequency sub-resource, it can also determine the third time-frequency resource corresponding to the second time-frequency sub-resource according to the same rule (the rule adopted by device 1), and perform the scheduling request at the third time-frequency sub-resource. Try to receive the scheduling response on the frequency resource.
  • the target device is a slave node in the communication system
  • the first request is a scheduling request.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the communication system to which this method is applied at least includes a device 3 and a device 4, wherein the device 3 is the master node and the device 4 is the slave node.
  • the device 3 may be the first device 110 in the communication system as shown in FIG. 1, and the device 4 may be the second device 120 in the communication system as shown in FIG. 1. or.
  • the device 3 may be the CDC 101 in the communication system as shown in FIG. 2, and the device 4 may be the microphone 102 in the communication system as shown in FIG. 2.
  • the method may be specifically used to implement the method shown in the corresponding embodiment in FIG. 3, for example, the device 3 may be the first device, and the device 4 may be the target device.
  • the method includes:
  • Step 601 Device 4 determines the first time-frequency sub-resource.
  • Step 602 Device 4 sends a scheduling request on the first time-frequency sub-resource.
  • step 505 For the explanation of this step, reference may be made to the explanation of step 505, which is not repeated in the embodiment of the present application.
  • Step 603 Device 3 sends a scheduling response on the third time-frequency resource.
  • step 506 For the explanation of this step, reference may be made to the explanation of step 506, which is not repeated in the embodiment of the present application.
  • the communication method provided by the embodiment of the present application uses the same time-frequency resource to carry the access request and scheduling request of one or more devices. Since the device multiplexes the same time-frequency resource when sending the access request and/or the scheduling request, compared with the device using different time-frequency resources to send the access request and the scheduling request, the utilization rate of the time-frequency resource is improved. Multiple devices multiplex the same time-frequency resource to send scheduling requests. Compared with different devices using different time-frequency resources to send scheduling requests, the utilization rate of time-frequency resources is improved. In addition, multiple devices competitively use the time-frequency sub-resources in the same time-frequency resource, and there is no need to design different time-frequency resources for the access request and the scheduling request corresponding to each device, which simplifies the communication mechanism.
  • Fig. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the device may be applied to the second device 120 or the third device 130 in the communication system as shown in FIG. 1, or the device may also be a chip or an integrated circuit in the second device 120 or the third device 130.
  • the device 70 includes:
  • the processing module 701 is configured to determine a first time-frequency sub-resource, where the first time-frequency sub-resource belongs to the first time-frequency resource.
  • the sending module 702 is configured to send a first request on the first time-frequency sub-resource, and the first request is used to request access or request scheduling.
  • the first time-frequency resource is a pre-defined or pre-configured resource used to carry the request of the target device, and the request of the target device includes a request for requesting access and a request for requesting scheduling.
  • the target device since the target device sends the access request and/or the scheduling request, both use the time-frequency sub-resources in the first time-frequency resource determined by the processing module, and the target device Compared with sending the access request by using the time-frequency sub-resources in different time-frequency resources respectively, compared with the scheduling request, the utilization rate of the time-frequency resource is improved.
  • the first time-frequency resource is used to carry requests from multiple target devices.
  • the first request is used to request access, and the first request includes a first identifier; the sending module 702 is also used to send a second request on the second time-frequency sub-resource, and the second request is used to request scheduling,
  • the second time-frequency sub-resource belongs to the first time-frequency resource, the second request includes a second identifier, and the second identifier is different from the first identifier.
  • the device 70 further includes a receiving module 703.
  • the first request is used to request access, and the first request includes a first identifier;
  • the receiving module 703 is used to receive a broadcast message, and the broadcast message includes information about one or more reserved identifiers, and the first identifier belongs to one Or multiple reserved identifiers.
  • the receiving module 703 is configured to receive a broadcast message, and the broadcast message includes configuration information of the first time-frequency resource.
  • the broadcast message is a system message.
  • the first request is used to request access; the receiving module 703 is used to receive the target message, the target message contains the information of the second identifier, the second identifier is carried in the second request, and the second request is used to request scheduling .
  • the target message is an access response
  • the access response is received through a second time-frequency resource
  • the second time-frequency resource is determined based on the first time-frequency sub-resource.
  • the first request is used to request scheduling; the receiving module 703 is used to receive the scheduling response through the third time-frequency resource, the scheduling response includes the configuration information of the fourth time-frequency resource, and the fourth time-frequency resource is used for the transmission service Data and/or control information.
  • the third time-frequency resource is determined based on the first time-frequency sub-resource, or the third time-frequency resource is determined based on the first time-frequency sub-resource and the scheduling type of the first request.
  • the communication device shown in FIG. 7 or FIG. 8 can be used for the device 2 in the communication method shown in FIG. 5 or the device 4 in the communication method shown in FIG. 6, and the specific operations performed by each module You can refer to the relevant steps, and for details not exhausted here, you can refer to the detailed description in the communication method shown in FIG. 5 or FIG. 6. For details, refer to the related descriptions of step 501 to step 502 and step 504 to step 505; or, refer to the related descriptions of step 601 to step 602.
  • the target device since the target device multiplexes the first time-frequency resource determined by the processing module when sending the access request and/or the scheduling request, it uses a different time-frequency resource from the target device. Compared with the scheduling request, the resource sending access request improves the utilization rate of the time-frequency resource.
  • multiple target devices multiplex the first time-frequency resource when sending access requests and/or scheduling requests, and use different time-frequency resources to send access requests and scheduling requests separately from the target device, and different target devices use different time-frequency resources to send. Compared with scheduling requests, the utilization rate of time-frequency resources can be improved.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the device can be applied to the first device 110 in the communication system as shown in FIG. 1, or the device can also be a chip or an integrated circuit in the first device 110.
  • the device 90 includes:
  • the receiving module 901 is configured to receive a first request on a first time-frequency sub-resource, where the first request is used to request access or request scheduling, and the first time-frequency sub-resource belongs to the first time-frequency resource.
  • the first time-frequency resource is a pre-defined or pre-configured resource used to carry the request of the target device, and the request of the target device includes a request for requesting access and a request for requesting scheduling.
  • the target device since the target device sends the access request and/or the scheduling request both use the time-frequency sub-resources in the first time-frequency resource, and the target device uses different time-frequency resources respectively. Compared with the scheduling request for sending the access request of the time-frequency sub-resource in the resource, the utilization rate of the time-frequency resource is improved.
  • the first time-frequency resource is used to carry requests from multiple target devices.
  • the first request is used to request access, and the first request includes a first identifier; the receiving module 901 is also used to receive a second request on the second time-frequency sub-resource, and the second request is used to request scheduling,
  • the second time-frequency sub-resource belongs to the first time-frequency resource, the second request includes a second identifier, and the second identifier is different from the first identifier.
  • the device 90 further includes a sending module 902 and a processing module 903.
  • the first request is used to request access, and the first request includes a first identifier;
  • the sending module 902 is used to send a broadcast message, and the broadcast message includes information about one or more reserved identifiers, and the first identifier belongs to one Or multiple reserved identifiers.
  • the sending module 902 is configured to send a broadcast message, and the broadcast message includes configuration information of the first time-frequency resource.
  • the broadcast message is a system message.
  • the first request is used to request access; the sending module 902 is used to send a target message, the target message contains the information of the second identifier, the second identifier is carried in the second request, and the second request is used to request Scheduling.
  • the target message is an access response
  • the access response is sent through a second time-frequency resource
  • the second time-frequency resource is determined based on the first time-frequency sub-resource.
  • the first request is used to request scheduling; the processing module 903 is used to generate a scheduling response according to the first request; the sending module 902 is used to send a scheduling response through the third time-frequency resource; wherein the scheduling response includes the fourth The configuration information of the time-frequency resource, and the fourth time-frequency resource is used to transmit service data and/or control information.
  • the third time-frequency resource is determined based on the first time-frequency sub-resource, or the third time-frequency resource is determined based on the first time-frequency sub-resource and the scheduling type of the first request.
  • the communication device shown in FIG. 9 or FIG. 10 may be used for the device 1 in the communication method shown in FIG. 5 or the device 3 in the communication method shown in FIG. 6, and the specific operations performed by each module You can refer to the relevant steps, and for details not exhausted here, you can refer to the detailed description in the communication method shown in FIG. 5 or FIG. 6. For details, refer to related descriptions in step 503 and step 506; or, refer to related descriptions in step 603.
  • the target device since the target device multiplexes the time-frequency sub-resources in the first time-frequency resource when sending the access request and/or the scheduling request, it uses different time-frequency sub-resources from the target device. Compared with the scheduling request sent by the frequency resource, the utilization rate of the time-frequency resource is improved.
  • multiple target devices multiplex the time-frequency sub-resources in the first time-frequency resource when sending the access request and/or scheduling request, and use different time-frequency resources to send the access request and the scheduling request separately from the target device. Compared with sending scheduling requests using different time-frequency resources, the utilization of time-frequency resources can be improved.
  • the embodiment of the present application also provides a communication system, including: a first device and a second device, the first device is the main communication node (for example, the first device 110 in the communication system shown in FIG. 1), and the second device The device is an external node (for example, the third device 130 in the communication system as shown in FIG. 1) or a slave communication node in the communication domain (for example, the second device 120 in the communication system as shown in FIG. 1).
  • a communication system including: a first device and a second device, the first device is the main communication node (for example, the first device 110 in the communication system shown in FIG. 1), and the second device The device is an external node (for example, the third device 130 in the communication system as shown in FIG. 1) or a slave communication node in the communication domain (for example, the second device 120 in the communication system as shown in FIG. 1).
  • the first device includes the communication device as shown in FIG. 9 or FIG. 10; the second device includes the communication device as shown in FIG. 7 or FIG.
  • An embodiment of the present application provides a communication device, including: at least one processor, at least one memory, and a transceiver;
  • the memory is used to store a computer program, and the computer program includes program instructions
  • the processor is configured to call the computer program and cooperate with the transceiver to implement the communication method shown in FIG. 3, the steps performed by the device 2 in the communication method shown in FIG. 5, or the communication shown in FIG. 6 Steps performed by device 4 in the method.
  • An embodiment of the present application also provides a communication device, including: at least one processor, at least one memory, and a transceiver;
  • the memory is used to store a computer program, and the computer program includes program instructions
  • the processor is configured to call the computer program and cooperate with the transceiver to implement the steps executed by the device 1 in the communication method shown in FIG. 5 or the steps executed by the device 3 in the communication method shown in FIG. 6.
  • FIG. 11 is a block diagram of a communication device provided in an embodiment of the present application.
  • the communication device may be an external node in a communication system, a master node in a communication domain in a communication system, or a slave node in a communication domain in a communication system.
  • the communication device 1100 includes: a processor 1101, a memory 1102, and a transceiver 1103.
  • the memory 1102 is used to store a computer program, and the computer program includes program instructions;
  • the processor 1101 is configured to call a computer program, and cooperate with the transceiver 1103 to implement relevant steps in the foregoing method embodiment. Among them, the transceiver is used to perform the transceiving step. The processor is used to perform other steps except the transceiving step.
  • the processor 1101 includes one or more processing cores, and the processor 1101 executes various functional applications and data processing by running a computer program.
  • the memory 1102 may store an operating system and at least one application program unit required by a function.
  • the operating system can be a real-time operating system (Real Time eXecutive, RTX), LINUX, UNIX, WINDOWS, or OS X.
  • the embodiment of the present application also provides another communication device, which includes at least one processor and a communication interface.
  • the communication interface is used to provide input/output for at least one processor.
  • the processor is used to execute a program or code to implement the steps executed by the device 1 in the communication method shown in FIG. 5 or the steps executed by the device 3 in the communication method shown in FIG. 6.
  • the processor is used to execute a program or code to implement the steps performed by the device 2 in the communication method shown in FIG. 5 or the steps performed by the device 4 in the communication method shown in FIG. 6 step.
  • the communication device may be a chip or an integrated circuit.
  • the at least one processor may include a central processing unit (CPU), a network processor (NP), a digital signal processor (digital signal processor, DSP), or any combination thereof.
  • the processor may also include a hardware chip.
  • the hardware chip may be an application specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL), or any combination thereof.
  • the embodiment of the present application also provides a computer storage medium, the computer storage medium stores instructions, and when the instructions are executed by a processor of a computer device, the communication method as described in the foregoing method embodiment is implemented.
  • An embodiment of the present application also provides a chip that includes a programmable logic circuit and/or program instructions, and when the chip is running, the communication method as described in the above method embodiment is implemented.
  • the embodiment of the present application also provides a terminal, and the terminal may be a transportation tool or a smart device.
  • the transportation means may be an unmanned transportation vehicle, a vehicle or a drone, and the smart device may be a robot or the like.
  • the terminal includes at least one communication domain (also referred to as a cockpit domain).
  • the communication domain includes the master communication node. Further, the communication domain may also include at least one slave communication node.
  • the master communication node includes the communication device as shown in FIG. 9 or FIG. 10; the slave communication node includes the communication device as shown in FIG. 7 or FIG.
  • the master communication node in the vehicle is a CDC
  • the slave communication node includes one or more of a microphone, a speaker, and a mobile phone.
  • the master communication node in the vehicle is PEPS
  • the slave communication node includes a mobile phone key and/or a car key.
  • the program can be stored in a computer-readable storage medium.
  • the storage medium mentioned can be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法、装置及系统、计算机存储介质,尤其适用于短距离通信领域,例如座舱域通信。目标设备确定第一时频子资源,该第一时频子资源属于第一时频资源。然后目标设备在第一时频子资源上发送第一请求,该第一请求用于请求接入或者请求调度。其中,第一时频资源是预先定义或者预先配置的、用于承载该目标设备的请求的资源。由于目标设备发送接入请求和/或调度请求时复用第一时频资源中的时频子资源,与目标设备分别使用不同时频资源发送接入请求和调度请求相比,提高了时频资源的利用率。

Description

通信方法、装置及系统、计算机存储介质 技术领域
本申请涉及无线通信技术领域,特别涉及一种通信方法、装置及系统、计算机存储介质,尤其适用于短距离无线通信,例如座舱域通信。
背景技术
全球通信技术的发展日新月异,其中无线通信技术的发展速度与应用领域已经超过了有线通信技术,呈现出如火如荼的发展态势。例如,车载通信技术的发展与应用越来越受到人们的关注。由于相比现有的有线通信,车载无线可以进一步降低车内线束数量、长度和重量,以及与之对应的安装、维护和保养成本,车载通信技术有逐步无线化的趋势。车载应用的多样化,使得车内通信节点数量和类型都越来越多,对于车载通信的能力提出了更高的要求。
不少无线通信场景中,多个通信节点之间以通信域的方式实现通信。在一定通信区域或范围内可能存在一个或多个通信域。该通信域是指一组具有通信关系的通信节点,以及通信节点之间的通信连接关系(即通信链路)组成的系统。一个通信域包括一个主通信节点(可以简称为主节点)和至少一个从通信节点(可以简称为从节点),主节点管理通信域的时频资源,并具有为主从节点间的通信链路调度资源的功能。主节点管理的时频资源包括接入请求资源、调度请求资源、和用于其它控制信令和/或业务数据传输的资源。接入请求资源用于不属于通信域的节点(可以简称为外部节点)向通信域的主节点发送接入请求,接入请求用于请求发起该外部节点加入该通信域的过程;调度请求资源用于从节点向主节点发送调度请求(scheduling request,SR),该调度请求用于向主节点请求分配资源,该资源用于主节点和从节点之间的控制信令和/或业务数据的传输。通常主节点为从节点分配各自的调度请求资源。
但是,由于外部节点发送接入请求的频度以及从节点发送调度请求的频度通常均较低,因此目前接入请求资源和调度请求资源的利用率通常较低,导致时频资源的总体利用率较低。
发明内容
本申请提供了一种通信方法、装置及系统、计算机存储介质,可以解决相关技术中时频资源的总体利用率较低的问题。
第一方面,提供了一种通信方法。该方法包括:目标设备确定第一时频子资源,该第一时频子资源属于第一时频资源。目标设备在第一时频子资源上发送第一请求,该第一请求用于请求接入或者请求调度。其中,第一时频资源是预先定义或者预先配置的、用于承载该目标设备的请求的资源。目标设备的请求包含用于请求接入的请求和用于请求调度的请求。目标设备为外部节点或通信域中的从节点。本申请中,将用于请求接入的请求称为接入请求,用于请求调度的请求称为调度请求。其中,外部节点指当前不属于通信域的设备,包括未加入过通信域的设备以及加入过通信域后又退出通信域的设备。
可替代地,上述方法包括:目标设备确定第一时频子资源,该第一时频子资源属于第一 时频资源。目标设备在第一时频子资源上发送接入请求或调度请求。其中,第一时频资源是预先定义或者预先配置的、用于承载至少一个目标设备的接入请求和调度请求的资源。本申请中,接入请求用于外部节点请求加入主节点所在的通信域的过程(即用于请求接入)。调度请求用于从节点向主节点请求分配资源(即用于请求调度),该资源用于主节点和从节点之间的控制信令和/或业务数据的传输。目标设备发送接入请求和调度请求时与该通信域的关系不同。例如:目标设备发送接入请求时不属于该通信域,对于该通信域是外部节点;目标设备发送调度请求时是该通信域的从节点。
本申请中,由于目标设备发送接入请求和/或调度请求时,复用第一时频资源,与目标设备使用不同时频资源发送接入请求和调度请求相比,提高了时频资源的利用率,也无需分别对接入请求和调度请求的资源进行配置或者定义。
可选地,第一时频资源用于承载多个目标设备的请求。也即是,多个目标设备可以在第一时频资源上发送接入请求和/或调度请求。
本申请中,多个目标设备发送接入请求和/或调度请求时,复用第一时频资源,与目标设备使用不同时频资源发送接入请求和调度请求、不同目标设备使用不同时频资源发送调度请求相比,可以提高时频资源的利用率,也无需分别对接入请求和每个目标设备对应的调度请求的资源进行配置或者定义。
可选地,第一请求用于请求接入(即第一请求为接入请求),则第一请求包含第一标识。上述方法还包括:目标设备在第二时频子资源上发送第二请求,该第二请求用于请求调度(即第二请求为调度请求)。该第二时频子资源属于第一时频资源,该第二请求包含第二标识,该第二标识不同于第一标识。其中,第一标识用于指示发送第一请求的设备为通信系统中的外部节点,且该第一请求为接入请求,或者说,第一标识用于指示外部节点请求接入主节点或者接入主节点所在的通信域。第二标识用于指示发送第二请求的设备为通信域中的从节点,且该第二标识在该通信域中唯一标识发送该第二请求的设备。
本申请中,通信系统预留一个或多个保留标识,该保留标识不同于第二标识,但第一标识一定是一个保留标识,以保证第二标识和第一标识不同。根据请求中包含的标识是否为保留标识,可以区分请求的类型是否为接入请求。并且,若第一请求为调度请求,由于第二标识在通信域中唯一标识发送该调度请求的设备,通信域中的主节点根据调度请求中包含的第二标识,可以确定发送该调度请求的设备。可选地,该一个或者多个保留标识可以为预先定义的,例如标准或者协议定义,或者预先配置的,例如主节点预先配置的。
可选地,第一请求用于请求接入,第一请求包含第一标识。上述方法还包括:目标设备接收广播消息,该广播消息中包含一个或多个保留标识的信息,该第一标识属于一个或多个保留标识。
其中,第一时频资源可以是预先定义或预先配置的。第一时频资源是预先定义的,包括:第一时频资源由标准或者协议定义。第一时频资源是预先配置的,包括:第一时频资源由通信域中的主节点预先通过广播消息配置。可选地,第一时频资源是预先配置的。上述方法还包括:目标设备接收广播消息,该广播消息中包括第一时频资源的配置信息。
本申请中,通过在标准或者协议中预先定义第一时频资源,实现机制简单。或者,通过主节点预先配置第一时频资源,灵活性高且应用场景较丰富。
可选地,上述广播消息为系统消息。
本申请中,当保留标识和第一时频资源均由主节点配置时,主节点可以将一个或多个保留标识的信息与第一时频资源的配置信息承载于一个广播消息中发送;或者,主节点可以将一个或多个保留标识的信息承载于一个广播消息中发送,将第一时频资源的配置信息承载于另一个广播消息中发送,也即是主节点采用两个广播消息分别承载保留标识的信息和第一时频资源的配置信息。本申请对此不做限定。
可选地,第一请求用于请求接入。上述方法还包括:目标设备接收目标消息,该目标消息中包含第二标识的信息,该第二标识承载于第二请求中,该第二请求用于请求调度。该第二标识用于在通信域中唯一标识目标设备。
可选地,目标消息为接入响应(即对接入请求的响应),该接入响应是通过第二时频资源接收的,第二时频资源基于第一时频子资源确定。
本申请中,目标设备在第一时频子资源上发送接入请求,可以根据第一时频子资源确定用于接收接入响应的第二时频资源。可选地,标准或协议中预先定义、或者主节点预先配置第一时频资源中的每个时频子资源对应的应答资源。目标设备可以根据标准或协议中的定义,或者主节点的配置,确定与第一时频子资源对应的应答资源为第二时频资源。
可选地,第一请求用于请求调度(即第一请求为调度请求)。上述方法还包括:目标设备通过第三时频资源接收调度响应,该调度响应中包括第四时频资源的配置信息,该第四时频资源用于传输业务数据和/或控制信息。调度响应中可以包括第二标识。该第二标识用于指示该调度响应为针对目标设备发送的调度请求的响应。
可选地,第三时频资源基于第一时频子资源确定,或者,第三时频资源基于第一时频子资源以及第一请求的调度类型确定。由于不同调度类型的调度响应所需要的处理时间和传输该调度响应需要的资源量可能不同,因此需要传输不同调度类型的调度响应的应答资源也不同,从而本申请中第三时频资源可以基于第一时频子资源以及第一请求的调度类型确定。
本申请中,目标设备在第一时频子资源上发送调度请求,可以根据第一时频子资源确定用于接收调度响应的第三时频资源。可选地,标准或协议中预先定义、或者主节点预先配置第一时频资源中的每个时频子资源对应的应答资源。目标设备可以根据标准或协议中的定义,或者主节点的配置,确定与第一时频子资源对应的应答资源为第三时频资源。
第二方面,提供了一种通信方法。该方法包括:第一设备在第一时频子资源上接收第一请求,该第一请求用于请求接入或者请求调度,第一时频子资源属于第一时频资源。其中,第一时频资源是预先定义或者预先配置的、用于承载目标设备的请求的资源,目标设备的请求包含用于请求接入的请求和用于请求调度的请求。第一设备为通信域中的主节点,目标设备为外部节点或该通信域中的从节点。
可选地,第一设备在第二时频子资源上接收第二请求,该第二请求用于请求接入或者请求调度,第二时频子资源属于第一时频资源。第一请求和第二请求可以来自不同的设备。也即是,第一时频资源可以用于承载多个目标设备的请求。
可选地,第一请求用于请求接入,第一请求包含第一标识。上述方法还包括:第一设备在第二时频子资源上接收第二请求,该第二请求用于请求调度,第二时频子资源属于第一时频资源,第二请求包含第二标识,第二标识不同于第一标识。第一设备根据第二请求中的第二标识,确定发送该第二请求的设备为通信域中的从节点。
可选地,第一请求用于请求接入,第一请求包含第一标识。上述方法还包括:第一设备 发送广播消息,该广播消息中包含一个或多个保留标识的信息,第一标识属于一个或多个保留标识。
可选地,上述方法还包括:第一设备发送广播消息,该广播消息中包括第一时频资源的配置信息。
可选地,上述广播消息为系统消息。
可选地,第一请求用于请求接入。上述方法还包括:第一设备发送目标消息,该目标消息中包含第二标识的信息,该第二标识承载于第二请求中,第二请求用于请求调度。
可选地,目标消息为接入响应,接入响应是通过第二时频资源发送的,第二时频资源基于第一时频子资源确定。
可选地,第一请求用于请求调度。上述方法还包括:第一设备根据第一请求生成调度响应;第一设备通过第三时频资源发送调度响应。其中,调度响应中包括第四时频资源的配置信息,第四时频资源用于传输业务数据和/或控制信息。
可选地,第三时频资源基于第一时频子资源确定,或者,第三时频资源基于第一时频子资源以及第一请求的调度类型确定。
第三方面,提供了一种通信装置。该装置包括多个功能模块,该多个功能模块相互作用,实现上述第一方面及其各实施方式中的方法。多个功能模块可以基于软件、硬件或软件和硬件的结合实现,且多个功能模块可以基于具体实现进行任意组合或分割。
第四方面,提供了一种通信装置。该装置包括多个功能模块,该多个功能模块相互作用,实现上述第二方面及其各实施方式中的方法。多个功能模块可以基于软件、硬件或软件和硬件的结合实现,且多个功能模块可以基于具体实现进行任意组合或分割。
第五方面,提供了一种通信装置,包括:处理器、存储器和收发器;
所述存储器,用于存储计算机程序,所述计算机程序包括程序指令;
所述处理器,用于调用所述计算机程序,协同所述收发器实现如第一方面任一所述的通信方法。
第六方面,提供了一种通信装置,包括:处理器、存储器和收发器;
所述存储器,用于存储计算机程序,所述计算机程序包括程序指令;
所述处理器,用于调用所述计算机程序,协同所述收发器实现如第二方面任一所述的通信方法。
第七方面,提供了一种通信系统,包括:第一设备和第二设备,所述第一设备为主通信节点,所述第二设备为从通信节点或外部节点;
所述第一设备包括如第四方面或第六方面所述的通信装置;
所述第二设备包括如第三方面或第五方面所述的通信装置。
第八方面,提供了一种计算机存储介质,所述计算机存储介质上存储有指令,当所述指令被计算机设备的处理器执行时,实现如第一方面或第二方面任一所述的通信方法。
第九方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,实现如第一方面或第二方面任一所述的通信方法。
本申请提供的技术方案至少包括以下有益效果:
本申请中,采用同一时频资源承载一个或多个设备的接入请求和调度请求。由于设备发送接入请求和/或调度请求时复用同一时频资源,与设备分别使用不同时频资源发送接入请求 和调度请求相比,提高了时频资源的利用率。多个设备复用同一时频资源发送调度请求,与不同设备分别使用不同时频资源发送调度请求相比,提高了时频资源的利用率。另外,多个设备竞争性地使用同一时频资源,无需为接入请求和每个设备对应的调度请求分别设计不同的时频资源,简化了通信机制。
附图说明
图1是本申请实施例提供的一种通信系统的结构示意图;
图2是本申请实施例提供的另一种通信系统的结构示意图;
图3是本申请实施例提供的一种通信方法的流程示意图;
图4是本申请实施例提供的第一时频资源的示意图;
图5是本申请实施例提供的另一种通信方法的流程示意图;
图6是本申请实施例提供的又一种通信方法的流程示意图;
图7是本申请实施例提供的一种通信装置的结构示意图;
图8是本申请实施例提供的另一种通信装置的结构示意图;
图9是本申请实施例提供的又一种通信装置的结构示意图;
图10是本申请实施例提供的再一种通信装置的结构示意图;
图11是本申请实施例提供了一种通信装置的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例提供了一种通信系统,该通信系统包括一个或多个通信域。每个通信域中包括一个主通信节点(简称:主节点)以及一个或多个从通信节点(简称:从节点)。通信域中的每个从节点分别与主节点建立通信链路。其中,一个通信域中的从节点可作为另一个通信域中的主节点。可选地,通信系统中还包括外部节点。外部节点指未加入通信系统中的任一通信域的节点,也即是,外部节点未与通信系统中的任一通信域中的主节点建立通信链路,即外部节点当前不属于通信域。主节点管理通信域的时频资源,并具有为主从节点间的通信链路调度资源的功能。主节点管理的时频资源包括接入请求资源、调度请求资源、和用于其它控制信令和/或业务数据传输的资源。接入请求资源用于外部节点向通信域的主节点发送接入请求,接入请求用于请求发起该外部节点加入该通信域的过程。调度请求资源用于从节点向主节点发送调度请求,该调度请求用于向主节点请求分配资源,该资源用于主节点和从节点之间的控制信令和/或业务数据的传输。
可选地,图1是本申请实施例提供的一种通信系统的结构示意图。如图1所示,该通信系统包括第一设备110、第二设备120A-120B(统称为第二设备120)以及第三设备130A-130B(统称为第三设备130)。第一设备110为通信域中的主节点,第二设备120为该通信域中的从节点,第三设备130为外部节点。图1中第二设备和第三设备的数量仅用作示例,不作为对本申请实施例提供的通信系统的限制。例如,第三设备的数量也可以为0,即通信系统中不包括第三设备。
可选地,本申请实施例提供的通信系统可以应用于车载网络、无线局域网(wireless local  area network,WLAN)或蜂窝网络等无线网络。当该通信系统应用于车载网络时,第一设备110可以是座舱域控制器(cockpit domain controller,CDC),第二设备120和第三设备130可以是麦克风、音箱或手机等终端;或者,第一设备110可以是无钥匙进入及启动系统(passive entry passive start,PEPS),第二设备120和第三设备130可以是手机钥匙或车钥匙等;又或者,第一设备110可以是手机,第二设备120和第三设备130可以是耳机或可穿戴设备等。当该通信系统应用于WLAN时,第一设备110可以是接入点(access point,AP),第二设备120和第三设备130可以是站点(station,STA)。当该通信系统应用于蜂窝网络时,第一设备110可以是基站,第二设备和第三设备可以是用户设备(user equipment,UE)。
本申请实施例以该通信系统应用于车载网络为例进行说明。示例地,图2是本申请实施例提供的另一种通信系统的结构示意图。如图2所示,该通信系统中包括三个通信域C1-C3。
通信域C1中包括CDC 101、麦克风102、音箱103和手机104。其中,CDC 101为主节点,麦克风102、音箱103和手机104均为从节点。麦克风102、音箱103和手机104分别与CDC 101无线连接。CDC 101还可以与车载系统的显示屏有线连接。
通信域C2中包括PEPS 105、手机钥匙106和车钥匙107。其中,PEPS 105为主节点,手机钥匙106和车钥匙107均为从节点。手机钥匙106和车钥匙107分别与PEPS 105无线连接。PEPS 105还可以与车身控制器(body control module,BCM)有线连接。
通信域C3中包括手机104、耳机108和可穿戴设备109。其中,手机104为主节点,耳机108和可穿戴设备109均为从节点。耳机108和可穿戴设备109分别与手机104无线连接。
在如图2所示的通信系统中,手机104既是通信域C1中的从节点,又是通信域C3中的主节点。
对于车载网络而言,外部节点向主节点发送接入请求的频度较低,从节点向主节点发送调度请求的频度也较低。外部节点向主节点发送接入请求的场景包括:当手机钥匙或车钥匙靠近或进入车辆时,会向PEPS发送接入请求;当车辆内的音箱或麦克风等设备被人为打开或手机欲接入CDC时,会向CDC发送接入请求。由于这些事件的发生频度均较低,因此车载网络中外部节点向主节点发送接入请求的频度较低。从节点向主节点发送调度请求的场景包括:当从节点需发起新业务或发起半静态调度(semi-persistent scheduling,SPS)业务变更时,会向主节点发送调度请求。车载网络中的业务包括主要业务和少量突发业务。主要业务的业务量比较稳定,一般使用SPS方式调度,无需频繁发起新业务。突发业务发生时间随机,一般使用动态调度,由于突发业务的业务量很少,也不会导致频繁发起新业务。因此从节点因需发起新业务而触发发送调度请求的频度较低。SPS业务变更一般由业务量变更或由于信道条件变化导致的调制编码策略(modulation and coding scheme,MCS)变更引起。由于车内节点之间距离较短且相对运动较慢,因此车载网络中的无线信道具有频域平坦和时域变换慢的特征,即信道条件相对稳定。因此从节点因需发起SPS业务变更而触发发送调度请求的频度较低。
目前,分配有一组时频资源供外部节点发送接入请求,且每个从节点分别分配有一组时频资源供对应的从节点发送调度请求,即用于承载接入请求和调度请求的时频资源不同,且用于承载不同从节点发送的调度请求的时频资源也不同。由于外部节点发送接入请求的频度以及从节点发送调度请求的频度均较低,因此目前时频资源的总体利用率较低。而在本申请实施例提供的通信方法中,采用同一组时频资源承载用于请求接入的请求(即接入请求)和 用于请求调度的请求(即调度请求),由于接入请求和调度请求承载于同一组时频资源,因此提高了时频资源的利用率。另外本申请实施例中,多个设备可以共用同一组时频资源发送调度请求,进一步提高了时频资源的利用率。
图3是本申请实施例提供的一种通信方法的流程示意图。该方法可以应用于如图1或图2所示的通信系统。如图3所示,该方法包括:
步骤301、目标设备确定第一时频子资源。
该第一时频子资源属于第一时频资源。其中,第一时频资源是预先定义或者预先配置的、用于承载目标设备的请求的资源。目标设备的请求包含用于请求接入的请求和用于请求调度的请求。需要说明的是,本申请实施例所提到的第一时频资源不用于传输业务数据,并非目标设备可用的全部资源。本申请实施例中,将用于请求接入的请求称为接入请求,将用于请求调度的请求称为调度请求。可选地,目标设备为通信系统中的从节点或外部节点。例如,目标设备可以为如图1所示的通信系统中的第二设备120或第三设备130。
第一时频资源是预先定义的,包括:第一时频资源由标准或者协议定义。第一时频资源是预先配置的,包括:第一时频资源由第一设备预先通过广播消息配置。第一设备为通信系统中的主节点。例如,第一设备可以为如图1所示的通信系统中的第一设备110。第一时频资源是用于承载目标设备的请求的资源,也即是,第一时频资源用于承载目标设备的接入请求和调度请求。该接入请求用于请求接入第一设备,该调度请求用于向第一设备请求调度请求资源,该调度请求资源用于目标设备传输业务数据和/或控制信息。
可选地,第一时频资源由第一设备预先配置。第一设备在通信系统中发送广播消息,例如第一设备可以在通信系统中周期性地发送广播消息,该广播消息中包括第一时频资源的配置信息。目标设备在接收到广播消息之后,在第一时频资源中确定第一时频子资源。第一时频资源包括一个或多个时频子资源。可选地,当第一时频资源包括多个时频子资源时,目标设备可以将第一时频资源中的任一时频子资源确定为第一时频子资源,也即是,第一时频子资源可以是第一时频资源中的任一时频资源。或者,目标设备可以将第一时频资源中的第一个时频子资源确定为第一时频子资源,也即是,第一时频子资源可以是第一时频资源中的第一个时频子资源,本申请实施例对在第一时频资源中确定第一时频子资源的方式不做限定。可选地,该广播消息为系统消息。
第一时频资源的配置信息包括该第一时频资源中各个时频子资源的时域信息和频域信息。本申请实施例中,一个时频子资源对应在时域上可以是一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,对应在频域上可以是一个子载波,也即是,一个时频子资源可以由一个OFDM符号和一个子载波组成。时频资源通常为周期性资源,第一时频资源中的时频子资源可以由一个周期内的第i个OFDM符号和第j个子载波组成,i和j均为正整数,i小于或等于一个周期内OFDM符号的总数,j小于或等于一个周期内子载波的总数。可选地,第一时频资源的配置信息为{(i 1,j 1);(i 2,j 2);…;(i n,j n)},表示第一时频资源中包括n个时频子资源,i n表示第n个时频子资源对应在时域上为第i n个OFDM符号,j n表示第n个时频子资源对应在频域上为第j n个子载波,n为正整数,且n小于或等于一个周期内OFDM符号的总数与一个周期内子载波的总数的乘积。示例地,图4是本申请实施例提供的第一时频资源的示意图。其中横坐标表示时域,纵坐标表示频域,每个时频子资源对应一 个小方块。如图4所示,总时频资源包括矩阵状排布的多个时频子资源,第一时频资源包括其中的多个时频子资源。
本申请实施例中,通过在标准或者协议中预先定义第一时频资源,实现机制简单。或者,通过主节点预先配置第一时频资源,灵活性高且应用场景较丰富。
可选地,第一时频资源用于承载多个目标设备的请求。该多个目标设备可以位于通信系统的同一通信域中,也可以位于通信系统的不同通信域中。本申请实施例中,多个目标设备发送接入请求和/或调度请求时复用第一时频资源,与目标设备分别使用不同时频资源发送接入请求和调度请求、不同目标设备使用不同时频资源发送调度请求相比,可以提高时频资源的利用率,也无需分别对接入请求和每个目标设备对应的调度请求的资源进行配置或者定义。
可选地,第一时频资源还可以用于承载除接入请求和调度请求以外的其它请求,例如用于请求获取系统信息的请求或用于请求获取信道信息的请求等,本申请实施例对此不做限定。
步骤302、目标设备在第一时频子资源上发送第一请求。
相应地,第一设备在第一时频子资源上接收第一请求。第一设备在接收到第一请求后,可以确定该第一请求的请求类型、发送该第一请求的节点或节点类型等信息中的至少一种。该第一请求用于请求接入或者请求调度。也即是,该第一请求为接入请求或者调度请求。当目标设备为通信系统中的外部节点时,第一请求为接入请求,用于请求接入第一设备,也即是,该第一请求用于请求与第一设备建立通信链路。当目标设备为第一设备所在通信域中的从节点时,第一请求为调度请求,用于向第一设备请求调度请求资源。该调度请求资源为用于传输业务数据和/或控制信息的时频资源。其中,控制信息包括但不限于业务变更指令、MCS变更指令、调度信令和信道质量指示信息。
本申请实施例中,由于目标设备发送接入请求和/或调度请求时复用第一时频资源,与目标设备使用不同时频资源发送接入请求和调度请求相比,提高了时频资源的利用率,也无需分别对接入请求和调度请求的资源进行配置或者定义。
可选地,接入请求包含第一标识(identity,ID)。调度请求包含第二标识。第二标识不同于第一标识。第一标识用于指示发送请求的设备为通信系统中的外部节点,且该请求为接入请求,或者说,第一标识用于指示外部节点请求接入主节点或者接入主节点所在的通信域。第二标识用于指示发送请求的设备为通信域中的从节点,且第二标识在该通信域中唯一标识发送该请求的设备。
在本申请实施例中,通信系统预留一个或多个保留标识,该保留标识不同于第二标识,但第一标识一定是一个保留标识,以保证第二标识和第一标识不同。根据请求中包含的标识是否为保留标识,可以区分请求的类型是否为接入请求。并且,若第一请求为调度请求,由于第二标识在通信域中唯一标识发送该调度请求的设备,第一设备(即通信域中的主节点)根据调度请求中包含的第二标识,可以确定发送该调度请求的设备。
保留标识和第二标识可以均由第一设备分配,例如第一设备预先配置一个或多个保留标识。或者,保留标识可以由标准或者协议定义,第二标识由第一设备分配。当保留标识由标准或者协议定义时,外部节点获取标准或者协议定义的一个或多个保留标识中的一个保留标识,并将该保留标识作为第一标识承载于接入请求中。
示例地,本申请实施例提供的保留标识和第二标识可以如表1所示,其中,n为正整数,m为大于n的整数。
表1
Figure PCTCN2020080820-appb-000001
参见表1,第一设备或协议预留有n个保留标识,分别为ID1至IDn。第一设备为(m-n)个接入第一设备的从节点分别分配一个第二标识,分别为IDn+1至IDm。第二标识可以是从节点的MAC地址,或者,第二标识可以由第一设备确定,例如可以是字母、数字、字符及其组合等,用于在第一设备所在的通信域中唯一标识一个设备。
可选地,保留标识由第一设备分配。第一设备在通信系统中发送广播消息,例如第一设备可以在通信系统中周期性地发送广播消息,该广播消息中包括一个或多个保留标识的信息。其中,保留标识的信息可以是保留标识,也可以是保留标识的指示信息,通过该指示信息能够获取保留标识。目标设备在接收到广播消息之后,从该一个或多个保留标识中获取一个保留标识作为第一标识,也即是,第一标识属于该一个或多个保留标识。
可选地,该广播消息为系统消息。本申请实施例中,广播消息指采用广播方式发送的消息。系统消息是一种采用广播方式发送且包含系统配置的消息,也即是,系统消息是一种广播消息。该广播消息还可以是除系统消息外其它采用广播方式发送的消息,本申请实施例对此不做限定。
本申请实施例中,当保留标识和第一时频资源的配置信息均由第一设备分配时,第一设备可以将一个或多个保留标识的信息与第一时频资源的配置信息承载于一个广播消息中发送;或者,第一设备可以将一个或多个保留标识的信息承载于一个广播消息中发送,将第一时频资源的配置信息承载于另一个广播消息中发送,也即是第一设备采用两个广播消息分别承载保留标识的信息和第一时频资源的配置信息。本申请实施例对此不做限定。
第一设备为每一个接入该第一设备的目标设备分别分配一个第二标识。可选地,第一设备在接收到目标设备发送的接入请求后,可以向目标设备发送目标消息,该目标消息中包括第二标识的信息。可选地,第一设备可以在目标设备接入该第一设备(即目标设备加入第一设备为主节点的通信域)的过程中为目标设备分配第二标识。该目标消息可以为对接入请求的响应(即接入响应)。或者,该目标消息也可以不为接入响应。第一设备在接收到目标设备发送的接入请求后,可以回复一个仅用于承载第二标识的信息的目标消息,例如,第一设备在确定目标设备成功接入第一设备之后,向该目标设备发送承载第二标识的目标消息。
本申请实施例中,各种类型的信息均承载于消息中传输。例如,第一时频资源的配置信息承载于广播消息中传输,保留标识的信息承载于广播消息中传输,第一设备为从节点分配的第二标识的信息承载于目标消息中传输。本申请实施例涉及的上述消息可以包括协议数据单元(protocol data unit,PDU)的包头和/或数据字段,也即是,该消息可以是仅包括数据字 段的数据包,该消息也可以是PDU包头,还可以包括PDU包头和数据字段。上述消息也可以是承载了信息的信号,例如该消息可以是时域的序列构成的信号,通过序列的循环移位指示信号所承载的信息。本申请实施例对消息的类型不做限定。
可选地,本申请提供了以下两个可选实施例,分别以上述目标设备为通信系统中的外部节点和从节点为例,对上述通信方法的实现过程进行说明。
在本申请的第一个可选实施例中,目标设备为通信系统中的外部节点,第一请求为接入请求。图5是本申请实施例提供的另一种通信方法的流程示意图。应用该方法的通信系统至少包括设备1和设备2,其中,设备1为主节点,设备2为外部节点。举例来说,设备1可以是如图1所示的通信系统中的第一设备110,设备2可以是如图1所示的通信系统中的第三设备130。该方法具体可以用于实现如图3对应实施例所示的方法,例如设备1可以是第一设备,设备2可以是目标设备。如图5所示,该方法包括:
步骤501、设备2确定第一时频子资源。
第一时频子资源属于第一时频资源。设备2确定第一时频子资源的过程可参考上述步骤301中目标设备确定第一时频子资源的过程,本申请实施例在此不再赘述。
步骤502、设备2在第一时频子资源上发送接入请求。
可选地,接入请求包含第一标识。该第一标识用于指示设备2为外部节点并指示发送的请求的请求类型为接入请求。
本申请实施例中,设备1在第一时频资源的各个时频子资源上尝试接收请求。设备2在第一时频子资源上发送接入请求,则设备1可以在第一时频子资源上接收到该接入请求。可选地,第一时频子资源为第一时频资源中的任一时频子资源。设备2采用竞争的方式在第一时频子资源上发送接入请求,即设备2首先尝试在第一时频子资源上发送接入请求,若设备2在第一时频子资源上没有成功发送接入请求,例如设备2确定第一时频子资源繁忙或者设备2接入设备1失败,则设备2在第一时频资源中确定新的时频子资源重新尝试发送接入请求。可选地,确定新的时频子资源的方式为随机选择退避时长,并选择退避时长之后的一个时频子资源(例如第一个时频子资源)。由于目前通信系统中的设备发起接入请求和调度请求的频度均较低,因此设备2在第一时频子资源上发送接入请求时与其它设备发送的接入请求或调度请求冲突的概率较低,进而设备在第一时频资源中的时频子资源上成功发送请求的可能性较高,即使在冲突的情况下,设备2仍可以通过一次或多次的确定新的发送接入请求的时频子资源,完成接入请求的发送。
步骤503、设备1在第二时频资源上发送接入响应。
可选地,第二时频资源基于第一时频子资源确定。设备1在第一时频子资源上接收到设备2发送的接入请求后,可以根据第一时频子资源确定用于发送接入响应的第二时频资源。本申请实施例中,可以在标准或协议中预先定义、或者由主节点预先配置第一时频资源中的每个时频子资源对应的应答资源,设备1在第一时频子资源上接收到接入请求后,可以根据标准或协议中的定义,或者主节点的配置,确定与第一时频子资源对应的应答资源为第二时频资源。另外,设备2在第一时频子资源上发送接入请求,也可以根据相同的规则(设备1采用的规则)确定与第一时频子资源对应的第二时频资源,并在第二时频资源上尝试接收接入响应。在标准或协议中预先定义、或者由主节点预先配置第一时频资源中的每个时频子资源对应的应答资源的方式可对应参考上述在标准或协议中预先定义、或者由主节点预先配置 第一时频资源的方式,本申请实施例在此不再赘述。
可选地,接入响应中包含第二标识。
步骤504、设备2确定第二时频子资源。
第二时频子资源属于第一时频资源。第二时频子资源与第一时频子资源可以相同,也可以不同。设备2确定第二时频子资源的过程可参考上述步骤301中目标设备确定第一时频子资源的过程,本申请实施例在此不再赘述。
步骤505、设备2在第二时频子资源上发送调度请求。
该调度请求用于向设备1请求用于传输业务数据和/或控制信息的时频资源。可选地,调度请求包含第二标识。该第二标识用于指示设备2为设备1的从节点,且该第二标识用于在设备1和设备2所在的通信域中唯一标识设备2。
本申请实施例中,设备1在第一时频资源的各个时频子资源上尝试接收请求。设备2在第二时频子资源上发送调度请求,则设备1可以在第二时频子资源上接收到该接入请求。可选地,第二时频子资源为第一时频资源中的任一时频子资源。设备2采用竞争的方式在第二时频子资源上发送调度请求。设备2采用竞争的方式在第二时频子资源上发送调度请求的过程可参考步骤502中设备2采用竞争的方式在第一时频子资源上发送接入请求的过程,本申请实施例在此不再赘述。
步骤506、设备1在第三时频资源上发送调度响应。
调度响应中包括第四时频资源的配置信息,该第四时频资源用于传输业务数据和/或控制信息。对第四时频资源的配置信息的解释可参考步骤301中对第一时频资源的配置信息的解释,本申请实施例在此不再赘述。可选地,调度响应中还包括第二标识。由于设备1可能会接收到多个设备发送的接入请求和/或调度请求,通过在调度响应中携带第二标识,可以指示该响应是对调度请求的响应以及具体是对哪个设备发送的调度请求的响应。例如,该调度响应中携带设备2对应的第二标识,则可以指示该调度响应为对设备2发送的调度请求的响应。
可选地,第三时频资源基于第二时频子资源确定,或者,第三时频资源基于第二时频子资源以及调度请求的类型确定。调度请求的类型用于指示该调度请求所请求的调度请求资源需要传输的具体内容。例如,调度请求的类型用于指示传输业务数据或控制信息;或者,调度请求的类型用于指示传输的控制信息的具体类型,包括但不限于业务变更指令、MCS变更指令、调度信令或信道质量指示信息。
在一种实现方式中,第三时频资源基于第二时频子资源确定。设备1在第二时频子资源上接收到设备2发送的调度请求后,根据第二时频子资源确定用于发送调度响应的第三时频资源。本申请实施例中,可以在标准或协议中预先定义、或者由主节点预先配置第一时频资源中的每个时频子资源对应的应答资源,设备1在第二时频子资源上接收到调度请求后,可以根据标准或协议中的定义,或者主节点的配置,确定与第二时频子资源对应的应答资源为第三时频资源。另外,设备2在第二时频子资源上发送调度请求,也可以根据相同的规则(设备1采用的规则)确定与第二时频子资源对应的第三时频资源,并在第三时频资源上尝试接收调度响应。在标准或协议中预先定义、或者由主节点预先配置第一时频资源中的每个时频子资源对应的应答资源的方式可对应参考上述在标准或协议中预先定义、或者由主节点预先配置第一时频资源的方式,本申请实施例在此不再赘述。
在另一种实现方式中,第三时频资源基于第二时频子资源以及调度请求的调度类型确定。 由于不同调度类型的调度响应所需要的处理时间和传输该调度响应需要的资源量可能不同,因此需要传输不同调度类型的调度响应的应答资源也不同,从而本申请实施例中第三时频资源可以基于第二时频子资源以及调度请求的调度类型确定。设备1在第二时频子资源上接收到设备2发送的调度请求后,根据第二时频子资源以及调度请求的类型确定用于发送调度响应的第三时频资源。本申请实施例中,可以在标准或协议中预先定义、或者由主节点预先配置第一时频资源中的每个时频子资源对应的应答资源。其中,一个时频子资源对应一个或多个应答资源。当一个时频子资源对应多个应答资源时,还可以在标准或协议中预先定义、或者由主节点预先配置每个应答资源对应的请求类型,例如应答资源1对应接入请求,应答资源2对应调度请求1,应答资源3对应调度请求2,调度请求1和调度请求2的类型不同。设备1在第二时频子资源上接收到调度请求后,可以根据标准或协议中的定义,或者主节点的配置,确定与第二时频子资源以及该调度请求的类型对应的应答资源为第三时频资源。另外,设备2在第二时频子资源上发送调度请求,也可以根据相同的规则(设备1采用的规则)确定与第二时频子资源对应的第三时频资源,并在第三时频资源上尝试接收调度响应。
在本申请实施例中,多个设备向通信域中的主节点发送接入请求和/或调度请求时,竞争性地使用同一时频资源中的时频子资源,与分别使用不同时频资源发送接入请求和调度请求、不同设备分别使用不同时频资源发送调度请求相比,提高了时频资源的利用率。另外,无需为接入请求和调度请求分别设计不同的时频资源,简化了通信机制。
在本申请的第二个可选实施例中,目标设备为通信系统中的从节点,第一请求为调度请求。图6是本申请实施例提供的又一种通信方法的流程示意图。应用该方法的通信系统至少包括设备3和设备4,其中,设备3为主节点,设备4为从节点。举例来说,设备3可以是如图1所示的通信系统中的第一设备110,设备4可以是如图1所示的通信系统中的第二设备120。或者。设备3可以是如图2所示的通信系统中的CDC 101,设备4可以是如图2所示的通信系统中的麦克风102。该方法具体可以用于实现如图3对应实施例所示的方法,例如设备3可以是第一设备,设备4可以是目标设备。如图6所示,该方法包括:
步骤601、设备4确定第一时频子资源。
设备2确定第一时频子资源的过程可参考上述步骤301中目标设备确定第一时频子资源的过程,本申请实施例在此不再赘述。
步骤602、设备4在第一时频子资源上发送调度请求。
此步骤的解释可参考上述步骤505的解释,本申请实施例在此不再赘述。
步骤603、设备3在第三时频资源上发送调度响应。
此步骤的解释可参考上述步骤506的解释,本申请实施例在此不再赘述。
综上所述,本申请实施例提供的通信方法,采用同一时频资源承载一个或多个设备的接入请求和调度请求。由于设备发送接入请求和/或调度请求时复用同一时频资源,与设备使用不同时频资源发送接入请求和调度请求相比,提高了时频资源的利用率。多个设备复用同一时频资源发送调度请求,与不同设备分别使用不同时频资源发送调度请求相比,提高了时频资源的利用率。另外,多个设备竞争性地使用同一时频资源中的时频子资源,无需为接入请求和每个设备对应的调度请求分别设计不同的时频资源,简化了通信机制。
图7是本申请实施例提供的一种通信装置的结构示意图。该装置可以应用于如图1所示 的通信系统中的第二设备120或第三设备130,或者,该装置也可以是第二设备120或者第三设备130中的芯片或者集成电路。如图7所示,该装置70包括:
处理模块701,用于确定第一时频子资源,第一时频子资源属于第一时频资源。
发送模块702,用于在第一时频子资源上发送第一请求,第一请求用于请求接入或者请求调度。
其中,第一时频资源是预先定义或者预先配置的、用于承载目标设备的请求的资源,目标设备的请求包含用于请求接入的请求和用于请求调度的请求。
综上所述,在本申请实施例提供的通信装置中,由于目标设备发送接入请求和/或调度请求都使用通过处理模块确定的第一时频资源中的时频子资源,与目标设备分别使用不同时频资源中的时频子资源发送接入请求和调度请求相比,提高了时频资源的利用率。
可选地,第一时频资源用于承载多个目标设备的请求。
可选地,第一请求用于请求接入,第一请求包含第一标识;该发送模块702,还用于在第二时频子资源上发送第二请求,第二请求用于请求调度,第二时频子资源属于第一时频资源,第二请求包含第二标识,第二标识不同于第一标识。
可选地,如图8所示,装置70还包括接收模块703。
可选地,第一请求用于请求接入,第一请求包含第一标识;该接收模块703,用于接收广播消息,广播消息中包含一个或多个保留标识的信息,第一标识属于一个或多个保留标识。
可选地,接收模块703,用于接收广播消息,广播消息中包括第一时频资源的配置信息。
可选地,广播消息为系统消息。
可选地,第一请求用于请求接入;接收模块703,用于接收目标消息,目标消息中包含第二标识的信息,第二标识承载于第二请求中,第二请求用于请求调度。
可选地,目标消息为接入响应,接入响应是通过第二时频资源接收的,第二时频资源基于第一时频子资源确定。
可选地,第一请求用于请求调度;接收模块703,用于通过第三时频资源接收调度响应,调度响应中包括第四时频资源的配置信息,第四时频资源用于传输业务数据和/或控制信息。
可选地,第三时频资源基于第一时频子资源确定,或者,第三时频资源基于第一时频子资源以及第一请求的调度类型确定。
可选地,如图7或图8所示的通信装置可以用于如图5所示的通信方法中的设备2或如图6所示的通信方法中的设备4,各个模块执行的具体操作可参考相关步骤,此处未尽之细节可参考图5或图6所示的通信方法中的详细描述。具体参考步骤501至步骤502以及步骤504至步骤505的相关描述;或者,参考步骤601至步骤602中的相关描述。
综上所述,在本申请实施例提供的通信装置中,由于目标设备发送接入请求和/或调度请求时复用通过处理模块确定的第一时频资源,与目标设备分别使用不同时频资源发送接入请求和调度请求相比,提高了时频资源的利用率。另外,多个目标设备发送接入请求和/或调度请求时复用第一时频资源,与目标设备分别使用不同时频资源发送接入请求和调度请求、不同目标设备使用不同时频资源发送调度请求相比,可以提高时频资源的利用率。
图9是本申请实施例提供的又一种通信装置的结构示意图。该装置可以应用于如图1所示的通信系统中的第一设备110,或者,该装置也可以是第一设备110中的芯片或者集成电 路。如图9所示,该装置90包括:
接收模块901,用于在第一时频子资源上接收第一请求,第一请求用于请求接入或者请求调度,第一时频子资源属于第一时频资源。
其中,第一时频资源是预先定义或者预先配置的、用于承载目标设备的请求的资源,目标设备的请求包含用于请求接入的请求和用于请求调度的请求。
综上所述,在本申请实施例提供的通信装置中,由于目标设备发送接入请求和/或调度请求都使用第一时频资源中的时频子资源,与目标设备分别使用不同时频资源中的时频子资源发送接入请求和调度请求相比,提高了时频资源的利用率。
可选地,第一时频资源用于承载多个目标设备的请求。
可选地,第一请求用于请求接入,第一请求包含第一标识;该接收模块901,还用于在第二时频子资源上接收第二请求,第二请求用于请求调度,第二时频子资源属于第一时频资源,第二请求包含第二标识,第二标识不同于第一标识。
可选地,如图10所示,装置90还包括发送模块902和处理模块903。
可选地,第一请求用于请求接入,第一请求包含第一标识;该发送模块902,用于发送广播消息,广播消息中包含一个或多个保留标识的信息,第一标识属于一个或多个保留标识。
可选地,发送模块902,用于发送广播消息,广播消息中包括第一时频资源的配置信息。
可选地,广播消息为系统消息。
可选地,第一请求用于请求接入;该发送模块902,用于发送目标消息,目标消息中包含第二标识的信息,第二标识承载于第二请求中,第二请求用于请求调度。
可选地,目标消息为接入响应,接入响应是通过第二时频资源发送的,第二时频资源基于第一时频子资源确定。
可选地,第一请求用于请求调度;处理模块903,用于根据第一请求生成调度响应;发送模块902,用于通过第三时频资源发送调度响应;其中,调度响应中包括第四时频资源的配置信息,第四时频资源用于传输业务数据和/或控制信息。
可选地,第三时频资源基于第一时频子资源确定,或者,第三时频资源基于第一时频子资源以及第一请求的调度类型确定。
可选地,如图9或图10所示的通信装置可以用于如图5所示的通信方法中的设备1或如图6所示的通信方法中的设备3,各个模块执行的具体操作可参考相关步骤,此处未尽之细节可参考图5或图6所示的通信方法中的详细描述。具体参考步骤503和步骤506的相关描述;或者,参考步骤603中的相关描述。
综上所述,在本申请实施例提供的通信装置中,由于目标设备发送接入请求和/或调度请求时复用第一时频资源中的时频子资源,与目标设备分别使用不同时频资源发送接入请求和调度请求相比,提高了时频资源的利用率。另外,多个目标设备发送接入请求和/或调度请求时复用第一时频资源中的时频子资源,与目标设备分别使用不同时频资源发送接入请求和调度请求、不同目标设备使用不同时频资源发送调度请求相比,可以提高时频资源的利用率。
本申请实施例还提供了一种通信系统,包括:第一设备和第二设备,第一设备为主通信节点(例如为如图1所示的通信系统中的第一设备110),第二设备为外部节点(例如为如图1所示的通信系统中的第三设备130)或通信域中的从通信节点(例如为如图1所示的通 信系统中的第二设备120)。
其中,第一设备包括如图9或图10所示的通信装置;第二设备包括如图7或图8所示的通信装置。
本申请实施例提供了一种通信装置,包括:至少一个处理器、至少一个存储器和收发器;
所述存储器,用于存储计算机程序,所述计算机程序包括程序指令;
所述处理器,用于调用所述计算机程序,协同所述收发器实现如图3所示的通信方法、如图5所示的通信方法中设备2执行的步骤或如图6所示的通信方法中设备4执行的步骤。
本申请实施例还提供了一种通信装置,包括:至少一个处理器、至少一个存储器和收发器;
所述存储器,用于存储计算机程序,所述计算机程序包括程序指令;
所述处理器,用于调用所述计算机程序,协同所述收发器实现如图5所示的通信方法中设备1执行的步骤或如图6所示的通信方法中设备3执行的步骤。
示例地,图11是本申请实施例提供了一种通信装置的框图。该通信装置可以是通信系统中的外部节点、通信系统中通信域的主节点或通信系统中通信域的从节点。如图11所示,通信装置1100包括:处理器1101、存储器1102和收发器1103。
存储器1102,用于存储计算机程序,该计算机程序包括程序指令;
处理器1101,用于调用计算机程序,协同收发器1103实现上述方法实施例中的相关步骤。其中,收发器用于执行收发步骤。处理器用于执行除收发步骤以外的其它步骤。
处理器1101包括一个或者一个以上处理核心,处理器1101通过运行计算机程序,执行各种功能应用以及数据处理。
可选地,存储器1102可存储操作系统和至少一个功能所需的应用程序单元。操作系统可以是实时操作系统(Real Time eXecutive,RTX)、LINUX、UNIX、WINDOWS或OS X之类的操作系统。
本申请实施例还提供了另一种通信装置,包括至少一个处理器以及通信接口。该通信接口用于为至少一个处理器提供输入/输出。若该通信装置用于主通信节点,则处理器用于执行程序或者代码实现如图5所示的通信方法中设备1执行的步骤或如图6所示的通信方法中设备3执行的步骤。若该通信装置用于从通信节点或外部节点,则处理器用于执行程序或者代码实现如图5所示的通信方法中设备2执行的步骤或如图6所示的通信方法中设备4执行的步骤。
可选地,该通信装置可以为芯片或者集成电路。所述至少一个处理器可以包括中央处理单元(central processing unit,CPU),网络处理器(network processor,NP),数字信号处理器(digital signal processor,DSP),或者其任意组合。处理器还可以包括硬件芯片。该硬件芯片可以是专用集成电路(application specific integrated circuits,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
本申请实施例还提供了一种计算机存储介质,所述计算机存储介质上存储有指令,当所述指令被计算机设备的处理器执行时,实现如上述方法实施例所述的通信方法。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述 芯片运行时,实现如上述方法实施例所述的通信方法。
本申请实施例还提供了一种终端,所述终端可以为运输工具或者智能设备。所述运输工具可以为无人运输车、车辆或者无人机,所述智能设备可以为机器人等。该终端包括至少一个通信域(也可称为座舱域)。通信域中包括主通信节点。进一步,所述通信域还可以包括至少一个从通信节点。主通信节点包括如图9或图10所示的通信装置;从通信节点包括如图7或图8所示的通信装置。
示例地,车辆中的主通信节点为CDC,从通信节点包括麦克风、音箱和手机中的一个或多个。或者,车辆中的主通信节点为PEPS,从通信节点包括手机钥匙和/或车钥匙。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本申请实施例中,术语“第一”、“第二”和“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (45)

  1. 一种通信方法,其特征在于,所述方法包括:
    确定第一时频子资源,所述第一时频子资源属于第一时频资源;
    在所述第一时频子资源上发送第一请求,所述第一请求用于请求接入或者请求调度;
    其中,所述第一时频资源是预先定义或者预先配置的、用于承载目标设备的请求的资源,所述目标设备的请求包含用于请求接入的请求和用于请求调度的请求。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时频资源用于承载多个所述目标设备的请求。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一请求用于请求接入,所述第一请求包含第一标识;所述方法还包括:
    在第二时频子资源上发送第二请求,所述第二请求用于请求调度,所述第二时频子资源属于所述第一时频资源,所述第二请求包含第二标识,所述第二标识不同于所述第一标识。
  4. 根据权利要求1-3任一所述的方法,其特征在于,所述第一请求用于请求接入,所述第一请求包含第一标识;所述方法还包括:
    接收广播消息,所述广播消息中包含一个或多个保留标识的信息,所述第一标识属于所述一个或多个保留标识。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述方法还包括:
    接收广播消息,所述广播消息中包括所述第一时频资源的配置信息。
  6. 根据权利要求4或5所述的方法,其特征在于,所述广播消息为系统消息。
  7. 根据权利要求1-6任一所述的方法,其特征在于,所述第一请求用于请求接入;所述方法还包括:
    接收目标消息,所述目标消息中包含第二标识的信息,所述第二标识承载于第二请求中,所述第二请求用于请求调度。
  8. 根据权利要求7所述的方法,其特征在于,所述目标消息为接入响应,所述接入响应是通过第二时频资源接收的,所述第二时频资源基于所述第一时频子资源确定。
  9. 根据权利要求1或2所述的方法,其特征在于,所述第一请求用于请求调度;所述方法还包括:
    通过第三时频资源接收调度响应,所述调度响应中包括第四时频资源的配置信息,所述第四时频资源用于传输业务数据和/或控制信息。
  10. 根据权利要求9所述的方法,其特征在于,所述第三时频资源基于所述第一时频子资源确定,或者,所述第三时频资源基于所述第一时频子资源以及所述第一请求的调度类型确定。
  11. 一种通信方法,其特征在于,所述方法包括:
    在第一时频子资源上接收第一请求,所述第一请求用于请求接入或者请求调度,所述第一时频子资源属于第一时频资源;
    其中,所述第一时频资源是预先定义或者预先配置的、用于承载目标设备的请求的资源,所述目标设备的请求包含用于请求接入的请求和用于请求调度的请求。
  12. 根据权利要求11所述的方法,其特征在于,所述第一时频资源用于承载多个所述目标设备的请求。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一请求用于请求接入,所述第一请求包含第一标识;所述方法还包括:
    在第二时频子资源上接收第二请求,所述第二请求用于请求调度,所述第二时频子资源属于所述第一时频资源,所述第二请求包含第二标识,所述第二标识不同于所述第一标识。
  14. 根据权利要求11-13任一所述的方法,其特征在于,所述第一请求用于请求接入,所述第一请求包含第一标识;所述方法还包括:
    发送广播消息,所述广播消息中包含一个或多个保留标识的信息,所述第一标识属于所述一个或多个保留标识。
  15. 根据权利要求11-14任一所述的方法,其特征在于,所述方法还包括:
    发送广播消息,所述广播消息中包括所述第一时频资源的配置信息。
  16. 根据权利要求14或15所述的方法,其特征在于,所述广播消息为系统消息。
  17. 根据权利要求11-16任一所述的方法,其特征在于,所述第一请求用于请求接入;所述方法还包括:
    发送目标消息,所述目标消息中包含第二标识的信息,所述第二标识承载于第二请求中,所述第二请求用于请求调度。
  18. 根据权利要求17所述的方法,其特征在于,所述目标消息为接入响应,所述接入响应是通过第二时频资源发送的,所述第二时频资源基于所述第一时频子资源确定。
  19. 根据权利要求11或12所述的方法,其特征在于,所述第一请求用于请求调度;所述方法还包括:
    根据所述第一请求生成调度响应;
    通过第三时频资源发送所述调度响应;
    其中,所述调度响应中包括第四时频资源的配置信息,所述第四时频资源用于传输业务数据和/或控制信息。
  20. 根据权利要求19所述的方法,其特征在于,所述第三时频资源基于所述第一时频子资源确定,或者,所述第三时频资源基于所述第一时频子资源以及所述第一请求的调度类型确定。
  21. 一种通信装置,其特征在于,所述装置包括:
    处理模块,用于确定第一时频子资源,所述第一时频子资源属于第一时频资源;
    发送模块,用于在所述第一时频子资源上发送第一请求,所述第一请求用于请求接入或者请求调度;
    其中,所述第一时频资源是预先定义或者预先配置的、用于承载目标设备的请求的资源,所述目标设备的请求包含用于请求接入的请求和用于请求调度的请求。
  22. 根据权利要求21所述的装置,其特征在于,所述第一时频资源用于承载多个所述目标设备的请求。
  23. 根据权利要求21或22所述的装置,其特征在于,所述第一请求用于请求接入,所述第一请求包含第一标识;
    所述发送模块,还用于在第二时频子资源上发送第二请求,所述第二请求用于请求调度,所述第二时频子资源属于所述第一时频资源,所述第二请求包含第二标识,所述第二标识不同于所述第一标识。
  24. 根据权利要求21-23任一所述的装置,其特征在于,所述第一请求用于请求接入,所述第一请求包含第一标识;所述装置还包括:
    接收模块,用于接收广播消息,所述广播消息中包含一个或多个保留标识的信息,所述第一标识属于所述一个或多个保留标识。
  25. 根据权利要求21-24任一所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收广播消息,所述广播消息中包括所述第一时频资源的配置信息。
  26. 根据权利要求24或25所述的装置,其特征在于,所述广播消息为系统消息。
  27. 根据权利要求21-26任一所述的装置,其特征在于,所述第一请求用于请求接入;所述装置还包括:
    接收模块,用于接收目标消息,所述目标消息中包含第二标识的信息,所述第二标识承载于第二请求中,所述第二请求用于请求调度。
  28. 根据权利要求27所述的装置,其特征在于,所述目标消息为接入响应,所述接入响应是通过第二时频资源接收的,所述第二时频资源基于所述第一时频子资源确定。
  29. 根据权利要求21或22所述的装置,其特征在于,所述第一请求用于请求调度;所述装置还包括:
    接收模块,用于通过第三时频资源接收调度响应,所述调度响应中包括第四时频资源的配置信息,所述第四时频资源用于传输业务数据和/或控制信息。
  30. 根据权利要求29所述的装置,其特征在于,所述第三时频资源基于所述第一时频子资源确定,或者,所述第三时频资源基于所述第一时频子资源以及所述第一请求的调度类型确定。
  31. 一种通信装置,其特征在于,所述装置包括:
    接收模块,用于在第一时频子资源上接收第一请求,所述第一请求用于请求接入或者请求调度,所述第一时频子资源属于第一时频资源;
    其中,所述第一时频资源是预先定义或者预先配置的、用于承载目标设备的请求的资源,所述目标设备的请求包含用于请求接入的请求和用于请求调度的请求。
  32. 根据权利要求31所述的装置,其特征在于,所述第一时频资源用于承载多个所述目标设备的请求。
  33. 根据权利要求31或32所述的装置,其特征在于,所述第一请求用于请求接入,所述第一请求包含第一标识;
    所述接收模块,还用于在第二时频子资源上接收第二请求,所述第二请求用于请求调度,所述第二时频子资源属于所述第一时频资源,所述第二请求包含第二标识,所述第二标识不同于所述第一标识。
  34. 根据权利要求31-33任一所述的装置,其特征在于,所述第一请求用于请求接入,所述第一请求包含第一标识;所述装置还包括:
    发送模块,用于发送广播消息,所述广播消息中包含一个或多个保留标识的信息,所述第一标识属于所述一个或多个保留标识。
  35. 根据权利要求31-34任一所述的装置,其特征在于,所述装置还包括:
    发送模块,用于发送广播消息,所述广播消息中包括所述第一时频资源的配置信息。
  36. 根据权利要求34或35所述的装置,其特征在于,所述广播消息为系统消息。
  37. 根据权利要求31-36任一所述的装置,其特征在于,所述第一请求用于请求接入; 所述装置还包括:
    发送模块,用于发送目标消息,所述目标消息中包含第二标识的信息,所述第二标识承载于第二请求中,所述第二请求用于请求调度。
  38. 根据权利要求37所述的装置,其特征在于,所述目标消息为接入响应,所述接入响应是通过第二时频资源发送的,所述第二时频资源基于所述第一时频子资源确定。
  39. 根据权利要求31或32所述的装置,其特征在于,所述第一请求用于请求调度;所述装置还包括:
    处理模块,用于根据所述第一请求生成调度响应;
    发送模块,用于通过第三时频资源发送所述调度响应;
    其中,所述调度响应中包括第四时频资源的配置信息,所述第四时频资源用于传输业务数据和/或控制信息。
  40. 根据权利要求39所述的装置,其特征在于,所述第三时频资源基于所述第一时频子资源确定,或者,所述第三时频资源基于所述第一时频子资源以及所述第一请求的调度类型确定。
  41. 一种通信装置,其特征在于,包括:处理器、存储器和收发器;
    所述存储器,用于存储计算机程序,所述计算机程序包括程序指令;
    所述处理器,用于调用所述计算机程序,协同所述收发器实现如权利要求1至10任一所述的通信方法。
  42. 一种通信装置,其特征在于,包括:处理器、存储器和收发器;
    所述存储器,用于存储计算机程序,所述计算机程序包括程序指令;
    所述处理器,用于调用所述计算机程序,协同所述收发器实现如权利要求11至20任一所述的通信方法。
  43. 一种通信系统,其特征在于,包括:第一设备和第二设备,所述第一设备为主通信节点,所述第二设备为从通信节点或外部节点;
    所述第一设备包括如权利要求31至40任一所述或如权利要求42所述的通信装置;
    所述第二设备包括如权利要求21至30任一所述或如权利要求41所述的通信装置。
  44. 一种计算机存储介质,其特征在于,所述计算机存储介质上存储有指令,当所述指令被计算机设备的处理器执行时,实现如权利要求1至10任一所述的通信方法;或实现如权利要求11至20任一所述的通信方法。
  45. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,实现如权利要求1至10任一所述的通信方法;或实现如权利要求11至20任一所述 的通信方法。
PCT/CN2020/080820 2020-03-24 2020-03-24 通信方法、装置及系统、计算机存储介质 WO2021189231A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202080018464.9A CN114097191B (zh) 2020-03-24 2020-03-24 通信方法、装置及系统、计算机存储介质
JP2022557950A JP7469505B2 (ja) 2020-03-24 2020-03-24 通信方法、装置及びシステム並びにコンピュータ記憶媒体
KR1020227036319A KR20220156592A (ko) 2020-03-24 2020-03-24 통신 방법, 장치, 시스템 및 컴퓨터 저장 매체
CN202310330081.0A CN116418476A (zh) 2020-03-24 2020-03-24 通信方法、装置及系统、计算机存储介质
EP20926429.0A EP4113880A4 (en) 2020-03-24 2020-03-24 COMMUNICATION METHOD, DEVICE AND SYSTEM AND COMPUTER STORAGE MEDIUM
PCT/CN2020/080820 WO2021189231A1 (zh) 2020-03-24 2020-03-24 通信方法、装置及系统、计算机存储介质
US17/951,783 US20230014202A1 (en) 2020-03-24 2022-09-23 Communications Method, Apparatus, and System, and Computer Storage Medium
JP2024060541A JP2024099543A (ja) 2020-03-24 2024-04-04 通信方法、装置及びシステム並びにコンピュータ記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080820 WO2021189231A1 (zh) 2020-03-24 2020-03-24 通信方法、装置及系统、计算机存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/951,783 Continuation US20230014202A1 (en) 2020-03-24 2022-09-23 Communications Method, Apparatus, and System, and Computer Storage Medium

Publications (1)

Publication Number Publication Date
WO2021189231A1 true WO2021189231A1 (zh) 2021-09-30

Family

ID=77889908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080820 WO2021189231A1 (zh) 2020-03-24 2020-03-24 通信方法、装置及系统、计算机存储介质

Country Status (6)

Country Link
US (1) US20230014202A1 (zh)
EP (1) EP4113880A4 (zh)
JP (2) JP7469505B2 (zh)
KR (1) KR20220156592A (zh)
CN (2) CN116418476A (zh)
WO (1) WO2021189231A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162885A (zh) * 2015-03-30 2016-11-23 索尼公司 无线通信的装置和方法、基站、用户设备侧的装置
CN109151832A (zh) * 2017-06-16 2019-01-04 展讯通信(上海)有限公司 免授权资源访问方法、调度方法及装置、存储介质、终端、基站
CN109644095A (zh) * 2016-09-14 2019-04-16 华为技术有限公司 用于接入无线网络的方法和设备
WO2019118733A1 (en) * 2017-12-15 2019-06-20 Qualcomm Incorporated Subband-based random access and scheduling request for new-radio-spectrum sharing (nr-ss)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515747B (zh) * 2007-04-27 2019-04-19 华为技术有限公司 资源请求指示信息的时频资源分配方法、装置及基站
CN108289337B (zh) * 2017-01-09 2023-05-26 北京三星通信技术研究有限公司 上行调度请求的方法及用户设备、基站设备
CN109005587B (zh) * 2017-06-07 2020-11-06 华为技术有限公司 一种数据传输的方法、装置和系统
CN108401261A (zh) * 2018-02-28 2018-08-14 武汉虹信通信技术有限责任公司 一种信令的交互方法、装置及系统
WO2019204995A1 (zh) * 2018-04-24 2019-10-31 北京小米移动软件有限公司 调度请求传输方法及装置和资源分配方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162885A (zh) * 2015-03-30 2016-11-23 索尼公司 无线通信的装置和方法、基站、用户设备侧的装置
CN109644095A (zh) * 2016-09-14 2019-04-16 华为技术有限公司 用于接入无线网络的方法和设备
CN109151832A (zh) * 2017-06-16 2019-01-04 展讯通信(上海)有限公司 免授权资源访问方法、调度方法及装置、存储介质、终端、基站
WO2019118733A1 (en) * 2017-12-15 2019-06-20 Qualcomm Incorporated Subband-based random access and scheduling request for new-radio-spectrum sharing (nr-ss)

Also Published As

Publication number Publication date
JP2024099543A (ja) 2024-07-25
JP7469505B2 (ja) 2024-04-16
CN116418476A (zh) 2023-07-11
JP2023518590A (ja) 2023-05-02
EP4113880A4 (en) 2023-04-26
EP4113880A1 (en) 2023-01-04
CN114097191A (zh) 2022-02-25
CN114097191B (zh) 2023-03-28
KR20220156592A (ko) 2022-11-25
US20230014202A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
US11516820B2 (en) Resource allocation method for sidelink and terminal
CN113301524B (zh) V2x消息发送方法、装置及系统
WO2019184784A1 (zh) 一种通信方法及相关设备
WO2020125573A1 (zh) 通信方法、装置、终端、网络设备及存储介质
CN111669835B (zh) 通信的方法、装置及系统
WO2019085741A1 (zh) 上行数据包资源分配方法和用户终端
CN113366869B (zh) 一种通信方法及相关装置
WO2018170877A1 (zh) 信息发送方法、装置、终端、接入网设备及系统
EP4152815A1 (en) Communication method and communication device
US20230142451A1 (en) Information transmission method and apparatus
WO2020048331A1 (zh) 信息传输方法、通信设备及网络设备
US20230189248A1 (en) Method and device for communication
WO2021189231A1 (zh) 通信方法、装置及系统、计算机存储介质
WO2019084860A1 (zh) 车联网中的数据发送方法及终端
US10972883B2 (en) Terminal and data transmission to perform terminal to terminal data transmission in an internet of vehicles (IoV) system
WO2023272444A1 (zh) 一种通信方法及其通信装置
WO2023279359A1 (zh) 通信方法和装置
WO2021195935A1 (zh) 资源配置方法、通信方法及装置
WO2021174533A1 (zh) 通信方法、装置、设备及计算机可读存储介质
CN117241248A (zh) 通信系统的通信方法及通信系统
CN116801307A (zh) 信息传输、配置方法、终端、接入网设备及核心网设备
JP2023538947A (ja) リソース処理方法、装置及び媒体
CN117793674A (zh) 一种通信方法及装置
WO2017054577A1 (zh) 一种数据传输方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557950

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020926429

Country of ref document: EP

Effective date: 20220929

ENP Entry into the national phase

Ref document number: 20227036319

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE