WO2021189217A1 - 适用于超厚不锈钢复合板材卷制的焊接工艺方法 - Google Patents

适用于超厚不锈钢复合板材卷制的焊接工艺方法 Download PDF

Info

Publication number
WO2021189217A1
WO2021189217A1 PCT/CN2020/080752 CN2020080752W WO2021189217A1 WO 2021189217 A1 WO2021189217 A1 WO 2021189217A1 CN 2020080752 W CN2020080752 W CN 2020080752W WO 2021189217 A1 WO2021189217 A1 WO 2021189217A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
plates
welded
pair
ultra
Prior art date
Application number
PCT/CN2020/080752
Other languages
English (en)
French (fr)
Inventor
樊志勤
李刚
周烈
Original Assignee
江苏鹏飞集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鹏飞集团股份有限公司 filed Critical 江苏鹏飞集团股份有限公司
Priority to PCT/CN2020/080752 priority Critical patent/WO2021189217A1/zh
Publication of WO2021189217A1 publication Critical patent/WO2021189217A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding

Definitions

  • the invention relates to a welding process method, in particular to a welding process method suitable for rolling of ultra-thick stainless steel composite plates.
  • Stainless steel composite plate is a composite plate steel plate formed by combining a carbon steel base layer and a stainless steel cladding layer. Its main feature is that carbon steel and stainless steel form a strong metallurgical bond. It can be processed by hot pressing, cold bending, cutting, welding, etc. It has good process performance. However, in the production process of large-scale ultra-thick stainless steel composite plate cylindrical parts in the prior art, one or more stainless steel composite plates are usually welded and rolled.
  • the embodiment of the present invention provides a welding process method suitable for rolling of ultra-thick stainless steel clad plates.
  • the specific technical solutions are as follows:
  • a welding process method suitable for rolling of ultra-thick stainless steel clad plates which includes the following steps:
  • the following steps are further included before the bevel processing is performed on the welded sheet: non-destructive inspection and in-factory inspection are performed on the welded sheet.
  • the error amount of each pair of welded plates is controlled to be less than 1.5 mm.
  • the welding wire is selected as the ER55-B2 welding wire with a diameter of 1.2 mm, and the welding current is 160-240 A.
  • the welding voltage is 24-28 volts, the welding speed is 15-25 cm/min, and the line energy is 14-18 kJ/cm.
  • the electrode is selected as E5515-B1 electrode, the welding current is 120-140 A, and the welding speed is 15 -25 cm/min.
  • the welding current is 500-650 A
  • the welding voltage is 32-36 volts
  • the welding speed It is 25-35 cm/min
  • the line energy is 25-40 kJ/cm.
  • the temperature between the weld layers is controlled to be less than or equal to 350 degrees Celsius, and during the welding process, in each weld layer Use the hammering method to hammer the weld between the passes, and clean the slag and spatter between each weld layer, and the thickness of each weld bead is less than or equal to 3.5 mm.
  • the welding wire is selected as the E309-L T-1 welding wire with a diameter of 1.2 mm, and the CO 2 gas shielded welding
  • the current is 200-240 A
  • the welding voltage is 30-34 volts
  • the welding speed is 25-30 cm/min
  • the line energy is 14-17 kJ/cm.
  • the welding wire when welding coating and welding with welding wire, the welding wire is 1.2 mm diameter E308LT-1 welding wire, CO 2 gas shielded welding DC reverse connection, and the welding current is 200- 240 A, the welding voltage is 30-34 volts, the welding speed is 28-33 cm/min, and the line energy is 12-16 kJ/cm.
  • the welding plate is an ultra-thick stainless steel composite plate
  • the base layer is made of 12CrMoR with a thickness of 100 mm
  • the transition layer is made of 0Cr18Ni9 with a thickness of 3 mm.
  • the present invention has the following advantages:
  • the invention is suitable for the welding process method of the ultra-thick stainless steel composite plate rolling.
  • the plate after welding can avoid the welding plate from forming cracks or breaks near the weld during the rolling process, and solves the shortage of the existing welding technology.
  • Fig. 1 is a schematic diagram of the steps of a welding process suitable for rolling of ultra-thick stainless steel clad plates according to an embodiment of the present invention.
  • Figures 2-7 are schematic cross-sectional views of a pair of welded plates and their upper grooves according to an embodiment of the present invention.
  • FIG. 1 shows a schematic flow chart of the welding process method 1 applicable to the rolling of ultra-thick stainless steel clad plate according to an embodiment of the present invention.
  • the welding process method 1 applicable to the rolling of ultra-thick stainless steel clad plate includes the following steps 101-106, of which:
  • step 101 the groove 3 is processed before welding.
  • the welding plate 2 is selected, and the welding plate 2 is grooved 3 processing.
  • FIGS. 2-7 respectively show a cross-sectional structure diagram of a pair of welding plates 2 and their upper grooves 3 according to an embodiment of the present invention.
  • the selected welding plate 2 is an ultra-thick stainless steel composite plate, and the base layer 21 of each ultra-thick stainless steel composite plate is made of 12CrMoR and has a thickness of 100 millimeters (mm), and the transition layer 22 is made of 0Cr18Ni9 and a thickness of 3mm.
  • the welded plate 2 is subjected to non-destructive inspection and in-factory inspection. After it meets the requirements, the welded plate 2 is processed with groove 3.
  • the shape of the groove 3 you can choose according to the actual welding requirements. For example, you can choose as shown in Figure 2-7.
  • Step 102 Preheat the welding area. Preheat the welding area of the welding plate 2.
  • the welding plate 2 is rolled by hot bending process measures, and then the welding area of the welding plate 2 is preheated according to the process qualification procedure, and the preheating temperature is preferably 250°C. But it is not limited to this.
  • Step 103 the base layer 21 is welded.
  • the welding plates 2 are paired, and the base layer 21 between each pair of welding plates 2 is welded.
  • the slope surfacing method is used to weld both sides of the groove 3 between each pair of base layers 21 first, and then Fill and cover welding is performed on each pair of base layers 21.
  • each pair of welding plates 2 is controlled to be less than 1.5 mm, but it is not limited to this.
  • the base layer 21 between each pair of welding plates 2 is welded.
  • each layer of weld between each pair of base layers 21 is welded on both sides of the groove 3 first, and then the slope method surfacing welding is performed. Fill and cover welding, and minimize the welding heat input during welding.
  • control the temperature between the weld layers to be less than or equal to 350 degrees Celsius.
  • the welding wire should be ER55-B2 welding wire with a diameter of 1.2 mm.
  • the submerged arc welding wire should be H08CrMoA+SJ101 welding wire with a diameter of 4 mm.
  • the welding seam is hammered by the hammering method between each weld layer.
  • the hammering should be fine and strong, so that the tensile stress generated by the welding becomes a compressive stress. Reduce the influence of welding stress on the weld; and clean up the slag and spatter between each weld layer in time to ensure that each weld is well fused, and the thickness of each weld bead is less than or equal to 3.5 mm, when welding , To avoid discontinuity in the welding process.
  • welding the slope surfacing on both sides of the groove 3 first, and then the middle filling and cap welding.
  • Step 104 hydrogen elimination and non-destructive testing of the weld. After the base layer 21 between each pair of welded plates 2 is welded, the weld seam is subjected to hydrogen elimination treatment and non-destructive testing is performed.
  • the weld seam is subjected to hydrogen elimination treatment and non-destructive testing.
  • hydrogen elimination treatment and non-destructive testing methods there may be no special requirements in this embodiment. It is sufficient to refer to the conventional technical means of those skilled in the art.
  • Step 105 the transition layer 22 is welded.
  • the transition welding seam and the welding coating are sequentially performed.
  • the welding wire is used, the welding wire is selected as the E309-L T-1 welding wire with a diameter of 1.2 mm, and the CO 2 gas shielded welding direct current reverse connection ,
  • the welding specification is, the welding current is 200-240 amps, the welding voltage is 30-34 volts, the welding speed is 25-30 cm/min, the heat input is 14-17 kJ/cm, and the transition layer 22 is welded after the welding is completed. Seam surface coloring inspection.
  • Step 106 overall non-destructive testing and stress relief processing. Then, perform non-destructive testing on the overall weld of each pair of welded plates 2 and perform stress relief treatment.
  • the entire weld of each pair of welded plates 2 is subjected to non-destructive testing, and stress relief is performed to eliminate the residual stress generated in the welded plate 2 after the welding process, and to avoid the stress of the overall weld that causes the welded plate 2 to crimp. Cracks or fractures occur near the weld.
  • the stress treatment method shown in this embodiment is to use a heat treatment furnace or flame to heat the material to a certain temperature and keep it for a period of time, usually not exceeding 400°C, so that the residual stress inside the material can be relaxed, thereby eliminating the welding process after the welding process.
  • the residual stress generated inside the plate 2 is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

一种适用于超厚不锈钢复合板材卷制的焊接工艺方法,包括选取焊接板材(2),对焊接板材(2)进行坡口(3)加工,预热焊接区域,将焊接板材(2)进行组对,在焊接时,先对每对基层(21)之间的坡口两侧采用斜坡堆焊法焊接,再对每对基层(21)进行填充盖面焊接;在每对焊接板材(2)之间的基层(21)焊接完成后,对其焊缝进行消氢处理,并进行无损检测;对每对焊接板材(2)之间的过渡层(22)依次进行焊接过渡焊缝及焊接覆层;以及再对每对焊接板材(2)的整体焊缝进行无损检测,并进行去应力处理。该焊接工艺方法焊接后的板材,可以避免焊接板材在卷制过程中在焊缝附近形成裂纹或断裂,解决了现有焊接工艺技术不足。

Description

适用于超厚不锈钢复合板材卷制的焊接工艺方法 技术领域
本发明涉及一种焊接工艺方法,特别是涉及一种适用于超厚不锈钢复合板材卷制的焊接工艺方法。
背景技术
不锈钢复合板是以碳钢基层与不锈钢覆层结合而成的复合板钢板。它的主要特点是碳钢和不锈钢形成牢固的冶金结合。可以进行热压、冷弯、切割、焊接等各种加工,有良好的工艺性能。而现有技术的大型超厚不锈钢复合板圆筒状零部件在生产制作过程中,通常是采用一块或多块不锈钢复合板焊接、卷制而成。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
现有技术的大型超厚不锈钢复合板圆筒状零部件在生产中,由于板材特殊材质属性、厚度及卷制过程中焊缝受力问题,容易造成焊接好的板材在卷制过程中,于焊缝附近形成裂纹或断裂,如果再将焊缝断裂处重新加工坡口重新焊接,这样板材长度尺寸将减小,导致卷制圆筒直径小于设计尺寸,以致造成整块板材报废。
因此急需一种适用于超厚不锈钢复合板材卷制的焊接工艺方法,以克服现有焊接工艺技术不足的问题。
发明内容
为解决上述现有技术中存在的问题,本发明实施例提供了一种适用于超厚不锈钢复合板材卷制的焊接工艺方法。具体的技术方案如下:
第一方面,提供一种适用于超厚不锈钢复合板材卷制的焊接工艺 方法,其中包括以下步骤:
选取焊接板材,并对焊接板材进行坡口加工;
预热焊接板材的焊接区域;
将焊接板材进行组对,并对每对焊接板材之间的基层进行焊接,且在焊接时,先对每对基层之间的坡口两侧采用斜坡堆焊法焊接,再对每对基层进行填充盖面焊接;
在每对焊接板材之间的基层焊接完成后,对其焊缝进行消氢处理,并进行无损检测;
对每对焊接板材之间的过渡层依次进行焊接过渡焊缝及焊接覆层;以及
再对每对焊接板材的整体焊缝进行无损检测,并进行去应力处理。
在第一方面的第一种可能实现方式中,对焊接板材进行坡口加工之前还包括以下步骤,对焊接板材进行无损检验及入厂检测。
在第一方面的第二种可能实现方式中,在焊接板材进行组对时,控制每对焊接板材的错变量小于1.5毫米。
在第一方面的第三种可能实现方式中,对每对焊接板材之间的基层进行焊接且采用焊丝焊接时,焊丝选择为直径1.2毫米的ER55-B2焊丝,焊接电流为160-240安,焊接电压为24-28伏,焊接速度为15-25厘米/分钟,线能量为14-18千焦/厘米。
在第一方面的第四种可能实现方式中,对每对焊接板材之间的基层进行焊接且采用焊条焊接时,焊条选择为E5515-B1焊条,焊接电流为120-140安,焊接速度为15-25厘米/分钟。
在第一方面的第五种可能实现方式中,对每对焊接板材之间的基层进行焊接且采用埋弧焊焊接时,焊接电流为500-650安,焊接电压为32-36伏,焊接速度为25-35厘米/分钟,线能量为25-40千焦/厘米。
在第一方面的第六种可能实现方式中,对每对焊接板材之间的基层进行焊接时,控制焊缝层间温度小于等于350摄氏度,且在施焊过程中,在每个焊缝层道间采用锤击法锤击焊缝,并清理每个焊缝层道间的焊渣及飞溅,每层焊道厚度小于等于3.5毫米。
在第一方面的第七种可能实现方式中,在进行焊接过渡焊缝且采用焊丝焊接时,焊丝选择为直径1.2毫米的E309-L T-1焊丝,CO 2气保焊直流反接,焊接电流为200-240安,焊接电压为30-34伏,焊接速度为25-30厘米/分钟,线能量为14-17千焦/厘米。
在第一方面的第八种可能实现方式中,在进行焊接覆层且采用焊丝焊接时,焊丝选择为直径1.2毫米的E308LT-1焊丝,CO 2气保焊直流反接,焊接电流为200-240安,焊接电压为30-34伏,焊接速度为28-33厘米/分钟,线能量为12-16千焦/厘米。
在第一方面的第九种可能实现方式中,焊接板材为超厚不锈钢复合板材,基层的材质为12CrMoR,厚度为100毫米,过渡层的材质为0Cr18Ni9,厚度为3毫米。
本发明与现有技术相比具有的优点有:
本发明适用于超厚不锈钢复合板材卷制的焊接工艺方法焊接后的板材,可以避免焊接板材在卷制过程中在焊缝附近形成裂纹或断裂, 解决了现有焊接工艺技术不足。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例的适用于超厚不锈钢复合板材卷制的焊接工艺方法的步骤流程示意图。
图2-7是本发明一实施例的一对焊接板材及其上坡口的剖视结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
本发明的一实施例中,请参考图1,其示出了本发明一实施例的适用于超厚不锈钢复合板材卷制的焊接工艺方法1的步骤流程示意图。适用于超厚不锈钢复合板材卷制的焊接工艺方法1包括以下步骤101-106,其中:
步骤101,焊前坡口3加工。选取焊接板材2,并对焊接板材2进行坡口3加工。
具体的,请参考图2-7,其分别示出了本发明一实施例的一对焊接板材2及其上坡口3的剖视结构示意图。选取的焊接板材2为超厚 不锈钢复合板材,且每个超厚不锈钢复合板材的基层21的材质为12CrMoR、厚度为100毫米(mm),过渡层22的材质为0Cr18Ni9、厚度为3mm,然后对焊接板材2进行无损检验及入厂检测,在其符合要求后,对焊接板材2进行坡口3加工,至于坡口3的形状可以根据实际焊接需求进行选择,例如可以选择如图2-7中任一图中所示的坡口3的形状。
步骤102,焊接区域预热。预热焊接板材2的焊接区域。
具体的,按照卷制工艺标准规程,采用热弯的工艺措施,对焊接板材2进行卷制,然后按照工艺评定规程,对焊接板材2的焊接区域进行预热,预热温度优选为250℃,但并不以此为限。
步骤103,基层21焊接。将焊接板材2进行组对,并对每对焊接板材2之间的基层21进行焊接,且在焊接时,先对每对基层21之间的坡口3两侧采用斜坡堆焊法焊接,再对每对基层21进行填充盖面焊接。
具体的,请再次参考图2-7,将焊接板材2进行组对,优选的,控制每对焊接板材2的错变量小于1.5毫米,但并不以此为限。然后对每对焊接板材2之间的基层21进行焊接,在焊接时,对每对基层21之间的每层焊缝焊接时先焊接坡口3两侧,进行斜坡法堆焊焊接,再进行填充盖面焊接,且在焊接时要尽量减小焊接热输入,优选的,控制焊缝层间温度小于等于350摄氏度。
更具体的,在焊接时,若采用焊丝焊接时,焊丝选择为直径1.2毫米的ER55-B2焊丝,焊接规范为,焊接电流I=160-240安(A),焊 接电压U=24-28伏(V),焊接速度为15-25厘米(cm)/分钟(min),线能量14-18千焦(KJ)/厘米(cm)。
若采用焊丝焊接时,焊条选择为E5515-B1焊条,焊条焊接规范为,焊接电流I=120-140A,焊接速度15-25cm/min。
若采用埋弧焊焊接时,埋弧焊丝选择为直径4毫米的H08CrMoA+SJ101焊丝,埋弧焊焊接规范为,焊接电流I=500-650A,焊接电压U=32-36v,焊接速度为25-35cm/min,线能量25-40KJ/cm。
无论采用上述哪种焊接方式,在施焊过程中,在每个焊缝层道间采用锤击法锤击焊缝,锤击要细密、有力,使焊接产生的拉应力变为压应力,来减小焊接应力对焊缝的影响;并要及时清理每个焊缝层道间的焊渣及飞溅,以保证每道焊缝熔合良好,且每层焊道厚度小于等于3.5毫米,施焊时,避免焊接过程间断。手工焊焊接时,要注意焊接顺序采用分段退焊法,焊接先焊坡口3两侧斜坡堆焊、再焊中间填充盖面焊。
步骤104,焊缝消氢及无损检测。在每对焊接板材2之间的基层21焊接完成后,对其焊缝进行消氢处理,并进行无损检测。
具体的,在每对焊接板材2之间的基层21焊接完成后,对其焊缝进行消氢处理,并进行无损检测,至于消氢处理及无损检测方式在本实施例中可以没有特殊要求,参照本领域技术人员的常规技术手段即可。
步骤105,过渡层22焊接。对每对焊接板材2之间的过渡层22依次进行焊接过渡焊缝及焊接覆层。
具体的,在对每对焊接板材2之间的过渡层22进行焊接过渡焊缝时,采用焊丝焊接,焊丝选择为直径1.2毫米的E309-L T-1焊丝,CO 2气保焊直流反接,焊接规范为,焊接电流为200-240安,焊接电压为30-34伏,焊接速度为25-30厘米/分钟,线能量为14-17千焦/厘米,焊接完成后对过渡层22焊缝进行表面着色检测。
在对每对焊接板材2之间的过渡层22进行焊接覆层时,采用焊丝焊接时,焊丝选择为直径1.2毫米的E308LT-1焊丝,CO 2气保焊直流反接,焊接电流I=200-240A,焊接电压U=30-34V、焊接速度28-33cm/min、线能量控制在12-16KJ/cm。
步骤106,整体无损检测及去应力处理。再对每对焊接板材2的整体焊缝进行无损检测,并进行去应力处理。
具体的,对每对焊接板材2的整体焊缝进行无损检测,并进行去应力处理,消除经焊接工序后焊接板材2内部产生的残余应力,避免整体焊缝存在应力导致焊接板材2在卷曲时在焊缝附近产生裂纹或断裂。本实施例中所示的应力处理的方式为用热处理炉或火焰将材料加热到一定温度并保温一段时间,通常不超过400℃,使材料内部的残余应力得以松弛,从而消除经焊接工序后焊接板材2内部产生的残余应力,但并不以此为限。
上述说明示出并描述了本发明的若干优选实施方式,但如前所述,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施方式的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改 动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (10)

  1. 一种适用于超厚不锈钢复合板材卷制的焊接工艺方法,其特征在于,包括以下步骤:
    选取焊接板材,并对所述焊接板材进行坡口加工;
    预热所述焊接板材的焊接区域;
    将所述焊接板材进行组对,并对每对所述焊接板材之间的基层进行焊接,且在焊接时,先对每对所述基层之间的坡口两侧采用斜坡堆焊法焊接,再对每对所述基层进行填充盖面焊接;
    在每对所述焊接板材之间的所述基层焊接完成后,对其焊缝进行消氢处理,并进行无损检测;
    对每对所述焊接板材之间的过渡层依次进行焊接过渡焊缝及焊接覆层;以及
    再对每对所述焊接板材的整体焊缝进行无损检测,并进行去应力处理。
  2. 根据权利要求1所述的适用于超厚不锈钢复合板材卷制的焊接工艺方法,其特征在于,所述对所述焊接板材进行坡口加工之前还包括以下步骤,对所述焊接板材进行无损检验及入厂检测。
  3. 根据权利要求1所述的适用于超厚不锈钢复合板材卷制的焊接工艺方法,其特征在于,在所述焊接板材进行组对时,控制每对所述焊接板材的错变量小于1.5毫米。
  4. 根据权利要求1所述的适用于超厚不锈钢复合板材卷制的焊接工艺方法,其特征在于,所述对每对所述焊接板材之间的所述基层进行焊接且采用焊丝焊接时,所述焊丝选择为直径1.2毫米的 ER55-B2焊丝,所述焊丝的直径1.2毫米,焊接电流为160-240安,焊接电压为24-28伏,焊接速度为15-25厘米/分钟,线能量为14-18千焦/厘米。
  5. 根据权利要求1所述的适用于超厚不锈钢复合板材卷制的焊接工艺方法,其特征在于,所述对每对所述焊接板材之间的所述基层进行焊接且采用焊条焊接时,所述焊条选择为E5515-B1焊条,焊接电流为120-140安,焊接速度为15-25厘米/分钟。
  6. 根据权利要求1所述的适用于超厚不锈钢复合板材卷制的焊接工艺方法,其特征在于,所述对每对所述焊接板材之间的所述基层进行焊接且采用埋弧焊焊接时,焊接电流为500-650安,焊接电压为32-36伏,焊接速度为25-35厘米/分钟,线能量为25-40千焦/厘米。
  7. 根据权利要求1中所述的适用于超厚不锈钢复合板材卷制的焊接工艺方法,其特征在于,所述对每对所述焊接板材之间的所述基层进行焊接时,控制焊缝层间温度小于等于350摄氏度,且在施焊过程中,在每个焊缝层道间采用锤击法锤击焊缝,并清理每个焊缝层道间的焊渣及飞溅,每层焊道厚度小于等于3.5毫米。
  8. 根据权利要求1所述的适用于超厚不锈钢复合板材卷制的焊接工艺方法,其特征在于,在进行所述焊接过渡焊缝且采用焊丝焊接时,所述焊丝选择为直径1.2毫米的E309-L T-1焊丝,CO2气保焊直流反接,焊接电流为200-240安,焊接电压为30-34伏,焊接速度为25-30厘米/分钟,线能量为14-17千焦/厘米。
  9. 根据权利要求1所述的适用于超厚不锈钢复合板材卷制的焊接工艺方法,其特征在于,在进行所述焊接覆层且采用焊丝焊接时,所述焊丝选择为直径1.2毫米的E308LT-1焊丝,CO2气保焊直流反接,焊接电流为200-240安,焊接电压为30-34伏,焊接速度为28-33厘米/分钟,线能量为12-16千焦/厘米。
  10. 根据权利要求1所述的适用于超厚不锈钢复合板材卷制的焊接工艺方法,其特征在于,所述焊接板材为超厚不锈钢复合板材,所述基层的材质为12CrMoR,厚度为100毫米,过渡层的材质为0Cr18Ni9,厚度为3毫米。
PCT/CN2020/080752 2020-03-23 2020-03-23 适用于超厚不锈钢复合板材卷制的焊接工艺方法 WO2021189217A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080752 WO2021189217A1 (zh) 2020-03-23 2020-03-23 适用于超厚不锈钢复合板材卷制的焊接工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080752 WO2021189217A1 (zh) 2020-03-23 2020-03-23 适用于超厚不锈钢复合板材卷制的焊接工艺方法

Publications (1)

Publication Number Publication Date
WO2021189217A1 true WO2021189217A1 (zh) 2021-09-30

Family

ID=77890037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080752 WO2021189217A1 (zh) 2020-03-23 2020-03-23 适用于超厚不锈钢复合板材卷制的焊接工艺方法

Country Status (1)

Country Link
WO (1) WO2021189217A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113305513A (zh) * 2021-06-09 2021-08-27 中国电建集团四川工程有限公司 一种循环水管道现场工厂化制作施工方法
CN114346623A (zh) * 2022-03-05 2022-04-15 兰州新生科技有限责任公司 一种波纹管补偿器制造成型加工工艺
CN114378542A (zh) * 2022-02-09 2022-04-22 江苏航运职业技术学院 一种无损检测裂纹缺陷标准试块的制作方法
CN114888401A (zh) * 2022-06-22 2022-08-12 扬州惠通科技股份有限公司 一种不锈钢复合板的焊接方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101288919A (zh) * 2007-12-27 2008-10-22 中铁四局集团有限公司 50~120mm厚板和超厚板的焊接方法
CN101979206A (zh) * 2010-11-30 2011-02-23 惠生(南通)重工有限公司 超厚低合金高强度板的焊接工艺
JP2016150371A (ja) * 2015-02-19 2016-08-22 Jfeスチール株式会社 厚鋼板の突合せ溶接方法、およびそれによって形成される突合せ溶接継手、ならびにその突合せ溶接継手を有する溶接構造物
JP2018069323A (ja) * 2016-11-02 2018-05-10 新日鐵住金株式会社 溶接継手の作製方法、および溶接継手の改修方法
CN109877480A (zh) * 2017-12-06 2019-06-14 南阳二机石油装备集团股份有限公司 一种超厚板高强钢焊接工艺方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101288919A (zh) * 2007-12-27 2008-10-22 中铁四局集团有限公司 50~120mm厚板和超厚板的焊接方法
CN101979206A (zh) * 2010-11-30 2011-02-23 惠生(南通)重工有限公司 超厚低合金高强度板的焊接工艺
JP2016150371A (ja) * 2015-02-19 2016-08-22 Jfeスチール株式会社 厚鋼板の突合せ溶接方法、およびそれによって形成される突合せ溶接継手、ならびにその突合せ溶接継手を有する溶接構造物
JP2018069323A (ja) * 2016-11-02 2018-05-10 新日鐵住金株式会社 溶接継手の作製方法、および溶接継手の改修方法
CN109877480A (zh) * 2017-12-06 2019-06-14 南阳二机石油装备集团股份有限公司 一种超厚板高强钢焊接工艺方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113305513A (zh) * 2021-06-09 2021-08-27 中国电建集团四川工程有限公司 一种循环水管道现场工厂化制作施工方法
CN114378542A (zh) * 2022-02-09 2022-04-22 江苏航运职业技术学院 一种无损检测裂纹缺陷标准试块的制作方法
CN114346623A (zh) * 2022-03-05 2022-04-15 兰州新生科技有限责任公司 一种波纹管补偿器制造成型加工工艺
CN114346623B (zh) * 2022-03-05 2024-03-22 甘肃沃尔科技有限公司 一种波纹管补偿器制造成型加工工艺
CN114888401A (zh) * 2022-06-22 2022-08-12 扬州惠通科技股份有限公司 一种不锈钢复合板的焊接方法

Similar Documents

Publication Publication Date Title
WO2021189217A1 (zh) 适用于超厚不锈钢复合板材卷制的焊接工艺方法
CN105127566B (zh) 大厚度碳钢‑不锈钢复合板的全焊透焊接方法
CN101474703B (zh) 管壳式换热器管板不锈钢复合层与碳钢管子的封口焊方法
CN104858555A (zh) 压力管道焊接工艺
CN110666299A (zh) 一种810MPa级高性能耐候桥梁钢复合焊对接方法
CN108788385B (zh) 以q345r低合金钢为基层、904l不锈钢为复层的不锈钢复合板焊接方法
CN110640271B (zh) 低合金高强度钢t型全焊透接头横角焊位置的高效焊接工艺
CN106695080A (zh) 船舶海工用板材的焊接方法
JP7482319B2 (ja) 船用5Ni鋼サブマージアーク溶接方法
Layus et al. Multi-wire SAW of 640 MPa Arctic shipbuilding steel plates
Shelyagin et al. Multi-pass laser and hybrid laser-arc narrow-gap welding of steel butt joints
CN106903399A (zh) X80以上钢级的高强度管道半自动焊接方法
CN107584194A (zh) 高强度止裂钢材的焊接方法
CN111347131A (zh) 一种clf-1与316l异种钢tig焊接方法
CN110935992A (zh) 适用于超厚不锈钢复合板材卷制的焊接工艺方法
CN110280967B (zh) 钢制大规格部件免焊后热处理的同种钢焊接修复方法
JP4912097B2 (ja) ステンレス鋼管の多層溶接方法及び多層溶接物
CN107538112A (zh) 一种h型钢厚腹板焊接方法
CN114192943A (zh) 奥氏体不锈钢覆层的焊接方法
CN105643061B (zh) 用于超高强度厚钢板的co2气体保护焊的焊接方法
JP2002011575A (ja) 鋼管の溶接方法
CN114273764B (zh) 一种高强钢板钢管桩对接环焊缝焊接方法
JPH0623553A (ja) 溶接鋼管の製造方法
CN109352137A (zh) 角钢焊接方法
CN107538142A (zh) 一种直缝焊管的焊接工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927401

Country of ref document: EP

Kind code of ref document: A1