WO2021187683A1 - 딥러닝을 이용한 신규 제품의 품질 검사 방법 및 시스템 - Google Patents

딥러닝을 이용한 신규 제품의 품질 검사 방법 및 시스템 Download PDF

Info

Publication number
WO2021187683A1
WO2021187683A1 PCT/KR2020/010148 KR2020010148W WO2021187683A1 WO 2021187683 A1 WO2021187683 A1 WO 2021187683A1 KR 2020010148 W KR2020010148 W KR 2020010148W WO 2021187683 A1 WO2021187683 A1 WO 2021187683A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
quality inspection
learning
product
defect
Prior art date
Application number
PCT/KR2020/010148
Other languages
English (en)
French (fr)
Inventor
추연학
정재호
양종현
Original Assignee
라온피플 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 라온피플 주식회사 filed Critical 라온피플 주식회사
Priority to CN202080076418.4A priority Critical patent/CN114631115A/zh
Publication of WO2021187683A1 publication Critical patent/WO2021187683A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection

Definitions

  • Embodiments disclosed in the present specification relate to a method and system for quality inspection of new products using deep learning, and more specifically, a product production line using a pre-trained model to inspect the defects of a product produced in a production line. It relates to a method and system for inspecting defects of new products newly produced in the company.
  • a learning process of the artificial neural network is required to identify whether a product is defective using the artificial neural network. That is, it is common to acquire an image of a defective product that may occur in the production process, and train an artificial neural network in a supervised learning method using the acquired image of the defective product.
  • Korea Patent Publication No. 10-2000-0087346 which is a prior art document, relates to a method for learning and managing artificial intelligence on the Internet.
  • teachers and learners are registered, and the teacher can create and use the questions and test questions they want to use.
  • it does not perform the learning of artificial intelligence quickly.
  • Embodiments disclosed in the present specification are aimed at presenting a method and system for quality inspection of new products using deep learning.
  • Embodiments disclosed in the present specification it is an object to present a quality inspection method and system of a new product for filtering the defect by learning the image of the good product of the new product.
  • Embodiments disclosed in the present specification are aimed at presenting a quality inspection method and system for a new product that generates a defective image of a new product based on a defective image generated based on a defective image of an existing product and a defective image of a new product. There is this.
  • Embodiments disclosed herein have an object to present a quality inspection method and system for a new product that performs patch learning based on a defective image of an existing product and a defective image of a new product.
  • Embodiments disclosed in the present specification provide a method and system for quality inspection of new products for filtering defects among new products and classifying defective types of the filtered defective products.
  • Embodiments disclosed herein have an object to present a new product quality inspection method and system for training a classification model using a defective image.
  • the quality inspection of the new product is performed based on a defective image that is an image of an existing product with defects. It may include a learning data generation system for generating learning data necessary for learning for learning and a defect identification system for learning the learning data and performing quality inspection of the new product based on the learning.
  • learning data necessary for learning for quality inspection of the new product is generated It may include the step of performing the quality inspection of the new product based on the step of, learning the learning data and learning.
  • a computer-readable recording medium on which a program for performing a quality inspection method is recorded.
  • the quality inspection method performs quality inspection of the new product based on a defective image that is an image of an existing product with defects It may include the steps of generating learning data necessary for learning, learning the learning data, and performing a quality check of the new product based on the learning.
  • the quality inspection method is a computer program stored in the medium to perform the quality inspection method and performed by the quality inspection system, the new product based on the defective image, which is an image of the existing product with defects. It may include the steps of generating learning data necessary for learning for quality inspection of, learning the learning data, and performing quality inspection of the new product based on the learning.
  • any one of the above-mentioned problem solving means it is possible to present a quality inspection method and system for a new product using deep learning.
  • any one of the above-described problem solving means it is possible to present a quality inspection method and system for a new product that can learn a good product image of a new product and quickly filter out defects of the new product.
  • a new product quality inspection method and system for generating a defective image of a new product based on a defective image generated based on a defective image of an existing product and a defective image of a new product can do.
  • a new product quality inspection method and system for reinforcing learning about defects by performing patch learning based on a defective image of an existing product and a defect image of a new product can do.
  • FIG. 1 is a block diagram illustrating a quality inspection system according to an embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of a quality inspection system according to an embodiment.
  • 3 to 5 are flowcharts for explaining a quality inspection method according to an embodiment.
  • 'Artificial neural network' is an information processing technology that performs complex control by correlating input and output in detail by engineering the advanced information processing mechanism of the biological nervous system. It is a network in which three types of neuron (neuron) models are connected in plurality, consisting of a hidden layer that prioritizes inputs and outputs and adjusts the correlation, and an output layer that calculates and outputs the required amount of control based on this.
  • neuron neuron
  • the quality inspection system 10 to be described below, for example, is coupled or connected to an inspection device for inspecting a product using machine vision and uses the acquired product image to train an artificial neural network or inspect or measure whether a product is defective. can do.
  • machine vision refers to automating the industry through a camera (visual recognition), CPU, and SW, instead of the conventional method that humans judged with the naked eye in order to inspect or measure an object.
  • the supervised learning method is a method of machine learning that is performed using training data including values to be output as a result.
  • Unsupervised learning is a learning method to find out how data is structured. Unlike supervised learning or reinforcement learning, a target value that should be output as a result is not given to the learning data. .
  • Unclassified product is a product classified as a non-normal product by an artificial neural network that is unsupervised based on the photographed image of a normal product
  • ‘defective product’ is a product that has defects in the actual product among unclassified products.
  • the 'defective image' is an image of an existing product identified as a defective product among existing products produced on the production line, and the 'defective image' is a virtual defect image of a new product produced in the production line where the existing product was produced. It is a virtual bad image created by synthesizing
  • FIG. 1 is a configuration diagram for explaining a quality inspection system 10 according to an embodiment.
  • the quality inspection system 10 records a new product in production through a machine vision camera and inputs the acquired image to the artificial neural network to determine whether the product is defective or not. can be inspected.
  • the quality inspection system 10 may generate learning data necessary for learning of an artificial neural network used for quality inspection of a new product based on a defective image of an existing product with a defect, and learn the generated learning data. This enables quality inspection of new products.
  • the quality inspection system 10 includes a learning data generation system 11 and learning data that generate learning data necessary for learning of an artificial neural network for quality inspection of a new product based on a defective image, which is an image of an existing product with defects. It may include a defect identification system 12 for learning the quality of the new product.
  • each of the learning data generation system 11 and the defect identification system 12 constituting the quality inspection system 10 may be implemented as a computer that can be connected to a remote server through the network N or connectable to other terminals and servers.
  • the computer may include, for example, a laptop equipped with a web browser, a desktop, and a laptop.
  • each of the learning data generation system 11 and the failure identification system 12 constituting the quality inspection system 10 may be physically separated and implemented in a separate server or implemented in one server.
  • the quality inspection system 10 may be implemented in a cloud form in which physically separated servers are connected through a network to logically form one system.
  • the learning data generation system 11 learns a defective image, which is an image of an existing product, which is determined to have a defect, among images of an existing product taken through a machine vision camera, and learns a new product in the defective identification system 12 to be described later. It is possible to generate learning data used for quality inspection of
  • the defect identification system 12 can learn by inputting the learning data generated in the above-described learning data generating system 11 into the artificial neural network, and using the learned artificial neural network, the new product photographed through the machine vision camera. Based on the image, it is possible to inspect whether the new product is defective, and the defective type can be identified for the new product determined to be defective.
  • each of the learning data generation system 11 and the failure identification system 12 may include an artificial neural network or be connected to an artificial neural network implemented in a physically spaced third server, depending on the embodiment.
  • the artificial neural network is implemented in the learning data generation system 11 and the failure identification system 12 .
  • the quality inspection system 10 may include a learning data generation system 11 and a defect identification system 12 .
  • the learning data generating system 11 may include a learning data control unit 111 , a learning data communication unit 112 , and a learning data memory 113 .
  • the learning data control unit 111 controls the overall operation of the learning data generation system 11, and may include a processor such as a CPU.
  • the learning data control unit 111 may control other components included in the learning data generating system 11 to process the data received through the learning data communication unit 112 to perform an operation for generating the learning data.
  • the learning data control unit 111 may execute a program stored in the learning data memory 113 , read a file stored in the learning data memory 113 , or store a new file in the learning data memory 113 . have.
  • the learning data control unit 111 may acquire a defective image, which is an image of an existing product with defects, through the learning data communication unit 112, which will be described later, and may learn the obtained defective image.
  • the learning data control unit 111 may acquire a defective image, which is an image of an existing product having a defect, among existing products that have been subjected to quality inspection in the defect identification system 12, which will be described later. Through this, it is possible to learn the pattern, location, size, or shape of the defect included in the defective image.
  • the learning data control unit 111 may learn an image of a good product, which is an image of a new product that can pass the quality inspection.
  • the learning data control unit 111 may acquire a non-defective image for a new product that can pass the quality inspection through the learning data communication unit 112 , and may learn the acquired non-defective image.
  • the learning data control unit 111 may generate a defect image for the new product based on the learned defective image of the existing product and the good image of the new product.
  • the learning data control unit 111 may generate various types of defects based on the pattern, location, size, or shape of the defect included in the learned defective image, and convert the generated defect into a defective image of a new product. can be synthesized to create a defect image.
  • the defect identification system 12 to be described later can be quickly learned by using the defect image generated by combining the defect generated in the existing product with the defective image of the new product.
  • the learning data control unit 111 may generate learning data necessary for learning for quality inspection of new products.
  • the learning data control unit 111 may generate training data by cropping a region in which a defect exists in each of the defective image and the defective image, or may generate learning data including the defective image and the defective image.
  • the learning data control unit 111 may provide the generated learning data to the failure identification system 12 to be described later.
  • the learning data communication unit 112 may perform wired/wireless communication with other devices or networks.
  • the learning data communication unit 112 may include a communication module that supports at least one of various wired and wireless communication methods.
  • the communication module may be implemented in the form of a chipset.
  • the wireless communication supported by the learning data communication unit 112 may be, for example, Wi-Fi (Wireless Fidelity), Wi-Fi Direct, Bluetooth, UWB (Ultra Wide Band) or NFC (Near Field Communication), etc.
  • the wired communication supported by the learning data communication unit 112 may be, for example, USB or High Definition Multimedia Interface (HDMI).
  • HDMI High Definition Multimedia Interface
  • the learning data communication unit 112 may receive a good product image of a new product or acquire a bad image of an existing product from a third server or a bad identification system 12 to be described later, and the learning data control unit 111 generates The training data may be transmitted to the failure identification system 12 .
  • the learning data control unit 111 may access and use the data stored in the learning data memory 113 , or may store new data in the learning data memory 113 . Also, the learning data control unit 111 may execute a program installed in the learning data memory 113 .
  • the failure identification system 12 may include a failure identification input/output unit 121 , a failure identification control unit 122 , a failure identification communication unit 123 , and a failure identification memory 124 .
  • the defect identification input/output unit 121 of the defect identification system 12 displays information such as an input unit for shooting a new product being produced through a machine vision camera, a result of the operation, or the status of the defect identification system 12 It may include an output unit for
  • the defect identification input/output unit 121 may include a camera for photographing a new product disposed on a production line, a display panel for displaying a screen, and the like.
  • the input unit may include devices capable of receiving various types of user input, such as a keyboard, a physical button, a touch screen, a camera, or a microphone.
  • the machine vision camera is placed on the production line where the product is produced and can capture the product moving along the production line in real time.
  • the output unit may include a display panel or a speaker.
  • the present invention is not limited thereto, and the failure identification input/output unit 121 may include a configuration supporting various input/output.
  • the failure identification control unit 122 of the failure identification system 12 controls the overall operation of the failure identification system 12, and may include a processor such as a CPU.
  • the defective identification control unit 122 is implemented as an artificial neural network or based on the photographed image of the new product obtained through the defective identification input/output unit 121 using an artificial neural network implemented in a third server, normal or Defects can be checked, and for this purpose, other components included in the defect identification system 12 can be controlled.
  • Such a defect identification control unit 122 may learn a good product image of a new product.
  • the defective identification control unit 122 may acquire and learn a non-defective image of a new product included in the learning data or a non-defective image of a new product captured through the defective identification input/output unit 121 .
  • failure identification control unit 122 may learn by using the learning data obtained from the learning data generation system (11).
  • the defect identification control unit 122 divides only the area in which the defect exists in the defect image, which is a virtual defective image for the new product included in the learning data generated by the learning data generation system 11, into a preset size, Patch learning can be performed.
  • defect identification control unit 122 may perform a quality inspection of the new product based on the learning.
  • the defect identification control unit 122 may classify a new product different from a good product image of the new product among new products subject to quality inspection as unclassified products.
  • the defective identification control unit 122 may compare a new product produced in the production line with an image taken with the machine vision camera of the defective identification input/output unit 121 and a previously learned good product image, and a new product different from the good product image A product can be classified as an unclassified product.
  • the defect identification control unit 122 may identify defective products in which defects exist among unclassified products.
  • the defect identification control unit 122 may identify whether a defect learned through patch learning exists on an image of an unclassified product, and may specify an area in which the defect is identified.
  • the defect identification control unit 122 may determine the defect type of the defective product based on the defect of the defective product in which the defect is found among the unclassified products.
  • the defect identification control unit 122 may classify and learn the defect according to the type of defect.
  • the defect identification control unit 122 may classify the defect based on the pattern, size, location, or shape of the defect included in the learning data when learning the learning data, and may determine the defect type according to the classified defect. have.
  • the defect identification control unit 122 may determine the defect type of the defective product based on the defect of the defective product.
  • the defect identification control unit 122 detects a line defect, a spot defect, an edge defect, etc. for a defective product determined to have a defect on the surface of the organic light emitting diode panel, which is a new product. Defective types of defective products can be determined.
  • 3 to 5 are flowcharts for explaining a quality inspection method according to an embodiment.
  • the quality inspection method according to the embodiment shown in FIGS. 3 to 5 includes steps that are time-series processed in the quality inspection system 10 shown in FIGS. 1 and 2 . Therefore, even if omitted below, the contents described above with respect to the quality inspection system 10 shown in FIGS. 1 and 2 may also be applied to the quality inspection method according to the embodiment shown in FIGS. 3 to 5 . .
  • the learning data generation system 11 of the quality inspection system 10 generates learning data necessary for learning for quality inspection of a new product based on a defective image, which is an image of an existing product with defects. It can be done (S3001).
  • the learning data generating system 11 uses a defect included in a defective image, which is a photographed image of an existing product with a defect among existing products, through a machine vision camera installed in a production line to create a good image of a new product. Defects can be combined to create defect images.
  • FIG. 4 is a flowchart specifically illustrating a method of generating learning data according to an embodiment.
  • the learning data generating system 11 may learn a defective image of an existing product ( S4001 ).
  • the learning data generation system 11 can acquire an image of an existing product photographed through a machine vision camera installed in a production line, and learns the acquired image by an unsupervised learning method to learn the existing defective product. It can learn bad images of products.
  • the learning data generating system 11 may learn the defective image of the existing product obtained from the manager by the supervised learning method.
  • the learning data generation system 11 may generate a defect image for the new product based on the good product image, which is an image for the new product that can pass the quality inspection (S4002).
  • the learning data generation system 11 may acquire a defective product image of a new product, and based on the obtained non-defective image, synthesize the defects included in the existing product learned in step S4001 to obtain a defect image for the new product. can create In this case, the learning data generation system 11 may synthesize the defects in a similar or identical pattern based on the defect image of the existing product with respect to the location, size, and shape of the defect synthesized when generating the defect image.
  • the learning data generating system 11 may generate learning data based on at least one of a defective image and a defective image (S4003).
  • the learning data generating system 11 may generate learning data including defect images including various types of defects for a new product through step S4002.
  • the defect identification system 12 of the quality inspection system 10 may learn the learning data generated in step S3001 (S3002).
  • the defect identification system 12 may patch-learn an area including a defect by dividing at least one of a defective image or a defect image that is an image included in the training data generated in step S3001.
  • the defective identification system 12 may perform learning by acquiring an image of a good product for a new product.
  • the defect identification system 12 may acquire an image of a new product and may learn a good product image of the new product through an unsupervised learning method for the acquired image.
  • defect identification system 12 may perform a quality inspection of the new product based on the learning (S3003).
  • the defect identification system 12 may identify whether a defect exists in the image of the new product photographed through the machine vision camera based on the learning in step S3002.
  • FIG. 5 is a flowchart illustrating a quality inspection process for a new product according to an exemplary embodiment.
  • the defect identification system 12 may photograph a new product produced on the production line through a machine vision camera (S5001), and a new product based on the good product image for the new product learned in step S3002 can be classified into normal products and unclassified products.
  • a machine vision camera S5001
  • a new product based on the good product image for the new product learned in step S3002 can be classified into normal products and unclassified products.
  • the defective identification system 12 may classify a new product different from the good product image as an unclassified product based on the good product image of the new product learned by the unsupervised learning method in step S3002 . And the defective identification system 12 may classify a new product that is not classified as an unclassified product as a normal product.
  • the defect identification system 12 may identify whether a defect exists in the image of a new product classified as an unclassified product (S5003).
  • the defect identification system 12 may identify whether a defect of the same or similar type as the defect learned by the patch method in step S3002 exists based on the image of the new product classified as an unclassified product. And if there is no defect in the image of the new product classified as an unclassified product, the defective identification system 12 can classify the new product, which is the unclassified product, as a normal product. can be classified as
  • the defect identification system 12 may identify the defect type of the defective product for which the defect is identified ( S5004 ).
  • the defect identification system 12 may learn the defects included in the learning data by an unsupervised learning method for each defect type when learning the learning data in step S3002.
  • the defect identification system 12 may learn the pattern, size, location, or shape of the defect generated according to the defect type, respectively, and based on the learning, an image of a new product classified as a defective product in step S5003 Line defect, spot defect, edge defect, light leak defect, butterfly defect, stain defect, non-uniformity based on the defects included in A defect type can be identified as any one of uniform defect, cloud defect, and terrain defect.
  • ' ⁇ unit' used in the above embodiments means software or hardware components such as field programmable gate array (FPGA) or ASIC, and ' ⁇ unit' performs certain roles.
  • '-part' is not limited to software or hardware.
  • the ' ⁇ unit' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors.
  • ' ⁇ ' denotes components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and procedures. , subroutines, segments of program patent code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and ' ⁇ units' may be implemented to play one or more CPUs in a device or secure multimedia card.
  • the quality inspection method according to the embodiment described with reference to FIGS. 3 to 5 may also be implemented in the form of a computer-readable medium for storing instructions and data executable by a computer.
  • the instructions and data may be stored in the form of program code, and when executed by the processor, a predetermined program module may be generated to perform a predetermined operation.
  • computer-readable media can be any available media that can be accessed by a computer, and includes both volatile and nonvolatile media, removable and non-removable media.
  • the computer-readable medium may be a computer recording medium, which is a volatile and non-volatile and non-volatile storage medium implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules, or other data.
  • the computer recording medium may include magnetic storage media such as HDD and SSD, optical recording media such as CD, DVD and Blu-ray disc, or accessible through a network. It may be memory included in the server.
  • the quality inspection method according to the embodiment described with reference to FIGS. 3 to 5 may be implemented as a computer program (or computer program product) including instructions executable by a computer.
  • the computer program includes programmable machine instructions processed by a processor, and may be implemented in a high-level programming language, an object-oriented programming language, an assembly language, or a machine language.
  • the computer program may be recorded in a tangible computer-readable recording medium (eg, a memory, a hard disk, a magnetic/optical medium, or a solid-state drive (SSD), etc.).
  • the quality inspection method according to the embodiment described with reference to FIGS. 3 to 5 may be implemented by executing the computer program as described above by the computing device.
  • the computing device may include at least a portion of a processor, a memory, a storage device, a high-speed interface connected to the memory and the high-speed expansion port, and a low-speed interface connected to the low-speed bus and the storage device.
  • Each of these components is connected to each other using various buses, and may be mounted on a common motherboard or in any other suitable manner.
  • the processor may process a command within the computing device, such as for displaying graphic information for providing a Graphical User Interface (GUI) on an external input or output device, such as a display connected to a high-speed interface.
  • GUI Graphical User Interface
  • Examples are instructions stored in memory or a storage device.
  • multiple processors and/or multiple buses may be used with multiple memories and types of memory as appropriate.
  • the processor may be implemented as a chipset formed by chips including a plurality of independent analog and/or digital processors.
  • Memory also stores information within the computing device.
  • the memory may be configured as a volatile memory unit or a set thereof.
  • the memory may be configured as a non-volatile memory unit or a set thereof.
  • the memory may also be another form of computer readable medium such as, for example, a magnetic or optical disk.
  • a storage device may provide a large-capacity storage space to the computing device.
  • a storage device may be a computer-readable medium or a component comprising such a medium, and may include, for example, devices or other components within a storage area network (SAN), a floppy disk device, a hard disk device, an optical disk device, or a tape device, a flash memory, or other semiconductor memory device or device array similar thereto.
  • SAN storage area network
  • floppy disk device a hard disk device
  • an optical disk device or a tape device
  • flash memory or other semiconductor memory device or device array similar thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Signal Processing (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

딥러닝을 이용한 신규 제품의 품질 검사 방법 및 시스템을 제시하며, 딥러닝을 이용한 신규 제품의 품질 검사 방법 및 시스템은 결함이 존재하는 기존 제품의 이미지인 불량 이미지를 기초로 상기 신규 제품의 품질검사를 위한 학습에 필요한 학습데이터를 생성하는 학습데이터생성시스템 및 상기 학습데이터를 학습하고, 학습에 기초하여 상기 신규 제품의 품질검사를 수행하는 불량식별시스템을 포함할 수 있다.

Description

딥러닝을 이용한 신규 제품의 품질 검사 방법 및 시스템
본 명세서에서 개시되는 실시예들은 딥러닝을 이용한 신규 제품의 품질 검사 방법 및 시스템에 관한 것으로, 보다 상세하게는 생산라인에서 생산되는 제품의 불량을 검사하기 위해 기 학습된 모델을 이용하여 제품 생산라인에서 새롭게 생산되는 신규 제품의 불량을 검사하는 방법 및 시스템에 관한 것이다.
컴퓨팅 기술의 발전에 따라 기계학습의 적용이 증가하고 있다. 특히, 최근에는 기계학습 중에서 인공신경망으로 대변되는 딥러닝 기술이 비약적으로 발전하고 있으며, 다양한 산업 현장에서 응용 사례가 늘어가고 있다. 제조업 분야에 있어서도 인공신경망은 혁신적으로 제조 현장을 변화시켜 가고 있다.
기존 룰(Rule) 기반의 테스트 방식은 생산라인에서 발생하는 비정형 불량을 검출하지 못했지만, 인공신경망은 비정형 불량을 사람과 같이 추출하는 것이 가능하다. 기존에는 비정형 불량에 대해 제품의 생산라인에서 사람이 직접 불량을 판단하였으나, 이제는 인공신경망을 이용한 머신 비전을 이용하여 제품의 불량 여부를 판단하여 적용하는 사례가 늘고 있다.
이와 같이 인공신경망을 이용하여 제품이 불량인지 여부를 식별하기 위해 인공신경망의 학습과정이 필요하다. 즉, 생산과정에서 발생할 수 있는 불량 제품의 이미지를 획득하고, 획득된 불량 제품의 이미지를 이용하여 인공신경망을 지도 학습 방식으로 학습시키는 것이 일반적이다.
신규 생산되는 제품에 대해 인공신경망을 이용한 제품의 불량을 검출하기 위해서는 신규 제품의 불량이미지를 이용하여 인공신경망을 학습시켜야 하지만, 신규 제품의 생산과정에서 불량발생률이 매우 낮은 것이 보통이기에 신규 제품에 대한 불량상태의 이미지를 획득하기 어려워 인공신경망을 학습하는데 오랜 시간이 걸린다는 문제점이 있다.
관련하여 선행 기술 문헌인 한국특허공개번호 제10-2000-0087346 호는 인터넷 인공지능 학습 및 관리 방법에 관한 것이다. 인터넷을 통하여 선생과 학습자를 등록시키고 선생은 사용하고자 하는 문제출제와 시험문제를 만들어 사용할 수 있으며, 학습자는 문제데이터 베이스에 수록된 문제를 출제받아 학습하고 그 학습 결과를 정밀하게 평가받은 내용에 대해 기술하고 있지만 인공지능의 학습을 빠르게 수행하지 못한다.
따라서 상술된 문제점을 해결하기 위한 기술이 필요하게 되었다.
한편, 전술한 배경기술은 발명자가 본 발명의 도출을 위해 보유하고 있었거나, 본 발명의 도출 과정에서 습득한 기술 정보로서, 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지기술이라 할 수는 없다.
본 명세서에서 개시되는 실시예들은, 딥러닝을 이용한 신규 제품의 품질 검사 방법 및 시스템을 제시하는데 목적이 있다.
본 명세서에서 개시되는 실시예들은, 신규 제품의 양품 이미지를 학습시켜 불량을 필터링하는 신규 제품의 품질 검사 방법 및 시스템을 제시하는데 목적이 있다.
본 명세서에서 개시되는 실시예들은, 기존 제품의 불량 이미지를 기초로 생성된 불량 이미지 및 신규 제품의 양품 이미지를 기초로 신규 제품의 결함 이미지를 생성하는 신규 제품의 품질 검사 방법 및 시스템을 제시하는데 목적이 있다.
본 명세서에서 개시되는 실시예들은, 기존 제품의 불량 이미지와 신규 제품의 결함 이미지를 기초로 패치(patch) 학습을 수행하는 신규 제품의 품질 검사 방법 및 시스템을 제시하는데 목적이 있다.
본 명세서에서 개시되는 실시예들은, 신규 제품 중 불량을 필터링하고, 필터링된 불량제품의 불량 유형을 분류하는 신규 제품의 품질 검사 방법 및 시스템을 제시하는데 목적이 있다.
본 명세서에서 개시되는 실시예들은, 불량 이미지를 이용하여 분류 모델을 학습시키는 신규 제품의 품질 검사 방법 및 시스템을 제시하는데 목적이 있다.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 일 실시예에 따르면, 신규 제품의 품질을 검사하는 시스템에 있어서, 결함이 존재하는 기존 제품의 이미지인 불량 이미지를 기초로 상기 신규 제품의 품질검사를 위한 학습에 필요한 학습데이터를 생성하는 학습데이터생성시스템 및 상기 학습데이터를 학습하고, 학습에 기초하여 상기 신규 제품의 품질검사를 수행하는 불량식별시스템을 포함할 수 있다.
다른 실시예에 따르면, 품질검사시스템이 신규 제품의 품질을 검사하는 방법에 있어서, 결함이 존재하는 기존 제품의 이미지인 불량 이미지를 기초로 상기 신규 제품의 품질검사를 위한 학습에 필요한 학습데이터를 생성하는 단계, 상기 학습데이터를 학습하는 단계 및 학습에 기초하여 상기 신규 제품의 품질검사를 수행하는 단계를 포함할 수 있다.
또 다른 실시예에 따르면, 품질검사방법을 수행하는 프로그램이 기록된 컴퓨터 판독 가능한 기록매체로 상기 품질검사방법은, 결함이 존재하는 기존 제품의 이미지인 불량 이미지를 기초로 상기 신규 제품의 품질검사를 위한 학습에 필요한 학습데이터를 생성하는 단계, 상기 학습데이터를 학습하는 단계 및 학습에 기초하여 상기 신규 제품의 품질검사를 수행하는 단계를 포함할 수 있다.
그리고 다른 실시예에 따르면, 품질검사시스템에 의해 수행되며 품질검사방법을 수행하기 위해 매체에 저장된 컴퓨터프로그램으로 상기 품질검사방법은, 결함이 존재하는 기존 제품의 이미지인 불량 이미지를 기초로 상기 신규 제품의 품질검사를 위한 학습에 필요한 학습데이터를 생성하는 단계, 상기 학습데이터를 학습하는 단계 및 학습에 기초하여 상기 신규 제품의 품질검사를 수행하는 단계를 포함할 수 있다.
전술한 과제 해결 수단 중 어느 하나에 의하면, 딥러닝을 이용한 신규 제품의 품질 검사 방법 및 시스템을 제시할 수 있다.
전술한 과제 해결 수단 중 어느 하나에 의하면, 신규 제품의 양품 이미지를 학습시켜 신규 제품의 불량을 빠르게 필터링할 수 있는 신규 제품의 품질 검사 방법 및 시스템을 제시할 수 있다.
전술한 과제 해결 수단 중 어느 하나에 의하면, 기존 제품의 불량 이미지를 기초로 생성된 불량 이미지 및 신규 제품의 양품 이미지를 기초로 신규 제품의 불량 이미지를 생성하는 신규 제품의 품질 검사 방법 및 시스템을 제시할 수 있다.
전술한 과제 해결 수단 중 어느 하나에 의하면, 기존 제품의 불량 이미지와 신규 제품의 결함 이미지를 기초로 패치(patch) 학습을 수행하여 결함에 대한 학습을 강화하는 신규 제품의 품질 검사 방법 및 시스템을 제시할 수 있다.
전술한 과제 해결 수단 중 어느 하나에 의하면, 신규 제품 중 불량을 필터링하고, 필터링된 불량제품의 불량 유형을 분류하는 신규 제품의 품질 검사 방법 및 시스템을 제시할 수 있다.
개시되는 실시예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 개시되는 실시예들이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1 은 일 실시예에 따른 품질검사시스템을 도시한 구성도이다.
도 2 는 일 실시예에 따른 품질검사시스템의 구성을 도시한 블록도이다.
도 3 내지 도 5 는 일 실시예에 따른 품질검사방법을 설명하기 위한 순서도이다.
아래에서는 첨부한 도면을 참조하여 다양한 실시예들을 상세히 설명한다. 아래에서 설명되는 실시예들은 여러 가지 상이한 형태로 변형되어 실시될 수도 있다. 실시예들의 특징을 보다 명확히 설명하기 위하여, 이하의 실시예들이 속하는 기술분야에서 통상의 지식을 가진 자에게 널리 알려져 있는 사항들에 관해서 자세한 설명은 생략하였다. 그리고, 도면에서 실시예들의 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 구성이 다른 구성과 "연결"되어 있다고 할 때, 이는 ‘직접적으로 연결’되어 있는 경우뿐 아니라, ‘그 중간에 다른 구성을 사이에 두고 연결’되어 있는 경우도 포함한다. 또한, 어떤 구성이 어떤 구성을 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 그 외 다른 구성을 제외하는 것이 아니라 다른 구성들을 더 포함할 수도 있음을 의미한다.
이하 첨부된 도면을 참고하여 실시예들을 상세히 설명하기로 한다.
다만 이를 설명하기에 앞서, 아래에서 사용되는 용어들의 의미를 먼저 정의한다.
‘인공신경망’은 생물 신경계의 고도의 정보처리기구를 공학적으로 모방해서 입력과 출력을 상호 간에 상세히 관련지어 복잡한 제어를 하는 정보처리기술로 스위치나 각 센서 등에서 신호를 보내는 입력 레이어, 그 정보를 바탕으로 입력과 출력의 우선순위를 정하면서 상호관계를 조정하는 은닉 레이어, 이것을 바탕으로 필요한 제어량을 산출해서 출력하는 출력 레이어로 구성된 3종류의 뉴론(신경세포) 모델이 복수로 연결된 네트워크이다.
이하에서 설명할 품질검사시스템(10)은 예를 들어 머신 비전을 이용한 제품을 검사하는 검사장치에 결합 또는 연결되어 획득된 제품 이미지를 이용하여 인공신경망을 학습시키거나 제품의 결함 여부를 검사하거나 측정할 수 있다.
여기서 머신 비전이란, 물체를 검사하거나 측정하기 위해, 사람이 육안으로 판단하던 기존의 방식을 대신하여, 카메라(시각 인식), CPU, SW를 통해 산업을 자동화시켜주는 것을 의미한다.
그리고 지도 학습방법(Supervised Learning)은 결과로 출력되어야 하는 값이 포함된 학습데이터(Training Data)를 이용하여 수행하는 기계 학습(Machine Learning)의 한 방법이다.
비지도 학습방법(Unsupervised Learning)은 데이터가 어떻게 구성되었는지를 알아내기 위한 학습방법으로 지도 학습(Supervised Learning) 혹은 강화 학습(Reinforcement Learning)과는 달리 학습데이터에 결과로 출력되어야 하는 목표치가 주어지지 않는다.
‘미분류제품’은 정상제품의 촬영이미지를 기초로 비지도 학습된 인공신경망에 의해 정상제품이 아닌 제품으로 분류된 제품이고, ‘불량제품’은 미분류제품 중 실제 제품에 결함이 존재하는 제품이다.
‘불량 이미지’는 생산라인에서 생산되었던 기존 제품 중 불량제품으로 식별된 기존 제품을 촬영한 이미지이고, ‘결함 이미지’는 기존 제품이 생산되었던 생산라인에서 생산되는 신규 제품의 양품 이미지에 가상의 결함을 합성하여 생성된 가상의 불량 이미지이다.
위에 정의한 용어 이외에 설명이 필요한 용어는 아래에서 각각 따로 설명한다.
도 1 은 일 실시예에 따른 품질검사시스템(10)를 설명하기 위한 구성도이다.
품질검사시스템(10)은 기존 제품을 생산하던 기 생산라인에서 신규 제품을 생산하는 경우에도 머신 비전용 카메라를 통해 생산 중인 신규 제품을 촬영하여 획득된 촬영이미지를 인공신경망에 입력하여 불량인지 여부를 검사할 수 있다. 이를 위해 품질검사시스템(10)는 결함이 존재하는 기존 제품에 대한 불량 이미지를 기초로 신규 제품의 품질검사에 이용되는 인공신경망의 학습에 필요한 학습데이터를 생성할 수 있고, 생성된 학습데이터를 학습하여 신규 제품의 품질 검사를 수행할 수 있다.
이러한 품질검사시스템(10)은 결함이 존재하는 기존 제품의 이미지인 불량 이미지를 기초로 신규 제품의 품질검사를 위한 인공신경망의 학습에 필요한 학습데이터를 생성하는 학습데이터생성시스템(11)과 학습데이터를 학습하여 신규 제품의 품질 검사를 수행하는 불량식별시스템(12)을 포함할 수 있다.
그리고 품질검사시스템(10)을 구성하는 학습데이터생성시스템(11)과 불량식별시스템(12) 각각은 네트워크(N)를 통해 원격지의 서버에 접속하거나, 타 단말 및 서버와 연결 가능한 컴퓨터로 구현될 수 있다. 여기서, 컴퓨터는 예를 들어, 웹 브라우저(WEB Browser)가 탑재된 노트북, 데스크톱(desktop), 랩톱(laptop)등을 포함할 수 있다.
그리고 품질검사시스템(10)을 구성하는 학습데이터생성시스템(11)과 불량식별시스템(12) 각각은 물리적으로 분리되어 별도의 서버에서 구현되거나 또는 하나의 서버에서 구현될 수 있다. 또한, 품질검사시스템(10)은 물리적으로 분리된 서버가 네트워크를 통해 연결되어 논리적으로 하나의 시스템을 형성하는 클라우드 형태로 구현될 수 있다.
우선, 학습데이터생성시스템(11)은 머신 비전 카메라를 통해 촬영된 기존 제품의 이미지 중 결함이 존재하는 것으로 판단된 기존 제품의 이미지인 불량 이미지를 학습하여 후술할 불량식별시스템(12)에서 신규 제품의 품질 검사를 위해 이용되는 학습데이터를 생성할 수 있다.
그리고 불량식별시스템(12)은 상술한 학습데이터생성시스템(11)에서 생성된 학습데이터를 인공신경망에 입력하여 학습할 수 있고, 학습된 인공신경망을 이용하여 머신 비전 카메라를 통해 촬영된 신규 제품의 이미지를 기초로 신규 제품이 불량인지 여부를 검사할 수 있고, 불량제품으로 판단된 신규 제품에 대해서는 불량 유형을 식별할 수 있다.
이때, 학습데이터생성시스템(11)과 불량식별시스템(12) 각각은 실시예에 따라, 인공신경망을 포함하거나 또는 물리적으로 이격된 제 3 의 서버에서 구현된 인공신경망과 연결될 수 있다. 이하에서는 학습데이터생성시스템(11)과 불량식별시스템(12) 내에 인공신경망이 구현된 것으로 가정하여 설명한다.
도 2 는 일 실시예에 따른 품질검사시스템(10)의 구성을 도시한 블록도이다. 도 2 를 참조하면, 일 실시예에 따른 품질검사시스템(10)은, 학습데이터생성시스템(11)과 불량식별시스템(12)을 포함할 수 있다.
우선, 학습데이터생성시스템(11)은 학습데이터제어부(111), 학습데이터통신부(112) 및 학습데이터메모리(113)를 포함할 수 있다.
학습데이터제어부(111)는 학습데이터생성시스템(11)의 전체적인 동작을 제어하며, CPU 등과 같은 프로세서를 포함할 수 있다. 학습데이터제어부(111)는 학습데이터통신부(112)를 통해 수신된 데이터를 처리하여 학습데이터를 생성하기 위한 동작을 수행하도록 학습데이터생성시스템(11)에 포함된 다른 구성들을 제어할 수 있다.
예를 들어, 학습데이터제어부(111)는 학습데이터메모리(113)에 저장된 프로그램을 실행시키거나, 학습데이터메모리(113)에 저장된 파일을 읽어오거나, 새로운 파일을 학습데이터메모리(113)에 저장할 수도 있다.
이러한 학습데이터제어부(111)는 결함이 존재하는 기존 제품의 이미지인 불량 이미지를 후술할 학습데이터통신부(112)를 통해 획득할 수 있으며, 획득된 불량 이미지를 학습할 수 있다.
예를 들어, 학습데이터제어부(111)는 후술할 불량식별시스템(12)에서 품질 검사를 수행하던 기존 제품 중 결함이 존재하는 기존 제품을 촬영한 이미지인 불량 이미지를 획득할 수 있고, 불량 이미지를 통해 불량 이미지에 포함된 결함의 패턴, 위치, 크기 또는 형태 등을 학습할 수 있다.
그리고 학습데이터제어부(111)는 품질검사의 통과가 가능한 신규 제품에 대한 이미지인 양품 이미지를 학습할 수 있다.
예를 들어, 학습데이터제어부(111)는 학습데이터통신부(112)를 통해 품질검사에서 통과 가능한 신규 제품에 대한 양품 이미지를 획득할 수 있고, 획득된 양품 이미지를 학습할 수 있다.
이후, 학습데이터제어부(111)는 학습된 기존 제품의 불량 이미지 및 신규 제품의 양품 이미지를 기초로 신규 제품에 대한 결함 이미지를 생성할 수 있다.
예를 들어, 학습데이터제어부(111)는 학습된 불량 이미지에 포함된 결함의 패턴, 위치, 크기 또는 형태 등을 기초로 다양한 형태의 결함을 생성할 수 있고, 생성된 결함을 신규 제품의 양품 이미지에 합성하여 결함 이미지를 생성할 수 있다.
이와 같이 신규 제품의 양품 이미지에 기존 제품에서 발생되는 결함을 결합하여 생성된 결함 이미지를 이용하여 후술할 불량식별시스템(12)을 빠르게 학습시킬 수 있다.
그리고 학습데이터제어부(111)는 신규 제품의 품질검사를 위한 학습에 필요한 학습데이터를 생성할 수 있다.
예를 들어, 학습데이터제어부(111)는 불량 이미지와 결함 이미지 각각에 결함이 존재하는 영역을 크롭핑하여 학습데이터를 생성하거나 또는 불량 이미지와 결함 이미지가 포함된 학습데이터를 생성할 수 있다.
이후, 학습데이터제어부(111)는 생성된 학습데이터를 후술할 불량식별시스템(12)으로 제공할 수 있다.
한편, 학습데이터통신부(112)는 다른 디바이스 또는 네트워크와 유무선 통신을 수행할 수 있다. 이를 위해, 학습데이터통신부(112)는 다양한 유무선 통신 방법 중 적어도 하나를 지원하는 통신 모듈을 포함할 수 있다. 예를 들어, 통신 모듈은 칩셋(chipset)의 형태로 구현될 수 있다.
학습데이터통신부(112)가 지원하는 무선 통신은, 예를 들어 Wi-Fi(Wireless Fidelity), Wi-Fi Direct, 블루투스(Bluetooth), UWB(Ultra Wide Band) 또는 NFC(Near Field Communication) 등일 수 있다. 또한, 학습데이터통신부(112)가 지원하는 유선 통신은, 예를 들어 USB 또는 HDMI(High Definition Multimedia Interface) 등일 수 있다.
이러한 학습데이터통신부(112)는 제 3 의 서버 또는 후술할 불량식별시스템(12)으로부터 신규 제품의 양품 이미지를 수신하거나 기존 제품의 불량 이미지를 획득할 수 있으며, 학습데이터제어부(111)가 생성한 학습데이터를 불량식별시스템(12)으로 전송할 수 있다.
학습데이터메모리(113)에는 파일, 어플리케이션 및 프로그램 등과 같은 다양한 종류의 데이터가 설치 및 저장될 수 있다. 학습데이터제어부(111)는 학습데이터메모리(113)에 저장된 데이터에 접근하여 이를 이용하거나, 또는 새로운 데이터를 학습데이터메모리(113)에 저장할 수도 있다. 또한, 학습데이터제어부(111)는 학습데이터메모리(113)에 설치된 프로그램을 실행할 수도 있다.
한편, 불량식별시스템(12)은 불량식별입출력부(121), 불량식별제어부(122), 불량식별통신부(123) 및 불량식별메모리(124)를 포함할 수 있다.
불량식별시스템(12)의 불량식별입출력부(121)는 머신 비전용 카메라를 통해 생산중인 신규 제품의 촬영을 위한 입력부와, 작업의 수행 결과 또는 불량식별시스템(12)의 상태 등의 정보를 표시하기 위한 출력부를 포함할 수 있다. 예를 들어, 불량식별입출력부(121)는 생산라인에 배치되어 생산되는 신규 제품을 촬영하는 카메라 및 화면을 표시하는 디스플레이 패널(display panel) 등을 포함할 수 있다.
구체적으로, 입력부는 키보드, 물리 버튼, 터치 스크린, 카메라 또는 마이크 등과 같이 다양한 형태의 사용자 입력을 수신할 수 있는 장치들을 포함할 수 있다. 특히 머신 비전용 카메라는 제품이 생산되는 생산라인에 배치되어 생산라인을 따라 이동하는 제품을 실시간으로 촬영할 수 있다.
또한, 출력부는 디스플레이 패널 또는 스피커 등을 포함할 수 있다. 다만, 이에 한정되지 않고 불량식별입출력부(121)는 다양한 입출력을 지원하는 구성을 포함할 수 있다.
그리고 불량식별시스템(12)의 불량식별제어부(122)는 불량식별시스템(12)의 전체적인 동작을 제어하며, CPU 등과 같은 프로세서를 포함할 수 있다. 그리고 불량식별제어부(122)는 인공신경망으로 구현되거나 또는 제 3 의 서버에 구현된 인공신경망을 이용하여 불량식별입출력부(121)를 통해 획득한 신규 제품의 촬영이미지를 기초로 신규 제품의 정상 또는 불량 여부를 검사할 수 있으며, 이를 위해 불량식별시스템(12)에 포함된 다른 구성들을 제어할 수 있다.
이러한, 불량식별제어부(122)는 신규 제품의 양품 이미지를 학습할 수 있다.
예를 들어, 불량식별제어부(122)는 학습데이터에 포함된 신규 제품의 양품 이미지 또는 불량식별입출력부(121)를 통해 촬영된 신규 제품의 양품 이미지를 획득하여 학습할 수 있다.
그리고 불량식별제어부(122)는 학습데이터생성시스템(11)으로부터 획득되는 학습데이터를 이용하여 학습할 수 있다.
예를 들어, 불량식별제어부(122)는 학습데이터생성시스템(11)에서 생성된 학습데이터에 포함된 신규 제품에 대한 가상의 불량 이미지인 결함 이미지에서 결함이 존재하는 영역만을 기 설정된 크기로 분할하여 패치(patch) 학습을 수행할 수 있다.
이와 같이, 기존 제품의 불량 이미지를 기초로 생성된 학습데이터에 대해 패치 학습을 통해 결함이 존재하는 영역의 학습을 통해 생산라인(공정)이 같아 기존 제품에 발생되는 결함의 유형과 비슷한 결함이 발생되는 신규 제품에 대해서도 품질검사를 수행할 수 있다.
그리고 불량식별제어부(122)는 학습에 기초하여 신규 제품의 품질검사를 수행할 수 있다.
실시예에 따라, 불량식별제어부(122)는 품질검사의 대상인 신규 제품 중 신규 제품의 양품 이미지와 상이한 신규 제품을 미분류제품으로 분류할 수 있다.
예를 들어, 불량식별제어부(122)는 생산라인에서 생산되는 신규 제품을 불량식별입출력부(121)의 머신 비전 카메라로 촬영된 이미지와 기 학습된 양품 이미지를 비교할 수 있고, 양품 이미지와 상이한 신규 제품을 미분류제품으로 분류할 수 있다.
그리고 불량식별제어부(122)는 미분류제품 중 결함이 존재하는 불량제품을 식별할 수 있다.
예를 들어, 불량식별제어부(122)는 패치학습을 통해 학습된 결함이 미분류제품의 이미지상에 존재하는지 여부를 식별할 수 있고, 결함이 식별된 영역을 특정할 수 있다.
이후, 불량식별제어부(122)는 미분류제품 중 결함이 발견된 불량제품의 결함을 기초로 불량제품의 불량 유형을 결정할 수 있다.
이때 실시예에 따라, 불량식별제어부(122)는 학습데이터를 이용하여 결함을 학습할 때, 결함을 불량의 유형에 따라 분류 학습할 수 있다.
예를 들어, 불량식별제어부(122)는 학습데이터 학습시 학습데이터에 포함된 결함의 패턴, 크기, 위치 또는 형태 등을 기준으로 결함을 분류할 수 있고, 분류된 결함에 따라 불량 유형을 결정할 수 있다.
그리고 불량식별제어부(122)는 불량제품의 결함에 기초하여 불량제품의 불량 유형을 결정할 수 있다.
예를 들어, 불량식별제어부(122)는 신규 제품인 유기발광다이오드 패널 중 표면에 결함이 존재한 것으로 판단된 불량제품에 대해 라인(Line) 결함, 스팟(spot) 결함, 에지(edge) 결함 등으로 불량제품의 불량 유형을 결정할 수 있다.
이와 같이 동일한 생산라인에서 신규 제품을 생산하더라도 기존 제품의 불량 이미지를 패치 학습함으로써 결함이 발생한 영역을 학습하고, 이를 신규 제품에 대한 품질검사에 적용함으로써 신규 제품에 대한 머신 비전의 적용시간을 단축시킴과 동시에 정확한 품질검사를 할 수 있다.
도 3 내지 도 5 는 일 실시예에 따른 품질검사방법을 설명하기 위한 순서도이다.
도 3 내지 도 5 에 도시된 실시예에 따른 품질검사방법은 도 1 및 도 2 에 도시된 품질검사시스템(10)에서 시계열적으로 처리되는 단계들을 포함한다. 따라서, 이하에서 생략된 내용이라고 하더라도 도 1 및 도 2 에 도시된 품질검사시스템(10)에 관하여 이상에서 기술한 내용은 도 3 내지 도 5 에 도시된 실시예에 따른 품질검사방법에도 적용될 수 있다.
우선 도 3 을 참조하면, 품질검사시스템(10)의 학습데이터생성시스템(11)은 결함이 존재하는 기존 제품의 이미지인 불량 이미지를 기초로 신규 제품의 품질검사를 위한 학습에 필요한 학습데이터를 생성할 수 있다(S3001).
예를 들어, 학습데이터생성시스템(11)은 생산라인에 설치된 머신 비전용 카메라를 통해 기존 제품 중 결함이 존재하는 기존 제품의 촬영 이미지인 불량 이미지에 포함된 결함을 이용하여 신규 제품의 양품 이미지에 결함을 결합하여 결함 이미지를 생성할 수 있다.
도 4 는 일 실시예에 따라 학습데이터를 생성하는 방법을 구체적으로 도시한 순서도이다.
도 4 를 참조하면, 학습데이터생성시스템(11)은 기존 제품의 불량 이미지를 학습할 수 있다(S4001).
예를 들어, 학습데이터생성시스템(11)은 생산라인에 설치된 머신 비전용 카메라를 통해 촬영된 기존 제품의 이미지를 획득할 수 있고, 획득된 이미지를 비지도 학습방법으로 학습하여 결함이 존재하는 기존 제품의 불량 이미지를 학습할 수 있다.
또는 예를 들어, 학습데이터생성시스템(11)은 관리자로부터 획득된 기존 제품의 불량 이미지를 지도 학습방법으로 학습할 수 있다.
그리고 학습데이터생성시스템(11)은 품질검사의 통과가 가능한 신규 제품에 대한 이미지인 양품 이미지를 기초로 신규 제품에 대한 결함 이미지를 생성할 수 있다(S4002).
예를 들어, 학습데이터생성시스템(11)은 신규 제품의 양품 이미지를 획득할 수 있고, 획득된 양품 이미지를 기초로 S4001단계에서 학습된 기존 제품에 포함된 결함을 합성하여 신규 제품에 대한 결함 이미지를 생성할 수 있다. 이때, 학습데이터생성시스템(11)은 결함 이미지를 생성시 합성하는 결함의 위치, 크기, 형태를 기존 제품의 불량 이미지를 기초로 유사하거나 동일한 패턴으로 결함을 합성할 수 있다.
이후, 학습데이터생성시스템(11)은 불량 이미지 및 결함 이미지 중 적어도 하나를 기초로 학습데이터를 생성할 수 있다(S4003).
예를 들어, 학습데이터생성시스템(11)은 S4002단계를 통해 신규 제품에 대해 다양한 형태의 결함이 포함된 결함 이미지를 포함한 학습데이터를 생성할 수 있다.
이후, 품질검사시스템(10)의 불량식별시스템(12)은 S3001단계에서 생성된 학습데이터를 학습할 수 있다(S3002).
예를 들어, 불량식별시스템(12)은 S3001단계에서 생성된 학습데이터에 포함된 이미지인 불량 이미지 또는 결함 이미지 중 적어도 하나에 대해 분할하여 결함이 포함된 영역을 패치(patch)학습할 수 있다.
또한, 불량식별시스템(12)은 신규 제품에 대한 양품 이미지를 획득하여 학습을 수행할 수 있다.
예를 들어, 불량식별시스템(12)은 신규 제품을 촬영한 이미지를 획득할 수 있고, 획득된 이미지에 대해 비지도 학습방법을 통해 신규 제품의 양품 이미지를 학습할 수 있다.
그리고 불량식별시스템(12)은 학습에 기초하여 신규 제품의 품질검사를 수행할 수 있다(S3003).
예를 들어, 불량식별시스템(12)은 S3002단계의 학습에 기초하여 머신 비전용 카메라를 통해 촬영되는 신규 제품의 이미지상에 결함이 존재하는 여부를 식별할 수 있다.
도 5 는 일실시예에 따라 신규 제품에 대한 품질 검사과정을 도시한 순서도이다.
도 5 를 참조하면, 불량식별시스템(12)는 머신 비전용 카메라를 통해 생산라인에서 생산되는 신규 제품을 촬영할 수 있고(S5001), S3002단계에서 학습된 신규 제품에 대한 양품 이미지를 기초로 신규 제품을 정상 제품과 미분류제품으로 분류할 수 있다.
예를 들어, 불량식별시스템(12)은 S3002단계에서 비지도 학습방법으로 학습된 신규 제품의 양품 이미지를 기초로 양품 이미지와 상이한 신규 제품을 미분류제품으로 분류할 수 있다. 그리고 불량식별시스템(12)은 미분류제품으로 분류되지 않은 신규 제품은 정상제품으로 분류할 수 있다.
그리고 불량식별시스템(12)은 미분류제품으로 분류된 신규 제품의 이미지에서 결함의 존재 여부를 식별할 수 있다(S5003).
예를 들어, 불량식별시스템(12)은 미분류제품으로 분류된 신규 제품의 이미지를 기초로 S3002단계에서 패치 방법으로 학습된 결함과 동일하거나 유사한 형태의 결함이 존재하는지 식별할 수 있다. 그리고 미분류제품으로 분류된 신규 제품의 이미지에서 결함이 존재하지 않으면, 불량식별시스템(12)은 해당 미분류제품인 신규 제품을 정상 제품으로 분류할 수 있으나 결함이 존재하는 경우 해당 미분류제품인 신규 제품을 불량제품으로 분류할 수 있다.
이후, 불량식별시스템(12)은 결함이 식별된 불량제품의 불량 유형을 식별할 수 있다(S5004).
이를 위해, 불량식별시스템(12)은 S3002단계에서 학습데이터의 학습시 학습데이터에 포함된 결함을 비지도 학습방법으로 불량 유형별로 학습할 수 있다.
예를 들어, 불량식별시스템(12)은 불량 유형에 따라 발생되는 결함의 패턴, 크기, 위치 또는 형태 등을 각각 학습할 수 있고, 학습에 기초하여 S5003단계에서 불량제품으로 분류된 신규 제품의 이미지에 포함된 결함을 기초로 라인(line) 불량, 스팟(spot) 불량, 에지(edge) 불량, 빛 번짐(light leak) 불량, 버터플라이(butterfly) 불량, 스테인(stain) 불량, 불균일(un-uniform) 불량, 클라우드(cloud) 불량, 터레인(terrain) 불량 중 어느 하나로 불량 유형을 식별할 수 있다.
이와 같이, 기존 제품의 불량 이미지를 이용하여 신규 제품에 대한 결함 이미지를 생성하여 학습함으로써 신규 제품에 대한 머신 비전을 이용한 품질검사를 위해 필요한 학습데이터의 수집과 학습에 걸리는 시간을 최소화함과 동시에 빠르게 신규 제품에 대한 품질검사를 수행할 수 있으며, 불량제품의 불량 유형도 식별할 수 있다.
이상의 실시예들에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(field programmable gate array) 또는 ASIC 와 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램특허 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다.
구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로부터 분리될 수 있다.
뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU 들을 재생시키도록 구현될 수도 있다.
도 3 내지 도 5 를 통해 설명된 실시예에 따른 품질검사방법은 컴퓨터에 의해 실행 가능한 명령어 및 데이터를 저장하는, 컴퓨터로 판독 가능한 매체의 형태로도 구현될 수 있다. 이때, 명령어 및 데이터는 프로그램 코드의 형태로 저장될 수 있으며, 프로세서에 의해 실행되었을 때, 소정의 프로그램 모듈을 생성하여 소정의 동작을 수행할 수 있다. 또한, 컴퓨터로 판독 가능한 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터로 판독 가능한 매체는 컴퓨터 기록 매체일 수 있는데, 컴퓨터 기록 매체는 컴퓨터 판독 가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함할 수 있다.예를 들어, 컴퓨터 기록 매체는 HDD 및 SSD 등과 같은 마그네틱 저장 매체, CD, DVD 및 블루레이 디스크 등과 같은 광학적 기록 매체, 또는 네트워크를 통해 접근 가능한 서버에 포함되는 메모리일 수 있다.
또한 도 3 내지 도 5 를 통해 설명된 실시예에 따른 품질검사방법은 컴퓨터에 의해 실행 가능한 명령어를 포함하는 컴퓨터 프로그램(또는 컴퓨터 프로그램 제품)으로 구현될 수도 있다. 컴퓨터 프로그램은 프로세서에 의해 처리되는 프로그래밍 가능한 기계 명령어를 포함하고, 고레벨 프로그래밍 언어(High-level Programming Language), 객체 지향 프로그래밍 언어(Object-oriented Programming Language), 어셈블리 언어 또는 기계 언어 등으로 구현될 수 있다. 또한 컴퓨터 프로그램은 유형의 컴퓨터 판독가능 기록매체(예를 들어, 메모리, 하드디스크, 자기/광학 매체 또는 SSD(Solid-State Drive) 등)에 기록될 수 있다.
따라서 도 3 내지 도 5 를 통해 설명된 실시예에 따른 품질검사방법은 상술한 바와 같은 컴퓨터 프로그램이 컴퓨팅 장치에 의해 실행됨으로써 구현될 수 있다. 컴퓨팅 장치는 프로세서와, 메모리와, 저장 장치와, 메모리 및 고속 확장포트에 접속하고 있는 고속 인터페이스와, 저속 버스와 저장 장치에 접속하고 있는 저속 인터페이스 중 적어도 일부를 포함할 수 있다. 이러한 성분들 각각은 다양한 버스를 이용하여 서로 접속되어 있으며, 공통 머더보드에 탑재되거나 다른 적절한 방식으로 장착될 수 있다.
여기서 프로세서는 컴퓨팅 장치 내에서 명령어를 처리할 수 있는데, 이런 명령어로는, 예컨대 고속 인터페이스에 접속된 디스플레이처럼 외부 입력, 출력 장치상에 GUI(Graphic User Interface)를 제공하기 위한 그래픽 정보를 표시하기 위해 메모리나 저장 장치에 저장된 명령어를 들 수 있다. 다른 실시예로서, 다수의 프로세서 및(또는) 다수의 버스가 적절히 다수의 메모리 및 메모리 형태와 함께 이용될 수 있다. 또한 프로세서는 독립적인 다수의 아날로그 및(또는) 디지털 프로세서를 포함하는 칩들이 이루는 칩셋으로 구현될 수 있다.
또한 메모리는 컴퓨팅 장치 내에서 정보를 저장한다. 일례로, 메모리는 휘발성 메모리 유닛 또는 그들의 집합으로 구성될 수 있다. 다른 예로, 메모리는 비휘발성 메모리 유닛 또는 그들의 집합으로 구성될 수 있다. 또한 메모리는 예컨대, 자기 혹은 광 디스크와 같이 다른 형태의 컴퓨터 판독 가능한 매체일 수도 있다.
그리고 저장장치는 컴퓨팅 장치에게 대용량의 저장공간을 제공할 수 있다. 저장 장치는 컴퓨터 판독 가능한 매체이거나 이런 매체를 포함하는 구성일 수 있으며, 예를 들어 SAN(Storage Area Network) 내의 장치들이나 다른 구성도 포함할 수 있고, 플로피 디스크 장치, 하드 디스크 장치, 광 디스크 장치, 혹은 테이프 장치, 플래시 메모리, 그와 유사한 다른 반도체 메모리 장치 혹은 장치 어레이일 수 있다.
상술된 실시예들은 예시를 위한 것이며, 상술된 실시예들이 속하는 기술분야의 통상의 지식을 가진 자는 상술된 실시예들이 갖는 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 상술된 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 명세서를 통해 보호 받고자 하는 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태를 포함하는 것으로 해석되어야 한다.

Claims (15)

  1. 신규 제품의 품질을 검사하는 시스템에 있어서,
    결함이 존재하는 기존 제품의 이미지인 불량 이미지를 기초로 상기 신규 제품의 품질검사를 위한 학습에 필요한 학습데이터를 생성하는 학습데이터생성시스템; 및
    상기 학습데이터를 학습하고, 학습에 기초하여 상기 신규 제품의 품질검사를 수행하는 불량식별시스템을 포함하는 품질검사시스템.
  2. 제 1 항에 있어서,
    상기 학습데이터생성시스템은,
    품질검사의 통과가 가능한 신규 제품에 대한 이미지인 양품 이미지를 기초로 상기 신규 제품에 대한 결함 이미지를 생성하는, 품질검사시스템.
  3. 제 2 항에 있어서,
    상기 학습데이터생성시스템은,
    상기 불량 이미지를 학습하고, 상기 불량 이미지의 학습을 기초로 상기 양품 이미지에 결함을 생성하여 상기 결함 이미지를 생성하는, 품질검사시스템.
  4. 제 2 항에 있어서,
    상기 학습데이터생성시스템은,
    상기 불량 이미지 및 상기 결함 이미지 중 적어도 하나를 기초로 상기 학습데이터를 생성하는, 품질검사시스템.
  5. 제 1 항에 있어서,
    상기 불량식별시스템은,
    상기 학습데이터에 포함된 이미지에서 결함이 포함된 영역에 대해 패치 학습을 수행하는, 품질검사시스템.
  6. 제 1 항에 있어서,
    상기 불량식별시스템은,
    상기 품질검사의 대상인 신규 제품 중 양품 이미지와 상이한 신규 제품을 미분류제품으로 분류하는, 품질검사시스템.
  7. 제 6 항에 있어서,
    상기 불량식별시스템은,
    분류된 미분류제품 중 결함이 존재하는 불량제품을 식별하는, 품질검사시스템.
  8. 제 7 항에 있어서,
    상기 불량식별시스템은,
    상기 불량제품 상의 결함을 기초로 상기 불량제품의 불량 유형을 결정하는, 품질검사시스템.
  9. 품질검사시스템이 신규 제품의 품질을 검사하는 방법에 있어서,
    결함이 존재하는 기존 제품의 이미지인 불량 이미지를 기초로 상기 신규 제품의 품질검사를 위한 학습에 필요한 학습데이터를 생성하는 단계;
    상기 학습데이터를 학습하는 단계; 및
    학습에 기초하여 상기 신규 제품의 품질검사를 수행하는 단계를 포함하는, 품질검사방법.
  10. 제 9 항에 있어서,
    상기 학습데이터를 생성하는 단계는,
    품질검사의 통과가 가능한 신규 제품에 대한 이미지인 양품 이미지를 기초로 상기 신규 제품에 대한 결함 이미지를 생성하는 단계를 포함하는, 품질검사방법.
  11. 제 10 항에 있어서,
    상기 학습데이터를 생성하는 단계는,
    상기 불량 이미지 및 상기 결함 이미지 중 적어도 하나의 이미지를 기초로 상기 학습데이터를 생성하는 단계를 포함하는, 품질검사방법.
  12. 제 9 항에 있어서,
    상기 학습데이터를 학습하는 단계는,
    상기 학습데이터에 포함된 이미지에서 결함이 포함된 영역에 대해 패치 학습을 수행하는 단계를 포함하는, 품질검사방법.
  13. 제 9 항에 있어서,
    상기 신규 제품의 품질검사를 수행하는 단계는,
    상기 품질검사의 대상인 신규 제품 중 양품 이미지와 상이한 신규 제품을 미분류제품으로 분류하는 단계를 포함하는, 품질검사방법.
  14. 제 13 항에 있어서,
    상기 품질검사방법은,
    분류된 미분류제품 중 결함이 존재하는 불량제품을 식별하는 단계를 더 포함하는, 품질검사방법.
  15. 제 9 항에 기재된 방법을 수행하는 프로그램이 기록된 컴퓨터 판독 가능한 기록 매체.
PCT/KR2020/010148 2020-03-20 2020-07-31 딥러닝을 이용한 신규 제품의 품질 검사 방법 및 시스템 WO2021187683A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080076418.4A CN114631115A (zh) 2020-03-20 2020-07-31 使用深度学习的新产品的质量检查方法及系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0034488 2020-03-20
KR1020200034488A KR102486230B1 (ko) 2020-03-20 2020-03-20 딥러닝을 이용한 신규 제품의 품질 검사 방법 및 시스템

Publications (1)

Publication Number Publication Date
WO2021187683A1 true WO2021187683A1 (ko) 2021-09-23

Family

ID=77768442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010148 WO2021187683A1 (ko) 2020-03-20 2020-07-31 딥러닝을 이용한 신규 제품의 품질 검사 방법 및 시스템

Country Status (3)

Country Link
KR (1) KR102486230B1 (ko)
CN (1) CN114631115A (ko)
WO (1) WO2021187683A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182855A1 (ko) * 2022-03-25 2023-09-28 경상국립대학교산학협력단 상하수도 시설물 결함 검출 방법 및 이를 지원하는 결함 검출 시스템

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102489115B1 (ko) * 2022-01-11 2023-01-17 주식회사 아이브 제조품의 비전 검사를 위한 심층 학습 방법 및 장치
KR102644815B1 (ko) * 2023-07-27 2024-03-08 주식회사 인터엑스 사출공정에 적용 가능한 딥러닝 기반 품질검사 시스템 및 그 제어방법
KR102627233B1 (ko) * 2023-09-26 2024-01-23 (주) 웨다 영상 기반 이상 탐지 모델을 이용한 초고압 전선 외관 품질 검사 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170200264A1 (en) * 2016-01-11 2017-07-13 Kla-Tencor Corporation Image based specimen process control
KR101863196B1 (ko) * 2017-07-24 2018-06-01 한국생산기술연구원 딥러닝 기반 표면 결함 검출장치 및 방법
KR101950681B1 (ko) * 2018-05-04 2019-02-21 주식회사 스켈터랩스 결함 검사 장치, 시스템, 방법 및 컴퓨터 판독가능 저장 매체
KR101975186B1 (ko) * 2018-07-04 2019-05-07 광운대학교 산학협력단 객체 검출을 위한 생성적 적대 신경망 기반의 데이터 생성 장치 및 방법
KR20190063839A (ko) * 2017-11-30 2019-06-10 전자부품연구원 제조 공정에서 딥러닝을 활용한 머신 비전 기반 품질검사 방법 및 시스템

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156452B2 (ja) * 2008-03-27 2013-03-06 東京エレクトロン株式会社 欠陥分類方法、プログラム、コンピュータ記憶媒体及び欠陥分類装置
JP2020027424A (ja) * 2018-08-10 2020-02-20 東京エレクトロンデバイス株式会社 学習データ生成装置、判別モデル生成装置、及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170200264A1 (en) * 2016-01-11 2017-07-13 Kla-Tencor Corporation Image based specimen process control
KR101863196B1 (ko) * 2017-07-24 2018-06-01 한국생산기술연구원 딥러닝 기반 표면 결함 검출장치 및 방법
KR20190063839A (ko) * 2017-11-30 2019-06-10 전자부품연구원 제조 공정에서 딥러닝을 활용한 머신 비전 기반 품질검사 방법 및 시스템
KR101950681B1 (ko) * 2018-05-04 2019-02-21 주식회사 스켈터랩스 결함 검사 장치, 시스템, 방법 및 컴퓨터 판독가능 저장 매체
KR101975186B1 (ko) * 2018-07-04 2019-05-07 광운대학교 산학협력단 객체 검출을 위한 생성적 적대 신경망 기반의 데이터 생성 장치 및 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182855A1 (ko) * 2022-03-25 2023-09-28 경상국립대학교산학협력단 상하수도 시설물 결함 검출 방법 및 이를 지원하는 결함 검출 시스템

Also Published As

Publication number Publication date
KR20210117782A (ko) 2021-09-29
CN114631115A (zh) 2022-06-14
KR102486230B1 (ko) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2021187683A1 (ko) 딥러닝을 이용한 신규 제품의 품질 검사 방법 및 시스템
EP3461290A1 (en) Learning model for salient facial region detection
CN107832774A (zh) 一种页面异常检测方法及装置
WO2021033791A1 (ko) 제품 생산 라인 상의 비전 검사를 위한 ai 기반의 신규 학습 모델 생성 시스템
WO2016163755A1 (ko) 품질 측정 기반의 얼굴 인식 방법 및 장치
KR102108956B1 (ko) 인공지능을 활용한 머신비전 모듈형 소프트웨어를 갖는 머신비전 검사장치 및 그 장치의 구동방법, 그리고 컴퓨터 판독가능 기록매체
WO2020256407A1 (ko) 제품 검사를 위한 자동 학습 방법 및 시스템
WO2021095991A1 (ko) 불량 이미지 생성 장치 및 방법
WO2022146050A1 (ko) 우울증 진단을 위한 인공지능 연합학습 방법 및 시스템
KR20210056974A (ko) 멀티카메라를 이용한 물체 인식 방법 및 장치
US20230021099A1 (en) Method and assistance system for checking samples for defects
WO2021132813A1 (ko) 딥러닝 모델을 이용한 통증 평가 방법 및 분석 장치
WO2023038214A1 (ko) 표면 결함 검출 장치 및 방법
WO2020235854A1 (ko) 불량 이미지 생성 장치 및 방법
WO2022158628A1 (ko) 머신러닝 모델에 기반한 디스플레이 패널의 결함 판정 시스템
WO2022014772A1 (ko) 머신 러닝 기반 디지털 홀로그래피 장치 및 이의 동작 방법
WO2020145605A1 (ko) 인공신경망을 이용한 특수 현미경 영상 생성 방법 및 영상 처리 장치
WO2022250190A1 (ko) 딥러닝 모델을 이용한 영상검사 대상체의 결함 판정시스템
WO2023282500A1 (ko) 슬라이드 스캔 데이터의 자동 레이블링 방법, 장치 및 프로그램
CN107690066A (zh) 显示装置坏点检测方法及其检测设备
WO2022255518A1 (ko) 딥러닝 신경망 모델을 이용한 검사대상 패널의 결함 판정장치
Viharos et al. Vision based, statistical learning system for fault recognition in industrial assembly environment
CN112991324A (zh) 一种磁粉检测过程可视化传输的检测方法
WO2023182796A1 (ko) 제품 이미지를 기반으로 불량 제품을 감지하는 인공 지능 장치 및 그 방법
KR20200038775A (ko) 다 채널 이미지를 이용한 인공신경망 학습 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925117

Country of ref document: EP

Kind code of ref document: A1