WO2021187558A1 - Robot device - Google Patents

Robot device Download PDF

Info

Publication number
WO2021187558A1
WO2021187558A1 PCT/JP2021/011081 JP2021011081W WO2021187558A1 WO 2021187558 A1 WO2021187558 A1 WO 2021187558A1 JP 2021011081 W JP2021011081 W JP 2021011081W WO 2021187558 A1 WO2021187558 A1 WO 2021187558A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
tank
robot
pump
hydraulic
Prior art date
Application number
PCT/JP2021/011081
Other languages
French (fr)
Japanese (ja)
Inventor
真也 市川
朋也 岡本
智己 石川
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to JP2022508432A priority Critical patent/JPWO2021187558A1/ja
Publication of WO2021187558A1 publication Critical patent/WO2021187558A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators

Definitions

  • the present disclosure relates to a robot body including at least one hydraulic actuator and a robot device including a liquid supply device for supplying a liquid to the hydraulic actuator.
  • an autonomous muscular robot including a plurality of arms, a plurality of legs, and a body portion to which the plurality of arms and the plurality of legs are connected is known (see, for example, Patent Document 1).
  • the arms and legs are controlled at arbitrary positions by actuators (artificial muscles) driven by hydraulic pressure.
  • the inside of the fuselage includes a tank for supplying hydraulic pressure to the actuators of the arms and legs, a pump, a plurality of solenoid valves, and a solenoid valve unit for supplying hydraulic pressure to the actuators, a battery, a communication module, and the like.
  • a control unit and the like are arranged.
  • the above-mentioned conventional autonomous muscular robot can operate independently by itself.
  • devices such as a tank, a pump, and a solenoid valve unit are arranged inside the body, liquid leakage from the solenoid valve unit and the like is suppressed and the leaked liquid is treated. There is a risk that the structure will become complicated and the cost will increase.
  • the main purpose of the present disclosure is to reduce the cost by suppressing the complexity of the structure of the robot body including at least one artificial muscle and the liquid supply device for supplying the liquid to the artificial muscle. do.
  • the robot device of the present disclosure is a robot device including a robot main body including at least one artificial muscle that operates by receiving a liquid supply, and a liquid supply device that supplies the liquid to the artificial muscle, and the liquid supply.
  • the device includes a tank for storing the liquid, a pump for sucking and discharging the liquid in the tank, and a liquid adjusting unit for adjusting the pressure or flow rate of the liquid from the pump to supply the artificial muscle.
  • the robot body includes the liquid adjusting unit and the liquid supply pipe connected to the artificial muscle, and the liquid adjusting unit is arranged in the tank.
  • the robot body includes at least one artificial muscle and a liquid supply pipe connected to the artificial muscle.
  • the liquid supply device also includes a tank for storing the liquid, a pump for sucking and discharging the liquid in the tank, and a liquid adjusting unit for adjusting the pressure or flow rate of the liquid from the pump and supplying it to the artificial muscle. ..
  • the liquid supply pipe is connected to the liquid adjusting unit, and the liquid adjusting unit is arranged in the tank.
  • the liquid leaked from the liquid adjusting unit can be discharged directly into the tank, so that a structure for suppressing liquid leakage from the liquid adjusting unit and a structure for guiding the leaked liquid to the storage unit can be performed.
  • the structure can be omitted or simplified. As a result, it is possible to reduce the cost by suppressing the complexity of the structure of the robot body including at least one artificial muscle and the liquid supply device for supplying the liquid to the artificial muscle.
  • FIG. 1 is a schematic configuration diagram showing the robot device 1 of the present disclosure
  • FIG. 2 is an enlarged view showing the robot device 1.
  • the robot device 1 shown in these drawings includes a robot arm (robot body) 2 and a liquid supply device 10.
  • the robot arm 2 includes a plurality of arms 3, a plurality of hydraulic actuators M as artificial muscles provided for each arm 3, and a robot hand 4 attached to the hand portion of the arm 3 on the distal end side. It is a joint arm.
  • the liquid supply device 10 supplies hydraulic oil (liquid) to each hydraulic actuator M to hydraulically drive the robot arm 2.
  • each hydraulic actuator M of the robot arm 2 includes a tube T that expands and contracts due to the pressure of hydraulic oil, and a braided sleeve S that covers the tube T.
  • the tube T is formed in a cylindrical shape by an elastic material such as a rubber material having high oil resistance, and both ends of the tube T are sealed by a sealing member C.
  • a hydraulic oil inlet / output IO is formed on the sealing member C on the base end side (liquid supply device 10 side, lower end side in FIG. 2) of the tube T.
  • the braided sleeve S is formed in a cylindrical shape by knitting a plurality of cords oriented in a predetermined direction so as to intersect each other, and can be contracted in the axial direction and the radial direction.
  • a fiber cord, a high-strength fiber, a metal cord composed of ultrafine filaments, or the like can be adopted.
  • the tube T expands in the radial direction by the action of the braided sleeve S and the shaft. Shrinks in the direction.
  • each arm 3 is formed to be hollow, and a plurality of hoses H (see the broken line in FIG. 2) as liquid supply pipes are arranged inside each arm 3.
  • Each hose H is connected to an inlet / outlet IO formed in a sealing member C on the proximal end side of the corresponding hydraulic actuator M.
  • the arm 3 on the most proximal end side (most liquid supply device 10 side) is rotatably supported by the support member 5, and the support member 5 is the arm 3 on the most proximal end side.
  • the sealing member C on the base end side of each hydraulic actuator M corresponding to the above is rotatably supported.
  • a connecting member 6 is fixed to the tip of the arm 3 on the most proximal end side, and the connecting member 6 seals the distal end side of each hydraulic actuator M corresponding to the arm 3 on the most proximal end side.
  • the stop member C is rotatably supported.
  • the hydraulic pressure in the tube T of the pair of hydraulic actuators M corresponding to the arm 3 on the most proximal end side is made different from each other, so that the rotation angles of the arm 3 and the connecting member 6 with respect to the support member 5 are changed.
  • the pair of hydraulic actuators M can transmit a force to the arm 3 and the connecting member 6.
  • each connecting member 6 fixed to the arm 3 on the most proximal end side rotates the sealing member C on the proximal end side of each hydraulic actuator M corresponding to the arm 3 on the distal end side connected to the arm 3. Support freely. Further, a connecting member 6 is also fixed to the tip of the arm 3 other than the arm 3 on the most basic end side, and each connecting member 6 is a sealing member C on the tip side of the corresponding pair of hydraulic actuators M. Is rotatably supported.
  • the arm 3 and the connecting member on the distal end side with respect to the connecting member 6 on the proximal end side are driven in an antagonistic manner with a state of contraction in the axial direction by a predetermined amount as an initial state.
  • the liquid supply device 10 rotatably supports the tank 11 as a liquid storage unit and the tank 11 around a rotation shaft (see the alternate long and short dash line in FIG. 2) extending in the vertical direction.
  • the tank 11 is, for example, a cylinder whose upper end and lower end are closed, and can store hydraulic oil inside.
  • the support member 5 of the robot arm 2 is fixed to the upper wall portion 11u of the tank 11 via a bolt or the like (not shown). That is, the robot arm 2 is supported by the tank 11 (upper wall portion 11u) of the liquid supply device 10.
  • the base portion 12 is fixed to the installation location of the robot device 1 so as to be located below the robot arm 2 and the tank 11, or is mounted (fixed) on an automatic guided vehicle (AGV) (not shown). Further, the base portion 12 receives a hydraulic oil supply from the first hydraulic control device (another hydraulic control device) 15 and rotates the tank 11 around the rotation shaft.
  • a swing motor (rotation unit) 13 Supports. The oscillating motor 13 converts the energy of the liquid into rotary motion, and oscillates (rotates) the vane around the axis according to the pressure difference of the liquid supplied to both sides of the vane (piston). ..
  • the robot arm 2 and the tank 11 can be integrally rotated around the rotation shaft by operating the swing motor 13 by the oil pressure from the first hydraulic control device 15.
  • the pump 14 includes a pump unit 140 arranged in the tank 11, an electric motor 141 as a drive unit for driving the pump unit 140 so as to suck and discharge the hydraulic oil in the tank 11, and a reduction gear mechanism 142.
  • the pump portion 140 of the pump 14 includes a rotor connected to the electric motor 141 via a reduction gear mechanism 142, an external tooth gear (drive gear) having a plurality of external teeth and rotating integrally with the rotor, and an external tooth gear.
  • It is a gear pump mechanism including an internal tooth gear (driven gear) which has a plurality of internal teeth one more than the total number of the external teeth meshing with the external teeth and is arranged eccentrically with respect to the external tooth gear (either (Not shown). As shown in FIG.
  • the pump unit 140 is the hydraulic oil liquid when the liquid level of the hydraulic oil in the tank 11 is a predetermined minimum liquid level (the minimum liquid level when the robot arm 2 is operated). It is fixed in the tank 11 so as to be located below the surface. Further, the pump unit 140 includes a suction port 14i that opens downward below the liquid level (minimum liquid level) of the hydraulic oil in the tank 11.
  • the reduction gear mechanism 142 of the pump 14 is so that at least a part of the reduction gear mechanism 142 in the tank 11 is immersed in the hydraulic oil when the liquid level of the hydraulic oil in the tank 11 is a predetermined maximum liquid level. It is arranged in 11. Further, the electric motor 141 is arranged in the tank 11 so as to be located above the liquid level of the hydraulic oil (maximum liquid level) when the liquid level of the hydraulic oil in the tank 11 is the maximum liquid level. This makes it possible to further reduce the stirring resistance during rotation of the electric motor 141.
  • the pump unit 140 of the pump 14 may include a vane or an impeller. Further, the reduction gear mechanism 142 may be omitted from the pump 14.
  • both may be arranged below the liquid level (minimum liquid level) of the hydraulic oil in the tank 11.
  • liquid level minimum liquid level
  • the first hydraulic control device 15 is located in the tank 11 so as to be located below the liquid level of the hydraulic oil when the liquid level of the hydraulic oil in the tank 11 is the minimum liquid level. It is fixed to and connected to the discharge port of the pump unit 140 of the pump 14 via a pipe. As shown in the figure, the first hydraulic control device 15 adjusts the pressure from the main pressure generation valve RV, the signal pressure generation valve (not shown) for generating the signal pressure, and the oil pressure from the main pressure generation valve RV. It includes a solenoid valve SL0 that generates a hydraulic pressure to the oscillating motor 13.
  • the main pressure generation valve RV generates the main pressure by adjusting the hydraulic oil discharged from the pump unit 140 according to the signal pressure from the signal pressure generation valve.
  • the signal pressure generating valve of the main pressure generating valve RV for example, a linear solenoid valve whose energization is controlled by a control device (not shown) in response to a request to the robot arm 2 is used.
  • the solenoid valve SL0 is a linear solenoid valve that regulates the oil pressure (primary pressure) from the main pressure generation valve RV according to the current applied to the solenoid portion.
  • the first hydraulic control device 15 includes a drain pipe L1 that opens below the liquid level (minimum liquid level) of the hydraulic oil in the tank 11. The drain oil generated by adjusting the oil pressure by the main pressure generation valve RV and the solenoid valve SL0 is discharged from the drain pipe L1 into the tank 11.
  • the second hydraulic control device 16 is attached (fixed) to the inside of the tank 11, that is, the inner surface of the upper wall portion 11u, and has a pipe L0 extending in the vertical direction in the tank 11. It is connected to the output port of the main pressure generation valve RV of the first hydraulic control device 16 via. Further, the second hydraulic control device 16 includes the same number (plurality) of solenoid valves SLm as the number of hydraulic actuators M in the robot arm 2.
  • each solenoid valve SLm is a linear type that regulates the oil pressure (primary pressure) from the main pressure generation valve RV according to the current applied to the solenoid portion to generate the oil pressure to the corresponding hydraulic actuator M. It is a solenoid valve.
  • a corresponding hose H is connected to the discharge port of each solenoid valve SLm via an oil passage or the like formed in the valve body of the second hydraulic control device 16.
  • the second hydraulic control device 16 includes a drain pipe L2 that extends toward the liquid level side of the hydraulic oil in the tank 11 and opens below the liquid level (minimum liquid level). Drain oil generated by adjusting the oil pressure by each solenoid valve SLm is also discharged from the drain pipe L2 into the tank 11.
  • a cable Kp for supplying electric power is connected to the electric motor 141 of the pump 14, so that the cable Kp opens above the liquid level (maximum liquid level) of the hydraulic oil in the tank 11. It is pulled out from the cable hole 11h formed in the tank 11.
  • a cable K1 for supplying power is also connected to the signal pressure generation valve and the solenoid valve SL0 of the first hydraulic control device 15, and the cable K1 is formed in the tank 11 in the same manner as the cable Kp of the pump 14. It is pulled out from the cable hole 11h.
  • a cable K2 for supplying electric power is also connected to each solenoid valve SLm of the second hydraulic control device 16, and the cable K2 is a cable hole formed in the tank 11 in the same manner as the cables Kp and K1. It is pulled out from 11h. Further, the cables Kp, K1 and K2 are connected to a household power supply, a battery or the like via a control device (not shown).
  • a sealing member for sealing the gap between the wall portion of the tank 11 and the cables Kp, K1 and K2 is provided in the cable hole 11h. However, when the liquid supply device 10 is fixed at the installation location, the sealing member may be omitted.
  • each solenoid valve SL0 of the first hydraulic control device 15 and the solenoid valve SLm of the second hydraulic control device 16 is a substantially cylindrical cylinder incorporated in the valve body of the first or second hydraulic control device 15 or 16.
  • PWM control energization control
  • a control device not shown.
  • the solenoid valves SL0 and SLm are normally closed valves that open when a current is supplied to the solenoid unit 103, and each solenoid valve 103 axially rotates the spool 102 according to the applied current. Move to.
  • One end (right end in the drawing) of the sleeve 101 is fixed to the electromagnetic portion 103 (yoke), and the end of the spool 102 (the right end in FIG. 4) is arranged between the sleeve 101 and the electromagnetic portion 103.
  • the space 105 is defined.
  • a cap for closing the end portion (left end portion in the drawing) of the sleeve 101 opposite to the electromagnetic portion 103 side is fixed (screwed).
  • the spring 104 is arranged in a pulling chamber formed inside the sleeve 101 so as to be located between the spool 102 and the cap.
  • the spring 104 is a coil spring in the present embodiment, and urges the spool 5 to the electromagnetic portion 103 side (from the output port 101o side to the input port 101i side).
  • the sleeve 101 includes an input port 101i, an output port 101o, drain ports (drainage ports) 101d and 101e, and a feedback port 101f that communicate with the corresponding oil passages formed in the valve body, respectively.
  • the hydraulic oil (line pressure) adjusted by the main pressure generation valve RV after being discharged from the pump 14 is supplied to the input port 101i.
  • the hydraulic oil regulated by the linear solenoid valves SL0 and SLm flows from the output port 101o into the corresponding hose H or the like through the oil passage of the valve body.
  • the drain ports 101d and 101e communicate with the drain pipe L1 or L2 via the corresponding drain oil passage of the valve body
  • the feedback port 101f is an output port via the oil passage formed in the valve body. Communicate with 101o.
  • the input port 101i, the output port 101o, the drain ports 101d, 101e and the feedback port 101f face the drain port 101d, the input port 101i, and the output port 101o from the electromagnetic unit 103 side toward the spring 104 (cap) side.
  • the feedback port 101f and the drain port 101e are formed on the sleeve 101 so as to be arranged in the axial direction at intervals in this order. That is, the drain port 101d is formed on the electromagnetic portion 103 side of the input port 101i, and the input port 101i is formed on the electromagnetic portion 103 side of the output port 101o. Further, the feedback port 101f is formed on the spring 104 side of the output port 101o, and the drain port 101e is formed on the spring 104 side of the feedback port 101f so as to communicate with the spring chamber.
  • the solenoid valves SL0 and SLm are fixed to the valve body so that the solenoid part 103 projects out of the valve bodies of the first or second hydraulic control devices 15 and 16. Then, when adjusting the pressure of the hydraulic oil, the hydraulic oil leaked into the space 105 from the gap between the sleeve 101 and the spool 102 is the gap between the electromagnetic portion 103 and the sleeve 101, or the sleeve 101 and / or the electromagnetic portion. It is discharged from the space 105 to the outside through a drain passage (hole) formed in 103 (connector 106 and its surroundings).
  • the hydraulic oil that has flowed into the spring chamber through the gap between the sleeve 101 and the spool 102 enters the inside of the tank 11 via the drain port 101e formed in the sleeve 101, the drain oil passage of the valve body, and the drain pipe L1 or L2. It is discharged.
  • At least one of the solenoid valves SL0 and SLm does not have a dedicated feedback port 101f, and is configured to act on the spool using the output pressure as the feedback pressure inside the sleeve 101 accommodating the spool 102.
  • the solenoid valves SL0 and SLm may not include the spring 104.
  • the robot arm 2 includes a plurality of hydraulic actuators M as artificial muscles and a hose H as a liquid supply pipe connected to each hydraulic actuator M. Further, the liquid supply device 10 adjusts (adjusts) the pressure of the tank 11 for storing the hydraulic oil (liquid), the pump 14 for sucking and discharging the hydraulic oil in the tank 11, and the hydraulic oil from the pump 14. A second hydraulic control device (liquid adjusting unit) 16 supplied to each hydraulic actuator M is included. Then, each hose H is connected to the second hydraulic control device 16, and the second hydraulic control device 16 is arranged in the tank 11.
  • the structure for suppressing oil leakage from the second hydraulic control device 16 and the structure for guiding the leaked hydraulic oil to the hydraulic oil storage unit can be omitted or simplified, and thus the robot device 1 It is possible to reduce the cost by suppressing the complication of the structure of the above.
  • the robot device 1 it is possible to reduce the cost by suppressing the complication of the structure of the above.
  • the robot arm 2 including a plurality of hydraulic actuators M as artificial muscles is supported by a tank 11 for storing hydraulic oil (liquid). Further, inside the tank 11, in addition to the first and second hydraulic control devices 15 and 16, a pump unit 140 of a pump 14 that sucks and discharges hydraulic oil is arranged. As a result, the housing for accommodating the tank 11 is not required, and the piping connecting the tank 11 to the pump 14 and the second hydraulic control device 16 can be omitted. Therefore, the liquid supply device 10 can be miniaturized to reduce the size of the robot device 1. It is possible to make the whole compact.
  • the pump portion 140 of the pump 14 in the tank 11 (hydraulic oil)
  • the hydraulic oil in the tank 11 promotes heat dissipation of the pump 14 and the like, and the tank 11 and the hydraulic fluid block noise. Can be done. As a result, it is possible to reduce heat generation and noise while making the robot device 1 compact.
  • the electric motor 141 as the driving unit of the pump 14 and the reduction gear mechanism 142 are arranged in the tank 11 so as to be located above the pump unit 140.
  • the electric motor 141 and the reduction gear mechanism 142 as the drive unit of the pump 14B may be arranged outside the tank 11B.
  • the liquid supply device 10B can eliminate the influence of the liquid sway in the tank 11B on the electric motor 141, and is particularly preferably applied to the robot device 1 mounted on an automatic guided vehicle.
  • the entire pump 14 (pump unit 140 and drive unit) may be arranged outside the tanks 11 and 11B.
  • the robot arm 2 is supported by the upper wall portion 11u of the tank 11, and the second hydraulic control device 16 is attached to the inner surface of the upper wall portion 11u.
  • the second hydraulic control device 16 may be attached to the inner surface of the wall portion of the tank 11 that supports the robot arm 2.
  • the side wall portion is concerned. It may be attached to the inner surface of the.
  • the liquid supply device 10 includes a base portion 12 that rotatably supports the tank 11, a swing motor 13 as a rotation unit that is supported by the base portion 12 and rotates the tank 11, and a swing motor 13 in the tank 11.
  • a first hydraulic control device that is arranged in the tank 11 so as to be located below the liquid level (minimum liquid level) of the hydraulic oil, regulates the hydraulic oil from the pump unit 140, and supplies the hydraulic oil to the swing motor 13. Including 15. This makes it possible to rotate the robot arm 2 integrally with the tank 11.
  • the original pressure is generated by the first hydraulic control device 15 (primary pressure generation valve RV) arranged below the liquid level (minimum liquid level) of the hydraulic oil in the tank 11.
  • the first and second hydraulic control devices 15 and 16 include drain pipes L1 or L2 that open below the liquid level (minimum liquid level) of the hydraulic oil in the tank 11, and the pressure of the hydraulic oil is adjusted, respectively.
  • the drain oil (surplus liquid) generated in association with the above is discharged from the drain pipes L1 or L2 into the tank 11.
  • the drain pipe L2 of the second hydraulic control device 16 may be opened above the liquid level of the hydraulic oil in the tank 11.
  • the suction port 14i of the pump unit 140 opens downward below the liquid level (minimum liquid level) of the hydraulic oil in the tank 11. This makes it possible to better suppress the pump unit 140 from sucking air.
  • the first and second hydraulic control devices 15 and 16 include solenoid valves SL0 or SLm to which electric power is supplied from the outside of the tank 11 via cables K1 or K2, respectively, and cables K1 and K2 are inside the tank 11. It is drawn out from the cable hole 11h formed in the tank 11 so as to open above the liquid level (maximum liquid level) of the hydraulic oil.
  • a cable Kp for supplying electric power is connected to the electric motor 141 of the pump 14, and the cable Kp is also pulled out from the cable hole 11h of the tank 11. This makes it possible to satisfactorily suppress the leakage of hydraulic oil from the cable hole 11h through which the cables Kp, K1 and K2 are inserted.
  • the hydraulic actuator M as an artificial muscle includes a tube T that is supplied with hydraulic oil to the inside and contracts in the axial direction while expanding in the radial direction in response to an increase in the internal oil pressure.
  • the configuration of the hydraulic actuator M in the robot device 1 is not limited to this. That is, the hydraulic actuator M may include a tube that expands in the radial direction and contracts in the axial direction when the liquid is supplied.
  • an inner cylindrical member formed of an elastic body and an elastic body.
  • Axial fiber reinforced liquid containing an outer tubular member and a fiber layer arranged between the inner tubular member and the outer tubular member, which is formed by It may be a pressure actuator (see, for example, Japanese Patent Application Laid-Open No. 2011-137516).
  • the hydraulic actuator M may be a liquid cylinder including a cylinder and a piston.
  • the liquid supply devices 10 and 10B may be configured to supply a liquid other than hydraulic oil such as water to the hydraulic actuator M, and an accumulator (accumulator) for storing the oil pressure generated by the pump 14 or the like. May be included.
  • the solenoid valves SL0 and SLm of the first and second hydraulic control devices 15 and 16 adjust the hydraulic oil according to the linear solenoid valve that outputs the signal pressure corresponding to the current supplied to the solenoid part and the signal pressure. It may be replaced with a pressing control valve.
  • the first and second hydraulic control devices 15 and 16 have, for example, a flow control valve that controls the flow rate of the liquid to the hydraulic actuator M so that the hydraulic pressure detected by the pressure sensor becomes the pressure required. It may include.
  • the robot device 1 may include only one joint, or may include only one hydraulic actuator M as an artificial muscle. Further, the robot device 1 is not limited to the one including the robot arm 2 having at least one hydraulic actuator M and the hand portion 4, and the robot device 1 includes at least one hydraulic actuator M, a tool such as a drill bit, a switch, or the like. An element other than the hand portion 4, such as a pressing member for pressing the robot arm, may be included with the robot arm attached to the hand. Further, the robot device 1 may be a walking robot, a wearable robot, or the like.
  • the robot arm 2 of the robot device 1 may include a swing motor as a hydraulic actuator for driving the arm 3. That is, the robot body of the robot device 1 may include at least one of a hydraulic actuator as an artificial muscle and a swing motor. Further, the robot device 1 may have tanks 11 and 11B supported by a robot body such as a robot arm 2. In this case, the second hydraulic control device 16 may support tanks 11 and 11B by the robot body. It is good to be attached to the inner surface of the wall part of. This makes it possible to shorten the hose H as a liquid supply pipe and facilitate the handling of each hose H.
  • the robot device of the present disclosure supplies the liquid to the robot body (2) including at least one artificial muscle (M) that operates by receiving the supply of the liquid, and the artificial muscle (M).
  • a robot device (1) including a liquid supply device (10, 10B), wherein the liquid supply device (10, 10B) has a tank (11, 11B) for storing the liquid and the tank (11, 11B). ), And a liquid adjusting unit that adjusts the pressure or flow rate of the liquid from the pump (14, 14B) and supplies it to the artificial muscle (M).
  • the robot body (2) includes the liquid adjusting unit (16) and the liquid supply pipe (H) connected to the artificial muscle (M), and the liquid adjusting unit (16) includes the liquid adjusting unit (16). It is arranged in the tank (11, 11B).
  • the robot body includes at least one artificial muscle and a liquid supply pipe connected to the artificial muscle.
  • the liquid supply device also includes a tank for storing the liquid, a pump for sucking and discharging the liquid in the tank, and a liquid adjusting unit for adjusting the pressure or flow rate of the liquid from the pump and supplying it to the artificial muscle. ..
  • the liquid supply pipe is connected to the liquid adjusting unit, and the liquid adjusting unit is arranged in the tank.
  • the liquid leaked from the liquid adjusting unit can be discharged directly into the tank, so that a structure for suppressing liquid leakage from the liquid adjusting unit and a structure for guiding the leaked liquid to the storage unit can be performed.
  • the structure can be omitted or simplified. As a result, it is possible to reduce the cost by suppressing the complexity of the structure of the robot body including at least one artificial muscle and the liquid supply device for supplying the liquid to the artificial muscle.
  • the pump (14, 14B) drives the pump unit (140) so as to suck and discharge the liquid in the pump unit (140) and the tank (11, 11B).
  • 142) may be included, and at least the pump portion (140) may be arranged in the tank (11, 11B).
  • the liquid adjusting unit (15, 16) may include at least one solenoid valve (SL0, SLm) for adjusting the pressure or flow rate of the liquid, and the solenoid valve (SL0, SLm) may include the solenoid valve (SL0, SLm).
  • the sleeve (101), the spool (102) slidably arranged in the sleeve (101), and the electromagnetic part (103) for driving the spool (102) may be included.
  • the sleeve (101) and the electromagnetic portion (103) may define a space (105) in which the end portion of the spool (102) is arranged, and the sleeve (101) and the spool (103) may form a space (105).
  • the liquid leaked into the space (105) from the gap may be discharged from the space (105) into the tank (11, 11B). This makes it possible to satisfactorily suppress the influence of the liquid (hydraulic pressure) accumulated in the space on the operation of the spool.
  • either one of the robot body (2) and the tanks (11, 11B) may be supported by the other, and the liquid adjusting unit (16) supports the robot body (2).
  • the liquid adjusting unit (16) may be attached to the inner surface of the wall portion (11u) of the tank (11, 11B) supported by the robot body (2). This makes it possible to shorten the liquid supply pipe for supplying the liquid from the liquid adjustment unit to the artificial muscle and to facilitate the handling of the liquid supply pipe.
  • the liquid adjusting unit (16) is arranged above the liquid level in the tanks (11, 11B) and includes a drain pipe (L2) extending toward the liquid level, and the pressure or the flow rate. The excess liquid generated by the adjustment of the above may be discharged from the drain pipe (L2) into the tank (11, 11B).
  • the robot body (2) may be supported by the upper wall portion (11u) of the tanks (11, 11B), and the liquid adjusting unit (16) is mounted on the inner surface of the upper wall portion (11u). It may be attached.
  • the liquid adjusting unit (15, 16) includes drain pipes (L1, L2) that open below the liquid level in the tank (11, 11B), and for adjusting the pressure or the flow rate.
  • the excess liquid that accompanies this may be discharged from the drain pipes (L1, L2) into the tank (11, 11B).
  • the pump portion (140) may include a suction port (14i) that opens below the liquid level in the tank (11, 11B). This makes it possible to better suppress the pump portion from sucking air.
  • the drive unit of the pump (14) may include an electric motor (141) and be arranged in the tank (11) so as to be located above the pump unit (140).
  • the drive unit including the electric motor in the tank in this way, it is possible to satisfactorily block the operating noise of the pump by the tank.
  • the liquid adjusting unit (15, 16) includes at least one solenoid valve (SL0, SLm) to which electric power is supplied from the outside of the tank (11, 11B) via a cable (K1, K2).
  • the cable (K1, K2) may be from a hole (11h) formed in the tank (11, 11B) so as to open above the liquid level in the tank (11, 11B). It may be pulled out to the outside. This makes it possible to satisfactorily suppress the leakage of liquid from the hole through which the cable is inserted.
  • the robot body (2) includes a plurality of the hydraulic actuators (M), and the ends of the liquid adjusting unit (16) and the corresponding hydraulic actuators (M) on the tank (11, 11B) side, respectively. It may include a plurality of liquid supply pipes (H) connected to parts (C, IO).
  • the liquid supply device (10, 10B) is supported by a base portion (12) that rotatably supports the tank (11, 11B) and the base portion (12), and receives the supply of the liquid.
  • the rotating unit (13) for rotating the tank (11, 11B) and the rotating unit (13) are arranged in the tank (11, 11B) so as to be located below the liquid level in the tank (11, 11B). It may include another liquid adjusting unit (15) that adjusts the pressure or flow rate of the liquid from the pump unit (140) and supplies the liquid to the rotating unit (13). This makes it possible to integrally rotate the robot body and the liquid supply device (tank).
  • the hydraulic actuator (M) may include a tube (T) that expands in the radial direction and contracts in the axial direction when the liquid is supplied.
  • the invention of the present disclosure can be used in the manufacturing industry of a robot device including a robot main body including at least one hydraulic actuator and a liquid supply device for supplying a liquid to the hydraulic actuator.

Abstract

The robot device of the present disclosure comprises a robot body which includes at least one hydraulic actuator operating through reception of a supplied liquid, and a liquid supply device which supplies the liquid to the hydraulic actuator, wherein the liquid supply device comprises a tank which stores the liquid, a pump which sucks the liquid in the tank and discharges the liquid, and a liquid adjustment unit which adjusts the pressure or the flowrate of the liquid from the pump and supplies the adjusted liquid to an artificial muscle, the robot body comprises a liquid supply pipe which is connected to the artificial muscle and the liquid adjustment, and the liquid adjustment unit is arranged in the tank. Accordingly, an increase in complexity of the structure of the robot device is suppressed and costs can be reduced.

Description

ロボット装置Robot device
 本開示は、少なくとも1つの液圧アクチュエータを含むロボット本体と、液圧アクチュエータに液体を供給する液体供給装置とを含むロボット装置に関する。 The present disclosure relates to a robot body including at least one hydraulic actuator and a robot device including a liquid supply device for supplying a liquid to the hydraulic actuator.
 従来、複数のアームと、複数の脚部と、複数のアームおよび複数の脚部が連結される胴体部とを含む自律型筋肉ロボットが知られている(例えば、特許文献1参照)。この自律型筋肉ロボットにおいて、アームおよび脚部は、液圧により駆動されるアクチュエータ(人工筋肉)によって任意位置に制御される。また、胴体部の内部には、アームおよび脚部のアクチュエータに液圧を供給するためのタンク、ポンプ、複数の電磁弁を含むと共に液圧をアクチュエータに供給する電磁弁ユニット、バッテリ、通信モジュール、制御ユニット等が配置されている。 Conventionally, an autonomous muscular robot including a plurality of arms, a plurality of legs, and a body portion to which the plurality of arms and the plurality of legs are connected is known (see, for example, Patent Document 1). In this autonomous muscular robot, the arms and legs are controlled at arbitrary positions by actuators (artificial muscles) driven by hydraulic pressure. In addition, the inside of the fuselage includes a tank for supplying hydraulic pressure to the actuators of the arms and legs, a pump, a plurality of solenoid valves, and a solenoid valve unit for supplying hydraulic pressure to the actuators, a battery, a communication module, and the like. A control unit and the like are arranged.
特開2016-203330号公報Japanese Unexamined Patent Publication No. 2016-20330
 上記従来の自律型筋肉ロボットは、それ自体で独立して作動可能なものである。しかしながら、上記自律型筋肉ロボットでは、胴体部の内部にタンクやポンプ、電磁弁ユニットといった機器が配置されることから、電磁弁ユニット等からの液漏れを抑制したり、漏れ出た液体を処理したりする必要が生じ、構造の複雑化してコストアップを招いてしまうおそれがある。 The above-mentioned conventional autonomous muscular robot can operate independently by itself. However, in the above-mentioned autonomous muscular robot, since devices such as a tank, a pump, and a solenoid valve unit are arranged inside the body, liquid leakage from the solenoid valve unit and the like is suppressed and the leaked liquid is treated. There is a risk that the structure will become complicated and the cost will increase.
 そこで、本開示は、少なくとも1つの人工筋肉を含むロボット本体と、人工筋肉に液体を供給する液体供給装置とを含むロボット装置の構造の複雑化を抑制してコストダウンを図ることを主目的とする。 Therefore, the main purpose of the present disclosure is to reduce the cost by suppressing the complexity of the structure of the robot body including at least one artificial muscle and the liquid supply device for supplying the liquid to the artificial muscle. do.
 本開示のロボット装置は、液体の供給を受けて作動する少なくとも1つの人工筋肉を含むロボット本体と、前記人工筋肉に前記液体を供給する液体供給装置とを含むロボット装置であって、前記液体供給装置が、前記液体を貯留するタンクと、前記タンク内の前記液体を吸引して吐出するポンプと、前記ポンプからの前記液体の圧力または流量を調整して前記人工筋肉に供給する液体調整ユニットとを含み、前記ロボット本体が、前記液体調整ユニットおよび前記人工筋肉に接続された液体供給管を含み、前記液体調整ユニットが前記タンク内に配置されるものである。 The robot device of the present disclosure is a robot device including a robot main body including at least one artificial muscle that operates by receiving a liquid supply, and a liquid supply device that supplies the liquid to the artificial muscle, and the liquid supply. The device includes a tank for storing the liquid, a pump for sucking and discharging the liquid in the tank, and a liquid adjusting unit for adjusting the pressure or flow rate of the liquid from the pump to supply the artificial muscle. The robot body includes the liquid adjusting unit and the liquid supply pipe connected to the artificial muscle, and the liquid adjusting unit is arranged in the tank.
 本開示のロボット装置において、ロボット本体は、少なくとも1つの人工筋肉と、当該人工筋肉に接続される液体供給管とを含む。また、液体供給装置は、液体を貯留するタンクと、タンク内の液体を吸引して吐出するポンプと、ポンプからの液体の圧力または流量を調整して人工筋肉に供給する液体調整ユニットとを含む。そして、液体供給管は、液体調整ユニットに接続され、液体調整ユニットは、タンク内に配置される。これにより、液体調整ユニットから漏れた液体を直接タンク内に排出させることが可能となるので、液体調整ユニットからの液漏れを抑制するための構造や、漏れ出た液体を貯留部に導くための構造を省略または簡素化することができる。この結果、少なくとも1つの人工筋肉を含むロボット本体と、人工筋肉に液体を供給する液体供給装置とを含むロボット装置の構造の複雑化を抑制してコストダウンを図ることが可能となる。 In the robot device of the present disclosure, the robot body includes at least one artificial muscle and a liquid supply pipe connected to the artificial muscle. The liquid supply device also includes a tank for storing the liquid, a pump for sucking and discharging the liquid in the tank, and a liquid adjusting unit for adjusting the pressure or flow rate of the liquid from the pump and supplying it to the artificial muscle. .. Then, the liquid supply pipe is connected to the liquid adjusting unit, and the liquid adjusting unit is arranged in the tank. As a result, the liquid leaked from the liquid adjusting unit can be discharged directly into the tank, so that a structure for suppressing liquid leakage from the liquid adjusting unit and a structure for guiding the leaked liquid to the storage unit can be performed. The structure can be omitted or simplified. As a result, it is possible to reduce the cost by suppressing the complexity of the structure of the robot body including at least one artificial muscle and the liquid supply device for supplying the liquid to the artificial muscle.
本開示のロボット装置を示す概略構成図である。It is a schematic block diagram which shows the robot apparatus of this disclosure. 本開示のロボット装置を示す拡大図である。It is an enlarged view which shows the robot apparatus of this disclosure. 本開示のロボット装置の液体供給装置を示す概略構成図である。It is a schematic block diagram which shows the liquid supply device of the robot device of this disclosure. 図3の液体供給装置に含まれる電磁弁を示す断面図である。It is sectional drawing which shows the solenoid valve included in the liquid supply device of FIG. 本開示のロボット装置における他の液体供給装置を示す概略構成図である。It is a schematic block diagram which shows the other liquid supply apparatus in the robot apparatus of this disclosure.
 次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。 Next, a mode for carrying out the invention of the present disclosure will be described with reference to the drawings.
 図1は、本開示のロボット装置1を示す概略構成図であり、図2は、ロボット装置1を示す拡大図である。これらの図面に示すロボット装置1は、ロボットアーム(ロボット本体)2と、液体供給装置10とを含む。ロボットアーム2は、複数のアーム3と、アーム3ごとに2つずつ設けられる人工筋肉としての複数の液圧アクチュエータMと、先端側のアーム3の手先部に取り付けられるロボットハンド4とを含む多関節アームである。また、液体供給装置10は、各液圧アクチュエータMに作動油(液体)を供給してロボットアーム2を油圧により駆動するものである。 FIG. 1 is a schematic configuration diagram showing the robot device 1 of the present disclosure, and FIG. 2 is an enlarged view showing the robot device 1. The robot device 1 shown in these drawings includes a robot arm (robot body) 2 and a liquid supply device 10. The robot arm 2 includes a plurality of arms 3, a plurality of hydraulic actuators M as artificial muscles provided for each arm 3, and a robot hand 4 attached to the hand portion of the arm 3 on the distal end side. It is a joint arm. Further, the liquid supply device 10 supplies hydraulic oil (liquid) to each hydraulic actuator M to hydraulically drive the robot arm 2.
 ロボットアーム2の各液圧アクチュエータMは、図2に示すように、作動油の圧力によって膨張および収縮するチューブTと、当該チューブTを覆う編組スリーブSとを含む。チューブTは、高い耐油性をもった例えばゴム材等の弾性材により円筒状に形成されており、当該チューブTの両端部は、封止部材Cにより封止されている。チューブTの基端側(液体供給装置10側、図2中下端側)の封止部材Cには、作動油の出入口IOが形成されている。編組スリーブSは、所定方向に配向された複数のコードを互いに交差するように編み込むことにより円筒状に形成されており、軸方向および径方向に収縮可能である。編組スリーブSを形成するコードとしては、繊維コード、高強度繊維、極細のフィラメントによって構成される金属製コード等を採用することができる。かかる液圧アクチュエータMのチューブT内に上記出入口IOから作動油を供給してチューブT内の作動油の圧力を高めることで、チューブTは、編組スリーブSの作用により径方向に膨張すると共に軸方向に収縮する。 As shown in FIG. 2, each hydraulic actuator M of the robot arm 2 includes a tube T that expands and contracts due to the pressure of hydraulic oil, and a braided sleeve S that covers the tube T. The tube T is formed in a cylindrical shape by an elastic material such as a rubber material having high oil resistance, and both ends of the tube T are sealed by a sealing member C. A hydraulic oil inlet / output IO is formed on the sealing member C on the base end side (liquid supply device 10 side, lower end side in FIG. 2) of the tube T. The braided sleeve S is formed in a cylindrical shape by knitting a plurality of cords oriented in a predetermined direction so as to intersect each other, and can be contracted in the axial direction and the radial direction. As the cord forming the braided sleeve S, a fiber cord, a high-strength fiber, a metal cord composed of ultrafine filaments, or the like can be adopted. By supplying hydraulic oil from the inlet / outlet IO into the tube T of the hydraulic actuator M to increase the pressure of the hydraulic oil in the tube T, the tube T expands in the radial direction by the action of the braided sleeve S and the shaft. Shrinks in the direction.
 図1および図2に示すように、複数のアーム3は、互いに回動自在に連結され、各アーム3の両側には、液圧アクチュエータMが1つずつ対応するアーム3と平行に配列される。本実施形態において、各アーム3は、中空に形成されており、各アーム3の内部には、液体供給管としての複数のホースH(図2における破線参照)が配置されている。各ホースHは、対応する液圧アクチュエータMの基端側の封止部材Cに形成された出入口IOに接続される。 As shown in FIGS. 1 and 2, the plurality of arms 3 are rotatably connected to each other, and one hydraulic actuator M is arranged in parallel with the corresponding arm 3 on both sides of each arm 3. .. In the present embodiment, each arm 3 is formed to be hollow, and a plurality of hoses H (see the broken line in FIG. 2) as liquid supply pipes are arranged inside each arm 3. Each hose H is connected to an inlet / outlet IO formed in a sealing member C on the proximal end side of the corresponding hydraulic actuator M.
 また、図2に示すように、最基端側(最も液体供給装置10側)のアーム3は、支持部材5により回動自在に支持され、当該支持部材5は、最基端側のアーム3に対応した各液圧アクチュエータMの基端側の封止部材Cを回動自在に支持する。更に、最基端側のアーム3の先端部には、連結部材6が固定されており、当該連結部材6は、最基端側のアーム3に対応した各液圧アクチュエータMの先端側の封止部材Cを回動自在に支持する。これにより、最基端側のアーム3に対応した一対の液圧アクチュエータMのチューブT内の油圧を互いに異ならせることで、支持部材5に対するアーム3および連結部材6の回動角度を変化させると共に、当該一対の液圧アクチュエータMから当該アーム3および連結部材6に力を伝達することが可能となる。 Further, as shown in FIG. 2, the arm 3 on the most proximal end side (most liquid supply device 10 side) is rotatably supported by the support member 5, and the support member 5 is the arm 3 on the most proximal end side. The sealing member C on the base end side of each hydraulic actuator M corresponding to the above is rotatably supported. Further, a connecting member 6 is fixed to the tip of the arm 3 on the most proximal end side, and the connecting member 6 seals the distal end side of each hydraulic actuator M corresponding to the arm 3 on the most proximal end side. The stop member C is rotatably supported. As a result, the hydraulic pressure in the tube T of the pair of hydraulic actuators M corresponding to the arm 3 on the most proximal end side is made different from each other, so that the rotation angles of the arm 3 and the connecting member 6 with respect to the support member 5 are changed. , The pair of hydraulic actuators M can transmit a force to the arm 3 and the connecting member 6.
 また、最基端側のアーム3に固定された連結部材6は、当該アーム3に連結される先端側のアーム3に対応した各液圧アクチュエータMの基端側の封止部材Cを回動自在に支持する。更に、最基端側のアーム3以外のアーム3の先端部にも、連結部材6が固定されており、各連結部材6は、対応する一対の液圧アクチュエータMの先端側の封止部材Cを回動自在に支持する。最基端側のアーム3以外のアーム3に対応した一対の液圧アクチュエータMのチューブT内の油圧を互いに異ならせることで、基端側の連結部材6に対する当該アーム3および先端側の連結部材6の回動角度を変化させると共に、当該一対の液圧アクチュエータMから当該アーム3および先端側の連結部材6に力を伝達することが可能となる。なお、各アーム3に対応した一対の液圧アクチュエータMは、所定量だけ軸方向に収縮した状態を初期状態として拮抗駆動される。 Further, the connecting member 6 fixed to the arm 3 on the most proximal end side rotates the sealing member C on the proximal end side of each hydraulic actuator M corresponding to the arm 3 on the distal end side connected to the arm 3. Support freely. Further, a connecting member 6 is also fixed to the tip of the arm 3 other than the arm 3 on the most basic end side, and each connecting member 6 is a sealing member C on the tip side of the corresponding pair of hydraulic actuators M. Is rotatably supported. By making the oil pressure in the tube T of the pair of hydraulic actuators M corresponding to the arms 3 other than the arm 3 on the most proximal end side different from each other, the arm 3 and the connecting member on the distal end side with respect to the connecting member 6 on the proximal end side. While changing the rotation angle of 6, it is possible to transmit a force from the pair of hydraulic actuators M to the arm 3 and the connecting member 6 on the tip side. The pair of hydraulic actuators M corresponding to each arm 3 are driven in an antagonistic manner with a state of contraction in the axial direction by a predetermined amount as an initial state.
 液体供給装置10は、図3に示すように、液体貯留部としてのタンク11と、当該タンク11を上下方向に延びる回動軸(図2における一点鎖線参照)の周りに回動自在に支持するベース部12と、タンク11の内部に配置されるポンプ14と、それぞれタンク11の内部に配置される液体調整ユニットとしての第1油圧制御装置15および第2油圧制御装置16とを含む。タンク11は、例えば上端および下端が閉鎖された筒体であり、内部に作動油を貯留可能なものである。本実施形態において、ロボットアーム2の支持部材5は、図2に示すように、タンク11の上壁部11uに図示しないボルト等を介して固定される。すなわち、ロボットアーム2は、液体供給装置10のタンク11(上壁部11u)により支持される。 As shown in FIG. 3, the liquid supply device 10 rotatably supports the tank 11 as a liquid storage unit and the tank 11 around a rotation shaft (see the alternate long and short dash line in FIG. 2) extending in the vertical direction. A base portion 12, a pump 14 arranged inside the tank 11, and a first hydraulic control device 15 and a second hydraulic control device 16 as liquid adjusting units arranged inside the tank 11, respectively, are included. The tank 11 is, for example, a cylinder whose upper end and lower end are closed, and can store hydraulic oil inside. In the present embodiment, as shown in FIG. 2, the support member 5 of the robot arm 2 is fixed to the upper wall portion 11u of the tank 11 via a bolt or the like (not shown). That is, the robot arm 2 is supported by the tank 11 (upper wall portion 11u) of the liquid supply device 10.
 ベース部12は、ロボットアーム2およびタンク11の下方に位置するようにロボット装置1の設置箇所に固定されるか、あるいは図示しない無人搬送車(AGV)に搭載(固定)される。また、ベース部12は、第1油圧制御装置(他の油圧制御装置)15から作動油の供給を受けてタンク11を上記回動軸の周りに回動させる揺動モータ(回動ユニット)13を支持している。揺動モータ13は、液体のエネルギを回転運動に変換するものであり、ベーン(ピストン)の両側に供給された液体の圧力差に応じて当該ベーンを軸心の周りに揺動(回転)させる。これにより、第1油圧制御装置15からの油圧により揺動モータ13を作動させることで、ロボットアーム2およびタンク11を当該回動軸の周りに一体に回動させることが可能となる。 The base portion 12 is fixed to the installation location of the robot device 1 so as to be located below the robot arm 2 and the tank 11, or is mounted (fixed) on an automatic guided vehicle (AGV) (not shown). Further, the base portion 12 receives a hydraulic oil supply from the first hydraulic control device (another hydraulic control device) 15 and rotates the tank 11 around the rotation shaft. A swing motor (rotation unit) 13 Supports. The oscillating motor 13 converts the energy of the liquid into rotary motion, and oscillates (rotates) the vane around the axis according to the pressure difference of the liquid supplied to both sides of the vane (piston). .. As a result, the robot arm 2 and the tank 11 can be integrally rotated around the rotation shaft by operating the swing motor 13 by the oil pressure from the first hydraulic control device 15.
 ポンプ14は、タンク11内に配置されるポンプ部140と、タンク11内の作動油を吸引して吐出するようにポンプ部140を駆動する駆動部としての電動モータ141および減速ギヤ機構142とを含む。ポンプ14のポンプ部140は、減速ギヤ機構142を介して電動モータ141に連結されるロータ、複数の外歯を有すると共に当該ロータと一体に回転する外歯ギヤ(ドライブギヤ)、および外歯ギヤの外歯に噛合する当該外歯の総数よりも1つ多い複数の内歯を有すると共に当該外歯ギヤに対して偏心して配置される内歯ギヤ(ドリブンギヤ)とを含むギヤポンプ機構である(何れも、図示省略)。ポンプ部140は、図3に示すように、タンク11内の作動油の液位が予め定められた最低液位(ロボットアーム2の作動時における最低液位)であるときに、作動油の液面よりも下方に位置するようにタンク11内に固定される。更に、ポンプ部140は、タンク11内の作動油の液面(最低液位)よりも下側で下向きに開口する吸入口14iを含む。 The pump 14 includes a pump unit 140 arranged in the tank 11, an electric motor 141 as a drive unit for driving the pump unit 140 so as to suck and discharge the hydraulic oil in the tank 11, and a reduction gear mechanism 142. include. The pump portion 140 of the pump 14 includes a rotor connected to the electric motor 141 via a reduction gear mechanism 142, an external tooth gear (drive gear) having a plurality of external teeth and rotating integrally with the rotor, and an external tooth gear. It is a gear pump mechanism including an internal tooth gear (driven gear) which has a plurality of internal teeth one more than the total number of the external teeth meshing with the external teeth and is arranged eccentrically with respect to the external tooth gear (either (Not shown). As shown in FIG. 3, the pump unit 140 is the hydraulic oil liquid when the liquid level of the hydraulic oil in the tank 11 is a predetermined minimum liquid level (the minimum liquid level when the robot arm 2 is operated). It is fixed in the tank 11 so as to be located below the surface. Further, the pump unit 140 includes a suction port 14i that opens downward below the liquid level (minimum liquid level) of the hydraulic oil in the tank 11.
 また、本実施形態において、ポンプ14の減速ギヤ機構142は、タンク11内の作動油の液位が予め定められた最高液位であるときに少なくとも一部が作動油に浸漬するように当該タンク11内に配置される。更に、電動モータ141は、タンク11内の作動油の液位が最高液位であるときに作動油の液面(最高液位)よりも上方に位置するようにタンク11内に配置される。これにより、電動モータ141の回転時における撹拌抵抗をより低減化することが可能となる。なお、ポンプ14のポンプ部140は、ベーンやインペラを含むものであってもよい。また、ポンプ14から減速ギヤ機構142が省略されてもよい。更に、電動モータ141および減速ギヤ機構142が液没可能に構成されている場合、両者は、タンク11内の作動油の液面(最低液位)よりも下方に配置されてもよい。これにより、ポンプ14の放熱をより促進させると共にポンプ14の騒音を作動油およびタンク11の壁部とにより遮断することができる。 Further, in the present embodiment, the reduction gear mechanism 142 of the pump 14 is so that at least a part of the reduction gear mechanism 142 in the tank 11 is immersed in the hydraulic oil when the liquid level of the hydraulic oil in the tank 11 is a predetermined maximum liquid level. It is arranged in 11. Further, the electric motor 141 is arranged in the tank 11 so as to be located above the liquid level of the hydraulic oil (maximum liquid level) when the liquid level of the hydraulic oil in the tank 11 is the maximum liquid level. This makes it possible to further reduce the stirring resistance during rotation of the electric motor 141. The pump unit 140 of the pump 14 may include a vane or an impeller. Further, the reduction gear mechanism 142 may be omitted from the pump 14. Further, when the electric motor 141 and the reduction gear mechanism 142 are configured to be submerged, both may be arranged below the liquid level (minimum liquid level) of the hydraulic oil in the tank 11. As a result, heat dissipation of the pump 14 can be further promoted, and noise of the pump 14 can be blocked by the hydraulic oil and the wall portion of the tank 11.
 第1油圧制御装置15は、図3に示すように、タンク11内の作動油の液位が上記最低液位であるときに、作動油の液面よりも下方に位置するようにタンク11内に固定され、配管を介してポンプ14のポンプ部140の吐出口に接続される。図示するように、第1油圧制御装置15は、元圧生成バルブRVと、信号圧を生成する図示しない信号圧生成バルブ(図示省略)と、元圧生成バルブRVからの油圧を調圧して上記揺動モータ13への油圧を生成するソレノイドバルブSL0とを含む。 As shown in FIG. 3, the first hydraulic control device 15 is located in the tank 11 so as to be located below the liquid level of the hydraulic oil when the liquid level of the hydraulic oil in the tank 11 is the minimum liquid level. It is fixed to and connected to the discharge port of the pump unit 140 of the pump 14 via a pipe. As shown in the figure, the first hydraulic control device 15 adjusts the pressure from the main pressure generation valve RV, the signal pressure generation valve (not shown) for generating the signal pressure, and the oil pressure from the main pressure generation valve RV. It includes a solenoid valve SL0 that generates a hydraulic pressure to the oscillating motor 13.
 元圧生成バルブRVは、信号圧生成バルブからの信号圧に応じてポンプ部140から吐出される作動油を調圧して元圧を生成する。元圧生成バルブRVの信号圧生成バルブとしては、例えばロボットアーム2への要求に応じて図示しない制御装置により通電制御されるリニアソレノイドバルブが用いられる。また、本実施形態において、ソレノイドバルブSL0は、電磁部に印加される電流に応じて元圧生成バルブRVからの油圧(元圧)を調圧するリニアソレノイドバルブである。更に、第1油圧制御装置15は、タンク11内の作動油の液面(最低液位)よりも下側で開口するドレン管L1を含む。元圧生成バルブRVやソレノイドバルブSL0による油圧の調整に伴って生じるドレン油は、当該ドレン管L1からタンク11の内部に排出される。 The main pressure generation valve RV generates the main pressure by adjusting the hydraulic oil discharged from the pump unit 140 according to the signal pressure from the signal pressure generation valve. As the signal pressure generating valve of the main pressure generating valve RV, for example, a linear solenoid valve whose energization is controlled by a control device (not shown) in response to a request to the robot arm 2 is used. Further, in the present embodiment, the solenoid valve SL0 is a linear solenoid valve that regulates the oil pressure (primary pressure) from the main pressure generation valve RV according to the current applied to the solenoid portion. Further, the first hydraulic control device 15 includes a drain pipe L1 that opens below the liquid level (minimum liquid level) of the hydraulic oil in the tank 11. The drain oil generated by adjusting the oil pressure by the main pressure generation valve RV and the solenoid valve SL0 is discharged from the drain pipe L1 into the tank 11.
 第2油圧制御装置16は、図2および図3に示すように、タンク11内、すなわち上壁部11uの内面に取り付けられ(固定され)、タンク11内で上下方向に延在する配管L0を介して第1油圧制御装置16の元圧生成バルブRVの出力ポートに接続される。また、第2油圧制御装置16は、ロボットアーム2における液圧アクチュエータMの数と同数(複数)のソレノイドバルブSLmを含む。各ソレノイドバルブSLmは、本実施形態において、電磁部に印加される電流に応じて元圧生成バルブRVからの油圧(元圧)を調圧して対応する液圧アクチュエータMへの油圧を生成するリニアソレノイドバルブである。また、各ソレノイドバルブSLmの吐出ポートには、第2油圧制御装置16のバルブボディに形成された油路等を介して対応するホースHが接続される。更に、第2油圧制御装置16は、タンク11内の作動油の液面側に延びると共に当該液面(最低液位)よりも下側で開口するドレン管L2を含む。各ソレノイドバルブSLmによる油圧の調整に伴って生じるドレン油も、当該ドレン管L2からタンク11の内部に排出される。 As shown in FIGS. 2 and 3, the second hydraulic control device 16 is attached (fixed) to the inside of the tank 11, that is, the inner surface of the upper wall portion 11u, and has a pipe L0 extending in the vertical direction in the tank 11. It is connected to the output port of the main pressure generation valve RV of the first hydraulic control device 16 via. Further, the second hydraulic control device 16 includes the same number (plurality) of solenoid valves SLm as the number of hydraulic actuators M in the robot arm 2. In the present embodiment, each solenoid valve SLm is a linear type that regulates the oil pressure (primary pressure) from the main pressure generation valve RV according to the current applied to the solenoid portion to generate the oil pressure to the corresponding hydraulic actuator M. It is a solenoid valve. Further, a corresponding hose H is connected to the discharge port of each solenoid valve SLm via an oil passage or the like formed in the valve body of the second hydraulic control device 16. Further, the second hydraulic control device 16 includes a drain pipe L2 that extends toward the liquid level side of the hydraulic oil in the tank 11 and opens below the liquid level (minimum liquid level). Drain oil generated by adjusting the oil pressure by each solenoid valve SLm is also discharged from the drain pipe L2 into the tank 11.
 また、ポンプ14の電動モータ141には、電力を供給するためのケーブルKpが接続され、当該ケーブルKpは、タンク11内の作動油の液面(最高液位)よりも上側で開口するように当該タンク11に形成されたケーブル孔11hから外部に引き出される。更に、第1油圧制御装置15の信号圧生成バルブおよびソレノイドバルブSL0にも、電力を供給するためのケーブルK1が接続され、当該ケーブルK1は、ポンプ14のケーブルKpと同様に、タンク11に形成されたケーブル孔11hから外部に引き出される。また、第2油圧制御装置16の各ソレノイドバルブSLmにも、電力を供給するためのケーブルK2が接続され、当該ケーブルK2は、上記ケーブルKp,K1と同様に、タンク11に形成されたケーブル孔11hから外部に引き出される。更に、各ケーブルKp,K1,K2は、図示しない制御装置を介して家庭用電源やバッテリ等に接続される。なお、本実施形態ではタンク11の壁部とケーブルKp,K1,K2との隙間を封止するシール部材が、ケーブル孔11hに設けられる。ただし、液体供給装置10が設置箇所に固定される場合には、当該シール部材が省略されてもよい。 Further, a cable Kp for supplying electric power is connected to the electric motor 141 of the pump 14, so that the cable Kp opens above the liquid level (maximum liquid level) of the hydraulic oil in the tank 11. It is pulled out from the cable hole 11h formed in the tank 11. Further, a cable K1 for supplying power is also connected to the signal pressure generation valve and the solenoid valve SL0 of the first hydraulic control device 15, and the cable K1 is formed in the tank 11 in the same manner as the cable Kp of the pump 14. It is pulled out from the cable hole 11h. Further, a cable K2 for supplying electric power is also connected to each solenoid valve SLm of the second hydraulic control device 16, and the cable K2 is a cable hole formed in the tank 11 in the same manner as the cables Kp and K1. It is pulled out from 11h. Further, the cables Kp, K1 and K2 are connected to a household power supply, a battery or the like via a control device (not shown). In the present embodiment, a sealing member for sealing the gap between the wall portion of the tank 11 and the cables Kp, K1 and K2 is provided in the cable hole 11h. However, when the liquid supply device 10 is fixed at the installation location, the sealing member may be omitted.
 図4に示すように、第1油圧制御装置15のソレノイドバルブSL0および第2油圧制御装置16の各ソレノイドバルブSLmは、第1または第2油圧制御装置15,16のバルブボディに組み込まれる略円筒状のスリーブ101と、当該スリーブ101の内部に軸方向に摺動自在(移動自在)に配置されるスプール102と、図示しない制御装置により通電制御(PWM制御)されてスプール102を駆動する電磁部103と、スプール102を付勢するスプリング104とを含む。本実施形態において、ソレノイドバルブSL0,SLmは、電磁部103に電流が供給される際に開弁する常閉弁であり、各電磁部103は、印加される電流に応じてスプール102を軸方向に移動させる。 As shown in FIG. 4, each solenoid valve SL0 of the first hydraulic control device 15 and the solenoid valve SLm of the second hydraulic control device 16 is a substantially cylindrical cylinder incorporated in the valve body of the first or second hydraulic control device 15 or 16. A sleeve 101, a spool 102 slidably (movably) arranged in the axial direction inside the sleeve 101, and an electromagnetic unit that drives the spool 102 by energization control (PWM control) by a control device (not shown). Includes 103 and a spring 104 that urges the spool 102. In the present embodiment, the solenoid valves SL0 and SLm are normally closed valves that open when a current is supplied to the solenoid unit 103, and each solenoid valve 103 axially rotates the spool 102 according to the applied current. Move to.
 スリーブ101の一端(図中右端)は、電磁部103(ヨーク)に対して固定され、スリーブ101と電磁部103とは、スプール102の端部(図4における右側の端部)が配置される空間105を画成する。また、スリーブ101の電磁部103側とは反対側の端部(図中左端部)には、当該端部を閉鎖するキャップが固定(螺合)される。スプリング104は、スプール102と当該キャップとの間に位置するようにスリーブ101の内部に形成されたプリング室内に配置される。スプリング104は、本実施形態においてコイルスプリングであり、スプール5を電磁部103側(出力ポート101o側から入力ポート101i側)に付勢する。 One end (right end in the drawing) of the sleeve 101 is fixed to the electromagnetic portion 103 (yoke), and the end of the spool 102 (the right end in FIG. 4) is arranged between the sleeve 101 and the electromagnetic portion 103. The space 105 is defined. Further, a cap for closing the end portion (left end portion in the drawing) of the sleeve 101 opposite to the electromagnetic portion 103 side is fixed (screwed). The spring 104 is arranged in a pulling chamber formed inside the sleeve 101 so as to be located between the spool 102 and the cap. The spring 104 is a coil spring in the present embodiment, and urges the spool 5 to the electromagnetic portion 103 side (from the output port 101o side to the input port 101i side).
 更に、スリーブ101は、それぞれバルブボディに形成された対応する油路に連通する入力ポート101i、出力ポート101o、ドレンポート(排出ポート)101dおよび101e並びにフィードバックポート101fを含む。入力ポート101iには、ポンプ14から吐出された後に元圧生成バルブRVにより調圧された作動油(ライン圧)が供給される。また、リニアソレノイドバルブSL0,SLmにより調圧された作動油は、出力ポート101oからバルブボディの油路を介して対応するホースH等に流入する。更に、ドレンポート101d,101eは、それぞえバルブボディの対応するドレン油路を介してドレン管L1またはL2に連通し、フィードバックポート101fは、バルブボディに形成された油路を介して出力ポート101oに連通する。 Further, the sleeve 101 includes an input port 101i, an output port 101o, drain ports (drainage ports) 101d and 101e, and a feedback port 101f that communicate with the corresponding oil passages formed in the valve body, respectively. The hydraulic oil (line pressure) adjusted by the main pressure generation valve RV after being discharged from the pump 14 is supplied to the input port 101i. Further, the hydraulic oil regulated by the linear solenoid valves SL0 and SLm flows from the output port 101o into the corresponding hose H or the like through the oil passage of the valve body. Further, the drain ports 101d and 101e communicate with the drain pipe L1 or L2 via the corresponding drain oil passage of the valve body, and the feedback port 101f is an output port via the oil passage formed in the valve body. Communicate with 101o.
 本実施形態において、入力ポート101i、出力ポート101o、ドレンポート101d,101eおよびフィードバックポート101fは、電磁部103側からスプリング104(キャップ)側に向けて、ドレンポート101d、入力ポート101i、出力ポート101o、フィードバックポート101f、ドレンポート101eという順番で間隔をおいて軸方向に並ぶようにスリーブ101に形成される。すなわち、ドレンポート101dは、入力ポート101iの電磁部103側に形成され、入力ポート101iは、出力ポート101oの電磁部103側に形成される。また、フィードバックポート101fは、出力ポート101oのスプリング104側に形成され、ドレンポート101eは、上記スプリング室に連通するようにフィードバックポート101fのスプリング104側に形成される。 In the present embodiment, the input port 101i, the output port 101o, the drain ports 101d, 101e and the feedback port 101f face the drain port 101d, the input port 101i, and the output port 101o from the electromagnetic unit 103 side toward the spring 104 (cap) side. , The feedback port 101f and the drain port 101e are formed on the sleeve 101 so as to be arranged in the axial direction at intervals in this order. That is, the drain port 101d is formed on the electromagnetic portion 103 side of the input port 101i, and the input port 101i is formed on the electromagnetic portion 103 side of the output port 101o. Further, the feedback port 101f is formed on the spring 104 side of the output port 101o, and the drain port 101e is formed on the spring 104 side of the feedback port 101f so as to communicate with the spring chamber.
 かかるソレノイドバルブSL0、SLmによりポンプ14側からの作動油を調圧する際には、電磁部103(コイル)への給電により当該電磁部103からスプール102に付与される推力と、スプリング104の付勢力と、出力ポート101oからフィードバックポート101fに供給された油圧(駆動圧)の作用によりスプール102に付与される電磁部103側への推力とをバランスさせる。これにより、入力ポート101iに供給されたポンプ14側からの作動油を出力ポート101oから流出した作動油が所望の圧力になるように当該出力ポート101oから流出させることができる。 When the hydraulic oil from the pump 14 side is adjusted by the solenoid valves SL0 and SLm, the thrust applied to the spool 102 by the solenoid part 103 (coil) by supplying power to the solenoid part 103 (coil) and the urging force of the spring 104. And the thrust toward the solenoid portion 103 side applied to the spool 102 by the action of the hydraulic pressure (driving pressure) supplied from the output port 101o to the feedback port 101f are balanced. As a result, the hydraulic oil supplied to the input port 101i from the pump 14 side can be discharged from the output port 101o so that the hydraulic oil flowing out from the output port 101o has a desired pressure.
 また、ソレノイドバルブSL0、SLmは、電磁部103が第1または第2油圧制御装置15,16のバルブボディの外に突出するように当該バルブボディに固定される。そして、作動油の調圧に際して、スリーブ101とスプール102との隙間から上記空間105内に漏れ出た作動油は、電磁部103とスリーブ101との間の隙間、あるいはスリーブ101および/または電磁部103(コネクタ106やその周辺)に形成されたドレン通路(孔部)を介して空間105から外部に排出される。更に、スリーブ101とスプール102との隙間からスプリング室内に流入した作動油は、スリーブ101に形成されたドレンポート101e、バルブボディのドレン油路およびドレン管L1またはL2を介してタンク11の内部に排出される。 Further, the solenoid valves SL0 and SLm are fixed to the valve body so that the solenoid part 103 projects out of the valve bodies of the first or second hydraulic control devices 15 and 16. Then, when adjusting the pressure of the hydraulic oil, the hydraulic oil leaked into the space 105 from the gap between the sleeve 101 and the spool 102 is the gap between the electromagnetic portion 103 and the sleeve 101, or the sleeve 101 and / or the electromagnetic portion. It is discharged from the space 105 to the outside through a drain passage (hole) formed in 103 (connector 106 and its surroundings). Further, the hydraulic oil that has flowed into the spring chamber through the gap between the sleeve 101 and the spool 102 enters the inside of the tank 11 via the drain port 101e formed in the sleeve 101, the drain oil passage of the valve body, and the drain pipe L1 or L2. It is discharged.
 なお、ソレノイドバルブSL0、SLmの少なくとも何れか1つは、専用のフィードバックポート101fをもたず、スプール102を収容するスリーブ101の内側で出力圧をフィードバック圧としてスプールに作用させるように構成されたものであってもよい(例えば、特開2020-41687号公報参照)。更に、ソレノイドバルブSL0、SLmは、スプリング104を含まないものであってもよい。 At least one of the solenoid valves SL0 and SLm does not have a dedicated feedback port 101f, and is configured to act on the spool using the output pressure as the feedback pressure inside the sleeve 101 accommodating the spool 102. (For example, see JP-A-2020-41687). Further, the solenoid valves SL0 and SLm may not include the spring 104.
 上述のように、ロボット装置1において、ロボットアーム2は、人工筋肉としての複数の液圧アクチュエータMと、各液圧アクチュエータMに接続される液体供給管としてのホースHとを含む。また、液体供給装置10は、作動油(液体)を貯留するタンク11と、タンク11内の作動油を吸引して吐出するポンプ14と、ポンプ14からの作動油を調圧(調整)して各液圧アクチュエータMに供給する第2油圧制御装置(液体調整ユニット)16とを含む。そして、各ホースHは、第2油圧制御装置16に接続され、当該第2油圧制御装置16は、タンク11内に配置される。これにより、作動油の調圧に際して第2油圧制御装置16の各ソレノイドバルブSLmのスリーブ101とスプール102との隙間から空間105等内に漏れ出た作動油を電磁部103とスリーブ101との間の隙間あるいはスリーブ101および/または電磁部103に形成されたドレン通路(孔部)を介して直接タンク11内に排出させることが可能となる。この結果、第2油圧制御装置16からの油漏れを抑制するための構造や、漏れ出た作動油を作動油貯留部に導くための構造を省略または簡素化することができるので、ロボット装置1の構造の複雑化を抑制してコストダウンを図ることが可能となる。加えて、空間105内の作動油を直接タンク11内に排出させることで、当該空間105内に溜まった作動油(油圧)がスプール102の動作に影響を与えるのを良好に抑制することができる。 As described above, in the robot device 1, the robot arm 2 includes a plurality of hydraulic actuators M as artificial muscles and a hose H as a liquid supply pipe connected to each hydraulic actuator M. Further, the liquid supply device 10 adjusts (adjusts) the pressure of the tank 11 for storing the hydraulic oil (liquid), the pump 14 for sucking and discharging the hydraulic oil in the tank 11, and the hydraulic oil from the pump 14. A second hydraulic control device (liquid adjusting unit) 16 supplied to each hydraulic actuator M is included. Then, each hose H is connected to the second hydraulic control device 16, and the second hydraulic control device 16 is arranged in the tank 11. As a result, when adjusting the pressure of the hydraulic oil, the hydraulic oil leaked into the space 105 or the like from the gap between the sleeve 101 and the spool 102 of each solenoid valve SLm of the second hydraulic control device 16 is transferred between the solenoid portion 103 and the sleeve 101. It is possible to discharge the oil directly into the tank 11 through the gap or the drain passage (hole) formed in the sleeve 101 and / or the electromagnetic portion 103. As a result, the structure for suppressing oil leakage from the second hydraulic control device 16 and the structure for guiding the leaked hydraulic oil to the hydraulic oil storage unit can be omitted or simplified, and thus the robot device 1 It is possible to reduce the cost by suppressing the complication of the structure of the above. In addition, by discharging the hydraulic oil in the space 105 directly into the tank 11, it is possible to satisfactorily suppress the influence of the hydraulic oil (flood control) accumulated in the space 105 on the operation of the spool 102. ..
 また、上記実施形態において、人工筋肉としての液圧アクチュエータMを複数含むロボットアーム2は、作動油(液体)を貯留するタンク11により支持される。更に、タンク11の内部には、第1および第2油圧制御装置15,16に加えて、作動油を吸引して吐出するポンプ14のポンプ部140が配置される。これにより、タンク11を収容する筐体が不要となり、タンク11とポンプ14および第2油圧制御装置16とを繋ぐ配管を省略することができるので、液体供給装置10を小型化してロボット装置1の全体をコンパクト化することが可能となる。加えて、ポンプ14のポンプ部140をタンク11(作動油)内に配置することで、タンク11内の作動油によりポンプ14等の放熱を促進させたり、タンク11や作動液により騒音を遮断したりすることができる。この結果、ロボット装置1のコンパクト化を図りつつ、発熱や騒音を低減化することが可能となる。 Further, in the above embodiment, the robot arm 2 including a plurality of hydraulic actuators M as artificial muscles is supported by a tank 11 for storing hydraulic oil (liquid). Further, inside the tank 11, in addition to the first and second hydraulic control devices 15 and 16, a pump unit 140 of a pump 14 that sucks and discharges hydraulic oil is arranged. As a result, the housing for accommodating the tank 11 is not required, and the piping connecting the tank 11 to the pump 14 and the second hydraulic control device 16 can be omitted. Therefore, the liquid supply device 10 can be miniaturized to reduce the size of the robot device 1. It is possible to make the whole compact. In addition, by arranging the pump portion 140 of the pump 14 in the tank 11 (hydraulic oil), the hydraulic oil in the tank 11 promotes heat dissipation of the pump 14 and the like, and the tank 11 and the hydraulic fluid block noise. Can be done. As a result, it is possible to reduce heat generation and noise while making the robot device 1 compact.
 更に、上記実施形態において、ポンプ14の駆動部としての電動モータ141および減速ギヤ機構142は、ポンプ部140よりも上側に位置するようにタンク11内に配置される。このように、電動モータ141を含むポンプ14の駆動部をタンク11内に配置することで、タンク11によりポンプ14の動作音を良好に遮断することが可能となる。 Further, in the above embodiment, the electric motor 141 as the driving unit of the pump 14 and the reduction gear mechanism 142 are arranged in the tank 11 so as to be located above the pump unit 140. By arranging the drive unit of the pump 14 including the electric motor 141 in the tank 11 in this way, the operating noise of the pump 14 can be satisfactorily cut off by the tank 11.
 ただし、図5に示す液体供給装置10Bのように、ポンプ14Bの駆動部としての電動モータ141および減速ギヤ機構142は、タンク11Bの外部に配置されてもよい。これにより、タンク11Bの小型化を図りつつ、当該タンク11B内に貯留可能な作動油の量を充分に確保することができる。そして、かかる液体供給装置10Bは、電動モータ141に対するタンク11B内の液揺れの影響を無くすことが可能であり、特に無人搬送車に搭載されるロボット装置1に適用されると好ましい。更に、ロボット装置1において、ポンプ14の全体(ポンプ部140および駆動部)がタンク11,11Bの外に配置されてもよい。 However, as in the liquid supply device 10B shown in FIG. 5, the electric motor 141 and the reduction gear mechanism 142 as the drive unit of the pump 14B may be arranged outside the tank 11B. As a result, it is possible to secure a sufficient amount of hydraulic oil that can be stored in the tank 11B while reducing the size of the tank 11B. The liquid supply device 10B can eliminate the influence of the liquid sway in the tank 11B on the electric motor 141, and is particularly preferably applied to the robot device 1 mounted on an automatic guided vehicle. Further, in the robot device 1, the entire pump 14 (pump unit 140 and drive unit) may be arranged outside the tanks 11 and 11B.
 また、上記実施形態において、ロボットアーム2は、タンク11の上壁部11uにより支持され、第2油圧制御装置16は、当該上壁部11uの内面に取り付けられる。これにより、第2油圧制御装置16から各液圧アクチュエータMに作動油を供給するためのホース(液体供給管)Hを短縮化すると共に各ホースHの取り回しを容易にすることが可能となる。ただし、第2油圧制御装置16は、ロボットアーム2を支持するタンク11の壁部の内面に取り付けられればよく、例えばロボットアーム2がタンク11の側壁部により支持される場合には、当該側壁部の内面に取り付けられてもよい。 Further, in the above embodiment, the robot arm 2 is supported by the upper wall portion 11u of the tank 11, and the second hydraulic control device 16 is attached to the inner surface of the upper wall portion 11u. This makes it possible to shorten the hose (liquid supply pipe) H for supplying hydraulic oil from the second hydraulic control device 16 to each hydraulic actuator M and to facilitate the handling of each hose H. However, the second hydraulic control device 16 may be attached to the inner surface of the wall portion of the tank 11 that supports the robot arm 2. For example, when the robot arm 2 is supported by the side wall portion of the tank 11, the side wall portion is concerned. It may be attached to the inner surface of the.
 更に、液体供給装置10は、タンク11を回動自在に支持するベース部12と、ベース部12により支持され、タンク11を回動させる回動ユニットとしての揺動モータ13と、タンク11内の作動油の液面(最低液位)よりも下側に位置するように当該タンク11内に配置されてポンプ部140からの作動油を調圧して揺動モータ13に供給する第1油圧制御装置15とを含む。これにより、ロボットアーム2をタンク11と一体に回動させることが可能となる。加えて、上記実施形態のように、タンク11内の作動油の液面(最低液位)よりも下側に配置される第1油圧制御装置15(元圧生成バルブRV)により元圧を生成して上方の第2油圧制御装置16に供給することで、効率よく元圧を生成すると共に、ポンプ14の負荷を低下させることができる。 Further, the liquid supply device 10 includes a base portion 12 that rotatably supports the tank 11, a swing motor 13 as a rotation unit that is supported by the base portion 12 and rotates the tank 11, and a swing motor 13 in the tank 11. A first hydraulic control device that is arranged in the tank 11 so as to be located below the liquid level (minimum liquid level) of the hydraulic oil, regulates the hydraulic oil from the pump unit 140, and supplies the hydraulic oil to the swing motor 13. Including 15. This makes it possible to rotate the robot arm 2 integrally with the tank 11. In addition, as in the above embodiment, the original pressure is generated by the first hydraulic control device 15 (primary pressure generation valve RV) arranged below the liquid level (minimum liquid level) of the hydraulic oil in the tank 11. By supplying the oil to the second hydraulic control device 16 above, the original pressure can be efficiently generated and the load on the pump 14 can be reduced.
 また、第1および第2油圧制御装置15,16は、タンク11内の作動油の液面(最低液位)よりも下側で開口するドレン管L1またはL2を含み、それぞれ作動油の調圧に伴って生じるドレン油(余剰の液体)をドレン管L1またはL2からタンク11の内部に排出する。これにより、ドレン管L1,L2から作動油が流出する際に気泡が発生しないようにして、ポンプ部140がエアを吸い込むのを抑制することが可能となる。ただし、第2油圧制御装置16のドレン管L2は、タンク11内の作動油の液面よりも上側で開口するものであってもよい。加えて、上記液体供給装置10では、ポンプ部140の吸入口14iがタンク11内の作動油の液面(最低液位)よりも下側で下向きに開口する。これにより、ポンプ部140がエアを吸い込むのをより良好に抑制することが可能となる。 Further, the first and second hydraulic control devices 15 and 16 include drain pipes L1 or L2 that open below the liquid level (minimum liquid level) of the hydraulic oil in the tank 11, and the pressure of the hydraulic oil is adjusted, respectively. The drain oil (surplus liquid) generated in association with the above is discharged from the drain pipes L1 or L2 into the tank 11. As a result, it is possible to prevent air bubbles from being generated when the hydraulic oil flows out from the drain pipes L1 and L2, and to suppress the pump unit 140 from sucking air. However, the drain pipe L2 of the second hydraulic control device 16 may be opened above the liquid level of the hydraulic oil in the tank 11. In addition, in the liquid supply device 10, the suction port 14i of the pump unit 140 opens downward below the liquid level (minimum liquid level) of the hydraulic oil in the tank 11. This makes it possible to better suppress the pump unit 140 from sucking air.
 更に、第1および第2油圧制御装置15,16は、それぞれタンク11の外部からケーブルK1またはK2を介して電力が供給されるソレノイドバルブSL0またはSLmを含み、ケーブルK1,K2は、タンク11内の作動油の液面(最高液位)よりも上側で開口するように当該タンク11に形成されたケーブル孔11hから外部に引き出される。加えて、ポンプ14の電動モータ141には、電力を供給するためのケーブルKpが接続され、当該ケーブルKpもタンク11のケーブル孔11hから外部に引き出される。これにより、ケーブルKp,K1,K2が挿通されるケーブル孔11hからの作動油の漏洩を良好に抑制することが可能となる。 Further, the first and second hydraulic control devices 15 and 16 include solenoid valves SL0 or SLm to which electric power is supplied from the outside of the tank 11 via cables K1 or K2, respectively, and cables K1 and K2 are inside the tank 11. It is drawn out from the cable hole 11h formed in the tank 11 so as to open above the liquid level (maximum liquid level) of the hydraulic oil. In addition, a cable Kp for supplying electric power is connected to the electric motor 141 of the pump 14, and the cable Kp is also pulled out from the cable hole 11h of the tank 11. This makes it possible to satisfactorily suppress the leakage of hydraulic oil from the cable hole 11h through which the cables Kp, K1 and K2 are inserted.
 なお、上記実施形態において、人工筋肉としての液圧アクチュエータMは、内部に作動油が供給されると共に当該内部の油圧の上昇に応じて径方向に膨張しながら軸方向に収縮するチューブTと、当該チューブTを覆う編組スリーブSとを含むマッキベン型の人工筋肉であるが、ロボット装置1における液圧アクチュエータMの構成は、これに限られるものではない。すなわち、液圧アクチュエータMは、液体が供給された際に径方向に膨張しながら軸方向に収縮するチューブを含むものであればよく、例えば弾性体により形成された内側筒状部材と、弾性体により形成されると共に内側筒状部材の外側に同軸に配置され外側筒状部材と、内側筒状部材と外側筒状部材との間に配置された繊維層とを含む軸方向繊維強化型の液圧アクチュエータ(例えば、特開2011-137516号参照)であってもよい。更に、液圧アクチュエータMは、シリンダおよびピストンを含む液体シリンダであってもよい。 In the above embodiment, the hydraulic actuator M as an artificial muscle includes a tube T that is supplied with hydraulic oil to the inside and contracts in the axial direction while expanding in the radial direction in response to an increase in the internal oil pressure. Although it is a Macchiben type artificial muscle including a braided sleeve S covering the tube T, the configuration of the hydraulic actuator M in the robot device 1 is not limited to this. That is, the hydraulic actuator M may include a tube that expands in the radial direction and contracts in the axial direction when the liquid is supplied. For example, an inner cylindrical member formed of an elastic body and an elastic body. Axial fiber reinforced liquid containing an outer tubular member and a fiber layer arranged between the inner tubular member and the outer tubular member, which is formed by It may be a pressure actuator (see, for example, Japanese Patent Application Laid-Open No. 2011-137516). Further, the hydraulic actuator M may be a liquid cylinder including a cylinder and a piston.
 また、液体供給装置10,10Bは、水等の作動油以外の液体を液圧アクチュエータMに供給するように構成されてもよく、ポンプ14等により発生させられた油圧を蓄えるアキュムレータ(蓄圧器)を含むものであってもよい。更に、第1および第2油圧制御装置15,16のソレノイドバルブSL0,SLmは、電磁部に供給される電流に応じた信号圧を出力するリニアソレノイドバルブおよび当該信号圧に応じて作動油を調圧するコントロールバルブで置き換えられてもよい。また、第1および第2油圧制御装置15,16は、例えば圧力センサにより検出される液圧が要求に応じた圧力になるように液圧アクチュエータMへの液体の流量を制御する流量制御弁を含むものであってもよい。 Further, the liquid supply devices 10 and 10B may be configured to supply a liquid other than hydraulic oil such as water to the hydraulic actuator M, and an accumulator (accumulator) for storing the oil pressure generated by the pump 14 or the like. May be included. Further, the solenoid valves SL0 and SLm of the first and second hydraulic control devices 15 and 16 adjust the hydraulic oil according to the linear solenoid valve that outputs the signal pressure corresponding to the current supplied to the solenoid part and the signal pressure. It may be replaced with a pressing control valve. Further, the first and second hydraulic control devices 15 and 16 have, for example, a flow control valve that controls the flow rate of the liquid to the hydraulic actuator M so that the hydraulic pressure detected by the pressure sensor becomes the pressure required. It may include.
 そして、ロボット装置1は、関節を1つだけ含むものであってもよく、人工筋肉としての液圧アクチュエータMを1つだけ含むものであってもよい。また、ロボット装置1は、少なくとも1つの液圧アクチュエータMとハンド部4とを有するロボットアーム2を含むものに限られず、少なくとも1つの液圧アクチュエータMと、例えばドリルビット等の工具や例えばスイッチ等を押圧する押圧部材といったハンド部4以外の要素が手先に取り付けられたロボットアームとを含むものであってもよい。更に、ロボット装置1は、歩行ロボットや、ウェアラブルロボット等であってもよい。 Then, the robot device 1 may include only one joint, or may include only one hydraulic actuator M as an artificial muscle. Further, the robot device 1 is not limited to the one including the robot arm 2 having at least one hydraulic actuator M and the hand portion 4, and the robot device 1 includes at least one hydraulic actuator M, a tool such as a drill bit, a switch, or the like. An element other than the hand portion 4, such as a pressing member for pressing the robot arm, may be included with the robot arm attached to the hand. Further, the robot device 1 may be a walking robot, a wearable robot, or the like.
 更に、ロボット装置1のロボットアーム2は、アーム3を駆動する液圧アクチュエータとして揺動モータを含むものであってもよい。すなわち、ロボット装置1のロボット本体は、人工筋肉としての液圧アクチュエータと揺動モータとの少なくとも何れか1つを含むものであってもよい。また、ロボット装置1は、タンク11,11Bがロボットアーム2といったロボット本体により支持されるものであってもよく、この場合、第2油圧制御装置16は、ロボット本体により支持されるタンク11,11Bの壁部の内面に取り付けられるとよい。これにより、液体供給管としてのホースHを短縮化すると共に各ホースHの取り回しを容易にすることが可能となる。 Further, the robot arm 2 of the robot device 1 may include a swing motor as a hydraulic actuator for driving the arm 3. That is, the robot body of the robot device 1 may include at least one of a hydraulic actuator as an artificial muscle and a swing motor. Further, the robot device 1 may have tanks 11 and 11B supported by a robot body such as a robot arm 2. In this case, the second hydraulic control device 16 may support tanks 11 and 11B by the robot body. It is good to be attached to the inner surface of the wall part of. This makes it possible to shorten the hose H as a liquid supply pipe and facilitate the handling of each hose H.
 以上説明したように、本開示のロボット装置は、液体の供給を受けて作動する少なくとも1つの人工筋肉(M)を含むロボット本体(2)と、前記人工筋肉(M)に前記液体を供給する液体供給装置(10,10B)とを含むロボット装置(1)であって、前記液体供給装置(10,10B)が、前記液体を貯留するタンク(11,11B)と、前記タンク(11,11B)内の前記液体を吸引して吐出するポンプ(14,14B)と、前記ポンプ(14,14B)からの前記液体の圧力または流量を調整して前記人工筋肉(M)に供給する液体調整ユニット(16)とを含み、前記ロボット本体(2)が、前記液体調整ユニット(16)および前記人工筋肉(M)に接続された液体供給管(H)を含み、前記液体調整ユニット(16)が前記タンク(11,11B)内に配置されるものである。 As described above, the robot device of the present disclosure supplies the liquid to the robot body (2) including at least one artificial muscle (M) that operates by receiving the supply of the liquid, and the artificial muscle (M). A robot device (1) including a liquid supply device (10, 10B), wherein the liquid supply device (10, 10B) has a tank (11, 11B) for storing the liquid and the tank (11, 11B). ), And a liquid adjusting unit that adjusts the pressure or flow rate of the liquid from the pump (14, 14B) and supplies it to the artificial muscle (M). The robot body (2) includes the liquid adjusting unit (16) and the liquid supply pipe (H) connected to the artificial muscle (M), and the liquid adjusting unit (16) includes the liquid adjusting unit (16). It is arranged in the tank (11, 11B).
 本開示のロボット装置において、ロボット本体は、少なくとも1つの人工筋肉と、当該人工筋肉に接続される液体供給管とを含む。また、液体供給装置は、液体を貯留するタンクと、タンク内の液体を吸引して吐出するポンプと、ポンプからの液体の圧力または流量を調整して人工筋肉に供給する液体調整ユニットとを含む。そして、液体供給管は、液体調整ユニットに接続され、液体調整ユニットは、タンク内に配置される。これにより、液体調整ユニットから漏れた液体を直接タンク内に排出させることが可能となるので、液体調整ユニットからの液漏れを抑制するための構造や、漏れ出た液体を貯留部に導くための構造を省略または簡素化することができる。この結果、少なくとも1つの人工筋肉を含むロボット本体と、人工筋肉に液体を供給する液体供給装置とを含むロボット装置の構造の複雑化を抑制してコストダウンを図ることが可能となる。 In the robot device of the present disclosure, the robot body includes at least one artificial muscle and a liquid supply pipe connected to the artificial muscle. The liquid supply device also includes a tank for storing the liquid, a pump for sucking and discharging the liquid in the tank, and a liquid adjusting unit for adjusting the pressure or flow rate of the liquid from the pump and supplying it to the artificial muscle. .. Then, the liquid supply pipe is connected to the liquid adjusting unit, and the liquid adjusting unit is arranged in the tank. As a result, the liquid leaked from the liquid adjusting unit can be discharged directly into the tank, so that a structure for suppressing liquid leakage from the liquid adjusting unit and a structure for guiding the leaked liquid to the storage unit can be performed. The structure can be omitted or simplified. As a result, it is possible to reduce the cost by suppressing the complexity of the structure of the robot body including at least one artificial muscle and the liquid supply device for supplying the liquid to the artificial muscle.
 また、前記ポンプ(14,14B)は、ポンプ部(140)および前記タンク(11,11B)内の前記液体を吸引して吐出するように前記ポンプ部(140)を駆動する駆動部(141,142)を含むものであってもよく、少なくとも前記ポンプ部(140)が前記タンク(11,11B)内に配置されてもよい。これにより、タンクとポンプとを繋ぐ配管等を省略すると共に、タンク内の液体によりポンプ等の放熱を促進させたり、タンクにより騒音を遮断したりすることができる。この結果、液体供給装置ひいてはロボット装置のコンパクト化を図りつつ、当該ロボット装置における発熱や騒音を低減化することが可能となる。 Further, the pump (14, 14B) drives the pump unit (140) so as to suck and discharge the liquid in the pump unit (140) and the tank (11, 11B). 142) may be included, and at least the pump portion (140) may be arranged in the tank (11, 11B). As a result, it is possible to omit the piping and the like connecting the tank and the pump, promote heat dissipation of the pump and the like by the liquid in the tank, and block noise by the tank. As a result, it is possible to reduce heat generation and noise in the robot device while making the liquid supply device and thus the robot device compact.
 更に、前記液体調整ユニット(15,16)は、前記液体の圧力または流量を調整する少なくとも1つの電磁弁(SL0,SLm)を含むものであってもよく、前記電磁弁(SL0,SLm)は、スリーブ(101)と、前記スリーブ(101)内に摺動自在に配置されるスプール(102)と、前記スプール(102)を駆動する電磁部(103)を含むものであってもよく、前記スリーブ(101)と前記電磁部(103)とは、前記スプール(102)の端部が配置される空間(105)を画成してもよく、前記スリーブ(101)と前記スプール(103)との隙間から前記空間(105)内に漏れ出た前記液体は、前記空間(105)から前記タンク(11,11B)の内部に排出されてもよい。これにより、当該空間内に溜まった液体(液圧)がスプールの動作に影響を与えるのを良好に抑制することが可能となる。 Further, the liquid adjusting unit (15, 16) may include at least one solenoid valve (SL0, SLm) for adjusting the pressure or flow rate of the liquid, and the solenoid valve (SL0, SLm) may include the solenoid valve (SL0, SLm). , The sleeve (101), the spool (102) slidably arranged in the sleeve (101), and the electromagnetic part (103) for driving the spool (102) may be included. The sleeve (101) and the electromagnetic portion (103) may define a space (105) in which the end portion of the spool (102) is arranged, and the sleeve (101) and the spool (103) may form a space (105). The liquid leaked into the space (105) from the gap may be discharged from the space (105) into the tank (11, 11B). This makes it possible to satisfactorily suppress the influence of the liquid (hydraulic pressure) accumulated in the space on the operation of the spool.
 また、前記ロボット本体(2)および前記タンク(11,11B)の何れか一方は、他方により支持されてもよく、前記液体調整ユニット(16)は、前記ロボット本体(2)を支持するか、あるいは前記ロボット本体(2)により支持される前記タンク(11,11B)の壁部(11u)の内面に取り付けられてもよい。これにより、液体調整ユニットから人工筋肉に液体を供給するための液体供給管を短縮化すると共に当該液体供給管の取り回しを容易にすることが可能となる。 Further, either one of the robot body (2) and the tanks (11, 11B) may be supported by the other, and the liquid adjusting unit (16) supports the robot body (2). Alternatively, it may be attached to the inner surface of the wall portion (11u) of the tank (11, 11B) supported by the robot body (2). This makes it possible to shorten the liquid supply pipe for supplying the liquid from the liquid adjustment unit to the artificial muscle and to facilitate the handling of the liquid supply pipe.
 更に、前記液体調整ユニット(16)は、前記タンク(11,11B)内の液面よりも上側に配置されると共に、前記液面側に延びるドレン管(L2)を含み、前記圧力または前記流量の調整に伴って生じる余剰の前記液体を前記ドレン管(L2)から前記タンク(11,11B)の内部に排出するものであってもよい。 Further, the liquid adjusting unit (16) is arranged above the liquid level in the tanks (11, 11B) and includes a drain pipe (L2) extending toward the liquid level, and the pressure or the flow rate. The excess liquid generated by the adjustment of the above may be discharged from the drain pipe (L2) into the tank (11, 11B).
 また、前記ロボット本体(2)は、前記タンク(11,11B)の上壁部(11u)により支持されてもよく、前記液体調整ユニット(16)は、前記上壁部(11u)の内面に取り付けられてもよい。 Further, the robot body (2) may be supported by the upper wall portion (11u) of the tanks (11, 11B), and the liquid adjusting unit (16) is mounted on the inner surface of the upper wall portion (11u). It may be attached.
 更に、前記液体調整ユニット(15,16)は、前記タンク(11,11B)内の液面よりも下側で開口するドレン管(L1,L2)を含むと共に、前記圧力または前記流量の調整に伴って生じる余剰の前記液体を前記ドレン管(L1,L2)から前記タンク(11,11B)の内部に排出するものであってもよい。これにより、ドレン管から液体が流出する際に気泡が発生しないようにして、ポンプ部がエアを吸い込むのを抑制することが可能となる。 Further, the liquid adjusting unit (15, 16) includes drain pipes (L1, L2) that open below the liquid level in the tank (11, 11B), and for adjusting the pressure or the flow rate. The excess liquid that accompanies this may be discharged from the drain pipes (L1, L2) into the tank (11, 11B). As a result, it is possible to prevent air bubbles from being generated when the liquid flows out from the drain pipe and suppress the pump portion from sucking air.
 また、前記ポンプ部(140)は、前記タンク(11,11B)内の液面よりも下側で開口する吸入口(14i)を含むものであってもよい。これにより、ポンプ部がエアを吸い込むのをより良好に抑制することが可能となる。 Further, the pump portion (140) may include a suction port (14i) that opens below the liquid level in the tank (11, 11B). This makes it possible to better suppress the pump portion from sucking air.
 更に、前記ポンプ(14)の前記駆動部は、電動モータ(141)を含み、前記ポンプ部(140)よりも上側に位置するように前記タンク(11)内に配置されてもよい。このように、電動モータを含む駆動部をタンク内に配置することで、タンクによりポンプの動作音を良好に遮断することが可能となる。 Further, the drive unit of the pump (14) may include an electric motor (141) and be arranged in the tank (11) so as to be located above the pump unit (140). By arranging the drive unit including the electric motor in the tank in this way, it is possible to satisfactorily block the operating noise of the pump by the tank.
 また、前記液体調整ユニット(15,16)は、前記タンク(11,11B)の外部からケーブル(K1,K2)を介して電力が供給される少なくとも1つの電磁弁(SL0,SLm)を含むものであってもよく、前記ケーブル(K1,K2)は、前記タンク(11,11B)内の液面よりも上側で開口するように前記タンク(11,11B)に形成された孔(11h)から外部に引き出されてもよい。これにより、ケーブルが挿通される孔からの液体の漏洩を良好に抑制することが可能となる。 Further, the liquid adjusting unit (15, 16) includes at least one solenoid valve (SL0, SLm) to which electric power is supplied from the outside of the tank (11, 11B) via a cable (K1, K2). The cable (K1, K2) may be from a hole (11h) formed in the tank (11, 11B) so as to open above the liquid level in the tank (11, 11B). It may be pulled out to the outside. This makes it possible to satisfactorily suppress the leakage of liquid from the hole through which the cable is inserted.
 更に、前記ロボット本体(2)は、複数の前記液圧アクチュエータ(M)と、それぞれ前記液体調整ユニット(16)および対応する前記液圧アクチュエータ(M)の前記タンク(11,11B)側の端部(C,IO)に接続された複数の液体供給管(H)とを含むものであってもよい。 Further, the robot body (2) includes a plurality of the hydraulic actuators (M), and the ends of the liquid adjusting unit (16) and the corresponding hydraulic actuators (M) on the tank (11, 11B) side, respectively. It may include a plurality of liquid supply pipes (H) connected to parts (C, IO).
 また、前記液体供給装置(10,10B)は、前記タンク(11,11B)を回動自在に支持するベース部(12)と、前記ベース部(12)により支持され、前記液体の供給を受けて前記タンク(11,11B)を回動させる回動ユニット(13)と、前記タンク(11,11B)内の液面よりも下側に位置するように前記タンク(11,11B)内に配置され、前記ポンプ部(140)からの前記液体の圧力または流量を調整して前記回動ユニット(13)に供給する他の液体調整ユニット(15)とを含むものであってもよい。これにより、ロボット本体および液体供給装置(タンク)を一体に回動させることが可能となる。 Further, the liquid supply device (10, 10B) is supported by a base portion (12) that rotatably supports the tank (11, 11B) and the base portion (12), and receives the supply of the liquid. The rotating unit (13) for rotating the tank (11, 11B) and the rotating unit (13) are arranged in the tank (11, 11B) so as to be located below the liquid level in the tank (11, 11B). It may include another liquid adjusting unit (15) that adjusts the pressure or flow rate of the liquid from the pump unit (140) and supplies the liquid to the rotating unit (13). This makes it possible to integrally rotate the robot body and the liquid supply device (tank).
 更に、前記液圧アクチュエータ(M)は、前記液体が供給された際に径方向に膨張し、かつ軸方向に収縮するチューブ(T)を含むものであってもよい。 Further, the hydraulic actuator (M) may include a tube (T) that expands in the radial direction and contracts in the axial direction when the liquid is supplied.
 なお、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記実施形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。 It goes without saying that the invention of the present disclosure is not limited to the above-described embodiment, and various changes can be made within the scope of the extension of the present disclosure. Furthermore, the above-described embodiment is merely a specific embodiment of the invention described in the column of the outline of the invention, and does not limit the elements of the invention described in the column of the outline of the invention.
 本開示の発明は、少なくとも1つの液圧アクチュエータを含むロボット本体と、液圧アクチュエータに液体を供給する液体供給装置とを含むロボット装置の製造産業等において利用可能である。 The invention of the present disclosure can be used in the manufacturing industry of a robot device including a robot main body including at least one hydraulic actuator and a liquid supply device for supplying a liquid to the hydraulic actuator.

Claims (5)

  1.  液体の供給を受けて作動する少なくとも1つの人工筋肉を含むロボット本体と、前記人工筋肉に前記液体を供給する液体供給装置とを含むロボット装置であって、
     前記液体供給装置は、
     前記液体を貯留するタンクと、
     前記タンク内の前記液体を吸引して吐出するポンプと、
     前記ポンプからの前記液体の圧力または流量を調整して前記人工筋肉に供給する液体調整ユニットとを備え、
     前記ロボット本体は、前記液体調整ユニットおよび前記人工筋肉に接続された液体供給管を含み、
     前記液体調整ユニットが前記タンク内に配置されるロボット装置。
    A robot device including a robot body including at least one artificial muscle that operates by receiving a liquid supply, and a liquid supply device that supplies the liquid to the artificial muscle.
    The liquid supply device is
    A tank for storing the liquid and
    A pump that sucks and discharges the liquid in the tank,
    A liquid adjusting unit for adjusting the pressure or flow rate of the liquid from the pump and supplying the artificial muscle to the artificial muscle is provided.
    The robot body includes the liquid adjusting unit and a liquid supply pipe connected to the artificial muscle.
    A robot device in which the liquid adjusting unit is arranged in the tank.
  2.  請求項1に記載のロボット装置において、
     前記ポンプは、ポンプ部および前記タンク内の前記液体を吸引して吐出するように前記ポンプ部を駆動する駆動部を含み、
     少なくとも前記ポンプ部が前記タンク内に配置されるロボット装置。
    In the robot device according to claim 1,
    The pump includes a pump unit and a drive unit that drives the pump unit so as to suck and discharge the liquid in the tank.
    A robot device in which at least the pump unit is arranged in the tank.
  3.  請求項1または2に記載のロボット装置において、
     前記液体調整ユニットは、前記液体の圧力または流量を調整する少なくとも1つの電磁弁を含み、
     前記電磁弁は、スリーブと、前記スリーブ内に摺動自在に配置されるスプールと、前記スプールを駆動する電磁部を含み、
     前記スリーブと前記電磁部とは、前記スプールの端部が配置される空間を画成し、
     前記スリーブと前記スプールとの隙間から前記空間内に漏れ出た前記液体は、前記空間から前記タンクの内部に排出されるロボット装置。
    In the robot device according to claim 1 or 2.
    The liquid conditioning unit includes at least one solenoid valve that regulates the pressure or flow rate of the liquid.
    The solenoid valve includes a sleeve, a spool slidably arranged in the sleeve, and an electromagnetic portion for driving the spool.
    The sleeve and the electromagnetic portion define a space in which the end portion of the spool is arranged.
    A robot device in which the liquid leaked into the space from the gap between the sleeve and the spool is discharged from the space into the inside of the tank.
  4.  請求項1から3の何れか一項に記載のロボット装置において、
     前記ロボット本体および前記タンクの何れか一方は、他方により支持され、
     前記液体調整ユニットは、前記ロボット本体を支持するか、あるいは前記ロボット本体により支持される前記タンクの壁部の内面に取り付けられるロボット装置。
    In the robot device according to any one of claims 1 to 3.
    One of the robot body and the tank is supported by the other.
    The liquid adjusting unit is a robot device that supports the robot body or is attached to the inner surface of the wall portion of the tank supported by the robot body.
  5.  請求項1から4の何れか一項に記載のロボット装置において、
     前記液体調整ユニットは、前記タンク内の液面よりも上側に配置されると共に、前記液面側に延びるドレン管を含み、前記圧力または前記流量の調整に伴って生じる余剰の前記液体を前記ドレン管から前記タンクの内部に排出するロボット装置。
    In the robot device according to any one of claims 1 to 4.
    The liquid adjusting unit is arranged above the liquid level in the tank, includes a drain pipe extending to the liquid level side, and drains the excess liquid generated by adjusting the pressure or the flow rate. A robot device that discharges water from a pipe into the tank.
PCT/JP2021/011081 2020-03-18 2021-03-18 Robot device WO2021187558A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022508432A JPWO2021187558A1 (en) 2020-03-18 2021-03-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020047793 2020-03-18
JP2020-047793 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021187558A1 true WO2021187558A1 (en) 2021-09-23

Family

ID=77771017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011081 WO2021187558A1 (en) 2020-03-18 2021-03-18 Robot device

Country Status (2)

Country Link
JP (1) JPWO2021187558A1 (en)
WO (1) WO2021187558A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281106A (en) * 1997-04-03 1998-10-20 Kanzaki Kokyukoki Mfg Co Ltd Hydraulic power unit
WO2005045259A1 (en) * 2003-11-10 2005-05-19 Hitachi Medical Corporation Fluid pressure actuator
JP2015102150A (en) * 2013-11-25 2015-06-04 株式会社デンソー Spool control valve
JP2016203330A (en) * 2015-04-27 2016-12-08 日立Geニュークリア・エナジー株式会社 Autonomous muscle robot

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9546672B2 (en) * 2014-07-24 2017-01-17 Google Inc. Actuator limit controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281106A (en) * 1997-04-03 1998-10-20 Kanzaki Kokyukoki Mfg Co Ltd Hydraulic power unit
WO2005045259A1 (en) * 2003-11-10 2005-05-19 Hitachi Medical Corporation Fluid pressure actuator
JP2015102150A (en) * 2013-11-25 2015-06-04 株式会社デンソー Spool control valve
JP2016203330A (en) * 2015-04-27 2016-12-08 日立Geニュークリア・エナジー株式会社 Autonomous muscle robot

Also Published As

Publication number Publication date
JPWO2021187558A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
TW200813328A (en) Air driven pump with performance control
CN106194584B (en) Hydrostatic linear actuator and device having a hydrostatic linear actuator
JP5061258B2 (en) Electric needle valve
CA1313002C (en) Apparatus for flushing of hydraulic pipe systems or the like
JP5681296B2 (en) Filter device
WO2021187558A1 (en) Robot device
JP3941328B2 (en) Body-worn muscle strength assist device
JP6093535B2 (en) Cylinder drive
JP5608252B2 (en) Actuator
US20170218984A1 (en) Cylinder device
JP2022156221A (en) Robot device
JPH1047234A (en) Quantitative delivery pump
KR100774568B1 (en) Hydraulic type turbine valve control device for turbine
JP2022156161A (en) electric pump
JP2022155671A (en) Robot device
WO2021065454A1 (en) Robot device and liquid supply device
JP2013228036A (en) Fluid pressure actuator
JP2022047782A (en) Robot device
US20210246894A1 (en) Downhole well pump assembly
KR102214933B1 (en) oil storage tank integral valve box
TWI826920B (en) Liquid supply device
JP7369321B2 (en) liquid supply device
KR102112756B1 (en) Hydraulic pump device
JP2022047781A (en) Liquid supply device, artificial muscle, and inspection method of artificial muscle
JP2022155598A (en) Robot device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508432

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772398

Country of ref document: EP

Kind code of ref document: A1