WO2021187482A1 - Auxiliary belt auto tensioner and auxiliary drive system - Google Patents

Auxiliary belt auto tensioner and auxiliary drive system Download PDF

Info

Publication number
WO2021187482A1
WO2021187482A1 PCT/JP2021/010609 JP2021010609W WO2021187482A1 WO 2021187482 A1 WO2021187482 A1 WO 2021187482A1 JP 2021010609 W JP2021010609 W JP 2021010609W WO 2021187482 A1 WO2021187482 A1 WO 2021187482A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulley
swing
arm
auxiliary belt
auto tensioner
Prior art date
Application number
PCT/JP2021/010609
Other languages
French (fr)
Japanese (ja)
Inventor
唯久 田中
洋生 森本
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021038986A external-priority patent/JP2021152407A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2021187482A1 publication Critical patent/WO2021187482A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/04Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
    • F02B67/06Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus driven by means of chains, belts, or like endless members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/10Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley
    • F16H7/12Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley

Definitions

  • the present invention mainly relates to an auto tensioner for an auxiliary belt used for maintaining tension of a belt for driving an auxiliary machine of an automobile engine, and an auxiliary drive system using the auto tensioner for the auxiliary belt.
  • an auxiliary belt (hereinafter simply referred to as "belt") is wrapped between the starter generator pulley attached to the rotating shaft of the starter generator and the crank pulley attached to the crankshaft. It has a belt transmission device.
  • This belt transmission device has a feature that the tension side and the slack side of the belt are switched between normal operation and drive of the starter generator. That is, during normal operation in which the starter generator operates as a generator, the crank pulley drives the starter generator pulley via the belt, so that the part of the belt traveling from the starter generator pulley toward the crank pulley becomes the tension side, and the crank. The part of the belt that runs from the pulley to the starter generator pulley is on the slack side. On the other hand, when the starter generator is driven as an electric motor, the starter generator pulley drives the crank pulley via the belt, so that the part of the belt running from the crank pulley to the starter generator pulley becomes the tension side. The part of the belt that runs from the starter generator pulley to the crank pulley is on the slack side.
  • the belt transmission device using the starter generator has a feature that the tension side and the slack side of the belt are switched between the normal operation and the drive of the starter generator.
  • a first idler pulley provided in contact with a portion of the belt traveling from the crank pulley to the starter generator pulley, and a crank pulley from the starter generator pulley to the crank pulley.
  • a second idler pulley provided in contact with a portion of the belt traveling toward, a first swing arm that supports the first idler pulley, and a second swing that supports the second idler pulley.
  • the first swing arm and the second swing arm are supported so as to be swingable around a common swing support shaft. Further, the first swing arm and the second swing arm are urged by a spring in a direction in which the first idler pulley and the second idler pulley are brought close to each other.
  • the first swing arm and the second swing arm swing according to the tension fluctuation of the belt.
  • the other idler pulley is attached to the belt by utilizing the force that the idler pulley that comes into contact with the portion switched from the slack side to the tension side is pushed back from the belt. Since it is pushed in, it is possible to quickly absorb the slack of the belt in the portion where the tension side is switched to the slack side.
  • Patent Documents 1 to 3 have both a rapid operation of absorbing the slack of the belt and an effective absorption of the vibration of the belt when the belt resonates. Was difficult.
  • the first swing arm that supports the first idler pulley and the second swing arm that supports the second idler pulley have a common swing support shaft.
  • a damping mechanism that sometimes generates a damper force is provided.
  • the problem to be solved by the present invention is that the operation of absorbing the slack of the auxiliary belt can be performed quickly, and the vibration of the auxiliary belt is effectively absorbed when the auxiliary belt resonates. Is to provide an auto tensioner for auxiliary belts that can be used.
  • the present invention provides an auto tensioner for an auxiliary belt having the following configuration.
  • the first and second idler pulleys that come into contact with the auxiliary belt, A first pulley arm that supports the first idler pulley and A second pulley arm that supports the second idler pulley, It has a first joint portion to which the first pulley arm is rotatably connected and a second joint portion to which the second pulley arm is rotatably connected, and the first joint portion and the said.
  • a swing arm that is swingably supported around a swing support shaft arranged between the second joints, A first spring that urges the first pulley arm in a direction in which the first idler pulley approaches the second idler pulley.
  • a second spring that urges the second pulley arm in a direction in which the second idler pulley approaches the first idler pulley.
  • a swing damping mechanism that generates a damper force in the direction opposite to the swing direction when the swing arm swings around the swing support shaft, or the swing arm is centered on the swing support shaft.
  • a swing resistance applying mechanism that generates an elastic force in the direction opposite to the swing direction when swinging Auxiliary belt for auto tensioner.
  • the first pulley arm rotates with respect to the swing arm by the force of the first spring, so that the first pulley arm becomes the first.
  • the idler pulley 1 moves in the direction approaching the second idler pulley, and the slack of the auxiliary belt can be quickly absorbed.
  • the second pulley arm rotates with respect to the swing arm by the force of the second spring, so that the second pulley arm is seconded.
  • the idler pulley moves in the direction approaching the first idler pulley, and it is possible to quickly absorb the slack of the auxiliary belt.
  • the swing arm swings around the swing support shaft, and at this time, a force opposite to the swing direction swings due to the swing damping mechanism or the swing resistance applying mechanism. Since it is applied to the arm, it is possible to absorb the vibration of the auxiliary belt.
  • the forces of the first and second pulley arms urged by the first and second springs and the swing damping mechanism or the swing resistance applying mechanism are applied. Since the arm is separate from the swing arm, the operation of absorbing the slack of the auxiliary belt can be performed quickly, and the vibration of the auxiliary belt can be effectively absorbed when the auxiliary belt resonates. Is possible.
  • the swing arm is formed with a support shaft insertion hole into which the swing support shaft is inserted, and the swing damping mechanism or the swing resistance imparting mechanism is incorporated into the support shaft insertion hole.
  • the swing damping mechanism or the swing resistance applying mechanism is built in the swing support shaft portion of the swing arm. Therefore, when the auxiliary belt auto tensioner is attached, the swing damping mechanism is installed. It is not necessary to separately attach a mechanism or a swing resistance applying mechanism, and it is easy to attach an auto tensioner for an auxiliary belt.
  • the swing damping mechanism includes a cam member that is prevented from rotating around the swing support shaft, and a shoe member that is provided in the support shaft insertion hole and is stopped from rotating by the swing arm.
  • a cam member that is prevented from rotating around the swing support shaft
  • a shoe member that is provided in the support shaft insertion hole and is stopped from rotating by the swing arm.
  • the swing damping mechanism can be suppressed compactly, so that the auto tensioner for the auxiliary belt can be miniaturized.
  • the shoe member an arc-shaped member provided so as to be movable in the radial direction outside the cam member is adopted, and the shoe member is an elastic member that urges the shoe member toward the cam member.
  • the shoe member can move in the radial direction by contact with the cam member, and the shoe member is urged toward the cam member by the elastic member, so that the shoe member is between the cam member and the shoe member.
  • the contact surface pressure becomes stable, and the magnitude of the damper force due to the frictional resistance between the cam member and the shoe member also becomes stable.
  • a metal leaf spring that is arranged so as to face the radial outer side of the cam member and can be deformed in the radial direction by contact with the cam member can be adopted.
  • the shoe member is a leaf spring that can be deformed in the radial direction by contact with the cam member, the contact surface pressure between the cam member and the shoe member becomes stable, and the frictional resistance between the cam member and the shoe member becomes stable.
  • the magnitude of the damper force is also stable.
  • the shoe member is a metal leaf spring, the shoe member has excellent wear resistance.
  • the cam member is formed with a convex curved cam outer peripheral surface that projects outward in the radial direction.
  • the shoe member has an inner peripheral surface of the shoe that is in frictional contact with the outer peripheral surface of the cam.
  • the shoe inner peripheral surface comes into contact with the cam outer peripheral surface as the rotation angle increases.
  • a structure having a shape inclined with respect to the circumferential direction can be adopted so that the surface pressure gradually increases.
  • the swing resistance imparting mechanism one having a torsion coil spring having one end stopped by the swing support shaft and the other end stopped by the swing arm can be adopted.
  • a first rotation stopper that receives the first pulley arm and regulates the rotation angle of the first pulley arm, and a second rotation that receives the second pulley arm and regulates the rotation angle of the second pulley arm. It is preferable to further provide a moving stopper.
  • the rotation angles of the first and second pulley arms are regulated by the first and second rotation stoppers, respectively, so that the vibration of the auxiliary belt is ensured when the auxiliary belt resonates. It is possible to suppress to.
  • a first buffer member that absorbs the impact when the first rotation stopper receives the first pulley arm, and It is preferable to further provide a second cushioning member that absorbs an impact when the second rotation stopper receives the second pulley arm.
  • the first idler pulley is composed of an annular first pulley body having an outer peripheral surface in contact with the accessory belt and a first rolling bearing fitted in the inner circumference of the first pulley body.
  • the second idler pulley is composed of an annular second pulley body having an outer peripheral surface in contact with the accessory belt and a second rolling bearing fitted in the inner circumference of the second pulley body.
  • the first pulley arm includes a pair of split shafts fitted into the first rolling bearing from both sides in the axial direction, a pair of first steel plates supporting both ends of the pair of split shafts in the axial direction, and the pair. It is composed of a dividing shaft and a coupling pin that penetrates and joins the pair of first steel plates.
  • the second pulley arm includes a pair of split shafts fitted into the second rolling bearing from both sides in the axial direction, a pair of second steel plates supporting both ends of the pair of split shafts in the axial direction, and the pair. It is preferably composed of a dividing shaft and a coupling pin that penetrates and joins the pair of second steel plates.
  • the first pulley arm and the second pulley arm can be manufactured at low cost and with high accuracy.
  • the present invention provides an auxiliary machine drive system using the above-mentioned auxiliary machine belt auto tensioner having the following configuration.
  • the starter generator pulley attached to the rotating shaft of the starter generator, With the crank pulley attached to the crankshaft,
  • the auxiliary belt wound between the starter generator pulley and the crank pulley It has the above-mentioned auto tensioner for the auxiliary belt that applies tension to the auxiliary belt, and
  • the first idler pulley is provided in contact with a portion of the auxiliary belt that travels from the crank pulley toward the starter generator pulley.
  • the second idler pulley is an auxiliary machine drive system provided in contact with a portion of the auxiliary machine belt that travels from the starter generator pulley toward the crank pulley.
  • the auxiliary machine belt auto tensioner is arranged so that the center of the swing support shaft is radially outside the outer circumference of the starter generator pulley.
  • the lengths of the first pulley arm and the second pulley arm can be secured, so that the followability of the first idler pulley and the second idler pulley to the slack of the auxiliary belt can be improved. It becomes.
  • the first pulley arm rotates with respect to the swing arm by the force of the first spring.
  • the first idler pulley moves in the direction approaching the second idler pulley, and it is possible to quickly absorb the slack of the auxiliary belt.
  • the second pulley arm rotates with respect to the swing arm by the force of the second spring, so that the second pulley arm is seconded.
  • the idler pulley moves in the direction approaching the first idler pulley, and it is possible to quickly absorb the slack of the auxiliary belt.
  • the swing arm swings around the swing support shaft, and at this time, a force opposite to the swing direction swings due to the swing damping mechanism or the swing resistance applying mechanism. Since it is applied to the arm, it is possible to absorb the vibration of the auxiliary belt.
  • the forces of the first and second pulley arms urged by the first and second springs and the swing damping mechanism or the swing resistance applying mechanism are applied. Since the arm is separate from the swing arm, the operation of absorbing the slack of the auxiliary belt can be performed quickly, and the vibration of the auxiliary belt can be effectively absorbed when the auxiliary belt resonates. Is possible.
  • FIG. 5 Front view showing an example of an auxiliary machine drive system using the auxiliary machine belt auto tensioner of the first embodiment of the present invention.
  • FIG. 5 Front view showing a state in which the swing arm shown in FIG. 5 swings.
  • FIG. 14 The figure which shows typically the auxiliary machine drive system at the time of normal operation
  • An exploded perspective view of the swing damping mechanism shown in FIG. An exploded perspective view of the second joint shown in FIG.
  • FIG. 17 The figure which shows the vicinity of the swing support shaft of the auto tensioner for an auxiliary belt of 3rd Embodiment of this invention corresponding to FIG. Sectional view taken along the line XVII-XVII of FIG. A cross-sectional view showing a state in which the swing arm shown in FIG. 17 swings.
  • FIG. 1 shows an example of an auxiliary machine drive system using the auxiliary machine belt auto tensioner 1 (hereinafter, simply referred to as “auto tensioner 1”) according to the first embodiment of the present invention.
  • This auxiliary drive system was wound between the starter generator pulley 3 attached to the rotating shaft 2 of the starter generator, the crank pulley 5 attached to the crankshaft 4, and the starter generator pulley 3 and the crank pulley 5.
  • It has an auxiliary belt 6 (hereinafter, simply referred to as "belt 6”) and an auto tensioner 1 that keeps the tension of the belt 6 within an appropriate range.
  • the auto tensioner 1 includes a first idler pulley 7a, a second idler pulley 7b, a first pulley arm 8a that supports the first idler pulley 7a, and a second pulley arm that supports the second idler pulley 7b. It has 8b and a swing arm 10 that is swingably supported around a swing support shaft 9.
  • the first idler pulley 7a is in contact with the outer peripheral surface of the portion of the belt 6 traveling from the crank pulley 5 toward the starter generator pulley 3.
  • the second idler pulley 7b is in contact with the outer peripheral surface of the portion of the belt 6 traveling from the starter generator pulley 3 toward the crank pulley 5.
  • the first idler pulley 7a and the second idler pulley 7b have a span adjacent to the upstream side of the starter generator pulley 3 of the belt 6 and a span adjacent to the downstream side of the starter generator pulley 3 of the belt 6. It is arranged with a span to be sandwiched between them.
  • the swing arm 10 is formed in a C shape that faces a part of the outer circumference of the starter generator pulley 3 (in the figure, a portion of the outer circumference of the starter generator pulley 3 corresponding to a central angle of 90 degrees or more) in the radial direction. ..
  • the shape of the swing arm 10 is symmetrical with respect to the swing support shaft 9.
  • the center of the swing support shaft 9 is arranged radially outside the outer circumference of the starter generator pulley 3 and outside the region surrounded by the endless belt 6.
  • the first pulley arm 8a is rotatably connected to a first joint portion 11a provided at one end of the C-shaped swing arm 10 in the circumferential direction.
  • the second pulley arm 8b is rotatably connected to a second joint portion 11b provided at the other end of the C-shaped swing arm 10 in the circumferential direction.
  • the first pulley arm 8a and the member attached thereto have the same symmetrical configuration as the second pulley arm 8b and the member attached thereto. Therefore, hereinafter, only the configuration of one side of the first pulley arm 8a and the second pulley arm 8b will be described, and for the configuration of the other side, the same code or a code in which the letters a and b at the end are replaced is used. The description will be omitted.
  • a first spring 12a for urging the first pulley arm 8a in the direction in which the first idler pulley 7a approaches the second idler pulley 7b is incorporated between the first pulley arm 8a and the swing arm 10. There is. Between the first pulley arm 8a and the swing arm 10, a first rotation stopper 13a that receives the first pulley arm 8a and regulates the rotation angle of the first pulley arm 8a is provided.
  • the first rotation stopper 13a is a portion that regulates the rotation angle of the first idler pulley 7a in the direction away from the second idler pulley 7b, and the first idler pulley 7a approaches the second idler pulley 7b. It is composed of a part that regulates the rotation angle in the direction.
  • the first spring 12a is supported between the swing arm 10 and the first pulley arm 8a so that one end is supported by the swing arm 10 and the other end presses the first pulley arm 8a. It is built into.
  • a leaf spring or a torsion coil spring can be adopted, but here, a compression coil spring is adopted.
  • the swing arm 10 is formed with a spring accommodating hole 14 for accommodating the first spring 12a.
  • a bottomed cylindrical slide cap 15 is slidably inserted into the spring accommodating hole 14. The protruding end of the slide cap 15 from the spring accommodating hole 14 is in contact with the contact pin 16 fixed to the first pulley arm 8a.
  • the first spring 12a presses the first pulley arm 8a via the slide cap 15 and the contact pin 16.
  • a first cushioning member 17a is provided between the swing arm 10 and the first pulley arm 8a to absorb the impact when the first rotation stopper 13a receives the first pulley arm 8a.
  • the first cushioning member 17a is made of rubber or elastomer and elastically compresses when the first rotating stopper 13a receives the first pulley arm 8a to absorb an impact.
  • the second joint portion 11b is composed of a joint pin 18 and a slide bearing 19. Both ends of the joint pin 18 are press-fitted into the pin holes 20 formed in the second pulley arm 8b.
  • the slide bearing 19 is inserted into an axial through hole 21 formed in the swing arm 10, and the outer circumference of the joint pin 18 is in sliding contact with the inner circumference of the slide bearing 19.
  • the swing support shaft 9 is arranged between the first joint portion 11a and the second joint portion 11b of the swing arm 10.
  • the swing support shaft 9 is arranged at the center position in the circumferential direction (center position in the longitudinal direction) of the C-shaped swing arm 10.
  • the swing arm 10 is formed with a support shaft insertion hole 22 into which the swing support shaft 9 is inserted.
  • the support shaft insertion hole 22 is formed so as to penetrate the swing arm 10 in the axial direction.
  • the swing support shaft 9 is a bolt with a head having a screw shaft portion 23 having a male screw formed on the outer periphery thereof and a head portion 24 provided at one end of the screw shaft portion 23.
  • the screw shaft portion 23 is screwed into a fixing member 25 (a stationary member such as a housing of a starter generator).
  • a washer 26, a sleeve 27, and a cam member 28 are fitted and provided on the outer periphery of the screw shaft portion 23 in this order from the side of the head 24 toward the side of the fixing member 25.
  • the washer 26, the sleeve 27, and the cam member 28 are fixed to the fixing member 25 by the axial force received from the head 24.
  • the support shaft insertion hole 22 has a small diameter inner diameter portion 29 and a large diameter inner diameter portion 30 having an inner diameter larger than that of the small diameter inner diameter portion 29.
  • the large-diameter inner diameter portion 30 is formed adjacent to the fixing member 25 with respect to the small-diameter inner diameter portion 29.
  • a slide bearing 31 that rotatably supports the outer circumference of the sleeve 27 is fitted in the inner circumference of the small diameter inner diameter portion 29.
  • a swing damping mechanism 32 that generates a damper force in the direction opposite to the swing direction when the swing arm 10 swings around the swing support shaft 9 is incorporated. ing.
  • the swing damping mechanism 32 has a cam member 28 and a shoe member 33 that are in frictional contact with each other so as to generate a damper force in response to the swing of the swing arm 10.
  • the cam member 28 is fixed by being pressed against the fixing member 25 by the axial force received from the head 24, and is stopped by the swing support shaft 9 by the fixing.
  • a circumferential positioning portion 34 (D-cut portion in the drawing) is formed on the outer periphery of the end portion of the cam member 28 on the side of the fixing member 25, and the circumferential positioning portion 34 is formed with the circumferential positioning portion 34.
  • the positioning washer 35 is fitted.
  • the positioning washer 35 is a member that positions the fixing angle of the cam member 28 with respect to the fixing member 25 to a predetermined angle when the swing support shaft 9 is fixed to the fixing member 25.
  • the positioning washer 35 is provided with an engaging hole 37 that engages with the positioning protrusion 36 provided on the fixing member 25, and the engagement between the protrusion 36 and the engaging hole 37 causes the positioning washer 35 to engage.
  • the angle of the positioning washer 35 with respect to the fixing member 25 is fixed, and further, the angle of the cam member 28 with respect to the positioning washer 35 is fixed by fitting the circumferential positioning portion 34 of the cam member 28 and the positioning washer 35, and as a result, the cam member 28 is fixed.
  • the angle of the cam member 28 with respect to the member 25 is positioned.
  • the end opening on the side of the fixing member 25 of the large-diameter inner diameter portion 30 of the support shaft insertion hole 22 is closed by the annular cover 38.
  • the cover 38 is sandwiched between the cam member 28 and the positioning washer 35.
  • a seal member for example, an O-ring incorporated between the swing arm 10 and the axially opposed surfaces of the positioning washer 35
  • a seal member for example, an O-ring incorporated between the swing arm 10 and
  • the cam member 28 is inserted into the large-diameter inner diameter portion 30 of the support shaft insertion hole 22.
  • the cam member 28 is formed with a convex curved cam outer peripheral surface 39 that projects outward in the radial direction (see FIG. 11).
  • a pair of cam outer peripheral surfaces 39 are formed in opposite directions with respect to the swing support shaft 9.
  • the shoe member 33 is composed of a pair of left and right arc-shaped shoe dividing bodies 40.
  • a radial gap is provided between the outer circumference of each shoe split body 40 and the inner circumference of the large-diameter inner diameter portion 30, and each shoe split body 40 can move in the radial direction within the range of the radial gap.
  • An elastic member 41 that urges each shoe split 40 toward the cam member 28 is attached to the pair of left and right shoe splits 40.
  • the elastic member 41 is a C-shaped circlip. The elastic member 41 presses each shoe split body 40 against the cam outer peripheral surface 39 of the cam member 28 by urging the pair of shoe split bodies 40 in a direction approaching each other.
  • One of the pair of shoe splits 40 is provided with a pressing surface 42 that is pressed in the circumferential direction at one end of the elastic member 41 in the circumferential direction, and the other of the pair of shoe splits 40 is also an elastic member.
  • a pressing surface 42 that is pressed in the circumferential direction at the other end of the circumferential direction of 41 is provided.
  • the shoe member 33 composed of the pair of shoe split bodies 40 is formed with a shoe inner peripheral surface 43 that is in frictional contact with the cam outer peripheral surface 39.
  • the shoe inner peripheral surface 43 is an elliptical inner peripheral surface centered on the swing support shaft 9, and the cam member 28 is housed inside so that the major axis direction of the ellipse is the protruding direction of the cam outer peripheral surface 39. ing.
  • the shoe inner peripheral surface 43 is always in contact with the cam outer peripheral surface 39 due to the urging force of the elastic member 41.
  • a detent projection 44 protruding inward in the radial direction is formed on the inner circumference of the large-diameter inner diameter portion 30 of the support shaft insertion hole 22.
  • the detent projection 44 engages with the circumferential end of each arc-shaped shoe dividing body 40, and the shoe member 33 is detented by the swing arm 10 by this engagement.
  • the shoe inner peripheral surface 43 (the elliptical inner peripheral surface in the embodiment) has a shape inclined with respect to the circumferential direction (that is, the direction along the perfect circle centered on the swing support shaft 9). There is. Therefore, as shown in FIG. 6, when the shoe member 33 rotates relative to the cam member 28 due to the swing of the swing arm 10, the shoe inner peripheral surface 43 with respect to the cam outer peripheral surface 39 increases as the rotation angle increases. The contact surface pressure of is gradually increased.
  • the second idler pulley 7b is fitted into the annular second pulley body 45b having an outer peripheral surface in contact with the belt 6 and the inner circumference of the second pulley body 45b. It is composed of a second rolling bearing 46b.
  • the outer peripheral surface of the second pulley main body 45b is a cylindrical surface having a constant outer diameter along the axial direction.
  • the second pulley body 45b is made of resin.
  • the second rolling bearing 46b has a plurality of rolling elements 49 (balls in the figure) provided between the outer ring 47, the inner ring 48, and the outer ring 47 and the inner ring 48 at intervals in the circumferential direction.
  • the outer ring 47 is fixed to the inner circumference of the second pulley main body 45b.
  • the outer ring 47 can be fixed to the second pulley body 45b by insert molding.
  • the outer ring 47 can be fixed to the second pulley main body 45b.
  • the second pulley arm 8b is a pair of split shafts 50 fitted from both sides in the axial direction into the inner ring 48 of the second rolling bearing 46b, and a pair of second steel plates supporting both ends in the axial direction of the pair of split shafts 50. It is composed of 51b, a pair of dividing shafts 50, and a coupling pin 52 that penetrates and joins a pair of second steel plates 51b.
  • Each dividing shaft 50 is made of resin or aluminum alloy.
  • Each split shaft 50 has a fitting shaft portion 53 that fits on the inner circumference of the inner ring 48, and a shoulder portion 54 that abuts on the axial end surface of the inner ring 48.
  • the shoulder portion 54 is a stepped portion whose diameter is increased from the axially outer end portion of the fitting shaft portion 53.
  • the split shaft 50 has a flange portion 55 having an outer diameter larger than the inner diameter of the outer ring 47.
  • a labyrinth gap 56 is formed between the axially inner side surface of the flange portion 55 and the second pulley body 45b.
  • a tightening allowance is set between the outer circumference of the fitting shaft portion 53 and the inner circumference of the inner ring 48. The outer circumference of the fitting shaft portion 53 and the inner circumference of the inner ring 48 can be fitted without a tightening allowance.
  • the pair of second steel plates 51b are arranged so as to face each other in the axial direction with the pair of dividing shafts 50 sandwiched between them.
  • the flat axial inner surface of the second steel plate 51b is in surface contact with the flat axial outer end surface of the dividing shaft 50.
  • the coupling pin 52 is inserted through the axial through hole 57 formed in the pair of second steel plates 51b and the axial through hole 58 formed in the pair of dividing shafts 50.
  • a tightening allowance is set between the outer circumference of the coupling pin 52 and the inner circumference of the through hole 57 of the second steel plate 51b. Further, a tightening allowance is also set between the outer circumference of the coupling pin 52 and the inner circumference of the through hole 58 of the dividing shaft 50.
  • the tightening allowance for the outer circumference of the coupling pin 52 is provided only on the portion outside the fitting shaft portion 53 in the axial direction.
  • a gap is provided between the inner circumference of the fitting shaft portion 53 and the outer circumference of the coupling pin 52.
  • the inner circumference of the through hole 58 and the outer circumference of the coupling pin 52 can be fitted without a tightening margin.
  • the pair of split shafts 50 that face each other in the axial direction with the second rolling bearing 46b in between have the same shape and the same dimensions, and the pair of split shafts 50 are in the axial direction.
  • the pair of second steel plates 51b facing each other also have the same shape and dimensions. This makes it possible to standardize the parts and reduce the manufacturing cost of the second pulley arm 8b.
  • FIG. 10A shows an auxiliary drive system when the engine is stopped. Both the starter generator pulley 3 and the crank pulley 5 are stopped.
  • the first idler pulley 7a is urged by the first spring 12a (see FIG. 1) in a direction approaching the second idler pulley 7b
  • the second idler pulley 7b is urged by the second spring 12b (see FIG. 1).
  • ) Is urged in the direction approaching the first idler pulley 7a, whereby tension is applied to the belt 6.
  • the portion of the belt 6 that the first idler pulley 7a contacts the portion of the belt 6 that travels from the crank pulley 5 toward the starter generator pulley 3 when the engine rotates.
  • the traveling direction of the belt 6 is clockwise).
  • the tension and the tension of the belt 6 portion (the portion of the belt 6 traveling from the starter generator pulley 3 toward the crank pulley 5 when the engine rotates) in contact with the second idler pulley 7b are in a balanced state.
  • FIG. 10B shows an auxiliary drive system during normal operation (that is, when the starter generator pulley 3 operates as a driven pulley).
  • the crank pulley 5 drives the starter generator pulley 3 via the belt 6.
  • the portion of the belt 6 traveling from the starter generator pulley 3 toward the crank pulley 5 is on the tension side, and the portion of the belt 6 traveling from the crank pulley 5 toward the starter generator pulley 3 is on the slack side.
  • the first pulley arm 8a rotates with respect to the swing arm 10 by the force of the first spring 12a (see FIG. 1), so that the first idler pulley 7a becomes the second idler.
  • FIG. 10C shows an auxiliary drive system when the starter generator is driven (that is, when the starter generator pulley 3 operates as a drive pulley).
  • the starter generator pulley 3 drives the crank pulley 5 via the belt 6.
  • the portion of the belt 6 traveling from the crank pulley 5 toward the starter generator pulley 3 is on the tension side, and the portion of the belt 6 traveling from the starter generator pulley 3 toward the crank pulley 5 is on the slack side.
  • the second pulley arm 8b rotates with respect to the swing arm 10 by the force of the second spring 12b (see FIG.
  • the second idler pulley 7b becomes the first idler. It moves in the direction approaching the pulley 7a and quickly absorbs the slack of the belt 6.
  • the first pulley arm 8a is pushed back to the outside of the belt 6 by the tension of the belt 6.
  • the swing arm 10 reaches a position where the elastic restoring force of the first spring 12a and the elastic restoring force of the second spring 12b are balanced while generating a damper force by the swing damping mechanism 32 (see FIGS. 5 and 6). Swing.
  • FIG. 10D shows an auxiliary drive system when the belt 6 is stretched due to aged deterioration.
  • the first idler pulley 7a is moved in the direction approaching the second idler pulley 7b by the first spring 12a (see FIG. 1), and the second idler pulley 7b is moved by the second spring 12b (see FIG. 1). 1) moves toward the first idler pulley 7a, thereby absorbing the elongation of the belt 6 and keeping the tension of the belt 6 within an appropriate range.
  • both the starter generator pulley 3 and the crank pulley 5 are stopped.
  • the second idler pulley 7b moves in a direction approaching the first idler pulley 7a, and the slack of the belt 6 can be quickly absorbed.
  • the swing arm 10 swings around the swing support shaft 9, and at this time, the swing damping mechanism 32 reverses the swing direction. Since the damper force is generated, it is possible to absorb the vibration of the belt 6.
  • the first and second pulley arms 8a and 8b urged by the first and second springs 12a and 12b and the vibration damping mechanism 32 apply a damper force. Since the moving arm 10 is a separate arm, it is possible to quickly perform an operation of absorbing the slack of the belt 6, and it is possible to effectively absorb the vibration of the belt 6 when the belt 6 resonates. be.
  • the auto tensioner 1 is provided with a swing damping mechanism 32 incorporated in a support shaft insertion hole 22 of the swing arm 10, and a portion of the swing support shaft 9 of the swing arm 10. Since the auto tensioner 1 is attached to the fixing member 25, it is not necessary to separately attach the swing damping mechanism 32. Therefore, the auto tensioner 1 can be easily attached.
  • the auto tensioner 1 has a configuration in which the cam member 28, which is prevented from rotating around the swing support shaft 9, and the shoe member 33 provided in the support shaft insertion hole 22 are brought into frictional contact with each other. Since the oscillating damping mechanism 32 is adopted, the oscillating damping mechanism 32 is compact. Therefore, the auto tensioner 1 can be miniaturized.
  • the shoe member 33 can move in the radial direction by contact with the cam member 28, and the shoe member 33 is an elastic member 41 toward the cam member 28. Since it is urged, the contact surface pressure between the cam member 28 and the shoe member 33 is stable, and the magnitude of the damper force due to the frictional resistance between the cam member 28 and the shoe member 33 is also stable.
  • the auto tensioner 1 has a swing damping mechanism in which the contact surface pressure of the shoe inner peripheral surface 43 with respect to the cam outer peripheral surface 39 gradually increases as the swing angle of the swing arm 10 increases. Since 32 is adopted, it is possible to surely suppress the vibration of the belt 6 when the belt 6 resonates.
  • the auto tensioner 1 has a positioning washer 35 that positions the fixing angle of the cam member 28 with respect to the fixing member 25 to a predetermined angle when the swing support shaft 9 is fixed to the fixing member 25. Therefore, it is possible to accurately manage the fixing angle of the cam member 28 with respect to the fixing member 25.
  • the rotation angles of the first and second pulley arms 8a and 8b are regulated by the first and second rotation stoppers 13a and 13b, respectively.
  • the vibration of the belt 6 can be reliably suppressed.
  • the auto tensioner 1 includes a first cushioning member 17a that absorbs an impact when the first rotation stopper 13a receives the first pulley arm 8a, and a second rotation stopper. Since the 13b has a second cushioning member 17b that absorbs an impact when receiving the second pulley arm 8b, when the belt 6 (see FIG. 1) resonates, the first and second rotating stoppers 13a, It is possible to suppress the generation of abnormal noise (continuous collision sound) from 13b.
  • the auto tensioner 1 has a pair of split shafts 50 fitted into the second rolling bearing 46b from both sides in the axial direction, and a pair of supporting both ends of the pair of split shafts 50 in the axial direction.
  • the second pulley arm 8b is formed by the second steel plate 51b and the coupling pin 52 that penetrates and joins the pair of dividing shafts 50 and the pair of the second steel plates 51b. It is possible to manufacture with high accuracy at low cost. The same applies to the first pulley arm 8a.
  • the second embodiment is different from the first embodiment only in the configuration of the shoe member 33 constituting the swing damping mechanism 32 and the presence / absence of the positioning washer 35, and the other configurations are the same. Therefore, the same reference numerals are given to the parts corresponding to the first embodiment, and the description thereof will be omitted.
  • the circumferential positioning portion 34 (D-cut portion in the figure) formed on the outer periphery of the end portion of the cam member 28 on the side of the fixing member 25 is formed in the fixing member 25.
  • the mounting angle of the cam member 28 with respect to the fixing member 25 is positioned at a predetermined angle by fitting to.
  • the circumferential positioning portion 34 of the cam member 28 is directly fitted to the fixing member 25 has been shown, but as in the first embodiment, the positioning washer between the cam member 28 and the fixing member 25. 35 (see FIGS. 3 and 4) may be interposed so that the circumferential positioning portion 34 of the cam member 28 is fitted to the positioning washer 35.
  • the shoe member 33 is an arch-shaped leaf spring arranged so as to face the radial outer side of the cam member 28.
  • a radial gap is provided between the outer circumference of the shoe member 33 and the inner circumference of the large-diameter inner diameter portion 30, and the shoe member 33 can be deformed in the radial direction within the range of the radial gap.
  • a pair of shoe members 33 are provided corresponding to the pair of cam outer peripheral surfaces 39.
  • the shoe member 33 is formed with a shoe inner peripheral surface 43 that is in frictional contact with the cam outer peripheral surface 39.
  • the shoe inner peripheral surface 43 is a concave curved inner peripheral surface along the convex curved cam outer peripheral surface 39. As shown in FIG. 14, the shoe inner peripheral surface 43 is in non-contact with the cam outer peripheral surface 39 when the swing arm 10 is in the neutral position, and as shown in FIG. 15, the swing arm 10 is from the neutral position. It is formed so as to come into contact with the outer peripheral surface 39 of the cam when it swings.
  • the shoe inner peripheral surface 43 may be formed so as to be in contact with the cam outer peripheral surface 39 at all times.
  • two detent projections 44 protruding inward in the radial direction are formed at intervals in the circumferential direction.
  • the detent projection 44 receives both ends of the shoe member 33 in the circumferential direction, thereby detenting each shoe member 33 to the swing arm 10. Further, both ends of the shoe member 33 in the circumferential direction are restricted from moving outward in the radial direction at the inner circumference of the large-diameter inner diameter portion 30.
  • the shoe inner peripheral surface 43 has a shape inclined with respect to the circumferential direction (that is, the direction along the perfect circle centered on the swing support shaft 9). Therefore, as shown in FIG. 15, when the shoe member 33 rotates relative to the cam member 28 due to the swing of the swing arm 10, the shoe inner peripheral surface 43 with respect to the cam outer peripheral surface 39 increases as the rotation angle increases. The contact surface pressure of is gradually increased. Then, when the swing angle of the swing arm 10 reaches a predetermined size, the shoe member 33 cannot rotate relative to the cam member 28 any more, and the swing arm 10 is locked. It becomes.
  • the shoe member 33 is a leaf spring that can be deformed in the radial direction by contact with the cam member 28, it is between the cam member 28 and the shoe member 33.
  • the contact surface pressure is stable, and the frictional resistance between the cam member 28 and the shoe member 33 is also stable.
  • the shoe member 33 is a metal leaf spring, the shoe member 33 has excellent wear resistance.
  • the auto tensioner 1 of the second embodiment has an inner circumference of the shoe with respect to the outer peripheral surface 39 of the cam as the swing angle of the swing arm 10 increases, as shown in FIGS. 14 and 15.
  • the contact surface pressure of the surface 43 gradually increases. Therefore, even when the tension fluctuation of the belt 6 caused by the rotation fluctuation of the crankshaft 4 shown in FIG. 1 is large, it is possible to effectively prevent the entire auto tensioner 1 including the swing arm 10 from swinging excessively. It is possible to do.
  • the swing damping mechanism 32 is located between the outer circumference of the swing support shaft 9 and the inner circumference of the support shaft insertion hole 22 of the swing arm 10.
  • the auto tensioner 1 is compact because it is housed in. Further, the work of attaching the auto tensioner 1 to the belt transmission device is also easy. Other effects are the same as those in the first embodiment.
  • the third embodiment replaces the swing damping mechanism 32 of the second embodiment with the swing resistance applying mechanism 60, and the other configurations are the same as those of the second embodiment. Therefore, the same reference numerals are given to the parts corresponding to the second embodiment, and the description thereof will be omitted.
  • the swing support shaft 9 is a bolt with a head having a screw shaft portion 23 having a male screw formed on the outer circumference and a head portion 24 provided at one end of the screw shaft portion 23.
  • a washer 26 and a sleeve 27 are fitted and provided on the outer circumference of the screw shaft portion 23 in this order from the side of the head 24 toward the side of the fixing member 25. The washer 26 and the sleeve 27 are fixed to the fixing member 25 by the axial force received from the head 24.
  • the sleeve 27 is integrally provided at the end of the sleeve body 61 on the fixing member 25 side with the cylindrical sleeve body 61 that supports the inner circumference of the slide bearing 31 press-fitted into the inner circumference of the support shaft insertion hole 22. It has a sleeve end plate 62 and a circumferential positioning portion 34 extending from the sleeve end plate 62 toward the fixing member 25. An annular space for accommodating the torsion coil spring 63 is formed between the inner circumference of the sleeve body 61 and the outer circumference of the screw shaft portion 23.
  • a notch 64 penetrating in the radial direction is formed at an end portion of the sleeve body 61 opposite to the fixing member 25.
  • the sleeve end plate 62 is fitted on the outer circumference of the screw shaft portion 23.
  • the swing resistance applying mechanism 60 has a torsion coil spring 63 that twists and deforms in response to the swing of the swing arm 10 when the swing arm 10 swings about a swing support shaft 9. This is a mechanism in which the coil spring 63 generates an elastic force in the direction opposite to the swing direction.
  • a first arm portion 65 that is prevented from rotating by the swing arm 10 is formed at one end of the torsion coil spring 63, and a second arm that is prevented from rotating by the swing support shaft 9 at the other end of the torsion coil spring 63.
  • the portion 66 is formed.
  • the first arm portion 65 penetrates the notch 64 formed in the sleeve body 61 in the radial direction, and the portion protruding toward the outer diameter side through the notch 64 is inserted into the support shaft. It engages with an engaging recess 67 formed on the inner circumference of the hole 22, and one end of the torsion coil spring 63 is prevented from rotating by the swing arm 10 due to the engagement.
  • the second arm portion 66 is engaged with the engagement hole 68 provided in the sleeve end plate 62, and the other end of the torsion coil spring 63 is stopped by the swing support shaft 9 by the engagement. ..
  • a play in the circumferential direction is provided between the inner surface of the engaging recess 67 and the first arm portion 65.
  • the torsion coil spring 63 does not undergo torsional deformation even if the swing arm 10 swings, and as shown in FIG. 18, when the swing arm 10 swings beyond the range of play.
  • the torsion coil spring 63 is twisted and deformed according to the magnitude of the swing.
  • a stopper protrusion 69 is formed on the inner edge of the engaging recess 67 in the radial direction so as to face the inner surface of the notch 64 of the sleeve body 61 in the circumferential direction.
  • the torsion coil spring is rotated by the relative rotation. 63 is twisted and deformed, and the torsion coil spring 63 generates an elastic force in the direction opposite to the swing direction of the swing arm 10. Then, when the swing angle of the swing arm 10 reaches a predetermined size, the stopper protrusion 69 is received by the inner surface of the notch 64 of the sleeve body 61, and the swing arm 10 is further received by the swing arm 10 with respect to the sleeve body 61. Relative rotation is not possible, and the swing arm 10 is locked.
  • the first and second pulley arms 8a and 8b urged by the first and second springs 12a and 12b and the swing resistance are adopted as in the first embodiment. Since the swing arm 10 to which the force opposite to the swing direction is applied by the applying mechanism 60 is a separate arm, the operation of absorbing the slack of the belt 6 can be quickly performed, and the belt 6 resonates. It is possible to effectively absorb the vibration of the belt 6 when the belt 6 is used.
  • the swing resistance applying mechanism 60 has the outer circumference of the swing support shaft 9 and the inner circumference of the support shaft insertion hole 22 of the swing arm 10.
  • the auto tensioner 1 is compact because it is housed in between. Further, the work of attaching the auto tensioner 1 to the belt transmission device is also easy.
  • the damper is caused by frictional resistance.
  • a mechanism for generating a force for example, the swing damping mechanism 32 shown in FIG. 5
  • wear is less likely to occur, and stable performance can be exhibited for a long period of time.
  • FIG. 19 to 21 show a fourth embodiment of the present invention.
  • the fourth embodiment is different from the third embodiment only in that there is no stopper protrusion 69 (see FIG. 17), and the other configurations are the same. Therefore, the same reference numerals are given to the parts corresponding to the third embodiment, and the description thereof will be omitted.
  • the first arm portion 65 of the torsion coil spring 63 is a portion that penetrates the notch 64 formed in the sleeve body 61 in the radial direction and projects toward the outer diameter side through the notch 64. Is engaged with the engaging recess 67 formed on the inner surface of the support shaft insertion hole 22, and one end of the torsion coil spring 63 is prevented from rotating by the swing arm 10 due to the engagement.
  • the first arm portion 65 of the torsion coil spring 63 faces the inner surface of the notch 64 of the sleeve body 61 in the circumferential direction.
  • the auto tensioner 1 of the fourth embodiment As shown in FIGS. 20 and 21, when the swing arm 10 rotates relative to the swing support shaft 9 due to the swing of the swing arm 10, the relative rotation causes the swing arm 10 to rotate relative to the swing support shaft 9.
  • the torsion coil spring 63 is twisted and deformed, and the elastic force of the torsion coil spring 63 generates an elastic force in the direction opposite to the swing direction of the swing arm 10.
  • the swing angle of the swing arm 10 reaches a predetermined size, as shown in FIG. 21, the first arm portion 65 of the torsion coil spring 63 is received by the inner surface of the notch 64 of the sleeve body 61. After that, the swing arm 10 cannot rotate relative to the sleeve body 61, and the swing arm 10 is locked.
  • the action and effect of the auto tensioner 1 of the fourth embodiment is the same as that of the third embodiment.
  • the auxiliary pulley around which the auxiliary belt 6 is wound is provided by two pulleys, a starter generator pulley 3 attached to the rotating shaft 2 of the starter generator and a crank pulley 5 attached to the crankshaft 4.
  • the auxiliary machine pulley around which the auxiliary machine belt 6 is wound has three or more pulleys (starter generator pulley 3, crank pulley 5, for example.
  • Other auxiliary pulleys attached to rotating shafts such as car air conditioners and water pumps

Abstract

This auxiliary belt auto tensioner has a first pulley arm (8a) supporting a first idler pulley (7a), a second pulley arm (8b) supporting a second idler pulley (7b), a swing arm (10) swingably supported around a swing support shaft (9), a first spring (12a) that biases the first pulley arm (8a), a second spring (12b) that biases the second pulley arm (8b), and a swing-damping mechanism (32) or a swing-resistance-imparting mechanism (60).

Description

補機ベルト用オートテンショナ、および補機駆動システムAuxiliary belt auto tensioner and auxiliary drive system
 この発明は、主として、自動車エンジンの補機を駆動するベルトの張力保持に用いられる補機ベルト用オートテンショナ、およびその補機ベルト用オートテンショナを用いた補機駆動システムに関する。 The present invention mainly relates to an auto tensioner for an auxiliary belt used for maintaining tension of a belt for driving an auxiliary machine of an automobile engine, and an auxiliary drive system using the auto tensioner for the auxiliary belt.
 近年、自動車エンジンの補機であるジェネレータ(発電機)を、車両発進時や車両加速時にスタータ(電動モータ)として駆動することで燃費向上を図るマイルドハイブリッドシステムが増えている。このマイルドハイブリッドシステムに使用されるスタータジェネレータ(モータ兼発電機)は、一般に、BSG(Belt Starter Generator)と呼ばれている。 In recent years, an increasing number of mild hybrid systems aim to improve fuel efficiency by driving a generator (generator), which is an auxiliary machine of an automobile engine, as a starter (electric motor) when the vehicle starts or accelerates. The starter generator (motor / generator) used in this mild hybrid system is generally called a BSG (Belt Starter Generator).
 マイルドハイブリッドシステムを搭載した自動車は、スタータジェネレータの回転軸に取り付けられたスタータジェネレータプーリと、クランクシャフトに取り付けられたクランクプーリとの間に補機ベルト(以下、単に「ベルト」という)を巻き掛けられたベルト伝動装置を有する。 In automobiles equipped with a mild hybrid system, an auxiliary belt (hereinafter simply referred to as "belt") is wrapped between the starter generator pulley attached to the rotating shaft of the starter generator and the crank pulley attached to the crankshaft. It has a belt transmission device.
 このベルト伝動装置は、通常運転時とスタータジェネレータ駆動時とで、ベルトの張り側と弛み側が入れ替わるという特徴を有する。すなわち、スタータジェネレータが発電機として作動する通常運転時は、クランクプーリがベルトを介してスタータジェネレータプーリを駆動するので、スタータジェネレータプーリからクランクプーリに向かって走行するベルトの部分が張り側となり、クランクプーリからスタータジェネレータプーリに向かって走行するベルトの部分が弛み側となる。一方、スタータジェネレータが電動モータとして駆動するスタータジェネレータ駆動時は、スタータジェネレータプーリがベルトを介してクランクプーリを駆動するので、クランクプーリからスタータジェネレータプーリに向かって走行するベルトの部分が張り側となり、スタータジェネレータプーリからクランクプーリに向かって走行するベルトの部分が弛み側となる。 This belt transmission device has a feature that the tension side and the slack side of the belt are switched between normal operation and drive of the starter generator. That is, during normal operation in which the starter generator operates as a generator, the crank pulley drives the starter generator pulley via the belt, so that the part of the belt traveling from the starter generator pulley toward the crank pulley becomes the tension side, and the crank. The part of the belt that runs from the pulley to the starter generator pulley is on the slack side. On the other hand, when the starter generator is driven as an electric motor, the starter generator pulley drives the crank pulley via the belt, so that the part of the belt running from the crank pulley to the starter generator pulley becomes the tension side. The part of the belt that runs from the starter generator pulley to the crank pulley is on the slack side.
 このように、スタータジェネレータを使用するベルト伝動装置においては、通常運転時とスタータジェネレータ駆動時とで、ベルトの張り側と弛み側が入れ替わるという特徴がある。 As described above, the belt transmission device using the starter generator has a feature that the tension side and the slack side of the belt are switched between the normal operation and the drive of the starter generator.
 このようなベルト伝動装置のベルトの張力を保持するオートテンショナとして、クランクプーリからスタータジェネレータプーリに向かって走行するベルトの部分に接触して設けられる第1のアイドラプーリと、スタータジェネレータプーリからクランクプーリに向かって走行するベルトの部分に接触して設けられる第2のアイドラプーリと、第1のアイドラプーリを支持する第1の揺動アームと、第2のアイドラプーリを支持する第2の揺動アームとを有するものが知られている(特許文献1~3)。 As an auto tensioner for maintaining the tension of the belt of such a belt transmission device, a first idler pulley provided in contact with a portion of the belt traveling from the crank pulley to the starter generator pulley, and a crank pulley from the starter generator pulley to the crank pulley. A second idler pulley provided in contact with a portion of the belt traveling toward, a first swing arm that supports the first idler pulley, and a second swing that supports the second idler pulley. Those having an arm are known (Patent Documents 1 to 3).
 第1の揺動アームと第2の揺動アームは、共通の揺動支軸を中心に揺動可能に支持されている。また、第1の揺動アームと第2の揺動アームは、第1のアイドラプーリと第2のアイドラプーリを互いに近づける方向にスプリングで付勢されている。 The first swing arm and the second swing arm are supported so as to be swingable around a common swing support shaft. Further, the first swing arm and the second swing arm are urged by a spring in a direction in which the first idler pulley and the second idler pulley are brought close to each other.
 このオートテンショナは、ベルトの張り側と弛み側が入れ替わったときは、そのベルトの張力変動に応じて、第1の揺動アームと第2の揺動アームが揺動する。このとき、第1のアイドラプーリと第2のアイドラプーリのうち、弛み側から張り側に入れ替わった部分に接触するアイドラプーリがベルトから押し返される力を利用して、他方のアイドラプーリがベルトに押し込まれるので、張り側から弛み側に入れ替わった部分のベルトの弛みを迅速に吸収することが可能である。 In this auto tensioner, when the tension side and the slack side of the belt are switched, the first swing arm and the second swing arm swing according to the tension fluctuation of the belt. At this time, of the first idler pulley and the second idler pulley, the other idler pulley is attached to the belt by utilizing the force that the idler pulley that comes into contact with the portion switched from the slack side to the tension side is pushed back from the belt. Since it is pushed in, it is possible to quickly absorb the slack of the belt in the portion where the tension side is switched to the slack side.
特許第4133320号公報Japanese Patent No. 4133320 特許第4657200号公報Japanese Patent No. 4657200 特許第5634685号公報Japanese Patent No. 5634685
 特許文献1~3のような従来のオートテンショナは、ベルトの弛みを吸収する動作を迅速に行なうことと、ベルトが共振したときにそのベルトの振動を効果的に吸収することとを両立するのが難しかった。 Conventional auto tensioners such as Patent Documents 1 to 3 have both a rapid operation of absorbing the slack of the belt and an effective absorption of the vibration of the belt when the belt resonates. Was difficult.
 すなわち、特許文献1のオートテンショナは、第1のアイドラプーリを支持する第1の揺動アームと、第2のアイドラプーリを支持する第2の揺動アームとが、共通の揺動支軸で揺動可能に支持され、第1の揺動アームと第2の揺動アームの間に、両アームのなす角度を狭める方向に両アームを付勢するスプリングと、両アームのなす角度が変化するときにダンパ力を発生するダンピング機構とが設けられている。 That is, in the auto tensioner of Patent Document 1, the first swing arm that supports the first idler pulley and the second swing arm that supports the second idler pulley have a common swing support shaft. A spring that is swingably supported and urges both arms in a direction that narrows the angle formed by both arms between the first swing arm and the second swing arm, and the angle formed by both arms changes. A damping mechanism that sometimes generates a damper force is provided.
 この特許文献1のオートテンショナで、ベルトの弛みを吸収する動作を迅速にするには、ダンピング機構のダンパ力を小さく設定する必要があるが、ダンパ力を小さく設定すると、ベルトが共振したときにそのベルトの振動を効果的に吸収することが難しくなる。一方、ダンピング機構のダンパ力を大きく設定すると、ベルトの振動を効果的に吸収することが可能となるが、ベルトの弛みを吸収する動作が遅くなり、ベルトとスタータジェネレータプーリの間でスリップが生じるおそれがある。特許文献2、3のオートテンショナにおいては、そもそもダンピング機構が設けられていない。 In the auto tensioner of Patent Document 1, in order to speed up the operation of absorbing the slack of the belt, it is necessary to set the damper force of the damping mechanism to be small. However, if the damper force is set to be small, when the belt resonates. It becomes difficult to effectively absorb the vibration of the belt. On the other hand, if the damper force of the damping mechanism is set large, it is possible to effectively absorb the vibration of the belt, but the operation of absorbing the slack of the belt becomes slow, and slip occurs between the belt and the starter generator pulley. There is a risk. In the auto tensioners of Patent Documents 2 and 3, a damping mechanism is not provided in the first place.
 この発明が解決しようとする課題は、補機ベルトの弛みを吸収する動作を迅速に行なうことができ、かつ、補機ベルトが共振したときにその補機ベルトの振動を効果的に吸収することが可能な補機ベルト用オートテンショナを提供することである。 The problem to be solved by the present invention is that the operation of absorbing the slack of the auxiliary belt can be performed quickly, and the vibration of the auxiliary belt is effectively absorbed when the auxiliary belt resonates. Is to provide an auto tensioner for auxiliary belts that can be used.
 上記課題を解決するため、この発明では、以下の構成の補機ベルト用オートテンショナを提供する。
 補機ベルトに接触する第1および第2のアイドラプーリと、
 前記第1のアイドラプーリを支持する第1のプーリアームと、
 前記第2のアイドラプーリを支持する第2のプーリアームと、
 前記第1のプーリアームが回動可能に連結される第1の関節部と、前記第2のプーリアームが回動可能に連結される第2の関節部とをもち、前記第1の関節部と前記第2の関節部の間に配置された揺動支軸を中心に揺動可能に支持される揺動アームと、
 前記第1のアイドラプーリが前記第2のアイドラプーリに近づく方向に前記第1のプーリアームを付勢する第1のスプリングと、
 前記第2のアイドラプーリが前記第1のアイドラプーリに近づく方向に前記第2のプーリアームを付勢する第2のスプリングと、
 前記揺動アームが前記揺動支軸を中心に揺動するときに揺動方向とは逆向きのダンパ力を発生する揺動減衰機構、または、前記揺動アームが前記揺動支軸を中心に揺動するときに揺動方向とは逆向きの弾性力を発生する揺動抵抗付与機構と、
 を有する補機ベルト用オートテンショナ。
In order to solve the above problems, the present invention provides an auto tensioner for an auxiliary belt having the following configuration.
The first and second idler pulleys that come into contact with the auxiliary belt,
A first pulley arm that supports the first idler pulley and
A second pulley arm that supports the second idler pulley,
It has a first joint portion to which the first pulley arm is rotatably connected and a second joint portion to which the second pulley arm is rotatably connected, and the first joint portion and the said. A swing arm that is swingably supported around a swing support shaft arranged between the second joints,
A first spring that urges the first pulley arm in a direction in which the first idler pulley approaches the second idler pulley.
A second spring that urges the second pulley arm in a direction in which the second idler pulley approaches the first idler pulley.
A swing damping mechanism that generates a damper force in the direction opposite to the swing direction when the swing arm swings around the swing support shaft, or the swing arm is centered on the swing support shaft. A swing resistance applying mechanism that generates an elastic force in the direction opposite to the swing direction when swinging
Auxiliary belt for auto tensioner.
 このようにすると、第1のアイドラプーリが接触する補機ベルトの部分に弛みが生じたときは、第1のプーリアームが第1のスプリングの力で揺動アームに対し回動することで、第1のアイドラプーリが第2のアイドラプーリに近づく方向に移動し、補機ベルトの弛みを迅速に吸収することが可能である。同様に、第2のアイドラプーリが接触する補機ベルトの部分に弛みが生じたときは、第2のプーリアームが第2のスプリングの力で揺動アームに対し回動することで、第2のアイドラプーリが第1のアイドラプーリに近づく方向に移動し、補機ベルトの弛みを迅速に吸収することが可能である。また補機ベルトが共振したときは、揺動アームが揺動支軸を中心に揺動し、このとき揺動減衰機構または揺動抵抗付与機構によって揺動方向とは逆向きの力が揺動アームに付与されるので、補機ベルトの振動を吸収することが可能である。このように、この補機ベルト用オートテンショナは、第1および第2のスプリングで付勢される第1および第2のプーリアームと、揺動減衰機構または揺動抵抗付与機構の力が付与される揺動アームとが別個のアームなので、補機ベルトの弛みを吸収する動作を迅速に行なうことができ、かつ、補機ベルトが共振したときにその補機ベルトの振動を効果的に吸収することが可能である。 In this way, when a slack occurs in the portion of the auxiliary belt with which the first idler pulley comes into contact, the first pulley arm rotates with respect to the swing arm by the force of the first spring, so that the first pulley arm becomes the first. The idler pulley 1 moves in the direction approaching the second idler pulley, and the slack of the auxiliary belt can be quickly absorbed. Similarly, when a slack occurs in the portion of the auxiliary belt with which the second idler pulley comes into contact, the second pulley arm rotates with respect to the swing arm by the force of the second spring, so that the second pulley arm is seconded. The idler pulley moves in the direction approaching the first idler pulley, and it is possible to quickly absorb the slack of the auxiliary belt. When the auxiliary belt resonates, the swing arm swings around the swing support shaft, and at this time, a force opposite to the swing direction swings due to the swing damping mechanism or the swing resistance applying mechanism. Since it is applied to the arm, it is possible to absorb the vibration of the auxiliary belt. As described above, in the auxiliary belt auto tensioner, the forces of the first and second pulley arms urged by the first and second springs and the swing damping mechanism or the swing resistance applying mechanism are applied. Since the arm is separate from the swing arm, the operation of absorbing the slack of the auxiliary belt can be performed quickly, and the vibration of the auxiliary belt can be effectively absorbed when the auxiliary belt resonates. Is possible.
 前記揺動アームに、前記揺動支軸が挿入される支軸挿入孔を形成し、前記揺動減衰機構または前記揺動抵抗付与機構を、前記支軸挿入孔に組み込むと好ましい。 It is preferable that the swing arm is formed with a support shaft insertion hole into which the swing support shaft is inserted, and the swing damping mechanism or the swing resistance imparting mechanism is incorporated into the support shaft insertion hole.
 このようにすると、揺動減衰機構または揺動抵抗付与機構が、揺動アームの揺動支軸の部位に内蔵された構成となるので、補機ベルト用オートテンショナを取り付けるときに、揺動減衰機構または揺動抵抗付与機構を別個に取り付ける必要がなく、補機ベルト用オートテンショナの取り付けが簡単である。 In this way, the swing damping mechanism or the swing resistance applying mechanism is built in the swing support shaft portion of the swing arm. Therefore, when the auxiliary belt auto tensioner is attached, the swing damping mechanism is installed. It is not necessary to separately attach a mechanism or a swing resistance applying mechanism, and it is easy to attach an auto tensioner for an auxiliary belt.
 前記揺動減衰機構としては、前記揺動支軸に回り止めされたカム部材と、前記支軸挿入孔内に設けられ、前記揺動アームに回り止めされたシュー部材とを有し、前記カム部材と前記シュー部材は、前記ダンパ力を発生するように互いに摩擦接触している構成のものを採用することができる。 The swing damping mechanism includes a cam member that is prevented from rotating around the swing support shaft, and a shoe member that is provided in the support shaft insertion hole and is stopped from rotating by the swing arm. As the member and the shoe member, those having a structure in which they are in frictional contact with each other so as to generate the damper force can be adopted.
 このようにすると、揺動減衰機構をコンパクトに抑えることができるので、補機ベルト用オートテンショナを小型化することが可能となる。 By doing so, the swing damping mechanism can be suppressed compactly, so that the auto tensioner for the auxiliary belt can be miniaturized.
 前記シュー部材として、前記カム部材の径方向外側に径方向に移動可能に設けられた円弧状の部材を採用し、前記シュー部材には、シュー部材を前記カム部材に向けて付勢する弾性部材が取り付けられている構成を採用することができる。 As the shoe member, an arc-shaped member provided so as to be movable in the radial direction outside the cam member is adopted, and the shoe member is an elastic member that urges the shoe member toward the cam member. Can be adopted in the configuration in which is attached.
 このようにすると、シュー部材が、カム部材との接触により径方向に移動可能であり、そのシュー部材が弾性部材でカム部材に向けて付勢されているので、カム部材とシュー部材の間の接触面圧が安定したものとなり、カム部材とシュー部材の間の摩擦抵抗によるダンパ力の大きさも安定したものとなる。 In this way, the shoe member can move in the radial direction by contact with the cam member, and the shoe member is urged toward the cam member by the elastic member, so that the shoe member is between the cam member and the shoe member. The contact surface pressure becomes stable, and the magnitude of the damper force due to the frictional resistance between the cam member and the shoe member also becomes stable.
 また前記シュー部材として、前記カム部材の径方向外側に対向して配置され、前記カム部材との接触により径方向に変形可能な金属製の板ばねを採用することができる。 Further, as the shoe member, a metal leaf spring that is arranged so as to face the radial outer side of the cam member and can be deformed in the radial direction by contact with the cam member can be adopted.
 このようにすると、シュー部材が、カム部材との接触により径方向に変形可能な板ばねなので、カム部材とシュー部材の間の接触面圧が安定したものとなり、カム部材とシュー部材の摩擦抵抗によるダンパ力の大きさも安定したものとなる。また、シュー部材が金属製の板ばねなので、シュー部材の耐摩耗性に優れる。 In this way, since the shoe member is a leaf spring that can be deformed in the radial direction by contact with the cam member, the contact surface pressure between the cam member and the shoe member becomes stable, and the frictional resistance between the cam member and the shoe member becomes stable. The magnitude of the damper force is also stable. Further, since the shoe member is a metal leaf spring, the shoe member has excellent wear resistance.
 前記カム部材には、径方向外方に突出する凸曲面状のカム外周面が形成され、
 前記シュー部材は、前記カム外周面に摩擦接触するシュー内周面が形成され、
 前記シュー内周面は、前記揺動アームの揺動により前記シュー部材が前記カム部材に対して相対回転するときに、その回転角度が大きくなるに従って前記カム外周面に対する前記シュー内周面の接触面圧が次第に大きくなるように、周方向に対して傾斜した形状を有する構成のものを採用することができる。
The cam member is formed with a convex curved cam outer peripheral surface that projects outward in the radial direction.
The shoe member has an inner peripheral surface of the shoe that is in frictional contact with the outer peripheral surface of the cam.
When the shoe member rotates relative to the cam member due to the swing of the swing arm, the shoe inner peripheral surface comes into contact with the cam outer peripheral surface as the rotation angle increases. A structure having a shape inclined with respect to the circumferential direction can be adopted so that the surface pressure gradually increases.
 このようにすると、揺動アームの揺動角度が大きくなるにつれて、カム外周面に対するシュー内周面の接触面圧が次第に大きくなる。そのため、補機ベルトが共振したときに、補機ベルトの振動を確実に抑えることが可能である。 In this way, as the swing angle of the swing arm increases, the contact surface pressure of the shoe inner peripheral surface with respect to the cam outer peripheral surface gradually increases. Therefore, when the auxiliary belt resonates, the vibration of the auxiliary belt can be reliably suppressed.
 前記揺動支軸を固定部材に固定するときに、前記固定部材に対する前記カム部材の固定角度を所定の角度に位置決めする位置決め座金を更に設けると好ましい。 When fixing the swing support shaft to the fixing member, it is preferable to further provide a positioning washer that positions the fixing angle of the cam member with respect to the fixing member to a predetermined angle.
 このようにすると、固定部材に対するカム部材の固定角度を精度良く管理することが可能となる。 In this way, it is possible to accurately manage the fixing angle of the cam member with respect to the fixing member.
 前記揺動抵抗付与機構としては、前記揺動支軸に一端が回り止めされ、他端が前記揺動アームに回り止めされたねじりコイルばねを有する構成のものを採用することができる。 As the swing resistance imparting mechanism, one having a torsion coil spring having one end stopped by the swing support shaft and the other end stopped by the swing arm can be adopted.
 このようにすると、揺動アームが揺動したときに発生する揺動方向とは逆向きの力が、ねじりコイルばねの弾性力によるものなので、摩擦抵抗でダンパ力を発生する揺動減衰機構を採用したときと比較して、摩耗が生じにくく、長期にわたって安定した性能を発揮することが可能である。 In this way, the force in the direction opposite to the swing direction generated when the swing arm swings is due to the elastic force of the torsion coil spring, so a swing damping mechanism that generates a damper force due to frictional resistance is provided. Compared to when it is used, it is less likely to wear and can exhibit stable performance over a long period of time.
 前記第1のプーリアームを受け止めて第1のプーリアームの回動角度を規制する第1の回動ストッパと、前記第2のプーリアームを受け止めて第2のプーリアームの回動角度を規制する第2の回動ストッパとを更に設けると好ましい。 A first rotation stopper that receives the first pulley arm and regulates the rotation angle of the first pulley arm, and a second rotation that receives the second pulley arm and regulates the rotation angle of the second pulley arm. It is preferable to further provide a moving stopper.
 このようにすると、第1および第2のプーリアームの回動角度がそれぞれ第1および第2の回動ストッパで規制されているので、補機ベルトが共振したときに、補機ベルトの振動を確実に抑えることが可能である。 In this way, the rotation angles of the first and second pulley arms are regulated by the first and second rotation stoppers, respectively, so that the vibration of the auxiliary belt is ensured when the auxiliary belt resonates. It is possible to suppress to.
 前記第1の回動ストッパが前記第1のプーリアームを受け止めるときの衝撃を吸収する第1の緩衝部材と、
 前記第2の回動ストッパが前記第2のプーリアームを受け止めるときの衝撃を吸収する第2の緩衝部材と、を更に設けると好ましい。
A first buffer member that absorbs the impact when the first rotation stopper receives the first pulley arm, and
It is preferable to further provide a second cushioning member that absorbs an impact when the second rotation stopper receives the second pulley arm.
 このようにすると、第1および第2の回動ストッパが第1および第2のプーリアームを受け止めるときに、第1および第2の緩衝部材で衝撃が吸収されるので、補機ベルトが共振したときに、第1および第2の回動ストッパから異音(連続的な衝突音)が発生するのを抑えることが可能となる。 In this way, when the first and second rotation stoppers receive the first and second pulley arms, the impact is absorbed by the first and second cushioning members, so that when the auxiliary belt resonates. In addition, it is possible to suppress the generation of abnormal noise (continuous collision noise) from the first and second rotation stoppers.
 前記第1のアイドラプーリを、前記補機ベルトに接触する外周面をもつ環状の第1のプーリ本体と、その第1のプーリ本体の内周に嵌め込まれた第1の転がり軸受とで構成し、
 前記第2のアイドラプーリを、前記補機ベルトに接触する外周面をもつ環状の第2のプーリ本体と、その第2のプーリ本体の内周に嵌め込まれた第2の転がり軸受とで構成する場合、
 前記第1のプーリアームは、前記第1の転がり軸受に軸方向の両側から嵌め込まれる一対の分割軸と、その一対の分割軸の軸方向両端を支持する一対の第1の鋼板と、前記一対の分割軸および前記一対の第1の鋼板を貫通して結合する結合ピンとで構成し、
 前記第2のプーリアームは、前記第2の転がり軸受に軸方向の両側から嵌め込まれる一対の分割軸と、その一対の分割軸の軸方向両端を支持する一対の第2の鋼板と、前記一対の分割軸および前記一対の第2の鋼板を貫通して結合する結合ピンとで構成すると好ましい。
The first idler pulley is composed of an annular first pulley body having an outer peripheral surface in contact with the accessory belt and a first rolling bearing fitted in the inner circumference of the first pulley body. ,
The second idler pulley is composed of an annular second pulley body having an outer peripheral surface in contact with the accessory belt and a second rolling bearing fitted in the inner circumference of the second pulley body. case,
The first pulley arm includes a pair of split shafts fitted into the first rolling bearing from both sides in the axial direction, a pair of first steel plates supporting both ends of the pair of split shafts in the axial direction, and the pair. It is composed of a dividing shaft and a coupling pin that penetrates and joins the pair of first steel plates.
The second pulley arm includes a pair of split shafts fitted into the second rolling bearing from both sides in the axial direction, a pair of second steel plates supporting both ends of the pair of split shafts in the axial direction, and the pair. It is preferably composed of a dividing shaft and a coupling pin that penetrates and joins the pair of second steel plates.
 このようにすると、第1のプーリアームと第2のプーリアームを低コストで精度良く製造することができる。 In this way, the first pulley arm and the second pulley arm can be manufactured at low cost and with high accuracy.
 また、この発明では、上記の補機ベルト用オートテンショナを用いた補機駆動システムとして、以下の構成のものを提供する。
 スタータジェネレータの回転軸に取り付けられたスタータジェネレータプーリと、
 クランクシャフトに取り付けられたクランクプーリと、
 前記スタータジェネレータプーリと前記クランクプーリの間に巻き掛けられた前記補機ベルトと、
 前記補機ベルトに張力を付与する上記の補機ベルト用オートテンショナと、を有し、
 前記第1のアイドラプーリは、前記補機ベルトの、前記クランクプーリから前記スタータジェネレータプーリに向かって走行する部分に接触して設けられ、
 第2のアイドラプーリは、前記補機ベルトの、前記スタータジェネレータプーリから前記クランクプーリに向かって走行する部分に接触して設けられている補機駆動システム。
Further, the present invention provides an auxiliary machine drive system using the above-mentioned auxiliary machine belt auto tensioner having the following configuration.
The starter generator pulley attached to the rotating shaft of the starter generator,
With the crank pulley attached to the crankshaft,
The auxiliary belt wound between the starter generator pulley and the crank pulley,
It has the above-mentioned auto tensioner for the auxiliary belt that applies tension to the auxiliary belt, and
The first idler pulley is provided in contact with a portion of the auxiliary belt that travels from the crank pulley toward the starter generator pulley.
The second idler pulley is an auxiliary machine drive system provided in contact with a portion of the auxiliary machine belt that travels from the starter generator pulley toward the crank pulley.
 この補機駆動システムにおいて、前記補機ベルト用オートテンショナは、前記スタータジェネレータプーリの外周よりも径方向外側に前記揺動支軸の中心があるように配置すると好ましい。 In this auxiliary machine drive system, it is preferable that the auxiliary machine belt auto tensioner is arranged so that the center of the swing support shaft is radially outside the outer circumference of the starter generator pulley.
 このようにすると、第1のプーリアームおよび第2のプーリアームの長さを確保することができるので、補機ベルトの弛みに対する第1のアイドラプーリおよび第2のアイドラプーリの追従性を高めることが可能となる。 In this way, the lengths of the first pulley arm and the second pulley arm can be secured, so that the followability of the first idler pulley and the second idler pulley to the slack of the auxiliary belt can be improved. It becomes.
 この発明の補機ベルト用オートテンショナは、第1のアイドラプーリが接触する補機ベルトの部分に弛みが生じたときは、第1のプーリアームが第1のスプリングの力で揺動アームに対し回動することで、第1のアイドラプーリが第2のアイドラプーリに近づく方向に移動し、補機ベルトの弛みを迅速に吸収することが可能である。同様に、第2のアイドラプーリが接触する補機ベルトの部分に弛みが生じたときは、第2のプーリアームが第2のスプリングの力で揺動アームに対し回動することで、第2のアイドラプーリが第1のアイドラプーリに近づく方向に移動し、補機ベルトの弛みを迅速に吸収することが可能である。また補機ベルトが共振したときは、揺動アームが揺動支軸を中心に揺動し、このとき揺動減衰機構または揺動抵抗付与機構によって揺動方向とは逆向きの力が揺動アームに付与されるので、補機ベルトの振動を吸収することが可能である。このように、この補機ベルト用オートテンショナは、第1および第2のスプリングで付勢される第1および第2のプーリアームと、揺動減衰機構または揺動抵抗付与機構の力が付与される揺動アームとが別個のアームなので、補機ベルトの弛みを吸収する動作を迅速に行なうことができ、かつ、補機ベルトが共振したときにその補機ベルトの振動を効果的に吸収することが可能である。 In the auxiliary belt auto tensioner of the present invention, when a slack occurs in the auxiliary belt portion that the first idler pulley contacts, the first pulley arm rotates with respect to the swing arm by the force of the first spring. By moving, the first idler pulley moves in the direction approaching the second idler pulley, and it is possible to quickly absorb the slack of the auxiliary belt. Similarly, when a slack occurs in the portion of the auxiliary belt with which the second idler pulley comes into contact, the second pulley arm rotates with respect to the swing arm by the force of the second spring, so that the second pulley arm is seconded. The idler pulley moves in the direction approaching the first idler pulley, and it is possible to quickly absorb the slack of the auxiliary belt. When the auxiliary belt resonates, the swing arm swings around the swing support shaft, and at this time, a force opposite to the swing direction swings due to the swing damping mechanism or the swing resistance applying mechanism. Since it is applied to the arm, it is possible to absorb the vibration of the auxiliary belt. As described above, in the auxiliary belt auto tensioner, the forces of the first and second pulley arms urged by the first and second springs and the swing damping mechanism or the swing resistance applying mechanism are applied. Since the arm is separate from the swing arm, the operation of absorbing the slack of the auxiliary belt can be performed quickly, and the vibration of the auxiliary belt can be effectively absorbed when the auxiliary belt resonates. Is possible.
この発明の第1実施形態の補機ベルト用オートテンショナを用いた補機駆動システムの一例を示す正面図Front view showing an example of an auxiliary machine drive system using the auxiliary machine belt auto tensioner of the first embodiment of the present invention. 図1の補機ベルト用オートテンショナの揺動アームの近傍の拡大図Enlarged view of the vicinity of the swing arm of the auto tensioner for the auxiliary belt shown in FIG. 図2のIII-III線に沿った断面図Sectional view taken along the line III-III of FIG. 図3のIV-IV線に沿った断面図Sectional view taken along line IV-IV of FIG. 図3のV-V線に沿った断面図Cross-sectional view taken along the line VV of FIG. 図5に示す揺動アームが揺動した状態を示す断面図A cross-sectional view showing a state in which the swing arm shown in FIG. 5 swings. 図1の補機ベルト用オートテンショナの右側面図Right side view of the auto tensioner for the auxiliary belt shown in FIG. 図2のVIII-VIII線に沿った断面図Sectional view taken along the line VIII-VIII of FIG. 図7のIX-IX線に沿った断面図Sectional view taken along line IX-IX in FIG. エンジンが停止しているときの補機駆動システムを模式的に示す図The figure which shows typically the auxiliary drive system when the engine is stopped. 通常運転時の補機駆動システムを模式的に示す図The figure which shows typically the auxiliary machine drive system at the time of normal operation スタータジェネレータ駆動時の補機駆動システムを模式的に示す図The figure which shows typically the auxiliary machine drive system at the time of starting a starter generator drive ベルトが経年劣化により伸びたときの補機駆動システムを模式的に示す図The figure which shows typically the auxiliary drive system when the belt is stretched by aged deterioration. 図3に示す揺動減衰機構の分解斜視図An exploded perspective view of the swing damping mechanism shown in FIG. 図2に示す第2の関節部の分解斜視図An exploded perspective view of the second joint shown in FIG. この発明の第2実施形態の補機ベルト用オートテンショナの揺動支軸の近傍を図3に対応して示す図The figure which shows the vicinity of the swing support shaft of the auxiliary belt auto tensioner of 2nd Embodiment of this invention corresponding to FIG. 図13のXIV-XIV線に沿った断面図Sectional view taken along the line XIV-XIV of FIG. 図14に示す揺動アームが揺動した状態を示す断面図A cross-sectional view showing a state in which the swing arm shown in FIG. 14 swings. この発明の第3実施形態の補機ベルト用オートテンショナの揺動支軸の近傍を図3に対応して示す図The figure which shows the vicinity of the swing support shaft of the auto tensioner for an auxiliary belt of 3rd Embodiment of this invention corresponding to FIG. 図16のXVII-XVII線に沿った断面図Sectional view taken along the line XVII-XVII of FIG. 図17に示す揺動アームが揺動した状態を示す断面図A cross-sectional view showing a state in which the swing arm shown in FIG. 17 swings. この発明の第4実施形態の補機ベルト用オートテンショナの揺動支軸の近傍を図3に対応して示す図The figure which shows the vicinity of the swing support shaft of the auto tensioner for an auxiliary belt of 4th Embodiment of this invention corresponding to FIG. 図19のXX-XX線に沿った断面図Sectional view taken along the line XX-XX of FIG. 図20に示す揺動アームが揺動した状態を示す断面図A cross-sectional view showing a state in which the swing arm shown in FIG. 20 swings.
 図1に、この発明の第1実施形態の補機ベルト用オートテンショナ1(以下、単に「オートテンショナ1」という)を用いた補機駆動システムの例を示す。この補機駆動システムは、スタータジェネレータの回転軸2に取り付けられたスタータジェネレータプーリ3と、クランクシャフト4に取り付けられたクランクプーリ5と、スタータジェネレータプーリ3とクランクプーリ5の間に巻き掛けられた補機ベルト6(以下、単に「ベルト6」という)と、ベルト6の張力を適正範囲に保つオートテンショナ1とを有する。 FIG. 1 shows an example of an auxiliary machine drive system using the auxiliary machine belt auto tensioner 1 (hereinafter, simply referred to as “auto tensioner 1”) according to the first embodiment of the present invention. This auxiliary drive system was wound between the starter generator pulley 3 attached to the rotating shaft 2 of the starter generator, the crank pulley 5 attached to the crankshaft 4, and the starter generator pulley 3 and the crank pulley 5. It has an auxiliary belt 6 (hereinafter, simply referred to as "belt 6") and an auto tensioner 1 that keeps the tension of the belt 6 within an appropriate range.
 オートテンショナ1は、第1のアイドラプーリ7aと、第2のアイドラプーリ7bと、第1のアイドラプーリ7aを支持する第1のプーリアーム8aと、第2のアイドラプーリ7bを支持する第2のプーリアーム8bと、揺動支軸9を中心に揺動可能に支持される揺動アーム10とを有する。 The auto tensioner 1 includes a first idler pulley 7a, a second idler pulley 7b, a first pulley arm 8a that supports the first idler pulley 7a, and a second pulley arm that supports the second idler pulley 7b. It has 8b and a swing arm 10 that is swingably supported around a swing support shaft 9.
 第1のアイドラプーリ7aは、クランクプーリ5からスタータジェネレータプーリ3に向かって走行するベルト6の部分の外周面に接触している。また、第2のアイドラプーリ7bは、スタータジェネレータプーリ3からクランクプーリ5に向かって走行するベルト6の部分の外周面に接触している。ここで、第1のアイドラプーリ7aと第2のアイドラプーリ7bは、ベルト6のスタータジェネレータプーリ3に対して上流側に隣接するスパンと、ベルト6のスタータジェネレータプーリ3に対して下流側に隣接するスパンとを間に挟み込んで配置されている。 The first idler pulley 7a is in contact with the outer peripheral surface of the portion of the belt 6 traveling from the crank pulley 5 toward the starter generator pulley 3. Further, the second idler pulley 7b is in contact with the outer peripheral surface of the portion of the belt 6 traveling from the starter generator pulley 3 toward the crank pulley 5. Here, the first idler pulley 7a and the second idler pulley 7b have a span adjacent to the upstream side of the starter generator pulley 3 of the belt 6 and a span adjacent to the downstream side of the starter generator pulley 3 of the belt 6. It is arranged with a span to be sandwiched between them.
 揺動アーム10は、スタータジェネレータプーリ3の外周の一部分(図では、スタータジェネレータプーリ3の外周のうち90度以上の中心角に対応する部分)と径方向に対向するC形状に形成されている。揺動アーム10の形状は、揺動支軸9に対して左右対称である。揺動支軸9の中心は、スタータジェネレータプーリ3の外周よりも径方向外側に配置され、かつ、無端のベルト6で囲まれる領域の外側に配置されている。 The swing arm 10 is formed in a C shape that faces a part of the outer circumference of the starter generator pulley 3 (in the figure, a portion of the outer circumference of the starter generator pulley 3 corresponding to a central angle of 90 degrees or more) in the radial direction. .. The shape of the swing arm 10 is symmetrical with respect to the swing support shaft 9. The center of the swing support shaft 9 is arranged radially outside the outer circumference of the starter generator pulley 3 and outside the region surrounded by the endless belt 6.
 第1のプーリアーム8aは、C形状の揺動アーム10の周方向の一端に設けた第1の関節部11aに回動可能に連結されている。第2のプーリアーム8bは、C形状の揺動アーム10の周方向の他端に設けた第2の関節部11bに回動可能に連結されている。 The first pulley arm 8a is rotatably connected to a first joint portion 11a provided at one end of the C-shaped swing arm 10 in the circumferential direction. The second pulley arm 8b is rotatably connected to a second joint portion 11b provided at the other end of the C-shaped swing arm 10 in the circumferential direction.
 第1のプーリアーム8aとこれに付属する部材は、第2のプーリアーム8bとこれに付属する部材と左右対称の同一構成である。そのため、以下、第1のプーリアーム8aと第2のプーリアーム8bのうち一方の側の構成についてのみ説明し、他方の側の構成については、同一の符号または末尾のアルファベットaとbを置き換えた符号を付して説明を省略する。 The first pulley arm 8a and the member attached thereto have the same symmetrical configuration as the second pulley arm 8b and the member attached thereto. Therefore, hereinafter, only the configuration of one side of the first pulley arm 8a and the second pulley arm 8b will be described, and for the configuration of the other side, the same code or a code in which the letters a and b at the end are replaced is used. The description will be omitted.
 第1のプーリアーム8aと揺動アーム10の間には、第1のアイドラプーリ7aが第2のアイドラプーリ7bに近づく方向に第1のプーリアーム8aを付勢する第1のスプリング12aが組み込まれている。第1のプーリアーム8aと揺動アーム10の間には、第1のプーリアーム8aを受け止めて第1のプーリアーム8aの回動角度を規制する第1の回動ストッパ13aが設けられている。第1の回動ストッパ13aは、第1のアイドラプーリ7aが第2のアイドラプーリ7bから遠ざかる方向の回動角度を規制する部分と、第1のアイドラプーリ7aが第2のアイドラプーリ7bに近づく方向の回動角度を規制する部分とで構成されている。 A first spring 12a for urging the first pulley arm 8a in the direction in which the first idler pulley 7a approaches the second idler pulley 7b is incorporated between the first pulley arm 8a and the swing arm 10. There is. Between the first pulley arm 8a and the swing arm 10, a first rotation stopper 13a that receives the first pulley arm 8a and regulates the rotation angle of the first pulley arm 8a is provided. The first rotation stopper 13a is a portion that regulates the rotation angle of the first idler pulley 7a in the direction away from the second idler pulley 7b, and the first idler pulley 7a approaches the second idler pulley 7b. It is composed of a part that regulates the rotation angle in the direction.
 図2に示すように、第1のスプリング12aは、一端が揺動アーム10で支持され、他端が第1のプーリアーム8aを押圧するように、揺動アーム10と第1のプーリアーム8aの間に組み込まれている。第1のスプリング12aは、板ばねやねじりコイルばねを採用することも可能であるが、ここでは圧縮コイルばねを採用している。揺動アーム10には、第1のスプリング12aを収容するスプリング収容孔14が形成されている。スプリング収容孔14には、有底筒状のスライドキャップ15がスライド可能に挿入されている。スライドキャップ15のスプリング収容孔14からの突出端は、第1のプーリアーム8aに固定された当接ピン16に当接している。第1のスプリング12aは、スライドキャップ15と当接ピン16を介して第1のプーリアーム8aを押圧している。 As shown in FIG. 2, the first spring 12a is supported between the swing arm 10 and the first pulley arm 8a so that one end is supported by the swing arm 10 and the other end presses the first pulley arm 8a. It is built into. As the first spring 12a, a leaf spring or a torsion coil spring can be adopted, but here, a compression coil spring is adopted. The swing arm 10 is formed with a spring accommodating hole 14 for accommodating the first spring 12a. A bottomed cylindrical slide cap 15 is slidably inserted into the spring accommodating hole 14. The protruding end of the slide cap 15 from the spring accommodating hole 14 is in contact with the contact pin 16 fixed to the first pulley arm 8a. The first spring 12a presses the first pulley arm 8a via the slide cap 15 and the contact pin 16.
 揺動アーム10と第1のプーリアーム8aの間には、第1の回動ストッパ13aが第1のプーリアーム8aを受け止めるときの衝撃を吸収する第1の緩衝部材17aが設けられている。第1の緩衝部材17aは、ゴムまたはエラストマーで形成され、第1の回動ストッパ13aが第1のプーリアーム8aを受け止めるときに弾性的に圧縮して衝撃を吸収する。 Between the swing arm 10 and the first pulley arm 8a, a first cushioning member 17a is provided to absorb the impact when the first rotation stopper 13a receives the first pulley arm 8a. The first cushioning member 17a is made of rubber or elastomer and elastically compresses when the first rotating stopper 13a receives the first pulley arm 8a to absorb an impact.
 図8、図12に示すように、第2の関節部11bは、関節ピン18と滑り軸受19で構成されている。関節ピン18の両端は、第2のプーリアーム8bに形成されたピン穴20に圧入されている。滑り軸受19は、揺動アーム10に形成された軸方向の貫通孔21に挿入され、滑り軸受19の内周に関節ピン18の外周が滑り接触している。 As shown in FIGS. 8 and 12, the second joint portion 11b is composed of a joint pin 18 and a slide bearing 19. Both ends of the joint pin 18 are press-fitted into the pin holes 20 formed in the second pulley arm 8b. The slide bearing 19 is inserted into an axial through hole 21 formed in the swing arm 10, and the outer circumference of the joint pin 18 is in sliding contact with the inner circumference of the slide bearing 19.
 図2に示すように、揺動支軸9は、揺動アーム10の第1の関節部11aと第2の関節部11bの間に配置されている。図では、揺動支軸9は、C形状の揺動アーム10の周方向の中央位置(長手方向の中央位置)に配置されている。 As shown in FIG. 2, the swing support shaft 9 is arranged between the first joint portion 11a and the second joint portion 11b of the swing arm 10. In the figure, the swing support shaft 9 is arranged at the center position in the circumferential direction (center position in the longitudinal direction) of the C-shaped swing arm 10.
 図3に示すように、揺動アーム10には、揺動支軸9が挿入される支軸挿入孔22が形成されている。支軸挿入孔22は、揺動アーム10を軸方向に貫通して形成されている。揺動支軸9は、実施形態では、外周に雄ねじが形成されたねじ軸部23と、ねじ軸部23の一端に設けられた頭部24とを有する頭部付きボルトである。ねじ軸部23は、固定部材25(スタータジェネレータのハウジング等の静止した部材)にねじ込まれている。ねじ軸部23の外周には、頭部24の側から固定部材25の側に向かって順に、座金26、スリーブ27、カム部材28が嵌合して設けられている。座金26、スリーブ27、カム部材28は、頭部24から受ける軸力によって固定部材25に固定されている。 As shown in FIG. 3, the swing arm 10 is formed with a support shaft insertion hole 22 into which the swing support shaft 9 is inserted. The support shaft insertion hole 22 is formed so as to penetrate the swing arm 10 in the axial direction. In the embodiment, the swing support shaft 9 is a bolt with a head having a screw shaft portion 23 having a male screw formed on the outer periphery thereof and a head portion 24 provided at one end of the screw shaft portion 23. The screw shaft portion 23 is screwed into a fixing member 25 (a stationary member such as a housing of a starter generator). A washer 26, a sleeve 27, and a cam member 28 are fitted and provided on the outer periphery of the screw shaft portion 23 in this order from the side of the head 24 toward the side of the fixing member 25. The washer 26, the sleeve 27, and the cam member 28 are fixed to the fixing member 25 by the axial force received from the head 24.
 支軸挿入孔22は、小径内径部29と、小径内径部29よりも大きい内径をもつ大径内径部30とを有する。大径内径部30は、小径内径部29に対して固定部材25の側に隣接して形成されている。小径内径部29の内周には、スリーブ27の外周を回転可能に支持する滑り軸受31が嵌め込まれている。大径内径部30の内側には、揺動アーム10が揺動支軸9を中心に揺動するときに、揺動方向とは逆向きのダンパ力を発生する揺動減衰機構32が組み込まれている。 The support shaft insertion hole 22 has a small diameter inner diameter portion 29 and a large diameter inner diameter portion 30 having an inner diameter larger than that of the small diameter inner diameter portion 29. The large-diameter inner diameter portion 30 is formed adjacent to the fixing member 25 with respect to the small-diameter inner diameter portion 29. A slide bearing 31 that rotatably supports the outer circumference of the sleeve 27 is fitted in the inner circumference of the small diameter inner diameter portion 29. Inside the large-diameter inner diameter portion 30, a swing damping mechanism 32 that generates a damper force in the direction opposite to the swing direction when the swing arm 10 swings around the swing support shaft 9 is incorporated. ing.
 揺動減衰機構32は、揺動アーム10の揺動に応じてダンパ力を発生するように互いに摩擦接触するカム部材28とシュー部材33とを有する。カム部材28は、頭部24から受ける軸力で固定部材25に押し付けて固定され、その固定により揺動支軸9に回り止めされた状態となっている。 The swing damping mechanism 32 has a cam member 28 and a shoe member 33 that are in frictional contact with each other so as to generate a damper force in response to the swing of the swing arm 10. The cam member 28 is fixed by being pressed against the fixing member 25 by the axial force received from the head 24, and is stopped by the swing support shaft 9 by the fixing.
 図3、図4に示すように、カム部材28の固定部材25の側の端部外周には、周方向位置決め部34(図ではDカット部)が形成され、この周方向位置決め部34に、位置決め座金35が嵌合している。位置決め座金35は、揺動支軸9を固定部材25に固定するときに、固定部材25に対するカム部材28の固定角度を所定の角度に位置決めする部材である。 As shown in FIGS. 3 and 4, a circumferential positioning portion 34 (D-cut portion in the drawing) is formed on the outer periphery of the end portion of the cam member 28 on the side of the fixing member 25, and the circumferential positioning portion 34 is formed with the circumferential positioning portion 34. The positioning washer 35 is fitted. The positioning washer 35 is a member that positions the fixing angle of the cam member 28 with respect to the fixing member 25 to a predetermined angle when the swing support shaft 9 is fixed to the fixing member 25.
 図4に示すように、位置決め座金35には、固定部材25に設けられた位置決め用の突起36に係合する係合穴37が設けられ、この突起36と係合穴37の係合によって、固定部材25に対する位置決め座金35の角度が固定され、さらに、カム部材28の周方向位置決め部34と位置決め座金35の嵌合によって、位置決め座金35に対するカム部材28の角度が固定され、その結果、固定部材25に対するカム部材28の角度が位置決めされている。図3に示すように、支軸挿入孔22の大径内径部30の固定部材25の側の端部開口は、環状のカバー38で塞がれている。カバー38は、カム部材28と位置決め座金35の間に挟んで組み込まれている。カバー38に代えてシール部材(例えば、揺動アーム10と位置決め座金35の軸方向の対向面間に組み込んだOリング等)を用いることも可能である。 As shown in FIG. 4, the positioning washer 35 is provided with an engaging hole 37 that engages with the positioning protrusion 36 provided on the fixing member 25, and the engagement between the protrusion 36 and the engaging hole 37 causes the positioning washer 35 to engage. The angle of the positioning washer 35 with respect to the fixing member 25 is fixed, and further, the angle of the cam member 28 with respect to the positioning washer 35 is fixed by fitting the circumferential positioning portion 34 of the cam member 28 and the positioning washer 35, and as a result, the cam member 28 is fixed. The angle of the cam member 28 with respect to the member 25 is positioned. As shown in FIG. 3, the end opening on the side of the fixing member 25 of the large-diameter inner diameter portion 30 of the support shaft insertion hole 22 is closed by the annular cover 38. The cover 38 is sandwiched between the cam member 28 and the positioning washer 35. Instead of the cover 38, a seal member (for example, an O-ring incorporated between the swing arm 10 and the axially opposed surfaces of the positioning washer 35) can be used.
 図5に示すように、カム部材28は、支軸挿入孔22の大径内径部30内に挿入されている。カム部材28には、径方向外方に突出する凸曲面状のカム外周面39が形成されている(図11参照)。実施形態では、カム外周面39は、揺動支軸9を中心とする正反対の向きに一対形成されている。 As shown in FIG. 5, the cam member 28 is inserted into the large-diameter inner diameter portion 30 of the support shaft insertion hole 22. The cam member 28 is formed with a convex curved cam outer peripheral surface 39 that projects outward in the radial direction (see FIG. 11). In the embodiment, a pair of cam outer peripheral surfaces 39 are formed in opposite directions with respect to the swing support shaft 9.
 シュー部材33は、左右一対の円弧状のシュー分割体40で構成されている。各シュー分割体40の外周と大径内径部30の内周との間には径方向隙間が設けられ、その径方向隙間の範囲で、各シュー分割体40が径方向に移動可能となっている。左右一対のシュー分割体40には、各シュー分割体40をカム部材28に向けて付勢する弾性部材41が取り付けられている。弾性部材41は、C形のサークリップである。弾性部材41は、一対のシュー分割体40を互いに近づく方向に付勢することで、各シュー分割体40をカム部材28のカム外周面39に押し付けている。一対のシュー分割体40のうちの一方には、弾性部材41の周方向の一端で周方向に押圧される押圧面42が設けられ、一対のシュー分割体40のうちの他方にも、弾性部材41の周方向の他端で周方向に押圧される押圧面42が設けられている。 The shoe member 33 is composed of a pair of left and right arc-shaped shoe dividing bodies 40. A radial gap is provided between the outer circumference of each shoe split body 40 and the inner circumference of the large-diameter inner diameter portion 30, and each shoe split body 40 can move in the radial direction within the range of the radial gap. There is. An elastic member 41 that urges each shoe split 40 toward the cam member 28 is attached to the pair of left and right shoe splits 40. The elastic member 41 is a C-shaped circlip. The elastic member 41 presses each shoe split body 40 against the cam outer peripheral surface 39 of the cam member 28 by urging the pair of shoe split bodies 40 in a direction approaching each other. One of the pair of shoe splits 40 is provided with a pressing surface 42 that is pressed in the circumferential direction at one end of the elastic member 41 in the circumferential direction, and the other of the pair of shoe splits 40 is also an elastic member. A pressing surface 42 that is pressed in the circumferential direction at the other end of the circumferential direction of 41 is provided.
 一対のシュー分割体40で構成されるシュー部材33には、カム外周面39に摩擦接触するシュー内周面43が形成されている。シュー内周面43は、揺動支軸9を中心とする楕円状の内周面であり、楕円の長軸方向がカム外周面39の突出方向となるようにカム部材28を内部に収容している。シュー内周面43は、弾性部材41の付勢力によって、常時、カム外周面39に接触している。 The shoe member 33 composed of the pair of shoe split bodies 40 is formed with a shoe inner peripheral surface 43 that is in frictional contact with the cam outer peripheral surface 39. The shoe inner peripheral surface 43 is an elliptical inner peripheral surface centered on the swing support shaft 9, and the cam member 28 is housed inside so that the major axis direction of the ellipse is the protruding direction of the cam outer peripheral surface 39. ing. The shoe inner peripheral surface 43 is always in contact with the cam outer peripheral surface 39 due to the urging force of the elastic member 41.
 支軸挿入孔22の大径内径部30の内周には、径方向内方に突出する回り止め突起44が形成されている。回り止め突起44は、円弧状の各シュー分割体40の周方向端部に係合し、この係合によって、シュー部材33は、揺動アーム10に回り止めされている。 A detent projection 44 protruding inward in the radial direction is formed on the inner circumference of the large-diameter inner diameter portion 30 of the support shaft insertion hole 22. The detent projection 44 engages with the circumferential end of each arc-shaped shoe dividing body 40, and the shoe member 33 is detented by the swing arm 10 by this engagement.
 ここで、シュー内周面43(実施形態では楕円状の内周面)は周方向(すなわち、揺動支軸9を中心とする真円に沿った方向)に対して傾斜した形状となっている。そのため、図6に示すように、揺動アーム10の揺動によりシュー部材33がカム部材28に対して相対回転するときに、その回転角度が大きくなるに従ってカム外周面39に対するシュー内周面43の接触面圧が次第に大きくなる。 Here, the shoe inner peripheral surface 43 (the elliptical inner peripheral surface in the embodiment) has a shape inclined with respect to the circumferential direction (that is, the direction along the perfect circle centered on the swing support shaft 9). There is. Therefore, as shown in FIG. 6, when the shoe member 33 rotates relative to the cam member 28 due to the swing of the swing arm 10, the shoe inner peripheral surface 43 with respect to the cam outer peripheral surface 39 increases as the rotation angle increases. The contact surface pressure of is gradually increased.
 図5に示すように、揺動アーム10が中立位置にあるとき(すなわち、揺動アーム10が、カム外周面39に対するシュー内周面43の接触面圧が最も小さい揺動角度にある状態のとき)、シュー部材33の外周と、支軸挿入孔22の大径内径部30の内周との間には、全周にわたって隙間が設けられている。この隙間は、図6に示すように、揺動アーム10の揺動によりシュー部材33がカム部材28に対して相対回転するに従って徐々に狭まり、揺動アーム10の揺動角度αが所定の大きさに達すると、支軸挿入孔22の大径内径部30の内周との間の面圧上昇により、それ以上はシュー部材33がカム部材28に対して相対回転することができず、揺動アーム10が係止された状態となる。 As shown in FIG. 5, when the swing arm 10 is in the neutral position (that is, the swing arm 10 is at the swing angle at which the contact surface pressure of the shoe inner peripheral surface 43 with respect to the cam outer peripheral surface 39 is the smallest). When), a gap is provided over the entire circumference between the outer circumference of the shoe member 33 and the inner circumference of the large-diameter inner diameter portion 30 of the support shaft insertion hole 22. As shown in FIG. 6, this gap gradually narrows as the shoe member 33 rotates relative to the cam member 28 due to the swing of the swing arm 10, and the swing angle α of the swing arm 10 has a predetermined size. When it reaches the limit, the shoe member 33 cannot rotate relative to the cam member 28 due to the increase in the surface pressure between the support shaft insertion hole 22 and the inner circumference of the large diameter inner diameter portion 30, and the shoe member 33 sways. The moving arm 10 is locked.
 図7、図9に示すように、第2のアイドラプーリ7bは、ベルト6に接触する外周面をもつ環状の第2のプーリ本体45bと、その第2のプーリ本体45bの内周に嵌め込まれた第2の転がり軸受46bとで構成されている。 As shown in FIGS. 7 and 9, the second idler pulley 7b is fitted into the annular second pulley body 45b having an outer peripheral surface in contact with the belt 6 and the inner circumference of the second pulley body 45b. It is composed of a second rolling bearing 46b.
 図9に示すように、第2のプーリ本体45bの外周面は、軸方向に沿って外径が一定の円筒面である。第2のプーリ本体45bは樹脂で形成されている。第2の転がり軸受46bは、外輪47と、内輪48と、外輪47と内輪48の間に周方向に間隔をおいて設けられた複数の転動体49(図では玉)を有する。外輪47は、第2のプーリ本体45bの内周に固定されている。第2のプーリ本体45bへの外輪47の固定は、インサート成形で行なうことが可能である。すなわち、第2のプーリ本体45bの成形金型内に外輪47を配置した状態で第2のプーリ本体45bを樹脂成形することにより、第2のプーリ本体45bの内周に外輪47の一部が埋め込まれた状態とし、これにより外輪47を第2のプーリ本体45bに固定することが可能である。 As shown in FIG. 9, the outer peripheral surface of the second pulley main body 45b is a cylindrical surface having a constant outer diameter along the axial direction. The second pulley body 45b is made of resin. The second rolling bearing 46b has a plurality of rolling elements 49 (balls in the figure) provided between the outer ring 47, the inner ring 48, and the outer ring 47 and the inner ring 48 at intervals in the circumferential direction. The outer ring 47 is fixed to the inner circumference of the second pulley main body 45b. The outer ring 47 can be fixed to the second pulley body 45b by insert molding. That is, by molding the second pulley body 45b with resin while the outer ring 47 is arranged in the molding die of the second pulley body 45b, a part of the outer ring 47 is formed on the inner circumference of the second pulley body 45b. In the embedded state, the outer ring 47 can be fixed to the second pulley main body 45b.
 第2のプーリアーム8bは、第2の転がり軸受46bの内輪48に軸方向の両側から嵌め込まれる一対の分割軸50と、その一対の分割軸50の軸方向両端を支持する一対の第2の鋼板51bと、一対の分割軸50および一対の第2の鋼板51bを貫通して結合する結合ピン52とで構成されている。 The second pulley arm 8b is a pair of split shafts 50 fitted from both sides in the axial direction into the inner ring 48 of the second rolling bearing 46b, and a pair of second steel plates supporting both ends in the axial direction of the pair of split shafts 50. It is composed of 51b, a pair of dividing shafts 50, and a coupling pin 52 that penetrates and joins a pair of second steel plates 51b.
 各分割軸50は、樹脂またはアルミ合金で形成されている。各分割軸50は、内輪48の内周に嵌合する嵌合軸部53と、内輪48の軸方向の端面に当接する肩部54とを有する。肩部54は、嵌合軸部53の軸方向外側の端部から拡径する段形状の部分である。また、分割軸50は、外輪47の内径よりも大きい外径をもつフランジ部55を有する。フランジ部55の軸方向内側の側面と、第2のプーリ本体45bとの間にはラビリンス隙間56が形成されている。嵌合軸部53の外周と内輪48の内周との間には締め代が設定されている。嵌合軸部53の外周と内輪48の内周は、締め代をもたない嵌め合いとすることも可能である。 Each dividing shaft 50 is made of resin or aluminum alloy. Each split shaft 50 has a fitting shaft portion 53 that fits on the inner circumference of the inner ring 48, and a shoulder portion 54 that abuts on the axial end surface of the inner ring 48. The shoulder portion 54 is a stepped portion whose diameter is increased from the axially outer end portion of the fitting shaft portion 53. Further, the split shaft 50 has a flange portion 55 having an outer diameter larger than the inner diameter of the outer ring 47. A labyrinth gap 56 is formed between the axially inner side surface of the flange portion 55 and the second pulley body 45b. A tightening allowance is set between the outer circumference of the fitting shaft portion 53 and the inner circumference of the inner ring 48. The outer circumference of the fitting shaft portion 53 and the inner circumference of the inner ring 48 can be fitted without a tightening allowance.
 一対の第2の鋼板51bは、一対の分割軸50を間に挟んで軸方向に対向して配置されている。第2の鋼板51bの平坦な軸方向内面は、分割軸50の平坦な軸方向外端面に面接触している。結合ピン52は、一対の第2の鋼板51bに形成された軸方向の貫通孔57と、一対の分割軸50に形成された軸方向の貫通孔58とを貫通して挿入されている。結合ピン52の外周と第2の鋼板51bの貫通孔57の内周との間には、締め代が設定されている。また、結合ピン52の外周と分割軸50の貫通孔58の内周との間にも、締め代が設定されている。ここで、貫通孔58の内周のうち、結合ピン52の外周に対する締め代が設けられているのは、嵌合軸部53よりも軸方向外側の部分のみとされている。嵌合軸部53の内周と結合ピン52の外周との間には隙間が設けられている。貫通孔58の内周と結合ピン52の外周は、締め代をもたない嵌め合いとすることも可能である。 The pair of second steel plates 51b are arranged so as to face each other in the axial direction with the pair of dividing shafts 50 sandwiched between them. The flat axial inner surface of the second steel plate 51b is in surface contact with the flat axial outer end surface of the dividing shaft 50. The coupling pin 52 is inserted through the axial through hole 57 formed in the pair of second steel plates 51b and the axial through hole 58 formed in the pair of dividing shafts 50. A tightening allowance is set between the outer circumference of the coupling pin 52 and the inner circumference of the through hole 57 of the second steel plate 51b. Further, a tightening allowance is also set between the outer circumference of the coupling pin 52 and the inner circumference of the through hole 58 of the dividing shaft 50. Here, of the inner circumference of the through hole 58, the tightening allowance for the outer circumference of the coupling pin 52 is provided only on the portion outside the fitting shaft portion 53 in the axial direction. A gap is provided between the inner circumference of the fitting shaft portion 53 and the outer circumference of the coupling pin 52. The inner circumference of the through hole 58 and the outer circumference of the coupling pin 52 can be fitted without a tightening margin.
 図7、図9に示すように、第2の転がり軸受46bを間に軸方向に対向する一対の分割軸50は、互いに同一形状、同一寸法とされ、一対の分割軸50を間に軸方向に対向する一対の第2の鋼板51bも、互いに同一形状、同一寸法とされている。これにより、部品を共通化し、第2のプーリアーム8bの製造コストを低減することが可能となっている。 As shown in FIGS. 7 and 9, the pair of split shafts 50 that face each other in the axial direction with the second rolling bearing 46b in between have the same shape and the same dimensions, and the pair of split shafts 50 are in the axial direction. The pair of second steel plates 51b facing each other also have the same shape and dimensions. This makes it possible to standardize the parts and reduce the manufacturing cost of the second pulley arm 8b.
 上記のオートテンショナ1の使用例を説明する。 An example of using the above auto tensioner 1 will be described.
 図10Aは、エンジンが停止しているときの補機駆動システムを示す。スタータジェネレータプーリ3とクランクプーリ5は、いずれも停止している。第1のアイドラプーリ7aは、第1のスプリング12a(図1参照)によって第2のアイドラプーリ7bに近づく方向に付勢され、第2のアイドラプーリ7bは、第2のスプリング12b(図1参照)によって第1のアイドラプーリ7aに近づく方向に付勢され、これにより、ベルト6に張力が付与されている。このとき、第1のアイドラプーリ7aが接触するベルト6の部分(エンジン回転時にクランクプーリ5からスタータジェネレータプーリ3に向かって走行するベルト6の部分。ベルト6の走行方向は時計回りである)の張力と、第2のアイドラプーリ7bが接触するベルト6の部分(エンジン回転時にスタータジェネレータプーリ3からクランクプーリ5に向かって走行するベルト6の部分)の張力は釣り合った状態である。 FIG. 10A shows an auxiliary drive system when the engine is stopped. Both the starter generator pulley 3 and the crank pulley 5 are stopped. The first idler pulley 7a is urged by the first spring 12a (see FIG. 1) in a direction approaching the second idler pulley 7b, and the second idler pulley 7b is urged by the second spring 12b (see FIG. 1). ) Is urged in the direction approaching the first idler pulley 7a, whereby tension is applied to the belt 6. At this time, the portion of the belt 6 that the first idler pulley 7a contacts (the portion of the belt 6 that travels from the crank pulley 5 toward the starter generator pulley 3 when the engine rotates. The traveling direction of the belt 6 is clockwise). The tension and the tension of the belt 6 portion (the portion of the belt 6 traveling from the starter generator pulley 3 toward the crank pulley 5 when the engine rotates) in contact with the second idler pulley 7b are in a balanced state.
 図10Bは、通常運転時(すなわちスタータジェネレータプーリ3が従動プーリとして作動するとき)の補機駆動システムを示す。クランクプーリ5は、ベルト6を介してスタータジェネレータプーリ3を駆動している。スタータジェネレータプーリ3からクランクプーリ5に向かって走行するベルト6の部分が張り側となり、クランクプーリ5からスタータジェネレータプーリ3に向かって走行するベルト6の部分が弛み側となる。このとき、オートテンショナ1は、第1のプーリアーム8aが第1のスプリング12a(図1参照)の力で揺動アーム10に対し回動することで、第1のアイドラプーリ7aが第2のアイドラプーリ7bに近づく方向に移動し、ベルト6の弛みを迅速に吸収する。一方、第2のプーリアーム8bは、ベルト6の張りによって、ベルト6の外側に押し返される。揺動アーム10は、揺動減衰機構32(図5、図6参照)によってダンパ力を発生しながら、第1のスプリング12aの弾性復元力と第2のスプリング12bの弾性復元力が釣り合う位置まで揺動する。 FIG. 10B shows an auxiliary drive system during normal operation (that is, when the starter generator pulley 3 operates as a driven pulley). The crank pulley 5 drives the starter generator pulley 3 via the belt 6. The portion of the belt 6 traveling from the starter generator pulley 3 toward the crank pulley 5 is on the tension side, and the portion of the belt 6 traveling from the crank pulley 5 toward the starter generator pulley 3 is on the slack side. At this time, in the auto tensioner 1, the first pulley arm 8a rotates with respect to the swing arm 10 by the force of the first spring 12a (see FIG. 1), so that the first idler pulley 7a becomes the second idler. It moves in the direction approaching the pulley 7b and quickly absorbs the slack of the belt 6. On the other hand, the second pulley arm 8b is pushed back to the outside of the belt 6 by the tension of the belt 6. The swing arm 10 reaches a position where the elastic restoring force of the first spring 12a and the elastic restoring force of the second spring 12b are balanced while generating a damper force by the swing damping mechanism 32 (see FIGS. 5 and 6). Swing.
 図10Cは、スタータジェネレータ駆動時(すなわちスタータジェネレータプーリ3が駆動プーリとして作動するとき)の補機駆動システムを示す。例えば、アイドリングストップ後のエンジン始動時や、スタータジェネレータによるエンジン動力のアシスト時である。スタータジェネレータプーリ3は、ベルト6を介してクランクプーリ5を駆動している。クランクプーリ5からスタータジェネレータプーリ3に向かって走行するベルト6の部分が張り側となり、スタータジェネレータプーリ3からクランクプーリ5に向かって走行するベルト6の部分が弛み側となる。このとき、オートテンショナ1は、第2のプーリアーム8bが第2のスプリング12b(図1参照)の力で揺動アーム10に対し回動することで、第2のアイドラプーリ7bが第1のアイドラプーリ7aに近づく方向に移動し、ベルト6の弛みを迅速に吸収する。一方、第1のプーリアーム8aは、ベルト6の張りによって、ベルト6の外側に押し返される。揺動アーム10は、揺動減衰機構32(図5、図6参照)によってダンパ力を発生しながら、第1のスプリング12aの弾性復元力と第2のスプリング12bの弾性復元力が釣り合う位置まで揺動する。 FIG. 10C shows an auxiliary drive system when the starter generator is driven (that is, when the starter generator pulley 3 operates as a drive pulley). For example, when the engine is started after idling stop or when the engine power is assisted by the starter generator. The starter generator pulley 3 drives the crank pulley 5 via the belt 6. The portion of the belt 6 traveling from the crank pulley 5 toward the starter generator pulley 3 is on the tension side, and the portion of the belt 6 traveling from the starter generator pulley 3 toward the crank pulley 5 is on the slack side. At this time, in the auto tensioner 1, the second pulley arm 8b rotates with respect to the swing arm 10 by the force of the second spring 12b (see FIG. 1), so that the second idler pulley 7b becomes the first idler. It moves in the direction approaching the pulley 7a and quickly absorbs the slack of the belt 6. On the other hand, the first pulley arm 8a is pushed back to the outside of the belt 6 by the tension of the belt 6. The swing arm 10 reaches a position where the elastic restoring force of the first spring 12a and the elastic restoring force of the second spring 12b are balanced while generating a damper force by the swing damping mechanism 32 (see FIGS. 5 and 6). Swing.
 図10Dは、ベルト6が経年劣化により伸びたときの補機駆動システムを示す。このとき、第1のアイドラプーリ7aは、第1のスプリング12a(図1参照)によって第2のアイドラプーリ7bに近づく方向に移動し、第2のアイドラプーリ7bは、第2のスプリング12b(図1参照)によって第1のアイドラプーリ7aに近づく方向に移動し、これにより、ベルト6の伸びを吸収し、ベルト6の張力を適正範囲に保持する。図において、スタータジェネレータプーリ3とクランクプーリ5は、いずれも停止している。 FIG. 10D shows an auxiliary drive system when the belt 6 is stretched due to aged deterioration. At this time, the first idler pulley 7a is moved in the direction approaching the second idler pulley 7b by the first spring 12a (see FIG. 1), and the second idler pulley 7b is moved by the second spring 12b (see FIG. 1). 1) moves toward the first idler pulley 7a, thereby absorbing the elongation of the belt 6 and keeping the tension of the belt 6 within an appropriate range. In the figure, both the starter generator pulley 3 and the crank pulley 5 are stopped.
 このオートテンショナ1は、図10Bに示すように、クランクプーリ5からスタータジェネレータプーリ3に向かって走行するベルト6の部分に弛みが生じたときは、第1のプーリアーム8aが第1のスプリング12aの力で揺動アーム10に対し回動することで、第1のアイドラプーリ7aが第2のアイドラプーリ7bに近づく方向に移動し、ベルト6の弛みを迅速に吸収することが可能である。同様に、図10Cに示すように、スタータジェネレータプーリ3からクランクプーリ5に向かって走行するベルト6の部分に弛みが生じたときは、第2のプーリアーム8bが第2のスプリング12bの力で揺動アーム10に対し回動することで、第2のアイドラプーリ7bが第1のアイドラプーリ7aに近づく方向に移動し、ベルト6の弛みを迅速に吸収することが可能である。図10Bや図10Cの状態において、ベルト6が共振したときは、揺動アーム10が揺動支軸9を中心に揺動し、このとき揺動減衰機構32によって揺動方向とは逆向きのダンパ力が発生するので、ベルト6の振動を吸収することが可能である。このように、このオートテンショナ1は、第1および第2のスプリング12a,12bで付勢される第1および第2のプーリアーム8a,8bと、揺動減衰機構32によってダンパ力が付与される揺動アーム10とが別個のアームなので、ベルト6の弛みを吸収する動作を迅速に行なうことができ、かつ、ベルト6が共振したときにそのベルト6の振動を効果的に吸収することが可能である。 In this auto tensioner 1, as shown in FIG. 10B, when a portion of the belt 6 traveling from the crank pulley 5 toward the starter generator pulley 3 is slackened, the first pulley arm 8a of the first pulley arm 8a of the first spring 12a By rotating with respect to the swing arm 10 by force, the first idler pulley 7a moves in a direction approaching the second idler pulley 7b, and the slack of the belt 6 can be quickly absorbed. Similarly, as shown in FIG. 10C, when the portion of the belt 6 traveling from the starter generator pulley 3 toward the crank pulley 5 is loosened, the second pulley arm 8b is shaken by the force of the second spring 12b. By rotating with respect to the moving arm 10, the second idler pulley 7b moves in a direction approaching the first idler pulley 7a, and the slack of the belt 6 can be quickly absorbed. In the state of FIGS. 10B and 10C, when the belt 6 resonates, the swing arm 10 swings around the swing support shaft 9, and at this time, the swing damping mechanism 32 reverses the swing direction. Since the damper force is generated, it is possible to absorb the vibration of the belt 6. As described above, in the auto tensioner 1, the first and second pulley arms 8a and 8b urged by the first and second springs 12a and 12b and the vibration damping mechanism 32 apply a damper force. Since the moving arm 10 is a separate arm, it is possible to quickly perform an operation of absorbing the slack of the belt 6, and it is possible to effectively absorb the vibration of the belt 6 when the belt 6 resonates. be.
 また、このオートテンショナ1は、図1に示すように、スタータジェネレータプーリ3の外周よりも径方向外側に揺動支軸9の中心を配置しているので、第1のプーリアーム8aおよび第2のプーリアーム8bの長さを確保することが可能となっている。そのため、ベルト6の弛みに対する第1のアイドラプーリ7aおよび第2のアイドラプーリ7bの追従性が高い。 Further, as shown in FIG. 1, in this auto tensioner 1, since the center of the swing support shaft 9 is arranged radially outside the outer circumference of the starter generator pulley 3, the first pulley arm 8a and the second pulley arm 8a and the second It is possible to secure the length of the pulley arm 8b. Therefore, the first idler pulley 7a and the second idler pulley 7b have high followability to the slack of the belt 6.
 また、このオートテンショナ1は、図3に示すように、揺動減衰機構32が、揺動アーム10の支軸挿入孔22に組み込んで設けられ、揺動アーム10の揺動支軸9の部位に内蔵された構成となっているので、オートテンショナ1を固定部材25に取り付けるときに、揺動減衰機構32を別個に取り付ける必要がない。そのため、オートテンショナ1の取り付けが簡単である。 Further, as shown in FIG. 3, the auto tensioner 1 is provided with a swing damping mechanism 32 incorporated in a support shaft insertion hole 22 of the swing arm 10, and a portion of the swing support shaft 9 of the swing arm 10. Since the auto tensioner 1 is attached to the fixing member 25, it is not necessary to separately attach the swing damping mechanism 32. Therefore, the auto tensioner 1 can be easily attached.
 また、このオートテンショナ1は、図5に示すように、揺動支軸9に回り止めされたカム部材28と、支軸挿入孔22内に設けられたシュー部材33とを互いに摩擦接触させる構成をもつ揺動減衰機構32を採用しているので、揺動減衰機構32がコンパクトである。そのため、オートテンショナ1を小型化することが可能となっている。 Further, as shown in FIG. 5, the auto tensioner 1 has a configuration in which the cam member 28, which is prevented from rotating around the swing support shaft 9, and the shoe member 33 provided in the support shaft insertion hole 22 are brought into frictional contact with each other. Since the oscillating damping mechanism 32 is adopted, the oscillating damping mechanism 32 is compact. Therefore, the auto tensioner 1 can be miniaturized.
 また、このオートテンショナ1は、図5に示すように、シュー部材33が、カム部材28との接触により径方向に移動可能であり、そのシュー部材33が弾性部材41でカム部材28に向けて付勢されているので、カム部材28とシュー部材33の間の接触面圧が安定しており、カム部材28とシュー部材33の間の摩擦抵抗によるダンパ力の大きさも安定している。 Further, as shown in FIG. 5, in the auto tensioner 1, the shoe member 33 can move in the radial direction by contact with the cam member 28, and the shoe member 33 is an elastic member 41 toward the cam member 28. Since it is urged, the contact surface pressure between the cam member 28 and the shoe member 33 is stable, and the magnitude of the damper force due to the frictional resistance between the cam member 28 and the shoe member 33 is also stable.
 また、このオートテンショナ1は、図6に示すように、揺動アーム10の揺動角度が大きくなるにつれて、カム外周面39に対するシュー内周面43の接触面圧が次第に大きくなる揺動減衰機構32を採用しているので、ベルト6が共振したときに、ベルト6の振動を確実に抑えることが可能である。 Further, as shown in FIG. 6, the auto tensioner 1 has a swing damping mechanism in which the contact surface pressure of the shoe inner peripheral surface 43 with respect to the cam outer peripheral surface 39 gradually increases as the swing angle of the swing arm 10 increases. Since 32 is adopted, it is possible to surely suppress the vibration of the belt 6 when the belt 6 resonates.
 また、このオートテンショナ1は、図3に示すように、揺動支軸9を固定部材25に固定するときに、固定部材25に対するカム部材28の固定角度を所定の角度に位置決めする位置決め座金35を有するので、固定部材25に対するカム部材28の固定角度を精度良く管理することが可能である。 Further, as shown in FIG. 3, the auto tensioner 1 has a positioning washer 35 that positions the fixing angle of the cam member 28 with respect to the fixing member 25 to a predetermined angle when the swing support shaft 9 is fixed to the fixing member 25. Therefore, it is possible to accurately manage the fixing angle of the cam member 28 with respect to the fixing member 25.
 また、このオートテンショナ1は、図1に示すように、第1および第2のプーリアーム8a,8bの回動角度がそれぞれ第1および第2の回動ストッパ13a,13bで規制されているので、ベルト6が共振したときに、ベルト6の振動を確実に抑えることが可能となっている。 Further, as shown in FIG. 1, in this auto tensioner 1, the rotation angles of the first and second pulley arms 8a and 8b are regulated by the first and second rotation stoppers 13a and 13b, respectively. When the belt 6 resonates, the vibration of the belt 6 can be reliably suppressed.
 また、このオートテンショナ1は、図2に示すように、第1の回動ストッパ13aが第1のプーリアーム8aを受け止めるときの衝撃を吸収する第1の緩衝部材17aと、第2の回動ストッパ13bが第2のプーリアーム8bを受け止めるときの衝撃を吸収する第2の緩衝部材17bとを有するので、ベルト6(図1参照)が共振したときに、第1および第2の回動ストッパ13a,13bから異音(連続的な衝突音)が発生するのを抑えることが可能となっている。 Further, as shown in FIG. 2, the auto tensioner 1 includes a first cushioning member 17a that absorbs an impact when the first rotation stopper 13a receives the first pulley arm 8a, and a second rotation stopper. Since the 13b has a second cushioning member 17b that absorbs an impact when receiving the second pulley arm 8b, when the belt 6 (see FIG. 1) resonates, the first and second rotating stoppers 13a, It is possible to suppress the generation of abnormal noise (continuous collision sound) from 13b.
 また、このオートテンショナ1は、図9に示すように、第2の転がり軸受46bに軸方向の両側から嵌め込まれる一対の分割軸50と、その一対の分割軸50の軸方向両端を支持する一対の第2の鋼板51bと、一対の分割軸50および一対の第2の鋼板51bを貫通して結合する結合ピン52とで第2のプーリアーム8bを構成しているので、第2のプーリアーム8bを低コストで精度良く製造することが可能となっている。第1のプーリアーム8aについても同様である。 Further, as shown in FIG. 9, the auto tensioner 1 has a pair of split shafts 50 fitted into the second rolling bearing 46b from both sides in the axial direction, and a pair of supporting both ends of the pair of split shafts 50 in the axial direction. The second pulley arm 8b is formed by the second steel plate 51b and the coupling pin 52 that penetrates and joins the pair of dividing shafts 50 and the pair of the second steel plates 51b. It is possible to manufacture with high accuracy at low cost. The same applies to the first pulley arm 8a.
 図13~図15に、この発明の第2実施形態を示す。第2実施形態は、第1実施形態と比べて、揺動減衰機構32を構成するシュー部材33の構成と、位置決め座金35の有無のみが異なり、それ以外の構成は同一である。そのため、第1実施形態に対応する部分には同一の符号を付して説明を省略する。 13 to 15 show a second embodiment of the present invention. The second embodiment is different from the first embodiment only in the configuration of the shoe member 33 constituting the swing damping mechanism 32 and the presence / absence of the positioning washer 35, and the other configurations are the same. Therefore, the same reference numerals are given to the parts corresponding to the first embodiment, and the description thereof will be omitted.
 図13に示すように、カム部材28の固定部材25の側の端部外周に形成された周方向位置決め部34(図ではDカット部)が、固定部材25に形成された周方向位置決め穴59に嵌合することで、固定部材25に対するカム部材28の取付角度が所定の角度に位置決めされている。ここでは、カム部材28の周方向位置決め部34を、直接、固定部材25に嵌合させた例を示したが、第1実施形態と同様に、カム部材28と固定部材25の間に位置決め座金35(図3、図4参照)を介在させ、その位置決め座金35にカム部材28の周方向位置決め部34を嵌合させるようにしてもよい。 As shown in FIG. 13, the circumferential positioning portion 34 (D-cut portion in the figure) formed on the outer periphery of the end portion of the cam member 28 on the side of the fixing member 25 is formed in the fixing member 25. The mounting angle of the cam member 28 with respect to the fixing member 25 is positioned at a predetermined angle by fitting to. Here, an example in which the circumferential positioning portion 34 of the cam member 28 is directly fitted to the fixing member 25 has been shown, but as in the first embodiment, the positioning washer between the cam member 28 and the fixing member 25. 35 (see FIGS. 3 and 4) may be interposed so that the circumferential positioning portion 34 of the cam member 28 is fitted to the positioning washer 35.
 図14に示すように、シュー部材33は、カム部材28の径方向外側に対向して配置されたアーチ状の板ばねである。シュー部材33の外周と大径内径部30の内周との間には径方向隙間が設けられ、その径方向隙間の範囲で、シュー部材33が径方向に変形可能となっている。シュー部材33は、一対のカム外周面39に対応して一対設けられている。 As shown in FIG. 14, the shoe member 33 is an arch-shaped leaf spring arranged so as to face the radial outer side of the cam member 28. A radial gap is provided between the outer circumference of the shoe member 33 and the inner circumference of the large-diameter inner diameter portion 30, and the shoe member 33 can be deformed in the radial direction within the range of the radial gap. A pair of shoe members 33 are provided corresponding to the pair of cam outer peripheral surfaces 39.
 シュー部材33には、カム外周面39に摩擦接触するシュー内周面43が形成されている。シュー内周面43は、凸曲面状のカム外周面39に沿った凹曲面状の内周面である。シュー内周面43は、図14に示すように、揺動アーム10が中立位置にあるときにカム外周面39と非接触であり、図15に示すように、揺動アーム10が中立位置から揺動するとカム外周面39に接触するように形成されている。シュー内周面43は、常時、カム外周面39に接触するように形成してもよい。 The shoe member 33 is formed with a shoe inner peripheral surface 43 that is in frictional contact with the cam outer peripheral surface 39. The shoe inner peripheral surface 43 is a concave curved inner peripheral surface along the convex curved cam outer peripheral surface 39. As shown in FIG. 14, the shoe inner peripheral surface 43 is in non-contact with the cam outer peripheral surface 39 when the swing arm 10 is in the neutral position, and as shown in FIG. 15, the swing arm 10 is from the neutral position. It is formed so as to come into contact with the outer peripheral surface 39 of the cam when it swings. The shoe inner peripheral surface 43 may be formed so as to be in contact with the cam outer peripheral surface 39 at all times.
 支軸挿入孔22の大径内径部30の内周には、径方向内方に突出する2つの回り止め突起44が周方向に間隔をおいて形成されている。回り止め突起44は、シュー部材33の両端を周方向に受け止めることで、各シュー部材33を揺動アーム10に回り止めしている。また、シュー部材33の周方向両端は、大径内径部30の内周で径方向外側への移動が規制されている。 On the inner circumference of the large-diameter inner diameter portion 30 of the support shaft insertion hole 22, two detent projections 44 protruding inward in the radial direction are formed at intervals in the circumferential direction. The detent projection 44 receives both ends of the shoe member 33 in the circumferential direction, thereby detenting each shoe member 33 to the swing arm 10. Further, both ends of the shoe member 33 in the circumferential direction are restricted from moving outward in the radial direction at the inner circumference of the large-diameter inner diameter portion 30.
 ここで、シュー内周面43は、周方向(すなわち、揺動支軸9を中心とする真円に沿った方向)に対して傾斜した形状となっている。そのため、図15に示すように、揺動アーム10の揺動によりシュー部材33がカム部材28に対して相対回転するときに、その回転角度が大きくなるに従ってカム外周面39に対するシュー内周面43の接触面圧が次第に大きくなる。そして、揺動アーム10の揺動角度が所定の大きさに達すると、それ以上はシュー部材33がカム部材28に対して相対回転することができず、揺動アーム10が係止された状態となる。 Here, the shoe inner peripheral surface 43 has a shape inclined with respect to the circumferential direction (that is, the direction along the perfect circle centered on the swing support shaft 9). Therefore, as shown in FIG. 15, when the shoe member 33 rotates relative to the cam member 28 due to the swing of the swing arm 10, the shoe inner peripheral surface 43 with respect to the cam outer peripheral surface 39 increases as the rotation angle increases. The contact surface pressure of is gradually increased. Then, when the swing angle of the swing arm 10 reaches a predetermined size, the shoe member 33 cannot rotate relative to the cam member 28 any more, and the swing arm 10 is locked. It becomes.
 この第2実施形態のオートテンショナ1を採用すると、第1実施形態と同様、第1および第2のスプリング12a,12bで付勢される第1および第2のプーリアーム8a,8bと、揺動減衰機構32によってダンパ力が付与される揺動アーム10とが別個のアームなので、ベルト6の弛みを吸収する動作を迅速に行なうことができ、かつ、ベルト6が共振したときにそのベルト6の振動を効果的に吸収することが可能である。 When the auto tensioner 1 of the second embodiment is adopted, as in the first embodiment, the first and second pulley arms 8a and 8b urged by the first and second springs 12a and 12b and the swing damping Since the swing arm 10 to which the damper force is applied by the mechanism 32 is a separate arm, the operation of absorbing the slack of the belt 6 can be quickly performed, and the belt 6 vibrates when the belt 6 resonates. Can be effectively absorbed.
 また、第2実施形態のオートテンショナ1は、図15に示すように、シュー部材33が、カム部材28との接触により径方向に変形可能な板ばねなので、カム部材28とシュー部材33の間の接触面圧が安定しており、カム部材28とシュー部材33の摩擦抵抗も安定している。また、シュー部材33が金属製の板ばねなので、シュー部材33の耐摩耗性に優れる。 Further, in the auto tensioner 1 of the second embodiment, as shown in FIG. 15, since the shoe member 33 is a leaf spring that can be deformed in the radial direction by contact with the cam member 28, it is between the cam member 28 and the shoe member 33. The contact surface pressure is stable, and the frictional resistance between the cam member 28 and the shoe member 33 is also stable. Further, since the shoe member 33 is a metal leaf spring, the shoe member 33 has excellent wear resistance.
 また、第2実施形態のオートテンショナ1は、第1実施形態と同様、図14、図15に示すように、揺動アーム10の揺動角度が大きくなるにつれて、カム外周面39に対するシュー内周面43の接触面圧が次第に大きくなる。そのため、図1に示すクランクシャフト4の回転変動に伴って生じるベルト6の張力変動が大きい場合にも、揺動アーム10を含むオートテンショナ1の全体が過度に揺動するのを効果的に防止することが可能である。 Further, as shown in FIGS. 14 and 15, the auto tensioner 1 of the second embodiment has an inner circumference of the shoe with respect to the outer peripheral surface 39 of the cam as the swing angle of the swing arm 10 increases, as shown in FIGS. 14 and 15. The contact surface pressure of the surface 43 gradually increases. Therefore, even when the tension fluctuation of the belt 6 caused by the rotation fluctuation of the crankshaft 4 shown in FIG. 1 is large, it is possible to effectively prevent the entire auto tensioner 1 including the swing arm 10 from swinging excessively. It is possible to do.
 また、第2実施形態のオートテンショナ1は、第1実施形態と同様、揺動減衰機構32が、揺動支軸9の外周と揺動アーム10の支軸挿入孔22の内周との間に収容されているので、オートテンショナ1がコンパクトである。また、オートテンショナ1のベルト伝動装置への取り付け作業も容易である。その他の作用効果も第1実施形態と同様である。 Further, in the auto tensioner 1 of the second embodiment, as in the first embodiment, the swing damping mechanism 32 is located between the outer circumference of the swing support shaft 9 and the inner circumference of the support shaft insertion hole 22 of the swing arm 10. The auto tensioner 1 is compact because it is housed in. Further, the work of attaching the auto tensioner 1 to the belt transmission device is also easy. Other effects are the same as those in the first embodiment.
 図16~図18に、この発明の第3実施形態を示す。第3実施形態は、第2実施形態の揺動減衰機構32を揺動抵抗付与機構60に置き換えたものであり、それ以外の構成は第2実施形態と同一である。そのため、第2実施形態に対応する部分には同一の符号を付して説明を省略する。 16 to 18 show a third embodiment of the present invention. The third embodiment replaces the swing damping mechanism 32 of the second embodiment with the swing resistance applying mechanism 60, and the other configurations are the same as those of the second embodiment. Therefore, the same reference numerals are given to the parts corresponding to the second embodiment, and the description thereof will be omitted.
 図16に示すように、揺動支軸9は、外周に雄ねじが形成されたねじ軸部23と、ねじ軸部23の一端に設けられた頭部24とを有する頭部付きボルトである。ねじ軸部23の外周には、頭部24の側から固定部材25の側に向かって順に、座金26、スリーブ27が嵌合して設けられている。座金26、スリーブ27は、頭部24から受ける軸力によって固定部材25に固定されている。 As shown in FIG. 16, the swing support shaft 9 is a bolt with a head having a screw shaft portion 23 having a male screw formed on the outer circumference and a head portion 24 provided at one end of the screw shaft portion 23. A washer 26 and a sleeve 27 are fitted and provided on the outer circumference of the screw shaft portion 23 in this order from the side of the head 24 toward the side of the fixing member 25. The washer 26 and the sleeve 27 are fixed to the fixing member 25 by the axial force received from the head 24.
 スリーブ27は、支軸挿入孔22の内周に圧入された滑り軸受31の内周を支持する円筒状のスリーブ本体61と、スリーブ本体61の固定部材25の側の端部に一体に設けられたスリーブ端板62と、スリーブ端板62から固定部材25の側に延び出す周方向位置決め部34とを有する。スリーブ本体61の内周とねじ軸部23の外周との間には、ねじりコイルばね63を収容する環状の空間が形成されている。また、スリーブ本体61の固定部材25とは反対側の端部には、径方向に貫通する切り欠き64が形成されている。スリーブ端板62は、ねじ軸部23の外周に嵌合している。 The sleeve 27 is integrally provided at the end of the sleeve body 61 on the fixing member 25 side with the cylindrical sleeve body 61 that supports the inner circumference of the slide bearing 31 press-fitted into the inner circumference of the support shaft insertion hole 22. It has a sleeve end plate 62 and a circumferential positioning portion 34 extending from the sleeve end plate 62 toward the fixing member 25. An annular space for accommodating the torsion coil spring 63 is formed between the inner circumference of the sleeve body 61 and the outer circumference of the screw shaft portion 23. Further, a notch 64 penetrating in the radial direction is formed at an end portion of the sleeve body 61 opposite to the fixing member 25. The sleeve end plate 62 is fitted on the outer circumference of the screw shaft portion 23.
 揺動抵抗付与機構60は、揺動アーム10が揺動支軸9を中心に揺動したときにその揺動アーム10の揺動に応じてねじり変形するねじりコイルばね63を有し、そのねじりコイルばね63によって揺動方向とは逆向きの弾性力を発生する機構である。ねじりコイルばね63の一端には、揺動アーム10に回り止めされる第1腕部65が形成され、ねじりコイルばね63の他端には、揺動支軸9に回り止めされる第2腕部66が形成されている。 The swing resistance applying mechanism 60 has a torsion coil spring 63 that twists and deforms in response to the swing of the swing arm 10 when the swing arm 10 swings about a swing support shaft 9. This is a mechanism in which the coil spring 63 generates an elastic force in the direction opposite to the swing direction. A first arm portion 65 that is prevented from rotating by the swing arm 10 is formed at one end of the torsion coil spring 63, and a second arm that is prevented from rotating by the swing support shaft 9 at the other end of the torsion coil spring 63. The portion 66 is formed.
 図17に示すように、第1腕部65は、スリーブ本体61に形成された切り欠き64を径方向に貫通し、その切り欠き64を通って外径側に突出した部分が、支軸挿入孔22の内周に形成された係合凹部67に係合し、その係合によりねじりコイルばね63の一端が揺動アーム10に回り止めされた状態となっている。第2腕部66は、スリーブ端板62に設けた係合穴68に係合し、その係合によりねじりコイルばね63の他端が揺動支軸9に回り止めされた状態となっている。 As shown in FIG. 17, the first arm portion 65 penetrates the notch 64 formed in the sleeve body 61 in the radial direction, and the portion protruding toward the outer diameter side through the notch 64 is inserted into the support shaft. It engages with an engaging recess 67 formed on the inner circumference of the hole 22, and one end of the torsion coil spring 63 is prevented from rotating by the swing arm 10 due to the engagement. The second arm portion 66 is engaged with the engagement hole 68 provided in the sleeve end plate 62, and the other end of the torsion coil spring 63 is stopped by the swing support shaft 9 by the engagement. ..
 係合凹部67の内面と第1腕部65との間には、周方向の遊びが設けられている。この遊びの範囲内では、揺動アーム10が揺動してもねじりコイルばね63がねじり変形を生じず、図18に示すように、遊びの範囲を超えて揺動アーム10が揺動したときに、その揺動の大きさに応じてねじりコイルばね63がねじり変形するようになっている。係合凹部67の径方向内縁には、スリーブ本体61の切り欠き64の内面と周方向に対向するストッパ突起69が形成されている。 A play in the circumferential direction is provided between the inner surface of the engaging recess 67 and the first arm portion 65. Within this range of play, the torsion coil spring 63 does not undergo torsional deformation even if the swing arm 10 swings, and as shown in FIG. 18, when the swing arm 10 swings beyond the range of play. In addition, the torsion coil spring 63 is twisted and deformed according to the magnitude of the swing. A stopper protrusion 69 is formed on the inner edge of the engaging recess 67 in the radial direction so as to face the inner surface of the notch 64 of the sleeve body 61 in the circumferential direction.
 この第3実施形態のオートテンショナ1は、図18に示すように、揺動アーム10の揺動により揺動アーム10が揺動支軸9に対して相対回転すると、その相対回転によってねじりコイルばね63がねじり変形し、そのねじりコイルばね63によって揺動アーム10の揺動方向とは逆向きの弾性力を生じる。そして、揺動アーム10の揺動角度が所定の大きさに達すると、ストッパ突起69がスリーブ本体61の切り欠き64の内面に受け止められ、それ以上は揺動アーム10がスリーブ本体61に対して相対回転することができず、揺動アーム10が係止された状態となる。 As shown in FIG. 18, in the auto tensioner 1 of the third embodiment, when the swing arm 10 rotates relative to the swing support shaft 9 due to the swing of the swing arm 10, the torsion coil spring is rotated by the relative rotation. 63 is twisted and deformed, and the torsion coil spring 63 generates an elastic force in the direction opposite to the swing direction of the swing arm 10. Then, when the swing angle of the swing arm 10 reaches a predetermined size, the stopper protrusion 69 is received by the inner surface of the notch 64 of the sleeve body 61, and the swing arm 10 is further received by the swing arm 10 with respect to the sleeve body 61. Relative rotation is not possible, and the swing arm 10 is locked.
 この第3実施形態のオートテンショナ1を採用すると、第1実施形態と同様、第1および第2のスプリング12a,12bで付勢される第1および第2のプーリアーム8a,8bと、揺動抵抗付与機構60によって揺動方向とは逆向きの力が付与される揺動アーム10とが別個のアームなので、ベルト6の弛みを吸収する動作を迅速に行なうことができ、かつ、ベルト6が共振したときにそのベルト6の振動を効果的に吸収することが可能である。 When the auto tensioner 1 of the third embodiment is adopted, the first and second pulley arms 8a and 8b urged by the first and second springs 12a and 12b and the swing resistance are adopted as in the first embodiment. Since the swing arm 10 to which the force opposite to the swing direction is applied by the applying mechanism 60 is a separate arm, the operation of absorbing the slack of the belt 6 can be quickly performed, and the belt 6 resonates. It is possible to effectively absorb the vibration of the belt 6 when the belt 6 is used.
 また、第3実施形態のオートテンショナ1は、第1実施形態と同様、揺動抵抗付与機構60が、揺動支軸9の外周と揺動アーム10の支軸挿入孔22の内周との間に収容されているので、オートテンショナ1がコンパクトである。また、オートテンショナ1のベルト伝動装置への取り付け作業も容易である。 Further, in the auto tensioner 1 of the third embodiment, as in the first embodiment, the swing resistance applying mechanism 60 has the outer circumference of the swing support shaft 9 and the inner circumference of the support shaft insertion hole 22 of the swing arm 10. The auto tensioner 1 is compact because it is housed in between. Further, the work of attaching the auto tensioner 1 to the belt transmission device is also easy.
 また、第3実施形態のオートテンショナ1は、揺動アーム10が揺動したときに発生する揺動方向とは逆向きの力が、ねじりコイルばね63の弾性力によるものなので、摩擦抵抗でダンパ力を発生する機構(例えば図5に示す揺動減衰機構32)を採用したときと比較して、摩耗が生じにくく、長期にわたって安定した性能を発揮することが可能である。 Further, in the auto tensioner 1 of the third embodiment, since the force in the direction opposite to the swing direction generated when the swing arm 10 swings is due to the elastic force of the torsion coil spring 63, the damper is caused by frictional resistance. Compared with the case where a mechanism for generating a force (for example, the swing damping mechanism 32 shown in FIG. 5) is adopted, wear is less likely to occur, and stable performance can be exhibited for a long period of time.
 図19~図21に、この発明の第4実施形態を示す。第4実施形態は、第3実施形態と比べて、ストッパ突起69(図17参照)が無い点のみが異なり、それ以外の構成は同一である。そのため、第3実施形態に対応する部分には同一の符号を付して説明を省略する。 19 to 21 show a fourth embodiment of the present invention. The fourth embodiment is different from the third embodiment only in that there is no stopper protrusion 69 (see FIG. 17), and the other configurations are the same. Therefore, the same reference numerals are given to the parts corresponding to the third embodiment, and the description thereof will be omitted.
 図20に示すように、ねじりコイルばね63の第1腕部65は、スリーブ本体61に形成された切り欠き64を径方向に貫通し、その切り欠き64を通って外径側に突出した部分が、支軸挿入孔22の内面に形成された係合凹部67に係合し、その係合によりねじりコイルばね63の一端が揺動アーム10に回り止めされた状態となっている。ねじりコイルばね63の第1腕部65は、スリーブ本体61の切り欠き64の内面と周方向に対向している。 As shown in FIG. 20, the first arm portion 65 of the torsion coil spring 63 is a portion that penetrates the notch 64 formed in the sleeve body 61 in the radial direction and projects toward the outer diameter side through the notch 64. Is engaged with the engaging recess 67 formed on the inner surface of the support shaft insertion hole 22, and one end of the torsion coil spring 63 is prevented from rotating by the swing arm 10 due to the engagement. The first arm portion 65 of the torsion coil spring 63 faces the inner surface of the notch 64 of the sleeve body 61 in the circumferential direction.
 この第4実施形態のオートテンショナ1は、図20、図21に示すように、揺動アーム10の揺動により揺動アーム10が揺動支軸9に対して相対回転すると、その相対回転によってねじりコイルばね63がねじり変形し、そのねじりコイルばね63の弾性力によって揺動アーム10の揺動方向とは逆向きの弾性力を生じる。そして、揺動アーム10の揺動角度が所定の大きさに達すると、図21に示すように、ねじりコイルばね63の第1腕部65がスリーブ本体61の切り欠き64の内面に受け止められ、それ以上は揺動アーム10がスリーブ本体61に対して相対回転することができず、揺動アーム10が係止された状態となる。この第4実施形態のオートテンショナ1の作用効果は、第3実施形態と同様である。 In the auto tensioner 1 of the fourth embodiment, as shown in FIGS. 20 and 21, when the swing arm 10 rotates relative to the swing support shaft 9 due to the swing of the swing arm 10, the relative rotation causes the swing arm 10 to rotate relative to the swing support shaft 9. The torsion coil spring 63 is twisted and deformed, and the elastic force of the torsion coil spring 63 generates an elastic force in the direction opposite to the swing direction of the swing arm 10. Then, when the swing angle of the swing arm 10 reaches a predetermined size, as shown in FIG. 21, the first arm portion 65 of the torsion coil spring 63 is received by the inner surface of the notch 64 of the sleeve body 61. After that, the swing arm 10 cannot rotate relative to the sleeve body 61, and the swing arm 10 is locked. The action and effect of the auto tensioner 1 of the fourth embodiment is the same as that of the third embodiment.
 上記実施形態では、補機ベルト6が巻き掛けられる補機プーリを、スタータジェネレータの回転軸2に取り付けられたスタータジェネレータプーリ3と、クランクシャフト4に取り付けられたクランクプーリ5との2つのプーリで構成した補機駆動システムを例に挙げて説明したが、この発明は、補機ベルト6が巻き掛けられる補機プーリが、3つ以上のプーリ(スタータジェネレータプーリ3と、クランクプーリ5と、例えば、カーエアコンやウォータポンプ等の回転軸に取り付けられた他の補機プーリ)で構成される補機駆動システムにも適用することができる。 In the above embodiment, the auxiliary pulley around which the auxiliary belt 6 is wound is provided by two pulleys, a starter generator pulley 3 attached to the rotating shaft 2 of the starter generator and a crank pulley 5 attached to the crankshaft 4. Although the configured auxiliary machine drive system has been described as an example, in the present invention, the auxiliary machine pulley around which the auxiliary machine belt 6 is wound has three or more pulleys (starter generator pulley 3, crank pulley 5, for example. , Other auxiliary pulleys attached to rotating shafts such as car air conditioners and water pumps) can also be applied to auxiliary drive systems.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
1    補機ベルト用オートテンショナ
3    スタータジェネレータプーリ
4    クランクシャフト
5    クランクプーリ
6    補機ベルト
7a   第1のアイドラプーリ
7b   第2のアイドラプーリ
8a   第1のプーリアーム
8b   第2のプーリアーム
9    揺動支軸
10   揺動アーム
11a  第1の関節部
11b  第2の関節部
12a  第1のスプリング
12b  第2のスプリング
13a  第1の回動ストッパ
13b  第2の回動ストッパ
17a  第1の緩衝部材
17b  第2の緩衝部材
22   支軸挿入孔
25   固定部材
28   カム部材
32   揺動減衰機構
33   シュー部材
35   位置決め座金
39   カム外周面
41   弾性部材
43   シュー内周面
45a  第1のプーリ本体
45b  第2のプーリ本体
46b  第2の転がり軸受
50   分割軸
51a  第1の鋼板
51b  第2の鋼板
52   結合ピン
60   揺動抵抗付与機構
63   ねじりコイルばね
1 Auto tensioner for auxiliary machine belt 3 Starter generator pulley 4 Crank shaft 5 Crank pulley 6 Auxiliary machine belt 7a First idler pulley 7b Second idler pulley 8a First pulley arm 8b Second pulley arm 9 Swing support shaft 10 Swing Moving arm 11a First joint portion 11b Second joint portion 12a First spring 12b Second spring 13a First rotation stopper 13b Second rotation stopper 17a First cushioning member 17b Second cushioning member 22 Support shaft insertion hole 25 Fixing member 28 Cam member 32 Swing damping mechanism 33 Shoe member 35 Positioning seat 39 Cam outer peripheral surface 41 Elastic member 43 Shoe inner peripheral surface 45a First pulley body 45b Second pulley body 46b Second Rolling bearing 50 Split shaft 51a First steel plate 51b Second steel plate 52 Coupling pin 60 Swing resistance imparting mechanism 63 Torsion coil spring

Claims (13)

  1.  補機ベルト(6)に接触する第1および第2のアイドラプーリ(7a、7b)と、
     前記第1のアイドラプーリ(7a)を支持する第1のプーリアーム(8a)と、
     前記第2のアイドラプーリ(7b)を支持する第2のプーリアーム(8b)と、
     前記第1のプーリアーム(8a)が回動可能に連結される第1の関節部(11a)と、前記第2のプーリアーム(8b)が回動可能に連結される第2の関節部(11b)とをもち、前記第1の関節部(11a)と前記第2の関節部(11b)の間に配置された揺動支軸(9)を中心に揺動可能に支持される揺動アーム(10)と、
     前記第1のアイドラプーリ(7a)が前記第2のアイドラプーリ(7b)に近づく方向に前記第1のプーリアーム(8a)を付勢する第1のスプリング(12a)と、
     前記第2のアイドラプーリ(7b)が前記第1のアイドラプーリ(7a)に近づく方向に前記第2のプーリアーム(8b)を付勢する第2のスプリング(12b)と、
     前記揺動アーム(10)が前記揺動支軸(9)を中心に揺動するときに揺動方向とは逆向きのダンパ力を発生する揺動減衰機構(32)、または、前記揺動アーム(10)が前記揺動支軸(9)を中心に揺動するときに揺動方向とは逆向きの弾性力を発生する揺動抵抗付与機構(60)と、
     を有する補機ベルト用オートテンショナ。
    The first and second idler pulleys (7a, 7b) that come into contact with the auxiliary belt (6),
    A first pulley arm (8a) that supports the first idler pulley (7a) and
    A second pulley arm (8b) that supports the second idler pulley (7b) and
    A first joint portion (11a) to which the first pulley arm (8a) is rotatably connected and a second joint portion (11b) to which the second pulley arm (8b) is rotatably connected. A swing arm (9) that is swingably supported around a swing support shaft (9) arranged between the first joint portion (11a) and the second joint portion (11b). 10) and
    A first spring (12a) that urges the first pulley arm (8a) in a direction in which the first idler pulley (7a) approaches the second idler pulley (7b).
    A second spring (12b) that urges the second pulley arm (8b) in a direction in which the second idler pulley (7b) approaches the first idler pulley (7a).
    A swing damping mechanism (32) that generates a damper force in the direction opposite to the swing direction when the swing arm (10) swings around the swing support shaft (9), or the swing. A swing resistance applying mechanism (60) that generates an elastic force in the direction opposite to the swing direction when the arm (10) swings around the swing support shaft (9).
    Auxiliary belt for auto tensioner.
  2.  前記揺動アーム(10)には、前記揺動支軸(9)が挿入される支軸挿入孔(22)が形成され、
     前記揺動減衰機構(32)または前記揺動抵抗付与機構(60)は、前記支軸挿入孔(22)に組み込まれている請求項1に記載の補機ベルト用オートテンショナ。
    The swing arm (10) is formed with a support shaft insertion hole (22) into which the swing support shaft (9) is inserted.
    The auto tensioner for an auxiliary belt according to claim 1, wherein the swing damping mechanism (32) or the swing resistance applying mechanism (60) is incorporated in the support shaft insertion hole (22).
  3.  前記揺動減衰機構(32)は、前記揺動支軸(9)に回り止めされたカム部材(28)と、前記支軸挿入孔(22)内に設けられ、前記揺動アーム(10)に回り止めされたシュー部材(33)とを有し、前記カム部材(28)と前記シュー部材(33)は、前記ダンパ力を発生するように互いに摩擦接触している請求項2に記載の補機ベルト用オートテンショナ。 The swing damping mechanism (32) is provided in a cam member (28) that is prevented from rotating around the swing support shaft (9) and a support shaft insertion hole (22), and the swing arm (10). The second aspect of the present invention, wherein the cam member (28) and the shoe member (33) are in frictional contact with each other so as to generate a damper force. Auto tensioner for auxiliary belt.
  4.  前記シュー部材(33)は、前記カム部材(28)の径方向外側に径方向に移動可能に設けられた円弧状の部材であり、前記シュー部材(33)には、シュー部材(33)を前記カム部材(28)に向けて付勢する弾性部材(41)が取り付けられている請求項3に記載の補機ベルト用オートテンショナ。 The shoe member (33) is an arc-shaped member provided so as to be movable in the radial direction on the outer side in the radial direction of the cam member (28), and the shoe member (33) is provided with the shoe member (33). The auto tensioner for an auxiliary belt according to claim 3, wherein an elastic member (41) for urging toward the cam member (28) is attached.
  5.  前記シュー部材(33)は、前記カム部材(28)の径方向外側に対向して配置され、前記カム部材(28)との接触により径方向に変形可能な金属製の板ばねである請求項3に記載の補機ベルト用オートテンショナ。 The shoe member (33) is a metal leaf spring that is arranged so as to face the radial outer side of the cam member (28) and is deformable in the radial direction by contact with the cam member (28). The auto tensioner for an auxiliary belt according to 3.
  6.  前記カム部材(28)には、径方向外方に突出する凸曲面状のカム外周面(39)が形成され、
     前記シュー部材(33)は、前記カム外周面(39)に摩擦接触するシュー内周面(43)が形成され、
     前記シュー内周面(43)は、前記揺動アーム(10)の揺動により前記シュー部材(33)が前記カム部材(28)に対して相対回転するときに、その回転角度が大きくなるに従って前記カム外周面(39)に対する前記シュー内周面(43)の接触面圧が次第に大きくなるように、周方向に対して傾斜した形状を有する請求項3から5のいずれかに記載の補機ベルト用オートテンショナ。
    The cam member (28) is formed with a convex curved cam outer peripheral surface (39) that projects outward in the radial direction.
    The shoe member (33) is formed with a shoe inner peripheral surface (43) that is in frictional contact with the cam outer peripheral surface (39).
    The shoe inner peripheral surface (43) becomes larger as the rotation angle increases when the shoe member (33) rotates relative to the cam member (28) due to the swing of the swing arm (10). The auxiliary machine according to any one of claims 3 to 5, which has a shape inclined with respect to the circumferential direction so that the contact surface pressure of the shoe inner peripheral surface (43) with respect to the cam outer peripheral surface (39) gradually increases. Auto tensioner for belt.
  7.  前記揺動支軸(9)を固定部材(25)に固定するときに、前記固定部材(25)に対する前記カム部材(28)の固定角度を所定の角度に位置決めする位置決め座金(35)を更に有する請求項6に記載の補機ベルト用オートテンショナ。 When the swing support shaft (9) is fixed to the fixing member (25), a positioning washer (35) that positions the fixing angle of the cam member (28) with respect to the fixing member (25) to a predetermined angle is further added. The auto tensioner for an auxiliary belt according to claim 6.
  8.  前記揺動抵抗付与機構(60)は、前記揺動支軸(9)に一端が回り止めされ、他端が前記揺動アーム(10)に回り止めされたねじりコイルばね(63)を有する請求項1または2に記載の補機ベルト用オートテンショナ。 The rocking resistance applying mechanism (60) has a torsion coil spring (63) having one end stopped by the swinging support shaft (9) and the other end stopped by the swinging arm (10). Item 1. The auto tensioner for an auxiliary belt according to Item 1 or 2.
  9.  前記第1のプーリアーム(8a)を受け止めて第1のプーリアーム(8a)の回動角度を規制する第1の回動ストッパ(13a)と、前記第2のプーリアーム(8b)を受け止めて第2のプーリアーム(8b)の回動角度を規制する第2の回動ストッパ(13b)とを更に有する請求項1から8のいずれかに記載の補機ベルト用オートテンショナ。 A first rotation stopper (13a) that receives the first pulley arm (8a) and regulates the rotation angle of the first pulley arm (8a), and a second pulley arm (8b) that receives the second pulley arm (8b). The auto tensioner for an auxiliary belt according to any one of claims 1 to 8, further comprising a second rotation stopper (13b) that regulates the rotation angle of the pulley arm (8b).
  10.  前記第1の回動ストッパ(13a)が前記第1のプーリアーム(8a)を受け止めるときの衝撃を吸収する第1の緩衝部材(17a)と、
     前記第2の回動ストッパ(13b)が前記第2のプーリアーム(8b)を受け止めるときの衝撃を吸収する第2の緩衝部材(17b)と、を更に有する請求項9に記載の補機ベルト用オートテンショナ。
    A first buffer member (17a) that absorbs an impact when the first rotation stopper (13a) receives the first pulley arm (8a).
    The auxiliary belt according to claim 9, further comprising a second cushioning member (17b) that absorbs an impact when the second rotating stopper (13b) receives the second pulley arm (8b). Auto tensioner.
  11.  前記第1のアイドラプーリ(7a)は、前記補機ベルト(6)に接触する外周面をもつ環状の第1のプーリ本体(45a)と、その第1のプーリ本体(45a)の内周に嵌め込まれた第1の転がり軸受とで構成され、
     前記第2のアイドラプーリ(7b)は、前記補機ベルト(6)に接触する外周面をもつ環状の第2のプーリ本体(45b)と、その第2のプーリ本体(45b)の内周に嵌め込まれた第2の転がり軸受(46b)とで構成され、
     前記第1のプーリアーム(8a)は、前記第1の転がり軸受に軸方向の両側からそれぞれ嵌め込まれる一対の分割軸(50)と、その一対の分割軸(50)の軸方向両端を支持する一対の第1の鋼板(51a)と、前記一対の分割軸(50)および前記一対の第1の鋼板(51a)を貫通して結合する結合ピン(52)とで構成され、
     前記第2のプーリアーム(8b)は、前記第2の転がり軸受(46b)に軸方向の両側から嵌め込まれる一対の分割軸(50)と、その一対の分割軸(50)の軸方向両端を支持する一対の第2の鋼板(51b)と、前記一対の分割軸(50)および前記一対の第2の鋼板(51b)を貫通して結合する結合ピン(52)とで構成されている請求項1から10のいずれかに記載の補機ベルト用オートテンショナ。
    The first idler pulley (7a) is formed on an annular first pulley body (45a) having an outer peripheral surface in contact with the auxiliary belt (6) and an inner circumference of the first pulley body (45a). Consists of a first rolling bearing fitted
    The second idler pulley (7b) is provided on the inner circumference of an annular second pulley body (45b) having an outer peripheral surface in contact with the auxiliary belt (6) and the second pulley body (45b). Consists of a second rolling bearing (46b) fitted
    The first pulley arm (8a) includes a pair of split shafts (50) that are fitted into the first rolling bearing from both sides in the axial direction, and a pair that supports both ends of the pair of split shafts (50) in the axial direction. The first steel plate (51a), the pair of dividing shafts (50), and the coupling pin (52) that penetrates and joins the pair of first steel plates (51a).
    The second pulley arm (8b) supports a pair of split shafts (50) fitted into the second rolling bearing (46b) from both sides in the axial direction, and both ends in the axial direction of the pair of split shafts (50). The claim is composed of a pair of second steel plates (51b), a coupling pin (52) that penetrates and joins the pair of dividing shafts (50) and the pair of second steel plates (51b). The auto tensioner for an auxiliary belt according to any one of 1 to 10.
  12.  スタータジェネレータの回転軸(2)に取り付けられたスタータジェネレータプーリ(3)と、
     クランクシャフト(4)に取り付けられたクランクプーリ(5)と、
     前記スタータジェネレータプーリ(3)と前記クランクプーリ(5)の間に巻き掛けられた前記補機ベルト(6)と、
     前記補機ベルト(6)に張力を付与する請求項1から11のいずれかに記載の補機ベルト用オートテンショナ(1)と、を有し、
     前記第1のアイドラプーリ(7a)は、前記補機ベルト(6)の、前記クランクプーリ(5)から前記スタータジェネレータプーリ(3)に向かって走行する部分に接触して設けられ、
     第2のアイドラプーリ(7b)は、前記補機ベルト(6)の、前記スタータジェネレータプーリ(3)から前記クランクプーリ(5)に向かって走行する部分に接触して設けられている補機駆動システム。
    The starter generator pulley (3) attached to the rotating shaft (2) of the starter generator and
    The crank pulley (5) attached to the crankshaft (4) and
    The auxiliary belt (6) wound between the starter generator pulley (3) and the crank pulley (5), and the auxiliary belt (6).
    The auxiliary belt auto tensioner (1) according to any one of claims 1 to 11 for applying tension to the auxiliary belt (6).
    The first idler pulley (7a) is provided in contact with a portion of the auxiliary belt (6) that travels from the crank pulley (5) toward the starter generator pulley (3).
    The second idler pulley (7b) is provided in contact with a portion of the auxiliary belt (6) that travels from the starter generator pulley (3) toward the crank pulley (5). system.
  13.  前記補機ベルト用オートテンショナ(1)は、前記スタータジェネレータプーリ(3)の外周よりも径方向外側に前記揺動支軸(9)の中心があるように配置されている請求項12に記載の補機駆動システム。 The 12th aspect of the present invention, wherein the auxiliary belt auto tensioner (1) is arranged so that the center of the swing support shaft (9) is radially outside the outer circumference of the starter generator pulley (3). Auxiliary drive system.
PCT/JP2021/010609 2020-03-18 2021-03-16 Auxiliary belt auto tensioner and auxiliary drive system WO2021187482A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-047519 2020-03-18
JP2020047519 2020-03-18
JP2021038986A JP2021152407A (en) 2020-03-18 2021-03-11 Auto tensioner for auxiliary machine belt and auxiliary machine drive system
JP2021-038986 2021-03-11

Publications (1)

Publication Number Publication Date
WO2021187482A1 true WO2021187482A1 (en) 2021-09-23

Family

ID=77771546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010609 WO2021187482A1 (en) 2020-03-18 2021-03-16 Auxiliary belt auto tensioner and auxiliary drive system

Country Status (1)

Country Link
WO (1) WO2021187482A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11592085B2 (en) * 2017-10-05 2023-02-28 Bayerische Motoren Werke Aktiengesellschaft Belt-tensioning device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4133320B2 (en) * 2000-10-03 2008-08-13 ザ ゲイツ コーポレイション Accessories and motor / generator belt drive tensioners
JP2015224614A (en) * 2014-05-29 2015-12-14 ダイハツ工業株式会社 Vehicle internal combustion engine
JP2016503151A (en) * 2012-12-26 2016-02-01 リテンズ オートモーティヴ パートナーシップ Orbital tensioner assembly
JP2019525098A (en) * 2016-08-11 2019-09-05 リテンズ オートモーティヴ パートナーシップ Two-arm tension adjustment system for endless drive and improved endless drive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4133320B2 (en) * 2000-10-03 2008-08-13 ザ ゲイツ コーポレイション Accessories and motor / generator belt drive tensioners
JP2016503151A (en) * 2012-12-26 2016-02-01 リテンズ オートモーティヴ パートナーシップ Orbital tensioner assembly
JP2015224614A (en) * 2014-05-29 2015-12-14 ダイハツ工業株式会社 Vehicle internal combustion engine
JP2019525098A (en) * 2016-08-11 2019-09-05 リテンズ オートモーティヴ パートナーシップ Two-arm tension adjustment system for endless drive and improved endless drive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11592085B2 (en) * 2017-10-05 2023-02-28 Bayerische Motoren Werke Aktiengesellschaft Belt-tensioning device

Similar Documents

Publication Publication Date Title
KR102190343B1 (en) Rotary tensioner
JP5545585B2 (en) Isolator
JP5559930B2 (en) Isolator
US7153227B2 (en) Isolator for alternator pulley
JP7404505B2 (en) orbital tensioner
JP4435810B2 (en) Pulley structure and accessory drive system using the same
JP6690059B2 (en) Tensioner
JP2004515721A (en) Accessories and motor / generator belt drive tensioners
US11041549B2 (en) Tensioning device
CN101932856A (en) Torsional decoupler
WO2015177997A1 (en) Belt transmission system
WO2021187482A1 (en) Auxiliary belt auto tensioner and auxiliary drive system
JP2021152407A (en) Auto tensioner for auxiliary machine belt and auxiliary machine drive system
KR20180006375A (en) Belt transmission system
WO2019049936A1 (en) Tensioner unit for auxiliary machinery belt
WO2022186336A1 (en) Auxiliary belt auto tensioner and auxiliary drive system
WO2023153305A1 (en) Accessory belt auto tensioner, and accessory-driving belt system
JP3674636B2 (en) damper
JP3844397B2 (en) Auto tensioner
CN213541205U (en) Two-way tensioning device
JP3424737B2 (en) Auto tensioner
JP2008232379A (en) Pulley structure and auxiliary drive system using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771072

Country of ref document: EP

Kind code of ref document: A1