WO2021187258A1 - Material for acoustic matching layer, acoustic matching sheet, acoustic wave probe, ultrasonic probe, acoustic wave measuring device, ultrasonic diagnostic device, and method for producing acoustic wave probe - Google Patents

Material for acoustic matching layer, acoustic matching sheet, acoustic wave probe, ultrasonic probe, acoustic wave measuring device, ultrasonic diagnostic device, and method for producing acoustic wave probe Download PDF

Info

Publication number
WO2021187258A1
WO2021187258A1 PCT/JP2021/009413 JP2021009413W WO2021187258A1 WO 2021187258 A1 WO2021187258 A1 WO 2021187258A1 JP 2021009413 W JP2021009413 W JP 2021009413W WO 2021187258 A1 WO2021187258 A1 WO 2021187258A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acoustic matching
acoustic
compound
matching layer
Prior art date
Application number
PCT/JP2021/009413
Other languages
French (fr)
Japanese (ja)
Inventor
和博 ▲濱▼田
中井 義博
林 大介
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180018209.9A priority Critical patent/CN115209811A/en
Priority to JP2022508247A priority patent/JP7242961B2/en
Priority to EP21770995.5A priority patent/EP4122399A4/en
Publication of WO2021187258A1 publication Critical patent/WO2021187258A1/en
Priority to US17/939,429 priority patent/US20230037985A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/4281Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/067Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface which is used as, or combined with, an impedance matching layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/46Special adaptations for use as contact microphones, e.g. on musical instrument, on stethoscope

Definitions

  • the present invention relates to a material for an acoustic matching layer, an acoustic matching sheet, an acoustic wave probe, an ultrasonic probe, an acoustic wave measuring device, an ultrasonic diagnostic device, and a method for manufacturing an acoustic wave probe.
  • the acoustic wave measuring device uses an acoustic wave probe that irradiates an object to be inspected such as a living body with an acoustic wave, receives the reflected wave (echo), and outputs a signal.
  • the reflected wave received by this acoustic wave probe is converted into an electric signal and displayed as an image. Therefore, by using the acoustic wave probe, the inside of the test object can be visualized and observed.
  • acoustic wave As the acoustic wave, ultrasonic waves, photoacoustic waves, and the like are appropriately selected according to the test object and the measurement conditions.
  • an ultrasonic diagnostic device which is a kind of acoustic wave measuring device, transmits ultrasonic waves toward the inside of the test object, receives the ultrasonic waves reflected by the tissue inside the test target, and displays them as an image.
  • the photoacoustic wave measuring device which is a kind of acoustic wave measuring device, receives the acoustic wave radiated from the inside of the test object by the photoacoustic effect and displays it as an image.
  • the photoacoustic effect is an acoustic wave (acoustic wave) when an electromagnetic wave pulse such as visible light, near-infrared light, or microwave is applied to an object to be examined, and the object to be examined absorbs the electromagnetic wave to generate heat and thermally expand.
  • an electromagnetic wave pulse such as visible light, near-infrared light, or microwave
  • the acoustic wave measuring device transmits and receives acoustic waves to and from the test object
  • the acoustic wave probe is required to match the acoustic impedance with the test target (typically the human body).
  • the acoustic wave probe is provided with an acoustic matching layer. This will be described by taking as an example a probe for an ultrasonic diagnostic apparatus (also referred to as an ultrasonic probe), which is a kind of acoustic wave probe.
  • the ultrasonic probe includes a piezoelectric element that transmits and receives ultrasonic waves and an acoustic lens that comes into contact with a living body, and an acoustic matching layer is arranged between the piezoelectric element and the acoustic lens.
  • the ultrasonic waves oscillated from the piezoelectric element pass through the acoustic matching layer, further pass through the acoustic lens, and are incident on the living body.
  • the acoustic lens is required to have an acoustic impedance characteristic close to that of a living body.
  • the difference in acoustic impedance between the piezoelectric element and the living body is generally large. Therefore, the difference in acoustic impedance between the piezoelectric element and the acoustic lens is usually large.
  • the ultrasonic waves emitted from the piezoelectric element are reflected on the surface of the acoustic lens, and the incident efficiency of the ultrasonic waves on the living body is lowered.
  • the above-mentioned acoustic matching layer is provided between the piezoelectric element and the acoustic lens.
  • the acoustic impedance of the acoustic matching layer takes a value between the acoustic impedance of the living body or the acoustic lens and the acoustic impedance of the piezoelectric element, thereby improving the efficiency of propagation of ultrasonic waves from the piezoelectric element to the living body.
  • the acoustic matching layer has a multi-layer structure in which a plurality of acoustic matching sheets (sheet-shaped acoustic matching layer materials) are laminated, and the acoustic impedance is inclined from the piezoelectric element side to the acoustic lens side.
  • the acoustic impedance of the acoustic matching layer can be adjusted by blending a filler such as metal particles with the material for forming the acoustic matching layer.
  • a filler such as metal particles
  • Patent Document 1 describes a resin composition for an acoustic matching layer containing a binder containing a resin such as an epoxy resin and surface-treated metal particles.
  • the above-mentioned gradient of the acoustic impedance is designed so that the closer to the piezoelectric element, the larger the acoustic impedance of the acoustic matching sheet, and the closer to the acoustic lens, the smaller the acoustic impedance of the acoustic matching sheet. .. That is, an acoustic matching sheet close to the acoustic impedance of the piezoelectric element (usually about 25 mile) on the piezoelectric element side and close to the acoustic impedance of the living body (1.4 to 1.7 mile in the human body) on the acoustic lens side is obtained. Be done.
  • the acoustic impedance of an acoustic matching sheet is determined by multiplying the density of the sheet constituent materials and the speed of sound. Therefore, when trying to increase the acoustic impedance of the acoustic matching sheet used on the piezoelectric element side, it is conceivable to use a material having a high density and a high sound velocity. However, it has been found that when a filler such as a metal having a large specific gravity is contained in the acoustic matching sheet in order to increase the acoustic impedance, the density of the sheet can be improved, but the sound velocity of the sheet is lowered.
  • Patent Document 1 does not describe this point.
  • the present invention can effectively increase the acoustic impedance of an acoustic matching sheet obtained by suppressing a decrease in sound velocity due to the blending of tungsten carbide particles while using tungsten carbide particles having a large specific gravity as a metal filler.
  • An object of the present invention is to provide a material for an acoustic matching layer that can suppress variations in acoustic characteristics in an acoustic matching sheet.
  • the task is to provide a sheet.
  • Another object of the present invention is to provide an acoustic wave probe and an ultrasonic probe using the acoustic matching sheet, and an acoustic wave measuring device and an ultrasonic diagnostic device using these.
  • Another object of the present invention is to provide a method for manufacturing an acoustic wave probe using the above-mentioned material for an acoustic matching layer.
  • the present inventors have prepared an acoustic matching sheet by subjecting an epoxy resin and a curing agent to a curing reaction in the presence of tungsten carbide particles treated with a specific surface treatment agent. It has been found that the decrease in sound velocity that normally occurs due to the inclusion of particles can be suppressed, and that this acoustic matching sheet has little variation in acoustic characteristics.
  • the present invention has been completed based on these findings.
  • ⁇ 4> The material for an acoustic matching layer according to any one of ⁇ 1> to ⁇ 3>, wherein the surface treatment agent contains at least one of an aluminum alkoxide compound, a zirconium alkoxide compound, and a titanium alkoxide compound.
  • the surface treatment agent contains at least one of a zirconium alkoxide compound and a titanium alkoxide compound.
  • R 2a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S1.
  • RS1 represents a substituent.
  • m1 is an integer of 0 to 2.
  • R 1b represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
  • R 2b represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S2.
  • RS2 indicates a substituent.
  • m2 is an integer from 0 to 3.
  • ⁇ 10> The material for an acoustic matching layer according to any one of ⁇ 1> to ⁇ 9>, wherein the titanium alkoxide compound contains at least one atom of N, P and S.
  • ⁇ 11> The material for an acoustic matching layer according to any one of ⁇ 1> to ⁇ 10>, wherein the titanium alkoxide compound contains at least one compound represented by the following general formula (3).
  • R 1c represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
  • R 2c represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S3.
  • RS3 indicates a substituent.
  • m3 is an integer from 0 to 3.
  • ⁇ 12> The acoustic matching according to any one of ⁇ 1> to ⁇ 11>, wherein the content of the surface treatment agent in the component (C) is 1 to 50 parts by mass with respect to 100 parts by mass of the tungsten carbide particles.
  • Material for layers. ⁇ 13> The material for an acoustic matching layer according to any one of ⁇ 1> to ⁇ 12>, wherein the tungsten carbide particles constituting the component (C) have an average primary particle size of 1 to 10 ⁇ m.
  • An acoustic matching sheet obtained by curing the material for an acoustic matching layer according to any one of ⁇ 1> to ⁇ 13>.
  • An ultrasonic diagnostic apparatus including the acoustic wave probe according to ⁇ 15>.
  • a method for manufacturing an acoustic wave probe which comprises forming an acoustic matching layer using the material for an acoustic matching layer according to any one of ⁇ 1> to ⁇ 13>.
  • the "metal alkoxide compound (specifically, for example, a titanium alkoxide compound, an aluminum alkoxide compound, and a zirconium alkoxide compound described later)" has a structure in which at least one alkoxy group is bonded to a metal atom.
  • Means a compound having. This alkoxy group may have a substituent.
  • the substituent may be monovalent or divalent (eg, an alkylidene group).
  • two alkoxy groups bonded to one metal atom may be bonded to each other to form a ring.
  • the material for the acoustic matching layer of the present invention uses tungsten carbide particles having a large specific gravity as the metal filler, and effectively suppresses the decrease in sound velocity due to the blending of the tungsten carbide particles to effectively obtain the acoustic impedance of the acoustic matching sheet. It can be enhanced, and variations in acoustic characteristics within this acoustic matching sheet can also be suppressed. Further, in the acoustic matching sheet of the present invention, while using tungsten carbide particles as the metal filler, the decrease in sound velocity due to the blending of the tungsten carbide particles is suppressed, the acoustic impedance is effectively enhanced, and the acoustic characteristics in the sheet vary. There are few.
  • the acoustic wave probe, the ultrasonic probe, the acoustic wave measuring device and the ultrasonic diagnostic device of the present invention have an acoustic matching sheet having the above-mentioned excellent characteristics. Further, according to the method for manufacturing an acoustic wave probe of the present invention, an acoustic wave probe using the above-mentioned material for an acoustic matching layer can be obtained.
  • FIG. 1 is a perspective transmission view of an example of a convex type ultrasonic probe, which is an aspect of an acoustic wave probe.
  • the material for an acoustic matching layer of the present invention contains the following components (A), (B) and (C).
  • the material of the present invention includes a form of a composition obtained by mixing the above components (A) to (C).
  • composition a composition for an acoustic matching layer
  • the material of the present invention is in the form of a composition for an acoustic matching layer (hereinafter, also referred to as "composition" of the present invention), that is, it is contained in a container in a state where the above components (A) to (C) are mixed. If so, the composition should be stored at ⁇ 10 ° C. or lower so that the components (A) to (C) do not react or are sufficiently suppressed to maintain a stable state of each component. Is preferable.
  • the material of the present invention includes a form of a set for an acoustic matching layer (hereinafter, also referred to as a "set" of the present invention) in which the above components (A) to (C) are contained in a container in a separated state.
  • a set for an acoustic matching layer
  • Examples of the form of this set include the following forms (i) to (iv).
  • (I) A form in which the above-mentioned components (A) and (B) and the above-mentioned component (C) are separately contained and mixed at the time of use.
  • (Ii) A form in which the above-mentioned components (A) and (C) and the above-mentioned component (B) are separately contained and mixed at the time of use.
  • (Iii) A form in which the above-mentioned component (A) and the above-mentioned components (B) and (C) are separately contained and mixed at the time of use
  • (Iv) A form in which the above components (A) to (C) are separately contained and mixed at the time of use.
  • the set of the present invention it is preferable to store the set of the present invention at ⁇ 10 ° C. or lower in order to maintain a stable state in which each component is maintained.
  • the material of the present invention may be stored in a light-shielded manner, if necessary.
  • the acoustic matching sheet contains a filler having a large specific gravity, the sound velocity of the sheet decreases. It is presumed that this is because the inertia when the acoustic wave (mainly the longitudinal wave) enters the acoustic matching sheet causes the phase to be delayed at the filler interface and the sound velocity to decrease.
  • the component (C) is surface-treated with a specific surface treatment agent, so that a structure contributing to the improvement of the elastic modulus of the sheet is formed at the interface between the component (C) and the matrix resin. It is considered that the elastic modulus is increased by a slight aggregation of a small amount of the component (C) while suppressing the aggregation of the component (C).
  • epoxy resin used in the present invention ordinary epoxy resins can be used, and for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin and phenol novolac type epoxy resin are preferable.
  • the bisphenol A type epoxy resin that can be used in the present invention is not particularly limited, and those generally used as the main agent of the epoxy adhesive can be widely used.
  • Preferred specific examples include bisphenol A diglycidyl ether (jER825, jER828 and jER834 (all trade names), manufactured by Mitsubishi Chemical Corporation) and bisphenol A propoxylate diglycidyl ether (manufactured by Sigma-Aldrich).
  • the bisphenol F type epoxy resin that can be used in the present invention is not particularly limited, and those generally used as the main agent of the epoxy adhesive can be widely used.
  • Preferred specific examples include bisphenol F diglycidyl ether (trade name: EPICLON830, manufactured by DIC Corporation) and 4,4'-methylenebis (N, N-diglycidyl aniline).
  • the phenol novolac type epoxy resin that can be used in the present invention is not particularly limited, and those generally used as the main agent of the epoxy adhesive can be widely used.
  • a phenol novolac type epoxy resin is sold by, for example, Sigma-Aldrich as product number 406775.
  • curing agent those known as curing agents for epoxy resins (preferably organic compounds) can be used without particular limitation.
  • aliphatic amines, aromatic amines, dicyandiamides, dihydrazide compounds, acid anhydrides, phenol compounds and the like can be mentioned.
  • At least one of a primary amine (a compound having an unsubstituted amino group) and a secondary amine (a compound having a monosubstituted amino group) from the viewpoint of increasing the crosslink density and reducing the variation in the acoustic properties of the obtained material. Is preferable, and primary amine is more preferable.
  • Compounds having both an unsubstituted amino group and a monosubstituted amino group shall be classified as secondary amines.
  • Specific examples of the compound having at least one of an unsubstituted amino group and a monosubstituted amino group include isophorone diamine, mensen diamine, m-phenylenediamine, polyether amine, polyamide amine, triethylenetetramine and piperidine. Can be mentioned.
  • the component (C) is surface-treated with a surface treatment agent containing at least one of an aminosilane compound, a mercaptosilane compound, an isocyanatosilane compound, a thiocyanatosilane compound, an aluminum alkoxide compound, a zirconium alkoxide compound and a titanium alkoxide compound. Also, surface-treated tungsten carbide particles.
  • the component (C) is a component different from the component (B).
  • the average primary particle diameter of the tungsten carbide particles constituting the surface-treated tungsten carbide particles used in the present invention is not particularly limited, and the point of suppressing the decrease in sound velocity of the acoustic matching sheet and the point of reducing the variation in the acoustic characteristics of the acoustic matching sheet. Therefore, 1 to 30 ⁇ m is preferable, 1 to 20 ⁇ m is more preferable, and 1 to 10 ⁇ m is further preferable.
  • the average primary particle size of the component (C) is preferably 1 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, and even more preferably 1 to 10 ⁇ m.
  • the average primary particle size can be obtained by averaging the particle size measured by a transmission electron microscope (TEM). That is, the shortest diameter and the longest diameter of one tungsten carbide particle in the electron micrograph taken by TEM are measured, and the arithmetic mean value is obtained as the particle diameter of one tungsten carbide particle.
  • TEM transmission electron microscope
  • the particle sizes of 300 randomly selected tungsten carbide particles are averaged and determined as the average primary particle size.
  • tungsten carbide particles can be used, and examples thereof include WC (trade name) manufactured by Allied Materials.
  • the surface treatment agent used in the present invention is an aminosilane compound, an aluminum alkoxide compound, a zirconium alkoxide compound, and a titanium alkoxide compound from the viewpoint of suppressing the decrease in sound velocity of the acoustic matching sheet and reducing the variation in the acoustic characteristics of the acoustic matching sheet. It is preferable to contain at least one kind, more preferably at least one kind of aluminum alkoxide compound, zirconium alkoxide compound and titanium alkoxide compound, and further preferably containing at least one kind of zirconium alkoxide compound and titanium alkoxide compound.
  • the surface treatment agent used in the present invention will be specifically described.
  • the aminosilane compound (silane compound having an amino group) is preferably a silane coupling agent having an amino group. However, it is preferable that the aminosilane compound does not have a Si—N—Si structure. In the "Si—N—Si structure”, each silicon atom has three bonds and the nitrogen atom has one bond.
  • the aminosilane compound preferably contains at least one compound represented by the following general formula (A).
  • R 1 and R 2 represent a hydrogen atom or a substituent.
  • L 1a is a single bond, an alkylene group, an alkenylene group, an alkynylene group, an arylene group, -O-, -S-, -NR a- , an ester bond, a thioester bond, an amide bond, a thioamide bond or a sulfonyl group, or a group thereof.
  • a divalent group consisting of a combination of two or more bonds is shown.
  • Ra represents a hydrogen atom or a substituent.
  • Y 1a represents a hydroxy group or an alkoxy group.
  • Y 2a and Y 3a represent a hydroxy group, an alkoxy group, an alkyl group or a ketooxime group.
  • R 1 and R 2 are, for example, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms) and an alkenyl group (preferably 2 to 12 carbon atoms, more preferably carbon atoms). Numbers 2 to 8), alkynyl groups (preferably 2 to 12 carbon atoms, more preferably 2 to 8 carbon atoms), aryl groups (preferably 6 to 20 carbon atoms, more preferably 6 to 10 carbon atoms). .. These substituents may further have a substituent, and examples of such a substituent include the above-mentioned substituents and amino groups mentioned as possible substituents as R 1 and R 2a. Further, R 1 and R 2 may be combined to exhibit an alkylidene group (preferably 2 to 12 carbon atoms, more preferably 2 to 8 carbon atoms).
  • L 1a represents an alkylene group, an alkenylene group, an arylene group, -O- or -NR a - preferably showing a an alkylene group, an arylene group, or -NR a - is more preferable to indicate, that an alkylene group further preferable.
  • Y 1a preferably represents an alkoxy group.
  • Y 2a and Y 3a preferably show a hydroxy group, an alkoxy group or an alkyl group, and more preferably show an alkoxy group or an alkyl group.
  • the alkylene group that can be taken as L 1a may be linear, branched or cyclic.
  • the number of carbon atoms of the alkylene group is preferably 1 to 30, more preferably 1 to 25, more preferably 1 to 20, and even more preferably 1 to 15.
  • Specific examples of the alkylene group include methylene, ethylene, propylene, tert-butylene, pentylene, cyclohexylene, heptylene, octylene, nonylene, decylene and undecylen.
  • the alkenylene group that can be taken as L 1a may be either linear or branched.
  • the number of carbon atoms of the alkenylene group is preferably 2 to 20, more preferably 2 to 15, more preferably 2 to 10, and even more preferably 2 to 6.
  • Specific examples of the alkenylene group include ethenylene and propenylene.
  • the alkynylene group that can be taken as L 1a may be either linear or branched.
  • the number of carbon atoms of the alkynylene group is preferably 2 to 20, more preferably 2 to 15, more preferably 2 to 10, and even more preferably 2 to 6.
  • Specific examples of the alkynylene group include ethynylene and propinylene.
  • the number of carbon atoms of the arylene group that can be obtained as L 1a is preferably 6 to 20, more preferably 6 to 15, more preferably 6 to 12, and even more preferably 6 to 10.
  • Specific examples of the arylene group include phenylene and naphthylene.
  • R a of an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms, more preferably carbon Numbers 2-8), alkynyl groups (preferably 2-12 carbons, more preferably 2-8 carbons), aryl groups (preferably 6-20 carbons, more preferably 6-10 carbons) and heterocycles.
  • the group is mentioned.
  • the heterocycle constituting the heterocyclic group that can be taken as Ra may be a saturated or unsaturated aliphatic heterocycle or an aromatic heterocycle, and may be a monocyclic ring or a condensed ring. It may also be a bridge ring.
  • heterocycle examples include an oxygen atom, a nitrogen atom and a sulfur atom.
  • the number of heteroatoms contained in one heterocycle is not particularly limited, but is preferably 1 to 3, and more preferably 1 or 2.
  • the heterocycle preferably has 2 to 10 carbon atoms, more preferably 4 or 5 carbon atoms.
  • the heterocycle is preferably a 3- to 7-membered ring, more preferably a 3- to 6-membered ring, and even more preferably a 3- to 5-membered ring.
  • Specific examples of the heterocycle include an epoxy ring, a 3,4-epoxycyclohexane ring, a furan ring and a thiophene ring.
  • -NR a- examples include -NH-.
  • L 1a the group or made by combining the coupling of two or more divalent group (hereinafter, also referred to as "group formed in combination can be taken as L 1a".) Constituting, or linking combined
  • the number of is preferably 2 to 8, more preferably 2 to 6, and even more preferably 2 to 4.
  • the molecular weight of the combined group that can be taken as L 1a is preferably 20 to 1000, more preferably 30 to 500, and even more preferably 40 to 200.
  • Examples of the combined group that can be taken as L 1a include urea bond, thiourea bond, carbamate group, sulfonamide bond, arylene-alkylene, -O-alkylene, amide bond-alkylene, -S-alkylene, alkylene-O.
  • alkylene-amide bond-alkylene alkenylene-amide bond-alkylene, alkylene-ester bond-alkylene, arylene-ester bond-alkylene,-(alkylene-O)-, alkylene-O- (alkylene-O) )-Alkylene (“(alkylene-O)” is a repeating unit), arylene-sulfonyl-O-alkylene and ester bond-alkylene.
  • the alkyl group constituting the alkoxy group that can be taken as Y 1a to Y 3a may be linear, branched or cyclic, and may have a combination of these forms.
  • the alkyl group is preferably a straight chain alkyl group.
  • the number of carbon atoms of the alkyl group constituting the alkoxy group is preferably 1 to 15, more preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 or 2.
  • Specific examples of the alkyl group constituting the alkoxy group include methyl, ethyl, propyl, t-butyl, pentyl and cyclohexyl.
  • Examples of the alkyl group that can be taken as Y 2a and Y 3a include an alkyl group that constitutes an alkoxy group that can be taken as Y 1a to Y 3a , and a preferred form also constitutes an alkoxy group that can be taken as Y 1a to Y 3a. It is the same as the preferred form of the alkyl group.
  • ketooxime group that can be obtained as Y 2a and Y 3a is a substituent having the following structure.
  • R 11 and R 12 indicate a substituent, and * indicates a bond to a silicon atom.
  • R 11 and R 12 can take, and a substituted group in the R a, the same as the preferred form of the substituent which may take the preferred form as R a.
  • ketooxime group examples include a dimethyl keto oxime group, a methyl ethyl keto oxime group, a diethyl keto oxime group and the like.
  • aminosilane compound used in the present invention is not limited thereto.
  • 3-Aminopropyltrimethoxysilane 3-Aminopropyldimethylmethoxysilane 3-Aminopropylmethyldimethoxysilane 3-Aminopropylmethyldiethoxysilane 3-Aminopropyltriethoxysilane N- (2-aminoethyl) -3-aminopropylmethyl Dimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldiethoxysilane N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropyltriethoxy Silane3-methyldimethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine 3-methyldiethoxysily
  • the mercaptosilane compound (silane compound having a mercapto group (sulfanyl group)) is preferably a silane coupling agent having a mercapto group.
  • the tungsten carbide particles surface-treated with the mercaptosilane compound preferably have a mercapto group derived from the mercaptosilane compound.
  • the mercaptosilane compound preferably contains at least one compound represented by the following general formula (B).
  • L 1b , Y 1b , Y 2b and Y 3b are synonymous with L 1a , Y 1a , Y 2a and Y 3a of the above general formula (A), respectively, and the preferable ranges are also the same.
  • the isocyanatosilane compound (preferably a silane compound having an isocyanate group) is preferably a silane coupling agent having an isocyanate group.
  • the tungsten carbide particles surface-treated with the isocyanate silane compound preferably have an isocyanate group derived from the isocyanate silane compound.
  • the isocyanatosilane compound preferably contains at least one compound represented by the following general formula (C).
  • L 1c , Y 1c , Y 2c and Y 3c are synonymous with L 1a , Y 1a , Y 2a and Y 3a of the above general formula (A), respectively, and the preferable ranges are also the same.
  • the isocyanatosilane compound it is also preferable to use a condensate of the compound represented by the general formula (C) and a compound in which the isocyanato group of the general formula (C) is protected by a substituent. ..
  • substituents can be introduced by, for example, alcohol compounds, phenol compounds, aromatic amines, lactams and oximes. Examples of such an alcohol compound include alkyl alcohols (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms). Examples of the phenol compound include phenol and cresol. Further, as the lactam, for example, ⁇ -caprolactam can be mentioned.
  • R 4 represents a substituent, and examples thereof include an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms).
  • the thiocyanatosilane compound (silane compound having a thiocyanato group) is preferably a silane coupling agent having a thiocyanato group.
  • the tungsten carbide particles surface-treated with the thiocyanatosilane compound preferably have a thiocyanato group derived from the thiocyanatosilane compound.
  • the thiocyanatosilane compound preferably contains at least one compound represented by the following general formula (D).
  • L 1d , Y 1d , Y 2d and Y 3d are synonymous with L 1a , Y 1a , Y 2a and Y 3a of the above general formula (A), respectively, and the preferable ranges are also the same.
  • the aluminum alkoxide compound preferably contains at least one of an acetonato structure and an acetylate structure.
  • the aluminum alkoxide compound preferably contains at least one of the compounds represented by the following general formula (1).
  • R 1a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
  • the alkyl group that can be taken as R 1a includes a linear alkyl group, a branched alkyl group, and an aralkyl group.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, further preferably 1 to 10 carbon atoms, particularly preferably 1 to 8 carbon atoms, and preferably 7 to 30 carbon atoms in the case of an aralkyl group.
  • this alkyl group examples include, for example, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, decyl, tridecyl, octadecyl, benzyl, and phenethyl. Can be mentioned. It is also preferable that the alkyl group that can be taken as R 1a has an oxylan ring.
  • the number of ring members of the cycloalkyl group (cycloalkyl group having a structure in which an oxylan ring is condensed) in the epoxy cycloalkylalkyl group that can be taken as R 1a is preferably 4 to 8, more preferably 5 or 6, and 6 (that is, epoxy). Being a cyclohexyl group) is more preferred.
  • the alkyl group that can be taken as R 1a preferably has a group selected from an amino group, an isocyanato group, a mercapto group, an ethylenically unsaturated group, and an acid anhydride group.
  • the cycloalkyl group that can be taken as R 1a preferably has 3 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, further preferably 3 to 10 carbon atoms, and particularly preferably 3 to 8 carbon atoms.
  • Preferred specific examples of this cycloalkyl group include, for example, cyclopropyl, cyclopentyl, and cyclohexyl.
  • the acyl group that can be obtained as R 1a preferably has 2 to 40 carbon atoms, more preferably 2 to 30 carbon atoms, further preferably 2 to 20 carbon atoms, and particularly preferably 2 to 18 carbon atoms.
  • the aryl group that can be taken as R 1a preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms, further preferably 6 to 12 carbon atoms, and particularly preferably 6 to 10 carbon atoms.
  • Preferred specific examples of this aryl group include, for example, phenyl and naphthyl, with phenyl being even more preferred.
  • the unsaturated aliphatic group that can be obtained as R 1a preferably has 1 to 5 carbon-carbon unsaturated bonds, more preferably 1 to 3, further preferably 1 or 2, and particularly preferably 1. preferable.
  • the unsaturated aliphatic group may contain a heteroatom, and is preferably a hydrocarbon group.
  • the number of carbon atoms is preferably 2 to 20, more preferably 2 to 15, further preferably 2 to 10, further preferably 2 to 8, and preferably 2 to 5. ..
  • the unsaturated aliphatic group is more preferably an alkenyl group or an alkynyl group.
  • R 1a is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and more preferably an alkyl group or a cycloalkyl group.
  • the compound of the general formula (1) has two or more R 1a , the two R 1a may be connected to each other to form a ring.
  • R 2a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group (phosphonic acid group), or -SO 2 R S1.
  • RS1 represents a substituent.
  • the alkyl group, cycloalkyl group, acyl group, and aryl group that can be taken as R 2a are synonymous with the alkyl group, cycloalkyl group, acyl group, and aryl group that can be taken as R 1a, respectively, and the preferred forms of each group. Is the same. Further, the alkyl group that can be taken as R 2a preferably has an amino group as a substituent.
  • the alkenyl group that can be taken as R 2a includes a linear alkenyl group and a branched alkenyl group.
  • the alkenyl group preferably has 2 to 18 carbon atoms, more preferably 2 to 7 carbon atoms, and even more preferably 2 to 5 carbon atoms.
  • Preferred specific examples of this alkenyl group include, for example, vinyl, allyl, butenyl, pentenyl and hexenyl.
  • the alkenyl group is preferably a substituted alkenyl group.
  • RP1 and RP2 represent a hydrogen atom or a substituent, and the substituent is preferably an alkyl group or a phosphonate group.
  • the alkyl group that can be taken as R P1 and R P2 is synonymous with the alkyl group that can be taken as R 1a described above, and the preferred form of the alkyl group is also the same.
  • Phosphonate group, which may take as R P1 and R P2 are the same as the phosphonate group can take as R 2a, a preferred form also the same.
  • R P1 or R P2 is a phosphonate group
  • R P1 and R P2 constituting the phosphonate group is preferably an alkyl group.
  • the phosphonate group that can be taken as R 2a it is preferable that both RP1 and RP2 are alkyl groups, or RP1 is a hydrogen atom and RP2 is a phosphonate group. Since the phosphonate group is tautomerized with the phosphite group (phosphorous acid group), the phosphonate group in the present invention means to include the phosphite group.
  • R S1 which can be taken as R 2a
  • an alkyl group or an aryl group is preferable as the substituent R S1.
  • Preferred embodiments of the alkyl group and an aryl group which may take as R S1, respectively, may be mentioned preferred form of the alkyl and aryl groups which can be taken as R 1a described above.
  • R S1 is phenyl having as a substituent an alkyl group is preferable.
  • the preferred form of this alkyl group is the same as the preferred form of the alkyl group that can be taken as R 1a described above.
  • the two R 2a may be connected to each other to form a ring.
  • M1 is an integer of 0 to 2.
  • OR 2a has an acetonato structure.
  • This acetnat structure means a structure in which one hydrogen ion is removed from a compound having a structure in which acetone or acetone has a substituent and is coordinated with Al.
  • the coordination atom coordinated to Al is usually an oxygen atom.
  • a structure coordinated to Al as a coordinating atom that is, an acetylacetonato structure) is preferable.
  • the above-mentioned "having an acetylacetone structure as a basic structure” means that, in addition to the above-mentioned acetylacetone structure, a structure in which a hydrogen atom of the above-mentioned acetylacetone structure is substituted with a substituent is included.
  • Examples of the form in which OR 2a has an acetonato structure include compounds SL-2 and SL-3, which will be described later. In the above general formula (1), it is preferable that at least one of OR 2a has an acetato structure.
  • the acetato structure is obtained by removing one hydrogen ion from acetic acid or acetic acid ester or a compound having a substituent (including a form in which the methyl group of acetic acid has an alkyl group as a substituent). It means a structure coordinated with.
  • the coordination atom coordinated to Al is usually an oxygen atom.
  • alkyl group which may be an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.))
  • a basic structure and hydrogen is obtained from the alkyl group.
  • a structure in which one ion is removed and an oxygen atom is used as a coordinating atom to coordinate Al (that is, an alkylacetacetate structure) is preferable.
  • the above-mentioned "using an alkylacetacetate structure as a basic structure” means that, in addition to the above-mentioned alkylacetate-acetate structure, a structure in which a hydrogen atom of the above-mentioned alkylacetate-acetate structure is substituted with a substituent is included.
  • Examples of the form in which OR 2a has an acetato structure include compounds SL-3, SL-4, and SL-5, which will be described later.
  • Each group that can be taken as R 1a or R 2a may have an anionic group having a counter cation (salt-type substituent) as a substituent.
  • the anionic group means a group capable of forming an anion.
  • Examples of the anionic group having a counter cation include a carboxylic acid ion group having an ammonium ion as a counter cation.
  • the counter cation may be present in the compound represented by the above general formula (1) so that the charge of the entire compound becomes zero. This also applies to the compound represented by the general formula (2) and the compound represented by the general formula (3), which will be described later.
  • the zirconium alkoxide compound preferably contains at least one of an acetonate structure, an acetylate structure and a lactoto structure, and more preferably contains at least one of an acetonato structure and an acetylate structure.
  • the zirconium alkoxide compound preferably contains at least one of the compounds represented by the following general formula (2).
  • R 1b represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
  • an alkyl group, a cycloalkyl group, an acyl group, an aryl group and an unsaturated aliphatic group for example, an alkyl group, a cycloalkyl group, an acyl group, an aryl group and an unsaturated fatty group which can be taken as R 1a of the above general formula (1).
  • a family group can be adopted.
  • R 2b represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S2.
  • RS2 indicates a substituent.
  • an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group and a phosphonate group for example, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, which can be taken as R 2a of the above general formula (1), A phosphonate group can be adopted.
  • R S2 for example, it can be adopted a substituent which can be taken as R S1 of the general formula (1).
  • M2 is an integer from 0 to 3.
  • OR 2b has an acetonato structure.
  • This acetonato structure is synonymous with the acetonato structure described by the general formula (1).
  • Examples of the form in which OR 2b has an acetonato structure include compounds SZ-3 and SZ-6, which will be described later.
  • This acetato structure is synonymous with the acetato structure described by the general formula (1).
  • Examples of the form in which OR 2b has an acetato structure include SZ-7, which will be described later.
  • the compound SZ-5 corresponds to the form in which R 2b is an acyl group in the general formula (1). Further, in the above general formula (2), it is preferable that at least one of OR 2b has a lacto structure.
  • This lactato structure means a structure in which a lactic acid ion (lactoto) is used as a basic structure, and one hydrogen ion is removed from the basic structure to coordinate to Zr.
  • the above-mentioned "having a lactic acid ion as a basic structure” means that, in addition to the above-mentioned lactic acid ion, a structure in which a hydrogen atom of the above-mentioned lactic acid ion is substituted with a substituent is included.
  • the coordination atom coordinated to this Zr is usually an oxygen atom. Examples of the form in which OR 2b has a lacto structure include the compound SZ-4 described later.
  • zirconium alkoxide compound used in the present invention is not limited thereto.
  • Tetrapropoxyzirconium also known as zirconium tetra n-propoxide
  • Tetrabutoxyzirconium also known as zirconium tetra n-butoxide
  • Zirconium Tetra Acetylacetone
  • Zirconium Tributoxy Monoacetylacetone
  • Zirconium Dibutoxybis Acetylacetoneate
  • Zirconium Monobutoxy Acetylacetone Bis (Ethyl Acet Acetate)
  • Zirconium tributoxymonostearate also known as zirconium stearate n-butoxide
  • titanium alkoxide compound preferably contains at least one atom of N, P and S. It is also preferable that the titanium alkoxide compound has an acetato structure.
  • the titanium alkoxide compound preferably contains at least one of the compounds represented by the following general formula (3).
  • R 1c represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
  • an alkyl group, a cycloalkyl group, an acyl group, an aryl group and an unsaturated aliphatic group for example, an alkyl group, a cycloalkyl group, an acyl group, an aryl group and an unsaturated fatty group which can be taken as R 1a of the above general formula (1).
  • a family group can be adopted.
  • R 2c represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S3.
  • RS3 indicates a substituent.
  • an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group and a phosphonate group for example, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, which can be taken as R 2a of the above general formula (1), A phosphonate group can be adopted.
  • the substituent which can be taken as R S3 for example, it can be adopted a substituent which can be taken as R S1 of the general formula (1).
  • M3 is an integer from 0 to 3.
  • the compound represented by the above general formula (3) preferably contains at least one atom of N, P and S.
  • N it is preferable to have this N as an amino group.
  • P it is preferable to have this P as a phosphate group (phosphoric acid group) or a phosphonate group (phosphonic acid group).
  • S it is preferable to have this S as a sulfonyl group (-SO 2-).
  • R 2c acyl group
  • OR 2c acyl group as R 2c
  • Isopropyltriisostearoyl titanate Isopropyltridodecylbenzenesulfonyl titanate
  • Isopropyltrioctanoyl titanate Isopropyltri (dioctylphosphate) Titanate
  • Titanate Isopropyltri (dioctylsulfate) Titanate
  • Isopropyltricumylphenyl titanate Isopropyltri (N- Aminoethyl-aminoethyl) titanate isopropyl dimethacryl isostearoyl titanate isopropyl isostearoyl diacrylic titanate isobutyltrimethyl titanate diisostearoyl ethylene titanate diiso
  • the mass ratio of the tungsten carbide particles to the surface treatment agent in the component (C) is not particularly limited, and for example, the surface treatment agent is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the tungsten carbide particles. It is more preferably 1 to 80 parts by mass, and more preferably 1 to 50 parts by mass from the viewpoint of suppressing the decrease in sound velocity of the acoustic matching sheet and reducing the variation in the acoustic characteristics of the acoustic matching sheet. It is more preferably parts by mass, and even more preferably 10 to 50 parts by mass.
  • the mass ratio of the tungsten carbide particles in the component (C) to the surface treatment agent is synonymous with the mass ratio of the amount of the tungsten carbide particles used in the surface treatment to the surface treatment agent.
  • the mass ratio of the tungsten carbide particles in the component (C) to the surface treatment agent is such that the organic component is removed by heating the component (C) to 500 ° C. or higher by thermal mass measurement (TGA) or the like to remove the inorganic component (tungsten).
  • TGA thermal mass measurement
  • Carbide particles can be obtained and calculated from the mass of the tungsten carbide particles and the mass of the component (C).
  • a surface treatment agent other than the above-mentioned surface treatment agent may be used as long as the effect of the present invention is not impaired.
  • the surface treatment method itself can be carried out by a conventional method.
  • the component (C) it is not necessary that the entire surface of the tungsten carbide particles is treated with a surface treatment agent, and for example, it is preferable that 50% or more of the surface area of the tungsten carbide particles is surface-treated. 70% or more is more preferable, and 90% or more is further preferable.
  • the component (C) may be used alone or in combination of two or more. Of the total content of each of the components (A) to (C) of 100 parts by mass, the content of the component (C) is preferably 60 parts by mass or more, more preferably 70 parts by mass or more from the viewpoint of further increasing the acoustic impedance.
  • the content of the component (C) is preferably 98 parts by mass or less, more preferably 95 parts by mass or less, and further preferably 94 parts by mass or less. preferable.
  • the contents of the components (A) and (B) in 100 parts by mass of the total contents of the components (A) to (C) are preferably in the following range.
  • the content of the component (A) is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and further preferably 4 parts by mass or more. Further, 10 parts by mass or less is preferable, 9 parts by mass or less is more preferable, and 8 parts by mass or less is further preferable.
  • the content of the component (B) is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, and further preferably 0.14 parts by mass or more. Further, 4 parts by mass or less is preferable, 3 parts by mass or less is more preferable, and 2.5 parts by mass or less is further preferable.
  • Tungsten carbide particles may be surface-modified by contacting the tungsten carbide particles with an oxidizing agent in an aqueous solution.
  • the surface modification step is a step of bringing the tungsten carbide particles into contact with an oxidizing agent in an aqueous solution to obtain modified tungsten carbide particles.
  • the pH of the aqueous solution is, for example, more than 7, preferably 10 or more, more preferably 12 or more, further preferably more than 12, particularly preferably 13 or more, and most preferably more than 13.
  • the upper limit of the pH of the aqueous solution is not limited, and is, for example, 14 or less.
  • the pH of the aqueous solution means the pH of the aqueous solution in a state containing the tungsten carbide particles and the oxidizing agent. That is, the aqueous solution contains at least water, tungsten carbide particles, and an oxidizing agent.
  • the time for contacting the tungsten carbide particles with the oxidizing agent in the above aqueous solution is preferably 0.1 to 24 hours, more preferably 0.5 to 10 hours, and even more preferably 1.5 to 6 hours.
  • the temperature of the aqueous solution when the tungsten carbide particles are brought into contact with the oxidizing agent is preferably 1 to 95 ° C, more preferably 25 to 80 ° C, and even more preferably 45 to 65 ° C.
  • a crusher or a crusher such as a locking mill, a piece mill, a ball mill, a henschel mixer, a jet mill, a stirrer, or a paint conditioner.
  • An example is a method in which the aqueous agent is circulated by a pump and brought into contact with each other.
  • a method of bringing the tungsten carbide particles into contact with the oxidizing agent in the aqueous solution a method may be selected in which the tungsten carbide particles or the modified tungsten carbide particles are not destroyed as much as possible in the aqueous solution.
  • the term "destruction" as used herein means, for example, that when the tungsten carbide particles to be treated are agglomerated tungsten carbide particles, the agglomerated form is destroyed. It is preferable that the tungsten carbide particles and the oxidizing agent are brought into contact with each other in the aqueous solution, and then the obtained modified tungsten carbide particles are taken out from the aqueous solution.
  • the method of extracting the modified tungsten carbide particles from the aqueous solution includes a method of filtering the aqueous solution and separating (filtering) the modified tungsten carbide particles as a filter medium. It is also preferable to wash the removed modified tungsten carbide particles with water and / or an organic solvent or the like.
  • the aqueous solution contains an oxidizing agent.
  • oxidizing agent for example, persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; nitrates such as cerium ammonium nitrate, sodium nitrate, and ammonium nitrate; hydrogen peroxide, and tert.
  • persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate
  • nitrates such as cerium ammonium nitrate, sodium nitrate, and ammonium nitrate
  • hydrogen peroxide and tert.
  • the oxidizing agent preferably contains a persulfate, and more preferably a persulfate. Further, in order to assist the action of the oxidant, a catalyst may be used separately from the oxidant.
  • the catalyst examples include a divalent iron compound (FeSO 4, etc.) and a trivalent iron compound.
  • the oxidizing agent and / or the catalyst may be a hydrate.
  • the standard oxidation-reduction potential of the oxidizing agent is preferably 0.30 V or more, more preferably 1.50 V or more, and further preferably 1.70 or more.
  • the standard redox potential is based on the standard hydrogen electrode.
  • the content of the oxidizing agent in the aqueous solution is preferably 0.05 to 20 parts by mass, more preferably 0.1 to 20 parts by mass, and further preferably 1 to 20 parts by mass with respect to 100 parts by mass of water in the aqueous solution.
  • the oxidizing agent may be used alone or in combination of two or more.
  • the aqueous solution contains a catalyst, the content thereof is preferably 0.005 to 2 parts by mass, more preferably 0.01 to 2 parts by mass, and 0.1 to 2 parts by mass with respect to 100 parts by mass of water in the aqueous solution. Parts by mass are more preferred.
  • the content of the catalyst in the aqueous solution is preferably 0.1 to 80 parts by mass, more preferably 1 to 50 parts by mass, and even more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the oxidizing agent in the aqueous solution.
  • the catalyst may be used alone or in combination of two or more.
  • the amount of the oxidizing agent to be brought into contact with the tungsten carbide particles is preferably 0.1 to 1000 parts by mass, more preferably 1 to 250 parts by mass, and 15 to 120 parts by mass with respect to 100 parts by mass of the tungsten carbide particles. More preferred.
  • Alkaline source Alkaline source
  • the aqueous solution preferably contains an alkaline source in addition to the above components in order to adjust the pH of the aqueous solution.
  • alkali source examples include alkali metal hydroxides (sodium hydroxide and the like), inorganic bases such as alkaline earth metal hydroxides; and organic bases.
  • the content of the alkali source in the aqueous solution may be appropriately adjusted so that the pH of the aqueous solution can be adjusted to a desired temperature. For example, 0.1 to 10 parts by mass with respect to 100 parts by mass of water in the aqueous solution. Is.
  • examples of the material of the present invention include curing retarders, dispersants, pigments, dyes, antistatic agents, antioxidants, flame retardants, and thermal conductivity improvers. ..
  • the mixing method is not particularly limited as long as each component can be substantially uniformly mixed.
  • the desired uniform mixing can be achieved by kneading using a rotation / revolution stirrer. By curing this mixture while molding it, an acoustic matching sheet or a precursor thereof can be prepared.
  • the material of the present invention is, for example, a set for an acoustic matching layer containing a main agent containing the component (A) and the component (C) and a curing agent for the component (B) (referred to as the above-mentioned form (ii)).
  • the main agent can be obtained by mixing the component (A) and the component (C).
  • the acoustic matching sheet or its precursor can be prepared by mixing the main agent and the curing agent, molding and curing the mixture.
  • the acoustic matching sheet of the present invention can be obtained by molding a mixture of the above components, curing the mixture, and then cutting, dicing, or the like to a desired thickness or shape, if necessary. Further, the acoustic matching sheet can be further processed into a desired shape by a conventional method. Specifically, for example, the material of the present invention is molded into a desired sheet shape in a low temperature region where a curing reaction does not occur or in a low temperature region where the curing rate is sufficiently slow.
  • the acoustic matching sheet to be formed is preferably a cured product obtained by curing a mixture of the components constituting the material of the present invention.
  • This acoustic matching sheet is used as an acoustic matching layer of the acoustic wave probe. The configuration of the acoustic wave probe including the acoustic matching layer will be described later.
  • the acoustic wave probe of the present invention has the acoustic matching sheet of the present invention as at least one layer of the acoustic matching layer.
  • An example of the configuration of the acoustic wave probe of the present invention is shown in FIG.
  • the acoustic wave probe shown in FIG. 1 is an ultrasonic probe in an ultrasonic diagnostic apparatus.
  • the ultrasonic probe is a probe that uses ultrasonic waves as an acoustic wave in the acoustic wave probe. Therefore, the basic structure of the ultrasonic probe can be applied as it is to the acoustic wave probe.
  • the ultrasonic probe 10 is a main component of an ultrasonic diagnostic apparatus, and has a function of generating ultrasonic waves and transmitting and receiving an ultrasonic beam. As shown in FIG. 1, the structure of the ultrasonic probe 10 is provided in the order of the acoustic lens 1, the acoustic matching layer 2, the piezoelectric element layer 3, and the backing material 4 from the tip (the surface in contact with the living body to be inspected). ing. In recent years, for the purpose of receiving high-order harmonics, a transmitting ultrasonic vibrator (piezoelectric element) and a receiving ultrasonic vibrator (piezoelectric element) are made of different materials to form a laminated structure. Has also been proposed.
  • the piezoelectric element layer 3 is a portion that generates ultrasonic waves, and electrodes are attached to both sides of the piezoelectric element, and when a voltage is applied, the piezoelectric element repeatedly expands and contracts and expands to vibrate, thereby generating ultrasonic waves. do.
  • the material constituting the piezoelectric element quartz, LiNbO 3, a single crystal such as LiTaO 3, and KNbO 3, thin film and Pb (Zr, Ti), such as ZnO and AlN sintered body such as O 3 system was polarized, So-called ceramic inorganic piezoelectric materials are widely used.
  • piezoelectric ceramics such as PZT: lead zirconate titanate having high conversion efficiency are used.
  • the piezoelectric element that detects the received wave on the high frequency side needs a sensitivity with a wider bandwidth. Therefore, as a piezoelectric element suitable for high frequency and wide band, an organic piezoelectric material using an organic polymer substance such as polyvinylidene fluoride (PVDF) is used as a piezoelectric element suitable for high frequency and wide band.
  • PVDF polyvinylidene fluoride
  • Japanese Patent Application Laid-Open No. 2011-071842 and the like utilize MEMS (Micro Electro Mechanical Systems) technology, which exhibits excellent short pulse characteristics and wideband characteristics, is excellent in mass productivity, and can obtain an array structure with little variation in characteristics.
  • MEMS Micro Electro Mechanical Systems
  • cMUT is described.
  • any piezoelectric element material can be preferably used.
  • the backing material 4 is provided on the back surface of the piezoelectric element layer 3 and shortens the pulse width of the ultrasonic wave by suppressing excessive vibration, which contributes to the improvement of the distance resolution in the ultrasonic diagnostic image.
  • the acoustic matching layer 2 is provided in order to reduce the difference in acoustic impedance between the piezoelectric element layer 3 and the subject to be inspected and to efficiently transmit and receive ultrasonic waves.
  • the acoustic lens 1 is provided to focus ultrasonic waves in the slice direction by utilizing refraction and improve the resolution.
  • the ultrasonic waves should be in close contact with the living body to be examined and matched with the acoustic impedance of the living body (1.4 to 1.7 Milly in the human body), and the amount of ultrasonic attenuation of the acoustic lens 1 itself should be small. Is required.
  • the material of the acoustic lens 1 As the material of the acoustic lens 1, the sound velocity is sufficiently smaller than the sound velocity of the human body, the attenuation of ultrasonic waves is small, and the acoustic impedance is close to the value of the skin of the human body, so that ultrasonic waves can be transmitted and received. Sensitivity is increased.
  • the operation of the ultrasonic probe 10 having such a configuration will be described.
  • a voltage is applied to the electrodes provided on both sides of the piezoelectric element to resonate the piezoelectric element layer 3, and an ultrasonic signal is transmitted from the acoustic lens to the subject to be inspected.
  • the piezoelectric element layer 3 is vibrated by the reflected signal (echo signal) from the test object, and this vibration is electrically converted into a signal to obtain an image.
  • the acoustic wave probe of the present invention can be produced by a conventional method except that the material of the present invention is used. That is, the method for manufacturing an acoustic wave probe of the present invention includes forming an acoustic matching layer on the piezoelectric element side using the material of the present invention.
  • the piezoelectric element can be provided on the backing material by a conventional method.
  • an acoustic lens is formed on the acoustic matching layer by a conventional method using a material for forming the acoustic lens.
  • the acoustic wave measuring device of the present invention has the acoustic wave probe of the present invention.
  • the acoustic wave measuring device has a function of displaying the signal strength of the signal received by the acoustic wave probe and imaging the signal. It is also preferable that the acoustic wave measuring device of the present invention is an ultrasonic measuring device using an ultrasonic probe.
  • the present invention will be described in more detail below based on an example in which ultrasonic waves are used as acoustic waves.
  • the present invention is not limited to ultrasonic waves, and an acoustic wave having an audible frequency may be used as long as an appropriate frequency is selected according to the test object, measurement conditions, and the like.
  • ED-7 type auto-excel homogenizer (trade name) manufactured by Nippon Seiki Co., Ltd.
  • the mixture is stirred at a rotation speed of 10,000 rpm for 60 minutes while cooling so that the liquid temperature does not exceed 50 ° C.
  • surface treatment was performed while crushing.
  • the mixture after stirring and pulverizing above is filtered off, and the obtained solid is heated and dried at 100 ° C. for 30 minutes to obtain powdery surface-treated tungsten carbide particles (C-1) (component (C)). rice field.
  • the surface-treated tungsten carbide particles (C-) were prepared in the same manner as the surface-treated tungsten carbide particles (C-1) except that the raw materials were used in the compositions shown in Table 1 below. 2)-(C-30) were prepared. Tables 1-1 to 1-6 below are collectively referred to as Table 1.
  • Tables 1-1 to 1-6 below are collectively referred to as Table 1.
  • 10.0 parts by mass of the raw material tungsten carbide particles were used.
  • the surface treatment could not be sufficiently performed and the particles were aggregated and could not be used.
  • Preparation Example of Surface-treated Tungsten Carbide Particles (C-31) Tungsten Carbide Particles (50 g) were added to NaOH water (NaOH: 40 g / water: 400 ml) and stirred. After further adding sodium persulfate water (sodium persulfate: 9.6 g / water: 100 ml) to the above NaOH water, the temperature of the above NaOH water was raised to 50 ° C., and the mixture was further stirred for 3 hours (denaturation step). A three-one motor manufactured by Shinto Kagaku Co., Ltd. was used for stirring, and the stirring was performed at 150 rpm.
  • the tungsten carbide particles in the NaOH water are collected by filtration, and the collected tungsten carbide particles are washed with water (500 ml) and acetonitrile (250 ml) to modify the tungsten carbide. Obtained particles.
  • Surface-treated tungsten carbide particles (C-1) were prepared in the same manner as the surface-treated tungsten carbide particles (C-1), except that modified tungsten carbide particles were used instead of the tungsten carbide particles.
  • Particles (C-31) were prepared.
  • the surface-treated tungsten carbide particles (C-31) were prepared in the same manner as the surface-treated tungsten carbide particles (C-31) except that the raw materials were used in the compositions shown in Table 1 below. 32)-(C-48) were prepared.
  • SL-1 Aluminum trisec-butyrate (manufactured by Kawaken Fine Chemicals, trade name "ASBD”)
  • SA-2 N-Trimethoxysilylpropyl-N, N, N-trimethylammonium chloride (manufactured by Gelest, trade name "SIT8415.0", 50% aqueous methanol solution)
  • SC-1 Methyltrichlorosilane
  • SC-3 Vinyltrichlorosilane
  • a reference acoustic matching sheet (thickness 1 mm) used for the evaluation of Example 1 was prepared in the same manner as the sheet, and used in Test Example 2 described later.
  • (2) Preparation of Reference Acoustic Matching Sheet Used for Evaluation of Examples 2 to 60 and Comparative Examples 1 to 5 In the preparation of the reference acoustic matching sheet used in Example 1, the compounding ratio of the epoxy resin and the curing agent is shown in Table 1.
  • the reference acoustic matching sheet used for the evaluation of Examples 2 to 60 and Comparative Examples 1 to 5 was prepared in the same manner as the preparation of the reference acoustic matching sheet used for the evaluation of Example 1 except that the compounding ratio was changed to. ..
  • Rate of decrease in sound velocity 100 ⁇ (Arithmetic mean value of sound velocity of reference acoustic matching sheet-Arithmetic mean value of sound velocity of acoustic matching sheet of Example or Comparative Example) / Arithmetic mean value of sound velocity of reference acoustic matching sheet -Evaluation criteria- S: Less than 5% A: 5% or more and less than 7% B: 7% or more and less than 9% C: 9% or more and less than 11% D: 11% or more and less than 13% E: 13% or more and less than 15% F: 15% or more
  • Test Example 2 Variation in Acoustic Impedance (AI) A test piece of 10 mm ⁇ 10 mm was cut out from each sound velocity measurement target (circle with a diameter of 1.5 cm) of Test Example 1 above. The density of the test piece at 25 ° C. is measured by using an electronic hydrometer (manufactured by Alpha Mirage Co., Ltd., trade name "SD-200L") according to the density measurement method of method A (underwater substitution method) described in JIS K7112 (1999). Measured using.
  • SD-200L electronic hydrometer
  • the acoustic impedance (density x sound velocity) was calculated for each of the three circular regions, the standard deviations of the three acoustic impedances were obtained, and the variations in acoustic characteristics were applied to the following evaluation criteria. Was evaluated. A to C pass this test. The results are shown in Table 2 below.
  • Example “CEX” Comparative Example Particle size: Average primary particle size "php”: 100 ⁇ Mass part of surface treatment agent / 100 parts by mass of tungsten carbide particles Comparative Example 1 is W-2 (untreated tungsten). Carbide particles) are listed in the component (C) line for comparison.
  • Epoxy resin (A-1): Bisphenol A diglycidyl ether (“jER825” (trade name) manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 170) (A-2): Bisphenol F diglycidyl ether (“EPICLON 830” (trade name) manufactured by DIC Corporation, epoxy equivalent 170) (A-3): Epoxy novolak resin (manufactured by Sigma-Aldrich, product number 406775, epoxy equivalent 170)
  • B-1 Isophorone diamine
  • B-2 Triethylenetetramine
  • B-3 2,4,6-Tris (dimethylaminomethyl) phenol (manufactured by Nacalai Tesque, trade name "Rubeac DMP-30")
  • B-4 Polyamide amine (manufactured by DIC Corporation, trade name "laccamide EA-330")
  • B-5) Mensen Diamine
  • B-6) m-phenylenediamine
  • B-7) Polyetheramine T-403 (trade name, manufactured by BASF)
  • B-8) 2-Ethyl-4-methylimidazole
  • B-9) Hexahydrophthalic anhydride (manufactured by New Japan Chemical Corporation, trade name "Ricacid HH”)
  • the acoustic matching sheet of Comparative Example 1 using the untreated tungsten carbide particles had a remarkable decrease in sound velocity and a large variation in AI.
  • the acoustic matching sheet of Comparative Example 2 using tungsten carbide particles surface-treated with methyltrichlorosilane had poor compatibility when the particles were mixed with an epoxy resin, and the particles were unevenly dispersed due to heat generation. As a result, the sound velocity dropped significantly, and the AI variation was large.
  • the sound velocity was significantly reduced, and the AI variation was large.
  • all of the acoustic matching sheets of Examples 1 to 60 using the surface-treated tungsten carbide particles specified in the present invention can effectively suppress the decrease in sound velocity and can also suppress the variation in acoustic characteristics. I know I can do it. All of the acoustic matching sheets of Examples 1 to 60 had sufficient AI to be used as the acoustic matching layer on the piezoelectric element side.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Gynecology & Obstetrics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: a material for an acoustic matching layer; an acoustic matching sheet; an acoustic wave probe; an ultrasonic probe; an acoustic wave measuring device; an ultrasonic diagnostic device; and a method for producing an acoustic wave probe, by which the acoustic impedance of an acoustic matching sheet obtained by suppressing the decrease in sound velocity due to the addition of tungsten carbide particles can be effectively increased while using, as a metal filler, the tungsten carbide particles having a high specific gravity, and variations in the acoustic characteristics within the acoustic matching sheet can also be suppressed. The material for an acoustic matching layer contains the following components (A), (B), and (C). (A) Epoxy resin (B) Curing agent (C) Surface-treated tungsten carbide particles which are surface-treated with a surface treating agent containing at least one among an aminosilane compound, a mercaptosilane compound, an isocyanatosilane compound, a thiocyanatosilane compound, an aluminum alkoxide compound, a zirconium alkoxide compound, and a titanium alkoxide compound

Description

音響整合層用材料、音響整合シート、音響波プローブ、超音波プローブ、音響波測定装置、及び、超音波診断装置、並びに、音響波プローブの製造方法Material for acoustic matching layer, acoustic matching sheet, acoustic wave probe, ultrasonic probe, acoustic wave measuring device, ultrasonic diagnostic device, and manufacturing method of acoustic wave probe.
 本発明は、音響整合層用材料、音響整合シート、音響波プローブ、超音波プローブ、音響波測定装置、及び、超音波診断装置、並びに、音響波プローブの製造方法に関する。 The present invention relates to a material for an acoustic matching layer, an acoustic matching sheet, an acoustic wave probe, an ultrasonic probe, an acoustic wave measuring device, an ultrasonic diagnostic device, and a method for manufacturing an acoustic wave probe.
 音響波測定装置には、音響波を生体等の被検対象に照射し、その反射波(エコー)を受信して信号を出力する音響波プローブが用いられる。この音響波プローブにより受信した反射波は電気信号に変換され、画像として表示される。したがって、音響波プローブを用いることにより、被検対象内部を映像化して観察することができる。 The acoustic wave measuring device uses an acoustic wave probe that irradiates an object to be inspected such as a living body with an acoustic wave, receives the reflected wave (echo), and outputs a signal. The reflected wave received by this acoustic wave probe is converted into an electric signal and displayed as an image. Therefore, by using the acoustic wave probe, the inside of the test object can be visualized and observed.
 音響波としては、超音波、光音響波などが、被検対象に応じて、また測定条件に応じて適宜に選択される。
 例えば、音響波測定装置の1種である超音波診断装置は、被検対象内部に向けて超音波を送信し、被検対象内部の組織で反射された超音波を受信し、画像として表示する。
 また、音響波測定装置の1種である光音響波測定装置は、光音響効果によって被検対象内部から放射される音響波を受信し、画像として表示する。光音響効果とは、可視光、近赤外光又はマイクロ波等の電磁波パルスを被検対象に照射したときに、被検対象が電磁波を吸収して発熱し、熱膨張することにより音響波(典型的には超音波)が発生する現象である。
As the acoustic wave, ultrasonic waves, photoacoustic waves, and the like are appropriately selected according to the test object and the measurement conditions.
For example, an ultrasonic diagnostic device, which is a kind of acoustic wave measuring device, transmits ultrasonic waves toward the inside of the test object, receives the ultrasonic waves reflected by the tissue inside the test target, and displays them as an image. ..
Further, the photoacoustic wave measuring device, which is a kind of acoustic wave measuring device, receives the acoustic wave radiated from the inside of the test object by the photoacoustic effect and displays it as an image. The photoacoustic effect is an acoustic wave (acoustic wave) when an electromagnetic wave pulse such as visible light, near-infrared light, or microwave is applied to an object to be examined, and the object to be examined absorbs the electromagnetic wave to generate heat and thermally expand. This is a phenomenon in which electromagnetic waves are typically generated.
 音響波測定装置は、被検対象との間で音響波の送受信を行うため、音響波プローブには被検対象(典型的には人体)と音響インピーダンスの整合させることが要求される。この要求を満たすために、音響波プローブには音響整合層が設けられる。このことを音響波プローブの1種である超音波診断装置用探触子(超音波プローブとも称される)を例に説明する。
 超音波プローブは、超音波を送受信する圧電素子と、生体に接触する音響レンズとを備え、圧電素子と音響レンズとの間には音響整合層が配されている。圧電素子から発振される超音波は音響整合層を透過し、さらに音響レンズを透過して生体に入射される。音響レンズと生体との間の音響インピーダンス(密度×音速)には通常は差がある。この差が大きいと、超音波が生体表面で反射されやすく、超音波の生体内への入射効率が低下してしまう。そのため、音響レンズには生体に近い音響インピーダンス特性が求められる。
 他方、圧電素子と生体との間の音響インピーダンスの差は一般に大きい。それゆえ、圧電素子と音響レンズとの間の音響インピーダンスの差も通常は大きなものとなる。したがって、圧電素子と音響レンズとの積層構造とした場合には、圧電素子から発せられた超音波は音響レンズ表面で反射し、超音波の生体への入射効率は低下する。この超音波の反射を抑制するために、圧電素子と音響レンズとの間には上記の音響整合層が設けられる。音響整合層の音響インピーダンスは生体又は音響レンズの音響インピーダンスと圧電素子の音響インピーダンスとの間の値をとり、これにより圧電素子から生体への超音波の伝播が効率化する。また、近年では、音響整合層を、音響整合シート(シート状の音響整合層材)を複数積層させた複層構造として、圧電素子側から音響レンズ側に向けて音響インピーダンスに傾斜を設けることにより、超音波の伝播をより効率化した音響整合層の開発が進められている。
Since the acoustic wave measuring device transmits and receives acoustic waves to and from the test object, the acoustic wave probe is required to match the acoustic impedance with the test target (typically the human body). To meet this requirement, the acoustic wave probe is provided with an acoustic matching layer. This will be described by taking as an example a probe for an ultrasonic diagnostic apparatus (also referred to as an ultrasonic probe), which is a kind of acoustic wave probe.
The ultrasonic probe includes a piezoelectric element that transmits and receives ultrasonic waves and an acoustic lens that comes into contact with a living body, and an acoustic matching layer is arranged between the piezoelectric element and the acoustic lens. The ultrasonic waves oscillated from the piezoelectric element pass through the acoustic matching layer, further pass through the acoustic lens, and are incident on the living body. There is usually a difference in the acoustic impedance (density x speed of sound) between the acoustic lens and the living body. If this difference is large, the ultrasonic waves are easily reflected on the surface of the living body, and the incident efficiency of the ultrasonic waves into the living body is lowered. Therefore, the acoustic lens is required to have an acoustic impedance characteristic close to that of a living body.
On the other hand, the difference in acoustic impedance between the piezoelectric element and the living body is generally large. Therefore, the difference in acoustic impedance between the piezoelectric element and the acoustic lens is usually large. Therefore, in the case of a laminated structure of the piezoelectric element and the acoustic lens, the ultrasonic waves emitted from the piezoelectric element are reflected on the surface of the acoustic lens, and the incident efficiency of the ultrasonic waves on the living body is lowered. In order to suppress the reflection of this ultrasonic wave, the above-mentioned acoustic matching layer is provided between the piezoelectric element and the acoustic lens. The acoustic impedance of the acoustic matching layer takes a value between the acoustic impedance of the living body or the acoustic lens and the acoustic impedance of the piezoelectric element, thereby improving the efficiency of propagation of ultrasonic waves from the piezoelectric element to the living body. Further, in recent years, the acoustic matching layer has a multi-layer structure in which a plurality of acoustic matching sheets (sheet-shaped acoustic matching layer materials) are laminated, and the acoustic impedance is inclined from the piezoelectric element side to the acoustic lens side. , The development of an acoustic matching layer with more efficient propagation of ultrasonic waves is underway.
 音響整合層の音響インピーダンスは、音響整合層の形成材料に金属粒子等のフィラーを配合することにより調整することができる。例えば特許文献1には、エポキシ樹脂等の樹脂を含む結着剤と表面処理金属粒子とを含有する、音響整合層用樹脂組成物が記載されている。 The acoustic impedance of the acoustic matching layer can be adjusted by blending a filler such as metal particles with the material for forming the acoustic matching layer. For example, Patent Document 1 describes a resin composition for an acoustic matching layer containing a binder containing a resin such as an epoxy resin and surface-treated metal particles.
国際公開第2019/088148号International Publication No. 2019/088148
 複層構造の音響整合層では、上述の音響インピーダンスの傾斜は、圧電素子に近いほど音響整合シートの音響インピーダンスが大きく、音響レンズに近いほど音響整合シートの音響インピーダンスが小さくなるように設計される。すなわち、圧電素子側では圧電素子の音響インピーダンス(通常は、25Mrayl程度)に近く、音響レンズ側では生体の音響インピーダンス(人体では、1.4~1.7Mrayl)に近い音響整合シートが、それぞれ求められる。
 音響整合シートの音響インピーダンスは、シート構成材料の密度と音速とを乗じて決定される。したがって、圧電素子側に用いる音響整合シートの音響インピーダンスを高めようとした場合、高密度で、高音速の材料を用いることが考えられる。しかし、音響インピーダンスを高めるため、比重の大きい金属等のフィラーを音響整合シートに含有させると、シートの密度を向上させることができる一方で、シートの音速が低下することが分かってきた。そのため、音響整合シートに比重の大きい金属等のフィラーを用いる場合、このシートを圧電素子側に用いるためには、上述した音速の低下を抑制することが必要である。しかし、特許文献1には、この点に関する記載はない。
In the multi-layered acoustic matching layer, the above-mentioned gradient of the acoustic impedance is designed so that the closer to the piezoelectric element, the larger the acoustic impedance of the acoustic matching sheet, and the closer to the acoustic lens, the smaller the acoustic impedance of the acoustic matching sheet. .. That is, an acoustic matching sheet close to the acoustic impedance of the piezoelectric element (usually about 25 mile) on the piezoelectric element side and close to the acoustic impedance of the living body (1.4 to 1.7 mile in the human body) on the acoustic lens side is obtained. Be done.
The acoustic impedance of an acoustic matching sheet is determined by multiplying the density of the sheet constituent materials and the speed of sound. Therefore, when trying to increase the acoustic impedance of the acoustic matching sheet used on the piezoelectric element side, it is conceivable to use a material having a high density and a high sound velocity. However, it has been found that when a filler such as a metal having a large specific gravity is contained in the acoustic matching sheet in order to increase the acoustic impedance, the density of the sheet can be improved, but the sound velocity of the sheet is lowered. Therefore, when a filler such as a metal having a large specific gravity is used for the acoustic matching sheet, it is necessary to suppress the above-mentioned decrease in sound velocity in order to use this sheet on the piezoelectric element side. However, Patent Document 1 does not describe this point.
 本発明は、金属フィラーとして比重の大きいタングステンカーバイド粒子を用いながら、タングステンカーバイド粒子の配合に起因する音速の低下を抑制して得られる音響整合シートの音響インピーダンスを効果的に高めることができ、この音響整合シート内における音響特性のばらつきも抑えることができる音響整合層用材料を提供することを課題とする。
 また本発明は、金属フィラーとしてタングステンカーバイド粒子を用いながら、タングステンカーバイド粒子の配合に起因する音速の低下が抑制されて音響インピーダンスが効果的に高められ、シート内における音響特性のばらつきも少ない音響整合シートを提供することを課題とする。
 また本発明は、上記音響整合シートを用いた音響波プローブ及び超音波プローブ、及びこれらを用いた音響波測定装置及び超音波診断装置を提供することを課題とする。
 また本発明は、上記音響整合層用材料を用いた音響波プローブの製造方法を提供することを課題とする。
INDUSTRIAL APPLICABILITY The present invention can effectively increase the acoustic impedance of an acoustic matching sheet obtained by suppressing a decrease in sound velocity due to the blending of tungsten carbide particles while using tungsten carbide particles having a large specific gravity as a metal filler. An object of the present invention is to provide a material for an acoustic matching layer that can suppress variations in acoustic characteristics in an acoustic matching sheet.
Further, in the present invention, while using tungsten carbide particles as the metal filler, the decrease in sound velocity due to the compounding of the tungsten carbide particles is suppressed, the acoustic impedance is effectively enhanced, and the acoustic matching with little variation in the acoustic characteristics in the sheet is performed. The task is to provide a sheet.
Another object of the present invention is to provide an acoustic wave probe and an ultrasonic probe using the acoustic matching sheet, and an acoustic wave measuring device and an ultrasonic diagnostic device using these.
Another object of the present invention is to provide a method for manufacturing an acoustic wave probe using the above-mentioned material for an acoustic matching layer.
 本発明者らは上記課題に鑑み鋭意検討した結果、エポキシ樹脂と硬化剤とを、特定の表面処理剤で処理したタングステンカーバイド粒子の存在下で硬化反応させて音響整合シートを作製すると、タングステンカーバイド粒子の含有により通常生じる音速の低下を抑えることができること、また、この音響整合シートは音響特性のばらつきも少ないことを見出した。本発明は、これらの知見に基づき完成されるに至ったものである。 As a result of diligent studies in view of the above problems, the present inventors have prepared an acoustic matching sheet by subjecting an epoxy resin and a curing agent to a curing reaction in the presence of tungsten carbide particles treated with a specific surface treatment agent. It has been found that the decrease in sound velocity that normally occurs due to the inclusion of particles can be suppressed, and that this acoustic matching sheet has little variation in acoustic characteristics. The present invention has been completed based on these findings.
 本発明の上記課題は下記の手段により解決された。
<1>
 下記成分(A)、(B)及び(C)を含有する音響整合層用材料。
 (A)エポキシ樹脂
 (B)硬化剤
 (C)アミノシラン化合物、メルカプトシラン化合物、イソシアナトシラン化合物、チオシアナトシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうち少なくとも1種を含む表面処理剤で表面処理された表面処理タングステンカーバイド粒子
<2>
 上記成分(B)が、一級アミン及び二級アミンの少なくとも1種を含む、<1>に記載の音響整合層用材料。
<3>
 上記表面処理剤が、アミノシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種を含む、<1>又は<2>に記載の音響整合層用材料。
<4>
 上記表面処理剤が、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種を含む、<1>~<3>のいずれか1つに記載の音響整合層用材料。
<5>
 上記表面処理剤が、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種を含む、<1>~<4>のいずれか1つに記載の音響整合層用材料。
<6>
 上記アルミニウムアルコキシド化合物が、アセトナト構造及びアセタト構造のうちの少なくとも1種を含む、<1>~<5>のいずれか1つに記載の音響整合層用材料。
<7>
 上記アルミニウムアルコキシド化合物が、下記一般式(1)で表される化合物の少なくとも1種を含む、<1>~<6>のいずれか1つに記載の音響整合層用材料。
       一般式(1): R1a m1-Al-(OR2a3-m1
 R1aは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
 R2aは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS1を示す。RS1は置換基を示す。
 m1は0~2の整数である。
<8>
 上記ジルコニウムアルコキシド化合物が、アセトナト構造及びアセタト構造のうちの少なくとも1種を含む、<1>~<7>のいずれか1つに記載の音響整合層用材料。
<9>
 上記ジルコニウムアルコキシド化合物が、下記一般式(2)で表される化合物の少なくとも1種を含む、<1>~<8>のいずれか1つに記載の音響整合層用材料。
       一般式(2): R1b m2-Zr-(OR2b4-m2
 R1bは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
 R2bは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS2を示す。RS2は置換基を示す。
 m2は0~3の整数である。
<10>
 上記チタンアルコキシド化合物が、N、P及びSの少なくとも1種の原子を含む、<1>~<9>のいずれか1項に記載の音響整合層用材料。
<11>
 上記チタンアルコキシド化合物が、下記一般式(3)で表される化合物の少なくとも1種を含む、<1>~<10>のいずれか1つに記載の音響整合層用材料。
       一般式(3): R1c m3-Ti-(OR2c4-m3
 R1cは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
 R2cは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS3を示す。RS3は置換基を示す。
 m3は0~3の整数である。
<12>
 上記成分(C)中、上記表面処理剤の含有量が、タングステンカーバイド粒子100質量部に対し、1~50質量部である、<1>~<11>のいずれか1つに記載の音響整合層用材料。
<13>
 上記成分(C)を構成するタングステンカーバイド粒子の平均一次粒子径が1~10μmである、<1>~<12>のいずれか1つに記載の音響整合層用材料。
<14>
 <1>~<13>のいずれか1つに記載の音響整合層用材料を硬化させてなる音響整合シート。
<15>
 <14>に記載の音響整合シートを有する音響波プローブ。
<16>
 <14>に記載の音響整合シートを有する超音波プローブ。
<17>
 <15>に記載の音響波プローブを備える音響波測定装置。
<18>
 <15>に記載の音響波プローブを備える超音波診断装置。
<19>
 <1>~<13>のいずれか1つに記載の音響整合層用材料を用いて音響整合層を形成することを含む、音響波プローブの製造方法。
The above-mentioned problems of the present invention have been solved by the following means.
<1>
A material for an acoustic matching layer containing the following components (A), (B) and (C).
(A) Epoxy resin (B) Hardener (C) A surface containing at least one of an aminosilane compound, a mercaptosilane compound, an isocyanatosilane compound, a thiocyanatosilane compound, an aluminum alkoxide compound, a zirconium alkoxide compound and a titanium alkoxide compound. Surface-treated tungsten carbide particles surface-treated with a treatment agent <2>
The material for an acoustic matching layer according to <1>, wherein the component (B) contains at least one of a primary amine and a secondary amine.
<3>
The material for an acoustic matching layer according to <1> or <2>, wherein the surface treatment agent contains at least one of an aminosilane compound, an aluminum alkoxide compound, a zirconium alkoxide compound, and a titanium alkoxide compound.
<4>
The material for an acoustic matching layer according to any one of <1> to <3>, wherein the surface treatment agent contains at least one of an aluminum alkoxide compound, a zirconium alkoxide compound, and a titanium alkoxide compound.
<5>
The material for an acoustic matching layer according to any one of <1> to <4>, wherein the surface treatment agent contains at least one of a zirconium alkoxide compound and a titanium alkoxide compound.
<6>
The material for an acoustic matching layer according to any one of <1> to <5>, wherein the aluminum alkoxide compound contains at least one of an acetonate structure and an acetylate structure.
<7>
The material for an acoustic matching layer according to any one of <1> to <6>, wherein the aluminum alkoxide compound contains at least one compound represented by the following general formula (1).
General formula (1): R 1a m1- Al- (OR 2a ) 3-m1
R 1a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
R 2a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S1. RS1 represents a substituent.
m1 is an integer of 0 to 2.
<8>
The material for an acoustic matching layer according to any one of <1> to <7>, wherein the zirconium alkoxide compound contains at least one of an acetonate structure and an acetylate structure.
<9>
The material for an acoustic matching layer according to any one of <1> to <8>, wherein the zirconium alkoxide compound contains at least one compound represented by the following general formula (2).
General formula (2): R 1b m2- Zr- (OR 2b ) 4-m2
R 1b represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
R 2b represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S2. RS2 indicates a substituent.
m2 is an integer from 0 to 3.
<10>
The material for an acoustic matching layer according to any one of <1> to <9>, wherein the titanium alkoxide compound contains at least one atom of N, P and S.
<11>
The material for an acoustic matching layer according to any one of <1> to <10>, wherein the titanium alkoxide compound contains at least one compound represented by the following general formula (3).
General formula (3): R 1c m3- Ti- (OR 2c ) 4-m3
R 1c represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
R 2c represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S3. RS3 indicates a substituent.
m3 is an integer from 0 to 3.
<12>
The acoustic matching according to any one of <1> to <11>, wherein the content of the surface treatment agent in the component (C) is 1 to 50 parts by mass with respect to 100 parts by mass of the tungsten carbide particles. Material for layers.
<13>
The material for an acoustic matching layer according to any one of <1> to <12>, wherein the tungsten carbide particles constituting the component (C) have an average primary particle size of 1 to 10 μm.
<14>
An acoustic matching sheet obtained by curing the material for an acoustic matching layer according to any one of <1> to <13>.
<15>
An acoustic wave probe having the acoustic matching sheet according to <14>.
<16>
An ultrasonic probe having the acoustic matching sheet according to <14>.
<17>
An acoustic wave measuring device including the acoustic wave probe according to <15>.
<18>
An ultrasonic diagnostic apparatus including the acoustic wave probe according to <15>.
<19>
A method for manufacturing an acoustic wave probe, which comprises forming an acoustic matching layer using the material for an acoustic matching layer according to any one of <1> to <13>.
 本明細書の説明において、「金属アルコキシド化合物(具体的には、例えば、後述のチタンアルコキシド化合物、アルミニウムアルコキシド化合物及びジルコニウムアルコキシド化合物)」とは、金属原子にアルコキシ基が少なくとも1つ結合した構造を有する化合物を意味する。このアルコキシ基は置換基を有していてもよい。この置換基は1価でもよく、2価(例えばアルキリデン基)でもよい。また、1つの金属原子に結合する2つのアルコキシ基が互いに結合して環を形成していてもよい。
 本明細書の説明において、特に断りがない限り、化合物を示す一般式に複数の同一符号の基が存在する場合、これらは互いに同一であっても異なってもよい。また、各基が示す基(例えば、アルキル基)はさらに置換基を有していてもよい。
 また、本明細書において「~」とは、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
In the description of the present specification, the "metal alkoxide compound (specifically, for example, a titanium alkoxide compound, an aluminum alkoxide compound, and a zirconium alkoxide compound described later)" has a structure in which at least one alkoxy group is bonded to a metal atom. Means a compound having. This alkoxy group may have a substituent. The substituent may be monovalent or divalent (eg, an alkylidene group). Further, two alkoxy groups bonded to one metal atom may be bonded to each other to form a ring.
In the description of the present specification, unless otherwise specified, when a plurality of groups having the same code are present in the general formula indicating a compound, they may be the same or different from each other. Further, the group indicated by each group (for example, an alkyl group) may further have a substituent.
Further, in the present specification, "-" is used in the meaning of including the numerical values described before and after it as the lower limit value and the upper limit value.
 本発明の音響整合層用材料は、金属フィラーとして比重の大きいタングステンカーバイド粒子を用いながら、タングステンカーバイド粒子の配合に起因する音速の低下を抑制して得られる音響整合シートの音響インピーダンスを効果的に高めることができ、この音響整合シート内における音響特性のばらつきも抑えることができる。
 また本発明の音響整合シートは、金属フィラーとしてタングステンカーバイド粒子を用いながら、タングステンカーバイド粒子の配合に起因する音速の低下が抑制されて音響インピーダンスが効果的に高められ、シート内における音響特性のばらつきも少ない。
 また、本発明の、音響波プローブ、超音波プローブ、音響波測定装置及び超音波診断装置は、上記優れた特性を有する音響整合シートを有する。
 また本発明の音響波プローブの製造方法によれば、上記音響整合層用材料を用いた音響波プローブを得ることができる。
The material for the acoustic matching layer of the present invention uses tungsten carbide particles having a large specific gravity as the metal filler, and effectively suppresses the decrease in sound velocity due to the blending of the tungsten carbide particles to effectively obtain the acoustic impedance of the acoustic matching sheet. It can be enhanced, and variations in acoustic characteristics within this acoustic matching sheet can also be suppressed.
Further, in the acoustic matching sheet of the present invention, while using tungsten carbide particles as the metal filler, the decrease in sound velocity due to the blending of the tungsten carbide particles is suppressed, the acoustic impedance is effectively enhanced, and the acoustic characteristics in the sheet vary. There are few.
Further, the acoustic wave probe, the ultrasonic probe, the acoustic wave measuring device and the ultrasonic diagnostic device of the present invention have an acoustic matching sheet having the above-mentioned excellent characteristics.
Further, according to the method for manufacturing an acoustic wave probe of the present invention, an acoustic wave probe using the above-mentioned material for an acoustic matching layer can be obtained.
図1は、音響波プローブの一態様であるコンベックス型超音波プローブの一例についての斜視透過図である。FIG. 1 is a perspective transmission view of an example of a convex type ultrasonic probe, which is an aspect of an acoustic wave probe.
<<音響整合層用材料>>
 本発明の音響整合層用材料(以下、単に「材料」とも称す。)は、下記成分(A)、(B)及び(C)を含有する。
 (A)エポキシ樹脂
 (B)硬化剤
 (C)アミノシラン化合物、メルカプトシラン化合物、イソシアナトシラン化合物、チオシアナトシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうち少なくとも1種の表面処理剤で表面処理された表面処理タングステンカーバイド粒子
<< Material for acoustic matching layer >>
The material for an acoustic matching layer of the present invention (hereinafter, also simply referred to as “material”) contains the following components (A), (B) and (C).
(A) Epoxy resin (B) Hardener (C) Surface treatment of at least one of aminosilane compound, mercaptosilane compound, isocyanatosilane compound, thiocyanatosilane compound, aluminum alkoxide compound, zirconium alkoxide compound and titanium alkoxide compound. Surface-treated tungsten carbide particles surface-treated with an agent
 本発明の材料は、上記成分(A)~(C)を混合してなる組成物の形態を含む。本発明の材料が音響整合層用組成物(以下、本発明の「組成物」とも称する。)の形態である場合、すなわち、上記成分(A)~(C)が混合した状態で容器に含有される場合、上記成分(A)~(C)が反応を生じずに又は十分に抑制して各成分が安定に維持された状態を保つため、上記組成物を-10℃以下で保存することが好ましい。 The material of the present invention includes a form of a composition obtained by mixing the above components (A) to (C). When the material of the present invention is in the form of a composition for an acoustic matching layer (hereinafter, also referred to as "composition" of the present invention), that is, it is contained in a container in a state where the above components (A) to (C) are mixed. If so, the composition should be stored at −10 ° C. or lower so that the components (A) to (C) do not react or are sufficiently suppressed to maintain a stable state of each component. Is preferable.
 本発明の材料は、上記成分(A)~(C)がより分けられた状態で容器に含有された音響整合層用セット(以下、本発明の「セット」とも称する。)の形態を含む。このセットの形態として、下記の形態(i)~(iv)が挙げられる。 The material of the present invention includes a form of a set for an acoustic matching layer (hereinafter, also referred to as a "set" of the present invention) in which the above components (A) to (C) are contained in a container in a separated state. Examples of the form of this set include the following forms (i) to (iv).
(i)上記成分(A)及び(B)と、上記成分(C)とを別々に含み、使用時に混合して用いる形態、
(ii)上記成分(A)及び(C)と、上記成分(B)とを別々に含み、使用時に混合して用いる形態、
(iii)上記成分(A)と、上記成分(B)及び(C)とを別々に含み、使用時に混合して用いる形態、並びに、
(iv)上記成分(A)~(C)を別々に含み、使用時に混合して用いる形態
(I) A form in which the above-mentioned components (A) and (B) and the above-mentioned component (C) are separately contained and mixed at the time of use.
(Ii) A form in which the above-mentioned components (A) and (C) and the above-mentioned component (B) are separately contained and mixed at the time of use.
(Iii) A form in which the above-mentioned component (A) and the above-mentioned components (B) and (C) are separately contained and mixed at the time of use, and
(Iv) A form in which the above components (A) to (C) are separately contained and mixed at the time of use.
 上記形態(i)~(iv)において、各成分が安定に維持された状態を保つため、本発明のセットを-10℃以下で保存することが好ましい。
 なお、本発明の材料は、必要に応じて遮光して保存してもよい。
In the above forms (i) to (iv), it is preferable to store the set of the present invention at −10 ° C. or lower in order to maintain a stable state in which each component is maintained.
The material of the present invention may be stored in a light-shielded manner, if necessary.
 音響整合シートが比重の大きいフィラーを含有すると、シートの音速が低下する。これは、音響波(主に縦波)が音響整合シートに侵入する際の慣性により、フィラー界面で位相が遅れて音速が低下すると推定される。しかし、上記構成を有する本発明の材料を硬化して得られる本発明の音響整合シートは、音速(音速=(シートの弾性率/シートの密度)1/2)の低下が抑制され、かつ音響特性のばらつきが少ない。これらの理由は未だ定かではないが以下のように推定される。本発明の音響整合シート中、成分(C)が特定の表面処理剤で表面処理されていることにより、成分(C)とマトリックス樹脂の界面でシートの弾性率向上に寄与する構造が形成されたり、成分(C)の凝集を抑えながらも、微量の成分(C)同士のわずかな凝集により弾性率が高められたりすること、などが要因として考えられる。 If the acoustic matching sheet contains a filler having a large specific gravity, the sound velocity of the sheet decreases. It is presumed that this is because the inertia when the acoustic wave (mainly the longitudinal wave) enters the acoustic matching sheet causes the phase to be delayed at the filler interface and the sound velocity to decrease. However, the acoustic matching sheet of the present invention obtained by curing the material of the present invention having the above structure suppresses a decrease in sound velocity (sound velocity = (sheet elastic modulus / sheet density) 1/2) and acoustically. There is little variation in characteristics. The reasons for these are not yet clear, but are presumed as follows. In the acoustic matching sheet of the present invention, the component (C) is surface-treated with a specific surface treatment agent, so that a structure contributing to the improvement of the elastic modulus of the sheet is formed at the interface between the component (C) and the matrix resin. It is considered that the elastic modulus is increased by a slight aggregation of a small amount of the component (C) while suppressing the aggregation of the component (C).
<(A)エポキシ樹脂>
 本発明に用いられるエポキシ樹脂としては、通常のエポキシ樹脂を用いることができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂及びフェノールノボラック型エポキシ樹脂が好ましい。
<(A) Epoxy resin>
As the epoxy resin used in the present invention, ordinary epoxy resins can be used, and for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin and phenol novolac type epoxy resin are preferable.
 本発明に用い得るビスフェノールA型エポキシ樹脂は特に制限されず、エポキシ系接着剤の主剤として一般的に用いられるものを広く用いることができる。好ましい具体例として、ビスフェノールAジグリシジルエーテル(jER825、jER828及びjER834(いずれも商品名)、三菱化学社製)及びビスフェノールAプロポキシレートジグリシジルエーテル(シグマアルドリッチ社製)が挙げられる。 The bisphenol A type epoxy resin that can be used in the present invention is not particularly limited, and those generally used as the main agent of the epoxy adhesive can be widely used. Preferred specific examples include bisphenol A diglycidyl ether (jER825, jER828 and jER834 (all trade names), manufactured by Mitsubishi Chemical Corporation) and bisphenol A propoxylate diglycidyl ether (manufactured by Sigma-Aldrich).
 本発明に用い得るビスフェノールF型エポキシ樹脂は特に制限されず、エポキシ系接着剤の主剤として一般的に用いられるものを広く用いることができる。好ましい具体例として、ビスフェノールFジグリシジルエーテル(商品名:EPICLON830、DIC社製)及び4,4’-メチレンビス(N,N-ジグリシジルアニリン)が挙げられる。 The bisphenol F type epoxy resin that can be used in the present invention is not particularly limited, and those generally used as the main agent of the epoxy adhesive can be widely used. Preferred specific examples include bisphenol F diglycidyl ether (trade name: EPICLON830, manufactured by DIC Corporation) and 4,4'-methylenebis (N, N-diglycidyl aniline).
 本発明に用い得るフェノールノボラック型エポキシ樹脂は特に制限されず、エポキシ系接着剤の主剤として一般的に用いられるものを広く用いることができる。このようなフェノールノボラック型エポキシ樹脂は、例えば、シグマアルドリッチ社から製品番号406775として販売されている。 The phenol novolac type epoxy resin that can be used in the present invention is not particularly limited, and those generally used as the main agent of the epoxy adhesive can be widely used. Such a phenol novolac type epoxy resin is sold by, for example, Sigma-Aldrich as product number 406775.
<(B)硬化剤>
 硬化剤は、エポキシ樹脂の硬化剤として知られているもの(好ましくは有機化合物)を特に制限なく用いることができる。例えば、脂肪族アミン、芳香族アミン、ジシアンジアミド、ジヒドラジド化合物、酸無水物、フェノール化合物などが挙げられる。
 架橋密度を高めて、得られる材料の音響特性のばらつきをより少なくする観点からは、一級アミン(無置換アミノ基を有する化合物)及び二級アミン(一置換アミノ基を有する化合物)の少なくとも1種を用いることが好ましく、一級アミンがより好ましい。なお、無置換アミノ基及び一置換アミノ基の両方を有する化合物は、二級アミンに分類するものとする。無置換アミノ基及び一置換アミノ基の少なくとも1種を有する化合物の具体例としては、イソホロンジアミン、メンセンジアミン、m-フェニレンジアミン、ポリエーテルアミン、ポリアミドアミン、トリエチレンテトラミン及びピぺリジン等を挙げることができる。
<(B) Hardener>
As the curing agent, those known as curing agents for epoxy resins (preferably organic compounds) can be used without particular limitation. For example, aliphatic amines, aromatic amines, dicyandiamides, dihydrazide compounds, acid anhydrides, phenol compounds and the like can be mentioned.
At least one of a primary amine (a compound having an unsubstituted amino group) and a secondary amine (a compound having a monosubstituted amino group) from the viewpoint of increasing the crosslink density and reducing the variation in the acoustic properties of the obtained material. Is preferable, and primary amine is more preferable. Compounds having both an unsubstituted amino group and a monosubstituted amino group shall be classified as secondary amines. Specific examples of the compound having at least one of an unsubstituted amino group and a monosubstituted amino group include isophorone diamine, mensen diamine, m-phenylenediamine, polyether amine, polyamide amine, triethylenetetramine and piperidine. Can be mentioned.
<(C)表面処理タングステンカーバイド粒子>
 成分(C)は、アミノシラン化合物、メルカプトシラン化合物、イソシアナトシラン化合物、チオシアナトシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種を含む表面処理剤で表面処理された、表面処理タングステンカーバイド粒子である。なお、成分(C)は、成分(B)とは異なる成分である。
<(C) Surface-treated tungsten carbide particles>
The component (C) is surface-treated with a surface treatment agent containing at least one of an aminosilane compound, a mercaptosilane compound, an isocyanatosilane compound, a thiocyanatosilane compound, an aluminum alkoxide compound, a zirconium alkoxide compound and a titanium alkoxide compound. Also, surface-treated tungsten carbide particles. The component (C) is a component different from the component (B).
 本発明に用いられる表面処理タングステンカーバイド粒子を構成するタングステンカーバイド粒子の平均一次粒子径は特に制限されず、音響整合シートの音速低下を抑制する点及び音響整合シートの音響特性のばらつきを少なくする点から、1~30μmが好ましく、1~20μmがより好ましく、1~10μmが更に好ましい。
 なお、成分(C)の平均一次粒子径は、1~30μmが好ましく、1~20μmがより好ましく、1~10μmが更に好ましい。
The average primary particle diameter of the tungsten carbide particles constituting the surface-treated tungsten carbide particles used in the present invention is not particularly limited, and the point of suppressing the decrease in sound velocity of the acoustic matching sheet and the point of reducing the variation in the acoustic characteristics of the acoustic matching sheet. Therefore, 1 to 30 μm is preferable, 1 to 20 μm is more preferable, and 1 to 10 μm is further preferable.
The average primary particle size of the component (C) is preferably 1 to 30 μm, more preferably 1 to 20 μm, and even more preferably 1 to 10 μm.
 平均一次粒子径は、透過型電子顕微鏡(Transmission Electron Microscopy:TEM)により測定した粒子径を平均することで求めることができる。すなわち、TEMにより撮影した電子顕微鏡写真の1つのタングステンカーバイド粒子について、最短径と最長径を測定し、その算術平均値を1つのタングステンカーバイド粒子の粒子径として求める。本発明においては、無作為に選択した300個のタングステンカーバイド粒子の粒子径を平均し、平均一次粒子径として求める。 The average primary particle size can be obtained by averaging the particle size measured by a transmission electron microscope (TEM). That is, the shortest diameter and the longest diameter of one tungsten carbide particle in the electron micrograph taken by TEM are measured, and the arithmetic mean value is obtained as the particle diameter of one tungsten carbide particle. In the present invention, the particle sizes of 300 randomly selected tungsten carbide particles are averaged and determined as the average primary particle size.
 タングステンカーバイド粒子は市販のものを用いることができ、例えば、アライドマテリアル社製WC(商品名)が挙げられる。 Commercially available tungsten carbide particles can be used, and examples thereof include WC (trade name) manufactured by Allied Materials.
 本発明に用いられる表面処理剤は、音響整合シートの音速低下を抑制する点及び音響整合シートの音響特性のばらつきを少なくする点から、アミノシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物の少なくとも1種を含むことが好ましく、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物の少なくとも1種を含むことがより好ましく、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物の少なくとも1種を含むことが更に好ましい。
 以下、本発明に用いられる表面処理剤について具体的に説明する。
The surface treatment agent used in the present invention is an aminosilane compound, an aluminum alkoxide compound, a zirconium alkoxide compound, and a titanium alkoxide compound from the viewpoint of suppressing the decrease in sound velocity of the acoustic matching sheet and reducing the variation in the acoustic characteristics of the acoustic matching sheet. It is preferable to contain at least one kind, more preferably at least one kind of aluminum alkoxide compound, zirconium alkoxide compound and titanium alkoxide compound, and further preferably containing at least one kind of zirconium alkoxide compound and titanium alkoxide compound.
Hereinafter, the surface treatment agent used in the present invention will be specifically described.
(アミノシラン化合物)
 アミノシラン化合物(アミノ基を有するシラン化合物)は、好ましくはアミノ基を有するシランカップリング剤である。ただし、上記アミノシラン化合物はSi-N-Si構造を有しないことが好ましい。なお、「Si-N-Si構造」において、各ケイ素原子は結合手を3つ有し、窒素原子は結合手を1つ有する。
(Aminosilane compound)
The aminosilane compound (silane compound having an amino group) is preferably a silane coupling agent having an amino group. However, it is preferable that the aminosilane compound does not have a Si—N—Si structure. In the "Si—N—Si structure”, each silicon atom has three bonds and the nitrogen atom has one bond.
 アミノシラン化合物は、下記一般式(A)で表される化合物を少なくとも1種含むことが好ましい。 The aminosilane compound preferably contains at least one compound represented by the following general formula (A).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、R及びRは水素原子又は置換基を示す。L1aは単結合、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、-O-、-S-、-NR-、エステル結合、チオエステル結合、アミド結合、チオアミド結合若しくはスルホニル基又はこれらの基若しくは結合を2つ以上組合せてなる2価の基を示す。Rは、水素原子又は置換基を示す。Y1aはヒドロキシ基又はアルコキシ基を示す。Y2a及びY3aはヒドロキシ基、アルコキシ基、アルキル基又はケトオキシム基を示す。 In the formula, R 1 and R 2 represent a hydrogen atom or a substituent. L 1a is a single bond, an alkylene group, an alkenylene group, an alkynylene group, an arylene group, -O-, -S-, -NR a- , an ester bond, a thioester bond, an amide bond, a thioamide bond or a sulfonyl group, or a group thereof. A divalent group consisting of a combination of two or more bonds is shown. Ra represents a hydrogen atom or a substituent. Y 1a represents a hydroxy group or an alkoxy group. Y 2a and Y 3a represent a hydroxy group, an alkoxy group, an alkyl group or a ketooxime group.
 R及びRとして採り得る置換基は、例えば、アルキル基(好ましくは炭素数1~12、より好ましくは炭素数1~8)、アルケニル基(好ましくは炭素数2~12、より好ましくは炭素数2~8)、アルキニル基(好ましくは炭素数2~12、より好ましくは炭素数2~8)、アリール基(好ましくは炭素数6~20、より好ましくは炭素数6~10)が挙げられる。これらの置換基は更に置換基を有してもよく、このような置換基としては、R及びR2aとして採り得る置換基として挙げた上記置換基及びアミノ基が挙げられる。
 また、R及びRが組み合わされて、アルキリデン基(好ましくは炭素数2~12、より好ましくは炭素数2~8)を示してもよい。
The substituents that can be taken as R 1 and R 2 are, for example, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms) and an alkenyl group (preferably 2 to 12 carbon atoms, more preferably carbon atoms). Numbers 2 to 8), alkynyl groups (preferably 2 to 12 carbon atoms, more preferably 2 to 8 carbon atoms), aryl groups (preferably 6 to 20 carbon atoms, more preferably 6 to 10 carbon atoms). .. These substituents may further have a substituent, and examples of such a substituent include the above-mentioned substituents and amino groups mentioned as possible substituents as R 1 and R 2a.
Further, R 1 and R 2 may be combined to exhibit an alkylidene group (preferably 2 to 12 carbon atoms, more preferably 2 to 8 carbon atoms).
 L1aはアルキレン基、アルケニレン基、アリーレン基、-O-又は-NR-を示すことが好ましく、アルキレン基、アリーレン基又は-NR-を示すことがより好ましく、アルキレン基を示すことが更に好ましい。 L 1a represents an alkylene group, an alkenylene group, an arylene group, -O- or -NR a - preferably showing a an alkylene group, an arylene group, or -NR a - is more preferable to indicate, that an alkylene group further preferable.
 Y1aはアルコキシ基を示すことが好ましい。
 Y2a及びY3aはヒドロキシ基、アルコキシ基又はアルキル基を示すことが好ましく、アルコキシ基又はアルキル基を示すことがより好ましい。
Y 1a preferably represents an alkoxy group.
Y 2a and Y 3a preferably show a hydroxy group, an alkoxy group or an alkyl group, and more preferably show an alkoxy group or an alkyl group.
 L1aとして採り得るアルキレン基は、直鎖、分岐及び環状のいずれでもよい。アルキレン基の炭素数は、1~30が好ましく、1~25がより好ましく、1~20がより好ましく、1~15がより好ましい。アルキレン基の具体例として、メチレン、エチレン、プロピレン、tert-ブチレン、ペンチレン、シクロへキシレン、へプチレン、オクチレン、ノニレン、デシレン及びウンデシレンが挙げられる。 The alkylene group that can be taken as L 1a may be linear, branched or cyclic. The number of carbon atoms of the alkylene group is preferably 1 to 30, more preferably 1 to 25, more preferably 1 to 20, and even more preferably 1 to 15. Specific examples of the alkylene group include methylene, ethylene, propylene, tert-butylene, pentylene, cyclohexylene, heptylene, octylene, nonylene, decylene and undecylen.
 L1aとして採り得るアルケニレン基は、直鎖及び分岐のいずれでもよい。アルケニレン基の炭素数は、2~20が好ましく、2~15がより好ましく、2~10がより好ましく、2~6がさらに好ましい。アルケニレン基の具体例として、エテニレン及びプロぺニレンが挙げられる。 The alkenylene group that can be taken as L 1a may be either linear or branched. The number of carbon atoms of the alkenylene group is preferably 2 to 20, more preferably 2 to 15, more preferably 2 to 10, and even more preferably 2 to 6. Specific examples of the alkenylene group include ethenylene and propenylene.
 L1aとして採り得るアルキニレン基は、直鎖及び分岐のいずれでもよい。アルキニレン基の炭素数は、2~20が好ましく、2~15がより好ましく、2~10がより好ましく、2~6がさらに好ましい。アルキニレン基の具体例として、エチニレン及びプロピニレンが挙げられる。 The alkynylene group that can be taken as L 1a may be either linear or branched. The number of carbon atoms of the alkynylene group is preferably 2 to 20, more preferably 2 to 15, more preferably 2 to 10, and even more preferably 2 to 6. Specific examples of the alkynylene group include ethynylene and propinylene.
 L1aとして採り得るアリーレン基の炭素数は6~20が好ましく、6~15がより好ましく、6~12がより好ましく、6~10がさらに好ましい。アリーレン基の具体例として、例えば、フェニレン及びナフチレンを挙げることができる。 The number of carbon atoms of the arylene group that can be obtained as L 1a is preferably 6 to 20, more preferably 6 to 15, more preferably 6 to 12, and even more preferably 6 to 10. Specific examples of the arylene group include phenylene and naphthylene.
 -NR-のRとして採り得る置換基は、アルキル基(好ましくは炭素数1~12、より好ましくは炭素数1~8)、アルケニル基(好ましくは炭素数2~12、より好ましくは炭素数2~8)、アルキニル基(好ましくは炭素数2~12、より好ましくは炭素数2~8)、アリール基(好ましくは炭素数6~20、より好ましくは炭素数6~10)及び複素環基が挙げられる。Rとして採り得る複素環基を構成する複素環は、飽和又は不飽和の脂肪族複素環でも芳香族複素環でもよく、単環でも縮合環でもよい。また、橋かけ環でもよい。複素環が有するヘテロ原子は、例えば、酸素原子、窒素原子及び硫黄原子が挙げられる。1つの複素環が含むヘテロ原子の数は、特に制限されないが、1~3個が好ましく、1又は2個がより好ましい。複素環の炭素数は2~10が好ましく、4又は5がより好ましい。複素環は3~7員環が好ましく、3~6員環がより好ましく、3~5員環がさらに好ましい。複素環の具体例として、エポキシ環、3,4-エポキシシクロヘキサン環、フラン環及びチオフェン環が挙げられる。
 -NR-としては、例えば、-NH-が挙げられる。
-NR a - substituent can take as R a of an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms, more preferably carbon Numbers 2-8), alkynyl groups (preferably 2-12 carbons, more preferably 2-8 carbons), aryl groups (preferably 6-20 carbons, more preferably 6-10 carbons) and heterocycles. The group is mentioned. The heterocycle constituting the heterocyclic group that can be taken as Ra may be a saturated or unsaturated aliphatic heterocycle or an aromatic heterocycle, and may be a monocyclic ring or a condensed ring. It may also be a bridge ring. Examples of the hetero atom contained in the heterocycle include an oxygen atom, a nitrogen atom and a sulfur atom. The number of heteroatoms contained in one heterocycle is not particularly limited, but is preferably 1 to 3, and more preferably 1 or 2. The heterocycle preferably has 2 to 10 carbon atoms, more preferably 4 or 5 carbon atoms. The heterocycle is preferably a 3- to 7-membered ring, more preferably a 3- to 6-membered ring, and even more preferably a 3- to 5-membered ring. Specific examples of the heterocycle include an epoxy ring, a 3,4-epoxycyclohexane ring, a furan ring and a thiophene ring.
Examples of -NR a- include -NH-.
 L1aとして採り得る、上記基若しくは上記結合を2つ以上組合せてなる2価の基(以下、「L1aとして採り得る組合わせてなる基」とも称す。)を構成する、組合わせる基若しくは結合の数は、2~8が好ましく、2~6がより好ましく、2~4がさらに好ましい。
 また、L1aとして採り得る組合わせてなる基の分子量は、20~1000が好ましく、30~500がより好ましく、40~200がさらに好ましい。
 L1aとして採り得る組合わせてなる基としては、例えば、ウレア結合、チオウレア結合、カルバメート基、スルホンアミド結合、アリーレン-アルキレン、-O-アルキレン、アミド結合-アルキレン、-S-アルキレン、アルキレン-O-アミド結合-アルキレン、アルキレン-アミド結合-アルキレン、アルケニレン-アミド結合-アルキレン、アルキレン-エステル結合-アルキレン、アリーレン-エステル結合-アルキレン、-(アルキレン-O)-、アルキレン-O-(アルキレン-O)-アルキレン(「(アルキレン-O)」はいずれも繰り返し単位)、アリーレン-スルホニル-O-アルキレン及びエステル結合-アルキレンが挙げられる。
Can take as L 1a, the group or made by combining the coupling of two or more divalent group (hereinafter, also referred to as "group formed in combination can be taken as L 1a".) Constituting, or linking combined The number of is preferably 2 to 8, more preferably 2 to 6, and even more preferably 2 to 4.
The molecular weight of the combined group that can be taken as L 1a is preferably 20 to 1000, more preferably 30 to 500, and even more preferably 40 to 200.
Examples of the combined group that can be taken as L 1a include urea bond, thiourea bond, carbamate group, sulfonamide bond, arylene-alkylene, -O-alkylene, amide bond-alkylene, -S-alkylene, alkylene-O. -Amid bond-alkylene, alkylene-amide bond-alkylene, alkenylene-amide bond-alkylene, alkylene-ester bond-alkylene, arylene-ester bond-alkylene,-(alkylene-O)-, alkylene-O- (alkylene-O) )-Alkylene (“(alkylene-O)” is a repeating unit), arylene-sulfonyl-O-alkylene and ester bond-alkylene.
 Y1a~Y3aとして採り得るアルコキシ基を構成するアルキル基は、直鎖、分岐及び環状のいずれでもよく、これらの形態を組合わせて有してもよい。本発明において、このアルキル基は直鎖のアルキル基であることが好ましい。アルコキシ基を構成するアルキル基の炭素数は、1~15が好ましく、1~10がより好ましく、1~5がより好ましく、1又は2がさらに好ましい。アルコキシ基を構成するアルキル基の具体例として、メチル、エチル、プロピル、t-ブチル、ペンチル及びシクロヘキシルが挙げられる。 The alkyl group constituting the alkoxy group that can be taken as Y 1a to Y 3a may be linear, branched or cyclic, and may have a combination of these forms. In the present invention, the alkyl group is preferably a straight chain alkyl group. The number of carbon atoms of the alkyl group constituting the alkoxy group is preferably 1 to 15, more preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 or 2. Specific examples of the alkyl group constituting the alkoxy group include methyl, ethyl, propyl, t-butyl, pentyl and cyclohexyl.
 Y2a及びY3aとして採り得るアルキル基としては、Y1a~Y3aとして採り得るアルコキシ基を構成するアルキル基を挙げることができ、好ましい形態もY1a~Y3aとして採り得るアルコキシ基を構成するアルキル基の好ましい形態と同じである。 Examples of the alkyl group that can be taken as Y 2a and Y 3a include an alkyl group that constitutes an alkoxy group that can be taken as Y 1a to Y 3a , and a preferred form also constitutes an alkoxy group that can be taken as Y 1a to Y 3a. It is the same as the preferred form of the alkyl group.
 Y2a及びY3aとして採り得るケトオキシム基は下記構造を有する置換基である。 The ketooxime group that can be obtained as Y 2a and Y 3a is a substituent having the following structure.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記構造中、R11及びR12は置換基を示し、*はケイ素原子に対する結合部を示す。
 R11及びR12が採り得る置換基として、上記Rにおける置換基が挙げられ、好ましい形態もRとして採り得る置換基の好ましい形態と同じである。
In the above structure, R 11 and R 12 indicate a substituent, and * indicates a bond to a silicon atom.
Examples of the substituent group R 11 and R 12 can take, and a substituted group in the R a, the same as the preferred form of the substituent which may take the preferred form as R a.
 ケトオキシム基として例えば、ジメチルケトオキシム基、メチルエチルケトオキシム基及びジエチルケトオキシム基等が挙げられる。 Examples of the ketooxime group include a dimethyl keto oxime group, a methyl ethyl keto oxime group, a diethyl keto oxime group and the like.
 以下、本発明に用いられるアミノシラン化合物の具体例を挙げるが、本発明はこれらに限定されない。
3-アミノプロピルトリメトキシシラン
3-アミノプロピルジメチルメトキシシラン
3-アミノプロピルメチルジメトキシシラン
3-アミノプロピルメチルジエトキシシラン
3-アミノプロピルトリエトキシシラン
N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン
N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン
N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン
N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン
3-メチルジメトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン
3-メチルジエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン
3-トリメトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン
3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン
N-フェニル-3-アミノプロピルメチルジエトキシシラン
N-フェニル-3-アミノプロピルメチルジエトキシシラン
N-フェニル-3-アミノプロピルトリメトキシシラン
N-フェニル-3-アミノプロピルトリエトキシシラン
N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン
Hereinafter, specific examples of the aminosilane compound used in the present invention will be given, but the present invention is not limited thereto.
3-Aminopropyltrimethoxysilane 3-Aminopropyldimethylmethoxysilane 3-Aminopropylmethyldimethoxysilane 3-Aminopropylmethyldiethoxysilane 3-Aminopropyltriethoxysilane N- (2-aminoethyl) -3-aminopropylmethyl Dimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldiethoxysilane N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropyltriethoxy Silane3-methyldimethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine 3-methyldiethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine 3-trimethoxysilyl-N- (1) , 3-Dimethyl-butylidene) propylamine 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine N-phenyl-3-aminopropylmethyldiethoxysilane N-phenyl-3-aminopropylmethyldi Ethoxysilane N-phenyl-3-aminopropyltrimethoxysilane N-phenyl-3-aminopropyltriethoxysilane N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane
(メルカプトシラン化合物)
 メルカプトシラン化合物(メルカプト基(スルファニル基)を有するシラン化合物)は、好ましくはメルカプト基を有するシランカップリング剤である。メルカプトシラン化合物で表面処理されたタングステンカーバイド粒子は、メルカプトシラン化合物由来のメルカプト基を有することが好ましい。
(Mercaptosilane compound)
The mercaptosilane compound (silane compound having a mercapto group (sulfanyl group)) is preferably a silane coupling agent having a mercapto group. The tungsten carbide particles surface-treated with the mercaptosilane compound preferably have a mercapto group derived from the mercaptosilane compound.
 メルカプトシラン化合物は、下記一般式(B)で表される化合物を少なくとも1種含むことが好ましい。 The mercaptosilane compound preferably contains at least one compound represented by the following general formula (B).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 L1b、Y1b、Y2b及びY3bは、上記一般式(A)のL1a、Y1a、Y2a及びY3aとそれぞれ同義であり、好ましい範囲も同じである。 L 1b , Y 1b , Y 2b and Y 3b are synonymous with L 1a , Y 1a , Y 2a and Y 3a of the above general formula (A), respectively, and the preferable ranges are also the same.
 以下、本発明に用いられるメルカプトシラン化合物の具体例を挙げるが、本発明はこれらに限定されない。
3-メルカプトプロピルトリメトキシシラン
3-メルカプトプロピルトリエトキシシラン
3-メルカプトプロピルメチルジメトキシシラン
メルカプトメチルメチルジエトキシシラン
(メルカプトメチル)メチルジメトキシシラン
(メルカプトメチル)ジメチルエトキシシラン
11-メルカプトウンデシルトリメトキシシラン
Hereinafter, specific examples of the mercaptosilane compound used in the present invention will be given, but the present invention is not limited thereto.
3-Mercaptopropyltrimethoxysilane 3-Mercaptopropyltriethoxysilane 3-Mercaptopropylmethyldimethoxysilane Mercaptomethylmethyldiethoxysilane (mercaptomethyl) Methyldimethoxysilane (mercaptomethyl) dimethylethoxysilane11-mercaptoundecyltrimethoxysilane
(イソシアナトシラン化合物)
 イソシアナトシラン化合物(好ましくは、イソシアナト基を有するシラン化合物)は、好ましくはイソシアナト基を有するシランカップリング剤である。イソシアナトシラン化合物で表面処理されたタングステンカーバイド粒子は、イソシアナトシラン化合物由来のイソシアナト基を有することが好ましい。
(Isocyanatosilane compound)
The isocyanatosilane compound (preferably a silane compound having an isocyanate group) is preferably a silane coupling agent having an isocyanate group. The tungsten carbide particles surface-treated with the isocyanate silane compound preferably have an isocyanate group derived from the isocyanate silane compound.
 イソシアナトシラン化合物は、下記一般式(C)で表される化合物を少なくとも1種含むことが好ましい。 The isocyanatosilane compound preferably contains at least one compound represented by the following general formula (C).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 L1c、Y1c、Y2c及びY3cは、上記一般式(A)のL1a、Y1a、Y2a及びY3aとそれぞれ同義であり、好ましい範囲も同じである。 L 1c , Y 1c , Y 2c and Y 3c are synonymous with L 1a , Y 1a , Y 2a and Y 3a of the above general formula (A), respectively, and the preferable ranges are also the same.
 また、本発明においては、イソシアナトシラン化合物として、上記一般式(C)で表される化合物の縮合物及び上記一般式(C)のイソシアナト基が置換基で保護された化合物を用いることも好ましい。上記置換基は、例えば、アルコール化合物、フェノール化合物、芳香族アミン、ラクタム及びオキシムにより導入することができる。このようなアルコール化合物としては、例えば、アルキルアルコール(好ましくは炭素数1~12、より好ましくは炭素数1~8)が挙げられる。また、フェノール化合物としては、例えば、フェノール及びクレゾールが挙げられる。また、ラクタムとしては、例えば、ε-カプロラクタムが挙げられる。
 「上記一般式(C)のイソシアナト基が置換基で保護された化合物」とは、上記一般式(C)の-NCOを-NHC(=O)ORに置き換えた化合物である。Rは置換基を示し、例えば、アルキル基(好ましくは炭素数1~12、より好ましくは炭素数1~8)が挙げられる。
Further, in the present invention, as the isocyanatosilane compound, it is also preferable to use a condensate of the compound represented by the general formula (C) and a compound in which the isocyanato group of the general formula (C) is protected by a substituent. .. The above substituents can be introduced by, for example, alcohol compounds, phenol compounds, aromatic amines, lactams and oximes. Examples of such an alcohol compound include alkyl alcohols (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms). Examples of the phenol compound include phenol and cresol. Further, as the lactam, for example, ε-caprolactam can be mentioned.
The "compound in which the isocyanate group of the general formula (C) is protected by a substituent" is a compound in which -NCO of the general formula (C) is replaced with -NHC (= O) OR 4. R 4 represents a substituent, and examples thereof include an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms).
 以下、本発明に用いられるイソシアナトシラン化合物の具体例を挙げるが、本発明はこれらに限定されない。
3-イソシアナトプロピルトリメトキシシラン
3-イソシアナトプロピルトリエトキシシラン
イソシアナトメチルトリメトキシシラン
(以下は、縮合や置換基により保護されたイソシアナトシラン化合物)
トリス(3-トリメトキシシリルプロピル)イソシアヌレート
(3-トリエトキシシリルプロピル)-t-ブチルカルバメート
トリエトキシシリルプロピルエチルカルバメート
Hereinafter, specific examples of the isocyanate compound used in the present invention will be given, but the present invention is not limited thereto.
3-Isocyanatopropyltrimethoxysilane 3-Isocyanatopropyltriethoxysilane Isocyanatomethyltrimethoxysilane (hereinafter, isocyanatosilane compound protected by condensation or substituent)
Tris (3-Trimethoxysilylpropyl) Isocyanurate (3-Triethoxysilylpropyl) -t-Butyl Carbamate Triethoxysilylpropyl Ethyl Carbamate
(チオシアナトシラン化合物)
 チオシアナトシラン化合物(チオシアナト基を有するシラン化合物)は、好ましくはチオシアナト基を有するシランカップリング剤である。チオシアナトシラン化合物で表面処理されたタングステンカーバイド粒子は、チオシアナトシラン化合物由来のチオシアナト基を有することが好ましい。
(Thiocyanatosilane compound)
The thiocyanatosilane compound (silane compound having a thiocyanato group) is preferably a silane coupling agent having a thiocyanato group. The tungsten carbide particles surface-treated with the thiocyanatosilane compound preferably have a thiocyanato group derived from the thiocyanatosilane compound.
 チオシアナトシラン化合物は、下記一般式(D)で表される化合物を少なくとも1種含むことが好ましい。 The thiocyanatosilane compound preferably contains at least one compound represented by the following general formula (D).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 L1d、Y1d、Y2d及びY3dは、上記一般式(A)のL1a、Y1a、Y2a及びY3aとそれぞれ同義であり、好ましい範囲も同じである。 L 1d , Y 1d , Y 2d and Y 3d are synonymous with L 1a , Y 1a , Y 2a and Y 3a of the above general formula (A), respectively, and the preferable ranges are also the same.
 以下、本発明に用いられるチオシアナトシラン化合物の具体例を挙げるが、本発明はこれらに限定されない。
3-チオシアナトプロピルトリメトキシシラン
3-チオシアナトプロピルトリエトキシシラン
チオシアナトメチルトリメトキシシラン
Hereinafter, specific examples of the thiocyanatosilane compound used in the present invention will be given, but the present invention is not limited thereto.
3-Thiocyanatopropyltrimethoxysilane 3-Thiocyanatopropyltriethoxysilane Thiocyanatomethyltrimethoxysilane
(アルミニウムアルコキシド化合物)
 アルミニウムアルコキシド化合物は、アセトナト構造及びアセタト構造の少なくとも1種を含むことが好ましい。
(Aluminum alkoxide compound)
The aluminum alkoxide compound preferably contains at least one of an acetonato structure and an acetylate structure.
 アルミニウムアルコキシド化合物は、下記一般式(1)で表される化合物の少なくとも1種を含むことが好ましい。 The aluminum alkoxide compound preferably contains at least one of the compounds represented by the following general formula (1).
       一般式(1): R1a m1-Al-(OR2a3-m1 General formula (1): R 1a m1- Al- (OR 2a ) 3-m1
 R1aは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
 R1aとして採り得るアルキル基は、直鎖アルキル基及び分岐アルキル基並びにアラルキル基を含む。このアルキル基の炭素数は1~20が好ましく、1~15がより好ましく、1~10がさらに好ましく、1~8が特に好ましいが、アラルキル基の場合は7~30が好ましい。このアルキル基の好ましい具体例として、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、sec-ブチル、イソブチル、tert-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、デシル、トリデシル、オクタデシル、ベンジル、及びフェネチルが挙げられる。
 R1aとして採り得るアルキル基はオキシラン環を有していることも好ましい。R1aとして採り得るエポキシシクロアルキルアルキル基におけるシクロアルキル基(オキシラン環が縮合した構造のシクロアルキル基)の環員数は4~8が好ましく、5又は6がより好ましく、6であること(すなわちエポキシシクロヘキシル基であること)がさらに好ましい。
 また、R1aとして採り得るアルキル基はアミノ基、イソシアナト基、メルカプト基、エチレン性不飽和基、及び酸無水物基から選ばれる基を有することも好ましい。
R 1a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
The alkyl group that can be taken as R 1a includes a linear alkyl group, a branched alkyl group, and an aralkyl group. The alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, further preferably 1 to 10 carbon atoms, particularly preferably 1 to 8 carbon atoms, and preferably 7 to 30 carbon atoms in the case of an aralkyl group. Preferred specific examples of this alkyl group include, for example, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, decyl, tridecyl, octadecyl, benzyl, and phenethyl. Can be mentioned.
It is also preferable that the alkyl group that can be taken as R 1a has an oxylan ring. The number of ring members of the cycloalkyl group (cycloalkyl group having a structure in which an oxylan ring is condensed) in the epoxy cycloalkylalkyl group that can be taken as R 1a is preferably 4 to 8, more preferably 5 or 6, and 6 (that is, epoxy). Being a cyclohexyl group) is more preferred.
Further, the alkyl group that can be taken as R 1a preferably has a group selected from an amino group, an isocyanato group, a mercapto group, an ethylenically unsaturated group, and an acid anhydride group.
 R1aとして採り得るシクロアルキル基は、炭素数が3~20が好ましく、3~15がより好ましく、3~10がさらに好ましく、3~8が特に好ましい。このシクロアルキル基の好ましい具体例としては、例えば、シクロプロピル、シクロペンチル、及びシクロヘキシルが挙げられる。 The cycloalkyl group that can be taken as R 1a preferably has 3 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, further preferably 3 to 10 carbon atoms, and particularly preferably 3 to 8 carbon atoms. Preferred specific examples of this cycloalkyl group include, for example, cyclopropyl, cyclopentyl, and cyclohexyl.
 R1aとして採り得るアシル基は、炭素数が2~40が好ましく、2~30がより好ましく、2~20がさらに好ましく、2~18が特に好ましい。 The acyl group that can be obtained as R 1a preferably has 2 to 40 carbon atoms, more preferably 2 to 30 carbon atoms, further preferably 2 to 20 carbon atoms, and particularly preferably 2 to 18 carbon atoms.
 R1aとして採り得るアリール基は、炭素数が6~20が好ましく、6~15がより好ましく、6~12がさらに好ましく、6~10が特に好ましい。このアリール基の好ましい具体例としては、例えば、フェニル及びナフチルが挙げられ、フェニルがさらに好ましい。 The aryl group that can be taken as R 1a preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms, further preferably 6 to 12 carbon atoms, and particularly preferably 6 to 10 carbon atoms. Preferred specific examples of this aryl group include, for example, phenyl and naphthyl, with phenyl being even more preferred.
 R1aとして採り得る不飽和脂肪族基は、炭素-炭素不飽和結合の数が1~5であることが好ましく、1~3がより好ましく、1又は2がさらに好ましく、1であることが特に好ましい。不飽和脂肪族基はヘテロ原子を含んでもよく、炭化水素基であることも好ましい。不飽和脂肪族基が炭化水素基の場合、炭素数は2~20が好ましく、2~15がより好ましく、2~10がさらに好ましく、2~8がさらに好ましく、2~5であることも好ましい。不飽和脂肪族基はより好ましくはアルケニル基又はアルキニル基である。 The unsaturated aliphatic group that can be obtained as R 1a preferably has 1 to 5 carbon-carbon unsaturated bonds, more preferably 1 to 3, further preferably 1 or 2, and particularly preferably 1. preferable. The unsaturated aliphatic group may contain a heteroatom, and is preferably a hydrocarbon group. When the unsaturated aliphatic group is a hydrocarbon group, the number of carbon atoms is preferably 2 to 20, more preferably 2 to 15, further preferably 2 to 10, further preferably 2 to 8, and preferably 2 to 5. .. The unsaturated aliphatic group is more preferably an alkenyl group or an alkynyl group.
 R1aは水素原子、アルキル基、シクロアルキル基、又はアリール基が好ましく、アルキル基、又はシクロアルキル基がより好ましい。
 一般式(1)の化合物がR1aを2つ以上有する場合、2つのR1aは互いに連結して環を形成していてもよい。
R 1a is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and more preferably an alkyl group or a cycloalkyl group.
When the compound of the general formula (1) has two or more R 1a , the two R 1a may be connected to each other to form a ring.
 R2aは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基(ホスホン酸基)、又は-SOS1を示す。RS1は置換基を示す。
 R2aとして採り得るアルキル基、シクロアルキル基、アシル基、及びアリール基は、それぞれ、R1aとして採り得るアルキル基、シクロアルキル基、アシル基、及びアリール基と同義であり、各基の好ましい形態も同じである。また、R2aとして採り得るアルキル基は、置換基としてアミノ基を有することも好ましい。
R 2a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group (phosphonic acid group), or -SO 2 R S1. RS1 represents a substituent.
The alkyl group, cycloalkyl group, acyl group, and aryl group that can be taken as R 2a are synonymous with the alkyl group, cycloalkyl group, acyl group, and aryl group that can be taken as R 1a, respectively, and the preferred forms of each group. Is the same. Further, the alkyl group that can be taken as R 2a preferably has an amino group as a substituent.
 R2aとして採り得るアルケニル基は、直鎖アルケニル基及び分岐アルケニル基を含む。このアルケニル基の炭素数は好ましくは2~18であり、より好ましくは2~7であり、さらに好ましくは2~5である。このアルケニル基の好ましい具体例として、例えば、ビニル、アリル、ブテニル、ペンテニル及びヘキセニルが挙げられる。このアルケニル基は置換アルケニル基が好ましい。 The alkenyl group that can be taken as R 2a includes a linear alkenyl group and a branched alkenyl group. The alkenyl group preferably has 2 to 18 carbon atoms, more preferably 2 to 7 carbon atoms, and even more preferably 2 to 5 carbon atoms. Preferred specific examples of this alkenyl group include, for example, vinyl, allyl, butenyl, pentenyl and hexenyl. The alkenyl group is preferably a substituted alkenyl group.
 R2aとして採り得るホスホネート基は、-P(=O)(-ORP1)ORP2で表される基である。RP1及びRP2は水素原子又は置換基を示し、この置換基はアルキル基、又はホスホネート基が好ましい。RP1及びRP2として採り得るアルキル基は上述したR1aとして採り得るアルキル基と同義であり、アルキル基の好ましい形態も同じである。RP1及びRP2として採り得るホスホネート基は、R2aとして採り得るホスホネート基と同義であり、好ましい形態も同じである。RP1又はRP2がホスホネート基の場合、このホスホネート基を構成するRP1及びRP2はアルキル基が好ましい。
 R2aとして採り得るホスホネート基は、RP1及びRP2がともにアルキル基であるか、又は、RP1が水素原子で、RP2がホスホネート基であることが好ましい。
 なお、ホスホネート基はホスファイト基(亜リン酸基)と互変異性であるため、本発明においてホスホネート基は、ホスファイト基を含む意味である。
The phosphonate group that can be taken as R 2a is a group represented by −P (= O) (−OR P1 ) OR P2 . RP1 and RP2 represent a hydrogen atom or a substituent, and the substituent is preferably an alkyl group or a phosphonate group. The alkyl group that can be taken as R P1 and R P2 is synonymous with the alkyl group that can be taken as R 1a described above, and the preferred form of the alkyl group is also the same. Phosphonate group, which may take as R P1 and R P2 are the same as the phosphonate group can take as R 2a, a preferred form also the same. When R P1 or R P2 is a phosphonate group, R P1 and R P2 constituting the phosphonate group is preferably an alkyl group.
As the phosphonate group that can be taken as R 2a , it is preferable that both RP1 and RP2 are alkyl groups, or RP1 is a hydrogen atom and RP2 is a phosphonate group.
Since the phosphonate group is tautomerized with the phosphite group (phosphorous acid group), the phosphonate group in the present invention means to include the phosphite group.
 R2aとして採り得る-SOS1において、置換基RS1としてはアルキル基又はアリール基が好ましい。RS1として採り得るアルキル基及びアリール基の好ましい形態として、それぞれ、上述したR1aとして採り得るアルキル基及びアリール基の好ましい形態を挙げることができる。なかでもRS1はアルキル基を置換基として有するフェニルが好ましい。このアルキル基の好ましい形態は、上述したR1aとして採り得るアルキル基の好ましい形態と同じである。 In -SO 2 R S1 which can be taken as R 2a , an alkyl group or an aryl group is preferable as the substituent R S1. Preferred embodiments of the alkyl group and an aryl group which may take as R S1, respectively, may be mentioned preferred form of the alkyl and aryl groups which can be taken as R 1a described above. Of these R S1 is phenyl having as a substituent an alkyl group is preferable. The preferred form of this alkyl group is the same as the preferred form of the alkyl group that can be taken as R 1a described above.
 一般式(1)で表される化合物がR2aを2つ以上有する場合、2つのR2aは互いに連結して環を形成していてもよい。 When the compound represented by the general formula (1) has two or more R 2a , the two R 2a may be connected to each other to form a ring.
 m1は0~2の整数である。 M1 is an integer of 0 to 2.
 上記の一般式(1)において、OR2aの少なくとも1つがアセトナト構造を有することが好ましい。このアセトナト構造は、アセトン又はアセトンが置換基を有した構造の化合物から水素イオンが1つ除かれてAlに配位している構造を意味する。このAlに配位する配位原子は通常は酸素原子である。このアセトナト構造は、アセチルアセトン構造(「CH-C(=O)-CH-C(=O)-CH」)を基本構造とし、そこから水素イオンが1つ除かれて、酸素原子を配位原子としてAlに配位している構造(すなわちアセチルアセトナト構造)が好ましい。上記の「アセチルアセトン構造を基本構造とする」とは、上記アセチルアセトン構造の他、上記アセチルアセトン構造の水素原子が置換基で置換された構造を含む意味である。OR2aがアセトナト構造を有する形態として、例えば、後述する化合物SL-2及びSL-3が挙げられる。
 上記の一般式(1)において、OR2aの少なくとも1つがアセタト構造を有することが好ましい。本発明において、アセタト構造は、酢酸もしくは酢酸エステル又はこれらが置換基(酢酸のメチル基が置換基としてアルキル基を有する形態を含む)を有した構造の化合物から水素イオンが1つ除かれてAlに配位している構造を意味する。このAlに配位する配位原子は通常は酸素原子である。このアセタト構造は、アルキルアセトアセタート構造(「CH-C(=O)-CH-C(=O)-O-Ralk」(Ralkはアルキル基(好ましくは炭素数1~20のアルキル基であり、炭素数1~10のアルキル基であってもよく、より好ましくは炭素数1~4のアルキル基であってもよい。)を示す。))を基本構造とし、そこから水素イオンが1つ除かれて、酸素原子を配位原子としてAlに配位している構造(すなわちアルキルアセトアセタト構造)が好ましい。上記の「アルキルアセトアセタート構造を基本構造とする」とは、上記アルキルアセトアセタート構造の他、上記アルキルアセトアセタート構造の水素原子が置換基で置換された構造を含む意味である。OR2aがアセタト構造を有する形態として、例えば、後述する化合物SL-3、SL―4、及びSL―5が挙げられる。
In the above general formula (1), it is preferable that at least one of OR 2a has an acetonato structure. This acetnat structure means a structure in which one hydrogen ion is removed from a compound having a structure in which acetone or acetone has a substituent and is coordinated with Al. The coordination atom coordinated to Al is usually an oxygen atom. This acetonato structure is based on an acetylacetone structure (“CH 3- C (= O) -CH 2- C (= O) -CH 3 ”), from which one hydrogen ion is removed to remove oxygen atoms. A structure coordinated to Al as a coordinating atom (that is, an acetylacetonato structure) is preferable. The above-mentioned "having an acetylacetone structure as a basic structure" means that, in addition to the above-mentioned acetylacetone structure, a structure in which a hydrogen atom of the above-mentioned acetylacetone structure is substituted with a substituent is included. Examples of the form in which OR 2a has an acetonato structure include compounds SL-2 and SL-3, which will be described later.
In the above general formula (1), it is preferable that at least one of OR 2a has an acetato structure. In the present invention, the acetato structure is obtained by removing one hydrogen ion from acetic acid or acetic acid ester or a compound having a substituent (including a form in which the methyl group of acetic acid has an alkyl group as a substituent). It means a structure coordinated with. The coordination atom coordinated to Al is usually an oxygen atom. This acetato structure is an alkylacetate acetate structure (“CH 3- C (= O) -CH 2- C (= O) -OR alk ” (R alk is an alkyl group (preferably having 1 to 20 carbon atoms). It is an alkyl group, which may be an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.))) As a basic structure, and hydrogen is obtained from the alkyl group. A structure in which one ion is removed and an oxygen atom is used as a coordinating atom to coordinate Al (that is, an alkylacetacetate structure) is preferable. The above-mentioned "using an alkylacetacetate structure as a basic structure" means that, in addition to the above-mentioned alkylacetate-acetate structure, a structure in which a hydrogen atom of the above-mentioned alkylacetate-acetate structure is substituted with a substituent is included. Examples of the form in which OR 2a has an acetato structure include compounds SL-3, SL-4, and SL-5, which will be described later.
 上記R1a又はR2aとして採り得る各基は、対カチオンを有するアニオン性基(塩型の置換基)を置換基として有していてもよい。アニオン性基とは、アニオンを形成し得る基を意味する。上記対カチオンを有するアニオン性基としては、例えば、アンモニウムイオンを対カチオンとするカルボン酸イオンの基が挙げられる。この場合、上記対カチオンは、上記の一般式(1)で表される化合物中において、化合物全体の電荷が0となるように存在していればよい。このことは、後述する、一般式(2)で表される化合物及び一般式(3)で表される化合物についても同様である。 Each group that can be taken as R 1a or R 2a may have an anionic group having a counter cation (salt-type substituent) as a substituent. The anionic group means a group capable of forming an anion. Examples of the anionic group having a counter cation include a carboxylic acid ion group having an ammonium ion as a counter cation. In this case, the counter cation may be present in the compound represented by the above general formula (1) so that the charge of the entire compound becomes zero. This also applies to the compound represented by the general formula (2) and the compound represented by the general formula (3), which will be described later.
 以下、本発明に用いられるアルミニウムアルコキシド化合物の具体例を挙げるが、本発明はこれらに限定されない。
アルミニウムトリエチレート
アルミニウムトリイソプロピレート
アルミニウムトリsec-ブチレート
アルミニウムトリス(エチルアセトアセテート)
エチルアセトアセテートアルミニウムジイソプロピレート
アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)
アルミニウムトリス(アセチルアセトネート)
ジイソプロポキシアルミニウム-9-オクタデセニルアセトアセテート
アルミニウムジイソプロボキシモノエチルアセトアセテート
アルミニウムトリスエチルアセトアセテート
アルミニウムトリスアセチルアセトネート
モノsec-ブトキシアルミニウムジイソプロピレート
エチルアセトアセテートアルミニウムジイソプロピレート
ジエチルアセトアセテートアルミニウムイソプロピレート
アルミニウムビスエチルアセトアセテートモノアセチルアセトネート
アルミニウムトリスエチルアセトアセテート
アルミニウムオクタデシルアセトアセテートジイソプロピレート
Hereinafter, specific examples of the aluminum alkoxide compound used in the present invention will be given, but the present invention is not limited thereto.
Aluminum Trietilate Aluminum Triisopropoxide Aluminum Trisec-Butylate Aluminum Tris (Ethylacetacetate)
Ethyl Acetylacetone Aluminum Diisopropilate Aluminum Monoacetylacetone Bis (Ethylacetone Acetate)
Aluminum tris (acetylacetone)
Diisopropoxyaluminum-9-octadecenylacetate aluminum diisopropoxymonoethylacetate aluminum trisethylacetate aluminum trisacetylacetonate monosec-butoxyaluminum diisopropirate ethylacetacetate aluminum diisopropylatediethylacetate aluminum Isopropylate Aluminum Bisethylacetate Monoacetylacetate Aluminum Trisethylacetate Aluminum Octadecylacetate Diisopropylate
(ジルコニウムアルコキシド化合物)
 ジルコニウムアルコキシド化合物は、アセトナト構造、アセタト構造及びラクタト構造の少なくとも1種を含むことが好ましく、アセトナト構造及びアセタト構造の少なくとも1種を含むことがより好ましい。
(Zirconium alkoxide compound)
The zirconium alkoxide compound preferably contains at least one of an acetonate structure, an acetylate structure and a lactoto structure, and more preferably contains at least one of an acetonato structure and an acetylate structure.
 ジルコニウムアルコキシド化合物は、下記一般式(2)で表される化合物の少なくとも1種を含むことが好ましい。 The zirconium alkoxide compound preferably contains at least one of the compounds represented by the following general formula (2).
       一般式(2): R1b m2-Zr-(OR2b4-m2 General formula (2): R 1b m2- Zr- (OR 2b ) 4-m2
 R1bは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
 アルキル基、シクロアルキル基、アシル基、アリール基及び不飽和脂肪族基として、例えば、上記一般式(1)のR1aとして採り得るアルキル基、シクロアルキル基、アシル基、アリール基及び不飽和脂肪族基を採用することができる。
R 1b represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
As an alkyl group, a cycloalkyl group, an acyl group, an aryl group and an unsaturated aliphatic group, for example, an alkyl group, a cycloalkyl group, an acyl group, an aryl group and an unsaturated fatty group which can be taken as R 1a of the above general formula (1). A family group can be adopted.
 R2bは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS2を示す。RS2は置換基を示す。
 アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基及びホスホネート基として、例えば、上記一般式(1)のR2aとして採り得るアルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基を採用することができる。また、RS2として採り得る置換基として、例えば、上記一般式(1)のRS1として採り得る置換基を採用することができる。
R 2b represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S2. RS2 indicates a substituent.
As an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group and a phosphonate group, for example, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, which can be taken as R 2a of the above general formula (1), A phosphonate group can be adopted. Further, as the substituent which can be taken as R S2, for example, it can be adopted a substituent which can be taken as R S1 of the general formula (1).
 m2は0~3の整数である。 M2 is an integer from 0 to 3.
 上記の一般式(2)において、OR2bの少なくとも1つがアセトナト構造を有することが好ましい。このアセトナト構造は、一般式(1)で説明したアセトナト構造と同義である。OR2bがアセトナト構造を有する形態として、例えば、後述する化合物SZ-3及びSZ-6が挙げられる。
 また、上記の一般式(2)において、OR2bの少なくとも1つがアセタト構造を有することが好ましい。このアセタト構造は、一般式(1)で説明したアセタト構造と同義である。OR2bがアセタト構造を有する形態として、例えば、後述するSZ-7が挙げられる。なお、化合物SZ-5は、一般式(1)において、R2bがアシル基である形態に相当する。
 また、上記の一般式(2)において、OR2bの少なくとも1つがラクタト構造を有することが好ましい。このラクタト構造は、乳酸イオン(ラクタート)を基本構造とし、そこから水素イオンが1つ除かれてZrに配位している構造を意味する。上記の「乳酸イオンを基本構造とする」とは、上記乳酸イオンの他、上記乳酸イオンの水素原子が置換基で置換された構造を含む意味である。このZrに配位する配位原子は通常は酸素原子である。OR2bがラクタト構造を有する形態として、例えば、後述する化合物SZ-4が挙げられる。
In the above general formula (2), it is preferable that at least one of OR 2b has an acetonato structure. This acetonato structure is synonymous with the acetonato structure described by the general formula (1). Examples of the form in which OR 2b has an acetonato structure include compounds SZ-3 and SZ-6, which will be described later.
Further, in the above general formula (2), it is preferable that at least one of OR 2b has an acetato structure. This acetato structure is synonymous with the acetato structure described by the general formula (1). Examples of the form in which OR 2b has an acetato structure include SZ-7, which will be described later. The compound SZ-5 corresponds to the form in which R 2b is an acyl group in the general formula (1).
Further, in the above general formula (2), it is preferable that at least one of OR 2b has a lacto structure. This lactato structure means a structure in which a lactic acid ion (lactoto) is used as a basic structure, and one hydrogen ion is removed from the basic structure to coordinate to Zr. The above-mentioned "having a lactic acid ion as a basic structure" means that, in addition to the above-mentioned lactic acid ion, a structure in which a hydrogen atom of the above-mentioned lactic acid ion is substituted with a substituent is included. The coordination atom coordinated to this Zr is usually an oxygen atom. Examples of the form in which OR 2b has a lacto structure include the compound SZ-4 described later.
 以下、本発明に用いられるジルコニウムアルコキシド化合物の具体例を挙げるが、本発明はこれらに限定されない。
テトラプロポキシジルコニウム(別名 ジルコニウムテトラn-プロポキシド)
テトラブトキシジルコニウム(別名 ジルコニウムテトラn-ブトキシド)
ジルコニウムテトラアセチルアセトネート
ジルコニウムトリブトキシモノアセチルアセトネート
ジルコニウムジブトキシビス(アセチルアセトネート)
ジルコニウムジブトキシビス(エチルアセトアセテート)
ジルコニウムトリブトキシエチルアセトアセテート
ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)
ジルコニウムトリブトキシモノステアレート(別名 ステアリン酸ジルコニウムトリn-ブトキシド)
ステアリン酸ジルコニウム
ジルコニウムラクテートアンモニウム塩
ジルコニウムモノアセチルアセトネート
Hereinafter, specific examples of the zirconium alkoxide compound used in the present invention will be given, but the present invention is not limited thereto.
Tetrapropoxyzirconium (also known as zirconium tetra n-propoxide)
Tetrabutoxyzirconium (also known as zirconium tetra n-butoxide)
Zirconium Tetra Acetylacetone Zirconium Tributoxy Monoacetylacetone Zirconium Dibutoxybis (Acetylacetoneate)
Zirconium dibutoxybis (ethylacetate acetate)
Zirconium Tributoxyethyl Acetyl Acetate Zirconium Monobutoxy Acetylacetone Bis (Ethyl Acet Acetate)
Zirconium tributoxymonostearate (also known as zirconium stearate n-butoxide)
Zirconium stearate Zirconium lactate ammonium salt zirconium monoacetylacetone
(チタンアルコキシド化合物)
 チタンアルコキシド化合物は、N、P及びSの少なくとも1種の原子を含むことが好ましい。また、チタンアルコキシド化合物はアセタト構造を有することも好ましい。
(Titanium alkoxide compound)
The titanium alkoxide compound preferably contains at least one atom of N, P and S. It is also preferable that the titanium alkoxide compound has an acetato structure.
 チタンアルコキシド化合物は、下記一般式(3)で表される化合物の少なくとも1種を含むことが好ましい。 The titanium alkoxide compound preferably contains at least one of the compounds represented by the following general formula (3).
       一般式(3): R1c m3-Ti-(OR2c4-m3 General formula (3): R 1c m3- Ti- (OR 2c ) 4-m3
 R1cは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
 アルキル基、シクロアルキル基、アシル基、アリール基及び不飽和脂肪族基として、例えば、上記一般式(1)のR1aとして採り得るアルキル基、シクロアルキル基、アシル基、アリール基及び不飽和脂肪族基を採用することができる。
R 1c represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
As an alkyl group, a cycloalkyl group, an acyl group, an aryl group and an unsaturated aliphatic group, for example, an alkyl group, a cycloalkyl group, an acyl group, an aryl group and an unsaturated fatty group which can be taken as R 1a of the above general formula (1). A family group can be adopted.
 R2cは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS3を示す。RS3は置換基を示す。
 アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基及びホスホネート基として、例えば、上記一般式(1)のR2aとして採り得るアルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基を採用することができる。また、RS3として採り得る置換基として、例えば、上記一般式(1)のRS1として採り得る置換基を採用することができる。
R 2c represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S3. RS3 indicates a substituent.
As an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group and a phosphonate group, for example, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, which can be taken as R 2a of the above general formula (1), A phosphonate group can be adopted. Further, as the substituent which can be taken as R S3, for example, it can be adopted a substituent which can be taken as R S1 of the general formula (1).
 m3は0~3の整数である。 M3 is an integer from 0 to 3.
 上記の一般式(3)で表される化合物は、N、P及びSの少なくとも1種の原子を含むことが好ましい。一般式(3)で表される化合物がNを有する場合、このNをアミノ基として有することが好ましい。
 一般式(3)で表される化合物がPを有する場合、このPをホスフェート基(リン酸基)ないしホスホネート基(ホスホン酸基)として有することが好ましい。
 一般式(3)で表される化合物がSを有する場合、このSをスルホニル基(-SO-)として有することが好ましい。
 また、上記の一般式(3)で表される化合物は、R2cとしてアシル基を有すること、すなわち、OR2cとして上述のアセタト構造を有することも好ましい。
The compound represented by the above general formula (3) preferably contains at least one atom of N, P and S. When the compound represented by the general formula (3) has N, it is preferable to have this N as an amino group.
When the compound represented by the general formula (3) has P, it is preferable to have this P as a phosphate group (phosphoric acid group) or a phosphonate group (phosphonic acid group).
When the compound represented by the general formula (3) has S, it is preferable to have this S as a sulfonyl group (-SO 2-).
Further, it is also preferable that the compound represented by the above general formula (3) has an acyl group as R 2c , that is, has the above-mentioned acetate structure as OR 2c.
 以下、本発明に用いられるジルコニウムアルコキシド化合物の具体例を挙げるが、本発明はこれらに限定されない。
イソプロピルトリイソステアロイルチタネート
イソプロピルトリドデシルベンゼンスルホニルチタネート
イソプロピルトリオクタノイルチタネート
イソプロピルトリ(ジオクチルホスファイト)チタネート
イソプロピルトリス(ジオクチルピロホスフェート)チタネート
イソプロピルトリ(ジオクチルスルフェート)チタネート
イソプロピルトリクミルフェニルチタネート
イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート
イソプロピルジメタクリルイソステアロイルチタネート
イソプロピルイソステアロイルジアクリルチタネート
イソブチルトリメチルチタネート
ジイソステアロイルエチレンチタネート
ジイソプロピルビス(ジオクチルピロホスフェート)チタネート
ジオクチルビス(ジトリデシルホスフェート)チタネート
ジクミルフェニルオキシアセテートチタネート
ビス(ジオクチルピロホスフェート)オキシアセテートチタネート
ビス(ジオクチルピロホスフェート)エチレンチタネート
ビス(ジオクチルピロホスフェート)オキシアセテートチタネート
テトライソプロピルチタネート
テトラブチルチタネート
テトラオクチルチタネート
テトラステアリルチタネート
テトライソプロピルビス(ジオクチルホスファイト)チタネート
テトラオクチルビス(ジ-トリデシルホスファイト)チタネート
テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネート
ブチルチタネートダイマー
チタンテトラアセチルアセトネート
チタンエチルアセトアセテート
チタンオクチレングリコレート
チタニウムジ-2-エチルヘキソキシビス(2-エチル-3-ヒドロキシヘキソキシド)
Hereinafter, specific examples of the zirconium alkoxide compound used in the present invention will be given, but the present invention is not limited thereto.
Isopropyltriisostearoyl titanate Isopropyltridodecylbenzenesulfonyl titanate Isopropyltrioctanoyl titanate Isopropyltri (dioctylphosphate) Titanate Isopropyltris (dioctylpyrophosphate) Titanate Isopropyltri (dioctylsulfate) Titanate Isopropyltricumylphenyl titanate Isopropyltri (N- Aminoethyl-aminoethyl) titanate isopropyl dimethacryl isostearoyl titanate isopropyl isostearoyl diacrylic titanate isobutyltrimethyl titanate diisostearoyl ethylene titanate diisopropylbis (dioctylpyrophosphate) titanate dioctylbis (ditridecylphosphate) titanate dicumylphenyloxyacetate titanate bis (Dioctyl Pyrophosphate) Oxyacetate Titanate Bis (Dioctyl Pyrophosphate) Ethyl Titanate Bis (Dioctyl Pyrophosphate) Oxyacetate Titanate Tetraisopropyl Titanate Tetrabutyl Titanate Tetraoctyl Titanate Tetrastearyl Titanate Tetraisopropylbis (Dioctyl Phosphite) Titanate Tetraoctylbis (Dioctyl Phosphite) Di-tridecylphosphite) titanate tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate butyl titanate dimer titanium tetraacetylacetonate titanium ethylacetate acetate titanium octylene glycolate titanium di -2-Ethylhexoxybis (2-ethyl-3-hydroxyhexoxide)
 成分(C)中、タングステンカーバイド粒子と表面処理剤との質量比は、特に制限されず、例えば、タングステンカーバイド粒子100質量部に対して、表面処理剤が1~100質量部であること好ましく、1~80質量部であることより好ましく、音響整合シートの音速低下を抑制する点及び音響整合シートの音響特性のばらつきを少なくする点から1~50質量部であることがより好ましく、5~50質量部であることがより好ましく、10~50質量部であることが更に好ましい。
 成分(C)中のタングステンカーバイド粒子と表面処理剤との質量比は、表面処理の際のタングステンカーバイド粒子と表面処理剤の使用量の質量比と同義である。成分(C)中のタングステンカーバイド粒子と表面処理剤との質量比は、成分(C)を熱質量測定(TGA)等で500℃以上に加熱することで有機成分を除去して無機成分(タングステンカーバイド粒子)を得て、このタングステンカーバイド粒子の質量と上記成分(C)の質量から算出することができる。
The mass ratio of the tungsten carbide particles to the surface treatment agent in the component (C) is not particularly limited, and for example, the surface treatment agent is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the tungsten carbide particles. It is more preferably 1 to 80 parts by mass, and more preferably 1 to 50 parts by mass from the viewpoint of suppressing the decrease in sound velocity of the acoustic matching sheet and reducing the variation in the acoustic characteristics of the acoustic matching sheet. It is more preferably parts by mass, and even more preferably 10 to 50 parts by mass.
The mass ratio of the tungsten carbide particles in the component (C) to the surface treatment agent is synonymous with the mass ratio of the amount of the tungsten carbide particles used in the surface treatment to the surface treatment agent. The mass ratio of the tungsten carbide particles in the component (C) to the surface treatment agent is such that the organic component is removed by heating the component (C) to 500 ° C. or higher by thermal mass measurement (TGA) or the like to remove the inorganic component (tungsten). Carbide particles) can be obtained and calculated from the mass of the tungsten carbide particles and the mass of the component (C).
 なお、本発明の効果を損なわない範囲で、上述した表面処理剤以外の表面処理剤を用いてもよい。 A surface treatment agent other than the above-mentioned surface treatment agent may be used as long as the effect of the present invention is not impaired.
 上記表面処理の方法それ自体は常法により行うことができる。
 成分(C)は、タングステンカーバイド粒子の表面全てが表面処理剤で処理されている必要はなく、例えば、タングステンカーバイド粒子の表面積100%のうちの50%以上が表面処理されていることが好ましく、70%以上がより好ましく、90%以上が更に好ましい。
 成分(C)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 成分(A)~(C)の各含有量の合計100質量部中、成分(C)の含有量は、音響インピーダンスをより高める点から、60質量部以上が好ましく、70質量部以上がより好ましく、80質量部以上がより好ましく、90質量部以上が更に好ましい。また、成分(A)~(C)の各含有量の合計100質量部中、成分(C)の含有量は98質量部以下が好ましく、95質量部以下がより好ましく、94質量部以下がさらに好ましい。成分(C)の含有量を90質量部以上94質量部以下にすることにより、音響特性のばらつきを効果的に抑制することができる。
 また、成分(A)~(C)の各含有量の合計100質量部中の成分(A)及び(B)の含有量は、以下の範囲にあることが好ましい。
 成分(A)の含有量は1質量部以上が好ましく、2質量部以上がより好ましく、4質量部以上がさらに好ましい。また、10質量部以下が好ましく、9質量部以下がより好ましく、8質量部以下がさらに好ましい。
 成分(B)の含有量は0.05質量部以上が好ましく、0.1質量部以上がより好ましく、0.14質量部以上がさらに好ましい。また、4質量部以下が好ましく、3質量部以下がより好ましく、2.5質量部以下が更に好ましい。
 成分(A)と成分(B)の含有量比は、用いる成分(B)の種類等に応じて適宜に調整するればよい。例えば、質量比で、成分(A)/成分(B)=99/1~20/80とすることができ、90/1~40/60が好ましく、90/1~75/25が更に好ましい。
The surface treatment method itself can be carried out by a conventional method.
As for the component (C), it is not necessary that the entire surface of the tungsten carbide particles is treated with a surface treatment agent, and for example, it is preferable that 50% or more of the surface area of the tungsten carbide particles is surface-treated. 70% or more is more preferable, and 90% or more is further preferable.
The component (C) may be used alone or in combination of two or more.
Of the total content of each of the components (A) to (C) of 100 parts by mass, the content of the component (C) is preferably 60 parts by mass or more, more preferably 70 parts by mass or more from the viewpoint of further increasing the acoustic impedance. , 80 parts by mass or more is more preferable, and 90 parts by mass or more is further preferable. Further, out of a total of 100 parts by mass of each content of the components (A) to (C), the content of the component (C) is preferably 98 parts by mass or less, more preferably 95 parts by mass or less, and further preferably 94 parts by mass or less. preferable. By setting the content of the component (C) to 90 parts by mass or more and 94 parts by mass or less, variations in acoustic characteristics can be effectively suppressed.
Further, the contents of the components (A) and (B) in 100 parts by mass of the total contents of the components (A) to (C) are preferably in the following range.
The content of the component (A) is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and further preferably 4 parts by mass or more. Further, 10 parts by mass or less is preferable, 9 parts by mass or less is more preferable, and 8 parts by mass or less is further preferable.
The content of the component (B) is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, and further preferably 0.14 parts by mass or more. Further, 4 parts by mass or less is preferable, 3 parts by mass or less is more preferable, and 2.5 parts by mass or less is further preferable.
The content ratio of the component (A) to the component (B) may be appropriately adjusted according to the type of the component (B) to be used and the like. For example, in terms of mass ratio, component (A) / component (B) = 99/1 to 20/80, preferably 90/1 to 40/60, and even more preferably 90/1 to 75/25.
<表面改質工程>
 また、音響整合シートの音速低下を抑制する点及び音響整合シートの音響特性のばらつきを少なくする観点で、本発明に用いられる表面処理タングステンカーバイド粒子が、上記表面処理剤で表面処理される前に、水溶液中で、タングステンカーバイド粒子と酸化剤とを接触させることにより、タングステンカーバイド粒子に対する表面改質を行ってもよい。
 表面改質工程は、水溶液中で、タングステンカーバイド粒子と酸化剤とを接触させて、変性タングステンカーバイド粒子を得る工程である。
 上記水溶液のpHは、例えば7超であり、10以上が好ましく、12以上がより好ましく、12超が更に好ましく、13以上が特に好ましく、13超が最も好ましい。
 上記水溶液のpHの上限に制限はなく、例えば、14以下である。
 上記水溶液のpHは、上記タングステンカーバイド粒子と上記酸化剤とを含んでいる状態における上記水溶液のpHを意味する。つまり、上記水溶液は、水と、タングステンカーバイド粒子と、酸化剤とを少なくとも含む。
 上記水溶液中で、タングステンカーバイド粒子と酸化剤とを接触させる時間は、0.1~24時間が好ましく、0.5~10時間がより好ましく、1.5~6時間が更に好ましい。
 また、タングステンカーバイド粒子と酸化剤とを接触させる際の上記水溶液の温度は、1~95℃が好ましく、25~80℃がより好ましく、45~65℃が更に好ましい。
 上記水溶液中で、タングステンカーバイド粒子と酸化剤とを接触させる方法に制限はなく、例えば、ロッキングミル、ピースミル、ボールミル、ヘンシェルミキサー、ジェットミル、スターバースト、又は、ペイントコンディショナー等の粉砕機又は解砕機を用いた処理で混合して接触させる方法、スリーワンモーター等のメカニカルスターラー又はマグネチックスターラー等を用いて攪拌処理しながら接触させる方法、及び、タングステンカーバイド粒子を充填したカートリッジに酸化剤等を含む酸化剤水溶液をポンプで循環させながら接触させる方法が挙げられる。
 また、上記水溶液中で、タングステンカーバイド粒子と酸化剤とを接触させる方法として、上記水溶液中でタングステンカーバイド粒子又は変性タングステンカーバイド粒子を可能な限り破壊しない方法を選択してもよい。ここでいう破壊とは、例えば、処理対象のタングステンカーバイド粒子が凝集状のタングステンカーバイド粒子である場合に、その凝集形態が破壊されることが挙げられる。
 上記水溶液中で、タングステンカーバイド粒子と酸化剤とを接触させた後、得られた変性タングステンカーバイド粒子を上記水溶液中から取り出すことが好ましい。
 上記水溶液から変性タングステンカーバイド粒子を取り出す方法に制限はなく、例えば、上記水溶液をろ過して、ろ物として変性タングステンカーバイド粒子を分取(ろ取)する方法が挙げられる。
 取り出された変性タングステンカーバイド粒子を、水及び/又は有機溶媒等で洗浄することも好ましい。
(酸化剤)
 上記水溶液は、酸化剤を含む。
 酸化剤に制限はなく、例えば、過硫酸ナトリウム、過硫酸カリウム、及び、過硫酸アンモニウムのような過硫酸塩;硝酸セリウムアンモニウム、硝酸ナトリウム、及び、硝酸アンモニウムのような硝酸塩;過酸化水素、及び、tert-ブチルヒドロペルオキシドのような過酸化物;過マンガン酸カリウムのような過マンガン酸塩;二価の銅化合物、及び、遷移金属化合物;過ヨウ素酸カリウム、及び、過ヨウ素酸ナトリウムのような超原子価ヨウ素化合物;ベンゾキノン、ナフトキノン、アントラキノン、及び、クロラニルのようなキノン化合物;並びに、次亜塩素酸ナトリウム、及び、亜塩素酸ナトリウムのようなハロゲンオキソ酸の塩が挙げられる。
 中でも酸化剤は、過硫酸塩を含むことが好ましく、過硫酸塩であることがより好ましい。
 また、酸化剤の作用を補助するために、酸化剤とは別に触媒を使用してもよい。上記触媒としては、例えば、二価の鉄化合物(FeSO等)、及び、三価の鉄化合物が挙げられる。
 なお、酸化剤及び/又は触媒は水和物であってもよい。
 また、酸化剤は、標準酸化還元電位が、0.30V以上であることが好ましく、1.50V以上であることがより好ましく、1.70以上であることが更に好ましい。酸化剤の、標準酸化還元電位の上限に制限はなく、例えば、4.00V以下であることが好ましく、2.50V以下であることがより好ましい。
 上記標準酸化還元電位は、標準水素電極を基準とする。
 上記水溶液中、酸化剤の含有量は、上記水溶液における水100質量部に対して、0.05~20質量部が好ましく、0.1~20質量部がより好ましく、1~20質量部が更に好ましい。
 酸化剤は、一種単独で使用してもよく、二種以上を使用してもよい。
 上記水溶液が触媒を含む場合、その含有量は、上記水溶液における水100質量部に対して、0.005~2質量部が好ましく、0.01~2質量部がより好ましく、0.1~2質量部が更に好ましい。
 上記水溶液中、触媒の含有量は、上記水溶液における酸化剤100質量部に対して、0.1~80質量部が好ましく、1~50質量部がより好ましく、5~20質量部が更に好ましい。
 触媒は、一種単独で使用してもよく、二種以上を使用してもよい。
 また、タングステンカーバイド粒子と接触させる酸化剤の量は、タングステンカーバイド粒子の100質量部に対して、0.1~1000質量部が好ましく、1~250質量部がより好ましく、15~120質量部が更に好ましい。
(アルカリ源)
 上記水溶液は、上記水溶液のpHを調製するために、上述の成分以外にアルカリ源を含むことも好ましい。
 上記アルカリ源としては、例えば、アルカリ金属水酸化物(水酸化ナトリウム等)、及び、アルカリ土類金属水酸化物のような無機塩基;並びに、有機塩基が挙げられる。
 上記水溶液中、アルカリ源の含有量は、上記水溶液のpHを所望の温度に調整できるように適宜調整すればよく、例えば、上記水溶液における水100質量部に対して、0.1~10質量部である。
<Surface modification process>
Further, from the viewpoint of suppressing the decrease in sound velocity of the acoustic matching sheet and reducing the variation in the acoustic characteristics of the acoustic matching sheet, before the surface-treated tungsten carbide particles used in the present invention are surface-treated with the above-mentioned surface treatment agent. , Tungsten carbide particles may be surface-modified by contacting the tungsten carbide particles with an oxidizing agent in an aqueous solution.
The surface modification step is a step of bringing the tungsten carbide particles into contact with an oxidizing agent in an aqueous solution to obtain modified tungsten carbide particles.
The pH of the aqueous solution is, for example, more than 7, preferably 10 or more, more preferably 12 or more, further preferably more than 12, particularly preferably 13 or more, and most preferably more than 13.
The upper limit of the pH of the aqueous solution is not limited, and is, for example, 14 or less.
The pH of the aqueous solution means the pH of the aqueous solution in a state containing the tungsten carbide particles and the oxidizing agent. That is, the aqueous solution contains at least water, tungsten carbide particles, and an oxidizing agent.
The time for contacting the tungsten carbide particles with the oxidizing agent in the above aqueous solution is preferably 0.1 to 24 hours, more preferably 0.5 to 10 hours, and even more preferably 1.5 to 6 hours.
The temperature of the aqueous solution when the tungsten carbide particles are brought into contact with the oxidizing agent is preferably 1 to 95 ° C, more preferably 25 to 80 ° C, and even more preferably 45 to 65 ° C.
There is no limitation on the method of contacting the tungsten carbide particles with the oxidizing agent in the above aqueous solution, and for example, a crusher or a crusher such as a locking mill, a piece mill, a ball mill, a henschel mixer, a jet mill, a stirrer, or a paint conditioner. A method of mixing and contacting by a treatment using, a method of contacting while stirring using a mechanical stirrer such as a three-one motor or a magnetic stirrer, and an oxidation containing an oxidizing agent or the like in a cartridge filled with tungsten carbide particles. An example is a method in which the aqueous agent is circulated by a pump and brought into contact with each other.
Further, as a method of bringing the tungsten carbide particles into contact with the oxidizing agent in the aqueous solution, a method may be selected in which the tungsten carbide particles or the modified tungsten carbide particles are not destroyed as much as possible in the aqueous solution. The term "destruction" as used herein means, for example, that when the tungsten carbide particles to be treated are agglomerated tungsten carbide particles, the agglomerated form is destroyed.
It is preferable that the tungsten carbide particles and the oxidizing agent are brought into contact with each other in the aqueous solution, and then the obtained modified tungsten carbide particles are taken out from the aqueous solution.
There is no limitation on the method of extracting the modified tungsten carbide particles from the aqueous solution, and examples thereof include a method of filtering the aqueous solution and separating (filtering) the modified tungsten carbide particles as a filter medium.
It is also preferable to wash the removed modified tungsten carbide particles with water and / or an organic solvent or the like.
(Oxidant)
The aqueous solution contains an oxidizing agent.
There are no restrictions on the oxidizing agent, for example, persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; nitrates such as cerium ammonium nitrate, sodium nitrate, and ammonium nitrate; hydrogen peroxide, and tert. -Peroxides such as butyl hydroperoxide; permanganates such as potassium permanganate; divalent copper compounds and transition metal compounds; potassium permanganate and super such as sodium permanganate Atomic iodine compounds; quinone compounds such as benzoquinone, naphthoquinone, anthraquinone, and chloranyl; and salts of sodium hypochlorite and halogen oxo acids such as sodium chlorite.
Among them, the oxidizing agent preferably contains a persulfate, and more preferably a persulfate.
Further, in order to assist the action of the oxidant, a catalyst may be used separately from the oxidant. Examples of the catalyst include a divalent iron compound (FeSO 4, etc.) and a trivalent iron compound.
The oxidizing agent and / or the catalyst may be a hydrate.
Further, the standard oxidation-reduction potential of the oxidizing agent is preferably 0.30 V or more, more preferably 1.50 V or more, and further preferably 1.70 or more. There is no limit to the upper limit of the standard redox potential of the oxidizing agent, for example, it is preferably 4.00 V or less, and more preferably 2.50 V or less.
The standard redox potential is based on the standard hydrogen electrode.
The content of the oxidizing agent in the aqueous solution is preferably 0.05 to 20 parts by mass, more preferably 0.1 to 20 parts by mass, and further preferably 1 to 20 parts by mass with respect to 100 parts by mass of water in the aqueous solution. preferable.
The oxidizing agent may be used alone or in combination of two or more.
When the aqueous solution contains a catalyst, the content thereof is preferably 0.005 to 2 parts by mass, more preferably 0.01 to 2 parts by mass, and 0.1 to 2 parts by mass with respect to 100 parts by mass of water in the aqueous solution. Parts by mass are more preferred.
The content of the catalyst in the aqueous solution is preferably 0.1 to 80 parts by mass, more preferably 1 to 50 parts by mass, and even more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the oxidizing agent in the aqueous solution.
The catalyst may be used alone or in combination of two or more.
The amount of the oxidizing agent to be brought into contact with the tungsten carbide particles is preferably 0.1 to 1000 parts by mass, more preferably 1 to 250 parts by mass, and 15 to 120 parts by mass with respect to 100 parts by mass of the tungsten carbide particles. More preferred.
(Alkaline source)
The aqueous solution preferably contains an alkaline source in addition to the above components in order to adjust the pH of the aqueous solution.
Examples of the alkali source include alkali metal hydroxides (sodium hydroxide and the like), inorganic bases such as alkaline earth metal hydroxides; and organic bases.
The content of the alkali source in the aqueous solution may be appropriately adjusted so that the pH of the aqueous solution can be adjusted to a desired temperature. For example, 0.1 to 10 parts by mass with respect to 100 parts by mass of water in the aqueous solution. Is.
<その他の成分>
 本発明の材料は、成分(A)~(C)以外に、例えば、硬化遅延剤、分散剤、顔料、染料、帯電防止剤、酸化防止剤、難燃剤および熱伝導性向上剤等が挙げられる。
<Other ingredients>
In addition to the components (A) to (C), examples of the material of the present invention include curing retarders, dispersants, pigments, dyes, antistatic agents, antioxidants, flame retardants, and thermal conductivity improvers. ..
<音響整合層用材料の調製>
 本発明の材料が成分(A)~(C)を混合してなる音響整合層用組成物の形態の場合は、混合方法は各成分を実質的に均一混合できれば特に制限されない。例えば、自転公転撹拌機を用いて混練りすることにより目的の均一混合ができる。この混合物を成形しながら硬化することにより、音響整合シート又はその前駆体を調製することができる。
<Preparation of materials for acoustic matching layer>
When the material of the present invention is in the form of a composition for an acoustic matching layer formed by mixing the components (A) to (C), the mixing method is not particularly limited as long as each component can be substantially uniformly mixed. For example, the desired uniform mixing can be achieved by kneading using a rotation / revolution stirrer. By curing this mixture while molding it, an acoustic matching sheet or a precursor thereof can be prepared.
 また、本発明の材料が、例えば、成分(A)と成分(C)とを含む主剤と、成分(B)の硬化剤とを含む音響整合層用セット(上述の形態(ii)とする)の形態の場合には、主剤は成分(A)と成分(C)とを混合することにより得ることができる。音響整合シートの作製時に、この主剤と硬化剤とを混合し、この混合物を成形して硬化することにより、音響整合シート又はその前駆体を調製することができる。 Further, the material of the present invention is, for example, a set for an acoustic matching layer containing a main agent containing the component (A) and the component (C) and a curing agent for the component (B) (referred to as the above-mentioned form (ii)). In the case of the form of, the main agent can be obtained by mixing the component (A) and the component (C). At the time of producing the acoustic matching sheet, the acoustic matching sheet or its precursor can be prepared by mixing the main agent and the curing agent, molding and curing the mixture.
[音響整合シート(音響整合層)]
 本発明の音響整合シートは、上記の各成分の混合物を成形して硬化し、その後、必要により所望の厚さ又は形状へと切削、ダイシング等することにより得ることができる。また、この音響整合シートを常法によりさらに所望の形状へと加工することもできる。
 具体的には、例えば、本発明の材料を、硬化反応を生じない低温域、又は硬化速度が十分に遅い低温域で所望のシート状に成形する。次いで、必要により加熱等することにより硬化させて硬化物を得て、この硬化物を必要により所望の厚さ又は形状へと切削、ダイシング等することにより、音響整合シートとする。つまり、形成される音響整合シートは、好ましくは、本発明の材料を構成する各成分の混合物を硬化させた硬化物である。この音響整合シートは音響波プローブの音響整合層として用いられる。音響整合層を含む音響波プローブの構成については後述する。
[Acoustic matching sheet (acoustic matching layer)]
The acoustic matching sheet of the present invention can be obtained by molding a mixture of the above components, curing the mixture, and then cutting, dicing, or the like to a desired thickness or shape, if necessary. Further, the acoustic matching sheet can be further processed into a desired shape by a conventional method.
Specifically, for example, the material of the present invention is molded into a desired sheet shape in a low temperature region where a curing reaction does not occur or in a low temperature region where the curing rate is sufficiently slow. Then, if necessary, it is cured by heating or the like to obtain a cured product, and this cured product is cut or diced to a desired thickness or shape as necessary to obtain an acoustic matching sheet. That is, the acoustic matching sheet to be formed is preferably a cured product obtained by curing a mixture of the components constituting the material of the present invention. This acoustic matching sheet is used as an acoustic matching layer of the acoustic wave probe. The configuration of the acoustic wave probe including the acoustic matching layer will be described later.
[音響波プローブ]
 本発明の音響波プローブは、本発明の音響整合シートを音響整合層の少なくとも1層として有する。
 本発明の音響波プローブの構成について、その一例を図1に示す。図1に示す音響波プローブは、超音波診断装置における超音波プローブである。なお、超音波プローブとは、音響波プローブにおける音響波として、特に超音波を使用するプローブである。そのため、超音波プローブの基本的な構造は音響波プローブにそのまま適用することができる。
[Acoustic wave probe]
The acoustic wave probe of the present invention has the acoustic matching sheet of the present invention as at least one layer of the acoustic matching layer.
An example of the configuration of the acoustic wave probe of the present invention is shown in FIG. The acoustic wave probe shown in FIG. 1 is an ultrasonic probe in an ultrasonic diagnostic apparatus. The ultrasonic probe is a probe that uses ultrasonic waves as an acoustic wave in the acoustic wave probe. Therefore, the basic structure of the ultrasonic probe can be applied as it is to the acoustic wave probe.
<超音波プローブ>
 超音波プローブ10は、超音波診断装置の主要構成部品であって、超音波を発生するとともに、超音波ビームを送受信する機能を有するものである。超音波プローブ10の構成は、図1に示すように、先端(被検対象である生体に接する面)部分から音響レンズ1、音響整合層2、圧電素子層3、バッキング材4の順に設けられている。なお、近年、高次高調波を受信することを目的に、送信用超音波振動子(圧電素子)と、受信用超音波振動子(圧電素子)を異なる材料で構成し、積層構造としたものも提案されている。
<Ultrasonic probe>
The ultrasonic probe 10 is a main component of an ultrasonic diagnostic apparatus, and has a function of generating ultrasonic waves and transmitting and receiving an ultrasonic beam. As shown in FIG. 1, the structure of the ultrasonic probe 10 is provided in the order of the acoustic lens 1, the acoustic matching layer 2, the piezoelectric element layer 3, and the backing material 4 from the tip (the surface in contact with the living body to be inspected). ing. In recent years, for the purpose of receiving high-order harmonics, a transmitting ultrasonic vibrator (piezoelectric element) and a receiving ultrasonic vibrator (piezoelectric element) are made of different materials to form a laminated structure. Has also been proposed.
(圧電素子層)
 圧電素子層3は、超音波を発生する部分であって、圧電素子の両側に電極が貼り付けられており、電圧を加えると圧電素子が伸縮と膨張を繰り返し振動することにより、超音波が発生する。
(Piezoelectric element layer)
The piezoelectric element layer 3 is a portion that generates ultrasonic waves, and electrodes are attached to both sides of the piezoelectric element, and when a voltage is applied, the piezoelectric element repeatedly expands and contracts and expands to vibrate, thereby generating ultrasonic waves. do.
 圧電素子を構成する材料としては、水晶、LiNbO、LiTaOおよびKNbOなどの単結晶、ZnOおよびAlNなどの薄膜ならびにPb(Zr,Ti)O系などの焼結体を分極処理した、いわゆるセラミックスの無機圧電体が広く利用されている。一般的には、変換効率のよいPZT:チタン酸ジルコン酸鉛等の圧電セラミックスが使用されている。
 また、高周波側の受信波を検知する圧電素子には、より広い帯域幅の感度が必要である。このため、高周波、広帯域に適した圧電素子として、ポリフッ化ビニリデン(PVDF)などの有機系高分子物質を利用した有機圧電体が使用されている。
 さらに、特開2011-071842号公報等には、優れた短パルス特性および広帯域特性を示し、量産性に優れ、特性ばらつきの少ないアレイ構造が得られる、MEMS(Micro Electro Mechanical Systems)技術を利用したcMUTが記載されている。
 本発明においては、いずれの圧電素子材料も好ましく用いることができる。
The material constituting the piezoelectric element, quartz, LiNbO 3, a single crystal such as LiTaO 3, and KNbO 3, thin film and Pb (Zr, Ti), such as ZnO and AlN sintered body such as O 3 system was polarized, So-called ceramic inorganic piezoelectric materials are widely used. Generally, piezoelectric ceramics such as PZT: lead zirconate titanate having high conversion efficiency are used.
Further, the piezoelectric element that detects the received wave on the high frequency side needs a sensitivity with a wider bandwidth. Therefore, as a piezoelectric element suitable for high frequency and wide band, an organic piezoelectric material using an organic polymer substance such as polyvinylidene fluoride (PVDF) is used.
Further, Japanese Patent Application Laid-Open No. 2011-071842 and the like utilize MEMS (Micro Electro Mechanical Systems) technology, which exhibits excellent short pulse characteristics and wideband characteristics, is excellent in mass productivity, and can obtain an array structure with little variation in characteristics. cMUT is described.
In the present invention, any piezoelectric element material can be preferably used.
(バッキング材)
 バッキング材4は、圧電素子層3の背面に設けられており、余分な振動を抑制することにより超音波のパルス幅を短くし、超音波診断画像における距離分解能の向上に寄与する。
(Backing material)
The backing material 4 is provided on the back surface of the piezoelectric element layer 3 and shortens the pulse width of the ultrasonic wave by suppressing excessive vibration, which contributes to the improvement of the distance resolution in the ultrasonic diagnostic image.
(音響整合層)
 音響整合層2は、圧電素子層3と被検対象間での音響インピーダンスの差を小さくし、超音波を効率よく送受信するために設けられる。
(Acoustic matching layer)
The acoustic matching layer 2 is provided in order to reduce the difference in acoustic impedance between the piezoelectric element layer 3 and the subject to be inspected and to efficiently transmit and receive ultrasonic waves.
(音響レンズ)
 音響レンズ1は、屈折を利用して超音波をスライス方向に集束し、分解能を向上させるために設けられる。また、被検対象である生体と密着し、超音波を生体の音響インピーダンス(人体では、1.4~1.7Mrayl)と整合させること、および、音響レンズ1自体の超音波減衰量が小さいことが求められている。
 すなわち、音響レンズ1の材料としては、音速が人体の音速よりも十分小さく、超音波の減衰が少なく、また、音響インピーダンスが人体の皮膚の値に近い材料を使用することで、超音波の送受信感度が高められる。
(Acoustic lens)
The acoustic lens 1 is provided to focus ultrasonic waves in the slice direction by utilizing refraction and improve the resolution. In addition, the ultrasonic waves should be in close contact with the living body to be examined and matched with the acoustic impedance of the living body (1.4 to 1.7 Milly in the human body), and the amount of ultrasonic attenuation of the acoustic lens 1 itself should be small. Is required.
That is, as the material of the acoustic lens 1, the sound velocity is sufficiently smaller than the sound velocity of the human body, the attenuation of ultrasonic waves is small, and the acoustic impedance is close to the value of the skin of the human body, so that ultrasonic waves can be transmitted and received. Sensitivity is increased.
 このような構成の超音波プローブ10の動作を説明する。圧電素子の両側に設けられた電極に電圧を印加して圧電素子層3を共振させ、超音波信号を音響レンズから被検対象に送信する。受信時には、被検対象からの反射信号(エコー信号)によって圧電素子層3を振動させ、この振動を電気的に変換して信号とし、画像を得る。 The operation of the ultrasonic probe 10 having such a configuration will be described. A voltage is applied to the electrodes provided on both sides of the piezoelectric element to resonate the piezoelectric element layer 3, and an ultrasonic signal is transmitted from the acoustic lens to the subject to be inspected. At the time of reception, the piezoelectric element layer 3 is vibrated by the reflected signal (echo signal) from the test object, and this vibration is electrically converted into a signal to obtain an image.
[音響波プローブの製造]
 本発明の音響波プローブは、本発明の材料を用いること以外は、常法により作製することができる。すなわち、本発明の音響波プローブの製造方法は、圧電素子側に、本発明の材料を用いて音響整合層を形成することを含む。圧電素子はバッキング材上に常法により設けることができる。
 また、音響整合層上には、音響レンズの形成材料を用いて常法により音響レンズが形成される。
[Manufacturing of acoustic wave probe]
The acoustic wave probe of the present invention can be produced by a conventional method except that the material of the present invention is used. That is, the method for manufacturing an acoustic wave probe of the present invention includes forming an acoustic matching layer on the piezoelectric element side using the material of the present invention. The piezoelectric element can be provided on the backing material by a conventional method.
Further, an acoustic lens is formed on the acoustic matching layer by a conventional method using a material for forming the acoustic lens.
[音響波測定装置]
 本発明の音響波測定装置は、本発明の音響波プローブを有する。音響波測定装置は、音響波プローブで受信した信号の信号強度を表示したり、この信号を画像化したりする機能を備える。
 本発明の音響波測定装置は、超音波プローブを用いた超音波測定装置であることも好ましい。
[Acoustic wave measuring device]
The acoustic wave measuring device of the present invention has the acoustic wave probe of the present invention. The acoustic wave measuring device has a function of displaying the signal strength of the signal received by the acoustic wave probe and imaging the signal.
It is also preferable that the acoustic wave measuring device of the present invention is an ultrasonic measuring device using an ultrasonic probe.
 以下に本発明を、音響波として超音波を用いた実施例に基づいてさらに詳細に説明する。なお、本発明は超音波に限定されるものではなく、被検対象及び測定条件等に応じて適切な周波数を選択してさえいれば、可聴周波数の音響波を用いてもよい。 The present invention will be described in more detail below based on an example in which ultrasonic waves are used as acoustic waves. The present invention is not limited to ultrasonic waves, and an acoustic wave having an audible frequency may be used as long as an appropriate frequency is selected according to the test object, measurement conditions, and the like.
[調製例]表面処理タングステンカーバイド粒子(C-1)の調製例
 3-アミノプロピルトリメトキシシラン3.0質量部、メタノール100質量部、蒸留水3.3質量部を混合した後、23℃で1時間静置してメトキシ基の加水分解を進行させた。この溶液にタングステンカーバイド粒子(アライドマテリアル社製、商品名「WC60S」、平均一次粒子径6.5μm)10.0質量部を入れた。この混合物をホモジナイザー(日本精機社製「ED-7型オートエクセルホモジナイザー」(商品名))を用いて、液温度が50℃を超えない様に冷却しながら、回転数10,000rpmで60分間撹拌し、粉砕しながら表面処理を行った。
 上記で撹拌し粉砕した後の混合物を濾別し、得られた固形物を100℃で30分加熱乾燥し、粉末状の表面処理タングステンカーバイド粒子(C-1)(成分(C))を得た。
 表面処理タングステンカーバイド粒子(C-1)の調製において、原料を下記表1の組成で用いたこと以外は、表面処理タングステンカーバイド粒子(C-1)と同様にして表面処理タングステンカーバイド粒子(C-2)~(C-30)を調製した。なお、後記表1-1~1-6を纏めて表1と称する。
 表面処理タングステンカーバイド粒子(C-2)~(C-30)の調製において、原料のタングステンカーバイド粒子は、いずれも10.0質量部用いた。
 なお、表面処理タングステンカーバイド粒子(C-1)の調製において、タングステンカーバイド粒子に代えてタングステン粒子を用いたところ、十分に表面処理できず、凝集してしまい使用できなかった。
[Preparation Example] Preparation Example of Surface-treated Tungsten Carbide Particles (C-1) 3-Aminopropyltrimethoxysilane 3.0 parts by mass, methanol 100 parts by mass, distilled water 3.3 parts by mass, and then at 23 ° C. The mixture was allowed to stand for 1 hour to allow the hydrolysis of the methoxy group to proceed. 10.0 parts by mass of tungsten carbide particles (manufactured by A.L.M., trade name "WC60S", average primary particle diameter 6.5 μm) were added to this solution. Using a homogenizer (“ED-7 type auto-excel homogenizer” (trade name) manufactured by Nippon Seiki Co., Ltd.), the mixture is stirred at a rotation speed of 10,000 rpm for 60 minutes while cooling so that the liquid temperature does not exceed 50 ° C. Then, surface treatment was performed while crushing.
The mixture after stirring and pulverizing above is filtered off, and the obtained solid is heated and dried at 100 ° C. for 30 minutes to obtain powdery surface-treated tungsten carbide particles (C-1) (component (C)). rice field.
In the preparation of the surface-treated tungsten carbide particles (C-1), the surface-treated tungsten carbide particles (C-) were prepared in the same manner as the surface-treated tungsten carbide particles (C-1) except that the raw materials were used in the compositions shown in Table 1 below. 2)-(C-30) were prepared. Tables 1-1 to 1-6 below are collectively referred to as Table 1.
In the preparation of the surface-treated tungsten carbide particles (C-2) to (C-30), 10.0 parts by mass of the raw material tungsten carbide particles were used.
In the preparation of the surface-treated tungsten carbide particles (C-1), when tungsten particles were used instead of the tungsten carbide particles, the surface treatment could not be sufficiently performed and the particles were aggregated and could not be used.
[調製例]表面処理タングステンカーバイド粒子(C-31)の調製例
 NaOH水(NaOH:40g/水:400ml)にタングステンカーバイド粒子(50g)を添加して攪拌した。上記NaOH水に、更に、過硫酸ナトリウム水(過硫酸ナトリウム:9.6g/水:100ml)を添加した後、上記NaOH水を50℃に昇温し、更に3時間攪拌した(変性工程)。攪拌には新東科学株式会社製スリーワンモーターを用い、150rpmで行った。
 上記NaOH水を室温まで冷却した後、上記NaOH水中のタングステンカーバイド粒子をろ取し、ろ取されたタングステンカーバイド粒子を、水(500ml)と、アセトニトリル(250ml)とで洗浄することで変性タングステンカーバイド粒子を得た。
 表面処理タングステンカーバイド粒子(C-1)の調製において、タングステンカーバイド粒子の代わりに変性タングステンカーバイト粒子を用いたこと以外は、表面処理タングステンカーバイド粒子(C-1)と同様にして表面処理タングステンカーバイド粒子(C-31)を調製した。
 表面処理タングステンカーバイド粒子(C-31)の調製において、原料を下記表1の組成で用いたこと以外は、表面処理タングステンカーバイド粒子(C-31)と同様にして表面処理タングステンカーバイド粒子(C-32)~(C-48)を調製した。
[Preparation Example] Preparation Example of Surface-treated Tungsten Carbide Particles (C-31) Tungsten Carbide Particles (50 g) were added to NaOH water (NaOH: 40 g / water: 400 ml) and stirred. After further adding sodium persulfate water (sodium persulfate: 9.6 g / water: 100 ml) to the above NaOH water, the temperature of the above NaOH water was raised to 50 ° C., and the mixture was further stirred for 3 hours (denaturation step). A three-one motor manufactured by Shinto Kagaku Co., Ltd. was used for stirring, and the stirring was performed at 150 rpm.
After cooling the NaOH water to room temperature, the tungsten carbide particles in the NaOH water are collected by filtration, and the collected tungsten carbide particles are washed with water (500 ml) and acetonitrile (250 ml) to modify the tungsten carbide. Obtained particles.
Surface-treated tungsten carbide particles (C-1) were prepared in the same manner as the surface-treated tungsten carbide particles (C-1), except that modified tungsten carbide particles were used instead of the tungsten carbide particles. Particles (C-31) were prepared.
In the preparation of the surface-treated tungsten carbide particles (C-31), the surface-treated tungsten carbide particles (C-31) were prepared in the same manner as the surface-treated tungsten carbide particles (C-31) except that the raw materials were used in the compositions shown in Table 1 below. 32)-(C-48) were prepared.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<表の注>
[タングステンカーバイド粒子(W)]
(W-1):
 無処理タングステンカーバイド粒子(アライドマテリアル社製、商品名「WC30S」、平均一次粒子径3μm)
(W-2):
 無処理タングステンカーバイド粒子(アライドマテリアル社製、商品名「WC60S」、平均一次粒子径6.5μm)
(W-3):
 無処理タングステンカーバイド粒子(アライドマテリアル社製、商品名「WC80S」、平均一次粒子径9μm)
(W-4):
 無処理タングステンカーバイド粒子(アライドマテリアル社製、商品名「WC100S」、平均一次粒子径15μm)
[表面処理剤(S)]
<アミノシラン化合物>
(SA-1):
 3-アミノプロピルトリメトキシシラン(Gelest社製、商品名「SIA0611.0」)
<メルカプトシラン化合物>
(SM-1):
 3-メルカプトプロピルトリメトキシシラン(Gelest社製、商品名「SIM6476.0」)
(SM-2):
 11-メルカプトウンデシルトリメトキシシラン(Gelest社製、商品名「SIM6480.0」)
<イソシアナトシラン化合物>
(SI-1):
 3-イソシアナトプロピルトリメトキシシラン(Gelest社製、商品名「SII6456.0」)
(SI-2):
 イソシアナトメチルトリメトキシシラン(Gelest社製、商品名「SII6453.8」)
<Note to table>
[Tungsten Carbide Particles (W)]
(W-1):
Untreated tungsten carbide particles (manufactured by A.L.M., trade name "WC30S", average primary particle size 3 μm)
(W-2):
Untreated Tungsten Carbide Particles (manufactured by A.L.M., trade name "WC60S", average primary particle size 6.5 μm)
(W-3):
Untreated Tungsten Carbide Particles (manufactured by A.L.M., trade name "WC80S", average primary particle size 9 μm)
(W-4):
Untreated Tungsten Carbide Particles (manufactured by A.L.M., trade name "WC100S", average primary particle size 15 μm)
[Surface treatment agent (S)]
<Aminosilane compound>
(SA-1):
3-Aminopropyltrimethoxysilane (manufactured by Gelest, trade name "SIA0611.0")
<Mercaptosilane compound>
(SM-1):
3-Mercaptopropyltrimethoxysilane (manufactured by Gelest, trade name "SIM6476.0")
(SM-2):
11-Mercaptoundecyltrimethoxysilane (manufactured by Gelest, trade name "SIM6480.0")
<Isocyanatosilane compound>
(SI-1):
3-Isocyanatopropyltrimethoxysilane (manufactured by Gelest, trade name "SII6456.0")
(SI-2):
Isocyanatomethyltrimethoxysilane (manufactured by Gelest, trade name "SII6453.8")
<チタンアルコキシド化合物>
(ST-1):
 イソプロピルトリイソステアロイルチタネート(味の素ファインテクノ社製、商品名「プレンアクトTTS」
Figure JPOXMLDOC01-appb-C000008
<Titanium alkoxide compound>
(ST-1):
Isopropyltriisostearoyl titanate (manufactured by Ajinomoto Fine-Techno), trade name "Plenact TTS"
Figure JPOXMLDOC01-appb-C000008
(ST-2):
 ジオクチルビス(ジトリデシルホスフェート)チタネート(味の素ファインテクノ社製「プレンアクト46B」
Figure JPOXMLDOC01-appb-C000009
(ST-2):
Dioctylvis (ditridecyl phosphate) titanate (Ajinomoto Fine Techno Co., Ltd. "Plenact 46B"
Figure JPOXMLDOC01-appb-C000009
(ST-3):
 イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート(味の素ファインテクノ社製、商品名「プレンアクト44」)
Figure JPOXMLDOC01-appb-C000010
(ST-3):
Isopropyltri (N-aminoethyl-aminoethyl) titanate (manufactured by Ajinomoto Fine-Techno, trade name "Plenact 44")
Figure JPOXMLDOC01-appb-C000010
<アルミニウムアルコキシド化合物>
(SL-1):
 アルミニウムトリsec-ブチレート(川研ファインケミカル社製、商品名「ASBD」)
Figure JPOXMLDOC01-appb-C000011
<Aluminum alkoxide compound>
(SL-1):
Aluminum trisec-butyrate (manufactured by Kawaken Fine Chemicals, trade name "ASBD")
Figure JPOXMLDOC01-appb-C000011
(SL-2):
 アルミニウムトリスアセチルアセトネート(マツモトファインケミカル社製、商品名「オルガチックスAL-3100」)
Figure JPOXMLDOC01-appb-C000012
(SL-2):
Aluminum trisacetylacetone (manufactured by Matsumoto Fine Chemical Co., Ltd., trade name "Organix AL-3100")
Figure JPOXMLDOC01-appb-C000012
(SL-3):
 アルミニウムビスエチルアセトアセテートモノアセチルアセトネート(マツモトファインケミカル社製、商品名「オルガチックスAL-3200」)
Figure JPOXMLDOC01-appb-C000013
(SL-3):
Aluminum Bisethylacetate Acetate Monoacetylacetone (manufactured by Matsumoto Fine Chemical Co., Ltd., trade name "Organix AL-3200")
Figure JPOXMLDOC01-appb-C000013
(SL-4):
 アルミニウムトリスエチルアセトアセテート(マツモトファインケミカル社製、商品名「オルガチックスAL-3215」)
Figure JPOXMLDOC01-appb-C000014
(SL-4):
Aluminum Trisethylacetacetate (manufactured by Matsumoto Fine Chemical Co., Ltd., trade name "Organix AL-3215")
Figure JPOXMLDOC01-appb-C000014
(SL-5):
 アルミニウムオクタデシルアセトアセテートジイソプロピレート(味の素ファインテクノ社製、商品名「プレンアクトAL-M」)
Figure JPOXMLDOC01-appb-C000015
(SL-5):
Aluminum octadecylacetacetate diisopropilate (manufactured by Ajinomoto Fine-Techno, trade name "Plenact AL-M")
Figure JPOXMLDOC01-appb-C000015
<ジルコニウムアルコキシド化合物>
(SZ-1):
 ジルコニウムテトラn-プロポキシド(マツモトファインケミカル社製、商品名「オルガチックスZA-45」)
Figure JPOXMLDOC01-appb-C000016
<Zirconium alkoxide compound>
(SZ-1):
Zirconium Tetra n-Propoxide (manufactured by Matsumoto Fine Chemicals, trade name "Organics ZA-45")
Figure JPOXMLDOC01-appb-C000016
(SZ-2):
 ジルコニウムテトラn-ブトキシド(マツモトファインケミカル社製、商品名「オルガチックスZA-65」)
Figure JPOXMLDOC01-appb-C000017
(SZ-2):
Zirconium tetra n-butoxide (manufactured by Matsumoto Fine Chemicals, trade name "Organics ZA-65")
Figure JPOXMLDOC01-appb-C000017
(SZ-3):
 ジルコニウムテトラアセチルアセトネート(マツモトファインケミカル社製、商品名「オルガチックスZC-150」)
Figure JPOXMLDOC01-appb-C000018
(SZ-3):
Zirconium tetraacetylacetone (manufactured by Matsumoto Fine Chemicals, trade name "Organix ZC-150")
Figure JPOXMLDOC01-appb-C000018
(SZ-4):
 ジルコニウムラクテートアンモニウム塩(マツモトファインケミカル社製、商品名「オルガチックスZC-300」)
Figure JPOXMLDOC01-appb-C000019
(SZ-4):
Zirconium lactate ammonium salt (manufactured by Matsumoto Fine Chemicals, trade name "Organix ZC-300")
Figure JPOXMLDOC01-appb-C000019
(SZ-5):
 ステアリン酸ジルコニウムトリブトキシド(マツモトファインケミカル社製、商品名「オルガチックスZC-320」)
Figure JPOXMLDOC01-appb-C000020
(SZ-5):
Zirconium stearate tributoxide (manufactured by Matsumoto Fine Chemicals, trade name "Organics ZC-320")
Figure JPOXMLDOC01-appb-C000020
(SZ-6):
 ジルコニウムトリブトキシモノアセチルアセトネート(マツモトファインケミカル社製、商品名「オルガチックスZC-540」)
Figure JPOXMLDOC01-appb-C000021
(SZ-6):
Zirconium tributoxymonoacetylacetone (manufactured by Matsumoto Fine Chemicals, trade name "Organix ZC-540")
Figure JPOXMLDOC01-appb-C000021
(SZ-7):
 ジルコニウムジブトキシビス(エチルアセトアセテート)(マツモトファインケミカル社製、商品名「オルガチックスZC-580」)
Figure JPOXMLDOC01-appb-C000022
<酸化剤>
 過硫酸ナトリウム(富士フイルム和光純薬株式会社製)
 次亜塩素酸ナトリウム(富士フイルム和光純薬株式会社製)
(SZ-7):
Zirconium dibutoxybis (ethylacetacetate) (manufactured by Matsumoto Fine Chemicals, trade name "Organix ZC-580")
Figure JPOXMLDOC01-appb-C000022
<Oxidizing agent>
Sodium persulfate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
Sodium hypochlorite (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
<比較例で使用する表面処理剤>
(SA-2):
 N-トリメトキシシリルプロピル-N,N,N-トリメチルアンモニウムクロリド(Gelest社製、商品名「SIT8415.0」、50%メタノール水溶液)
(SC-1):
 メチルトリクロロシラン
(SC-2):
 ビニルトリクロロシラン
(SC-3):
 3-メタクリロキシプロピルトリメトキシシラン
<Surface treatment agent used in the comparative example>
(SA-2):
N-Trimethoxysilylpropyl-N, N, N-trimethylammonium chloride (manufactured by Gelest, trade name "SIT8415.0", 50% aqueous methanol solution)
(SC-1):
Methyltrichlorosilane (SC-2):
Vinyltrichlorosilane (SC-3):
3-methacryloxypropyltrimethoxysilane
<1>音響整合層用材料の調製
(1)実施例1で用いる音響整合層用材料の調製
 エポキシ樹脂(下記表1の成分(A)、ビスフェノールAジグリシジルエーテル(三菱化学社製「jER825」(商品名)、エポキシ当量170))5.6質量部、イソホロンジアミン(下記表1の成分(B))1.4質量部、上記調製例で準備した表面処理タングステンカーバイド粒子(C-1)(下記表1の成分(C))93質量部を、内部空間が直径40mmの円柱状である容器に混合後の厚さが3mmになるように加えて、自転公転装置(商品名:ARV-310、シンキー社製)により混合して、実施例1で用いる音響整合層用材料を調製した。
<1> Preparation of material for acoustic matching layer (1) Preparation of material for acoustic matching layer used in Example 1 Epoxy resin (component (A) in Table 1 below, bisphenol A diglycidyl ether ("jER825" manufactured by Mitsubishi Chemical Corporation) (Product name), epoxy equivalent 170)) 5.6 parts by mass, isofolone diamine (component (B) in Table 1 below) 1.4 parts by mass, surface-treated tungsten carbide particles (C-1) prepared in the above preparation example. (Component (C) in Table 1 below) 93 parts by mass was added to a cylindrical container with an internal space of 40 mm in diameter so that the thickness after mixing would be 3 mm, and a rotation / revolution device (trade name: ARV-). The material for the acoustic matching layer used in Example 1 was prepared by mixing with 310 (manufactured by Shinky Co., Ltd.).
(2)実施例2~60及び比較例1~5で用いる音響整合層用材料の調製
 下記表1に記載の組成に代えたこと以外は、実施例1で用いる音響整合層用材料の調製と同様にして、実施例2~60及び比較例1~5で用いる音響整合層用材料を調製した。
(2) Preparation of material for acoustic matching layer used in Examples 2 to 60 and Comparative Examples 1 to 5 Preparation of material for acoustic matching layer used in Example 1 except that the composition is replaced with the composition shown in Table 1 below. In the same manner, the materials for the acoustic matching layer used in Examples 2 to 60 and Comparative Examples 1 to 5 were prepared.
<2>音響整合シートの作製
(1)実施例1の音響整合シートの作製
 実施例1で用いる音響整合層用材料を混合後、上記容器に入れた状態のまま、80℃で18時間、その後150℃で1時間硬化させることにより直径40mm、厚さ3mmの円形の音響整合シートを作製した。このシートを、ダイサーで直径40mm、厚さ1mmの円形の音響整合シート3枚に切り分け、中央の1枚の音響整合シート(厚さ1mm)を後記試験例に用いた。
<2> Preparation of Acoustic Matching Sheet (1) Preparation of Acoustic Matching Sheet of Example 1 After mixing the materials for the acoustic matching layer used in Example 1, the material for the acoustic matching layer used in Example 1 is kept in the above container at 80 ° C. for 18 hours, and then. A circular acoustic matching sheet having a diameter of 40 mm and a thickness of 3 mm was prepared by curing at 150 ° C. for 1 hour. This sheet was cut into three circular acoustic matching sheets having a diameter of 40 mm and a thickness of 1 mm with a dicer, and one acoustic matching sheet (thickness 1 mm) in the center was used in the test example described later.
(2)実施例2~60及び比較例1~5の音響整合シートの作製
 実施例1で用いる音響整合層用材料に代えて、実施例2~60及び比較例1~5で用いる音響整合層用材料を用いたこと以外は、実施例1で用いる音響整合シートと同様にして音響整合シート(厚さ1mm)を作製し、後記試験例に用いた。
(2) Preparation of Acoustic Matching Sheets of Examples 2 to 60 and Comparative Examples 1 to 5 The acoustic matching layer used in Examples 2 to 60 and Comparative Examples 1 to 5 instead of the material for the acoustic matching layer used in Example 1. An acoustic matching sheet (thickness 1 mm) was prepared in the same manner as the acoustic matching sheet used in Example 1 except that the material was used, and used in the test example described later.
<3>基準音響整合シートの作製
 下記[試験例2]で用いる基準音響整合シートは以下のようにして作製した。
(1)実施例1の評価に用いる基準音響整合シートの作製
 実施例1で用いる音響整合層用材料に代えて、エポキシ樹脂(下記表1の成分(A)、ビスフェノールAジグリシジルエーテル(三菱化学社製「jER825」(商品名)、エポキシ当量170))80質量部、及び、イソホロンジアミン(下記表1の成分(B))20質量部を用いたこと以外は、実施例1で用いる音響整合シートと同様にして、実施例1の評価に用いる基準音響整合シート(厚さ1mm)を作製し、後記試験例2に用いた。
(2)実施例2~60及び比較例1~5の評価に用いる基準音響整合シートの作製
 実施例1に用いる基準音響整合シートの作製において、エポキシ樹脂と硬化剤との配合比を表1記載の配合比に代えたこと以外は、実施例1の評価に用いる基準音響整合シートの作製と同様にして、実施例2~60及び比較例1~5の評価に用いる基準音響整合シートを作製した。
<3> Preparation of reference acoustic matching sheet The reference acoustic matching sheet used in the following [Test Example 2] was prepared as follows.
(1) Preparation of Reference Acoustic Matching Sheet Used for Evaluation of Example 1 Instead of the material for the acoustic matching layer used in Example 1, epoxy resin (component (A) in Table 1 below, bisphenol A diglycidyl ether (Mitsubishi Chemical) Acoustic matching used in Example 1 except that 80 parts by mass of "jER825" (trade name) manufactured by the company, epoxy equivalent 170)) and 20 parts by mass of isophorone diamine (component (B) in Table 1 below) were used. A reference acoustic matching sheet (thickness 1 mm) used for the evaluation of Example 1 was prepared in the same manner as the sheet, and used in Test Example 2 described later.
(2) Preparation of Reference Acoustic Matching Sheet Used for Evaluation of Examples 2 to 60 and Comparative Examples 1 to 5 In the preparation of the reference acoustic matching sheet used in Example 1, the compounding ratio of the epoxy resin and the curing agent is shown in Table 1. The reference acoustic matching sheet used for the evaluation of Examples 2 to 60 and Comparative Examples 1 to 5 was prepared in the same manner as the preparation of the reference acoustic matching sheet used for the evaluation of Example 1 except that the compounding ratio was changed to. ..
[試験例1]音速の測定
 超音波音速は、JIS Z2353(2003)に従い、シングアラウンド式音速測定装置(超音波工業株式会社製、商品名「UVM-2型」)を用いて25℃において測定した。上記で得た直径40mm、厚さ1mmの円形の音響整合シートについて、互いに重ならない直径1.5cmの3つの円形領域について、これら円形領域3カ所の内部全体(単チャンネルの小プローブサイズ)を測定対象とした。上記3つの円形領域の音速の算術平均値を算出し、下記式から得られた音速低下の割合(%)を下記評価基準に当てはめ評価した。S~Dが本試験の合格である。結果を下記後記表2に記載する。なお、後記表2-1~2-7を纏めて表2と称する。
 音速低下の割合(%)=100×(基準音響整合シートの音速の算術平均値-実施例又は比較例の音響整合シートの音速の算術平均値)/基準音響整合シートの音速の算術平均値 
-評価基準-
S:5%未満
A:5%以上7%未満
B:7%以上9%未満
C:9%以上11%未満
D:11%以上13%未満
E:13%以上15%未満
F:15%以上
[Test Example 1] Measurement of sound velocity The ultrasonic sound velocity is measured at 25 ° C. using a single-around sound velocity measuring device (manufactured by Ultrasonic Industry Co., Ltd., trade name "UVM-2 type") in accordance with JIS Z2353 (2003). bottom. With respect to the circular acoustic matching sheet having a diameter of 40 mm and a thickness of 1 mm obtained above, the entire inside of these three circular regions (small probe size of a single channel) is measured for three circular regions having a diameter of 1.5 cm that do not overlap each other. Targeted. The arithmetic mean value of the sound velocity in the above three circular regions was calculated, and the rate (%) of the sound velocity decrease obtained from the following formula was applied to the following evaluation criteria and evaluated. S to D pass this test. The results are shown in Table 2 below. In addition, the following Tables 2-1 to 2-7 are collectively referred to as Table 2.
Rate of decrease in sound velocity (%) = 100 × (Arithmetic mean value of sound velocity of reference acoustic matching sheet-Arithmetic mean value of sound velocity of acoustic matching sheet of Example or Comparative Example) / Arithmetic mean value of sound velocity of reference acoustic matching sheet
-Evaluation criteria-
S: Less than 5% A: 5% or more and less than 7% B: 7% or more and less than 9% C: 9% or more and less than 11% D: 11% or more and less than 13% E: 13% or more and less than 15% F: 15% or more
[試験例2]音響インピーダンス(AI)のばらつき
 上記の試験例1の各音速測定対象(直径1.5cmの円形)から、10mm×10mmの試験片を切り出した。25℃における試験片の密度を、JIS K7112(1999)に記載のA法(水中置換法)の密度測定方法に準じて、電子比重計(アルファミラージュ社製、商品名「SD-200L」)を用いて測定した。各実施例及び比較例の音響整合シートについて、3か所の円形領域ごとに音響インピーダンス(密度×音速)を算出し、3つの音響インピーダンスの標準偏差を求め、下記評価基準に当てはめ音響特性のばらつきを評価した。A~Cが本試験の合格である。結果を下記後記表2に記載する。
-評価基準-
A:0.5Mrayl未満
B:0.5Mrayl以上0.6Mrayl未満
C:0.6Mrayl以上0.7Mrayl未満
D:0.7Mrayl以上1Mrayl未満
E:1Mrayl以上
[Test Example 2] Variation in Acoustic Impedance (AI) A test piece of 10 mm × 10 mm was cut out from each sound velocity measurement target (circle with a diameter of 1.5 cm) of Test Example 1 above. The density of the test piece at 25 ° C. is measured by using an electronic hydrometer (manufactured by Alpha Mirage Co., Ltd., trade name "SD-200L") according to the density measurement method of method A (underwater substitution method) described in JIS K7112 (1999). Measured using. For the acoustic matching sheets of each example and comparative example, the acoustic impedance (density x sound velocity) was calculated for each of the three circular regions, the standard deviations of the three acoustic impedances were obtained, and the variations in acoustic characteristics were applied to the following evaluation criteria. Was evaluated. A to C pass this test. The results are shown in Table 2 below.
-Evaluation criteria-
A: Less than 0.5Mrayl B: 0.5Mrayl or more and less than 0.6Mrayl C: 0.6Mrayl or more and less than 0.7Mrayl D: 0.7Mrayl or more and less than 1Mrayl E: 1Mrayl or more
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
<表の注>
「EX」:実施例
「CEX」:比較例
粒子径:平均一次粒子径
「php」:100×表面処理剤の質量部/タングステンカーバイド粒子100質量部
比較例1は、W-2(無処理タングステンカーバイド粒子)を比較のために成分(C)の行に記載している。
[エポキシ樹脂]
(A-1):ビスフェノールAジグリシジルエーテル(三菱化学社製「jER825」(商品名)、エポキシ当量170)
(A-2):ビスフェノールFジグリシジルエーテル(DIC社製「EPICLON830」(商品名)、エポキシ当量170)
(A-3):エポキシノボラック樹脂(シグマアルドリッチ社製、製品番号406775、エポキシ当量170)
<Note to table>
"EX": Example "CEX": Comparative Example Particle size: Average primary particle size "php": 100 × Mass part of surface treatment agent / 100 parts by mass of tungsten carbide particles Comparative Example 1 is W-2 (untreated tungsten). Carbide particles) are listed in the component (C) line for comparison.
[Epoxy resin]
(A-1): Bisphenol A diglycidyl ether (“jER825” (trade name) manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 170)
(A-2): Bisphenol F diglycidyl ether ("EPICLON 830" (trade name) manufactured by DIC Corporation, epoxy equivalent 170)
(A-3): Epoxy novolak resin (manufactured by Sigma-Aldrich, product number 406775, epoxy equivalent 170)
(B-1):
 イソホロンジアミン
(B-2):
 トリエチレンテトラミン
(B-3):
 2,4,6-トリス(ジメチルアミノメチル)フェノール(ナカライテスク社製、商品名「ルベアックDMP-30」)
(B-4):
 ポリアミドアミン(DIC社製、商品名「ラッカマイドEA-330」)
(B-5):
 メンセンジアミン
(B-6):
 m-フェニレンジアミン
(B-7):
 ポリエーテルアミン T-403(商品名、BASF社製)
(B-8):
 2-エチル-4-メチルイミダゾール
(B-9):
 ヘキサヒドロ無水フタル酸(新日本理化工業社製、商品名「リカシッドHH」)
(B-1):
Isophorone diamine (B-2):
Triethylenetetramine (B-3):
2,4,6-Tris (dimethylaminomethyl) phenol (manufactured by Nacalai Tesque, trade name "Rubeac DMP-30")
(B-4):
Polyamide amine (manufactured by DIC Corporation, trade name "laccamide EA-330")
(B-5):
Mensen Diamine (B-6):
m-phenylenediamine (B-7):
Polyetheramine T-403 (trade name, manufactured by BASF)
(B-8):
2-Ethyl-4-methylimidazole (B-9):
Hexahydrophthalic anhydride (manufactured by New Japan Chemical Corporation, trade name "Ricacid HH")
 表2に示されているように、無処理のタングステンカーバイド粒子を用いた比較例1の音響整合シートは、音速低下が著しく、またAIのばらつきが大きかった。
 メチルトリクロロシランで表面処理したタングステンカーバイド粒子を用いた、比較例2の音響整合シートは、この粒子をエポキシ樹脂と混合する際の相溶性が悪く、発熱により上記粒子が不均一に分散したシートとなったため、音速低下が著しく、またAIのばらつきが大きかった。
 ビニルトリクロロシランで表面処理したタングステンカーバイド粒子を用いた、比較例3の音響整合シート、及び、3-メタクリロキシプロピルトリメトキシシランで表面処理したタングステンカーバイド粒子を用いた、比較例4の音響整合シートは、比較例2と同様の理由で音速低下が著しく、またAIのばらつきが大きかった。
 これに対して、本発明で規定する表面処理タングステンカーバイド粒子を用いた実施例1~60の音響整合シートは、すべて音速低下を効果的に抑制することができ、音響特性のばらつきも抑えることができることがわかる。
 なお、実施例1~60の音響整合シートはいずれも圧電素子側の音響整合層として用いるのに十分なAIを有していた。
As shown in Table 2, the acoustic matching sheet of Comparative Example 1 using the untreated tungsten carbide particles had a remarkable decrease in sound velocity and a large variation in AI.
The acoustic matching sheet of Comparative Example 2 using tungsten carbide particles surface-treated with methyltrichlorosilane had poor compatibility when the particles were mixed with an epoxy resin, and the particles were unevenly dispersed due to heat generation. As a result, the sound velocity dropped significantly, and the AI variation was large.
An acoustic matching sheet of Comparative Example 3 using tungsten carbide particles surface-treated with vinyltrichlorosilane, and an acoustic matching sheet of Comparative Example 4 using tungsten carbide particles surface-treated with 3-methacryloxypropyltrimethoxysilane. For the same reason as in Comparative Example 2, the sound velocity was significantly reduced, and the AI variation was large.
On the other hand, all of the acoustic matching sheets of Examples 1 to 60 using the surface-treated tungsten carbide particles specified in the present invention can effectively suppress the decrease in sound velocity and can also suppress the variation in acoustic characteristics. I know I can do it.
All of the acoustic matching sheets of Examples 1 to 60 had sufficient AI to be used as the acoustic matching layer on the piezoelectric element side.
 1    音響レンズ
 2    音響整合層
 3    圧電素子層
 4    バッキング材
 7    筐体
 9    コード
 10   超音波探触子(プローブ)
1 Acoustic lens 2 Acoustic matching layer 3 Piezoelectric element layer 4 Backing material 7 Housing 9 Code 10 Ultrasonic probe

Claims (19)

  1.  下記成分(A)、(B)及び(C)を含有する音響整合層用材料。
     (A)エポキシ樹脂
     (B)硬化剤
     (C)アミノシラン化合物、メルカプトシラン化合物、イソシアナトシラン化合物、チオシアナトシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうち少なくとも1種を含む表面処理剤で表面処理された表面処理タングステンカーバイド粒子
    A material for an acoustic matching layer containing the following components (A), (B) and (C).
    (A) Epoxy resin (B) Hardener (C) Surface containing at least one of aminosilane compound, mercaptosilane compound, isocyanatosilane compound, thiocyanatosilane compound, aluminum alkoxide compound, zirconium alkoxide compound and titanium alkoxide compound. Surface-treated tungsten carbide particles surface-treated with a treatment agent
  2.  前記成分(B)が、一級アミン及び二級アミンの少なくとも1種を含む、請求項1に記載の音響整合層用材料。 The material for an acoustic matching layer according to claim 1, wherein the component (B) contains at least one of a primary amine and a secondary amine.
  3.  前記表面処理剤が、アミノシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種を含む、請求項1又は2に記載の音響整合層用材料。 The material for an acoustic matching layer according to claim 1 or 2, wherein the surface treatment agent contains at least one of an aminosilane compound, an aluminum alkoxide compound, a zirconium alkoxide compound, and a titanium alkoxide compound.
  4.  前記表面処理剤が、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種を含む、請求項1~3のいずれか1項に記載の音響整合層用材料。 The material for an acoustic matching layer according to any one of claims 1 to 3, wherein the surface treatment agent contains at least one of an aluminum alkoxide compound, a zirconium alkoxide compound, and a titanium alkoxide compound.
  5.  前記表面処理剤が、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種を含む、請求項1~4のいずれか1項に記載の音響整合層用材料。 The material for an acoustic matching layer according to any one of claims 1 to 4, wherein the surface treatment agent contains at least one of a zirconium alkoxide compound and a titanium alkoxide compound.
  6.  前記アルミニウムアルコキシド化合物が、アセトナト構造及びアセタト構造のうちの少なくとも1種を含む、請求項1~5のいずれか1項に記載の音響整合層用材料。 The material for an acoustic matching layer according to any one of claims 1 to 5, wherein the aluminum alkoxide compound contains at least one of an acetonate structure and an acetylate structure.
  7.  前記アルミニウムアルコキシド化合物が、下記一般式(1)で表される化合物の少なくとも1種を含む、請求項1~6のいずれか1項に記載の音響整合層用材料。
           一般式(1): R1a m1-Al-(OR2a3-m1
     R1aは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
     R2aは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS1を示す。RS1は置換基を示す。
     m1は0~2の整数である。
    The material for an acoustic matching layer according to any one of claims 1 to 6, wherein the aluminum alkoxide compound contains at least one compound represented by the following general formula (1).
    General formula (1): R 1a m1- Al- (OR 2a ) 3-m1
    R 1a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
    R 2a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S1. RS1 represents a substituent.
    m1 is an integer of 0 to 2.
  8.  前記ジルコニウムアルコキシド化合物が、アセトナト構造及びアセタト構造のうちの少なくとも1種を含む、請求項1~7のいずれか1項に記載の音響整合層用材料。 The material for an acoustic matching layer according to any one of claims 1 to 7, wherein the zirconium alkoxide compound contains at least one of an acetonate structure and an acetylate structure.
  9.  前記ジルコニウムアルコキシド化合物が、下記一般式(2)で表される化合物の少なくとも1種を含む、請求項1~8のいずれか1項に記載の音響整合層用材料。
           一般式(2): R1b m2-Zr-(OR2b4-m2
     R1bは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
     R2bは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS2を示す。RS2は置換基を示す。
     m2は0~3の整数である。
    The material for an acoustic matching layer according to any one of claims 1 to 8, wherein the zirconium alkoxide compound contains at least one compound represented by the following general formula (2).
    General formula (2): R 1b m2- Zr- (OR 2b ) 4-m2
    R 1b represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
    R 2b represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S2. RS2 indicates a substituent.
    m2 is an integer from 0 to 3.
  10.  前記チタンアルコキシド化合物が、N、P及びSの少なくとも1種の原子を含む、請求項1~9のいずれか1項に記載の音響整合層用材料。 The material for an acoustic matching layer according to any one of claims 1 to 9, wherein the titanium alkoxide compound contains at least one atom of N, P and S.
  11.  前記チタンアルコキシド化合物が、下記一般式(3)で表される化合物の少なくとも1種を含む、請求項1~10のいずれか1項に記載の音響整合層用材料。
           一般式(3): R1c m3-Ti-(OR2c4-m3
     R1cは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
     R2cは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS3を示す。RS3は置換基を示す。
     m3は0~3の整数である。
    The material for an acoustic matching layer according to any one of claims 1 to 10, wherein the titanium alkoxide compound contains at least one compound represented by the following general formula (3).
    General formula (3): R 1c m3- Ti- (OR 2c ) 4-m3
    R 1c represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
    R 2c represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S3. RS3 indicates a substituent.
    m3 is an integer from 0 to 3.
  12.  前記成分(C)中、前記表面処理剤の含有量が、タングステンカーバイド粒子100質量部に対し、1~50質量部である、請求項1~11のいずれか1項に記載の音響整合層用材料。 The acoustic matching layer according to any one of claims 1 to 11, wherein the content of the surface treatment agent in the component (C) is 1 to 50 parts by mass with respect to 100 parts by mass of the tungsten carbide particles. material.
  13.  前記成分(C)を構成するタングステンカーバイド粒子の平均一次粒子径が1~10μmである、請求項1~12のいずれか1項に記載の音響整合層用材料。 The material for an acoustic matching layer according to any one of claims 1 to 12, wherein the tungsten carbide particles constituting the component (C) have an average primary particle size of 1 to 10 μm.
  14.  請求項1~13のいずれか1項に記載の音響整合層用材料を硬化させてなる音響整合シート。 An acoustic matching sheet obtained by curing the material for the acoustic matching layer according to any one of claims 1 to 13.
  15.  請求項14に記載の音響整合シートを有する音響波プローブ。 An acoustic wave probe having the acoustic matching sheet according to claim 14.
  16.  請求項14に記載の音響整合シートを有する超音波プローブ。 An ultrasonic probe having the acoustic matching sheet according to claim 14.
  17.  請求項15に記載の音響波プローブを備える音響波測定装置。 An acoustic wave measuring device including the acoustic wave probe according to claim 15.
  18.  請求項15に記載の音響波プローブを備える超音波診断装置。 An ultrasonic diagnostic apparatus including the acoustic wave probe according to claim 15.
  19.  請求項1~13のいずれか1項に記載の音響整合層用材料を用いて音響整合層を形成することを含む、音響波プローブの製造方法。 A method for manufacturing an acoustic wave probe, which comprises forming an acoustic matching layer using the material for an acoustic matching layer according to any one of claims 1 to 13.
PCT/JP2021/009413 2020-03-18 2021-03-10 Material for acoustic matching layer, acoustic matching sheet, acoustic wave probe, ultrasonic probe, acoustic wave measuring device, ultrasonic diagnostic device, and method for producing acoustic wave probe WO2021187258A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180018209.9A CN115209811A (en) 2020-03-18 2021-03-10 Material for acoustic matching layer, acoustic matching sheet, acoustic wave probe, ultrasonic probe, acoustic wave measurement device, ultrasonic diagnostic device, and method for manufacturing acoustic wave probe
JP2022508247A JP7242961B2 (en) 2020-03-18 2021-03-10 Acoustic matching layer material, acoustic matching sheet, acoustic wave probe, ultrasonic probe, acoustic wave measuring device, ultrasonic diagnostic device, and method for manufacturing acoustic wave probe
EP21770995.5A EP4122399A4 (en) 2020-03-18 2021-03-10 Material for acoustic matching layer, acoustic matching sheet, acoustic wave probe, ultrasonic probe, acoustic wave measuring device, ultrasonic diagnostic device, and method for producing acoustic wave probe
US17/939,429 US20230037985A1 (en) 2020-03-18 2022-09-07 Material for acoustic matching layer, acoustic matching sheet, acoustic wave probe, ultrasound probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, and method for manufacturing acoustic wave probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020048257 2020-03-18
JP2020-048257 2020-03-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/939,429 Continuation US20230037985A1 (en) 2020-03-18 2022-09-07 Material for acoustic matching layer, acoustic matching sheet, acoustic wave probe, ultrasound probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, and method for manufacturing acoustic wave probe

Publications (1)

Publication Number Publication Date
WO2021187258A1 true WO2021187258A1 (en) 2021-09-23

Family

ID=77771366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009413 WO2021187258A1 (en) 2020-03-18 2021-03-10 Material for acoustic matching layer, acoustic matching sheet, acoustic wave probe, ultrasonic probe, acoustic wave measuring device, ultrasonic diagnostic device, and method for producing acoustic wave probe

Country Status (5)

Country Link
US (1) US20230037985A1 (en)
EP (1) EP4122399A4 (en)
JP (1) JP7242961B2 (en)
CN (1) CN115209811A (en)
WO (1) WO2021187258A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071393A (en) * 2007-09-11 2009-04-02 Fujifilm Corp Ultrasonic probe, acoustic matching material for ultrasonic probe and manufacturing method thereof
JP2011071842A (en) 2009-09-28 2011-04-07 Fujifilm Corp Ultrasonic-wave probe and method for manufacturing ultrasonic-wave transducer array
WO2019088148A1 (en) 2017-11-01 2019-05-09 富士フイルム株式会社 Resin composition for acoustic matching layer, hardened product, acoustic matching sheet, acoustic wave probe, acoustic wave measurement device, acoustic wave probe production method, and set of materials for acoustic matching layer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302098A (en) * 2007-06-11 2008-12-18 Fujifilm Corp Ultrasonic probe, backing for ultrasonic probe, and method for producing the backing
JP6496656B2 (en) * 2014-12-01 2019-04-03 富士フイルム株式会社 Composition for acoustic wave probe, silicone resin for acoustic wave probe using the same, acoustic wave probe and ultrasonic probe, and acoustic wave measuring device, ultrasonic diagnostic device, photoacoustic wave measuring device and ultrasonic endoscope
JP2018039992A (en) * 2016-08-31 2018-03-15 三菱ケミカル株式会社 Resin composition and three-dimensional laminated type semiconductor device using the resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071393A (en) * 2007-09-11 2009-04-02 Fujifilm Corp Ultrasonic probe, acoustic matching material for ultrasonic probe and manufacturing method thereof
JP2011071842A (en) 2009-09-28 2011-04-07 Fujifilm Corp Ultrasonic-wave probe and method for manufacturing ultrasonic-wave transducer array
WO2019088148A1 (en) 2017-11-01 2019-05-09 富士フイルム株式会社 Resin composition for acoustic matching layer, hardened product, acoustic matching sheet, acoustic wave probe, acoustic wave measurement device, acoustic wave probe production method, and set of materials for acoustic matching layer

Also Published As

Publication number Publication date
JPWO2021187258A1 (en) 2021-09-23
EP4122399A4 (en) 2023-08-16
CN115209811A (en) 2022-10-18
JP7242961B2 (en) 2023-03-20
US20230037985A1 (en) 2023-02-09
EP4122399A1 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
US20200253582A1 (en) Resin composition for acoustic matching layer, cured product, acoustic matching sheet, acoustic wave probe, acoustic wave measuring apparatus, method for manufacturing acoustic wave probe, and material set for acoustic matching layer
US20220172701A1 (en) Composition for acoustic lens, acoustic lens, acoustic wave probe, ultrasound probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, photoacoustic wave measurement apparatus and ultrasonic endoscope, and method for manufacturing acoustic wave probe
EP3409209A1 (en) Composition for acoustic wave probe, silicone resin for acoustic wave probe using same, acoustic wave probe, and ultrasonic probe, and acoustic wave measurement device, ultrasonic diagnostic device, photoacoustic wave measurement device, and ultrasonic endoscope
US20220125404A1 (en) Acoustic matching layer material, composition for acoustic matching layer material, acoustic matching sheet, acoustic wave probe, acoustic wave measurement apparatus, and method for manufacturing acoustic wave probe
US20180104384A1 (en) Composition for acoustic wave probe, silicone resin for acoustic wave probe using the same, acoustic wave probe, ultrasound probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, photoacoustic wave measurement apparatus, and ultrasound endoscope
US11610576B2 (en) Resin material for acoustic lens, acoustic lens, acoustic wave probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, photoacoustic wave measurement apparatus, and ultrasound endoscope
WO2021187258A1 (en) Material for acoustic matching layer, acoustic matching sheet, acoustic wave probe, ultrasonic probe, acoustic wave measuring device, ultrasonic diagnostic device, and method for producing acoustic wave probe
US11572467B2 (en) Resin composition for acoustic matching layer, cured product, acoustic matching sheet, acoustic probe, acoustic measuring apparatus, method for producing acoustic probe, and acoustic matching layer material set
JP7351929B2 (en) Composition for acoustic lenses, acoustic lenses, acoustic wave probes, ultrasound probes, acoustic wave measurement devices, ultrasound diagnostic devices, photoacoustic wave measurement devices, ultrasound endoscopes, and methods for producing acoustic wave probes
WO2023090217A1 (en) Composition for acoustic lens, acoustic lens, acoustic wave probe, ultrasonic probe, acoustic wave measuring device, ultrasound diagnostic device, photoacoustic wave measuring device, ultrasonic endoscope, and method for producing acoustic wave probe
WO2024005002A1 (en) Acoustic wave probe, acoustic wave measurement device, and ultrasonic diagnosis device
EP4412251A1 (en) Acoustic matching layered material, acoustic matching sheet, composition for acoustic matching layered material, acoustic wave probe, acoustic wave measurement device, and method for manufacturing acoustic wave probe
EP4412252A1 (en) Acoustic matching layered material, acoustic matching sheet, composition for acoustic matching layered material, acoustic wave probe, acoustic wave measurement device, and method for manufacturing acoustic wave probe
JP6817140B2 (en) Resin for acoustic wave probe, resin material for acoustic wave probe, manufacturing method of resin material for acoustic wave probe, acoustic lens, acoustic wave probe, ultrasonic probe, acoustic wave measuring device, ultrasonic diagnostic device, photoacoustic wave measuring device and Endoscopic ultrasound
WO2022070927A1 (en) Acoustic matching layer material, acoustic matching sheet, composition for forming acoustic matching sheet, acoustic wave probe, acoustic wave measurement device, and production methods for acoustic matching layer material and acoustic wave probe
JP6928106B2 (en) Resin composition for acoustic matching layer, cured product, acoustic matching sheet, acoustic wave probe, acoustic wave measuring device, manufacturing method of acoustic wave probe, and material set for acoustic matching layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508247

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021770995

Country of ref document: EP

Effective date: 20221018