WO2021187180A1 - Phenoxy resin, resin composition, cured product, laminate for electric/electronic circuits, and method for producing phenoxy resin - Google Patents

Phenoxy resin, resin composition, cured product, laminate for electric/electronic circuits, and method for producing phenoxy resin Download PDF

Info

Publication number
WO2021187180A1
WO2021187180A1 PCT/JP2021/008848 JP2021008848W WO2021187180A1 WO 2021187180 A1 WO2021187180 A1 WO 2021187180A1 JP 2021008848 W JP2021008848 W JP 2021008848W WO 2021187180 A1 WO2021187180 A1 WO 2021187180A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
resin
formula
phenoxy resin
Prior art date
Application number
PCT/JP2021/008848
Other languages
French (fr)
Japanese (ja)
Inventor
圭太 秋葉
佐藤 洋
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to JP2022508221A priority Critical patent/JPWO2021187180A1/ja
Publication of WO2021187180A1 publication Critical patent/WO2021187180A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a phenoxy resin having excellent heat resistance, dielectric properties and folding resistance. Further, the present invention relates to a resin composition containing the phenoxy resin and a curing agent, a cured product having excellent heat resistance, dielectric properties and folding resistance, and a laminated board for an electric / electronic circuit made of the resin composition. ..
  • Epoxy resin is widely used in fields such as paints, civil engineering, adhesives, and electrical materials because it has excellent heat resistance, adhesiveness, chemical resistance, water resistance, mechanical strength, and electrical properties. Then, the film-forming property is imparted by increasing the molecular weight by various methods.
  • the high molecular weight epoxy resin is called a phenoxy resin.
  • bisphenol A type phenoxy resin is mainly used as a base resin for paint varnish, a base resin for film molding, and is added to epoxy resin varnish to adjust fluidity, improve toughness and adhesiveness when made into a cured product. Used for improvement purposes. Further, those having a phosphorus atom or a bromine atom in the skeleton are used as a flame retardant to be blended in an epoxy resin composition or a thermoplastic resin.
  • Phenoxy resin which is used as an electrical material such as laminated boards for electric and electronic circuits, is required to have heat resistance, dielectric properties, and folding resistance.
  • Patent Document 1 discloses a phenoxy resin having excellent heat resistance obtained by reacting a bulky bisphenol compound with a bifunctional epoxy resin. However, although this method can impart excellent heat resistance to the phenoxy resin, there is a problem that the dielectric property is not improved.
  • An object of the present invention is to provide a phenoxy resin having excellent heat resistance, dielectric properties and folding resistance. Another object of the present invention is to cure a resin composition containing the same to provide a cured product having excellent heat resistance, dielectric properties and folding resistance.
  • the present inventor has diligently studied a phenoxy resin and found that a phenoxy resin having a specific structure is excellent in heat resistance, dielectric properties and folding resistance, and a resin containing the same.
  • the present invention has been completed by finding that the cured product obtained by curing the composition is excellent in heat resistance, dielectric properties and folding resistance.
  • the present invention is a phenoxy resin represented by the following formula (1) and having a weight average molecular weight of 10,000 to 200,000.
  • X is a divalent group containing a dioxy group represented by the following formulas (2) and (3) independently
  • Y is a hydrogen atom and a hydrocarbon group having 1 to 20 carbon atoms, respectively. It is an acyl group or a glycidyl group having.
  • Z is an acyl group or a hydrogen atom having a hydrocarbon group having 1 to 20 carbon atoms, and 5 mol% or more is the above acyl group.
  • n is the average value of the number of repetitions, which is 15 or more and 500 or less.
  • R independently has an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and 7 to 13 carbon atoms.
  • I is an integer of 0 to 4
  • j is an integer of 0 to 6.
  • the present invention is a resin composition containing the above-mentioned phenoxy resin and a curing agent.
  • the resin composition may contain 0.1 to 100 parts by mass of the curing agent as a solid content with respect to 100 parts by mass of the solid content of the phenoxy resin.
  • the resin composition contains the above-mentioned phenoxy resin, an epoxy resin, and a curing agent, and the mass ratio of the solid content of the phenoxy resin and the epoxy resin can be 99/1 to 1/99.
  • This resin composition may contain 0.1 to 100 parts by mass of a curing agent as a solid content with respect to a total of 100 parts by mass of the solid content of the phenoxy resin and the epoxy resin.
  • Examples of the curing agent to be blended in the above resin composition include acrylic acid ester resins, melanin resins, urea resins, phenol resins, acid anhydride compounds, amine compounds, imidazole compounds, amide compounds, and cationic polymerization initiators. There is at least one selected from the group consisting of organic phosphines, polyisocyanate compounds, blocked isocyanate compounds, and active ester-based curing agents.
  • the present invention is a cured product obtained by curing the above resin composition. Further, the present invention is a laminated board for an electric / electronic circuit using the above resin composition.
  • the present invention is a method for producing the above-mentioned phenoxy resin, which comprises reacting a bifunctional epoxy resin represented by the following formula (7) with a compound represented by the following formula (8).
  • X 1 is a divalent group containing a dioxy group independently represented by the above formula (2) or the formula (3), and is included in X 1 of the formulas (7) and (8) as a whole.
  • Z 1 is an acyl group or a hydrogen atom having a hydrocarbon group having 1 to 20 carbon atoms, and 5 mol% or more is the above acyl group.
  • the compound represented by the formula (8) is a mixture of two or more selected from a compound in which both of Z 1 are acyl groups, a compound in which one is an acyl group, and a compound in which both are hydrogen atoms. You may. m is the average value of the number of repetitions and is 0 or more and 6 or less.
  • the present invention is characterized in that the acyl group of the acylating agent is reacted in an amount of 0.05 mol or more and 2.0 mol or less with 1 mol of the alcoholic hydroxyl group of the phenoxy resin represented by the following formula (12).
  • This is the method for producing the above-mentioned phenoxy resin.
  • X 2 is a divalent group containing a dioxy group represented by the above formulas (2) and (3) independently
  • Y 2 is a hydrogen atom or a glycidyl group independently.
  • n is the average value of the number of repetitions, which is 15 or more and 500 or less.
  • a phenoxy resin having excellent heat resistance, dielectric properties and folding resistance. Further, a resin composition using this phenoxy resin can provide a cured product having excellent heat resistance, dielectric properties and folding resistance.
  • the phenoxy resin of the present invention is a phenoxy resin having a weight average molecular weight (Mw) of 10,000 to 200,000 represented by the above formula (1), and has a benzene skeleton represented by the above formula (2) and a formula. It has a naphthalene skeleton represented by (3), and further has a structure in which a part or all of hydrogen atoms in a hydroxyl group are substituted with an acyl group (Z).
  • Mw is smaller than 10,000, the film-forming property and the mechanical property (particularly the folding resistance) may be deteriorated, which is not preferable.
  • Mw is larger than 200,000, the compatibility may decrease, which may make it difficult to handle the resin, which is not preferable.
  • the Mw is preferably 15,000 to 160,000, more preferably 20,000 to 120,000, still more preferably 20,000 to 120,000.
  • the Mw of the phenoxy resin can be measured by the gel permeation chromatography method (GPC method) described in Examples.
  • the phenoxy resin of the present invention has a structure in which a hydrogen atom in a hydroxyl group is substituted with an acyl group, so that the polarity is low and an effect of excellent dielectric properties can be obtained. In addition, low hygroscopicity and solvent solubility are improved.
  • the phenoxy resin of the present invention can be advantageously obtained by the production method of the present invention.
  • the phenoxy resin obtained by the production method of the present invention is sometimes referred to as "phenoxy resin of the present invention”
  • the cured product obtained by curing the resin composition of the present invention is referred to as "cured product of the present invention”.
  • the method for producing a phenoxy resin of the present invention may be referred to as "the method for producing the phenoxy resin of the present invention".
  • X is a divalent group containing a dioxy group independently represented by the above formulas (2) and (3).
  • the groups represented by the formulas (2) and (3) are called dioxy groups because they have oxygen atoms at both ends.
  • the divalent group is any of the above formulas (2), (3) or other divalent groups, but is represented by the formulas (2) and (3) as a whole. Contains dioxy groups.
  • the molar ratio of dioxy groups represented by the formulas (2) and (3) (formula 2 / formula 3) is preferably 1/9 to 9/1, more preferably 2/8 to 8/2, and 3 /. 7 to 7/3 is more preferable, and 4/6 to 6/4 is particularly preferable.
  • the dioxy group represented by the formulas (2) and (3) is preferably 1 mol% or more, more preferably 10 mol% or more, still more preferably 30 mol% or more, based on the total number of moles of X. , 50 mol% or more is particularly preferable. If it is out of this range, heat resistance, folding resistance and deterioration may occur.
  • Examples of the divalent group other than the above dioxy group include a divalent group represented by —O—Ar—O—, and Ar is a hydroxyl group from a bifunctional phenol compound which may be used in combination, which will be described later. Residues and the like excluding two are mentioned.
  • R independently has an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and 7 to 13 carbon atoms, respectively. It is a group arbitrarily selected from an aralkyl group, an aryloxy group having 6 to 12 carbon atoms, an aralkyloxy group having 7 to 13 carbon atoms, an alkoxy group having 2 to 12 carbon atoms, or an alkynyl group having 2 to 12 carbon atoms.
  • the alkyl group having 1 to 12 carbon atoms may be linear, branched or cyclic, and may be, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group or a sec-butyl group.
  • n-pentyl group isopentyl group, neopentyl group, t-pentyl group, cyclopentyl group, n-hexyl group, isohexyl group, cyclohexyl group, n-heptyl group, cycloheptyl group, methylcyclohexyl group, n- Octyl group, cyclooctyl group, n-nonyl group, 3,3,5-trimethylcyclohexyl group, n-decyl group, cyclodecyl group, n-undecyl group, n-dodecyl group, cyclododecyl group, benzyl group, methylbenzyl group , Dimethylbenzyl group, trimethylbenzyl group, naphthylmethyl group, phenethyl group, 2-phenylisopropyl group and the like.
  • the alkoxy group having 1 to 12 carbon atoms may be linear, branched or cyclic, and may be, for example, a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group or a sec-butoxy group.
  • Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, an ethylphenyl group, a styryl group, a xsilyl group, an n-propylphenyl group and an isopropylphenyl group. , Mesityl group, ethynylphenyl group, naphthyl group, vinyl naphthyl group and the like, but are not limited thereto.
  • Examples of the aralkyl group having 7 to 13 carbon atoms include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, an ethylphenyl group, a styryl group, a xsilyl group, an n-propylphenyl group and an isopropylphenyl group. , Mesityl group, ethynylphenyl group, naphthyl group, vinyl naphthyl group and the like, but are not limited thereto.
  • Examples of the aryloxy group having 6 to 12 carbon atoms include a phenoxy group, an o-tolyloxy group, an m-tolyloxy group, a p-tolyloxy group, an ethylphenoxy group, a styryloxy group, a xylyloxy group, an n-propylphenoxy group and isopropyl.
  • Examples thereof include, but are not limited to, a phenoxy group, a mesityloxy group, an ethynylphenoxy group, a naphthyloxy group, a vinylnaphthyloxy group and the like.
  • Examples of the aralkyloxy group having 7 to 13 carbon atoms include a benzyloxy group, a methylbenzyloxy group, a dimethylbenzyloxy group, a trimethylbenzyloxy group, a phenethyloxy group, a 1-phenylethyloxy group, and a 2-phenylisopropyloxy group. , Naftylmethyloxy group and the like, but are not limited thereto.
  • alkenyl group having 2 to 12 carbon atoms examples include a vinyl group, a 1-propenyl group, a 2-propenyl group, a 1-methylvinyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, and 1,3.
  • -Butadienyl group, cyclohexenyl group, cyclohexadienyl group, cinnamyl group, naphthylvinyl group and the like can be mentioned, but the present invention is not limited thereto.
  • alkynyl group having 2 to 12 carbon atoms examples include an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 1-butynyl group, a 2-butynyl group, a 3-butanyl group, a 1,3-butanjienyl group and a phenylethynyl group.
  • Groups, naphthylethynyl groups and the like can be mentioned, but are not limited thereto.
  • R a hydrogen atom and an alkyl group having 1 to 4 carbon atoms are preferable, and a hydrogen atom and a methyl group are more particularly preferable. This is because if the substituent is large, the heat resistance may decrease.
  • R is a hydrogen atom means that i or j is 0. i is an integer of 0 to 4 and j is an integer of 0 to 6, but preferably i is an integer of 0 to 2 and j is an integer of 0 to 2.
  • Y is independently a hydrogen atom, an acyl group having a hydrocarbon group having 1 to 20 carbon atoms, or a glycidyl group.
  • Y is a hydrogen atom, a hydroxyl group is given to the end, when it is an acyl group, an ester group is given to the end, and when it is a glycidyl group, an epoxy group is given to the end, so the ratio is controlled according to the application. That is good.
  • the hydrocarbon group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 13 carbon atoms, and examples thereof include the groups exemplified above. .. Among these, an acyl group having a hydrocarbon group having 1 to 7 carbon atoms is more preferable, an acetyl group, a propanoyl group, a butanoyl group, a benzoyl group and a methylbenzoyl group are more preferable, and an acetyl group and a benzoyl group are particularly preferable.
  • the acetyl group is understood to be an acyl group having a hydrocarbon group having 1 carbon atom.
  • Z is an acyl group or a hydrogen atom having a hydrocarbon group having 1 to 20 carbon atoms. More than 5 mol% of Z is an acyl group and the rest is a hydrogen atom. 10 mol% or more, preferably 50 mol% or more, more preferably 70 mol% or more of Z is an acyl group. The upper limit is preferably 100 mol%, but it may be substantially 95 mol%.
  • the acyl group having a hydrocarbon group having 1 to 20 carbon atoms is the same as that exemplified in Y above, and the preferred acyl group is also the same.
  • the phenoxy resin of the present invention does not contain a secondary hydroxyl group, and the dielectric properties and moisture resistance can be further improved.
  • the phenoxy resin of the present invention does not significantly affect other physical properties such as moisture resistance. It is also possible to intentionally allow an appropriate amount of secondary hydroxyl groups to be present therein.
  • n is the number of repetitions and is an average value.
  • the range of the value is 15 or more and 500 or less. From the viewpoint of moldability and handleability, it is preferably 17 or more and 400 or less, and more preferably 20 or more and 300 or less.
  • the n number can be calculated from the number average molecular weight (Mn) obtained by the GPC method.
  • the epoxy equivalent of the phenoxy resin of the present invention is not particularly limited, but is 2,000 to 50,000 g / eq.
  • the range of is preferable. Within this range, the phenoxy resin of the present invention is itself involved in the curing reaction and can be incorporated into the crosslinked structure.
  • the phenoxy resin of the present invention is obtained by acylating a part or all of the secondary hydroxyl groups and can be obtained by various methods.
  • a preferable manufacturing method for example, there are the following manufacturing methods.
  • a manufacturing method (A) A phenoxy resin represented by the above formula (12) (sometimes referred to as a phenoxy resin (a) to distinguish it from the phenoxy resin of the present invention), an acid anhydride of an organic acid, and an organic acid.
  • an acid component acylating agent
  • a manufacturing method (B) The phenoxy resin obtained by the production methods (A) and (B) is the phenoxy resin of the present invention and is represented by the same formula (1).
  • the production method (A) is a method of reacting the bifunctional epoxy resin represented by the formula (7) with the compound represented by the formula (8).
  • G is a glycyl group
  • m is the number of repetitions
  • the average value thereof is 0 or more and 6 or less.
  • 5 mol% or more of Z 1 is an acyl group having a hydrocarbon group having 1 to 20 carbon atoms, and the rest is a hydrogen atom.
  • the compound represented by the formula (8) is selected from a compound in which both of Z 1 are acyl groups, a compound in which one is an acyl group and the other is a hydrogen atom, and a compound in which both are hydrogen atoms.
  • the diester compound may be a compound in which both Z 1 are acyl groups or a compound (mixture) in which the main component (50% or more) is the compound.
  • X 1 in equations (7) and (8) is selected to give X in equation (1). Therefore, X 1 in the formulas (7) and (8) contains a dioxy group represented by the formulas (2) and / or the formula (3) in any of the formulas (7) and (8) as a whole. It contains a dioxy group represented by the formula (2) and the formula (3). For example, a dioxy group represented one of X 1 of the formula (7) or (8) in equation (2), and include a dioxy group represented by the formula (3) on the other, the equation (7 ) Or only one X 1 of the formula (8) may contain a dioxy group represented by the formula (2) and the formula (3) and may not be contained in the other, but the former is preferable.
  • the phenoxy resin of the present invention always contains dioxy groups represented by the formulas (2) and (3), and as long as these are satisfied, the dioxy groups of the formulas (2) and (3) can be used.
  • the raw material bifunctional epoxy resin and / or the compound represented by the formula (8) may be contained in any of the ester compounds, and the ratio thereof is not limited. Further, when X 1 in the above formula (7) or (8) does not include the chemical structures of the formulas (2) and (3), another divalent group should be introduced into X 1. Can be done.
  • the bifunctional epoxy resin used in the production method (A) of the present invention is an epoxy resin represented by the above formula (7), and for example, a bifunctional phenol compound represented by the following formula (14) and epihalohydrin.
  • epichlorohydrin include epichlorohydrin and epibromohydrin.
  • alkali metal compound include alkali metal hydroxides such as sodium hydroxide, lithium hydroxide and potassium hydroxide, alkali metal salts such as sodium carbonate, sodium bicarbonate, sodium chloride, lithium chloride and potassium chloride, and the like.
  • alkali metal alkoxides such as sodium methoxydo and sodium ethoxydo
  • alkali metal salts of organic acids such as sodium acetate and sodium stearate
  • alkali metal phenoxide sodium hydride, lithium hydride and the like.
  • the reaction between the bifunctional phenol compound and epihalohydrin to obtain the raw material epoxy resin is 0.80 to 1.20 times mol, preferably 0.85 to 1.05 times the functional group in the bifunctional phenol compound.
  • a molar alkali metal compound is used. If it is less than this, the amount of residual hydrolyzable chlorine increases, which is not preferable.
  • the alkali metal compound it is used in an aqueous solution, an alcohol solution or a solid state.
  • an excess amount of epihalohydrin is used for the bifunctional phenol compound.
  • 1.5 to 15 times mol of epihalohydrin is used with respect to 1 mol of functional groups in the bifunctional phenol compound, preferably 2 to 10 times mol, more preferably 5 to 8 times mol. If it is more than this, the production efficiency is lowered, and if it is less than this, the amount of high molecular weight epoxy resin produced increases, which makes it unsuitable as a raw material for phenoxy resin.
  • the epoxidation reaction is usually carried out at a temperature of 120 ° C. or lower. During the reaction, if the temperature is high, the amount of so-called poorly hydrolyzable chlorine increases, making it difficult to achieve high purity.
  • the temperature is preferably 100 ° C. or lower, more preferably 85 ° C. or lower.
  • X 1 is the same as X 1 in the formula (7) or (8).
  • the diester compound used in the production method (A) of the present invention is, for example, a bifunctional phenol compound represented by the above formula (14), which is an acid anhydride of an organic acid, a halide of an organic acid, or an organic compound. It is obtained by acylation by a condensation reaction with an acid.
  • the phenoxy resin of the present invention does not contain a secondary hydroxyl group, and the dielectric properties and moisture resistance can be further improved. Further, for example, when finely adjusting the adhesiveness to a metal, by using an epoxy resin having an appropriate number of m, the phenoxy resin of the present invention does not significantly affect other physical properties such as moisture resistance. It is also possible to intentionally allow an appropriate amount of secondary hydroxyl group to be present therein.
  • the bifunctional epoxy resin or diester compound used in the production method (A) has a chemical structure represented by the above formulas (2) and (3), which is X in the above formulas (7) and (8). it preferably contains 1 to 100 mol% relative to 1 total moles. From the viewpoint of sufficiently exhibiting the folding resistance and dielectric properties resulting from the chemical structures represented by the formulas (2) and (3), the chemical structures represented by the formulas (2) and (3) are more preferable. Is 10 mol% or more, more preferably 30 mol% or more, and particularly preferably 50 mol% or more.
  • the amount of the bifunctional epoxy resin and the diester compound used is preferably 0.8 to 1.0 equivalents of the ester group with respect to 1 equivalent of the epoxy group. This equivalent ratio is preferable because it facilitates the progress of increasing the molecular weight in the state of having an epoxy group at the end of the molecule. It is also possible to replace a part of the diester compound with a bifunctional phenol compound represented by the above formula (14). As a result, as described above, the physical properties can be finely adjusted by intentionally allowing an appropriate amount of secondary hydroxyl groups to be present in the phenoxy resin of the present invention. In the production method (A), a polymerization reaction and a transesterification reaction occur to increase Mw to produce a phenoxy resin, and at the same time, a part of the aquatic group of the phenoxy resin is esterified.
  • a catalyst may be used, and the catalyst may be any compound having a catalytic ability to promote the reaction between the epoxy group and the ester group.
  • the catalyst may be any compound having a catalytic ability to promote the reaction between the epoxy group and the ester group.
  • tertiary amines, cyclic amines, imidazoles, organic phosphorus compounds, quaternary ammonium salts and the like can be mentioned. Further, these catalysts may be used alone or in combination of two or more.
  • tertiary amine examples include triethylamine, tri-n-propylamine, tri-n-butylamine, triethanolamine, benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol and the like. , Not limited to these.
  • cyclic amines examples include 1,4-diazabicyclo [2,2,2] octane (DABCO), 1,8-diazabicyclo [5,4,0] undecene-7 (DBU), 1,5-diazabicyclo [ 4,3,0] Nonen-5 (DBN), N-methylmorpholin, pyridine, N, N-dimethylaminopyridine (DMAP) and the like, but are not limited thereto.
  • imidazoles examples include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2- Examples include, but are not limited to, phenylimidazole and the like.
  • organophosphorus compound examples include tri-n-propylphosphine, tri-n-butylphosphine, diphenylmethylphosphine, triphenylphosphine, triphenylphosphine, tricyclohexinephosphine, tri (t-butyl) phosphine, and the like.
  • Hosphines such as tris (p-methoxyphenyl) phosphine, paramethylphosphine, 1,2-bis (dimethylphosphine) ethane, 1,4-bis (diphenylphosphine) butane, tetramethylphosphonium bromide, tetramethylphosphonium.
  • Iodide tetramethylphosphonium hydroxide, tetrabutylphosphonium hydroxide, trimethylcyclohexylphosphonium chloride, trimethylcyclohexylphosphonium bromide, trimethylbenzylphosphonium chloride, trimethylbenzylphosphonium bromide, tetraphenylphosphonium bromide, triphenylmethylphosphonium bromide, triphenylmethylphosphonium Examples thereof include, but are not limited to, iodido, triphenylethylphosphonium chloride, triphenylethylphosphonium bromide, triphenylethylphosphonium iodide, triphenylbenzylphosphonium chloride, and phosphonium salts such as triphenylbenzylphosphonium bromide.
  • Examples of the quaternary ammonium salt include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium hydroxide, triethylmethylammonium chloride, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, tetrapropylammonium bromide, and tetra.
  • Examples thereof include propylammonium hydroxide, tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium iodide, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium hydroxide, benzyltributylammonium chloride, phenyltrimethylammonium chloride and the like. However, it is not limited to these.
  • the amount of the catalyst used is usually 0.001 to 1% by mass in the reaction solid content, but when these compounds are used as catalysts, these catalysts remain as residues in the obtained phenoxy resin, and the printed wiring is printed.
  • the nitrogen content in the phenoxy resin is preferably 0.5% by mass or less, preferably 0.3% by mass or less, because it may deteriorate the insulating properties of the plate or shorten the pot life of the composition. More preferred.
  • the phosphorus content in the phenoxy resin is preferably 0.5% by mass or less, more preferably 0.3% by mass.
  • a solvent for reaction may be used, and the solvent may be any solvent as long as it dissolves the phenoxy resin.
  • aromatic solvents, ketone solvents, amide solvents, glycol ether solvents, ester solvents and the like can be mentioned. Further, these solvents may be used alone or in combination of two or more.
  • aromatic solvent examples include benzene, toluene, xylene and the like.
  • ketone solvent examples include acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, 2-heptanone, 4-heptanone, 2-octanone, cyclohexanone, acetylacetone, dioxane, diisobutyl ketone, isophorone, methylcyclohexanone, acetophenone and the like. Be done.
  • amide solvent examples include formamide, N-methylformamide, N, N-dimethylformamide (DMF), acetamide, N-methylacetamide, N, N-dimethylacetamide, 2-pyrrolidone, N-methylpyrrolidone and the like. Be done.
  • glycol ether-based solvent examples include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol monoalkyl ethers, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol mono-n-butyl ether.
  • Ethylene glycol dialkyl ethers such as propylene glycol monomethyl ether
  • propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether and propylene glycol mono-n-butyl ether, ethylene glycol dimethyl ether and ethylene glycol diethyl ether.
  • Ethethylene glycol dialkyl ethers such as ethylene glycol dibutyl ether, polyethylene glycol dialkyl ethers such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, and triethylene glycol dibutyl ether, Propylene glycol dialkyl ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, and propylene glycol dibutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol dibutyl ether, tripropylene glycol dimethyl ether, and tripropylene glycol diethyl ether, Polypropylene glycol dialkyl ethers such as tripropylene glycol dibutyl ether, ethylene glycol monoalkyl ether acetates such as
  • glycol monoalkyl ether acetates examples include glycol monoalkyl ether acetates and propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate and propylene glycol monobutyl ether acetate.
  • ester solvent examples include methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, benzyl acetate, ethyl propionate, ethyl butyrate, butyl butyrate, valerolactone, butyrolactone and the like. And so on.
  • solvents examples include dimethylsulfoxide, sulfolane, ⁇ -butyrolactone, N-methyl-2-pyrrolidone and the like.
  • the solid content concentration at the time of reaction is preferably 35 to 95% by mass. Further, when a highly viscous product is generated during the reaction, an additional solvent can be added to continue the reaction. After completion of the reaction, the solvent can be removed or added as needed.
  • the reaction temperature should be within the temperature range where the catalyst used does not decompose. If the reaction temperature is too high, the catalyst may decompose and the reaction may stop, or the phenoxy resin produced may deteriorate. If the reaction temperature is too low, the reaction may not proceed sufficiently and the target molecular weight may not be reached. Therefore, the reaction temperature is preferably 50 to 230 ° C, more preferably 120 to 200 ° C.
  • the reaction time is usually 1 to 12 hours, preferably 3 to 10 hours. When a low boiling point solvent such as acetone or methyl ethyl ketone is used, the reaction temperature can be secured by carrying out the reaction under high pressure using an autoclave. When it is necessary to remove the heat of reaction, it is usually carried out by the evaporation / condensation / reflux method of the solvent used by the heat of reaction, the indirect cooling method, or a combination thereof.
  • the manufacturing method (B) of the present invention will be described.
  • the acylating agent is reacted with the phenoxy resin represented by the formula (12) and 1 mol of the alcoholic hydroxyl group of the phenoxy resin when the acyl group is 0.05 mol or more and 2.0 mol or less.
  • This is a method for obtaining a phenoxy resin represented by the formula (1) having a weight average molecular weight of 10,000 to 200,000, that is, the phenoxy resin of the present invention.
  • Raw phenoxy resin (a) comprises dioxy group represented by the above formula in X 2 in the formula (12) (2) and (3) as essential.
  • This phenoxy resin (a) can be obtained by a conventionally known method.
  • a bifunctional phenol compound having a structure represented by the above formula (2) (sometimes referred to as a bifunctional phenol compound (a)) and a bifunctional phenol compound having a structure represented by the above formula (3) (may be referred to as a bifunctional phenol compound (a)).
  • a method for producing a bifunctional phenol compound that requires "bifunctional phenol compound (b)") and epihalohydrin in the presence of an alkali metal compound hereinafter referred to as a one-step method).
  • the bifunctional epoxy resin and the bifunctional phenol compound is catalyzed by the bifunctional epoxy resin and the bifunctional phenol compound having the structures represented by the above formulas (2) and (3).
  • Examples thereof include a method of producing by reacting in the presence (hereinafter, referred to as a two-step method).
  • the phenoxy resin (a) may be obtained by any production method, but it is generally preferable to use the two-step method because the two-step method is easier to obtain the phenoxy resin than the one-step method. ..
  • the weight average molecular weight and epoxy equivalent of the phenoxy resin (a) are determined by the molar ratio of epihalohydrin and the bifunctional phenol compound charged in the one-step method, and the charged molar ratio of the bifunctional epoxy resin and the bifunctional phenol compound in the two-step method. By making appropriate adjustments, it is possible to manufacture a product in the desired range.
  • the bifunctional phenol compound (a) and the bifunctional phenol compound (b) are indispensable.
  • the bifunctional phenol compound (a) include catechol, resorcin, and hydroquinone. Further, these may be substituted with a substituent having no adverse effect such as an alkyl group or an aryl group.
  • the bifunctional phenol compound (b) include 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and the like. .. Further, these may be substituted with a substituent having no adverse effect such as an alkyl group or an aryl group.
  • bifunctional phenol compounds may be used in combination as long as the object of the present invention is not impaired.
  • the bifunctional phenol compound that may be used in combination include bisphenols such as bisphenol A, bisphenol F, bisphenol S, bisphenol B, bisphenol E, bisphenol C, bisphenol acetophenone, bisphenol fluoride, dihydroxybiphenyl ether, and dihydroxybiphenyl thioether.
  • examples thereof include biphenols such as 4,4'-biphenol and 2,4'-biphenol, and 1,1-bi-2-naphthol.
  • a plurality of these bifunctional phenol compounds may be used in combination.
  • the one-step method In the case of the one-step method, 0.985 to 1.015 mol of epihalohydrin, preferably 0.99 to 1.012 mol, and more preferably 0.995 to 1.01 mol with respect to 1 mol of the bifunctional phenol compound.
  • the phenoxy resin (a) can be obtained by reacting in a non-reactive solvent in the presence of an alkali metal compound so that epihalohydrin is consumed and the weight average molecular weight is 10,000 or more. .. After completion of the reaction, it is necessary to remove the by-produced salt by filtration or washing with water.
  • the alkali metal compound include the same alkali metal compounds used in the production of the bifunctional epoxy resin represented by the above formula (7) used in the production method (A) of the present invention.
  • the molar ratio of the bifunctional phenol compound (a) used as a raw material to the bifunctional phenol compound (b) is preferably 1/9 to 9/1, more preferably 2/8 to 8/2, and 3/7 to 3/7. 7/3 is more preferable, and 4/6 to 6/4 is particularly preferable.
  • the total number of moles of the bifunctional phenol compound (a) and the bifunctional phenol compound (b) is preferably 1 mol% or more, more preferably 20 mol% or more, and 50 mol% in all the bifunctional phenol compounds. The above is more preferable, and 75 mol% or more is particularly preferable. If it is out of this range, the heat resistance, folding resistance, and deterioration of the phenoxy resin of the present invention may occur.
  • the reaction temperature is usually preferably 20 to 200 ° C., more preferably 30 to 170 ° C., even more preferably 40 to 150 ° C., and particularly preferably 50 to 100 ° C. in the case of a reaction under normal pressure.
  • 20 to 100 ° C. is preferable, 30 to 90 ° C. is more preferable, and 35 to 80 ° C. is further preferable. If the reaction temperature is within this range, side reactions are unlikely to occur and the reaction can easily proceed.
  • the reaction pressure is usually normal pressure. When it is necessary to remove the heat of reaction, it is usually carried out by the evaporation / condensation / reflux method of the solvent used, the indirect cooling method, or a combination thereof by the heat of reaction.
  • alcohols such as ethanol, isopropyl alcohol, and butyl alcohol can be used in addition to the reaction solvent exemplified in the production method (A) of the present invention. Only one type may be used, or two or more types may be used in combination.
  • the two-step method As the bifunctional epoxy resin used as the raw material epoxy resin of the two-step method, the same as the bifunctional epoxy resin represented by the above formula (7) used in the production method (A) of the present invention is used.
  • the bifunctional epoxy resin represented by the above formula (7) is preferable, but other bifunctional epoxy resins may be used in combination as long as the object of the present invention is not impaired. ..
  • the bifunctional epoxy resin that can be used together include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol acetophenone type epoxy resin, diphenyl sulfide type epoxy resin, and diphenyl ether type epoxy resin.
  • examples thereof include resins, biphenol type epoxy resins, diphenyldicyclopentadiene type epoxy resins, alkylene glycol type epoxy resins, and aliphatic cyclic epoxy resins. These epoxy resins may be substituted with a substituent having no adverse effect such as an alkyl group or an aryl group. A plurality of types of these epoxy resins may be used in combination.
  • any compound can be used as long as it can use a catalyst and has a catalytic ability to promote the reaction between the epoxy group and the phenolic hydroxyl group.
  • the same as the catalyst exemplified in the production method (A) of the present invention can be mentioned.
  • an alkali metal compound used in the production of the bifunctional epoxy resin represented by the above formula (7) can also be used.
  • These catalysts may be used alone or in combination of two or more. Further, the amount used is the same as the amount used exemplified in the production method (A) of the present invention.
  • a solvent may be used, and any solvent may be used as long as it dissolves a phenoxy resin and does not adversely affect the reaction.
  • any solvent may be used as long as it dissolves a phenoxy resin and does not adversely affect the reaction.
  • the same solvent as that exemplified in the production method (A) of the present invention is exemplified. These solvents may be used alone or in combination of two or more.
  • the amount of the solvent to be used can be appropriately selected according to the reaction conditions, but for example, in the case of the two-step method, the solid content concentration is preferably 35 to 95% by mass. If a highly viscous product is produced during the reaction, a solvent can be added during the reaction to continue the reaction. After completion of the reaction, the solvent can be removed by distillation or the like, if necessary, or can be further added.
  • the reaction temperature should be within the temperature range where the catalyst used does not decompose. If the reaction temperature is too high, the catalyst may decompose and the reaction may stop, or the phenoxy resin produced may deteriorate. If the reaction temperature is too low, the reaction may not proceed sufficiently and the target molecular weight may not be reached. Therefore, the reaction temperature is preferably 50 to 230 ° C, more preferably 100 to 210 ° C, and even more preferably 120 to 200 ° C.
  • the reaction time is usually 1 to 12 hours, preferably 3 to 10 hours. When a low boiling point solvent such as acetone or methyl ethyl ketone is used, the reaction temperature can be secured by carrying out the reaction under high pressure using an autoclave. When it is necessary to remove the heat of reaction, it is usually carried out by the evaporation / condensation / reflux method of the solvent used by the heat of reaction, the indirect cooling method, or a combination thereof.
  • the phenoxy resin of the present invention can be obtained by acylating the hydroxyl group in the phenoxy resin (a) represented by the above formula (12) thus obtained. Acylation may be performed not only by direct esterification but also by a method such as transesterification.
  • Examples of the acid component used for the acylation include acetic acid, propionic acid, butyric acid, isobutyric acid, pentanoic acid, octanoic acid, capric acid, lauric acid, stearic acid, oleic acid, benzoic acid, and t-butyl benzoic acid.
  • Organic acids such as hexahydrobenzoic acid, phenoxyacetic acid, acrylic acid, and methacrylic acid, acid anhydrides of organic acids, halides of organic acids, esterified products of organic acids, and the like can be used.
  • an acid anhydride represented by the following formula (13) is preferable.
  • Z 2 is an acyl group having a hydrocarbon group having 1 to 20 carbon atoms.
  • Examples of the acid anhydride of the organic acid include acetic anhydride, benzoic acid anhydride, phenoxyacetic anhydride and the like.
  • Examples of the esterified product of the organic acid include methyl acetate, ethyl acetate, butyl acetate, methyl benzoate, ethyl benzoate and the like.
  • Examples of the halide of the organic acid include chloride, benzoic acid chloride, phenoxyacetic acid chloride and the like.
  • Compounds used for esterification include halides of organic acids such as chloride, benzoic acid chloride, and phenoxyacetic acid chloride, acid halides such as acetic anhydride, benzoic acid anhydride, and phenoxyacetic acid anhydride, and acid anhydride of organic acids.
  • Acid anhydrides such as acetic anhydride and benzoic acid anhydride are more preferable in the sense that they are preferable, do not require washing with water after esterification, and avoid mixing of halogen, which is disliked in electrical material applications.
  • the phenoxy resin (a) is reacted with an acid component such as the organic acid used for esterifying the hydroxyl group of the phenoxy resin (a), an acid anhydride of the organic acid, a halide of the organic acid, or an esterified product of the organic acid.
  • the charging ratio may be the same as the target esterification ratio, or if the reactivity is low, the above acid component is excessively charged with respect to the hydroxyl group and reacted to the target esterification ratio, and then not yet.
  • the acid component of the reaction may be removed.
  • the amount of the acylating agent used for the raw material phenoxy resin (a) is such that the acyl group of the acylating agent is 0.05 mol or more and 2.0 mol with respect to 1 mol of the alcoholic hydroxyl group of the phenoxy resin (a).
  • it is preferably 0.1 to 1.0 mol, more preferably 0.2 to 0.8 mol.
  • the acylating agent is an acid anhydride represented by the formula (13), it is understood that the acylating agent has 2 mol of an acyl group with respect to 1 mol of the acylating agent.
  • acid catalysts such as paratoluenesulfonic acid and phosphoric acid and metal catalysts such as tetraisopropyl titanate, tetrabutyl titanate, dibutyltin oxide, dioctyltin oxide and zinc chloride. It can be carried out while dehydrating using a catalyst. Usually, it is preferably carried out at 100 to 250 ° C. in a nitrogen atmosphere, and more preferably 130 to 230 ° C.
  • an acid halide or acid anhydride is used for esterification
  • a method of filtering the salt after neutralization using a basic compound, or washing with water after neutralization using a basic compound Any of the method, the method of washing with water without neutralization, and the method of removing by distillation or adsorption may be used, or may be used in combination.
  • the phenoxy resin (a) is esterified by ester exchange, it is usually carried out under a nitrogen atmosphere, for example, dibutyltin oxide, dioctyltin oxide, stanoxane catalyst, tetraisopropyl titanate, tetrabutyl titanate, lead acetate, zinc acetate, antimony trioxide. It is desirable to carry out the process while dealcoholizing using an organic metal catalyst such as, an acid catalyst such as hydrochloric acid, sulfuric acid, phosphoric acid or sulfonic acid, or a known esterification catalyst such as a basic catalyst such as lithium hydroxide or sodium hydroxide.
  • an organic metal catalyst such as, an acid catalyst such as hydrochloric acid, sulfuric acid, phosphoric acid or sulfonic acid, or a known esterification catalyst such as a basic catalyst such as lithium hydroxide or sodium hydroxide.
  • a solvent for reaction may be used, and the solvent may be any solvent as long as it dissolves a phenoxy resin.
  • the solvent exemplified in the production method (A) of the present invention can be mentioned.
  • These solvents may be the same as those used in the preparation of the phenoxy resin (a), or may be different. Further, only one type may be used, or two or more types may be used in combination.
  • the resin composition of the present invention is a resin composition containing at least the phenoxy resin of the present invention and a curing agent. Further, various additives such as an epoxy resin, an inorganic filler, a coupling agent, and an antioxidant can be appropriately added to the resin composition of the present invention, if necessary.
  • the resin composition of the present invention provides a cured product that sufficiently satisfies various physical properties required for various uses.
  • a curing agent can be blended with the phenoxy resin of the present invention to obtain a resin composition.
  • the curing agent refers to a substance that contributes to a cross-linking reaction and / or a chain length extension reaction with a phenoxy resin.
  • a curing accelerator even if it is usually called a "curing accelerator", if it is a substance that contributes to the cross-linking reaction and / or the chain length extension reaction of the phenoxy resin, it is regarded as a curing agent.
  • the content of the curing agent in the resin composition of the present invention is preferably 0.1 to 100 parts by mass in terms of solid content with respect to 100 parts by mass in solid content of the phenoxy resin of the present invention. Further, it is more preferably 80 parts by mass or less, and further preferably 60 parts by mass or less.
  • the weight ratio of the solid content of the phenoxy resin of the present invention to the epoxy resin is 99/1 to 1/99.
  • the "solid content” means a component excluding the solvent, and includes not only solid phenoxy resin and epoxy resin but also semi-solid and viscous liquid substances.
  • the "resin component” means the total of the phenoxy resin of the present invention and the epoxy resin described later.
  • the curing agent used in the resin composition of the present invention is not particularly limited, and any generally known epoxy resin curing agent can be used. From the viewpoint of increasing heat resistance, phenol-based curing agents, amide-based curing agents, imidazoles, active ester-based curing agents and the like can be mentioned. These curable agents may be used alone or in combination of two or more.
  • phenolic curing agent examples include bisphenol A, bisphenol F, 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl ether, 1,4-bis (4-hydroxyphenoxy) benzene, and 1,3-bis ( 4-Hydroxyphenoxy) benzene, 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxydiphenylketone, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl, 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, phenol novolac, bisphenol A novolac, o-cresol novolac, m-cresol novolac, p-cresol novolac , Xylenol novolac, poly-p-hydroxystyrene, hydroquinone
  • amide-based curing agent examples include dicyandiamide and its derivatives, polyamide resins, and the like.
  • imidazoles examples include 2-phenylimidazole, 2-ethyl-4 (5) -methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole.
  • 1-Cyanoethyl-2-undecylimidazole 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimerite, 1-cyanoethyl-2-phenylimidazolium trimerite, 2,4- Diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1')]-ethyl -S-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4 , 5-Dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxy
  • the active ester-based curing agent has two or more ester groups with high reactive activity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds in one molecule.
  • Compounds are preferable, and among them, phenol esters obtained by reacting a carboxylic acid compound with an aromatic compound having a phenolic hydroxyl group are more preferable.
  • Specific examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • aromatic compounds having a phenolic hydroxyl group examples include catechol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, fluoroglucin, and benzenetriol. Examples thereof include dicyclopentadienyldiphenol and phenol novolac.
  • the resin composition of the present invention can contain an epoxy resin.
  • the epoxy resin preferably has two or more epoxy groups in the molecule, and more preferably an epoxy resin having three or more epoxy groups. Examples thereof include polyglycidyl ether compounds, polyglycidyl amine compounds, polyglycidyl ester compounds, alicyclic epoxy compounds, and other modified epoxy resins. These epoxy resins may be used alone, two or more kinds of epoxy resins of the same system may be used in combination, or epoxy resins of different systems may be used in combination.
  • polyglycidyl ether compound examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, bisphenol Z type epoxy resin, bisphenol fluorene type epoxy resin, and diphenyl sulfide type epoxy resin.
  • Diphenyl ether type epoxy resin Diphenyl ether type epoxy resin, naphthalene type epoxy resin, hydroquinone type epoxy resin, resorcinol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alkyl novolac type epoxy resin, styrated phenol novolac type epoxy resin, bisphenol novolac type Epoxy resin, naphthol novolac type epoxy resin, phenol aralkyl type epoxy resin, ⁇ -naphthol aralkyl type epoxy resin, naphthalenediol aralkyl type epoxy resin, ⁇ -naphthol aralkyl type epoxy resin, biphenyl aralkyl phenol type epoxy resin, biphenyl type epoxy resin, Various epoxy resins such as triphenylmethane type epoxy resin, dicyclopentadiene type epoxy resin, alkylene glycol type epoxy resin, and aliphatic cyclic epoxy resin can be used.
  • polyglycidylamine compound examples include diaminodiphenylmethane type epoxy resin, metaxylene diamine type epoxy resin, 1,3-bisaminomethylcyclohexane type epoxy resin, isocyanurate type epoxy resin, aniline type epoxy resin, and hydantin type epoxy resin.
  • Aminophenol type epoxy resin and the like can be mentioned.
  • polyglycidyl ester compound examples include a dimer acid type epoxy resin, a hexahydrophthalic acid type epoxy resin, and a trimellitic acid type epoxy resin.
  • alicyclic epoxy compound examples include aliphatic cyclic epoxy resins such as celloxide 2021 (manufactured by Daicel Chemical Industry Co., Ltd.).
  • modified epoxy resins include, for example, urethane-modified epoxy resin, oxazolidone ring-containing epoxy resin, epoxy-modified polybutadiene rubber derivative, carboxyl group-terminated butadiene nitrile rubber (CTBN) -modified epoxy resin, and polyvinyl allene polyoxide (for example, divinylbenzene dioxide). , Trivinylnaphthalene trioxide, etc.), phenoxy resin, etc.
  • CBN butadiene nitrile rubber
  • the blending amount of the epoxy resin is preferably 1 to 99% by mass in all the components of the phenoxy resin and the epoxy resin as solids. It is more preferably 5 to 97% by mass, further preferably 10 to 95% by mass, still more preferably 10 to 90% by mass.
  • the epoxy resin is within the above blending amount, heat resistance and mechanical strength can be improved when a cured product made of the resin composition of the present invention is prepared.
  • the resin composition of the present invention may contain a solvent or a reactive diluent in order to appropriately adjust the viscosity of the resin composition at the time of handling at the time of forming the coating film.
  • the solvent or the reactive diluent is used to ensure the handleability and workability in molding of the resin composition, and the amount used is not particularly limited.
  • the word "solvent” and the above-mentioned word “solvent” are used separately according to their usage modes, but the same type or different ones may be used independently.
  • Examples of the solvent that can be contained in the resin composition of the present invention include ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone and cyclohexanone, esters such as ethyl acetate, ethers such as ethylene glycol monomethyl ether, N and N. -Includes amides such as dimethylformamide and N, N-dimethylacetamide, alcohols such as methanol and ethanol, alkanes such as hexane and cyclohexane, and aromatics such as toluene and xylene.
  • the above-mentioned solvents may be used alone or in admixture of two or more in any combination and ratio.
  • the reactive diluent examples include monofunctional glycidyl ethers such as allyl glycidyl ether, bifunctional glycidyl ethers such as propylene glycol diglycidyl ether, polyfunctional glycidyl ethers such as trimethylolpropane polyglycidyl ether, and glycidyl esters. , Glycidyl amines and the like.
  • solvents or reactive diluents are preferably used in an amount of 90% by mass or less as a non-volatile content, and the appropriate type and amount to be used are appropriately selected depending on the application.
  • a polar solvent having a boiling point of 160 ° C. or lower such as methyl ethyl ketone, acetone, or 1-methoxy-2-propanol, is preferable, and the amount used is preferably 40 to 80% by mass in terms of non-volatile content.
  • ketones, acetic acid esters, carbitols, aromatic hydrocarbons, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like are preferably used, and the amount used is a non-volatile component. 30 to 60% by mass is preferable.
  • a curing accelerator (excluding those contained in the “curing agent”) can be used in the resin composition of the present invention, if necessary.
  • the curing accelerator include phosphorus compounds such as imidazoles, tertiary amines and phosphines, metal compounds, Lewis acids, amine complex salts and the like. These curing accelerators may be used alone or in combination of two or more.
  • the amount of the curing accelerator to be blended may be appropriately selected according to the purpose of use, but 0.01 to 15 parts by mass is used as necessary with respect to 100 parts by mass of the epoxy resin component in the resin composition. 0.01 to 10 parts by mass is preferable, 0.05 to 8 parts by mass is more preferable, and 0.1 to 5 parts by mass is further preferable.
  • the curing accelerator By using the curing accelerator, the curing temperature can be lowered and the curing time can be shortened.
  • various known flame retardants can be used for the purpose of improving the flame retardancy of the obtained cured product as long as the reliability is not lowered.
  • the flame retardants that can be used include halogen-based flame retardants, phosphorus-based flame retardants, nitrogen-based flame retardants, silicone-based flame retardants, inorganic flame retardants, and organic metal salt-based flame retardants. From the viewpoint of the environment, halogen-free flame retardants are preferable, and phosphorus-based flame retardants are particularly preferable.
  • These flame retardants may be used alone, two or more kinds of flame retardants of the same system may be used in combination, or different flame retardants may be used in combination.
  • the resin composition of the present invention may contain components other than those listed above (may be referred to as "other components" in the present invention) for the purpose of further improving its functionality. ..
  • Such other components include fillers, thermoplastic resins, thermosetting resins, photocurable resins, UV inhibitors, antioxidants, coupling agents, plasticizers, fluxes, rock release agents, smoothing agents. , Colorants, pigments, dispersants, emulsifiers, low elastic agents, mold release agents, antifoaming agents, ion trapping agents and the like.
  • the filler examples include molten silica, crystalline silica, alumina, silicon nitride, boron nitride, aluminum nitride, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, boehmite, talc, mica, clay, calcium carbonate, magnesium carbonate, and the like.
  • Inorganic fillers such as barium carbonate, zinc oxide, titanium oxide, magnesium oxide, magnesium silicate, calcium silicate, zirconium silicate, barium sulfate, carbon, carbon fiber, glass fiber, alumina fiber, silica alumina fiber, silicon dioxide
  • fibrous fillers such as fibers, polyester fibers, cellulose fibers, aramid fibers, and ceramic fibers, and fine particle rubber.
  • thermoplastic resin other than the phenoxy resin of the present invention may be used in combination with the resin composition of the present invention.
  • the thermoplastic resin include phenoxy resins other than the present invention, polyurethane resins, polyester resins, polyethylene resins, polypropylene resins, polystyrene resins, ABS resins, AS resins, vinyl chloride resins, polyvinyl acetate resins, and polymethyl methacrylate resins.
  • a phenoxy resin other than the present invention is preferable from the viewpoint of compatibility, and a polyphenylene ether resin or a modified polyphenylene ether resin is preferable from the viewpoint of low dielectric property.
  • Other components include organic pigments such as quinacridone, azo, and phthalocyanine, inorganic pigments such as titanium oxide, metal foil pigments, and rust preventive pigments, and ultraviolet absorption such as hindered amines, benzotriazoles, and benzophenones.
  • Agents antioxidants such as hindered phenol, phosphorus, sulfur, and hydrazide, release agents such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, leveling agents, rheology control agents, and pigment dispersion.
  • Additives such as agents, anti-pigment agents, antifoaming agents and the like can be mentioned.
  • the blending amount of these other components is preferably in the range of 0.01 to 20% by mass with respect to the total solid content in the resin composition.
  • the resin composition of the present invention is obtained by uniformly mixing each of the above components.
  • a resin composition containing a phenoxy resin, a curing agent, and various components if necessary can be easily made into a cured product by a method similar to a conventionally known method.
  • This cured product has an excellent balance of low hygroscopicity, dielectric properties, heat resistance, adhesion and the like, and exhibits good cured physical properties.
  • the term "curing" as used herein means that the resin composition is intentionally cured by heat and / or light, and the degree of curing may be controlled according to desired physical properties and applications. The degree of progress may be completely cured or semi-cured, and is not particularly limited, but the reaction rate of the curing reaction between the epoxy group and the curing agent is usually 5 to 95%.
  • the resin composition of the present invention can be cured by the same method as the known epoxy resin composition to obtain a cured product.
  • a method for obtaining a cured product the same method as that of a known epoxy resin composition can be adopted, such as casting, injection, potting, dipping, drip coating, transfer molding, compression molding, resin sheet, resin, etc.
  • a method such as forming a laminated plate by laminating in the form of a copper foil with an epoxy, a prepreg, or the like and curing by heating and pressure is preferably used.
  • the curing temperature at that time is usually in the range of 80 to 300 ° C., and the curing time is usually about 10 to 360 minutes.
  • This heating is preferably performed by a two-step treatment of a primary heating at 80 to 180 ° C. for 10 to 90 minutes and a secondary heating at 120 to 200 ° C. for 60 to 150 minutes, and the glass transition temperature (Tg) is high.
  • Tg glass transition temperature
  • the curing reaction of the resin composition is usually allowed to the extent that the shape can be maintained by heating or the like.
  • the resin composition contains a solvent, most of the solvent is usually removed by a method such as heating, depressurization, or air drying, but 5% by mass or less of the solvent remains in the resin semi-cured product. May be good.
  • the prepreg obtained by using the resin composition of the present invention will be described.
  • the sheet-like base material inorganic fibers such as glass and woven fabrics or non-woven fabrics of organic fibers such as polyamine, polyacrylic, polyimide, Kevlar, and cellulose such as polyester can be used, but are limited thereto. is not it.
  • the method for producing a prepreg from the resin composition and the base material of the present invention is not particularly limited, and for example, the above base material is impregnated by immersing the above base material in a resin varnish whose viscosity is adjusted with a solvent.
  • the resin component is semi-cured (B-staged) and obtained by heating and drying.
  • the resin component can be heat-dried at 100 to 200 ° C. for 1 to 40 minutes.
  • the amount of resin in the prepreg is preferably 30 to 80% by mass of the resin content.
  • a method of manufacturing a laminated board using a prepreg or an insulating adhesive sheet will be described.
  • a laminated board using a prepreg one or a plurality of prepregs are laminated, metal foils are arranged on one side or both sides to form a laminate, and the laminate is heated and pressurized to integrate the laminate. do.
  • the metal foil a single metal leaf such as copper, aluminum, brass, nickel or the like, an alloy, or a composite metal leaf can be used.
  • As a condition for heating and pressurizing the laminate it is sufficient to appropriately adjust and heat and pressurize under the condition that the resin composition is cured. However, if the pressure of pressurization is too low, air bubbles remain inside the obtained laminate.
  • the temperature can be set to 160 to 220 ° C.
  • the pressure can be set to 49.0 to 490.3 N / cm 2 (5 to 50 kgf / cm 2 ), and the heating time can be set to 40 to 240 minutes.
  • a multilayer plate can be produced by using the single-layer laminated plate thus obtained as an inner layer material.
  • a circuit is formed on the laminated board by an additive method, a subtractive method, or the like, and the formed circuit surface is treated with an acid solution and blackened to obtain an inner layer material.
  • An insulating layer is formed on one side or both side of the circuit forming surface of the inner layer material with a prepreg or an insulating adhesive sheet, and a conductor layer is formed on the surface of the insulating layer to form a multilayer plate.
  • the insulating adhesive sheet is arranged on the circuit forming surface of a plurality of inner layer materials to form a laminate.
  • an insulating adhesive sheet is arranged between the circuit forming surface of the inner layer material and the metal foil to form a laminate. Then, by heating and pressurizing this laminate and integrally molding it, a cured product of the insulating adhesive sheet is formed as an insulating layer, and a multi-layered inner layer material is formed.
  • the inner layer material and the metal foil which is the conductor layer are formed as an insulating layer by forming a cured product of the insulating adhesive sheet.
  • the same metal leaf as that used for the laminated board used as the inner layer material can be used. Further, the heat and pressure molding can be performed under the same conditions as the molding of the inner layer material.
  • the resin composition is applied to the laminated board to form an insulating layer
  • the circuit-forming surface resin of the outermost layer of the inner layer material is applied to the above resin composition to a thickness of preferably 5 to 100 ⁇ m, and then 100 to 200. It is heated and dried at ° C. for 1 to 90 minutes to form a sheet. It is formed by a method generally called a casting method. It is desirable to form the thickness after drying to 5 to 80 ⁇ m.
  • a printed wiring board can be formed by further forming a via hole or a circuit on the surface of the multilayer laminated board thus formed by an additive method or a constructive method. Further, by repeating the above-mentioned construction method using this printed wiring board as an inner layer material, a multi-layer laminated board can be further formed.
  • the insulating layer is formed by the prepreg
  • one or a plurality of prepregs are arranged on the circuit forming surface of the inner layer material, and a metal foil is further arranged on the outside to form the laminate. ..
  • a cured product of the prepreg is formed as an insulating layer, and a metal foil on the outside thereof is formed as a conductor layer.
  • the metal foil the same metal leaf as that used for the laminated board used as the inner layer material can also be used. Further, the heat and pressure molding can be performed under the same conditions as the molding of the inner layer material.
  • a printed wiring board can be formed by further forming a via hole or a circuit on the surface of the multilayer laminated board thus formed by an additive method or a subtractive method. Further, by repeating the above method using this printed wiring board as an inner layer material, a multi-layer board can be further formed.
  • the cured product obtained from the resin composition of the present invention and the laminated board for electric / electronic circuits have excellent flame retardancy and heat resistance.
  • Weight average molecular weight (Mw) and number average molecular weight (Mn) Obtained by GPC measurement. Specifically, a main body HLC8320GPC (manufactured by Tosoh Corporation) equipped with columns (TSKgel SuperH-H, SuperH2000, SuperHM-H, SuperHM-H, and above, manufactured by Tosoh Corporation) in series is used, and the column temperature is set. The temperature was set to 40 ° C. A DMF (20 mM lithium bromide-containing product) was used as the eluent, the flow rate was 0.3 mL / min, and a differential refractive index detector was used as the detector.
  • Mw Weight average molecular weight
  • Mn number average molecular weight
  • Epoxy equivalent The measurement was performed in accordance with JIS K 7236 standard. Specifically, a potentiometric titrator was used, cyclohexanone was used as a solvent, a brominated tetraethylammonium acetic acid solution was added, and a 0.1 mol / L perchloric acid-acetic acid solution was used. For the solvent-diluted product (resin varnish), the numerical value as a solid content conversion value was calculated from the non-volatile content.
  • Non-volatile content Measured according to JIS K 7235 standard. The drying temperature was 200 ° C. and the drying time was 60 minutes.
  • Tg Glass transition temperature
  • IPC-TM-650 2.4.25 Glass transition temperature
  • c standard a sample having a thickness of 4 mm and a diameter of 3 mm was subjected to a temperature rise condition of 10 ° C./min using a differential scanning calorimetry device EXSTAR6000 DSC6200 (manufactured by SII Nanotechnology Co., Ltd.).
  • EXSTAR6000 DSC6200 manufactured by SII Nanotechnology Co., Ltd.
  • Tmg midpoint glass transition temperature
  • Dielectric characteristics It was evaluated by the dielectric loss tangent when measured at 1 GHz by the cavity resonator perturbation method. Specifically, using a PNA network analyzer N5230A (manufactured by Agilent Technologies Co., Ltd.) and a cavity resonator CP431 (manufactured by Kanto Electronics Applied Development Co., Ltd.), the width is set in a measurement environment at room temperature of 23 ° C. and humidity of 50% RH. The measurement was performed using a test piece of 1.5 mm ⁇ length 80 mm ⁇ thickness 150 ⁇ m.
  • A1 Hydroquinone type epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd., ZX-1027, epoxy equivalent 131, m ⁇ 0.18)
  • A2 Resorcin type epoxy resin (manufactured by Sigma-Aldrich, epoxy equivalent 127, m ⁇ 0.14)
  • A3 2,5-Di-t-butylhydroquinone type epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd., Epototo YDC-1213, epoxy equivalent 175, m ⁇ 0.05)
  • A4 Naphthalene type epoxy resin (manufactured by DIC Corporation, Epicron HP4032D, epoxy equivalent 142, m ⁇ 0.07)
  • A5 Bisphenol A type liquid epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd., Epototo YD-128, epoxy equivalent 186)
  • m has the same meaning as m in the above formula
  • E1 Acetic anhydride (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.)
  • E2 Benzoic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • [Curing agent] H1 Phenol novolac resin (manufactured by Aica Kogyo Co., Ltd., Shonor BRG-5575, hydroxyl group equivalent 105)
  • Example 1 In a glass reaction vessel equipped with a stirrer, a thermometer, a nitrogen gas introduction device, a cooling tube, and a dropping device, 100 parts of A1, 89 parts of B1 and 47 parts of S1 as a reaction solvent were charged at room temperature, and nitrogen was charged. The temperature was raised to 130 ° C. while flowing and stirring the gas, 0.2 part of D1 was added as a catalyst, the temperature was raised to 145 ° C., and the reaction was carried out at the same temperature for 7 hours. A phenoxy resin varnish (R1) having a non-volatile content of 40% was obtained by diluting and mixing using 47 parts of S1 and 189 parts of S2 as a diluting solvent.
  • R1 phenoxy resin varnish
  • Example 2 to 8 Comparative Examples 1 to 3 According to the charged amount (part) of each raw material shown in Tables 1 and 2, the same operation as in Example 1 was carried out to obtain a phenoxy resin varnish.
  • the molar ratio in the table represents the molar ratio of the bifunctional epoxy resin to the diester compound and the bifunctional phenol compound, and the varnish represents the phenoxy resin varnish.
  • Example 10 100 parts (40 parts in terms of solid content) of the phenoxy resin varnish (RH3) obtained in Comparative Example 3 and 600 parts of S1 were blended, the temperature was raised to 100 ° C., and 5 parts of E1 was added to carry out a reaction for 4 hours. ..
  • the obtained resin varnish was added to methanol, the precipitated insoluble matter was filtered off, and the filtrate was dried in a vacuum dryer at 150 ° C. and 0.4 kPa (3 torr) for 1 hour to obtain a phenoxy resin. ..
  • To the obtained phenoxy resin 21 parts of S1 and 42 parts of S2 were added and uniformly dissolved to obtain a phenoxy resin varnish (R10) having a non-volatile content of 40%.
  • Example 11 The same operation as in Example 10 was carried out except that E1 was 23 parts, S1 of the diluting solvent was 25 parts, and S2 was 49 parts, to obtain a phenoxy resin varnish (R11).
  • Example 12 The same operation as in Example 10 was carried out except that 51 parts of E2 was used instead of E1, 31 parts of S1 of the diluting solvent and 62 parts of S2 were used to obtain a phenoxy resin varnish (R12).
  • the resin varnishes R1 to R12 and RH1 to RH3 obtained in Examples 1 to 12 and Comparative Examples 1 to 3 were applied to an iron plate so that the film thickness after drying was 100 ⁇ m and 150 ⁇ m, and the temperature was changed to 150 ° C. using a dryer. It was dried for 1 hour to obtain a resin film. Epoxy equivalent and Mw were measured with a phenoxy resin varnish, and Tg, dielectric properties, and folding resistance were measured with a resin film. The results are shown in Table 3.
  • formula (2) content rate is the content rate (mol%) of the structure of formula (2) in all X in formula (1)
  • “formula (3) content rate” is the formula ( The content rate (mol%) of the structure of the formula (3) in the total X in 1) is represented by the content rate (mol%) of the structure of the formula (3)
  • the "acyllation rate” represents the content rate (mol%) of the acyl group in the total Z.
  • An example using the resin varnishes RH1 to RH3 is a comparative example.
  • a resin composition was obtained by blending 2.5 parts of H1 as a curing agent in a 50% MEK solution and 0.6 parts of C2 as a curing accelerator in a 20% MEK solution. Further, these were applied to an iron plate so that the film thickness after drying was 100 and 150 ⁇ m, and dried at 150 ° C. for 1 hour using a dryer to obtain a film-like cured product. Tg, dielectric properties, and folding resistance were measured, respectively. The results are shown in Table 4.
  • the phenoxy resin of the present invention shown in Examples 1 to 12 is excellent in heat resistance, dielectric properties, and folding resistance. Further, as can be seen from Table 4, the cured product made of the resin composition of the present invention is also excellent in heat resistance, dielectric properties, and folding resistance.
  • the phenoxy resin and resin composition of the present invention can be applied to various fields such as adhesives, paints, building materials for civil engineering, and insulating materials for electrical and electronic parts. It is useful as a material, sealing material, etc.
  • the phenoxy resin of the present invention and the resin composition containing the same can be used for multilayer printed wiring substrates, laminated boards for electric / electronic circuits such as capacitors, film-like adhesives, adhesives such as liquid adhesives, semiconductor encapsulants, and underfills. It can be suitably used as a material, an interchip fill material for 3D-LSI, an insulating sheet, a prepreg, a heat radiating substrate, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention provides: a phenoxy resin which exhibits excellent heat resistance, dielectric characteristics and folding resistance; a resin composition which contains this phenoxy resin and a curing agent; a cured product of this resin composition, said cured product exhibiting excellent heat resistance, dielectric characteristics and folding resistance; and a laminate for electric/electronic circuits. This phenoxy resin is represented by formula (1), and has a weight average molecular weight of from 10,000 to 200,000. In the formula, X represents a divalent group containing a dioxy group represented by formula (2) or formula (3); Y represents a hydrogen atom, an acyl group or a glycidyl group; and Z represents a hydrogen atom or an acyl group, with 5% by mole or more thereof being an acyl group.

Description

フェノキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及びフェノキシ樹脂の製造方法Manufacturing method of phenoxy resin, resin composition, cured product, laminated board for electric / electronic circuits, and phenoxy resin
 本発明は、耐熱性、誘電特性及び耐折性に優れたフェノキシ樹脂に関するものである。また、該フェノキシ樹脂と硬化剤とを含む樹脂組成物、及び耐熱性、誘電特性及び耐折性に優れたその硬化物、並びに該樹脂組成物からなる電気・電子回路用積層板に関するものである。 The present invention relates to a phenoxy resin having excellent heat resistance, dielectric properties and folding resistance. Further, the present invention relates to a resin composition containing the phenoxy resin and a curing agent, a cured product having excellent heat resistance, dielectric properties and folding resistance, and a laminated board for an electric / electronic circuit made of the resin composition. ..
 エポキシ樹脂は耐熱性、接着性、耐薬品性、耐水性、機械的強度及び電気特性等に優れていることから、塗料、土木、接着、電気材料用途等の分野で広く使用されている。そして種々の方法で高分子量化することで製膜性が付与される。その高分子量化されたエポキシ樹脂はフェノキシ樹脂と称される。特にビスフェノールA型のフェノキシ樹脂は、主に塗料用ワニスのベース樹脂、フィルム成形用のベース樹脂としてや、エポキシ樹脂ワニスに添加して流動性の調整や硬化物としたときの靭性改良、接着性改良の目的に使用される。また、リン原子や臭素原子を骨格中に有するものは、エポキシ樹脂組成物や熱可塑性樹脂に配合される難燃剤として使用されている。 Epoxy resin is widely used in fields such as paints, civil engineering, adhesives, and electrical materials because it has excellent heat resistance, adhesiveness, chemical resistance, water resistance, mechanical strength, and electrical properties. Then, the film-forming property is imparted by increasing the molecular weight by various methods. The high molecular weight epoxy resin is called a phenoxy resin. In particular, bisphenol A type phenoxy resin is mainly used as a base resin for paint varnish, a base resin for film molding, and is added to epoxy resin varnish to adjust fluidity, improve toughness and adhesiveness when made into a cured product. Used for improvement purposes. Further, those having a phosphorus atom or a bromine atom in the skeleton are used as a flame retardant to be blended in an epoxy resin composition or a thermoplastic resin.
 電気・電子回路用積層板等の電気材料用途となるフェノキシ樹脂には耐熱性、誘電特性及び耐折性が要求される。 Phenoxy resin, which is used as an electrical material such as laminated boards for electric and electronic circuits, is required to have heat resistance, dielectric properties, and folding resistance.
 このような要求に対して、分子鎖をかさ高くしミクロブラウン運動を抑制することで耐熱性を向上させる方法が提案されている。特許文献1には、かさ高いビスフェノール化合物と2官能エポキシ樹脂を反応させた耐熱性に優れたフェノキシ樹脂が開示されている。しかし、この方法ではフェノキシ樹脂に対して優れた耐熱性を付与できるものの、誘電特性は改善されないという問題がある。 In response to such demands, a method of improving heat resistance by making the molecular chain bulky and suppressing the Micro Brownian motion has been proposed. Patent Document 1 discloses a phenoxy resin having excellent heat resistance obtained by reacting a bulky bisphenol compound with a bifunctional epoxy resin. However, although this method can impart excellent heat resistance to the phenoxy resin, there is a problem that the dielectric property is not improved.
 一方、フェノキシ樹脂の側鎖に存在する水酸基をアセチル基やベンゾイル基を用いてエステルに変換することで誘電特性を向上させる方法が提案されている。特許文献2では、2官能エポキシ樹脂とジエステル化合物を反応させて得られたフェノキシ樹脂が優れた誘電特性を有することを本発明者らは確認しているが、耐熱性に劣るという問題がある。 On the other hand, a method has been proposed in which the hydroxyl group existing in the side chain of the phenoxy resin is converted into an ester using an acetyl group or a benzoyl group to improve the dielectric property. In Patent Document 2, the present inventors have confirmed that the phenoxy resin obtained by reacting a bifunctional epoxy resin with a diester compound has excellent dielectric properties, but there is a problem that the heat resistance is inferior.
特開2008-231428号公報Japanese Unexamined Patent Publication No. 2008-231428 特開2016-089165号公報Japanese Unexamined Patent Publication No. 2016-089165
 本発明の課題は、耐熱性、誘電特性及び耐折性に優れたフェノキシ樹脂を提供することである。また、これを含む樹脂組成物を硬化して、耐熱性、誘電特性及び耐折性に優れた硬化物を提供することである。 An object of the present invention is to provide a phenoxy resin having excellent heat resistance, dielectric properties and folding resistance. Another object of the present invention is to cure a resin composition containing the same to provide a cured product having excellent heat resistance, dielectric properties and folding resistance.
 上記の課題を解決するために、本発明者はフェノキシ樹脂について鋭意検討した結果、特定の構造を有するフェノキシ樹脂が、耐熱性、誘電特性及び耐折性に優れることを見出し、更にこれを含む樹脂組成物を硬化させた硬化物が耐熱性、誘電特性及び耐折性に優れることを見出し、本発明を完成した。 In order to solve the above problems, the present inventor has diligently studied a phenoxy resin and found that a phenoxy resin having a specific structure is excellent in heat resistance, dielectric properties and folding resistance, and a resin containing the same. The present invention has been completed by finding that the cured product obtained by curing the composition is excellent in heat resistance, dielectric properties and folding resistance.
 すなわち本発明は、下記式(1)で表され、重量平均分子量が10,000~200,000であるフェノキシ樹脂である。
Figure JPOXMLDOC01-appb-C000009
 
 式中、Xは独立に下記式(2)及び式(3)で表されるジオキシ基を含む2価の基であり、Yはそれぞれ独立に、水素原子、炭素数1~20の炭化水素基を有するアシル基、又はグリシジル基である。Zは炭素数1~20の炭化水素基を有するアシル基又は水素原子であり、5モル%以上は上記アシル基である。nは繰り返し数の平均値であり、15以上500以下である。
That is, the present invention is a phenoxy resin represented by the following formula (1) and having a weight average molecular weight of 10,000 to 200,000.
Figure JPOXMLDOC01-appb-C000009

In the formula, X is a divalent group containing a dioxy group represented by the following formulas (2) and (3) independently, and Y is a hydrogen atom and a hydrocarbon group having 1 to 20 carbon atoms, respectively. It is an acyl group or a glycidyl group having. Z is an acyl group or a hydrogen atom having a hydrocarbon group having 1 to 20 carbon atoms, and 5 mol% or more is the above acyl group. n is the average value of the number of repetitions, which is 15 or more and 500 or less.
Figure JPOXMLDOC01-appb-C000010
 
 式(2)及び式(3)中、Rはそれぞれ独立に、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~12のアリール基、炭素数7~13のアラルキル基、炭素数6~12のアリールオキシ基、炭素数7~13のアラルキルオキシ基、炭素数2~12のアルケニル基、及び炭素数2~12のアルキニル基からなる群れから選ばれる基であり、iは0~4の整数であり、jは0~6の整数である。
Figure JPOXMLDOC01-appb-C000010

In formulas (2) and (3), R independently has an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and 7 to 13 carbon atoms. A group selected from a group consisting of an aralkyl group, an aryloxy group having 6 to 12 carbon atoms, an aralkyloxy group having 7 to 13 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, and an alkynyl group having 2 to 12 carbon atoms. , I is an integer of 0 to 4, and j is an integer of 0 to 6.
 また、本発明は上記のフェノキシ樹脂と、硬化剤とを含む樹脂組成物である。
 上記樹脂組成物は、フェノキシ樹脂の固形分100質量部に対し、硬化剤を固形分として0.1~100質量部を含むことがよい。
Further, the present invention is a resin composition containing the above-mentioned phenoxy resin and a curing agent.
The resin composition may contain 0.1 to 100 parts by mass of the curing agent as a solid content with respect to 100 parts by mass of the solid content of the phenoxy resin.
 上記樹脂組成物は、上記のフェノキシ樹脂と、エポキシ樹脂及び硬化剤を含み、フェノキシ樹脂とエポキシ樹脂の固形分の質量比が、99/1~1/99であることができる。
 この樹脂組成物は、フェノキシ樹脂とエポキシ樹脂の固形分の合計100質量部に対し、硬化剤を固形分として0.1~100質量部を含むことがよい。
The resin composition contains the above-mentioned phenoxy resin, an epoxy resin, and a curing agent, and the mass ratio of the solid content of the phenoxy resin and the epoxy resin can be 99/1 to 1/99.
This resin composition may contain 0.1 to 100 parts by mass of a curing agent as a solid content with respect to a total of 100 parts by mass of the solid content of the phenoxy resin and the epoxy resin.
 上記の樹脂組成物に配合される硬化剤としては、アクリル酸エステル樹脂、メラニン樹脂、尿素樹脂、フェノール樹脂、酸無水物化合物、アミン系化合物、イミダゾール系化合物、アミド系化合物、カチオン重合開始剤、有機ホスフィン類、ポリイソシアネート化合物、ブロックイソシアネート化合物、及び活性エステル系硬化剤からなる群から選ばれる少なくとも1種がある。 Examples of the curing agent to be blended in the above resin composition include acrylic acid ester resins, melanin resins, urea resins, phenol resins, acid anhydride compounds, amine compounds, imidazole compounds, amide compounds, and cationic polymerization initiators. There is at least one selected from the group consisting of organic phosphines, polyisocyanate compounds, blocked isocyanate compounds, and active ester-based curing agents.
 また本発明は、上記の樹脂組成物を硬化してなる硬化物である。
 更に本発明は、上記の樹脂組成物を用いてなる電気・電子回路用積層板である。
Further, the present invention is a cured product obtained by curing the above resin composition.
Further, the present invention is a laminated board for an electric / electronic circuit using the above resin composition.
 また本発明は、下記式(7)で表される2官能エポキシ樹脂と、下記式(8)で表される化合物とを反応させることを特徴とする上記のフェノキシ樹脂の製造方法である。
Figure JPOXMLDOC01-appb-C000011
 
 式中、Xは独立に上記式(2)又は式(3)で表されるジオキシ基を含む2価の基であり、式(7)と式(8)のX中には全体として、式(2)及び式(3)で表されるジオキシ基を含む。
 Zは炭素数1~20の炭化水素基を有するアシル基又は水素原子であり、5モル%以上は上記アシル基である。ここで、式(8)で表される化合物は、Zの両者がアシル基である化合物、一方がアシル基である化合物及び両方が水素原子である化合物から選ばれる2種以上の混合物であってもよい。
 mは繰り返し数の平均値であり0以上6以下である。
The present invention is a method for producing the above-mentioned phenoxy resin, which comprises reacting a bifunctional epoxy resin represented by the following formula (7) with a compound represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000011

In the formula, X 1 is a divalent group containing a dioxy group independently represented by the above formula (2) or the formula (3), and is included in X 1 of the formulas (7) and (8) as a whole. , A dioxy group represented by the formula (2) and the formula (3).
Z 1 is an acyl group or a hydrogen atom having a hydrocarbon group having 1 to 20 carbon atoms, and 5 mol% or more is the above acyl group. Here, the compound represented by the formula (8) is a mixture of two or more selected from a compound in which both of Z 1 are acyl groups, a compound in which one is an acyl group, and a compound in which both are hydrogen atoms. You may.
m is the average value of the number of repetitions and is 0 or more and 6 or less.
 更に本発明は、下記式(12)で表されるフェノキシ樹脂のアルコール性水酸基1モルに対して、アシル化剤のアシル基を0.05モル以上2.0モル以下で反応させることを特徴とする上記のフェノキシ樹脂の製造方法である。
Figure JPOXMLDOC01-appb-C000012
 
 式中、Xは独立に上記式(2)及び式(3)で表されるジオキシ基を含む2価の基であり、Yはそれぞれ独立に、水素原子又はグリシジル基である。nは繰り返し数の平均値であり、15以上500以下である。
Further, the present invention is characterized in that the acyl group of the acylating agent is reacted in an amount of 0.05 mol or more and 2.0 mol or less with 1 mol of the alcoholic hydroxyl group of the phenoxy resin represented by the following formula (12). This is the method for producing the above-mentioned phenoxy resin.
Figure JPOXMLDOC01-appb-C000012

In the formula, X 2 is a divalent group containing a dioxy group represented by the above formulas (2) and (3) independently, and Y 2 is a hydrogen atom or a glycidyl group independently. n is the average value of the number of repetitions, which is 15 or more and 500 or less.
 本発明によれば、耐熱性、誘電特性及び耐折性に優れたフェノキシ樹脂を提供することができる。また、このフェノキシ樹脂を用いた樹脂組成物で、耐熱性、誘電特性及び耐折性に優れた硬化物を提供することができる。 According to the present invention, it is possible to provide a phenoxy resin having excellent heat resistance, dielectric properties and folding resistance. Further, a resin composition using this phenoxy resin can provide a cured product having excellent heat resistance, dielectric properties and folding resistance.
 本発明のフェノキシ樹脂は、上記式(1)で表される重量平均分子量(Mw)が10,000~200,000であるフェノキシ樹脂であり、上記式(2)で表されるベンゼン骨格と式(3)で表されるナフタレン骨格とを有し、更に水酸基中の水素原子の一部又は全部がアシル基(Z)で置換された構造を有する。
 ここで、Mwが10,000より小さいと、製膜性や機械物性(特に耐折性)が低下する恐れがあり好ましくない。Mwが200,000より大きいと相溶性が低下する恐れがあり、樹脂の取り扱いが困難となる場合があり好ましくない。Mwは、15,000~160,000が好ましく、20,000~120,000がより好ましく、20,000~120,000が更に好ましい。なお、フェノキシ樹脂のMwは実施例に記載のゲルパーミエーションクロマトグラフィー法(GPC法)により測定することができる。
The phenoxy resin of the present invention is a phenoxy resin having a weight average molecular weight (Mw) of 10,000 to 200,000 represented by the above formula (1), and has a benzene skeleton represented by the above formula (2) and a formula. It has a naphthalene skeleton represented by (3), and further has a structure in which a part or all of hydrogen atoms in a hydroxyl group are substituted with an acyl group (Z).
Here, if Mw is smaller than 10,000, the film-forming property and the mechanical property (particularly the folding resistance) may be deteriorated, which is not preferable. If Mw is larger than 200,000, the compatibility may decrease, which may make it difficult to handle the resin, which is not preferable. The Mw is preferably 15,000 to 160,000, more preferably 20,000 to 120,000, still more preferably 20,000 to 120,000. The Mw of the phenoxy resin can be measured by the gel permeation chromatography method (GPC method) described in Examples.
 本発明のフェノキシ樹脂は、水酸基中の水素原子がアシル基で置換された構造を有することにより、低極性となり、誘電特性に優れる効果が得られる。また、低吸湿性や溶剤溶解性が良好になる。 The phenoxy resin of the present invention has a structure in which a hydrogen atom in a hydroxyl group is substituted with an acyl group, so that the polarity is low and an effect of excellent dielectric properties can be obtained. In addition, low hygroscopicity and solvent solubility are improved.
 本発明のフェノキシ樹脂は、本発明の製造方法で有利に得ることができる。本明細書において本発明の製造方法で得られるフェノキシ樹脂を「本発明のフェノキシ樹脂」ということがあり、本発明の樹脂組成物を硬化してなる硬化物を「本発明の硬化物」と、本発明のフェノキシ樹脂の製造方法を「本発明の製造方法」と称することがある。 The phenoxy resin of the present invention can be advantageously obtained by the production method of the present invention. In the present specification, the phenoxy resin obtained by the production method of the present invention is sometimes referred to as "phenoxy resin of the present invention", and the cured product obtained by curing the resin composition of the present invention is referred to as "cured product of the present invention". The method for producing a phenoxy resin of the present invention may be referred to as "the method for producing the phenoxy resin of the present invention".
 上記式(1)において、Xは独立に上記式(2)及び式(3)で表されるジオキシ基を含む2価の基である。式(2)及び式(3)で表される基は、両端に酸素原子を有するので、ジオキシ基という。上記2価の基は、上記式(2)、式(3)又はこれら以外の他の2価の基のいずれかであるが、全体として、式(2)及び式(3)で表されるジオキシ基を含む。式(2)及び式(3)で表されるジオキシ基のモル比(式2/式3)は、1/9~9/1が好ましく、2/8~8/2がより好ましく、3/7~7/3が更に好ましく、4/6~6/4が特に好ましい。また、式(2)及び式(3)で表されるジオキシ基は、X全体のモル数に対して、1モル%以上が好ましく、10モル%以上がより好ましく、30モル%以上が更に好ましく、50モル%以上が特に好ましい。この範囲を外れると耐熱性や耐折性や悪化する恐れがある。上記ジオキシ基以外の他の2価の基としては、-O-Ar-O-で表される2価の基が挙げられ、Arとしては、後述する併用してもよい2官能フェノール化合物から水酸基を2個除いた残基等が挙げられる。 In the above formula (1), X is a divalent group containing a dioxy group independently represented by the above formulas (2) and (3). The groups represented by the formulas (2) and (3) are called dioxy groups because they have oxygen atoms at both ends. The divalent group is any of the above formulas (2), (3) or other divalent groups, but is represented by the formulas (2) and (3) as a whole. Contains dioxy groups. The molar ratio of dioxy groups represented by the formulas (2) and (3) (formula 2 / formula 3) is preferably 1/9 to 9/1, more preferably 2/8 to 8/2, and 3 /. 7 to 7/3 is more preferable, and 4/6 to 6/4 is particularly preferable. The dioxy group represented by the formulas (2) and (3) is preferably 1 mol% or more, more preferably 10 mol% or more, still more preferably 30 mol% or more, based on the total number of moles of X. , 50 mol% or more is particularly preferable. If it is out of this range, heat resistance, folding resistance and deterioration may occur. Examples of the divalent group other than the above dioxy group include a divalent group represented by —O—Ar—O—, and Ar is a hydroxyl group from a bifunctional phenol compound which may be used in combination, which will be described later. Residues and the like excluding two are mentioned.
 式(2)及び式(3)において、Rはそれぞれ独立に、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~12のアリール基、炭素数7~13のアラルキル基、炭素数6~12のアリールオキシ基、炭素数7~13のアラルキルオキシ基、炭素数2~12のアルケニル基、又は炭素数2~12のアルキニル基から任意に選ばれる基である。 In formulas (2) and (3), R independently has an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and 7 to 13 carbon atoms, respectively. It is a group arbitrarily selected from an aralkyl group, an aryloxy group having 6 to 12 carbon atoms, an aralkyloxy group having 7 to 13 carbon atoms, an alkoxy group having 2 to 12 carbon atoms, or an alkynyl group having 2 to 12 carbon atoms.
 炭素数1~12のアルキル基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、n-ヘプチル基、シクロヘプチル基、メチルシクロヘキシル基、n-オクチル基、シクロオクチル基、n-ノニル基、3,3,5-トリメチルシクロヘキシル基、n-デシル基、シクロデシル基、n-ウンデシル基、n-ドデシル基、シクロドデシル基、ベンジル基、メチルベンジル基、ジメチルベンジル基、トリメチルベンジル基、ナフチルメチル基、フェネチル基、2-フェニルイソプロピル基等が挙げられる。 The alkyl group having 1 to 12 carbon atoms may be linear, branched or cyclic, and may be, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group or a sec-butyl group. t-butyl group, n-pentyl group, isopentyl group, neopentyl group, t-pentyl group, cyclopentyl group, n-hexyl group, isohexyl group, cyclohexyl group, n-heptyl group, cycloheptyl group, methylcyclohexyl group, n- Octyl group, cyclooctyl group, n-nonyl group, 3,3,5-trimethylcyclohexyl group, n-decyl group, cyclodecyl group, n-undecyl group, n-dodecyl group, cyclododecyl group, benzyl group, methylbenzyl group , Dimethylbenzyl group, trimethylbenzyl group, naphthylmethyl group, phenethyl group, 2-phenylisopropyl group and the like.
 炭素数1~12のアルコキシ基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペントキシ基、イソペントキシ基、ネオペントキシ基、t-ペントキシ基、シクロペントキシ基、n-ヘキシロキシ基、イソヘキシロキシ基、シクロヘキシロキシ基、n-ヘプトキシ基、シクロヘプトキシ基、メチルシクロヘキシロキシ基、n-オクチロキシ基、シクロオクチロキシ基、n-ノニロキシ基、3,3,5-トリメチルシクロヘキシロキシ基、n-デシロキシ基、シクロデシロキシ基、n-ウンデシロキシ基、n-ドデシロキシ基、シクロドデシロキシ基、ベンジロキシ基、メチルベンジロキシ基、ジメチルベンジロキシ基、トリメチルベンジロキシ基、ナフチルメトキシ基、フェネチロキシ基、2-フェニルイソプロポキシ基等が挙げられるが、これらに限定されない。 The alkoxy group having 1 to 12 carbon atoms may be linear, branched or cyclic, and may be, for example, a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group or a sec-butoxy group. , T-butoxy group, n-pentoxy group, isopentoxy group, neopentoxy group, t-pentoxy group, cyclopentoxy group, n-hexyloxy group, isohexyloxy group, cyclohexyloxy group, n-heptoxy group, cycloheptoxy group, methylcyclohexyloxy Group, n-octyloxy group, cyclooctyloxy group, n-nonyloxy group, 3,3,5-trimethylcyclohexyloxy group, n-decyloxy group, cyclodecyloxy group, n-undecyloxy group, n-dodecyloxy group, cyclodo Examples thereof include, but are not limited to, a decyloxy group, a benzyloxy group, a methylbenzyloxy group, a dimethylbenzyloxy group, a trimethylbenzyloxy group, a naphthylmethoxy group, a phenethyloxy group, a 2-phenylisopropoxy group and the like.
 炭素数6~12のアリール基としては、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、エチルフェニル基、スチリル基、キシリル基、n-プロピルフェニル基、イソプロピルフェニル基、メシチル基、エチニルフェニル基、ナフチル基、ビニルナフチル基等が挙げられるが、これらに限定されない。 Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, an ethylphenyl group, a styryl group, a xsilyl group, an n-propylphenyl group and an isopropylphenyl group. , Mesityl group, ethynylphenyl group, naphthyl group, vinyl naphthyl group and the like, but are not limited thereto.
 炭素数7~13のアラルキル基としては、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、エチルフェニル基、スチリル基、キシリル基、n-プロピルフェニル基、イソプロピルフェニル基、メシチル基、エチニルフェニル基、ナフチル基、ビニルナフチル基等が挙げられるが、これらに限定されない。 Examples of the aralkyl group having 7 to 13 carbon atoms include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, an ethylphenyl group, a styryl group, a xsilyl group, an n-propylphenyl group and an isopropylphenyl group. , Mesityl group, ethynylphenyl group, naphthyl group, vinyl naphthyl group and the like, but are not limited thereto.
 炭素数6~12のアリールオキシ基としては、例えば、フェノキシ基、o-トリルオキシ基、m-トリルオキシ基、p-トリルオキシ基、エチルフェノキシ基、スチリルオキシ基、キシリルオキシ基、n-プロピルフェノキシ基、イソプロピルフェノキシ基、メシチルオキシ基、エチニルフェノキシ基、ナフチルオキシ基、ビニルナフチルオキシ基等が挙げられるが、これらに限定されない。 Examples of the aryloxy group having 6 to 12 carbon atoms include a phenoxy group, an o-tolyloxy group, an m-tolyloxy group, a p-tolyloxy group, an ethylphenoxy group, a styryloxy group, a xylyloxy group, an n-propylphenoxy group and isopropyl. Examples thereof include, but are not limited to, a phenoxy group, a mesityloxy group, an ethynylphenoxy group, a naphthyloxy group, a vinylnaphthyloxy group and the like.
 炭素数7~13のアラルキルオキシ基としては、例えば、ベンジルオキシ基、メチルベンジルオキシ基、ジメチルベンジルオキシ基、トリメチルベンジルオキシ基、フェネチルオキシ基、1-フェニルエチルオキシ基、2-フェニルイソプロピルオキシ基、ナフチルメチルオキシ基等が挙げられるが、これらに限定されない。 Examples of the aralkyloxy group having 7 to 13 carbon atoms include a benzyloxy group, a methylbenzyloxy group, a dimethylbenzyloxy group, a trimethylbenzyloxy group, a phenethyloxy group, a 1-phenylethyloxy group, and a 2-phenylisopropyloxy group. , Naftylmethyloxy group and the like, but are not limited thereto.
 炭素数2~12のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-メチルビニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1,3-ブタジエニル基、シクロヘキセニル基、シクロヘキサジエニル基、シンナミル基、ナフチルビニル基等が挙げられるが、これらに限定されない。 Examples of the alkenyl group having 2 to 12 carbon atoms include a vinyl group, a 1-propenyl group, a 2-propenyl group, a 1-methylvinyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, and 1,3. -Butadienyl group, cyclohexenyl group, cyclohexadienyl group, cinnamyl group, naphthylvinyl group and the like can be mentioned, but the present invention is not limited thereto.
 炭素数2~12のアルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1,3-ブタンジエニル基、フェニルエチニル基、ナフチルエチニル基等が挙げられるが、これらに限定されない。 Examples of the alkynyl group having 2 to 12 carbon atoms include an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 1-butynyl group, a 2-butynyl group, a 3-butanyl group, a 1,3-butanjienyl group and a phenylethynyl group. Groups, naphthylethynyl groups and the like can be mentioned, but are not limited thereto.
 以上で挙げた中でも、Rとしては、水素原子、炭素数1~4のアルキル基が好ましく、水素原子、メチル基がより特に好ましい。これは置換基が大きいと耐熱性が低下する恐れがあるためである。なお、Rが水素原子であるとは、i又はjが0であることをいう。
 iは0~4の整数であり、jは0~6の整数であるが、好ましくは、iは0~2の整数であり、jは0~2の整数である。
Among the above, as R, a hydrogen atom and an alkyl group having 1 to 4 carbon atoms are preferable, and a hydrogen atom and a methyl group are more particularly preferable. This is because if the substituent is large, the heat resistance may decrease. Note that R is a hydrogen atom means that i or j is 0.
i is an integer of 0 to 4 and j is an integer of 0 to 6, but preferably i is an integer of 0 to 2 and j is an integer of 0 to 2.
 式(1)において、Yはそれぞれ独立に、水素原子、炭素数1~20の炭化水素基を有するアシル基、又はグリシジル基である。Yが水素原子である場合は末端に水酸基を与え、アシル基である場合は末端にエステル基を与え、グリシジル基である場合は末端にエポキシ基を与えるので、用途に応じてその割合を制御することがよい。
 炭素数1~20の炭化水素基としては、炭素数1~12のアルキル基、炭素数6~12のアリール基、又は炭素数7~13のアラルキル基が好ましく、上記で例示した基が挙げられる。これらの中でも、炭素数1~7の炭化水素基を有するアシル基がより好ましく、アセチル基、プロパノイル基、ブタノイル基、ベンゾイル基、メチルベンゾイル基が更に好ましく、アセチル基、ベンゾイル基が特に好ましい。なお、アセチル基は炭素数1の炭化水素基を有するアシル基と解される。
In the formula (1), Y is independently a hydrogen atom, an acyl group having a hydrocarbon group having 1 to 20 carbon atoms, or a glycidyl group. When Y is a hydrogen atom, a hydroxyl group is given to the end, when it is an acyl group, an ester group is given to the end, and when it is a glycidyl group, an epoxy group is given to the end, so the ratio is controlled according to the application. That is good.
The hydrocarbon group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 13 carbon atoms, and examples thereof include the groups exemplified above. .. Among these, an acyl group having a hydrocarbon group having 1 to 7 carbon atoms is more preferable, an acetyl group, a propanoyl group, a butanoyl group, a benzoyl group and a methylbenzoyl group are more preferable, and an acetyl group and a benzoyl group are particularly preferable. The acetyl group is understood to be an acyl group having a hydrocarbon group having 1 carbon atom.
 式(1)において、Zは炭素数1~20の炭化水素基を有するアシル基又は水素原子である。Zの5モル%以上はアシル基であり、残りは水素原子である。Zの10モル%以上、好ましくは50モル%以上、より好ましくは70モル%以上がアシル基である。また、上限は100モル%が好ましいが、実質的には95モル%あればよい。炭素数1~20の炭化水素基を有するアシル基は、上記Yで例示したものと同様であり、好ましいアシル基も同様である。
 Zが全て(100モル%)がアシル基の場合、本発明のフェノキシ樹脂は二級水酸基を含まないものとなり、誘電特性や耐湿性を更に改良することができる。一方で、例えば金属に対する接着性を微調整する際に、Zの一部を水素原子として残すことで、耐湿性を始めとする他の物性に大きな影響を及ぼさない範囲で、本発明のフェノキシ樹脂中に敢えて適量の二級水酸基を存在させることもできる。
In the formula (1), Z is an acyl group or a hydrogen atom having a hydrocarbon group having 1 to 20 carbon atoms. More than 5 mol% of Z is an acyl group and the rest is a hydrogen atom. 10 mol% or more, preferably 50 mol% or more, more preferably 70 mol% or more of Z is an acyl group. The upper limit is preferably 100 mol%, but it may be substantially 95 mol%. The acyl group having a hydrocarbon group having 1 to 20 carbon atoms is the same as that exemplified in Y above, and the preferred acyl group is also the same.
When all Z (100 mol%) are acyl groups, the phenoxy resin of the present invention does not contain a secondary hydroxyl group, and the dielectric properties and moisture resistance can be further improved. On the other hand, for example, when finely adjusting the adhesiveness to a metal, by leaving a part of Z as a hydrogen atom, the phenoxy resin of the present invention does not significantly affect other physical properties such as moisture resistance. It is also possible to intentionally allow an appropriate amount of secondary hydroxyl groups to be present therein.
 式(1)において、nは繰り返し数であり、平均値である。その値の範囲は15以上500以下である。成形性及び取り扱い性の観点から好ましくは17以上400以下であり、より好ましくは20以上300以下である。n数はGPC法により得られた数平均分子量(Mn)より算出することができる。 In equation (1), n is the number of repetitions and is an average value. The range of the value is 15 or more and 500 or less. From the viewpoint of moldability and handleability, it is preferably 17 or more and 400 or less, and more preferably 20 or more and 300 or less. The n number can be calculated from the number average molecular weight (Mn) obtained by the GPC method.
 本発明のフェノキシ樹脂のエポキシ当量は、特に限定されないが、2,000~50,000g/eq.の範囲が好ましい。この範囲であれば、本発明のフェノキシ樹脂はそれ自体が硬化反応に関与し、架橋構造に組み込まれることが可能である。 The epoxy equivalent of the phenoxy resin of the present invention is not particularly limited, but is 2,000 to 50,000 g / eq. The range of is preferable. Within this range, the phenoxy resin of the present invention is itself involved in the curing reaction and can be incorporated into the crosslinked structure.
 本発明のフェノキシ樹脂は、二級水酸基の一部又は全部がアシル化したものであり、様々な方法で得ることができる。好ましい製造方法としては、例えば、次のような製造方法がある。
(A);上記式(7)で表される2官能エポキシ樹脂と、上記式(8)で表されるジエステル系化合物及び/又は2官能フェノール化合物とを反応させる製造方法。以下、製造方法(A)と称することがある。
(B);上記式(12)で表されるフェノキシ樹脂(本発明のフェノキシ樹脂と区別するために、フェノキシ樹脂(a)と称することがある。)と、有機酸の酸無水物、有機酸のハロゲン化物、有機酸のエステル化物等の酸成分(アシル化剤)とを反応させる製造方法。以下、製造方法(B)と称することがある。
 製造方法(A)及び(B)で得られるフェノキシ樹脂は、本発明のフェノキシ樹脂であり、同じ式(1)で表される。
The phenoxy resin of the present invention is obtained by acylating a part or all of the secondary hydroxyl groups and can be obtained by various methods. As a preferable manufacturing method, for example, there are the following manufacturing methods.
(A); A production method in which a bifunctional epoxy resin represented by the above formula (7) is reacted with a diester compound and / or a bifunctional phenol compound represented by the above formula (8). Hereinafter, it may be referred to as a manufacturing method (A).
(B); A phenoxy resin represented by the above formula (12) (sometimes referred to as a phenoxy resin (a) to distinguish it from the phenoxy resin of the present invention), an acid anhydride of an organic acid, and an organic acid. A production method in which an acid component (acylating agent) such as a halide of an organic acid or an esterified product of an organic acid is reacted. Hereinafter, it may be referred to as a manufacturing method (B).
The phenoxy resin obtained by the production methods (A) and (B) is the phenoxy resin of the present invention and is represented by the same formula (1).
 製造方法(A)は、式(7)で表される2官能エポキシ樹脂と、式(8)で表される化合物とを反応させる方法である。
 上記式(7)において、Gはグリジル基であり、mは繰り返し数であり、その平均値は0以上6以下である。
 式(8)において、Zの5モル%以上は炭素数1~20の炭化水素基を有するアシル基で、残りは水素原子である。ここで、式(8)で表される化合物は、Zの両者がアシル基である化合物、一方がアシル基で、他方が水素原子である化合物及び両方が水素原子である化合物から選ばれる2種以上の混合物であってもよい。Zの両者がアシル基である場合は、ジエステルとなり、両方が水素原子である場合はジフェノール類となる。式(8)で表される化合物をジエステル系化合物という。ジエステル系化合物は、Zの両者がアシル基である化合物又は主成分(50%以上)が該化合物である化合物(混合物)であることがよい。
The production method (A) is a method of reacting the bifunctional epoxy resin represented by the formula (7) with the compound represented by the formula (8).
In the above formula (7), G is a glycyl group, m is the number of repetitions, and the average value thereof is 0 or more and 6 or less.
In the formula (8), 5 mol% or more of Z 1 is an acyl group having a hydrocarbon group having 1 to 20 carbon atoms, and the rest is a hydrogen atom. Here, the compound represented by the formula (8) is selected from a compound in which both of Z 1 are acyl groups, a compound in which one is an acyl group and the other is a hydrogen atom, and a compound in which both are hydrogen atoms. It may be a mixture of seeds or more. When both Z 1 are acyl groups, they are diesters, and when both are hydrogen atoms, they are diphenols. The compound represented by the formula (8) is called a diester compound. The diester compound may be a compound in which both Z 1 are acyl groups or a compound (mixture) in which the main component (50% or more) is the compound.
 式(7)及び式(8)におけるXは、式(1)のXを与えるように選択される。したがって、式(7)及び式(8)におけるXは、いずれかに式(2)及び/又は式(3)で表されるジオキシ基を含み、式(7)及び式(8)の全体として式(2)及び式(3)で表されるジオキシ基を含む。例えば、式(7)又は式(8)の一方のXに式(2)で表されるジオキシ基を含み、他方に式(3)で表されるジオキシ基を含むことや、式(7)又は式(8)の一方のXのみに式(2)及びは式(3)で表されるジオキシ基を含み、他方には含まないことなどができるが、前者が好ましい。
 本発明のフェノキシ樹脂には、式(2)及び式(3)で表されるジオキシ基が必ず含まれるものであり、これを満たす限り、式(2)及び式(3)のジオキシ基が、原料の2官能エポキシ樹脂及び/又は式(8)で表される化合物をエステル化合物のいずれに含まれるものであってもよく、またその割合も制限されるものではない。
 また、上記式(7)又は式(8)におけるXとして、式(2)及び式(3)の化学構造を含まない場合には、Xには他の2価の基を導入することができる。
X 1 in equations (7) and (8) is selected to give X in equation (1). Therefore, X 1 in the formulas (7) and (8) contains a dioxy group represented by the formulas (2) and / or the formula (3) in any of the formulas (7) and (8) as a whole. It contains a dioxy group represented by the formula (2) and the formula (3). For example, a dioxy group represented one of X 1 of the formula (7) or (8) in equation (2), and include a dioxy group represented by the formula (3) on the other, the equation (7 ) Or only one X 1 of the formula (8) may contain a dioxy group represented by the formula (2) and the formula (3) and may not be contained in the other, but the former is preferable.
The phenoxy resin of the present invention always contains dioxy groups represented by the formulas (2) and (3), and as long as these are satisfied, the dioxy groups of the formulas (2) and (3) can be used. The raw material bifunctional epoxy resin and / or the compound represented by the formula (8) may be contained in any of the ester compounds, and the ratio thereof is not limited.
Further, when X 1 in the above formula (7) or (8) does not include the chemical structures of the formulas (2) and (3), another divalent group should be introduced into X 1. Can be done.
 本発明の製造方法(A)に用いられる2官能エポキシ樹脂は、上記式(7)で表されるエポキシ樹脂であり、例えば、下記式(14)で表される2官能フェノール化合物と、エピハロヒドリンとを、アルカリ金属化合物存在下で反応させて得られるエポキシ樹脂等が挙げられる。
 エピハロヒドリンとしては、例えば、エピクロルヒドリンやエピブロモヒドリン等が挙げられる。
 アルカリ金属化合物としては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム等のアルカリ金属水酸化物や、炭酸ナトリウム、重炭酸ナトリウム、塩化ナトリウム、塩化リチウム、塩化カリウム等のアルカリ金属塩や、ナトリウムメトキシド、ナトリウムエトキシド等のアルカリ金属アルコキシドや、酢酸ナトリウム、ステアリン酸ナトリウム等の有機酸のアルカリ金属塩や、アルカリ金属フェノキシド、水素化ナトリウム、水素化リチウム等が挙げられる。
The bifunctional epoxy resin used in the production method (A) of the present invention is an epoxy resin represented by the above formula (7), and for example, a bifunctional phenol compound represented by the following formula (14) and epihalohydrin. , Epoxy resin obtained by reacting in the presence of an alkali metal compound and the like.
Examples of epichlorohydrin include epichlorohydrin and epibromohydrin.
Examples of the alkali metal compound include alkali metal hydroxides such as sodium hydroxide, lithium hydroxide and potassium hydroxide, alkali metal salts such as sodium carbonate, sodium bicarbonate, sodium chloride, lithium chloride and potassium chloride, and the like. Examples thereof include alkali metal alkoxides such as sodium methoxydo and sodium ethoxydo, alkali metal salts of organic acids such as sodium acetate and sodium stearate, alkali metal phenoxide, sodium hydride, lithium hydride and the like.
 原料エポキシ樹脂を得るための2官能フェノール化合物とエピハロヒドリンとの反応には、2官能フェノール化合物中の官能基に対して0.80~1.20倍モル、好ましくは0.85~1.05倍モルのアルカリ金属化合物が用いられる。これより少ないと残存する加水分解性塩素の量が多くなり好ましくない。アルカリ金属化合物としては、水溶液、アルコール溶液又は固体の状態で使用される。 The reaction between the bifunctional phenol compound and epihalohydrin to obtain the raw material epoxy resin is 0.80 to 1.20 times mol, preferably 0.85 to 1.05 times the functional group in the bifunctional phenol compound. A molar alkali metal compound is used. If it is less than this, the amount of residual hydrolyzable chlorine increases, which is not preferable. As the alkali metal compound, it is used in an aqueous solution, an alcohol solution or a solid state.
 エポキシ化反応に際しては、2官能フェノール化合物に対しては過剰量のエピハロヒドリンが使用される。通常、2官能フェノール化合物中の官能基1モルに対して、1.5~15倍モルのエピハロヒドリンが使用されるが、好ましくは2~10倍モル、より好ましく5~8倍モルである。これより多いと生産効率が低下し、これより少ないとエポキシ樹脂の高分子量体の生成量が増え、フェノキシ樹脂の原料に適さなくなる。 In the epoxidation reaction, an excess amount of epihalohydrin is used for the bifunctional phenol compound. Usually, 1.5 to 15 times mol of epihalohydrin is used with respect to 1 mol of functional groups in the bifunctional phenol compound, preferably 2 to 10 times mol, more preferably 5 to 8 times mol. If it is more than this, the production efficiency is lowered, and if it is less than this, the amount of high molecular weight epoxy resin produced increases, which makes it unsuitable as a raw material for phenoxy resin.
 エポキシ化反応は、通常、120℃以下の温度で行われる。反応の際、温度が高いと、いわゆる難加水分解性塩素量が多くなり高純度化が困難になる。好ましくは100℃以下であり、更に好ましくは85℃以下の温度である。 The epoxidation reaction is usually carried out at a temperature of 120 ° C. or lower. During the reaction, if the temperature is high, the amount of so-called poorly hydrolyzable chlorine increases, making it difficult to achieve high purity. The temperature is preferably 100 ° C. or lower, more preferably 85 ° C. or lower.
Figure JPOXMLDOC01-appb-C000013
 
 式(14)において、Xは上記式(7)又は(8)のXと同様である。
Figure JPOXMLDOC01-appb-C000013

In the formula (14), X 1 is the same as X 1 in the formula (7) or (8).
 上記式(14)で表される2官能フェノール化合物とエピハロヒドリンを反応させると、mは0より大きくなるのが通常である。mを0とするためには、公知の方法で製造したエポキシ樹脂を蒸留、晶析等の手法で高度に精製するか、又は上記式(14)で表される2官能フェノール化合物をアリル化した後に、オレフィン部分を酸化することでエポキシ化する方法がある。 When the bifunctional phenol compound represented by the above formula (14) is reacted with epihalohydrin, m is usually larger than 0. In order to set m to 0, the epoxy resin produced by a known method was highly purified by a method such as distillation or crystallization, or the bifunctional phenol compound represented by the above formula (14) was allylated. Later, there is a method of epoxidizing by oxidizing the olefin moiety.
 また、本発明の製造方法(A)に用いられるジエステル系化合物は、例えば、上記式(14)で表される2官能フェノール化合物を、有機酸の酸無水物、有機酸のハロゲン化物、又は有機酸との縮合反応でアシル化して得られる。 The diester compound used in the production method (A) of the present invention is, for example, a bifunctional phenol compound represented by the above formula (14), which is an acid anhydride of an organic acid, a halide of an organic acid, or an organic compound. It is obtained by acylation by a condensation reaction with an acid.
 式(7)におけるmが0のエポキシ樹脂を原料にすることで、本発明のフェノキシ樹脂は二級水酸基を含まないものとなり、誘電特性や耐湿性を更に改良することができる。また、例えば金属に対する接着性を微調整する際に、適当なm数のエポキシ樹脂を使用することで、耐湿性を始めとする他の物性に大きな影響を及ぼさない範囲で、本発明のフェノキシ樹脂中に敢えて適量の二級水酸基を存在させることもできる。 By using an epoxy resin having m of 0 in the formula (7) as a raw material, the phenoxy resin of the present invention does not contain a secondary hydroxyl group, and the dielectric properties and moisture resistance can be further improved. Further, for example, when finely adjusting the adhesiveness to a metal, by using an epoxy resin having an appropriate number of m, the phenoxy resin of the present invention does not significantly affect other physical properties such as moisture resistance. It is also possible to intentionally allow an appropriate amount of secondary hydroxyl group to be present therein.
 製造方法(A)に使用する2官能エポキシ樹脂又はジエステル系化合物には、上記式(2)及び式(3)で表される化学構造が、上記式(7)及び式(8)中のX全体のモル数に対して1~100モル%含まれていることが好ましい。式(2)及び(3)で表される化学構造に起因する耐折性及び誘電特性を十分に発現させるという観点から、より好ましくは式(2)及び式(3)で表される化学構造が10モル%以上、更に好ましくは30モル%以上、特に好ましくは50モル%以上である。 The bifunctional epoxy resin or diester compound used in the production method (A) has a chemical structure represented by the above formulas (2) and (3), which is X in the above formulas (7) and (8). it preferably contains 1 to 100 mol% relative to 1 total moles. From the viewpoint of sufficiently exhibiting the folding resistance and dielectric properties resulting from the chemical structures represented by the formulas (2) and (3), the chemical structures represented by the formulas (2) and (3) are more preferable. Is 10 mol% or more, more preferably 30 mol% or more, and particularly preferably 50 mol% or more.
 上記の2官能エポキシ樹脂とジエステル系化合物の使用量は、エポキシ基1当量に対し、エステル基は0.8~1.0当量が好ましい。この当量比であると、分子末端にエポキシ基を有した状態での高分子量化を進行させやすくなるために好ましい。また、ジエステル系化合物の一部を、上記式(14)で表される2官能フェノール化合物に置き換えることも可能である。これにより前述のように、本発明のフェノキシ樹脂中に敢えて適量の二級水酸基を存在させることで物性の微調整ができる。
 製造方法(A)では、重合反応とエステル交換反応が生じて、Mwが増加してフェノキシ樹脂が生成すると共に、フェノキシ樹脂の水産基の一部がエステル化される。
The amount of the bifunctional epoxy resin and the diester compound used is preferably 0.8 to 1.0 equivalents of the ester group with respect to 1 equivalent of the epoxy group. This equivalent ratio is preferable because it facilitates the progress of increasing the molecular weight in the state of having an epoxy group at the end of the molecule. It is also possible to replace a part of the diester compound with a bifunctional phenol compound represented by the above formula (14). As a result, as described above, the physical properties can be finely adjusted by intentionally allowing an appropriate amount of secondary hydroxyl groups to be present in the phenoxy resin of the present invention.
In the production method (A), a polymerization reaction and a transesterification reaction occur to increase Mw to produce a phenoxy resin, and at the same time, a part of the aquatic group of the phenoxy resin is esterified.
 製造方法(A)において、触媒を用いてもよく、その触媒としては、エポキシ基とエステル基との反応を進めるような触媒能を持つ化合物であればどのようなものでもよい。例えば、第3級アミン、環状アミン類、イミダゾール類、有機リン化合物、第4級アンモニウム塩等が挙げられる。また、これらの触媒は単独でも、2種以上を組み合わせて使用してもよい。 In the production method (A), a catalyst may be used, and the catalyst may be any compound having a catalytic ability to promote the reaction between the epoxy group and the ester group. For example, tertiary amines, cyclic amines, imidazoles, organic phosphorus compounds, quaternary ammonium salts and the like can be mentioned. Further, these catalysts may be used alone or in combination of two or more.
 第3級アミンとしては、例えば、トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリエタノールアミン、ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール等が挙げられるが、これらに限定されない。 Examples of the tertiary amine include triethylamine, tri-n-propylamine, tri-n-butylamine, triethanolamine, benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol and the like. , Not limited to these.
 環状アミン類としては、例えば、1,4-ジアザビシクロ[2,2,2]オクタン(DABCO)、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4,3,0]ノネン-5(DBN)、N-メチルモルホリン、ピリジン、N,N-ジメチルアミノピリジン(DMAP)等が挙げられるが、これらに限定されない。 Examples of cyclic amines include 1,4-diazabicyclo [2,2,2] octane (DABCO), 1,8-diazabicyclo [5,4,0] undecene-7 (DBU), 1,5-diazabicyclo [ 4,3,0] Nonen-5 (DBN), N-methylmorpholin, pyridine, N, N-dimethylaminopyridine (DMAP) and the like, but are not limited thereto.
 イミダゾール類としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール等が挙げられるが、これらに限定されない。 Examples of imidazoles include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2- Examples include, but are not limited to, phenylimidazole and the like.
 有機リン化合物としては、例えば、トリ-n-プロピルホスフィン、トリ-n-ブチルホスフィン、ジフェニルメチルホスフィン、トリフェニルホスフィン、トリス(p-トリル)ホスフィン、トリシクロヘキシルホスフィン、トリ(t-ブチル)ホスフィン、トリス(p-メトキシフェニル)ホスフィン、パラメチルホスフィン、1,2-ビス(ジメチルホスフィノ)エタン、1,4-ビス(ジフェニルホスフィノ)ブタン等のホスフィン類や、テトラメチルホスホニウムブロミド、テトラメチルホスホニウムヨージド、テトラメチルホスホニウムヒドロキシド、テトラブチルホスホニウムヒドロキシド、トリメチルシクロヘキシルホスホニウムクロリド、トリメチルシクロヘキシルホスホニウムブロミド、トリメチルベンジルホスホニウムクロリド、トリメチルベンジルホスホニウムブロミド、テトラフェニルホスホニウムブロミド、トリフェニルメチルホスホニウムブロミド、トリフェニルメチルホスホニウムヨージド、トリフェニルエチルホスホニウムクロリド、トリフェニルエチルホスホニウムブロミド、トリフェニルエチルホスホニウムヨージド、トリフェニルベンジルホスホニウムクロリド、トリフェニルベンジルホスホニウムブロミド等のホスホニウム塩類等が挙げられるが、これらに限定されない。 Examples of the organophosphorus compound include tri-n-propylphosphine, tri-n-butylphosphine, diphenylmethylphosphine, triphenylphosphine, triphenylphosphine, tricyclohexinephosphine, tri (t-butyl) phosphine, and the like. Hosphines such as tris (p-methoxyphenyl) phosphine, paramethylphosphine, 1,2-bis (dimethylphosphine) ethane, 1,4-bis (diphenylphosphine) butane, tetramethylphosphonium bromide, tetramethylphosphonium. Iodide, tetramethylphosphonium hydroxide, tetrabutylphosphonium hydroxide, trimethylcyclohexylphosphonium chloride, trimethylcyclohexylphosphonium bromide, trimethylbenzylphosphonium chloride, trimethylbenzylphosphonium bromide, tetraphenylphosphonium bromide, triphenylmethylphosphonium bromide, triphenylmethylphosphonium Examples thereof include, but are not limited to, iodido, triphenylethylphosphonium chloride, triphenylethylphosphonium bromide, triphenylethylphosphonium iodide, triphenylbenzylphosphonium chloride, and phosphonium salts such as triphenylbenzylphosphonium bromide.
 第4級アンモニウム塩としては、例えば、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヒドロキシド、トリエチルメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、テトラエチルアンモニウムブロミド、テトラエチルアンモニウムヨージド、テトラプロピルアンモニウムブロミド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムヨージド、ベンジルトリメチルアンモニウムクロリド、ベンジルトリメチルアンモニウムブロミド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリブチルアンモニウムクロリド、フェニルトリメチルアンモニウムクロリドなどが挙げられるが、これらに限定されない。 Examples of the quaternary ammonium salt include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium hydroxide, triethylmethylammonium chloride, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, tetrapropylammonium bromide, and tetra. Examples thereof include propylammonium hydroxide, tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium iodide, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium hydroxide, benzyltributylammonium chloride, phenyltrimethylammonium chloride and the like. However, it is not limited to these.
 以上に挙げた触媒の中でも、4-(ジメチルアミノ)ピリジン、1,4-ジアザビシクロ[2,2,2]オクタン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7、1,5-ジアザビシクロ[4,3,0]ノネン-5、2-エチル-4-メチルイミダゾール、トリス(p-トリル)ホスフィン、トリシクロヘキシルホスフィン、トリ(t-ブチル)ホスフィン、トリス(p-メトキシフェニル)ホスフィンが好ましく、特に4-(ジメチルアミノ)ピリジン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7、1,5-ジアザビシクロ[4,3,0]ノネン-5、2-エチル-4-メチルイミダゾールが好ましい。 Among the catalysts listed above, 4- (dimethylamino) pyridine, 1,4-diazabicyclo [2,2,2] octane, 1,8-diazabicyclo [5,4,0] undecene-7, 1,5- Diazabicyclo [4,3,0] nonene-5, 2-ethyl-4-methylimidazole, tris (p-tolyl) phosphine, tricyclohexylphosphine, tri (t-butyl) phosphine, tris (p-methoxyphenyl) phosphine Preferably, in particular 4- (dimethylamino) pyridine, 1,8-diazabicyclo [5,4,0] undecene-7, 1,5-diazabicyclo [4,3,0] nonen-5, 2-ethyl-4-methyl Imidazole is preferred.
 触媒の使用量は、反応固形分中、通常0.001~1質量%であるが、これらの化合物を触媒として使用した場合、得られるフェノキシ樹脂中にこれらの触媒が残渣として残留し、プリント配線板の絶縁特性を悪化させたり、組成物のポットライフを短縮させたりする恐れがあるので、フェノキシ樹脂中の窒素の含有量は、0.5質量%以下が好ましく、0.3質量%以下がより好ましい。また、フェノキシ樹脂中のリンの含有量は、0.5質量%以下が好ましく、0.3質量%がより好ましい。 The amount of the catalyst used is usually 0.001 to 1% by mass in the reaction solid content, but when these compounds are used as catalysts, these catalysts remain as residues in the obtained phenoxy resin, and the printed wiring is printed. The nitrogen content in the phenoxy resin is preferably 0.5% by mass or less, preferably 0.3% by mass or less, because it may deteriorate the insulating properties of the plate or shorten the pot life of the composition. More preferred. The phosphorus content in the phenoxy resin is preferably 0.5% by mass or less, more preferably 0.3% by mass.
 製造方法(A)において、反応用の溶媒を用いてもよく、その溶媒としては、フェノキシ樹脂を溶解するものであればどのようなものでもよい。例えば、芳香族系溶媒、ケトン系溶媒、アミド系溶媒、グリコールエーテル系溶媒、エステル系溶媒等が挙げられる。また、これらの溶媒は1種のみで用いてもよく、2種以上を組み合わせて使用してもよい。 In the production method (A), a solvent for reaction may be used, and the solvent may be any solvent as long as it dissolves the phenoxy resin. For example, aromatic solvents, ketone solvents, amide solvents, glycol ether solvents, ester solvents and the like can be mentioned. Further, these solvents may be used alone or in combination of two or more.
 芳香族系溶媒としては、例えば、ベンゼン、トルエン、キシレン等が挙げられる。 Examples of the aromatic solvent include benzene, toluene, xylene and the like.
 ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、2-ヘプタノン、4-ヘプタノン、2-オクタノン、シクロヘキサノン、アセチルアセトン、ジオキサン、ジイソブチルケトン、イソホロン、メチルシクロへキサノン、アセトフェノン等が挙げられる。 Examples of the ketone solvent include acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, 2-heptanone, 4-heptanone, 2-octanone, cyclohexanone, acetylacetone, dioxane, diisobutyl ketone, isophorone, methylcyclohexanone, acetophenone and the like. Be done.
 アミド系溶媒としては、例えば、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド(DMF)、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、2-ピロリドン、N-メチルピロリドン等が挙げられる。 Examples of the amide solvent include formamide, N-methylformamide, N, N-dimethylformamide (DMF), acetamide, N-methylacetamide, N, N-dimethylacetamide, 2-pyrrolidone, N-methylpyrrolidone and the like. Be done.
 グリコールエーテル系溶媒としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-ブチルエーテルエチレングリコールモノアルキルエーテル類や、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル等のエチレングリコールジアルキルエーテル類や、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-ブチルエーテル等のプロピレングリコールモノアルキルエーテル類や、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等のエチレングリコールジアルキルエーテル類や、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールジブチルエーテル等のポリエチレングリコールジアルキルエーテル類や、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジブチルエーテル等のプロピレングリコールジアルキルエーテル類や、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールジブチルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールジブチルエーテル等のポリプロピレングリコールジアルキルエーテル類や、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類や、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテルアセテート、トリエチレングリコールモノブチルエーテルアセテート等のポリエチレングリコールモノアルキルエーテルアセテート類や、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類等が挙げられる。 Examples of the glycol ether-based solvent include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol monoalkyl ethers, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol mono-n-butyl ether. , Ethylene glycol dialkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether and propylene glycol mono-n-butyl ether, ethylene glycol dimethyl ether and ethylene glycol diethyl ether. , Ethethylene glycol dialkyl ethers such as ethylene glycol dibutyl ether, polyethylene glycol dialkyl ethers such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, and triethylene glycol dibutyl ether, Propylene glycol dialkyl ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, and propylene glycol dibutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol dibutyl ether, tripropylene glycol dimethyl ether, and tripropylene glycol diethyl ether, Polypropylene glycol dialkyl ethers such as tripropylene glycol dibutyl ether, ethylene glycol monoalkyl ether acetates such as ethylene glycol monoethyl ether acetate, ethylene glycol monoethyl ether acetate, and ethylene glycol monobutyl ether acetate, and diethylene glycol monoethyl ether acetate, Polyethylene such as diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, triethylene glycol monomethyl ether acetate, triethylene glycol monoethyl ether acetate, triethylene glycol monobutyl ether acetate, etc. Examples thereof include glycol monoalkyl ether acetates and propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate and propylene glycol monobutyl ether acetate.
 エステル系溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸ベンジル、プロピオン酸エチル、酪酸エチル、酪酸ブチル、バレロラクトン、ブチロラクトンなどが挙げられる。
等が挙げられる。
Examples of the ester solvent include methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, benzyl acetate, ethyl propionate, ethyl butyrate, butyl butyrate, valerolactone, butyrolactone and the like.
And so on.
 また、その他の溶媒としては、例えば、ジメチルスルフォキシド、スルホラン、γ-ブチロラクトン、N-メチル-2-ピロリドン等が挙げられる Examples of other solvents include dimethylsulfoxide, sulfolane, γ-butyrolactone, N-methyl-2-pyrrolidone and the like.
 製造方法(A)において、反応時の固形分濃度は35~95質量%が好ましい。また、反応途中で高粘性生成物が生じたときは溶媒を追加添加して反応を続けることもできる。反応終了後、溶媒は必要に応じて、除去することもできるし、更に追加することもできる。 In the production method (A), the solid content concentration at the time of reaction is preferably 35 to 95% by mass. Further, when a highly viscous product is generated during the reaction, an additional solvent can be added to continue the reaction. After completion of the reaction, the solvent can be removed or added as needed.
 反応温度は、使用する触媒が分解しない程度の温度範囲で行う。反応温度が高すぎると触媒が分解して反応が停止したり、生成するフェノキシ樹脂が劣化したりする恐れがある。反応温度が低すぎると反応が十分に進まずに目的の分子量にならない恐れがある。そのため反応温度は、好ましくは50~230℃、より好ましくは120~200℃である。また、反応時間は通常1~12時間、好ましくは3~10時間である。アセトンやメチルエチルケトンのような低沸点溶媒を使用する場合には、オートクレーブを使用して高圧下で反応を行うことで反応温度を確保することができる。また、反応熱の除去が必要な場合は、通常、反応熱による使用溶媒の蒸発・凝縮・還流法、間接冷却法、又はこれらの併用により行われる。 The reaction temperature should be within the temperature range where the catalyst used does not decompose. If the reaction temperature is too high, the catalyst may decompose and the reaction may stop, or the phenoxy resin produced may deteriorate. If the reaction temperature is too low, the reaction may not proceed sufficiently and the target molecular weight may not be reached. Therefore, the reaction temperature is preferably 50 to 230 ° C, more preferably 120 to 200 ° C. The reaction time is usually 1 to 12 hours, preferably 3 to 10 hours. When a low boiling point solvent such as acetone or methyl ethyl ketone is used, the reaction temperature can be secured by carrying out the reaction under high pressure using an autoclave. When it is necessary to remove the heat of reaction, it is usually carried out by the evaporation / condensation / reflux method of the solvent used by the heat of reaction, the indirect cooling method, or a combination thereof.
 次に、本発明の製造方法(B)について説明する。
 製造方法(B)は、式(12)で表されるフェノキシ樹脂と、フェノキシ樹脂のアルコール性水酸基1モルに対して、アシル化剤をアシル基が0.05モル以上2.0モル以下で反応させて、重量平均分子量が10,000~200,000である式(1)で表されるフェノキシ樹脂、すなわち本発明のフェノキシ樹脂を得る方法である。
Next, the manufacturing method (B) of the present invention will be described.
In the production method (B), the acylating agent is reacted with the phenoxy resin represented by the formula (12) and 1 mol of the alcoholic hydroxyl group of the phenoxy resin when the acyl group is 0.05 mol or more and 2.0 mol or less. This is a method for obtaining a phenoxy resin represented by the formula (1) having a weight average molecular weight of 10,000 to 200,000, that is, the phenoxy resin of the present invention.
 原料のフェノキシ樹脂(a)は、上記式(12)のX中に上記式(2)及び式(3)で表されるジオキシ基を必須として含む。
 このフェノキシ樹脂(a)は従来知られている方法で得ることができる。例えば、上記式(2)で表される構造を有する2官能フェノール化合物(2官能フェノール化合物(a)と称することがある)と上記式(3)で表される構造を有する2官能フェノール化合物(「2官能フェノール化合物(b)」と称することがある)とを必須とする2官能フェノール化合物類と、エピハロヒドリンとをアルカリ金属化合物存在下で反応させて製造する方法(以下、一段法と称する)や、2官能エポキシ樹脂類と2官能フェノール化合物類のうち少なくとも一方に、上記式(2)及び式(3)で表される構造を有する2官能エポキシ樹脂類と2官能フェノール化合物類とを触媒存在下で反応させて製造する方法(以下、二段法と称する)が挙げられる。フェノキシ樹脂(a)はいずれの製造方法により得られるものであってもよいが、一般的にフェノキシ樹脂は一段法よりも二段法の方が得やすいため、二段法を使用することが好ましい。
Raw phenoxy resin (a) comprises dioxy group represented by the above formula in X 2 in the formula (12) (2) and (3) as essential.
This phenoxy resin (a) can be obtained by a conventionally known method. For example, a bifunctional phenol compound having a structure represented by the above formula (2) (sometimes referred to as a bifunctional phenol compound (a)) and a bifunctional phenol compound having a structure represented by the above formula (3) (may be referred to as a bifunctional phenol compound (a)). A method for producing a bifunctional phenol compound that requires "bifunctional phenol compound (b)") and epihalohydrin in the presence of an alkali metal compound (hereinafter referred to as a one-step method). Or, at least one of the bifunctional epoxy resin and the bifunctional phenol compound is catalyzed by the bifunctional epoxy resin and the bifunctional phenol compound having the structures represented by the above formulas (2) and (3). Examples thereof include a method of producing by reacting in the presence (hereinafter, referred to as a two-step method). The phenoxy resin (a) may be obtained by any production method, but it is generally preferable to use the two-step method because the two-step method is easier to obtain the phenoxy resin than the one-step method. ..
 フェノキシ樹脂(a)の重量平均分子量やエポキシ当量は、一段法ではエピハロヒドリンと2官能フェノール化合物類の仕込みモル比を、二段法では2官能エポキシ樹脂類と2官能フェノール化合物類の仕込みモル比を適宜調整することで、目的の範囲のものを製造することができる。 The weight average molecular weight and epoxy equivalent of the phenoxy resin (a) are determined by the molar ratio of epihalohydrin and the bifunctional phenol compound charged in the one-step method, and the charged molar ratio of the bifunctional epoxy resin and the bifunctional phenol compound in the two-step method. By making appropriate adjustments, it is possible to manufacture a product in the desired range.
 一段法及び二段法の製造で使用される2官能フェノール化合物としては、2官能フェノール化合物(a)と2官能フェノール化合物(b)を必須とする。
 2官能フェノール化合物(a)としては、例えば、カテコール、レゾルシン、ハイドロキノンが挙げられる。また、これらはアルキル基、アリール基などの悪影響のない置換基で置換されていてもよい。
 2官能フェノール化合物(b)としては、例えば、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等が挙げられる。また、これらはアルキル基、アリール基などの悪影響のない置換基で置換されていてもよい。
As the bifunctional phenol compound used in the production of the one-step method and the two-step method, the bifunctional phenol compound (a) and the bifunctional phenol compound (b) are indispensable.
Examples of the bifunctional phenol compound (a) include catechol, resorcin, and hydroquinone. Further, these may be substituted with a substituent having no adverse effect such as an alkyl group or an aryl group.
Examples of the bifunctional phenol compound (b) include 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and the like. .. Further, these may be substituted with a substituent having no adverse effect such as an alkyl group or an aryl group.
 また、本発明の目的を損なわない限り、これ以外の2官能フェノール化合物を併用してもよい。併用してもよい2官能フェノール化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールB、ビスフェノールE、ビスフェノールC、ビスフェノールアセトフェノン、ビスフェノールフルオレン、ジヒドロキシビフェニルエーテル、ジヒドロキシビフェニルチオエーテル等のビスフェノール類、4,4’-ビフェノール、2,4’-ビフェノール等のビフェノール類、1,1-ビ-2-ナフトールなどが挙げられる。
 また、これらの2官能フェノール化合物は複数種を併用してもよい。
Further, other bifunctional phenol compounds may be used in combination as long as the object of the present invention is not impaired. Examples of the bifunctional phenol compound that may be used in combination include bisphenols such as bisphenol A, bisphenol F, bisphenol S, bisphenol B, bisphenol E, bisphenol C, bisphenol acetophenone, bisphenol fluoride, dihydroxybiphenyl ether, and dihydroxybiphenyl thioether. Examples thereof include biphenols such as 4,4'-biphenol and 2,4'-biphenol, and 1,1-bi-2-naphthol.
In addition, a plurality of these bifunctional phenol compounds may be used in combination.
 まず、一段法について説明する。
 一段法の場合は、2官能フェノール化合物類1モルに対して、エピハロヒドリン0.985~1.015モル、好ましくは0.99~1.012モル、より好ましくは0.995~1.01モルを、アルカリ金属化合物の存在下、非反応性溶媒中で反応させ、エピハロヒドリンが消費され、重量平均分子量が10,000以上になるように縮合反応させることにより、フェノキシ樹脂(a)を得ることができる。なお、反応終了後に、副生した塩を濾別又は水洗により除去する必要がある。アルカリ金属化合物としては、本発明の製造方法(A)に用いられる上記式(7)で表わされる2官能エポキシ樹脂の製造時に使用されるアルカリ金属化合物と同様のものが例示される。
First, the one-step method will be described.
In the case of the one-step method, 0.985 to 1.015 mol of epihalohydrin, preferably 0.99 to 1.012 mol, and more preferably 0.995 to 1.01 mol with respect to 1 mol of the bifunctional phenol compound. The phenoxy resin (a) can be obtained by reacting in a non-reactive solvent in the presence of an alkali metal compound so that epihalohydrin is consumed and the weight average molecular weight is 10,000 or more. .. After completion of the reaction, it is necessary to remove the by-produced salt by filtration or washing with water. Examples of the alkali metal compound include the same alkali metal compounds used in the production of the bifunctional epoxy resin represented by the above formula (7) used in the production method (A) of the present invention.
 原料として用いられる2官能フェノール化合物(a)と2官能フェノール化合物(b)とのモル比は、1/9~9/1が好ましく、2/8~8/2がより好ましく、3/7~7/3が更に好ましく、4/6~6/4が特に好ましい。また、2官能フェノール化合物(a)及び2官能フェノール化合物(b)の合計モル数は、全2官能フェノール化合物類中に、1モル%以上が好ましく、20モル%以上がより好ましく、50モル%以上が更に好ましく、75モル%以上が特に好ましい。この範囲を外れると、発明のフェノキシ樹脂にしたときに耐熱性や耐折性や悪化する恐れがある。 The molar ratio of the bifunctional phenol compound (a) used as a raw material to the bifunctional phenol compound (b) is preferably 1/9 to 9/1, more preferably 2/8 to 8/2, and 3/7 to 3/7. 7/3 is more preferable, and 4/6 to 6/4 is particularly preferable. The total number of moles of the bifunctional phenol compound (a) and the bifunctional phenol compound (b) is preferably 1 mol% or more, more preferably 20 mol% or more, and 50 mol% in all the bifunctional phenol compounds. The above is more preferable, and 75 mol% or more is particularly preferable. If it is out of this range, the heat resistance, folding resistance, and deterioration of the phenoxy resin of the present invention may occur.
 この反応は常圧下又は減圧下で行うことができる。反応温度は通常、常圧下の反応の場合は20~200℃が好ましく、30~170℃がより好ましく、40~150℃が更に好ましく、50~100℃が特に好ましい。減圧下の反応の場合は20~100℃が好ましく、30~90℃がより好ましく、35~80℃が更に好ましい。反応温度がこの範囲内であれば、副反応が起こしにくく反応を進行させやすい。反応圧力は通常、常圧である。また、反応熱の除去が必要な場合は、通常、反応熱により使用溶媒の蒸発・凝縮・還流法、間接冷却法、又はこれらの併用により行われる。 This reaction can be carried out under normal pressure or reduced pressure. The reaction temperature is usually preferably 20 to 200 ° C., more preferably 30 to 170 ° C., even more preferably 40 to 150 ° C., and particularly preferably 50 to 100 ° C. in the case of a reaction under normal pressure. In the case of the reaction under reduced pressure, 20 to 100 ° C. is preferable, 30 to 90 ° C. is more preferable, and 35 to 80 ° C. is further preferable. If the reaction temperature is within this range, side reactions are unlikely to occur and the reaction can easily proceed. The reaction pressure is usually normal pressure. When it is necessary to remove the heat of reaction, it is usually carried out by the evaporation / condensation / reflux method of the solvent used, the indirect cooling method, or a combination thereof by the heat of reaction.
 反応性溶媒としては、本発明の製造方法(A)で例示した反応用の溶媒の他、エタノール、イソプロピルアルコール、ブチルアルコールなどのアルコール類も使用できる。1種のみで用いてもよく、2種以上を組み合わせて使用してもよい。 As the reactive solvent, alcohols such as ethanol, isopropyl alcohol, and butyl alcohol can be used in addition to the reaction solvent exemplified in the production method (A) of the present invention. Only one type may be used, or two or more types may be used in combination.
 次に、二段法について説明する。
 二段法の原料エポキシ樹脂となる2官能エポキシ樹脂としては、本発明の製造方法(A)に用いられる上記式(7)で表わされる2官能エポキシ樹脂と同様のものを使用する。
Next, the two-step method will be described.
As the bifunctional epoxy resin used as the raw material epoxy resin of the two-step method, the same as the bifunctional epoxy resin represented by the above formula (7) used in the production method (A) of the present invention is used.
 二段法の原料となる2官能エポキシ樹脂としては、上記式(7)で表わされる2官能エポキシ樹脂が好ましいが、本発明の目的を損なわない限りこれ以外の2官能エポキシ樹脂を併用してよい。併用できる2官能エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールアセトフェノン型エポキシ樹脂、ジフェニルスルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂などのビスフェノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、ジフェニルジシクロペンタジエン型エポキシ樹脂、アルキレングリコール型エポキシ樹脂、脂肪族環状エポキシ樹脂などが挙げられる。これらのエポキシ樹脂はアルキル基、アリール基などの悪影響のない置換基で置換されていてもよい。これらのエポキシ樹脂は複数種を併用してもよい。 As the bifunctional epoxy resin used as the raw material of the two-step method, the bifunctional epoxy resin represented by the above formula (7) is preferable, but other bifunctional epoxy resins may be used in combination as long as the object of the present invention is not impaired. .. Examples of the bifunctional epoxy resin that can be used together include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol acetophenone type epoxy resin, diphenyl sulfide type epoxy resin, and diphenyl ether type epoxy resin. Examples thereof include resins, biphenol type epoxy resins, diphenyldicyclopentadiene type epoxy resins, alkylene glycol type epoxy resins, and aliphatic cyclic epoxy resins. These epoxy resins may be substituted with a substituent having no adverse effect such as an alkyl group or an aryl group. A plurality of types of these epoxy resins may be used in combination.
 二段法の場合は、触媒を使用することができ、エポキシ基とフェノール性水酸基との反応を進めるような触媒能を持つ化合物であればどのようなものでもよい。例えば、本発明の製造方法(A)の例示した触媒と同様のものが挙げられる。また、上記式(7)で表わされる2官能エポキシ樹脂の製造時に使用されるアルカリ金属化合物も使用可能である。これらの触媒は単独でも、2種類以上を組み合わせて使用してもよい。また、使用量も本発明の製造方法(A)で例示した使用量と同様である。 In the case of the two-step method, any compound can be used as long as it can use a catalyst and has a catalytic ability to promote the reaction between the epoxy group and the phenolic hydroxyl group. For example, the same as the catalyst exemplified in the production method (A) of the present invention can be mentioned. Further, an alkali metal compound used in the production of the bifunctional epoxy resin represented by the above formula (7) can also be used. These catalysts may be used alone or in combination of two or more. Further, the amount used is the same as the amount used exemplified in the production method (A) of the present invention.
 二段法の場合、溶媒を用いてもよく、その溶媒としてはフェノキシ樹脂を溶解し、反応に悪影響のないものであればどのようなものでもよい。例えば、本発明の製造方法(A)で例示した溶媒と同様のものが例示される。これらの溶媒は1種のみで用いてもよく、2種以上を組み合わせて使用してもよい。 In the case of the two-step method, a solvent may be used, and any solvent may be used as long as it dissolves a phenoxy resin and does not adversely affect the reaction. For example, the same solvent as that exemplified in the production method (A) of the present invention is exemplified. These solvents may be used alone or in combination of two or more.
 使用する溶媒の量は反応条件に応じて適宜選択することができるが、例えば、二段法の場合は固形分濃度が35~95質量%が好ましい。また、反応中に高粘性生成物が生じる場合は反応途中で溶媒を添加して反応を続けることができる。反応終了後、溶媒は必要に応じて蒸留などにより除去することもできるし、更に追加することもできる。 The amount of the solvent to be used can be appropriately selected according to the reaction conditions, but for example, in the case of the two-step method, the solid content concentration is preferably 35 to 95% by mass. If a highly viscous product is produced during the reaction, a solvent can be added during the reaction to continue the reaction. After completion of the reaction, the solvent can be removed by distillation or the like, if necessary, or can be further added.
 反応温度は、使用する触媒が分解しない程度の温度範囲で行う。反応温度が高すぎると触媒が分解して反応が停止したり、生成するフェノキシ樹脂が劣化したりする恐れがある。反応温度が低すぎると反応が十分に進まずに目的の分子量にならない恐れがある。そのため反応温度は、50~230℃が好ましく、100~210℃がより好ましく、120~200℃が更に好ましい。また、反応時間は通常1~12時間であり、3~10時間が好ましい。アセトンやメチルエチルケトンのような低沸点溶媒を使用する場合には、オートクレーブを使用して高圧下で反応を行うことで反応温度を確保することができる。また、反応熱の除去が必要な場合は、通常、反応熱による使用溶媒の蒸発・凝縮・還流法、間接冷却法、又はこれらの併用により行われる。 The reaction temperature should be within the temperature range where the catalyst used does not decompose. If the reaction temperature is too high, the catalyst may decompose and the reaction may stop, or the phenoxy resin produced may deteriorate. If the reaction temperature is too low, the reaction may not proceed sufficiently and the target molecular weight may not be reached. Therefore, the reaction temperature is preferably 50 to 230 ° C, more preferably 100 to 210 ° C, and even more preferably 120 to 200 ° C. The reaction time is usually 1 to 12 hours, preferably 3 to 10 hours. When a low boiling point solvent such as acetone or methyl ethyl ketone is used, the reaction temperature can be secured by carrying out the reaction under high pressure using an autoclave. When it is necessary to remove the heat of reaction, it is usually carried out by the evaporation / condensation / reflux method of the solvent used by the heat of reaction, the indirect cooling method, or a combination thereof.
 このようにして得られた上記式(12)で表されるフェノキシ樹脂(a)中の水酸基をアシル化することにより、本発明のフェノキシ樹脂が得られる。アシル化は直接エステル化するだけでなくエステル交換等の方法を用いてもよい。 The phenoxy resin of the present invention can be obtained by acylating the hydroxyl group in the phenoxy resin (a) represented by the above formula (12) thus obtained. Acylation may be performed not only by direct esterification but also by a method such as transesterification.
 上記アシル化に使用する酸成分としては、例えば、酢酸、プロピオン酸、酪酸、イソ酪酸、ペンタン酸、オクタン酸、カプリル酸、ラウリン酸、ステアリン酸、オレイン酸、安息香酸、t-ブチル安息香酸、ヘキサヒドロ安息香酸、フェノキシ酢酸、アクリル酸、メタクリル酸等の有機酸や、有機酸の酸無水物や、有機酸のハロゲン化物や、有機酸のエステル化物等を使用することができる。これらのアシル化剤の中では、下記式(13)で表される酸無水物が好ましい。 Examples of the acid component used for the acylation include acetic acid, propionic acid, butyric acid, isobutyric acid, pentanoic acid, octanoic acid, capric acid, lauric acid, stearic acid, oleic acid, benzoic acid, and t-butyl benzoic acid. Organic acids such as hexahydrobenzoic acid, phenoxyacetic acid, acrylic acid, and methacrylic acid, acid anhydrides of organic acids, halides of organic acids, esterified products of organic acids, and the like can be used. Among these acylating agents, an acid anhydride represented by the following formula (13) is preferable.
Figure JPOXMLDOC01-appb-C000014
 
 式中、Zは炭素数1~20の炭化水素基を有するアシル基である。
Figure JPOXMLDOC01-appb-C000014

In the formula, Z 2 is an acyl group having a hydrocarbon group having 1 to 20 carbon atoms.
 有機酸の酸無水物としては、例えば、無水酢酸、安息香酸無水物、フェノキシ酢酸無水物等が挙げられる。
 有機酸のエステル化物としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、安息香酸メチル、安息香酸エチル等が挙げられる。有機酸のハロゲン化物としては、例えば、酢酸クロリド、安息香酸クロリド、フェノキシ酢酸クロリド等が挙げられる。
Examples of the acid anhydride of the organic acid include acetic anhydride, benzoic acid anhydride, phenoxyacetic anhydride and the like.
Examples of the esterified product of the organic acid include methyl acetate, ethyl acetate, butyl acetate, methyl benzoate, ethyl benzoate and the like. Examples of the halide of the organic acid include chloride, benzoic acid chloride, phenoxyacetic acid chloride and the like.
 エステル化に使用する化合物としては、酢酸クロリド、安息香酸クロリド、フェノキシ酢酸クロリド等の有機酸のハロゲン化物や無水酢酸、安息香酸無水物、フェノキシ酢酸無水物などの酸ハロゲン化物や有機酸の酸無水物が好ましく、エステル化の後水洗が不要で、電材用途で嫌われるハロゲンの混入を避ける意味で、無水酢酸や安息香酸無水物などの酸無水物がより好ましい。 Compounds used for esterification include halides of organic acids such as chloride, benzoic acid chloride, and phenoxyacetic acid chloride, acid halides such as acetic anhydride, benzoic acid anhydride, and phenoxyacetic acid anhydride, and acid anhydride of organic acids. Acid anhydrides such as acetic anhydride and benzoic acid anhydride are more preferable in the sense that they are preferable, do not require washing with water after esterification, and avoid mixing of halogen, which is disliked in electrical material applications.
 フェノキシ樹脂(a)が有する水酸基のエステル化に使用する上記有機酸、有機酸の酸無水物、有機酸のハロゲン化物、有機酸のエステル化物等の酸成分とフェノキシ樹脂(a)とを反応させる際の仕込み割合は、目的のエステル化比率と同様の仕込み比率でもよいし、反応性が低い場合には水酸基に対し過剰に上記酸成分を仕込み、目的のエステル化率まで反応させた後、未反応の酸成分を除去してもよい。
 ここで、原料のフェノキシ樹脂(a)に対するアシル化剤の使用量は、フェノキシ樹脂(a)のアルコール性水酸基1モルに対して、アシル化剤のアシル基が0.05モル以上2.0モル以下、好ましくは0.1~1.0モル、より好ましくは0.2~0.8モルである。そして、アシル化剤が式(13)で表される酸無水物である場合は、アシル化剤1モルに対し、アシル基を2モル有すると解される。
The phenoxy resin (a) is reacted with an acid component such as the organic acid used for esterifying the hydroxyl group of the phenoxy resin (a), an acid anhydride of the organic acid, a halide of the organic acid, or an esterified product of the organic acid. The charging ratio may be the same as the target esterification ratio, or if the reactivity is low, the above acid component is excessively charged with respect to the hydroxyl group and reacted to the target esterification ratio, and then not yet. The acid component of the reaction may be removed.
Here, the amount of the acylating agent used for the raw material phenoxy resin (a) is such that the acyl group of the acylating agent is 0.05 mol or more and 2.0 mol with respect to 1 mol of the alcoholic hydroxyl group of the phenoxy resin (a). Hereinafter, it is preferably 0.1 to 1.0 mol, more preferably 0.2 to 0.8 mol. When the acylating agent is an acid anhydride represented by the formula (13), it is understood that the acylating agent has 2 mol of an acyl group with respect to 1 mol of the acylating agent.
 酸成分により直接エステル化する場合、例えばパラトルエンスルホン酸、リン酸等の酸触媒やテトライソプロピルチタネート、テトラブチルチタネート、ジブチル錫オキサイド、ジオクチル錫オキサイド、塩化亜鉛等の金属触媒等の種々のエステル化触媒を用い脱水しながら行うことができる。通常、窒素雰囲気下で100~250℃で行うのが好ましく、より好ましくは130~230℃である。 When directly esterifying with an acid component, for example, various esterifications of acid catalysts such as paratoluenesulfonic acid and phosphoric acid and metal catalysts such as tetraisopropyl titanate, tetrabutyl titanate, dibutyltin oxide, dioctyltin oxide and zinc chloride. It can be carried out while dehydrating using a catalyst. Usually, it is preferably carried out at 100 to 250 ° C. in a nitrogen atmosphere, and more preferably 130 to 230 ° C.
 エステル化に酸ハロゲン化物や酸無水物を使用する場合、生じた酸を除去するには、塩基性化合物を使用し中和後に塩を濾過する方法、塩基性化合物を使用し中和後水洗する方法、中和せずに水洗する方法、蒸留や吸着などで除去する方法のいずれの方法を用いてもよく、併用しても構わない。反応溶媒よりも低沸点の酸を除く場合には、蒸留し除くことが好ましい。 When an acid halide or acid anhydride is used for esterification, to remove the generated acid, a method of filtering the salt after neutralization using a basic compound, or washing with water after neutralization using a basic compound. Any of the method, the method of washing with water without neutralization, and the method of removing by distillation or adsorption may be used, or may be used in combination. When removing an acid having a boiling point lower than that of the reaction solvent, it is preferable to remove the acid by distillation.
 フェノキシ樹脂(a)をエステル交換によりエステル化する場合は、通常窒素雰囲気下で、例えばジブチル錫オキシドやジオクチル錫オキシド、スタノキサン触媒、テトライソプロピルチタネート、テトラブチルチタネート、酢酸鉛、酢酸亜鉛、三酸化アンチモン等の有機金属触媒や塩酸、硫酸、リン酸、スルホン酸等の酸触媒、水酸化リチウム、水酸化ナトリウム等の塩基性触媒など公知のエステル化触媒を用いて脱アルコールしながら行うことが望ましい。 When the phenoxy resin (a) is esterified by ester exchange, it is usually carried out under a nitrogen atmosphere, for example, dibutyltin oxide, dioctyltin oxide, stanoxane catalyst, tetraisopropyl titanate, tetrabutyl titanate, lead acetate, zinc acetate, antimony trioxide. It is desirable to carry out the process while dealcoholizing using an organic metal catalyst such as, an acid catalyst such as hydrochloric acid, sulfuric acid, phosphoric acid or sulfonic acid, or a known esterification catalyst such as a basic catalyst such as lithium hydroxide or sodium hydroxide.
 本発明の製造方法(B)において、反応用の溶媒を用いてもよく、その溶媒としては、フェノキシ樹脂を溶解するものであればどのようなものでもよい。例えば、本発明の製造方法(A)で例示した溶媒等が挙げられる。これらの溶媒はフェノキシ樹脂(a)の調製で用いたものと同じものでもよいし、異なるものでもよい。また、1種のみで用いてもよく、2種以上を組み合わせて使用してもよい。 In the production method (B) of the present invention, a solvent for reaction may be used, and the solvent may be any solvent as long as it dissolves a phenoxy resin. For example, the solvent exemplified in the production method (A) of the present invention can be mentioned. These solvents may be the same as those used in the preparation of the phenoxy resin (a), or may be different. Further, only one type may be used, or two or more types may be used in combination.
 本発明の樹脂組成物は、少なくとも本発明のフェノキシ樹脂と硬化剤とを含む樹脂組成物である。また、本発明の樹脂組成物には、必要に応じて、エポキシ樹脂、無機フィラー、カップリング剤、酸化防止剤等の各種添加剤を適宜配合することができる。本発明の樹脂組成物は、各種用途に要求される諸物性を十分に満たす硬化物を与えるものである。 The resin composition of the present invention is a resin composition containing at least the phenoxy resin of the present invention and a curing agent. Further, various additives such as an epoxy resin, an inorganic filler, a coupling agent, and an antioxidant can be appropriately added to the resin composition of the present invention, if necessary. The resin composition of the present invention provides a cured product that sufficiently satisfies various physical properties required for various uses.
 本発明のフェノキシ樹脂に硬化剤を配合して樹脂組成物とすることができる。本発明において硬化剤とは、フェノキシ樹脂と架橋反応及び/又は鎖長延長反応に寄与する物質を示す。なお、本発明においては、通常「硬化促進剤」と呼ばれるものであってもフェノキシ樹脂の架橋反応及び/又は鎖長延長反応に寄与する物質であれば、硬化剤とみなすこととする。 A curing agent can be blended with the phenoxy resin of the present invention to obtain a resin composition. In the present invention, the curing agent refers to a substance that contributes to a cross-linking reaction and / or a chain length extension reaction with a phenoxy resin. In the present invention, even if it is usually called a "curing accelerator", if it is a substance that contributes to the cross-linking reaction and / or the chain length extension reaction of the phenoxy resin, it is regarded as a curing agent.
 本発明の樹脂組成物中の硬化剤の含有量は、本発明のフェノキシ樹脂の固形分100質量部に対して、好ましくは固形分で0.1~100質量部である。また、より好ましくは80質量部以下であり、更に好ましくは60質量部以下である。 The content of the curing agent in the resin composition of the present invention is preferably 0.1 to 100 parts by mass in terms of solid content with respect to 100 parts by mass in solid content of the phenoxy resin of the present invention. Further, it is more preferably 80 parts by mass or less, and further preferably 60 parts by mass or less.
 本発明の樹脂組成物において、後述するエポキシ樹脂が含まれる場合には、本発明のフェノキシ樹脂とエポキシ樹脂との固形分の重量比が99/1~1/99である。本発明において、「固形分」とは溶媒を除いた成分を意味し、固体のフェノキシ樹脂やエポキシ樹脂のみならず、半固形や粘稠な液状物のものをも含むものとする。また、「樹脂成分」とは、本発明のフェノキシ樹脂と後述するエポキシ樹脂との合計を意味する。 When the resin composition of the present invention contains an epoxy resin described later, the weight ratio of the solid content of the phenoxy resin of the present invention to the epoxy resin is 99/1 to 1/99. In the present invention, the "solid content" means a component excluding the solvent, and includes not only solid phenoxy resin and epoxy resin but also semi-solid and viscous liquid substances. Further, the "resin component" means the total of the phenoxy resin of the present invention and the epoxy resin described later.
 本発明の樹脂組成物に使用する硬化剤としては、特に制限はなく一般的にエポキシ樹脂硬化剤として知られているものはすべて使用できる。耐熱性を高める観点から好ましいものとして、フェノール系硬化剤、アミド系硬化剤、イミダゾール類、及び活性エステル系硬化剤等が挙げられる。これらの硬化性剤は単独で使用してもよく、2種類以上を併用してもよい。 The curing agent used in the resin composition of the present invention is not particularly limited, and any generally known epoxy resin curing agent can be used. From the viewpoint of increasing heat resistance, phenol-based curing agents, amide-based curing agents, imidazoles, active ester-based curing agents and the like can be mentioned. These curable agents may be used alone or in combination of two or more.
 フェノール系硬化剤としては、例えば、ビスフェノールA、ビスフェノールF、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルエーテル、1,4-ビス(4-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、フェノールノボラック、ビスフェノールAノボラック、o-クレゾールノボラック、m-クレゾールノボラック、p-クレゾールノボラック、キシレノールノボラック、ポリ-p-ヒドロキシスチレン、ハイドロキノン、レゾルシン、カテコール、t-ブチルカテコール、t-ブチルハイドロキノン、フルオログリシノール、ピロガロール、t-ブチルピロガロール、アリル化ピロガロール、ポリアリル化ピロガロール、1,2,4-ベンゼントリオール、2,3,4-トリヒドロキシベンゾフェノン、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、1,8-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,4-ジヒドロキシナフタレン、2,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,8-ジヒドロキシナフタレン、上記ジヒドロキシナフタレンのアリル化物又はポリアリル化物、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化フェノールノボラック、アリル化ピロガロール等が挙げられる。 Examples of the phenolic curing agent include bisphenol A, bisphenol F, 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl ether, 1,4-bis (4-hydroxyphenoxy) benzene, and 1,3-bis ( 4-Hydroxyphenoxy) benzene, 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxydiphenylketone, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl, 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, phenol novolac, bisphenol A novolac, o-cresol novolac, m-cresol novolac, p-cresol novolac , Xylenol novolac, poly-p-hydroxystyrene, hydroquinone, resorcin, catechol, t-butylcatechol, t-butylhydroquinone, fluoroglycinol, pyrogallol, t-butylpyrogalol, allylated pyrogallol, polyallylated pyrogallol, 1,2, 4-benzenetriol, 2,3,4-trihydroxybenzophenone, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-Dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,4-dihydroxynaphthalene, 2,5-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2 , 8-Dihydroxynaphthalene, allylated or polyallylated products of the above dihydroxynaphthalene, allylated bisphenol A, allylated bisphenol F, allylated phenol novolac, allylated pyrogallol and the like.
 アミド系硬化剤としては、例えば、ジシアンジアミド及びその誘導体、ポリアミド樹脂等が挙げられる。 Examples of the amide-based curing agent include dicyandiamide and its derivatives, polyamide resins, and the like.
 イミダゾール類としては、例えば、2-フェニルイミダゾール、2-エチル-4(5)-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、及びエポキシ樹脂と上記イミダゾール類との付加体等が挙げられる。なお、イミダゾール類は触媒能を有するため、一般的には後述する硬化促進剤にも分類されうるが、本発明においては硬化剤として分類するものとする。 Examples of imidazoles include 2-phenylimidazole, 2-ethyl-4 (5) -methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole. , 1-Cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimerite, 1-cyanoethyl-2-phenylimidazolium trimerite, 2,4- Diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1')]-ethyl -S-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4 , 5-Dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, and adducts of epoxy resin and the above imidazoles. Since imidazoles have catalytic ability, they can be generally classified as curing accelerators described later, but in the present invention, they are classified as curing agents.
 活性エステル系硬化剤としては、例えば、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく、中でも、カルボン酸化合物とフェノール性水酸基を有する芳香族化合物とを反応させたフェノールエステル類がより好ましい。カルボン酸化合物としては、具体的には、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール性水酸基を有する芳香族化合物としては、カテコール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。 The active ester-based curing agent has two or more ester groups with high reactive activity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds in one molecule. Compounds are preferable, and among them, phenol esters obtained by reacting a carboxylic acid compound with an aromatic compound having a phenolic hydroxyl group are more preferable. Specific examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid. Examples of aromatic compounds having a phenolic hydroxyl group include catechol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, fluoroglucin, and benzenetriol. Examples thereof include dicyclopentadienyldiphenol and phenol novolac.
 本発明の樹脂組成物に使用することのできるその他の硬化剤として、例えば、アミン系硬化剤、酸無水物系硬化剤、第3級アミン、有機ホスフィン類、ホスホニウム塩、テトラフェニルボロン塩、有機酸ジヒドラジド、ハロゲン化ホウ素アミン錯体、ポリメルカプタン系硬化剤、イソシアネート系硬化剤、ブロックイソシアネート系硬化剤等が挙げられる。これらのその他の硬化剤は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。 Other curing agents that can be used in the resin composition of the present invention include, for example, amine-based curing agents, acid anhydride-based curing agents, tertiary amines, organic phosphines, phosphonium salts, tetraphenylborone salts, and organic substances. Examples thereof include acid dihydrazide, boron halide amine complex, polypeptide-based curing agent, isocyanate-based curing agent, and blocked isocyanate-based curing agent. These other curing agents may be used alone or in admixture of two or more in any combination and ratio.
 本発明の樹脂組成物は、エポキシ樹脂を含むことができる。エポキシ樹脂を使用することで、不足する物性を補ったり、種々の物性を向上させたりすることができる。エポキシ樹脂としては、分子内に2個以上のエポキシ基を有するものであることが好ましく、3個以上のエポキシ基を有するエポキシ樹脂がより好ましい。例えば、ポリグリシジルエーテル化合物、ポリグリシジルアミン化合物、ポリグリシジルエステル化合物、脂環式エポキシ化合物、その他変性エポキシ樹脂などが挙げられる。これらのエポキシ樹脂は単独で使用してもよく、同一系のエポキシ樹脂を2種類以上併用してもよく、また、異なる系のエポキシ樹脂を組み合わせて使用してもよい。 The resin composition of the present invention can contain an epoxy resin. By using the epoxy resin, it is possible to make up for the lack of physical properties and improve various physical properties. The epoxy resin preferably has two or more epoxy groups in the molecule, and more preferably an epoxy resin having three or more epoxy groups. Examples thereof include polyglycidyl ether compounds, polyglycidyl amine compounds, polyglycidyl ester compounds, alicyclic epoxy compounds, and other modified epoxy resins. These epoxy resins may be used alone, two or more kinds of epoxy resins of the same system may be used in combination, or epoxy resins of different systems may be used in combination.
 ポリグリシジルエーテル化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、ジフェニルスルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ヒドロキノン型エポキシ樹脂、レゾルシノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、アルキルノボラック型エポキシ樹脂、スチレン化フェノールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、β-ナフトールアラルキル型エポキシ樹脂、ナフタレンジオールアラルキル型エポキシ樹脂、α-ナフトールアラルキル型エポキシ樹脂、ビフェニルアラルキルフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アルキレングリコール型エポキシ樹脂、脂肪族環状エポキシ樹脂等の各種エポキシ樹脂を使用することができる。 Examples of the polyglycidyl ether compound include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, bisphenol Z type epoxy resin, bisphenol fluorene type epoxy resin, and diphenyl sulfide type epoxy resin. , Diphenyl ether type epoxy resin, naphthalene type epoxy resin, hydroquinone type epoxy resin, resorcinol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alkyl novolac type epoxy resin, styrated phenol novolac type epoxy resin, bisphenol novolac type Epoxy resin, naphthol novolac type epoxy resin, phenol aralkyl type epoxy resin, β-naphthol aralkyl type epoxy resin, naphthalenediol aralkyl type epoxy resin, α-naphthol aralkyl type epoxy resin, biphenyl aralkyl phenol type epoxy resin, biphenyl type epoxy resin, Various epoxy resins such as triphenylmethane type epoxy resin, dicyclopentadiene type epoxy resin, alkylene glycol type epoxy resin, and aliphatic cyclic epoxy resin can be used.
 ポリグリシジルアミン化合物としては、例えば、ジアミノジフェニルメタン型エポキシ樹脂、メタキシレンジアミン型エポキシ樹脂、1,3-ビスアミノメチルシクロヘキサン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、アニリン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、アミノフェノール型エポキシ樹脂などが挙げられる。 Examples of the polyglycidylamine compound include diaminodiphenylmethane type epoxy resin, metaxylene diamine type epoxy resin, 1,3-bisaminomethylcyclohexane type epoxy resin, isocyanurate type epoxy resin, aniline type epoxy resin, and hydantin type epoxy resin. Aminophenol type epoxy resin and the like can be mentioned.
 ポリグリシジルエステル化合物としては、例えば、ダイマー酸型エポキシ樹脂、ヘキサヒドロフタル酸型エポキシ樹脂、トリメリット酸型エポキシ樹脂などが挙げられる。 Examples of the polyglycidyl ester compound include a dimer acid type epoxy resin, a hexahydrophthalic acid type epoxy resin, and a trimellitic acid type epoxy resin.
 脂環式エポキシ化合物としては、セロキサイド2021(ダイセル化学工業株式会社製)などの脂肪族環状エポキシ樹脂などが挙げられる。 Examples of the alicyclic epoxy compound include aliphatic cyclic epoxy resins such as celloxide 2021 (manufactured by Daicel Chemical Industry Co., Ltd.).
 その他変性エポキシ樹脂としては、例えば、ウレタン変性エポキシ樹脂、オキサゾリドン環含有エポキシ樹脂、エポキシ変性ポリブタジエンゴム誘導体、カルボキシル基末端ブタジエンニトリルゴム(CTBN)変性エポキシ樹脂、ポリビニルアレーンポリオキシド(例えば、ジビニルベンゼンジオキシド、トリビニルナフタレントリオキシドなど)、フェノキシ樹脂などが挙げられる。 Other modified epoxy resins include, for example, urethane-modified epoxy resin, oxazolidone ring-containing epoxy resin, epoxy-modified polybutadiene rubber derivative, carboxyl group-terminated butadiene nitrile rubber (CTBN) -modified epoxy resin, and polyvinyl allene polyoxide (for example, divinylbenzene dioxide). , Trivinylnaphthalene trioxide, etc.), phenoxy resin, etc.
 本発明の樹脂組成物において、本発明のフェノキシ樹脂とエポキシ樹脂とを使用する場合、固形分としてのフェノキシ樹脂及びエポキシ樹脂の全成分中、エポキシ樹脂の配合量は、好ましくは1~99質量%であり、より好ましくは5~97質量%であり、更に好ましくは10~95質量%であり、更に好ましくは10~90質量%である。エポキシ樹脂が上記配合量内であることにより、本発明の樹脂組成物からなる硬化物とした際に耐熱性及び機械的強度を向上させることができる。 When the phenoxy resin and the epoxy resin of the present invention are used in the resin composition of the present invention, the blending amount of the epoxy resin is preferably 1 to 99% by mass in all the components of the phenoxy resin and the epoxy resin as solids. It is more preferably 5 to 97% by mass, further preferably 10 to 95% by mass, still more preferably 10 to 90% by mass. When the epoxy resin is within the above blending amount, heat resistance and mechanical strength can be improved when a cured product made of the resin composition of the present invention is prepared.
 本発明の樹脂組成物には、塗膜形成時の取り扱い時に、樹脂組成物の粘度を適度に調整するために溶剤又は反応性希釈剤を配合してもよい。本発明の樹脂組成物において、溶剤又は反応性希釈剤は、樹脂組成物の成形における取り扱い性、作業性を確保するために用いられ、その使用量には特に制限がない。なお、本発明においては「溶剤」という語と前述の「溶媒」という語をその使用形態により区別して使用するが、それぞれ独立して同種のものを用いても異なるものを用いてもよい。 The resin composition of the present invention may contain a solvent or a reactive diluent in order to appropriately adjust the viscosity of the resin composition at the time of handling at the time of forming the coating film. In the resin composition of the present invention, the solvent or the reactive diluent is used to ensure the handleability and workability in molding of the resin composition, and the amount used is not particularly limited. In the present invention, the word "solvent" and the above-mentioned word "solvent" are used separately according to their usage modes, but the same type or different ones may be used independently.
 本発明の樹脂組成物が含み得る溶剤としては、例えばアセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等のエステル類、エチレングリコールモノメチルエーテル等のエーテル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、メタノール、エタノール等のアルコール類、ヘキサン、シクロヘキサン等のアルカン類、トルエン、キシレン等の芳香族類等が挙げられる。以上に挙げた溶剤は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。 Examples of the solvent that can be contained in the resin composition of the present invention include ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone and cyclohexanone, esters such as ethyl acetate, ethers such as ethylene glycol monomethyl ether, N and N. -Includes amides such as dimethylformamide and N, N-dimethylacetamide, alcohols such as methanol and ethanol, alkanes such as hexane and cyclohexane, and aromatics such as toluene and xylene. The above-mentioned solvents may be used alone or in admixture of two or more in any combination and ratio.
 反応性希釈剤としては、例えば、アリルグリシジルエーテルなどの単官能グリシジルエーテル類、プロピレングリコールジグリシジルエーテルなどの二官能グリシジルエーテル類、トリメチロールプロパンポリグリシジルエーテルなどの多官能グリシジルエーテル類、グリシジルエステル類、グリシジルアミン類が挙げられる。 Examples of the reactive diluent include monofunctional glycidyl ethers such as allyl glycidyl ether, bifunctional glycidyl ethers such as propylene glycol diglycidyl ether, polyfunctional glycidyl ethers such as trimethylolpropane polyglycidyl ether, and glycidyl esters. , Glycidyl amines and the like.
 これらの溶剤又は反応性希釈剤は、不揮発分として90質量%以下で使用することが好ましく、その適正な種類や使用量は用途によって適宜選択される。例えば、プリント配線板用途では、メチルエチルケトン、アセトン、1-メトキシ-2-プロパノールなどの沸点が160℃以下の極性溶媒であることが好ましく、その使用量は不揮発分で40~80質量%が好ましい。また、接着フィルム用途では、例えば、ケトン類、酢酸エステル類、カルビトール類、芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどを使用することが好ましく、その使用量は不揮発分で30~60質量%が好ましい。 These solvents or reactive diluents are preferably used in an amount of 90% by mass or less as a non-volatile content, and the appropriate type and amount to be used are appropriately selected depending on the application. For example, in printed wiring board applications, a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, or 1-methoxy-2-propanol, is preferable, and the amount used is preferably 40 to 80% by mass in terms of non-volatile content. For adhesive film applications, for example, ketones, acetic acid esters, carbitols, aromatic hydrocarbons, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like are preferably used, and the amount used is a non-volatile component. 30 to 60% by mass is preferable.
 本発明の樹脂組成物には、必要に応じて、硬化促進剤(ただし、「硬化剤」に含まれるものを除く。)を使用することができる。硬化促進剤としては、例えば、イミダゾール類、第3級アミン類、ホスフィン類などのリン化合物、金属化合物、ルイス酸、アミン錯塩などが挙げられる。これら硬化促進剤は単独で使用してもよく、2種類以上を併用してもよい。 A curing accelerator (excluding those contained in the "curing agent") can be used in the resin composition of the present invention, if necessary. Examples of the curing accelerator include phosphorus compounds such as imidazoles, tertiary amines and phosphines, metal compounds, Lewis acids, amine complex salts and the like. These curing accelerators may be used alone or in combination of two or more.
 硬化促進剤の配合量は、使用目的に応じて適宜選択すればよいが、樹脂組成物中のエポキシ樹脂成分100質量部に対して、0.01~15質量部が必要に応じて使用され、0.01~10質量部が好ましく、0.05~8質量部がより好ましく、0.1~5質量部が更に好ましい。硬化促進剤を使用することにより、硬化温度を下げることや、硬化時間を短縮することができる。 The amount of the curing accelerator to be blended may be appropriately selected according to the purpose of use, but 0.01 to 15 parts by mass is used as necessary with respect to 100 parts by mass of the epoxy resin component in the resin composition. 0.01 to 10 parts by mass is preferable, 0.05 to 8 parts by mass is more preferable, and 0.1 to 5 parts by mass is further preferable. By using the curing accelerator, the curing temperature can be lowered and the curing time can be shortened.
 本発明の樹脂組成物には、得られる硬化物の難燃性の向上を目的に、信頼性を低下させない範囲で、公知の各種難燃剤を使用することができる。使用できる難燃剤としては、例えば、ハロゲン系難燃剤、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤などが挙げられる。環境に対する観点から、ハロゲンを含まない難燃剤が好ましく、特にリン系難燃剤が好ましい。これらの難燃剤は単独で使用してもよく、同一系の難燃剤を2種類以上併用してもよく、また、異なる系の難燃剤を組み合わせて使用してもよい。 In the resin composition of the present invention, various known flame retardants can be used for the purpose of improving the flame retardancy of the obtained cured product as long as the reliability is not lowered. Examples of the flame retardants that can be used include halogen-based flame retardants, phosphorus-based flame retardants, nitrogen-based flame retardants, silicone-based flame retardants, inorganic flame retardants, and organic metal salt-based flame retardants. From the viewpoint of the environment, halogen-free flame retardants are preferable, and phosphorus-based flame retardants are particularly preferable. These flame retardants may be used alone, two or more kinds of flame retardants of the same system may be used in combination, or different flame retardants may be used in combination.
 本発明の樹脂組成物には、その機能性の更なる向上を目的として、以上で挙げたもの以外の成分(本発明において「その他の成分」と称することがある。)を含んでいてもよい。このようなその他の成分としては、充填材、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂、紫外線防止剤、酸化防止剤、カップリング剤、可塑剤、フラックス、揺変性付与剤、平滑剤、着色剤、顔料、分散剤、乳化剤、低弾性化剤、離型剤、消泡剤、イオントラップ剤等が挙げられる。 The resin composition of the present invention may contain components other than those listed above (may be referred to as "other components" in the present invention) for the purpose of further improving its functionality. .. Such other components include fillers, thermoplastic resins, thermosetting resins, photocurable resins, UV inhibitors, antioxidants, coupling agents, plasticizers, fluxes, rock release agents, smoothing agents. , Colorants, pigments, dispersants, emulsifiers, low elastic agents, mold release agents, antifoaming agents, ion trapping agents and the like.
 充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化ケイ素、窒化ホウ素、窒化アルミニウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、ベーマイト、タルク、マイカ、クレー、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、酸化亜鉛、酸化チタン、酸化マグネシウム、ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸ジルコニウム、硫酸バリウム、炭素などの無機充填剤や、炭素繊維、ガラス繊維、アルミナ繊維、シリカアルミナ繊維、炭化ケイ素繊維、ポリエステル繊維、セルロース繊維、アラミド繊維、セラミック繊維などの繊維状充填剤や、微粒子ゴムなどが挙げられる。 Examples of the filler include molten silica, crystalline silica, alumina, silicon nitride, boron nitride, aluminum nitride, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, boehmite, talc, mica, clay, calcium carbonate, magnesium carbonate, and the like. Inorganic fillers such as barium carbonate, zinc oxide, titanium oxide, magnesium oxide, magnesium silicate, calcium silicate, zirconium silicate, barium sulfate, carbon, carbon fiber, glass fiber, alumina fiber, silica alumina fiber, silicon dioxide Examples thereof include fibrous fillers such as fibers, polyester fibers, cellulose fibers, aramid fibers, and ceramic fibers, and fine particle rubber.
 本発明の樹脂組成物には、本発明のフェノキシ樹脂以外の熱可塑性樹脂を併用してもよい。熱可塑性樹脂としては、例えば、本発明以外のフェノキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂、塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリメタクリル酸メチル樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、環状ポリオレフィン樹脂、ポリアミド樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリテトラフロロエチレン樹脂、ポリエーテルイミド樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンスルフィド樹脂、ポリビニルホルマール樹脂などが挙げられる。相溶性の面からは本発明以外のフェノキシ樹脂が好ましく、低誘電特性面からはポリフェニレンエーテル樹脂や変性ポリフェニレンエーテル樹脂が好ましい。 A thermoplastic resin other than the phenoxy resin of the present invention may be used in combination with the resin composition of the present invention. Examples of the thermoplastic resin include phenoxy resins other than the present invention, polyurethane resins, polyester resins, polyethylene resins, polypropylene resins, polystyrene resins, ABS resins, AS resins, vinyl chloride resins, polyvinyl acetate resins, and polymethyl methacrylate resins. , Polycarbonate resin, polyacetal resin, cyclic polyolefin resin, polyamide resin, thermoplastic polyimide resin, polyamideimide resin, polytetrafluoroethylene resin, polyetherimide resin, polyphenylene ether resin, modified polyphenylene ether resin, polyethersulfone resin, polysulfone resin , Polyether ether ketone resin, polyphenylene sulfide resin, polyvinyl formal resin and the like. A phenoxy resin other than the present invention is preferable from the viewpoint of compatibility, and a polyphenylene ether resin or a modified polyphenylene ether resin is preferable from the viewpoint of low dielectric property.
 その他の成分としては、キナクリドン系、アゾ系、フタロシアニン系などの有機顔料や、酸化チタン、金属箔状顔料、防錆顔料などの無機顔料や、ヒンダードアミン系、ベンゾトリアゾール系、ベンゾフェノン系などの紫外線吸収剤や、ヒンダードフェノール系、リン系、イオウ系、ヒドラジド系などの酸化防止剤や、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウムなどの離型剤、レベリング剤、レオロジーコントロール剤、顔料分散剤、ハジキ防止剤、消泡剤などの添加剤などが挙げられる。これらのその他の成分の配合量は、樹脂組成物中の全固形分に対して、0.01~20質量%の範囲が好ましい。 Other components include organic pigments such as quinacridone, azo, and phthalocyanine, inorganic pigments such as titanium oxide, metal foil pigments, and rust preventive pigments, and ultraviolet absorption such as hindered amines, benzotriazoles, and benzophenones. Agents, antioxidants such as hindered phenol, phosphorus, sulfur, and hydrazide, release agents such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, leveling agents, rheology control agents, and pigment dispersion. Additives such as agents, anti-pigment agents, antifoaming agents and the like can be mentioned. The blending amount of these other components is preferably in the range of 0.01 to 20% by mass with respect to the total solid content in the resin composition.
 本発明の樹脂組成物は、上記各成分を均一に混合することにより得られる。フェノキシ樹脂、硬化剤、更に必要により各種成分の配合された樹脂組成物は、従来知られている方法と同様の方法で容易に硬化物とすることができる。この硬化物は、低吸湿性、誘電特性、耐熱性、密着性等のバランスに優れ、良好な硬化物性を示すものである。ここでいう「硬化」とは熱及び/又は光等により樹脂組成物を意図的に硬化させることを意味するものであり、その硬化の程度は所望の物性、用途により制御すればよい。進行の程度は完全硬化であっても、半硬化の状態であってもよく、特に制限されないが、エポキシ基と硬化剤の硬化反応の反応率として通常5~95%である。 The resin composition of the present invention is obtained by uniformly mixing each of the above components. A resin composition containing a phenoxy resin, a curing agent, and various components if necessary can be easily made into a cured product by a method similar to a conventionally known method. This cured product has an excellent balance of low hygroscopicity, dielectric properties, heat resistance, adhesion and the like, and exhibits good cured physical properties. The term "curing" as used herein means that the resin composition is intentionally cured by heat and / or light, and the degree of curing may be controlled according to desired physical properties and applications. The degree of progress may be completely cured or semi-cured, and is not particularly limited, but the reaction rate of the curing reaction between the epoxy group and the curing agent is usually 5 to 95%.
 本発明の樹脂組成物は、公知のエポキシ樹脂組成物と同様な方法で硬化することによって硬化物を得ることができる。硬化物を得るための方法としては、公知のエポキシ樹脂組成物と同様の方法をとることができ、注型、注入、ポッティング、ディッピング、ドリップコーティング、トランスファ一成形、圧縮成形等や樹脂シート、樹脂付き銅箔、プリプレグ等の形態とし積層して加熱加圧硬化することで積層板とする等の方法が好適に用いられる。その際の硬化温度は通常、80~300℃の範囲であり、硬化時間は通常、硬化時間は10~360分間程度である。この加熱は80~180℃で10~90分の一次加熱と、120~200℃で60~150分の二次加熱との二段処理で行うことが好ましく、また、ガラス転移温度(Tg)が二次加熱の温度を超える配合系においては、更に150~280℃で60~120分の三次加熱を行うことが好ましい。このような二次加熱、三次加熱を行うことで硬化不良を低減することができる。樹脂シート、樹脂付き銅箔、プリプレグなどの樹脂半硬化物を作製する際には、通常、加熱などにより形状が保てる程度に樹脂組成物の硬化反応を進行させる。樹脂組成物が溶媒を含んでいる場合には、通常、加熱、減圧、風乾などの手法で大部分の溶媒を除去するが、樹脂半硬化物中に5質量%以下の溶媒を残量させてもよい。 The resin composition of the present invention can be cured by the same method as the known epoxy resin composition to obtain a cured product. As a method for obtaining a cured product, the same method as that of a known epoxy resin composition can be adopted, such as casting, injection, potting, dipping, drip coating, transfer molding, compression molding, resin sheet, resin, etc. A method such as forming a laminated plate by laminating in the form of a copper foil with an epoxy, a prepreg, or the like and curing by heating and pressure is preferably used. The curing temperature at that time is usually in the range of 80 to 300 ° C., and the curing time is usually about 10 to 360 minutes. This heating is preferably performed by a two-step treatment of a primary heating at 80 to 180 ° C. for 10 to 90 minutes and a secondary heating at 120 to 200 ° C. for 60 to 150 minutes, and the glass transition temperature (Tg) is high. In a compounding system that exceeds the temperature of the secondary heating, it is preferable to further perform the tertiary heating at 150 to 280 ° C. for 60 to 120 minutes. Curing defects can be reduced by performing such secondary heating and tertiary heating. When producing a resin semi-cured product such as a resin sheet, a copper foil with a resin, or a prepreg, the curing reaction of the resin composition is usually allowed to the extent that the shape can be maintained by heating or the like. When the resin composition contains a solvent, most of the solvent is usually removed by a method such as heating, depressurization, or air drying, but 5% by mass or less of the solvent remains in the resin semi-cured product. May be good.
 本発明の樹脂組成物を用いて得られるプリプレグについて説明する。シート状基材としては、ガラス等の無機繊維や、ポリエステル等、ポリアミン、ポリアクリル、ポリイミド、ケブラー、セルロース等の有機質繊維の織布又は不織布を使用することができるが、これに限定されるものではない。本発明の樹脂組成物及び基材からプリプレグを製造する方法としては、特に限定するものではなく、例えば上記の基材を、上記の樹脂組成物を溶剤で粘度調整した樹脂ワニスに浸漬して含浸した後、加熱乾燥して樹脂成分を半硬化(Bステージ化)して得られるものであり、例えば100~200℃で1~40分間加熱乾燥することができる。ここで、プリプレグ中の樹脂量は、樹脂分30~80質量%とすることが好ましい。 The prepreg obtained by using the resin composition of the present invention will be described. As the sheet-like base material, inorganic fibers such as glass and woven fabrics or non-woven fabrics of organic fibers such as polyamine, polyacrylic, polyimide, Kevlar, and cellulose such as polyester can be used, but are limited thereto. is not it. The method for producing a prepreg from the resin composition and the base material of the present invention is not particularly limited, and for example, the above base material is impregnated by immersing the above base material in a resin varnish whose viscosity is adjusted with a solvent. The resin component is semi-cured (B-staged) and obtained by heating and drying. For example, the resin component can be heat-dried at 100 to 200 ° C. for 1 to 40 minutes. Here, the amount of resin in the prepreg is preferably 30 to 80% by mass of the resin content.
 プリプレグや絶縁接着シートを用いて積層板を製造する方法を説明する。プリプレグを用いて積層板を形成する場合は、プリプレグを一枚又は複数枚積層し、片側又は両側に金属箔を配置して積層物を構成し、この積層物を加熱・加圧して積層一体化する。ここで金属箔としては、銅、アルミニウム、真鍮、ニッケル等の単独、合金、複合の金属箔を使用することができる。積層物を加熱加圧する条件としては、樹脂組成物が硬化する条件で適宜調整して加熱加圧すればよいが、加圧の圧量があまり低いと、得られる積層板の内部に気泡が残留し、電気的特性が低下する場合があるため、成型性を満足する条件で加圧することが望ましい。例えば温度を160~220℃、圧力を49.0~490.3N/cm(5~50kgf/cm)、加熱時間を40~240分間にそれぞれ設定することができる。 A method of manufacturing a laminated board using a prepreg or an insulating adhesive sheet will be described. When forming a laminated board using a prepreg, one or a plurality of prepregs are laminated, metal foils are arranged on one side or both sides to form a laminate, and the laminate is heated and pressurized to integrate the laminate. do. Here, as the metal foil, a single metal leaf such as copper, aluminum, brass, nickel or the like, an alloy, or a composite metal leaf can be used. As a condition for heating and pressurizing the laminate, it is sufficient to appropriately adjust and heat and pressurize under the condition that the resin composition is cured. However, if the pressure of pressurization is too low, air bubbles remain inside the obtained laminate. However, since the electrical characteristics may deteriorate, it is desirable to pressurize under conditions that satisfy the moldability. For example, the temperature can be set to 160 to 220 ° C., the pressure can be set to 49.0 to 490.3 N / cm 2 (5 to 50 kgf / cm 2 ), and the heating time can be set to 40 to 240 minutes.
 更にこのようにして得られた単層の積層板を内層材として、多層板を作成することができる。この場合、まず積層板にアディティブ法やサブトラクティブ法等にて回路形成を施し、形成された回路表面を酸溶液で処理して黒化処理を施して、内層材を得る。この内層材の片面又は両側の回路形成面に、プリプレグや絶縁接着シートにて絶縁層を形成するとともに、絶縁層の表面に導体層を形成して、多層板を形成するものである。 Further, a multilayer plate can be produced by using the single-layer laminated plate thus obtained as an inner layer material. In this case, first, a circuit is formed on the laminated board by an additive method, a subtractive method, or the like, and the formed circuit surface is treated with an acid solution and blackened to obtain an inner layer material. An insulating layer is formed on one side or both side of the circuit forming surface of the inner layer material with a prepreg or an insulating adhesive sheet, and a conductor layer is formed on the surface of the insulating layer to form a multilayer plate.
 絶縁接着シートにて絶縁層を形成する場合は、複数枚の内層材の回路形成面に絶縁接着シートを配置して積層物を形成する。あるいは内層材の回路形成面と金属箔の間に絶縁接着シートを配置して積層物を形成する。そしてこの積層物を加熱加圧して一体成型することにより、絶縁接着シートの硬化物を絶縁層として形成するとともに、内層材の多層化を形成する。あるいは内層材と導体層である金属箔を絶縁接着シートの硬化物を絶縁層として形成するものである。ここで、金属箔としては、内層材として用いられる積層板に用いたものと同様のものを使用することができる。
 また加熱加圧成形は、内層材の成型と同様の条件にて行うことができる。積層板に樹脂組成物を塗布して絶縁層を形成する場合は、内層材の最外層の回路形成面樹脂を上記の樹脂組成物を好ましくは5~100μmの厚みに塗布した後、100~200℃で1~90分加熱乾燥してシート状に形成する。一般にキャスティング法と呼ばれる方法で形成されるものである。乾燥後の厚みは5~80μmに形成することが望ましい。このようにして形成された多層積層板の表面に、更にアディティブ法やサブストラクティブ法にてバイアホール形成や回路形成を施して、プリント配線板を形成することができる。
 また更にこのプリント配線板を内層材として上記の工法を繰り返すことにより、更に多層の積層板を形成することができるものである。
When the insulating layer is formed by the insulating adhesive sheet, the insulating adhesive sheet is arranged on the circuit forming surface of a plurality of inner layer materials to form a laminate. Alternatively, an insulating adhesive sheet is arranged between the circuit forming surface of the inner layer material and the metal foil to form a laminate. Then, by heating and pressurizing this laminate and integrally molding it, a cured product of the insulating adhesive sheet is formed as an insulating layer, and a multi-layered inner layer material is formed. Alternatively, the inner layer material and the metal foil which is the conductor layer are formed as an insulating layer by forming a cured product of the insulating adhesive sheet. Here, as the metal foil, the same metal leaf as that used for the laminated board used as the inner layer material can be used.
Further, the heat and pressure molding can be performed under the same conditions as the molding of the inner layer material. When the resin composition is applied to the laminated board to form an insulating layer, the circuit-forming surface resin of the outermost layer of the inner layer material is applied to the above resin composition to a thickness of preferably 5 to 100 μm, and then 100 to 200. It is heated and dried at ° C. for 1 to 90 minutes to form a sheet. It is formed by a method generally called a casting method. It is desirable to form the thickness after drying to 5 to 80 μm. A printed wiring board can be formed by further forming a via hole or a circuit on the surface of the multilayer laminated board thus formed by an additive method or a constructive method.
Further, by repeating the above-mentioned construction method using this printed wiring board as an inner layer material, a multi-layer laminated board can be further formed.
 またプリプレグにて絶縁層を形成する場合は、内層材の回路形成面に、プリプレグを一枚又は複数枚を積層したものを配置し、更にその外側に金属箔を配置して積層物を形成する。そしてこの積層物を加熱加圧して一体成型することにより、プリプレグの硬化物を絶縁層として形成するとともに、その外側の金属箔を導体層として形成するものである。
 ここで、金属箔としては、内層材として用いられる積層板に用いたものと同様のものを使用することもできる。また加熱加圧成形は、内層材の成型と同様の条件にて行うことができる。このようにして成形された多層積層板の表面に、更にアディティブ法やサブトラクティブ法にてバイアホール形成や回路形成を施して、プリント配線板を成型することができる。
 また更にこのプリント配線板を内層材として上記の工法を繰り返すことにより、更に多層の多層板を形成することができる。
When the insulating layer is formed by the prepreg, one or a plurality of prepregs are arranged on the circuit forming surface of the inner layer material, and a metal foil is further arranged on the outside to form the laminate. .. Then, by heating and pressurizing this laminate and integrally molding it, a cured product of the prepreg is formed as an insulating layer, and a metal foil on the outside thereof is formed as a conductor layer.
Here, as the metal foil, the same metal leaf as that used for the laminated board used as the inner layer material can also be used. Further, the heat and pressure molding can be performed under the same conditions as the molding of the inner layer material. A printed wiring board can be formed by further forming a via hole or a circuit on the surface of the multilayer laminated board thus formed by an additive method or a subtractive method.
Further, by repeating the above method using this printed wiring board as an inner layer material, a multi-layer board can be further formed.
 本発明の樹脂組成物から得られる硬化物や電気・電子回路用積層板は、優れた難燃性及び耐熱性を有する。 The cured product obtained from the resin composition of the present invention and the laminated board for electric / electronic circuits have excellent flame retardancy and heat resistance.
 以下、本発明を実施例及び比較例に基づいて更に具体的に説明するが、本発明はこれに限定されるものではない。特に断りがない限り、部は質量部を表し、%は質量%を表す。分析方法、測定方法を以下に示す。また、各種当量の単位は全てg/eq.である。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited thereto. Unless otherwise specified, parts represent parts by mass and% represents% by mass. The analysis method and measurement method are shown below. The units of various equivalents are all g / eq. Is.
(1)重量平均分子量(Mw)及び数平均分子量(Mn):
 GPC測定により求めた。具体的には、本体HLC8320GPC(東ソー株式会社製)にカラム(TSKgel SuperH-H、SuperH2000、SuperHM-H、SuperHM-H、以上東ソー株式会社製)を直列に備えたものを使用し、カラム温度は40℃にした。また、溶離液はDMF(20mM臭化リチウム含有品)を使用し、0.3mL/分の流速とし、検出器は示差屈折率検出器を使用した。測定試料は固形分で0.1gを10mLのDMFに溶解し、0.45μmのマイクロフィルターでろ過したものを20μL使用した。標準ポリエチレンオキシド(東ソー株式会社製、SE-2、SE-5、SE-8、SE-15、SE-30、SE-70、SE-150)より求めた検量線より換算して、Mwを求めた。なお、データ処理は東ソー株式会社製GPC8020モデルIIバージョン6.00を使用した。
(1) Weight average molecular weight (Mw) and number average molecular weight (Mn):
Obtained by GPC measurement. Specifically, a main body HLC8320GPC (manufactured by Tosoh Corporation) equipped with columns (TSKgel SuperH-H, SuperH2000, SuperHM-H, SuperHM-H, and above, manufactured by Tosoh Corporation) in series is used, and the column temperature is set. The temperature was set to 40 ° C. A DMF (20 mM lithium bromide-containing product) was used as the eluent, the flow rate was 0.3 mL / min, and a differential refractive index detector was used as the detector. As the measurement sample, 0.1 g of solid content was dissolved in 10 mL of DMF, and 20 μL of the sample filtered through a 0.45 μm microfilter was used. Obtain Mw by converting from the calibration curve obtained from standard polyethylene oxide (manufactured by Tosoh Corporation, SE-2, SE-5, SE-8, SE-15, SE-30, SE-70, SE-150). rice field. For data processing, GPC8020 model II version 6.00 manufactured by Tosoh Corporation was used.
(2)エポキシ当量:
 JIS K 7236規格に準拠して測定を行った。具体的には、電位差滴定装置を用い、溶媒としてシクロヘキサノンを使用し、臭素化テトラエチルアンモニウム酢酸溶液を加え、0.1mol/L過塩素酸-酢酸溶液を用いた。なお、溶媒希釈品(樹脂ワニス)は、不揮発分から固形分換算値としての数値を算出した。
(2) Epoxy equivalent:
The measurement was performed in accordance with JIS K 7236 standard. Specifically, a potentiometric titrator was used, cyclohexanone was used as a solvent, a brominated tetraethylammonium acetic acid solution was added, and a 0.1 mol / L perchloric acid-acetic acid solution was used. For the solvent-diluted product (resin varnish), the numerical value as a solid content conversion value was calculated from the non-volatile content.
(3)不揮発分:
 JIS K 7235規格に準拠して測定した。乾燥温度は200℃で、乾燥時間は60分間とした。
(3) Non-volatile content:
Measured according to JIS K 7235 standard. The drying temperature was 200 ° C. and the drying time was 60 minutes.
(4)ガラス転移温度(Tg):
 IPC-TM-650 2.4.25.c規格に準拠して測定した。具体的には、具体的には、厚さ4mm、直径3mmの試料を、示差走査熱量測定装置EXSTAR6000 DSC6200(エスアイアイ・ナノテクノロジー株式会社製)を用いて、10℃/分の昇温条件で、20~280℃の範囲で2サイクル測定し、得られたセカンドスキャンの測定チャートの中間点ガラス転移温度(Tmg)で表した。
(4) Glass transition temperature (Tg):
IPC-TM-650 2.4.25. Measured according to c standard. Specifically, a sample having a thickness of 4 mm and a diameter of 3 mm was subjected to a temperature rise condition of 10 ° C./min using a differential scanning calorimetry device EXSTAR6000 DSC6200 (manufactured by SII Nanotechnology Co., Ltd.). , Measured for 2 cycles in the range of 20 to 280 ° C., and represented by the midpoint glass transition temperature (Tmg) of the obtained second scan measurement chart.
(5)誘電特性:
 空洞共振器摂動法にて1GHzで測定した際の誘電正接で評価した。具体的には、PNAネットワークアナライザN5230A(アジレント・テクノロジー株式会社製)及び空洞共振器CP431(関東電子応用開発株式会社製)を使用して、室温23℃、湿度50%RHの測定環境下、幅1.5mm×長さ80mm×厚み150μmの試験片を用いて測定を行った。
(5) Dielectric characteristics:
It was evaluated by the dielectric loss tangent when measured at 1 GHz by the cavity resonator perturbation method. Specifically, using a PNA network analyzer N5230A (manufactured by Agilent Technologies Co., Ltd.) and a cavity resonator CP431 (manufactured by Kanto Electronics Applied Development Co., Ltd.), the width is set in a measurement environment at room temperature of 23 ° C. and humidity of 50% RH. The measurement was performed using a test piece of 1.5 mm × length 80 mm × thickness 150 μm.
(6)耐折性:
 耐折疲労試験にてフィルムが破断するまでの折り曲げ回数にて評価した。具体的には、幅15mm×長さ100mm×厚み100μmの試験片を用いて、MIT耐折疲労試験機D型(東洋精機株式会社製)により、荷重0.5kgf、速度90cpm、角度45度、R=0.38mmの条件で試験を行った。
(6) Fold resistance:
It was evaluated by the number of times of bending until the film broke in the folding fatigue test. Specifically, using a test piece having a width of 15 mm, a length of 100 mm, and a thickness of 100 μm, a MIT folding fatigue tester D type (manufactured by Toyo Seiki Co., Ltd.) was used to load 0.5 kgf, speed 90 cpm, and angle 45 degrees. The test was conducted under the condition of R = 0.38 mm.
 実施例、比較例の使用する略号を以下の通りである。 The abbreviations used in the examples and comparative examples are as follows.
[2官能エポキシ樹脂]
A1:ヒドロキノン型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、ZX-1027、エポキシ当量131、m≒0.18)
A2:レゾルシン型エポキシ樹脂(シグマアルドリッチ社製、エポキシ当量127、m≒0.14)
A3:2,5-ジ-t-ブチルヒドロキノン型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、エポトートYDC-1213、エポキシ当量175、m≒0.05)
A4:ナフタレン型エポキシ樹脂(DIC株式会社製、エピクロンHP4032D、エポキシ当量142、m≒0.07)
A5:ビスフェノールA型液状エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、エポトートYD-128、エポキシ当量186)
 ここで、mは上記式(7)におけるmと同様の意味を有する。
[Bifunctional epoxy resin]
A1: Hydroquinone type epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd., ZX-1027, epoxy equivalent 131, m≈0.18)
A2: Resorcin type epoxy resin (manufactured by Sigma-Aldrich, epoxy equivalent 127, m≈0.14)
A3: 2,5-Di-t-butylhydroquinone type epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd., Epototo YDC-1213, epoxy equivalent 175, m≈0.05)
A4: Naphthalene type epoxy resin (manufactured by DIC Corporation, Epicron HP4032D, epoxy equivalent 142, m≈0.07)
A5: Bisphenol A type liquid epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd., Epototo YD-128, epoxy equivalent 186)
Here, m has the same meaning as m in the above formula (7).
[ジエステル系化合物]
B1:2,6-ジアセトキシナフタレン(東京化成工業株式会社製、活性当量=122)
B2:1,4-ジアセトキシナフタレン(富士フィルム和光純薬株式会社製、活性当量=122)
B3:2,2-ビス(4-アセトキシフェニル)プロパン(東京化成工業株式会社製、活性当量=156)
[Diester compound]
B1: 2,6-diacetoxynaphthalene (manufactured by Tokyo Chemical Industry Co., Ltd., active equivalent = 122)
B2: 1,4-diacetoxynaphthalene (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., active equivalent = 122)
B3: 2,2-bis (4-acetoxyphenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd., active equivalent = 156)
[2官能フェノール化合物]
C1:2,6-ナフタレンジオール(東京化成工業株式会社製、水酸基当量80)
[Bifunctional phenol compound]
C1: 2,6-naphthalenediol (manufactured by Tokyo Chemical Industry Co., Ltd., hydroxyl group equivalent 80)
[触媒]
D1:N,N’-ジメチルアミノピリジン(東京化成工業株式会社製)
D2:2-エチル-4-メチルイミダゾール(四国化成工業株式会社製、キュアゾール2E4MZ)
[catalyst]
D1: N, N'-dimethylaminopyridine (manufactured by Tokyo Chemical Industry Co., Ltd.)
D2: 2-Ethyl-4-methylimidazole (manufactured by Shikoku Chemicals Corporation, Curesol 2E4MZ)
[溶媒・溶剤]
S1:シクロヘキサノン
S2:メチルエチルケトン(MEK)
[Solvent / Solvent]
S1: Cyclohexanone S2: Methyl ethyl ketone (MEK)
[酸無水物]
E1:無水酢酸(富士フィルム和光純薬株式会社製)
E2:無水安息香酸(東京化成工業株式会社製)
[Acid anhydride]
E1: Acetic anhydride (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.)
E2: Benzoic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.)
[硬化剤]
H1:フェノールノボラック樹脂(アイカ工業株式会社製、ショウノールBRG-5575、水酸基当量105)
[Curing agent]
H1: Phenol novolac resin (manufactured by Aica Kogyo Co., Ltd., Shonor BRG-5575, hydroxyl group equivalent 105)
実施例1
 撹拌装置、温度計、窒素ガス導入装置、冷却管、及び滴下装置を備えたガラス製反応容器に、室温下で、A1を100部、B1を89部、反応溶媒としてS1を47部仕込み、窒素ガスを流し撹拌しながら130℃まで昇温し、触媒としてD1を0.2部添加した後、145℃まで昇温し、同温度で7時間反応を行った。希釈溶剤としてS1を47部、S2を189部使用して希釈混合して、不揮発分40%のフェノキシ樹脂ワニス(R1)を得た。
Example 1
In a glass reaction vessel equipped with a stirrer, a thermometer, a nitrogen gas introduction device, a cooling tube, and a dropping device, 100 parts of A1, 89 parts of B1 and 47 parts of S1 as a reaction solvent were charged at room temperature, and nitrogen was charged. The temperature was raised to 130 ° C. while flowing and stirring the gas, 0.2 part of D1 was added as a catalyst, the temperature was raised to 145 ° C., and the reaction was carried out at the same temperature for 7 hours. A phenoxy resin varnish (R1) having a non-volatile content of 40% was obtained by diluting and mixing using 47 parts of S1 and 189 parts of S2 as a diluting solvent.
実施例2~8、比較例1~3
 表1~2に示す各原料の仕込み量(部)に従い、実施例1と同様操作を行い、フェノキシ樹脂ワニスを得た。なお、表中のモル比は、ジエステル系化合物及び2官能フェノール化合物に対する2官能エポキシ樹脂のモル比を表し、ワニスはフェノキシ樹脂ワニスを表す。
Examples 2 to 8, Comparative Examples 1 to 3
According to the charged amount (part) of each raw material shown in Tables 1 and 2, the same operation as in Example 1 was carried out to obtain a phenoxy resin varnish. The molar ratio in the table represents the molar ratio of the bifunctional epoxy resin to the diester compound and the bifunctional phenol compound, and the varnish represents the phenoxy resin varnish.
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000016
 
Figure JPOXMLDOC01-appb-T000016
 
実施例10
 比較例3で得られたフェノキシ樹脂ワニス(RH3)を100部(固形分で40部)、S1を600部配合し、100℃まで昇温後、E1を5部加えて4時間反応を行った。得られた樹脂ワニスをメタノールに加え、析出した不溶解分を濾別した後、濾液を真空乾燥器にて150℃、0.4kPa(3torr)の条件で1時間乾燥させ、フェノキシ樹脂を得た。得られたフェノキシ樹脂に対して、S1を21部、S2を42部加えて、均一に溶解させて不揮発分40%のフェノキシ樹脂ワニス(R10)を得た。
Example 10
100 parts (40 parts in terms of solid content) of the phenoxy resin varnish (RH3) obtained in Comparative Example 3 and 600 parts of S1 were blended, the temperature was raised to 100 ° C., and 5 parts of E1 was added to carry out a reaction for 4 hours. .. The obtained resin varnish was added to methanol, the precipitated insoluble matter was filtered off, and the filtrate was dried in a vacuum dryer at 150 ° C. and 0.4 kPa (3 torr) for 1 hour to obtain a phenoxy resin. .. To the obtained phenoxy resin, 21 parts of S1 and 42 parts of S2 were added and uniformly dissolved to obtain a phenoxy resin varnish (R10) having a non-volatile content of 40%.
実施例11
 E1を23部、希釈溶媒のS1を25部及びS2を49部とした以外は実施例10と同様操作を行い、フェノキシ樹脂ワニス(R11)を得た。
Example 11
The same operation as in Example 10 was carried out except that E1 was 23 parts, S1 of the diluting solvent was 25 parts, and S2 was 49 parts, to obtain a phenoxy resin varnish (R11).
実施例12
 E1の代わりにE2を51部、希釈溶媒のS1を31部及びS2を62部とした以外実施例10と同様操作を行い、フェノキシ樹脂ワニス(R12)を得た。
Example 12
The same operation as in Example 10 was carried out except that 51 parts of E2 was used instead of E1, 31 parts of S1 of the diluting solvent and 62 parts of S2 were used to obtain a phenoxy resin varnish (R12).
 実施例1~12及び比較例1~3で得た樹脂ワニスR1~R12及びRH1~RH3を、乾燥後の膜厚が100μm及び150μmとなるよう鉄板に塗布し、乾燥機を用いて150℃、1時間乾燥して樹脂フィルムを得た。
 フェノキシ樹脂ワニスでエポキシ当量及びMwを、樹脂フィルムでTg、誘電特性、及び耐折性をそれぞれ測定した。その結果を表3に示す。なお、表中の「式(2)含有率」は式(1)における全X中の式(2)の構造の含有率(モル%)を、「式(3)含有率」は、式(1)における全X中の式(3)の構造の含有率(モル%)を、「アシル化率」は全Z中のアシル基の含有率(モル%)をそれぞれ表す。樹脂ワニスRH1~RH3を使用した例は比較例である。
The resin varnishes R1 to R12 and RH1 to RH3 obtained in Examples 1 to 12 and Comparative Examples 1 to 3 were applied to an iron plate so that the film thickness after drying was 100 μm and 150 μm, and the temperature was changed to 150 ° C. using a dryer. It was dried for 1 hour to obtain a resin film.
Epoxy equivalent and Mw were measured with a phenoxy resin varnish, and Tg, dielectric properties, and folding resistance were measured with a resin film. The results are shown in Table 3. In the table, "formula (2) content rate" is the content rate (mol%) of the structure of formula (2) in all X in formula (1), and "formula (3) content rate" is the formula ( The content rate (mol%) of the structure of the formula (3) in the total X in 1) is represented by the content rate (mol%) of the structure of the formula (3), and the "acyllation rate" represents the content rate (mol%) of the acyl group in the total Z. An example using the resin varnishes RH1 to RH3 is a comparative example.
Figure JPOXMLDOC01-appb-T000017
 
Figure JPOXMLDOC01-appb-T000017
 
実施例13~15、比較例4~5
 実施例1、2、4及び比較例1~3で得られたフェノキシ樹脂ワニス(R1、R2、R4、RH1~RH3)を30部(固形分で12部)、エポキシ樹脂としてA5を2部、硬化剤としてH1を50%MEK溶液で2.5部、及び硬化促進剤としてC2を20%MEK溶液で0.6部を配合して、樹脂組成物を得た。更にこれらを乾燥後の膜厚が100及び150μmとなるよう鉄板に塗布し、乾燥機を用いて150℃、1時間乾燥して、フィルム状の硬化物を得た。Tg、誘電特性、及び耐折性をそれぞれ測定した。その結果を表4に示す。
Examples 13 to 15, Comparative Examples 4 to 5
30 parts (12 parts in solid content) of the phenoxy resin varnishes (R1, R2, R4, RH1 to RH3) obtained in Examples 1, 2 and 4 and Comparative Examples 1 to 3, and 2 parts of A5 as the epoxy resin. A resin composition was obtained by blending 2.5 parts of H1 as a curing agent in a 50% MEK solution and 0.6 parts of C2 as a curing accelerator in a 20% MEK solution. Further, these were applied to an iron plate so that the film thickness after drying was 100 and 150 μm, and dried at 150 ° C. for 1 hour using a dryer to obtain a film-like cured product. Tg, dielectric properties, and folding resistance were measured, respectively. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000018
 
Figure JPOXMLDOC01-appb-T000018
 
 表3からわかるように、実施例1~12に示す本発明のフェノキシ樹脂は耐熱性、誘電特性、及び耐折性に優れる。また、表4からわかるように、本発明の樹脂組成物からなる硬化物も耐熱性、誘電特性、及び耐折性に優れる。 As can be seen from Table 3, the phenoxy resin of the present invention shown in Examples 1 to 12 is excellent in heat resistance, dielectric properties, and folding resistance. Further, as can be seen from Table 4, the cured product made of the resin composition of the present invention is also excellent in heat resistance, dielectric properties, and folding resistance.
産業上の利用の可能性Possibility of industrial use
 本発明のフェノキシ樹脂及び樹脂組成物は、接着剤、塗料、土木用建築材料、電気・電子部品の絶縁材料等、様々な分野に適用可能であり、特に電気・電子分野における絶縁注型、積層材料、封止材料等として有用である。本発明のフェノキシ樹脂及びそれを含む樹脂組成物は、多層プリント配線基板、キャパシタ等の電気・電子回路用積層板、フィルム状接着剤、液状接着剤等の接着剤、半導体封止材料、アンダーフィル材料、3D-LSI用インターチップフィル材料、絶縁シート、プリプレグ、放熱基板等に好適に使用することができる。
 
The phenoxy resin and resin composition of the present invention can be applied to various fields such as adhesives, paints, building materials for civil engineering, and insulating materials for electrical and electronic parts. It is useful as a material, sealing material, etc. The phenoxy resin of the present invention and the resin composition containing the same can be used for multilayer printed wiring substrates, laminated boards for electric / electronic circuits such as capacitors, film-like adhesives, adhesives such as liquid adhesives, semiconductor encapsulants, and underfills. It can be suitably used as a material, an interchip fill material for 3D-LSI, an insulating sheet, a prepreg, a heat radiating substrate, and the like.

Claims (10)

  1.  下記式(1)で表され、重量平均分子量が10,000~200,000であるフェノキシ樹脂。
    Figure JPOXMLDOC01-appb-C000001
     
    式中、Xは独立に下記式(2)及び式(3)で表されるジオキシ基を含む2価の基であり、Yはそれぞれ独立に、水素原子、炭素数1~20の炭化水素基を有するアシル基、又はグリシジル基である。Zは炭素数1~20の炭化水素基を有するアシル基又は水素原子であり、5モル%以上は上記アシル基である。nは繰り返し数の平均値であり、15以上500以下である。
    Figure JPOXMLDOC01-appb-C000002
     
    式(2)及び式(3)中、Rはそれぞれ独立に、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~12のアリール基、炭素数7~13のアラルキル基、炭素数6~12のアリールオキシ基、炭素数7~13のアラルキルオキシ基、炭素数2~12のアルケニル基、及び炭素数2~12のアルキニル基からなる群れから選ばれる基であり、iは0~4の整数であり、jは0~6の整数である。
    A phenoxy resin represented by the following formula (1) and having a weight average molecular weight of 10,000 to 200,000.
    Figure JPOXMLDOC01-appb-C000001

    In the formula, X is a divalent group containing a dioxy group represented by the following formulas (2) and (3) independently, and Y is a hydrogen atom and a hydrocarbon group having 1 to 20 carbon atoms, respectively. It is an acyl group or a glycidyl group having. Z is an acyl group or a hydrogen atom having a hydrocarbon group having 1 to 20 carbon atoms, and 5 mol% or more is the above acyl group. n is the average value of the number of repetitions, which is 15 or more and 500 or less.
    Figure JPOXMLDOC01-appb-C000002

    In formulas (2) and (3), R independently has an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and 7 to 13 carbon atoms. A group selected from a group consisting of an aralkyl group, an aryloxy group having 6 to 12 carbon atoms, an aralkyloxy group having 7 to 13 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, and an alkynyl group having 2 to 12 carbon atoms. , I is an integer of 0 to 4, and j is an integer of 0 to 6.
  2.  請求項1に記載のフェノキシ樹脂と、硬化剤とを含む樹脂組成物。 A resin composition containing the phenoxy resin according to claim 1 and a curing agent.
  3.  フェノキシ樹脂の固形分100質量部に対し、硬化剤を固形分として0.1~100質量部を含む請求項2に記載の樹脂組成物。 The resin composition according to claim 2, which contains 0.1 to 100 parts by mass of a curing agent as a solid content with respect to 100 parts by mass of the solid content of the phenoxy resin.
  4.  請求項1に記載のフェノキシ樹脂と、エポキシ樹脂及び硬化剤を含み、フェノキシ樹脂とエポキシ樹脂の固形分の質量比が、99/1~1/99である請求項2に記載の樹脂組成物。 The resin composition according to claim 2, which comprises the phenoxy resin according to claim 1 and an epoxy resin and a curing agent, and the mass ratio of the solid content of the phenoxy resin to the epoxy resin is 99/1 to 1/99.
  5.  フェノキシ樹脂とエポキシ樹脂の固形分の合計100質量部に対し、硬化剤を固形分として0.1~100質量部を含む請求項4に記載の樹脂組成物。 The resin composition according to claim 4, which contains 0.1 to 100 parts by mass of a curing agent as a solid content with respect to a total of 100 parts by mass of the solid content of the phenoxy resin and the epoxy resin.
  6.  硬化剤が、アクリル酸エステル樹脂、メラニン樹脂、尿素樹脂、フェノール樹脂、酸無水物化合物、アミン系化合物、イミダゾール系化合物、アミド系化合物、カチオン重合開始剤、有機ホスフィン類、ポリイソシアネート化合物、ブロックイソシアネート化合物、及び活性エステル系硬化剤からなる群から選ばれる少なくとも1種である請求項2~5のいずれか1項に記載の樹脂組成物。 Hardeners are acrylic acid ester resin, melanin resin, urea resin, phenol resin, acid anhydride compound, amine compound, imidazole compound, amide compound, cationic polymerization initiator, organic phosphines, polyisocyanate compound, blocked isocyanate. The resin composition according to any one of claims 2 to 5, which is at least one selected from the group consisting of a compound and an active ester-based curing agent.
  7.  請求項2~6のいずれか1項に記載の樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the resin composition according to any one of claims 2 to 6.
  8.  請求項2~6のいずれか1項に記載の樹脂組成物を用いてなる電気・電子回路用積層板。 A laminated board for an electric / electronic circuit using the resin composition according to any one of claims 2 to 6.
  9.  下記式(7)で表される2官能エポキシ樹脂と、下記式(8)で表される化合物とを反応させ、重量平均分子量が10,000~200,000である下記式(1)で表されるフェノキシ樹脂を得ることを特徴とするフェノキシ樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000003
     
    式中、Xは独立に下記式(2)又は式(3)で表されるジオキシ基を含む2価の基であり、式(7)と式(8)のX中には全体として、式(2)及び式(3)で表されるジオキシ基を含む。
    は炭素数1~20の炭化水素基を有するアシル基又は水素原子であり、5モル%以上は上記アシル基である。ここで、式(8)で表される化合物は、Zの両者がアシル基である化合物、一方がアシル基である化合物及び両方が水素原子である化合物から選ばれる2種以上の混合物であってもよい。
    mは繰り返し数の平均値であり0以上6以下である。
    Figure JPOXMLDOC01-appb-C000004
     
    式中、Rはそれぞれ独立に、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~12のアリール基、炭素数7~13のアラルキル基、炭素数6~12のアリールオキシ基、炭素数7~13のアラルキルオキシ基、炭素数2~12のアルケニル基及び炭素数2~12のアルキニル基からなる群れから選ばれる基であり、iは0~4の整数であり、jは0~6の整数である。
    Figure JPOXMLDOC01-appb-C000005
     
    式中、Xは独立に上記式(2)及び式(3)で表されるジオキシ基を含む2価の基であり、Yはそれぞれ独立に、水素原子、炭素数1~20の炭化水素基を有するアシル基、又はグリシジル基である。Zは炭素数1~20の炭化水素基を有するアシル基又は水素原子であり、5モル%以上は上記アシル基である。nは繰り返し数の平均値であり、15以上500以下である。
    The bifunctional epoxy resin represented by the following formula (7) is reacted with the compound represented by the following formula (8) and represented by the following formula (1) having a weight average molecular weight of 10,000 to 200,000. A method for producing a phenoxy resin, which comprises obtaining a phenoxy resin to be produced.
    Figure JPOXMLDOC01-appb-C000003

    In the formula, X 1 is a divalent group containing a dioxy group independently represented by the following formula (2) or formula (3), and is included in X 1 of the formulas (7) and (8) as a whole. , A dioxy group represented by the formula (2) and the formula (3).
    Z 1 is an acyl group or a hydrogen atom having a hydrocarbon group having 1 to 20 carbon atoms, and 5 mol% or more is the above acyl group. Here, the compound represented by the formula (8) is a mixture of two or more selected from a compound in which both of Z 1 are acyl groups, a compound in which one is an acyl group, and a compound in which both are hydrogen atoms. You may.
    m is the average value of the number of repetitions and is 0 or more and 6 or less.
    Figure JPOXMLDOC01-appb-C000004

    In the formula, R is independently an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, and 6 to 12 carbon atoms. It is a group selected from a group consisting of an aryloxy group, an aralkyloxy group having 7 to 13 carbon atoms, an alkenyl group having 2 to 12 carbon atoms and an alkynyl group having 2 to 12 carbon atoms, and i is an integer of 0 to 4. Yes, j is an integer from 0 to 6.
    Figure JPOXMLDOC01-appb-C000005

    In the formula, X is a divalent group containing a dioxy group represented by the above formulas (2) and (3) independently, and Y is a hydrogen atom and a hydrocarbon group having 1 to 20 carbon atoms, respectively. It is an acyl group or a glycidyl group having. Z is an acyl group or a hydrogen atom having a hydrocarbon group having 1 to 20 carbon atoms, and 5 mol% or more is the above acyl group. n is the average value of the number of repetitions, which is 15 or more and 500 or less.
  10.  下記式(12)で表されるフェノキシ樹脂のアルコール性水酸基1モルに対して、アシル化剤のアシル基を0.05モル以上2.0モル以下で反応させ、重量平均分子量が10,000~200,000である下記式(1)で表されるフェノキシ樹脂を得ることを特徴とするフェノキシ樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000006
     
    式中、X2は独立に下記式(2)及び式(3)で表されるジオキシ基を含む2価の基であり、Y2はそれぞれ独立に、水素原子又はグリシジル基である。nは繰り返し数の平均値であり、15以上500以下である。
    Figure JPOXMLDOC01-appb-C000007
     
    式中、Rはそれぞれ独立に、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~12のアリール基、炭素数7~13のアラルキル基、炭素数6~12のアリールオキシ基、炭素数7~13のアラルキルオキシ基、炭素数2~12のアルケニル基及び炭素数2~12のアルキニル基からなる群れから選ばれる基であり、iは0~4の整数であり、jは0~6の整数である。
    Figure JPOXMLDOC01-appb-C000008
     
    式中、X、nは、それぞれ式(12)のX、nと同意である。Yはそれぞれ独立に、水素原子、炭素数1~20の炭化水素基を有するアシル基、又はグリシジル基である。Zは炭素数1~20の炭化水素基を有するアシル基又は水素原子であり、5モル%以上は上記アシル基である。
     
    The acyl group of the acylating agent is reacted with 1 mol of the alcoholic hydroxyl group of the phenoxy resin represented by the following formula (12) in an amount of 0.05 mol or more and 2.0 mol or less, and the weight average molecular weight is 10,000 to 10,000 to 2. A method for producing a phenoxy resin, which comprises obtaining a phenoxy resin represented by the following formula (1), which is 200,000.
    Figure JPOXMLDOC01-appb-C000006

    In the formula, X 2 is a divalent group containing a dioxy group represented by the following formulas (2) and (3) independently, and Y 2 is a hydrogen atom or a glycidyl group independently. n is the average value of the number of repetitions, which is 15 or more and 500 or less.
    Figure JPOXMLDOC01-appb-C000007

    In the formula, R is independently an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, and 6 to 12 carbon atoms. It is a group selected from a group consisting of an aryloxy group, an aralkyloxy group having 7 to 13 carbon atoms, an alkenyl group having 2 to 12 carbon atoms and an alkynyl group having 2 to 12 carbon atoms, and i is an integer of 0 to 4. Yes, j is an integer from 0 to 6.
    Figure JPOXMLDOC01-appb-C000008

    In the formula, X and n agree with X 2 and n in the formula (12), respectively. Y is independently a hydrogen atom, an acyl group having a hydrocarbon group having 1 to 20 carbon atoms, or a glycidyl group. Z is an acyl group or a hydrogen atom having a hydrocarbon group having 1 to 20 carbon atoms, and 5 mol% or more is the above acyl group.
PCT/JP2021/008848 2020-03-19 2021-03-08 Phenoxy resin, resin composition, cured product, laminate for electric/electronic circuits, and method for producing phenoxy resin WO2021187180A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022508221A JPWO2021187180A1 (en) 2020-03-19 2021-03-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020048999 2020-03-19
JP2020-048999 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021187180A1 true WO2021187180A1 (en) 2021-09-23

Family

ID=77771846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008848 WO2021187180A1 (en) 2020-03-19 2021-03-08 Phenoxy resin, resin composition, cured product, laminate for electric/electronic circuits, and method for producing phenoxy resin

Country Status (3)

Country Link
JP (1) JPWO2021187180A1 (en)
TW (1) TW202142585A (en)
WO (1) WO2021187180A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070921A1 (en) * 2020-09-30 2022-04-07 日鉄ケミカル&マテリアル株式会社 Modified phenoxy resin, method for producing same, resin composition, cured product, and laminated board for electrical/electronic circuit
WO2022255231A1 (en) * 2021-06-04 2022-12-08 日鉄ケミカル&マテリアル株式会社 Modified epoxy resin, resin composition, cured product, laminate for electric/electronic circuits, and modified epoxy resin production method
WO2023053875A1 (en) * 2021-09-29 2023-04-06 日鉄ケミカル&マテリアル株式会社 Modified epoxy resin, resin composition, cured object, laminate for electrical/electronic circuit, and method for producing modified epoxy resin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122713A (en) * 1990-09-12 1992-04-23 Hitachi Chem Co Ltd Production of high molecular weight epoxy resin
JP2007277333A (en) * 2006-04-04 2007-10-25 Dainippon Ink & Chem Inc Resin composition, phenoxy resin, coating material composition, adhesive agent composition, adhesive film, prepreg, multilayer printed wiring board and resin-clad copper foil
JP2008231428A (en) * 2008-04-03 2008-10-02 Japan Epoxy Resin Kk High-molecular weight epoxy resin, resin composition for electrical laminate, and electrical laminate
JP2016089165A (en) * 2014-10-29 2016-05-23 三菱化学株式会社 Epoxy resin, epoxy resin composition, cured product, laminate for electric/electronic circuit, and method for producing epoxy resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122713A (en) * 1990-09-12 1992-04-23 Hitachi Chem Co Ltd Production of high molecular weight epoxy resin
JP2007277333A (en) * 2006-04-04 2007-10-25 Dainippon Ink & Chem Inc Resin composition, phenoxy resin, coating material composition, adhesive agent composition, adhesive film, prepreg, multilayer printed wiring board and resin-clad copper foil
JP2008231428A (en) * 2008-04-03 2008-10-02 Japan Epoxy Resin Kk High-molecular weight epoxy resin, resin composition for electrical laminate, and electrical laminate
JP2016089165A (en) * 2014-10-29 2016-05-23 三菱化学株式会社 Epoxy resin, epoxy resin composition, cured product, laminate for electric/electronic circuit, and method for producing epoxy resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070921A1 (en) * 2020-09-30 2022-04-07 日鉄ケミカル&マテリアル株式会社 Modified phenoxy resin, method for producing same, resin composition, cured product, and laminated board for electrical/electronic circuit
JP7487326B2 (en) 2020-09-30 2024-05-20 日鉄ケミカル&マテリアル株式会社 Modified phenoxy resin, its manufacturing method, resin composition, cured product, and laminate for electric/electronic circuits
WO2022255231A1 (en) * 2021-06-04 2022-12-08 日鉄ケミカル&マテリアル株式会社 Modified epoxy resin, resin composition, cured product, laminate for electric/electronic circuits, and modified epoxy resin production method
WO2023053875A1 (en) * 2021-09-29 2023-04-06 日鉄ケミカル&マテリアル株式会社 Modified epoxy resin, resin composition, cured object, laminate for electrical/electronic circuit, and method for producing modified epoxy resin

Also Published As

Publication number Publication date
JPWO2021187180A1 (en) 2021-09-23
TW202142585A (en) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2021187180A1 (en) Phenoxy resin, resin composition, cured product, laminate for electric/electronic circuits, and method for producing phenoxy resin
CN110194843B (en) Phosphorus-containing phenoxy resin, resin composition, material for circuit board, and cured product
WO2007046316A1 (en) Epoxy resin, curable resin composition and cured product thereof
TWI753136B (en) Phosphorus-containing phenolic compounds, phosphorus-containing epoxy resins, curable resin compositions thereof or epoxy resin compositions and cured products thereof
JP6956570B2 (en) Phosphorus-containing epoxy resin, its manufacturing method, epoxy resin composition and its cured product
JP7359639B2 (en) Phenoxy resin, its manufacturing method, its resin composition and cured product
JP7244427B2 (en) Phosphorus-containing phenoxy resin, resin composition thereof, and cured product
TWI423996B (en) A culture thermoplastic polyhydroxy polyether resin and a resin composition having the same
JP5326188B2 (en) Resin composition, phenoxy resin, coating composition, adhesive composition, adhesive film, prepreg, multilayer printed wiring board, and resin-coated copper foil
JP7487326B2 (en) Modified phenoxy resin, its manufacturing method, resin composition, cured product, and laminate for electric/electronic circuits
JP7325201B2 (en) Phosphorus-containing epoxy resin, epoxy resin composition, and cured product thereof
CN112823175B (en) Curable resin composition, cured product, and sheet-shaped molded article
WO2021193273A1 (en) Phosphorus-containing phenoxy resin, resin composition, cured product, laminated plate for electric/electronic circuits, and method for producing phosphorus-containing phenoxy resin
JP7277126B2 (en) A phenoxy resin, a resin composition thereof, a cured product thereof, and a method for producing the same.
WO2022255231A1 (en) Modified epoxy resin, resin composition, cured product, laminate for electric/electronic circuits, and modified epoxy resin production method
WO2023042650A1 (en) Modified epoxy resin, resin composition, cured article, laminated board for electric/electronic circuits, and method for producing modified epoxy resin
WO2023053875A1 (en) Modified epoxy resin, resin composition, cured object, laminate for electrical/electronic circuit, and method for producing modified epoxy resin
TWI807099B (en) Phosphorus-containing curing agent, epoxy resin composition containing the phosphorus-containing curing agent and epoxy resin, and cured product thereof
JP7545880B2 (en) Epoxy resin, its manufacturing method, epoxy resin composition, cured product, and laminate for electric/electronic circuits
WO2022255122A1 (en) Phosphorus-containing epoxy resin, resin composition, cured product, laminated board for electric/electronic circuits, and method for producing phosphorus-containing epoxy resin
WO2021045085A1 (en) Curable resin composition, dry film and cured product of same, and electronic component containing said cured product
JP2022125980A (en) Modified epoxy resin, resin composition, cured product, laminate for electric/electronic circuits, and method for producing modified epoxy resin
JP2023117721A (en) Modified epoxy resin, resin composition, cured product, laminate for electric and electronic circuits, and method for producing modified epoxy resin
JP2024079607A (en) Acyloxy group-containing polyfunctional epoxy resin, epoxy resin composition, cured product, prepreg, resin sheet, and laminate
JP2024121540A (en) Phenoxy resin, resin composition, cured product, fiber-reinforced plastic, laminate, and method for producing phenoxy resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508221

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770447

Country of ref document: EP

Kind code of ref document: A1