WO2021186973A1 - Motor device - Google Patents

Motor device Download PDF

Info

Publication number
WO2021186973A1
WO2021186973A1 PCT/JP2021/005249 JP2021005249W WO2021186973A1 WO 2021186973 A1 WO2021186973 A1 WO 2021186973A1 JP 2021005249 W JP2021005249 W JP 2021005249W WO 2021186973 A1 WO2021186973 A1 WO 2021186973A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor core
hole
shaft
holding
Prior art date
Application number
PCT/JP2021/005249
Other languages
French (fr)
Japanese (ja)
Inventor
雄太郎 城
吉田 靖
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Publication of WO2021186973A1 publication Critical patent/WO2021186973A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a miniaturized motor device.
  • Motor devices used as drive sources for sunroof devices mounted on vehicles such as automobiles are arranged in narrow spaces such as inside the doors and ceilings of vehicles, so it is desirable that they be miniaturized. Therefore, in order to make the motor device smaller, for example, it has been devised to make a part of the shaft of the motor device thinner.
  • Patent Document 1 describes a motor having a shaft structure having a different thickness and integrally provided with a first shaft portion and a second shaft portion. The device is shown.
  • the shaft of the motor device described in Patent Document 1 includes a thick portion and a thin portion, the coaxiality between the thick portion and the thin portion may deteriorate, and the runout due to rotation may also increase. There is sex. Further, since the rotor core is fixed to the shaft, the coaxiality and vibration of the rotor core are added, and there is a possibility that the sound and vibration become loud.
  • An object of the present invention is to provide a miniaturized motor device while improving performance.
  • One aspect of the present invention is an annular stator, a coil wound around the stator, a shaft provided inside the stator in the radial direction and rotating around the rotation axis, and fixed to the shaft. It is provided with a through hole penetrating along the rotation axis, and further has a holding member centered on the rotation axis in the radial direction, and a magnet provided on the outer peripheral surface of the holding member. Further, the holding member is a pressure member provided with a fixing portion to be press-fitted into the shaft and a holding portion for holding the magnet, and the through hole is a first through hole provided in the fixing portion.
  • the shaft is arranged in the first through hole and is not arranged in the second through hole, including the second through hole provided in the holding portion, and the fixing portion and the holding portion. Are provided at positions that do not overlap in the direction along the rotation axis.
  • the holding member is a forged member.
  • a cylindrical cover is provided to cover the magnet, and the end of the cover is fixed to the fixing portion of the cover.
  • the fixing portion includes a portion in which the radial thickness of the fixing portion is thicker than the radial thickness of the holding portion.
  • FIG. 5 is an exploded perspective view of the rotor core unit of the motor device shown in FIG. 2 as viewed from the magnet cover side. It is a partial perspective view which shows the fixed state of the magnet cover in the motor apparatus shown in FIG. It is an external view which looked at the fixed state of the magnet cover shown in FIG. 10 from the rear side. It is a perspective view which shows the mounting state of the magnet in the rotor core unit of the motor apparatus shown in FIG. It is an external view of the rotor core unit of Embodiment 2 of this invention. It is an exploded perspective view of the rotor core unit shown in FIG. (A) and (b) are a cross-sectional view and a partial cross-sectional view of the rotor core unit shown in FIG. 14 along the axial direction.
  • the sunroof device 10 includes a roof panel 11.
  • the roof panel 11 opens and closes the opening 14 formed in the roof 13 of the vehicle 12.
  • a pair of shoes 15a and 15b are fixed to both sides of the roof panel 11 along the vehicle width direction (vertical direction in the drawing).
  • guide rails 16 extending in the front-rear direction (left-right direction in the drawing) of the vehicle 12 are fixed on both sides of the opening 14 of the roof 13 along the vehicle width direction.
  • the pair of shoes 15a and 15b are guided by the corresponding pair of guide rails 16, so that the roof panel 11 can be moved in the front-rear direction of the vehicle 12, that is, can be opened and closed.
  • One ends of the drive cables 17a and 17b with gears are connected to each of the shoes 15b arranged on the rear side (right side in the figure) of the vehicle 12.
  • the other ends of these drive cables 17a and 17b are routed to the front side (left side in the drawing) of the vehicle 12 with respect to the opening 14.
  • a sunroof motor (motor device) 20 is mounted inside the roof 13 arranged between the opening 14 and the windshield 18 on the front side of the vehicle 12.
  • the other ends of the pair of drive cables 17a and 17b are meshed with the output gear 42b provided on the sunroof motor 20.
  • the sunroof motor 20 is driven, the pair of shoes 15a and 15b are moved in opposite directions as the output gear 42b rotates.
  • the roof panel 11 is pushed and pulled by the pair of drive cables 17a and 17b via the pair of shoes 15b, whereby the roof panel 11 is automatically opened and closed.
  • the term “axial direction” refers to the direction of the rotation axis of the shaft of the motor unit
  • the term “circumferential direction” refers to the circumferential direction of the shaft
  • the term “diameter direction” refers to the direction of the shaft. It shall refer to the radial direction.
  • the sunroof motor 20 has a motor portion 21 and a gear portion 40.
  • the motor unit 21 is provided inside the annular stator 29 shown in FIG. 4, the coil 28 wound around the stator 29, and the stator 29 in the radial direction, and rotates around the rotation axis 31 shown in FIG. It has a rotor shaft (shaft) 27 and. Further, the motor unit 21 is fixed to the rotor shaft 27, has a through hole 22e penetrating along the rotation axis 31, and has a rotor core (holding member) 22 centered on the rotation axis 31 in the radial direction, and a rotor core. It has magnets 23a, 23b, 23c, 23d shown in FIG. 4 provided on the outer peripheral surface of 22.
  • the magnet 23 is provided on the outer peripheral surface of the rotor core 22 in a state of being divided into four parts. That is, on the outer peripheral surface of the rotor core 22, magnets 23a, 23b, 23c, 23d are provided along the circumferential direction thereof.
  • the rotor shaft 27 is rotatably supported by a ball bearing 44. Then, the rotor core 22 is fixed to the rotor shaft 27. Specifically, the rotor core 22 and the rotor shaft 27 are fixed by press fitting.
  • the stator 29 includes a plurality of teeth 30 projecting radially inward from the inner peripheral surface of the stator 29, and a coil 28 is wound around each of the plurality of teeth 30. Has been done.
  • the gear portion 40 is provided with a gear case 41.
  • the opening portion of the gear case 41 is closed by a gear cover (not shown).
  • This gear cover is formed in a substantially flat plate shape by a resin material such as plastic, and can be easily attached to the gear case 41 by a so-called snap-fit engagement structure.
  • the gear case 41 is provided with a worm wheel accommodating portion 41a.
  • the worm wheel accommodating portion 41a is provided so as to be recessed in the thickness direction of the gear case 41 and on the side opposite to the gear cover side.
  • a worm wheel 42 forming a deceleration mechanism is rotatably housed in the worm wheel accommodating portion 41a.
  • the worm wheel 42 is formed of a resin material such as plastic in a substantially disk shape, and a worm provided on the worm shaft 43 formed in succession with the rotor shaft 27 is provided on the outer side in the radial direction thereof, as shown in FIG. A tooth portion 42a to which 43a is engaged is formed. Further, the axial base end side of the output gear 42b is fixed to the rotation center of the worm wheel 42.
  • the output gear 42b is made of steel, and its axial intermediate portion is rotatably supported by the boss portion of the gear case 41 shown in FIG.
  • the axial tip side of the output gear 42b extends to the outside of the gear case 41, whereby the other ends of the pair of drive cables 17a and 17b are engaged with the tip end side of the output gear 42b (FIG. FIG. 1).
  • the motor unit 21 of the first embodiment includes a rotor core 22, four magnets 23a, 23b, 23c, 23d, a magnet holder 24, and a magnet cover (cover) as the magnet unit 26. 25 and are provided.
  • the rotor core 22 of the first embodiment shown in FIG. 6 is an annular member formed by heading, and includes a through hole 22e penetrating along the rotation axis 31.
  • the rotor core 22 has an annular fixing portion 22a, which is a portion fixed to the rotor shaft 27 by press fitting, and four magnets 23a, 23b, 23c, 23d (see FIG. 5). It is provided with an annular holding portion 22b which is a portion for holding the above.
  • the through hole 22e includes a first through hole 22f provided in the fixing portion 22a and a second through hole 22g communicating with the first through hole 22f and provided in the holding portion 22b.
  • the rotor shaft 27 is arranged in the first through hole 22f, but is not arranged in the second through hole 22g. Further, the fixing portion 22a and the holding portion 22b are provided at positions where they do not overlap with each other in the direction along the rotation axis 31 of the rotor core 22.
  • the press-fitting of the rotor shaft 27 is performed only on the fixed portion 22a. That is, as shown in FIG. 7B, the rotor shaft 27 penetrates to the end of the first through hole 22f of the fixing portion 22a (the boundary portion with the second through hole 22g), but the holding portion 22b It does not enter the second through hole 22g. That is, it does not enter the region of the holding portion 22b of the rotor core 22. Therefore, the space directly below the holding portion 22b of the rotor core 22 is hollow.
  • the fixing portion 22a of the rotor core 22 includes a portion in which the radial thickness of the fixing portion 22a is thicker than the radial thickness of the holding portion 22b.
  • the fixing portion 22a includes a flange portion 22c whose radial thickness is thicker than the radial thickness of the holding portion 22b. That is, as shown in FIG. 7B, the radial thickness T1 of the flange portion 22c in the fixing portion 22a is larger than the radial thickness T2 of the holding portion 22b (T1> T2).
  • the fixing portion 22a of the rotor core 22 is formed by collecting excess meat when the rotor core 22 is formed by heading, and at that time, the flange portion 22c which is a thick portion is formed by collecting more excess meat. do.
  • each of the four magnets 23a, 23b, 23c, 23d shown in FIG. 5 is evenly divided into four regions in the circumferential direction and positioned.
  • Four elongated ribbed protrusions 22d are formed at equal intervals.
  • each of the four magnets 23a, 23b, 23c, and 23d is arranged on the outer peripheral surface of the holding portion 22b at equal intervals and positioned in the circumferential direction of the holding portion 22b.
  • the flange portion 22c of the rotor core 22 also has a function of positioning the rotor shaft 27 side in the direction along the rotation axis 31 of each end of the four magnets 23a, 23b, 23c, 23d.
  • a magnet holder 24 is provided as a member for holding the ends of the four magnets 23a, 23b, 23c, and 23d on the side opposite to the rotor shaft 27 side in the direction along the rotation axis 31 of each. That is, each of the four magnets 23a, 23b, 23c, and 23d is sandwiched and held by the flange portion 22c of the rotor core 22 and the magnet holder 24 on the outer peripheral surface of the rotor core 22.
  • the four magnets 23a, 23b, 23c, and 23d are covered with a cylindrical (cylindrical) magnet cover 25.
  • the magnet cover 25 has an protruding portion 25a, which is an end portion thereof, fixed to the flange portion 22c of the fixing portion 22a. As a result, it is possible to prevent the four magnets 23a, 23b, 23c, and 23d from falling off from the rotor core 22.
  • the rotor shaft 27 is press-fitted only into the first through hole 22f of the fixing portion 22a of the rotor core 22 formed by pressure fabrication, a thin portion can be formed on the rotor shaft 27.
  • the rotor shaft 27 can be made into a straight shape. As a result, the rotor shaft 27 can be shortened. That is, since the rotor shaft 27 can be shortened, the sunroof motor 20 can be made smaller and lighter.
  • the rotor shaft 27 has a straight shape and does not require a thin portion, a shaft having a stepped structure having a thick portion and a thin portion is not adopted. Therefore, it is possible to prevent the deterioration of the coaxiality and the deterioration of the runout due to the rotation that occur in the case of the shaft having the stepped structure. That is, in the sunroof motor 20, by making the rotor shaft 27 a straight shape and shortening the shaft, the coaxiality between the rotor shaft 27 and the rotor core 22 can be increased, and the magnitude of shaft runout due to rotation is reduced. can do.
  • the material cost can be reduced and the cost of the sunroof motor 20 can be reduced.
  • the press-fitting of the rotor shaft 27 into the rotor core 22 is completed by the first through hole 22f of the fixing portion 22a of the rotor core 22. That is, the rotor shaft 27 is arranged directly below the fixed portion 22a of the rotor core 22, but the rotor shaft 27 is not arranged directly below the holding portion 22b of the rotor core 22. As a result, the space directly below the holding portion 22b has a hollow structure. Since the fixing portion 22a includes a flange portion 22c which is a thick portion formed by collecting excess meat during pressing, no pressure is applied to the inside of the magnet 23 when the rotor shaft 27 is press-fitted. As a result, the influence of the rotor shaft 27 on the magnet 23 at the time of press fitting can be reduced, and the magnet 23 can be prevented from being deformed or cracked.
  • the press-fitting position of the rotor shaft 27 is determined by the position of the jig to be press-fitted from the opposite side at the time of press-fitting. That is, the jig is inserted into the rotor core 22 from the opening on the side opposite to the pressure inlet of the rotor shaft 27, and the jig is inserted up to the boundary portion between the holding portion 22b and the fixing portion 22a. Then, when the rotor shaft 27 is press-fitted, the rotor shaft 27 is press-fitted until the rotor shaft 27 abuts on the jig.
  • the press-fitting position of the rotor shaft 27 can be easily determined, and the press-fitting position can be easily managed.
  • the fixing portion 22a and the end face of the rotor core 22 which are the press-fitting points are machined, whereby the press-fitting accuracy can be ensured.
  • the press-fitting portion of the rotor shaft 27 may be knurled to prevent the rotor shaft 27 from coming off or rotating.
  • the sunroof is simply changed from the length D shown in FIG. 8 (a) to the length D + ⁇ shown in FIG. 8 (b) by changing the length of the rotor core 22 (magnet 23).
  • the performance of the motor 20 can be changed.
  • the motor device is a low torque type
  • the length of the rotor core 22 is the length D + ⁇ shown in FIG. 8 (b).
  • it becomes a high torque type motor device. That is, it is possible to correspond to the variation of the characteristics of the motor device only by changing the length of the magnet 23.
  • the four magnets 23a, 23b, 23c, and 23d are provided on the outer peripheral surface of the holding portion 22b of the rotor core 22 and are covered with the cylindrical magnet cover 25. ..
  • the four magnets 23a, 23b, 23c, 23d are housed in the cylindrical magnet cover 25.
  • each of the four magnets 23a, 23b, 23c, 23d is attached to the outer peripheral surface of the holding portion 22b of the rotor core 22, and further, the outer peripheral portions of the magnets 23a, 23b, 23c, 23d, respectively. Is covered with a cylindrical magnet cover 25.
  • the magnet cover 25 is attached to the flange portion 22c by caulking a plurality of protruding portions 25a provided at the end portions to the flange portion 22c of the rotor core 22. Has been done. At that time, the outer diameter of the flange portion 22c is larger than the outer diameter of the magnet 23. Therefore, even when the magnet cover 25 is fixed to the flange portion 22c by caulking, the caulking load is received by the flange portion 22c of the fixing portion 22a of the rotor core 22, so that stress is generated on the magnet 23 in the magnet cover 25. It is possible to prevent the magnet 23 from cracking.
  • the fixing portion to the flange portion 22c is not limited to the protruding portion 25a, but is, for example, a fixing portion provided over the entire circumference of the end portion of the cylindrical magnet cover 25.
  • the flange portion 22c can be fixed by rolling caulking.
  • the magnet cover 25 is fixed by mechanical fixing by caulking instead of fixing by using an adhesive.
  • fixing with an adhesive the curing time of the adhesive and the curing furnace are required.
  • the process can be simplified by shortening the time and the capital investment can be suppressed.
  • four convex portions 24a are provided on the back surface side of the magnet holder 24 at equal intervals with respect to the circumferential direction of the rotation axis 31.
  • the four protrusions 24b are provided on the surface opposite to the surface on which the four protrusions 24a are provided at equal intervals with respect to the circumferential direction of the rotation axis 31.
  • These four protrusions 24b are provided so as to be arranged at the same positions as the four protrusions 22d provided on the holding portion 22b of the rotor core 22 with respect to the circumferential direction of the rotation axis 31.
  • notched portions 25b are provided on the surface of the end portion of the magnet cover 25 opposite to the end portion provided with the protruding portion 25a. These four notches 25b are provided at equal intervals with respect to the circumferential direction of the rotation axis 31, and are arranged at the same positions as the four convex portions 24a of the magnet holder 24 with respect to the circumferential direction of the rotation axis 31. It is provided so that it can be done.
  • each of the four magnets 23a, 23b, 23c, and 23d is positioned with respect to the circumferential direction of the rotor core 22 by the protrusion 22d of the rotor core 22 and the protrusion 24b of the magnet holder 24. , The convex portion 24a of the magnet holder 24 and the central portion of each magnet 23 are at the same position. As a result, the convex portion 24a of the magnet holder 24 can be used for positioning in the magnetizing process.
  • each magnet 23 has an R shape. As a result, even when the caulking load when fixing the magnet cover 25 by caulking is applied to the magnet 23, the caulking load is not applied to the corners of the magnet 23, so that the corners of the magnet 23 are prevented from cracking. be able to.
  • the magnet unit 26 shown in FIG. 9 when the magnet unit 26 shown in FIG. 9 is conveyed, it can be chucked to the flange portion 22c of the rotor core 22. As a result, it is not necessary to apply a load to the magnet 23 or the like during transportation, so that cracking or chipping of the magnet 23 can be suppressed.
  • the cross-sectional shape of the stator 29 is substantially hexagonal.
  • the thickness L of the stator 29 can be reduced as compared with the case where the cross-sectional shape is circular. That is, by reducing the thickness of the stator 29, the sunroof motor 20 can be made thinner. Since it is important to reduce the thickness of the sunroof motor 20 in the vehicle portion to which the sunroof device 10 shown in FIG. 1 is attached, the sunroof motor 20 of the first embodiment is assembled to the sunroof device 10. Very effective.
  • the electric power supplied from the outside to the controller board (not shown) via the terminal 32 shown in FIG. 2 is selectively supplied to each coil 28 of the motor unit 21 shown in FIG. Then, a predetermined interlinkage magnetic flux is formed on the stator 29 (teeth 30), and a magnetic attraction force or a repulsive force is formed between the interlinkage magnetic flux and the effective magnetic flux formed by the magnet 23 provided on the rotor core 22. Occurs. As a result, the rotor core 22 continuously rotates.
  • the motor portion 21 has a structure in which magnets 23a, 23b, 23c, and 23d are arranged on the outer peripheral surface of the holding portion 22b of the rotor core 22. Therefore, the inductance value in the d-axis direction, which is the direction of the magnetic flux of the magnet 23, can be reduced.
  • the outer peripheral surface of the holding portion 22b of the rotor core 22 is provided with four protrusions 22d at equal intervals in the circumferential direction.
  • the protrusion 22d is formed so as to project outward in the radial direction and extend in the entire axial direction of the rotor core 22. It is preferable that each of the four protrusions 22d has a width dimension in the circumferential direction at the outer end in the radial direction set to 20 ° or more and 40 ° or less in the electric angle ⁇ .
  • the width dimension of the protrusion 22d in the circumferential direction is set to 40 ° or less in the electric angle ⁇ in this way, the inductance value in the q-axis direction magnetically orthogonal to the d-axis can be reduced. As a result, a demagnetizing field can be suppressed and a high reluctance torque can be obtained.
  • the rotor core unit of the second embodiment will be described. As shown in FIG. 14, the rotor core unit of the second embodiment is provided with a rotor core 22, four magnets 23a, 23b, 23c, 23d, and a magnet cover (cover) 25 as a magnet unit 26. ing. The difference from the magnet unit 26 of the first embodiment is that it does not have the magnet holder 24 as shown in FIG.
  • the number of parts in the magnet unit 26 can be reduced, and the assembly of the magnet unit 26 can be facilitated and the cost can be reduced.
  • a fixed portion of the rotor core 22 to the flange portion 22c of the magnet cover 25 is provided over the entire circumference of the end portion of the cylindrical magnet cover 25.
  • the caulking portion is 25c.
  • the rotor core 22 of the second embodiment has substantially the same structure as the rotor core 22 of the first embodiment, but as shown in FIGS. 15A and 15B, the second through hole 22g of the rotor core 22
  • the portion forming the above is the thin portion 22h.
  • the diameter ⁇ 2 of the second through hole 22g is larger than the diameter ⁇ 1 of the first through hole 22f. ( ⁇ 1 ⁇ 2). That is, the inner peripheral wall of the through hole 22e of the rotor core 22 has a stepped structure, and the wall thickness of the region of the holding portion 22b of the rotor core 22 is thinner than the wall thickness of the region of the fixed portion 22a. Therefore, the diameter ⁇ 2 of the second through hole 22g in the region of the holding portion 22b is larger than the diameter ⁇ 1 of the first through hole 22f in the region of the fixing portion 22a.
  • each member of the rotor core unit of the second embodiment (rotor core 22, four magnets 23a, 23b, 23c, 23d and the magnet cover 25), each member of the rotor core unit of the first embodiment Since each structure is the same, the duplicate description will be omitted.
  • the present invention is not limited to the above-described embodiment and can be variously modified without departing from the gist thereof.
  • the cross-sectional shape of the stator 29 incorporated in the sunroof motor 20 is substantially hexagonal has been taken up, but the cross-sectional shape of the stator 29 may be circular.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

The present invention improves the compactness and increases the performance of a motor device. This motor device has: a ring-shaped stator; a coil wound around the stator; a rotor shaft 27 which rotates around a rotational axis 31 and is provided on the inside of the stator in the radial direction thereof; a rotor core 22 which is secured to the rotor shaft 27, is equipped with a through hole 22e passing therethrough along the rotational axis 31, and is radially centered around said rotational axis 31; and a magnet 23 provided to the outer-circumferential surface of the rotor core 22. The rotor core 22 is equipped with a securing part 22a to be secured to the rotor shaft 27, and a holding part 22b for holding the magnet 23, and the through hole 22e includes a first through hole 22f and a second through hole 22g. The rotor shaft 27 is positioned in the first through hole 22f and not in the second through hole 22g. The securing part 22a and the holding part 22b are provided in positions which do not overlap one another in the direction of the rotational axis 31.

Description

モータ装置Motor device
 本発明は、小型化を図ったモータ装置に関する。 The present invention relates to a miniaturized motor device.
 自動車などの車両に搭載されるサンルーフ装置などの駆動源として用いられるモータ装置は、車両のドア内や天井内などの幅狭空間に配置されるため、小型化されていることが望ましい。そこで、モータ装置をより小型化するために、例えば、モータ装置が有するシャフトの一部を細くすることが考案されている。 Motor devices used as drive sources for sunroof devices mounted on vehicles such as automobiles are arranged in narrow spaces such as inside the doors and ceilings of vehicles, so it is desirable that they be miniaturized. Therefore, in order to make the motor device smaller, for example, it has been devised to make a part of the shaft of the motor device thinner.
 なお、小型化が図られたモータ装置として、例えば、特許文献1には、太さが異なり、かつ、一体に設けられた第1軸部と第2軸部とを備えたシャフト構造を有するモータ装置が示されている。 As a miniaturized motor device, for example, Patent Document 1 describes a motor having a shaft structure having a different thickness and integrally provided with a first shaft portion and a second shaft portion. The device is shown.
特開2019-140849号公報Japanese Unexamined Patent Publication No. 2019-140849
 しかしながら、上記特許文献1に記載されたモータ装置のシャフトには、太い部分と細い部分とが含まれているため、太い部分と細い部分の同軸度が悪くなり、さらに回転による振れも大きくなる可能性がある。また、シャフトにはロータコアが固定されるため、ロータコアの同軸度や振れも加わり、音や振動が大きくなる可能性もあることが課題であった。 However, since the shaft of the motor device described in Patent Document 1 includes a thick portion and a thin portion, the coaxiality between the thick portion and the thin portion may deteriorate, and the runout due to rotation may also increase. There is sex. Further, since the rotor core is fixed to the shaft, the coaxiality and vibration of the rotor core are added, and there is a possibility that the sound and vibration become loud.
 本発明の目的は、性能を高めつつ、小型化されたモータ装置を提供することにある。 An object of the present invention is to provide a miniaturized motor device while improving performance.
 本発明の一態様は、環状のステータと、前記ステータに巻かれたコイルと、前記ステータの径方向の内側に設けられ、かつ、回転軸線回りに回転するシャフトと、前記シャフトに固定され、かつ、前記回転軸線に沿って貫通する貫通孔を備え、さらに前記回転軸線を径方向中心とする保持部材と、前記保持部材の外周面に設けられた磁石と、を有する。さらに、前記保持部材は、前記シャフトに圧入される固定部と、前記磁石を保持する保持部とを備えた圧造部材であり、前記貫通孔は、前記固定部に設けられた第1貫通孔と、前記保持部に設けられた第2貫通孔とを含み、前記シャフトは、前記第1貫通孔に配置され、かつ、前記第2貫通孔には配置されず、前記固定部と前記保持部とは、前記回転軸線に沿った方向において重ならない位置に設けられている。 One aspect of the present invention is an annular stator, a coil wound around the stator, a shaft provided inside the stator in the radial direction and rotating around the rotation axis, and fixed to the shaft. It is provided with a through hole penetrating along the rotation axis, and further has a holding member centered on the rotation axis in the radial direction, and a magnet provided on the outer peripheral surface of the holding member. Further, the holding member is a pressure member provided with a fixing portion to be press-fitted into the shaft and a holding portion for holding the magnet, and the through hole is a first through hole provided in the fixing portion. The shaft is arranged in the first through hole and is not arranged in the second through hole, including the second through hole provided in the holding portion, and the fixing portion and the holding portion. Are provided at positions that do not overlap in the direction along the rotation axis.
 本発明の他の態様では、前記保持部材は、圧造部材である。 In another aspect of the present invention, the holding member is a forged member.
 本発明の他の態様では、前記磁石を覆う筒状のカバーが設けられ、前記カバーは、当該カバーの端部が前記固定部に固定されている。 In another aspect of the present invention, a cylindrical cover is provided to cover the magnet, and the end of the cover is fixed to the fixing portion of the cover.
 また、本発明の他の態様では、前記固定部は、当該固定部の径方向の厚さが前記保持部の径方向の厚さより厚い部分を備えている。 Further, in another aspect of the present invention, the fixing portion includes a portion in which the radial thickness of the fixing portion is thicker than the radial thickness of the holding portion.
 本発明によれば、モータ装置において、性能を高めつつ、小型化を図ることができる。 According to the present invention, it is possible to reduce the size of a motor device while improving its performance.
車両のルーフに搭載されたサンルーフ装置を示す概略図である。It is the schematic which shows the sunroof device mounted on the roof of a vehicle. 本発明の実施の形態1のサンルーフモータ(モータ装置)の斜視図である。It is a perspective view of the sunroof motor (motor device) of Embodiment 1 of this invention. 図2に示すモータ装置のシャフトに形成されたウォームとウォームホイールとの噛み合い状態を示す斜視図である。It is a perspective view which shows the meshing state of the worm formed on the shaft of the motor apparatus shown in FIG. 2 and a worm wheel. 図3のA-A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 図2に示すモータ装置のロータコアユニットの分解斜視図である。It is an exploded perspective view of the rotor core unit of the motor apparatus shown in FIG. 図5に示すロータコアの斜視図である。It is a perspective view of the rotor core shown in FIG. (a)、(b)は図5に示すロータコアユニットの軸方向に沿う断面図と部分断面図である。(A) and (b) are a cross-sectional view and a partial cross-sectional view of the rotor core unit shown in FIG. 5 along the axial direction. 図2に示すモータ装置のロータコアユニットのバリエーションを示す図であり、(a)は低トルクタイプ、(b)は高トルクタイプのロータコアユニットである。It is a figure which shows the variation of the rotor core unit of the motor apparatus shown in FIG. 2, (a) is a low torque type rotor core unit, (b) is a high torque type rotor core unit. 図2に示すモータ装置のロータコアユニットをマグネットカバー側から眺めた分解斜視図である。FIG. 5 is an exploded perspective view of the rotor core unit of the motor device shown in FIG. 2 as viewed from the magnet cover side. 図2に示すモータ装置におけるマグネットカバーの固定状態を示す部分斜視図である。It is a partial perspective view which shows the fixed state of the magnet cover in the motor apparatus shown in FIG. 図10に示すマグネットカバーの固定状態を後方側から眺めた外観図である。It is an external view which looked at the fixed state of the magnet cover shown in FIG. 10 from the rear side. 図2に示すモータ装置のロータコアユニットにおけるマグネットの装着状態を示す斜視図である。It is a perspective view which shows the mounting state of the magnet in the rotor core unit of the motor apparatus shown in FIG. 本発明の実施の形態2のロータコアユニットの外観図である。It is an external view of the rotor core unit of Embodiment 2 of this invention. 図13に示すロータコアユニットの分解斜視図である。It is an exploded perspective view of the rotor core unit shown in FIG. (a)、(b)は図14に示すロータコアユニットの軸方向に沿う断面図と部分断面図である。(A) and (b) are a cross-sectional view and a partial cross-sectional view of the rotor core unit shown in FIG. 14 along the axial direction.
 以下、本発明の実施の形態について図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 (実施の形態1)
 まず、本実施の形態1のモータ装置が搭載されるサンルーフ装置について説明する。図1に示すように、サンルーフ装置10は、ルーフパネル11を備えている。ルーフパネル11は、車両12のルーフ13に形成された開口部14を開閉する。ルーフパネル11の車幅方向(図中上下方向)に沿う両側には、一対のシュー15a,15bがそれぞれ固定されている。また、ルーフ13の開口部14の車幅方向に沿う両側には、車両12の前後方向(図中左右方向)に延びるガイドレール16がそれぞれ固定されている。そして、一対のシュー15a,15bが、対応する一対のガイドレール16にそれぞれ案内されることで、ルーフパネル11が、車両12の前後方向に移動自在つまり開閉自在となっている。
(Embodiment 1)
First, a sunroof device on which the motor device of the first embodiment is mounted will be described. As shown in FIG. 1, the sunroof device 10 includes a roof panel 11. The roof panel 11 opens and closes the opening 14 formed in the roof 13 of the vehicle 12. A pair of shoes 15a and 15b are fixed to both sides of the roof panel 11 along the vehicle width direction (vertical direction in the drawing). Further, guide rails 16 extending in the front-rear direction (left-right direction in the drawing) of the vehicle 12 are fixed on both sides of the opening 14 of the roof 13 along the vehicle width direction. The pair of shoes 15a and 15b are guided by the corresponding pair of guide rails 16, so that the roof panel 11 can be moved in the front-rear direction of the vehicle 12, that is, can be opened and closed.
 車両12の後方側(図中右側)に配置されたシュー15bのそれぞれには、ギヤ付きの駆動ケーブル17a,17bの一端が連結されている。これらの駆動ケーブル17a,17bの他端は、開口部14よりも車両12の前方側(図中左側)に取り回されている。 One ends of the drive cables 17a and 17b with gears are connected to each of the shoes 15b arranged on the rear side (right side in the figure) of the vehicle 12. The other ends of these drive cables 17a and 17b are routed to the front side (left side in the drawing) of the vehicle 12 with respect to the opening 14.
 車両12の前方側で、開口部14とフロントガラス18との間に配置されたルーフ13の内部には、サンルーフモータ(モータ装置)20が搭載されている。そして、一対の駆動ケーブル17a,17bの他端が、サンルーフモータ20に設けられた出力ギヤ42bに噛み合わされている。ここで、サンルーフモータ20が駆動されると、出力ギヤ42bの回転に伴い、一対のシュー15a,15bが互いに逆向きに移動される。これにより、ルーフパネル11は、一対のシュー15bを介して一対の駆動ケーブル17a,17bによって押し引きされ、これにより、自動的に開閉される。 A sunroof motor (motor device) 20 is mounted inside the roof 13 arranged between the opening 14 and the windshield 18 on the front side of the vehicle 12. The other ends of the pair of drive cables 17a and 17b are meshed with the output gear 42b provided on the sunroof motor 20. Here, when the sunroof motor 20 is driven, the pair of shoes 15a and 15b are moved in opposite directions as the output gear 42b rotates. As a result, the roof panel 11 is pushed and pulled by the pair of drive cables 17a and 17b via the pair of shoes 15b, whereby the roof panel 11 is automatically opened and closed.
 次に、本実施の形態1のサンルーフモータ20について説明する。なお、以下の説明において、単に軸方向という場合は、モータ部のシャフトの回転軸線方向をいい、単に周方向という場合は、上記シャフトの周方向をいい、単に径方向という場合は、上記シャフトの径方向をいうものとする。 Next, the sunroof motor 20 of the first embodiment will be described. In the following description, the term "axial direction" refers to the direction of the rotation axis of the shaft of the motor unit, the term "circumferential direction" refers to the circumferential direction of the shaft, and the term "diameter direction" refers to the direction of the shaft. It shall refer to the radial direction.
 図2に示すように、サンルーフモータ20は、モータ部21とギヤ部40とを有している。モータ部21は、図4に示す環状のステータ29と、ステータ29に巻かれたコイル28と、ステータ29の径方向の内側に設けられ、かつ、図3に示す回転軸線31の回りに回転するロータシャフト(シャフト)27と、を有している。さらに、モータ部21は、ロータシャフト27に固定されるとともに、回転軸線31に沿って貫通する貫通孔22eを備え、かつ、回転軸線31を径方向中心とするロータコア(保持部材)22と、ロータコア22の外周面に設けられた図4に示すマグネット(磁石)23a,23b,23c,23dと、を有している。 As shown in FIG. 2, the sunroof motor 20 has a motor portion 21 and a gear portion 40. The motor unit 21 is provided inside the annular stator 29 shown in FIG. 4, the coil 28 wound around the stator 29, and the stator 29 in the radial direction, and rotates around the rotation axis 31 shown in FIG. It has a rotor shaft (shaft) 27 and. Further, the motor unit 21 is fixed to the rotor shaft 27, has a through hole 22e penetrating along the rotation axis 31, and has a rotor core (holding member) 22 centered on the rotation axis 31 in the radial direction, and a rotor core. It has magnets 23a, 23b, 23c, 23d shown in FIG. 4 provided on the outer peripheral surface of 22.
 なお、サンルーフモータ20では、マグネット23は、4分割された状態でロータコア22の外周面に設けられている。すなわち、ロータコア22の外周面において、その周方向に沿ってマグネット23a,23b,23c,23dが設けられている。 In the sunroof motor 20, the magnet 23 is provided on the outer peripheral surface of the rotor core 22 in a state of being divided into four parts. That is, on the outer peripheral surface of the rotor core 22, magnets 23a, 23b, 23c, 23d are provided along the circumferential direction thereof.
 また、ロータシャフト27は、図3に示すように、ボールベアリング44によって回転自在に支持されている。そして、ロータコア22は、ロータシャフト27に固定される。具体的には、ロータコア22とロータシャフト27は、圧入によって固定されている。 Further, as shown in FIG. 3, the rotor shaft 27 is rotatably supported by a ball bearing 44. Then, the rotor core 22 is fixed to the rotor shaft 27. Specifically, the rotor core 22 and the rotor shaft 27 are fixed by press fitting.
 また、図4に示すように、ステータ29は、該ステータ29の内周面から径方向内側に向かって突出する複数のティース30を備えており、複数のティース30のそれぞれにコイル28が巻回されている。 Further, as shown in FIG. 4, the stator 29 includes a plurality of teeth 30 projecting radially inward from the inner peripheral surface of the stator 29, and a coil 28 is wound around each of the plurality of teeth 30. Has been done.
 次に、図2に示すように、ギヤ部40には、ギヤケース41が設けられている。ギヤケース41の開口部分は、図示しないギヤカバーによって閉塞されている。このギヤカバーは、プラスチック等の樹脂材料により略平板状に形成され、ギヤケース41に対して所謂スナップフィットの係合構造により容易に装着可能となっている。 Next, as shown in FIG. 2, the gear portion 40 is provided with a gear case 41. The opening portion of the gear case 41 is closed by a gear cover (not shown). This gear cover is formed in a substantially flat plate shape by a resin material such as plastic, and can be easily attached to the gear case 41 by a so-called snap-fit engagement structure.
 また、ギヤケース41には、ウォームホイール収容部41aが設けられている。ウォームホイール収容部41aは、ギヤケース41の厚み方向であって、かつ上記ギヤカバー側とは反対側に窪んで設けられている。そして、ウォームホイール収容部41aには、減速機構を形成するウォームホイール42が回転自在に収容されている。 Further, the gear case 41 is provided with a worm wheel accommodating portion 41a. The worm wheel accommodating portion 41a is provided so as to be recessed in the thickness direction of the gear case 41 and on the side opposite to the gear cover side. A worm wheel 42 forming a deceleration mechanism is rotatably housed in the worm wheel accommodating portion 41a.
 ウォームホイール42は、プラスチック等の樹脂材料により略円板形状に形成され、その径方向外側には、図3に示すように、ロータシャフト27と連なって形成されたウォームシャフト43に設けられたウォーム43aが噛み合わされる歯部42aが形成されている。また、ウォームホイール42の回転中心には、出力ギヤ42bの軸方向基端側が固定されている。ここで、出力ギヤ42bは、鋼製であって、その軸方向中間部が図2に示すギヤケース41のボス部に回転自在に支持されている。そして、出力ギヤ42bの軸方向先端側は、ギヤケース41の外部に延出されており、これにより出力ギヤ42bの先端側には、一対の駆動ケーブル17a,17bの他端が噛み合わされる(図1参照)。 The worm wheel 42 is formed of a resin material such as plastic in a substantially disk shape, and a worm provided on the worm shaft 43 formed in succession with the rotor shaft 27 is provided on the outer side in the radial direction thereof, as shown in FIG. A tooth portion 42a to which 43a is engaged is formed. Further, the axial base end side of the output gear 42b is fixed to the rotation center of the worm wheel 42. Here, the output gear 42b is made of steel, and its axial intermediate portion is rotatably supported by the boss portion of the gear case 41 shown in FIG. The axial tip side of the output gear 42b extends to the outside of the gear case 41, whereby the other ends of the pair of drive cables 17a and 17b are engaged with the tip end side of the output gear 42b (FIG. FIG. 1).
 本実施の形態1のモータ部21には、図5に示すように、マグネットユニット26として、ロータコア22と、4つのマグネット23a,23b,23c,23dと、マグネットホルダ24と、マグネットカバー(カバー)25と、が設けられている。 As shown in FIG. 5, the motor unit 21 of the first embodiment includes a rotor core 22, four magnets 23a, 23b, 23c, 23d, a magnet holder 24, and a magnet cover (cover) as the magnet unit 26. 25 and are provided.
 ここで、本実施の形態1のロータコア22について説明する。図6に示す本実施の形態1のロータコア22は、圧造によって形成された環状の部材であり、回転軸線31に沿って貫通する貫通孔22eを備えている。そして、ロータコア22は、図7(a)に示すように、ロータシャフト27に圧入によって固定される部分である環状の固定部22aと、4つのマグネット23a,23b,23c,23d(図5参照)を保持する部分である環状の保持部22bとを備えている。なお、貫通孔22eは、固定部22aに設けられた第1貫通孔22fと、第1貫通孔22fに連通し、かつ、保持部22bに設けられた第2貫通孔22gとを含んでいる。 Here, the rotor core 22 of the first embodiment will be described. The rotor core 22 of the first embodiment shown in FIG. 6 is an annular member formed by heading, and includes a through hole 22e penetrating along the rotation axis 31. Then, as shown in FIG. 7A, the rotor core 22 has an annular fixing portion 22a, which is a portion fixed to the rotor shaft 27 by press fitting, and four magnets 23a, 23b, 23c, 23d (see FIG. 5). It is provided with an annular holding portion 22b which is a portion for holding the above. The through hole 22e includes a first through hole 22f provided in the fixing portion 22a and a second through hole 22g communicating with the first through hole 22f and provided in the holding portion 22b.
 そして、固定部22aと保持部22bとは一体である。なお、ロータシャフト27は、第1貫通孔22fに配置されているが、第2貫通孔22gには配置されていない。また、ロータコア22の回転軸線31に沿った方向において、固定部22aと保持部22bとは重ならない位置に設けられている。ここで、ロータシャフト27の圧入は、固定部22aのみに対して行われる。すなわち、ロータシャフト27は、図7(b)に示すように、固定部22aの第1貫通孔22fの終端(第2貫通孔22gとの境界部)までは入り込んでいるが、保持部22bの第2貫通孔22gには入り込んでいない。つまり、ロータコア22の保持部22bの領域までは入り込んでいない。したがって、ロータコア22の保持部22bの直下は、中空状態となっている。 Then, the fixing portion 22a and the holding portion 22b are integrated. The rotor shaft 27 is arranged in the first through hole 22f, but is not arranged in the second through hole 22g. Further, the fixing portion 22a and the holding portion 22b are provided at positions where they do not overlap with each other in the direction along the rotation axis 31 of the rotor core 22. Here, the press-fitting of the rotor shaft 27 is performed only on the fixed portion 22a. That is, as shown in FIG. 7B, the rotor shaft 27 penetrates to the end of the first through hole 22f of the fixing portion 22a (the boundary portion with the second through hole 22g), but the holding portion 22b It does not enter the second through hole 22g. That is, it does not enter the region of the holding portion 22b of the rotor core 22. Therefore, the space directly below the holding portion 22b of the rotor core 22 is hollow.
 また、ロータコア22の固定部22aは、当該固定部22aの径方向の厚さが保持部22bの径方向の厚さより厚い部分を備えている。具体的には、固定部22aは、径方向の厚さが保持部22bの径方向の厚さより厚いフランジ部22cを備えている。すなわち、図7(b)に示すように、固定部22aにおけるフランジ部22cの径方向の厚さT1は、保持部22bの径方向の厚さT2より大きい(T1>T2)。 Further, the fixing portion 22a of the rotor core 22 includes a portion in which the radial thickness of the fixing portion 22a is thicker than the radial thickness of the holding portion 22b. Specifically, the fixing portion 22a includes a flange portion 22c whose radial thickness is thicker than the radial thickness of the holding portion 22b. That is, as shown in FIG. 7B, the radial thickness T1 of the flange portion 22c in the fixing portion 22a is larger than the radial thickness T2 of the holding portion 22b (T1> T2).
 なお、ロータコア22の固定部22aは、ロータコア22を圧造によって形成する際に、余肉を集めて形成するものであり、その際、より余肉を集めて厚肉部分であるフランジ部22cを形成する。また、図6に示すように、ロータコア22の保持部22bの外周面には、図5に示す4つのマグネット23a,23b,23c,23dのそれぞれを周方向の4つの領域に均等に分けて位置決めするための4つの細長いリブ状の突起22dが均等な間隔で形成されている。これにより、4つのマグネット23a,23b,23c,23dのそれぞれは、保持部22bの周方向において、均等な間隔で、かつ位置決めされつつ保持部22bの外周面に配置される。 The fixing portion 22a of the rotor core 22 is formed by collecting excess meat when the rotor core 22 is formed by heading, and at that time, the flange portion 22c which is a thick portion is formed by collecting more excess meat. do. Further, as shown in FIG. 6, on the outer peripheral surface of the holding portion 22b of the rotor core 22, each of the four magnets 23a, 23b, 23c, 23d shown in FIG. 5 is evenly divided into four regions in the circumferential direction and positioned. Four elongated ribbed protrusions 22d are formed at equal intervals. As a result, each of the four magnets 23a, 23b, 23c, and 23d is arranged on the outer peripheral surface of the holding portion 22b at equal intervals and positioned in the circumferential direction of the holding portion 22b.
 また、ロータコア22のフランジ部22cは、4つのマグネット23a,23b,23c,23dのそれぞれの端部の回転軸線31に沿った方向におけるロータシャフト27側の位置決めの機能も有している。 Further, the flange portion 22c of the rotor core 22 also has a function of positioning the rotor shaft 27 side in the direction along the rotation axis 31 of each end of the four magnets 23a, 23b, 23c, 23d.
 一方、4つのマグネット23a,23b,23c,23dのそれぞれの回転軸線31に沿った方向におけるロータシャフト27側と反対側の端部を保持する部材として、マグネットホルダ24が設けられている。すなわち、4つのマグネット23a,23b,23c,23dのそれぞれは、ロータコア22の外周面において、ロータコア22のフランジ部22cとマグネットホルダ24とによって挟まれて保持されている。 On the other hand, a magnet holder 24 is provided as a member for holding the ends of the four magnets 23a, 23b, 23c, and 23d on the side opposite to the rotor shaft 27 side in the direction along the rotation axis 31 of each. That is, each of the four magnets 23a, 23b, 23c, and 23d is sandwiched and held by the flange portion 22c of the rotor core 22 and the magnet holder 24 on the outer peripheral surface of the rotor core 22.
 また、4つのマグネット23a,23b,23c,23dは、円筒形(筒状)のマグネットカバー25によって覆われている。そして、マグネットカバー25は、後述する図10に示すように、その端部である迫り出し部25aが固定部22aのフランジ部22cに固定されている。これにより、4つのマグネット23a,23b,23c,23dのロータコア22からの脱落を防止することができる。 Further, the four magnets 23a, 23b, 23c, and 23d are covered with a cylindrical (cylindrical) magnet cover 25. Then, as shown in FIG. 10 described later, the magnet cover 25 has an protruding portion 25a, which is an end portion thereof, fixed to the flange portion 22c of the fixing portion 22a. As a result, it is possible to prevent the four magnets 23a, 23b, 23c, and 23d from falling off from the rotor core 22.
 本実施の形態1のサンルーフモータ20では、圧造によって形成されたロータコア22の固定部22aの第1貫通孔22fのみにロータシャフト27が圧入されるため、ロータシャフト27に細い部分を形成することがなくロータシャフト27をストレート形状とすることができる。これにより、ロータシャフト27の短軸化を図ることができる。すなわち、ロータシャフト27を短くすることができるため、サンルーフモータ20の小型化および軽量化を図ることができる。 In the sunroof motor 20 of the first embodiment, since the rotor shaft 27 is press-fitted only into the first through hole 22f of the fixing portion 22a of the rotor core 22 formed by pressure fabrication, a thin portion can be formed on the rotor shaft 27. The rotor shaft 27 can be made into a straight shape. As a result, the rotor shaft 27 can be shortened. That is, since the rotor shaft 27 can be shortened, the sunroof motor 20 can be made smaller and lighter.
 また、ロータシャフト27がストレート形状であり、細い部分を必要としないため、太い部分と細い部分とを有した段付き構造のシャフトを採用することもない。したがって、段付き構造のシャフトの場合に発生する同軸度の悪化や回転による振れの悪化を阻止することができる。つまり、サンルーフモータ20においては、ロータシャフト27をストレート形状にして短軸化を図ることで、ロータシャフト27とロータコア22の同軸度を高めることができるとともに、回転による軸の振れの大きさを低減することができる。 Further, since the rotor shaft 27 has a straight shape and does not require a thin portion, a shaft having a stepped structure having a thick portion and a thin portion is not adopted. Therefore, it is possible to prevent the deterioration of the coaxiality and the deterioration of the runout due to the rotation that occur in the case of the shaft having the stepped structure. That is, in the sunroof motor 20, by making the rotor shaft 27 a straight shape and shortening the shaft, the coaxiality between the rotor shaft 27 and the rotor core 22 can be increased, and the magnitude of shaft runout due to rotation is reduced. can do.
 これにより、本実施の形態1のサンルーフモータ20の性能を高めつつ小型化および軽量化を図ることができる。 Thereby, it is possible to reduce the size and weight while improving the performance of the sunroof motor 20 of the first embodiment.
 また、ロータシャフト27の短軸化を図ることができるため、材料費を減らすことができ、サンルーフモータ20のコストの低減化を図ることができる。 Further, since the rotor shaft 27 can be shortened, the material cost can be reduced and the cost of the sunroof motor 20 can be reduced.
 また、図7(b)に示すように、ロータシャフト27のロータコア22への圧入は、ロータコア22の固定部22aの第1貫通孔22fで完結させている。すなわち、ロータコア22の固定部22aの直下にはロータシャフト27が配置されているが、ロータコア22の保持部22bの直下には、ロータシャフト27は、配置されていない。これにより、保持部22bの直下は、中空構造となっている。なお、固定部22aは、圧造時に余肉を集めて形成された厚肉部分であるフランジ部22cを備えているため、ロータシャフト27の圧入時に、マグネット23の内側に圧力が掛かることはない。これにより、ロータシャフト27の圧入時のマグネット23への影響を低減することができ、マグネット23の変形や割れを防止することができる。 Further, as shown in FIG. 7B, the press-fitting of the rotor shaft 27 into the rotor core 22 is completed by the first through hole 22f of the fixing portion 22a of the rotor core 22. That is, the rotor shaft 27 is arranged directly below the fixed portion 22a of the rotor core 22, but the rotor shaft 27 is not arranged directly below the holding portion 22b of the rotor core 22. As a result, the space directly below the holding portion 22b has a hollow structure. Since the fixing portion 22a includes a flange portion 22c which is a thick portion formed by collecting excess meat during pressing, no pressure is applied to the inside of the magnet 23 when the rotor shaft 27 is press-fitted. As a result, the influence of the rotor shaft 27 on the magnet 23 at the time of press fitting can be reduced, and the magnet 23 can be prevented from being deformed or cracked.
 なお、ロータシャフト27の圧入の位置は、圧入の際に反対側から入れる治具の位置によって決定される。すなわち、ロータシャフト27の圧入口とは反対側の開口部からロータコア22内に治具を挿入し、保持部22bの領域の固定部22aとの境界部分まで治具を挿入しておく。そして、ロータシャフト27の圧入時には、ロータシャフト27が治具に突き当たるまでロータシャフト27を圧入する。 The press-fitting position of the rotor shaft 27 is determined by the position of the jig to be press-fitted from the opposite side at the time of press-fitting. That is, the jig is inserted into the rotor core 22 from the opening on the side opposite to the pressure inlet of the rotor shaft 27, and the jig is inserted up to the boundary portion between the holding portion 22b and the fixing portion 22a. Then, when the rotor shaft 27 is press-fitted, the rotor shaft 27 is press-fitted until the rotor shaft 27 abuts on the jig.
 これにより、ロータシャフト27の圧入の位置を容易に決めることができるとともに、圧入の位置の管理も容易に行うことができる。 As a result, the press-fitting position of the rotor shaft 27 can be easily determined, and the press-fitting position can be easily managed.
 また、ロータコア22において、圧入箇所である固定部22aおよびロータコア22の端面は、切削加工が施されており、これにより、圧入精度を確保することができる。なお、ロータシャフト27の圧入箇所にナーリング加工を施してもよく、これにより、ロータシャフト27の抜けや回転を防止することができる。 Further, in the rotor core 22, the fixing portion 22a and the end face of the rotor core 22 which are the press-fitting points are machined, whereby the press-fitting accuracy can be ensured. The press-fitting portion of the rotor shaft 27 may be knurled to prevent the rotor shaft 27 from coming off or rotating.
 また、図8に示すように、ロータコア22(マグネット23)の長さを、図8(a)に示す長さDから図8(b)に示す長さD+αに変更するだけで、サンルーフモータ20の性能を変えることができる。例えば、ロータコア22の長さが、図8(a)に示す長さDの場合、低トルクタイプのモータ装置となり、一方、ロータコア22の長さが、図8(b)に示す長さD+αの場合、高トルクタイプのモータ装置となる。すなわち、マグネット23の長さを変更するだけで、モータ装置の特性のバリエーションに対応させることができる。 Further, as shown in FIG. 8, the sunroof is simply changed from the length D shown in FIG. 8 (a) to the length D + α shown in FIG. 8 (b) by changing the length of the rotor core 22 (magnet 23). The performance of the motor 20 can be changed. For example, when the length of the rotor core 22 is the length D shown in FIG. 8 (a), the motor device is a low torque type, while the length of the rotor core 22 is the length D + α shown in FIG. 8 (b). In this case, it becomes a high torque type motor device. That is, it is possible to correspond to the variation of the characteristics of the motor device only by changing the length of the magnet 23.
 また、図9に示すマグネットユニット26において、4つのマグネット23a,23b,23c,23dは、ロータコア22の保持部22bの外周面に設けられているとともに、円筒形のマグネットカバー25によって覆われている。言い換えると、4つのマグネット23a,23b,23c,23dは、円筒形のマグネットカバー25内に納まっている。具体的には、4つのマグネット23a,23b,23c,23dのそれぞれは、ロータコア22の保持部22bの外周面に貼り付けられており、さらに、マグネット23a,23b,23c,23dのそれぞれの外周部を円筒形のマグネットカバー25が覆っている。 Further, in the magnet unit 26 shown in FIG. 9, the four magnets 23a, 23b, 23c, and 23d are provided on the outer peripheral surface of the holding portion 22b of the rotor core 22 and are covered with the cylindrical magnet cover 25. .. In other words, the four magnets 23a, 23b, 23c, 23d are housed in the cylindrical magnet cover 25. Specifically, each of the four magnets 23a, 23b, 23c, 23d is attached to the outer peripheral surface of the holding portion 22b of the rotor core 22, and further, the outer peripheral portions of the magnets 23a, 23b, 23c, 23d, respectively. Is covered with a cylindrical magnet cover 25.
 これにより、マグネット23a,23b,23c,23dのロータコア22からの剥がれ落ちを防ぐことができる。 This makes it possible to prevent the magnets 23a, 23b, 23c, and 23d from peeling off from the rotor core 22.
 なお、マグネットカバー25は、図10のP部に示すように、端部に設けられた複数の迫り出し部25aがロータコア22のフランジ部22cにカシメによって固定され、これにより、フランジ部22cに取り付けられている。その際、フランジ部22cの外径は、マグネット23の外径より大きい。したがって、マグネットカバー25がカシメによってフランジ部22cに固定される際も、そのカシメ荷重をロータコア22の固定部22aのフランジ部22cで受けるため、マグネットカバー25内のマグネット23への応力が発生することなく、マグネット23の割れを防止することができる。 As shown in the P portion of FIG. 10, the magnet cover 25 is attached to the flange portion 22c by caulking a plurality of protruding portions 25a provided at the end portions to the flange portion 22c of the rotor core 22. Has been done. At that time, the outer diameter of the flange portion 22c is larger than the outer diameter of the magnet 23. Therefore, even when the magnet cover 25 is fixed to the flange portion 22c by caulking, the caulking load is received by the flange portion 22c of the fixing portion 22a of the rotor core 22, so that stress is generated on the magnet 23 in the magnet cover 25. It is possible to prevent the magnet 23 from cracking.
 ここで、マグネットカバー25において、フランジ部22cへの固定部分は、迫り出し部25aに限らず、例えば、円筒形のマグネットカバー25の端部の全周に亘って設けられた固定部分であってもよく、その場合には、フランジ部22cに対してローリングカシメを行って固定することができる。 Here, in the magnet cover 25, the fixing portion to the flange portion 22c is not limited to the protruding portion 25a, but is, for example, a fixing portion provided over the entire circumference of the end portion of the cylindrical magnet cover 25. In that case, the flange portion 22c can be fixed by rolling caulking.
 また、マグネット23の一端は、ロータコア22の固定部22aのフランジ部22cによって支持されるため、マグネット23の他端を支持するマグネットホルダ24が1つで済み、部品点数を減らすことができる。 Further, since one end of the magnet 23 is supported by the flange portion 22c of the fixing portion 22a of the rotor core 22, only one magnet holder 24 is required to support the other end of the magnet 23, and the number of parts can be reduced.
 また、本実施の形態1のサンルーフモータ20では、マグネットカバー25の固定方法として、接着剤を用いた固定ではなく、カシメによる機械固定を採用している。接着剤を使用した固定の場合、接着剤の硬化時間および硬化炉が必要となる。しかしながら、本実施の形態1のマグネットカバー25の固定方法によれば、カシメによる機械固定であるため、時間短縮による工程の簡略化および設備投資の抑制化を図ることができる。 Further, in the sunroof motor 20 of the first embodiment, the magnet cover 25 is fixed by mechanical fixing by caulking instead of fixing by using an adhesive. In the case of fixing with an adhesive, the curing time of the adhesive and the curing furnace are required. However, according to the method of fixing the magnet cover 25 of the first embodiment, since the machine is fixed by caulking, the process can be simplified by shortening the time and the capital investment can be suppressed.
 また、図9に示すように、マグネットホルダ24の裏面側には、4つの凸部24aが回転軸線31の周方向に対して均等な間隔で設けられている。そして、4つの凸部24aが設けられた面と反対側の面には、4つの突起部24bが回転軸線31の周方向に対して均等な間隔で設けられている。これら4つの突起部24bは、回転軸線31の周方向に対してロータコア22の保持部22bに設けられた4つの突起22dと同じ位置に配置されるように設けられている。 Further, as shown in FIG. 9, four convex portions 24a are provided on the back surface side of the magnet holder 24 at equal intervals with respect to the circumferential direction of the rotation axis 31. The four protrusions 24b are provided on the surface opposite to the surface on which the four protrusions 24a are provided at equal intervals with respect to the circumferential direction of the rotation axis 31. These four protrusions 24b are provided so as to be arranged at the same positions as the four protrusions 22d provided on the holding portion 22b of the rotor core 22 with respect to the circumferential direction of the rotation axis 31.
 また、マグネットカバー25の迫り出し部25aが設けられた端部と反対側の端部の面には、4つの切り欠き部25bが設けられている。これら4つの切り欠き部25bは、回転軸線31の周方向に対して均等な間隔で設けられており、回転軸線31の周方向に対してマグネットホルダ24の4つの凸部24aと同じ位置に配置されるように設けられている。 Further, four notched portions 25b are provided on the surface of the end portion of the magnet cover 25 opposite to the end portion provided with the protruding portion 25a. These four notches 25b are provided at equal intervals with respect to the circumferential direction of the rotation axis 31, and are arranged at the same positions as the four convex portions 24a of the magnet holder 24 with respect to the circumferential direction of the rotation axis 31. It is provided so that it can be done.
 これにより、図11に示すように、マグネットカバー25の装着に際し、マグネットホルダ24の4つの凸部24aと、マグネットカバー25の4つの切り欠き部25bとが勘合し、マグネットカバー25が位置決めされる。これにより、その後のマグネット組付けを容易に行うことができる。さらに、4つのマグネット23a,23b,23c,23dのそれぞれは、図12に示すように、ロータコア22の突起22dとマグネットホルダ24の突起部24bとによってロータコア22の周方向に対して位置決めされるため、マグネットホルダ24の凸部24aと各マグネット23の中央部とが同位置となっている。これにより、マグネットホルダ24の凸部24aを着磁工程での位置決めとして使用することができる。 As a result, as shown in FIG. 11, when the magnet cover 25 is attached, the four convex portions 24a of the magnet holder 24 and the four notched portions 25b of the magnet cover 25 are engaged with each other, and the magnet cover 25 is positioned. .. As a result, the subsequent magnet assembly can be easily performed. Further, as shown in FIG. 12, each of the four magnets 23a, 23b, 23c, and 23d is positioned with respect to the circumferential direction of the rotor core 22 by the protrusion 22d of the rotor core 22 and the protrusion 24b of the magnet holder 24. , The convex portion 24a of the magnet holder 24 and the central portion of each magnet 23 are at the same position. As a result, the convex portion 24a of the magnet holder 24 can be used for positioning in the magnetizing process.
 また、図12のQ部に示すように、各マグネット23の角部はR形状となっている。これにより、マグネットカバー25をカシメによって固定する際のカシメ荷重がマグネット23に付与された際にも、マグネット23の角部にはカシメ荷重が付与されないため、マグネット23の角部の割れを防止することができる。 Further, as shown in the Q portion of FIG. 12, the corner portions of each magnet 23 have an R shape. As a result, even when the caulking load when fixing the magnet cover 25 by caulking is applied to the magnet 23, the caulking load is not applied to the corners of the magnet 23, so that the corners of the magnet 23 are prevented from cracking. be able to.
 また、図9に示すマグネットユニット26を搬送する際に、ロータコア22のフランジ部22cにチャックすることが可能になる。これにより、搬送時にマグネット23等に荷重を掛けなくて済むため、マグネット23の割れや欠けを抑制することができる。 Further, when the magnet unit 26 shown in FIG. 9 is conveyed, it can be chucked to the flange portion 22c of the rotor core 22. As a result, it is not necessary to apply a load to the magnet 23 or the like during transportation, so that cracking or chipping of the magnet 23 can be suppressed.
 なお、本実施の形態1のサンルーフモータ20では、図4に示すように、ステータ29の断面形状が、略六角形となっている。これにより、断面形状が円形の場合に比較して、ステータ29の厚さLを小さくすることができる。すなわち、ステータ29の厚さを薄くすることで、サンルーフモータ20の薄型化を図ることができる。そして、図1に示すサンルーフ装置10が取り付けられる車両部分では、サンルーフモータ20の薄型化を図ることが重要であるため、本実施の形態1のサンルーフモータ20は、サンルーフ装置10に組付ける際に非常に有効である。 In the sunroof motor 20 of the first embodiment, as shown in FIG. 4, the cross-sectional shape of the stator 29 is substantially hexagonal. As a result, the thickness L of the stator 29 can be reduced as compared with the case where the cross-sectional shape is circular. That is, by reducing the thickness of the stator 29, the sunroof motor 20 can be made thinner. Since it is important to reduce the thickness of the sunroof motor 20 in the vehicle portion to which the sunroof device 10 shown in FIG. 1 is attached, the sunroof motor 20 of the first embodiment is assembled to the sunroof device 10. Very effective.
 次に、サンルーフモータ20の動作について説明する。 Next, the operation of the sunroof motor 20 will be described.
 サンルーフモータ20では、外部から図2に示すターミナル32を介して図示しないコントローラ基板に供給された電力が、図4に示すモータ部21の各コイル28に選択的に供給される。すると、ステータ29(ティース30)に所定の鎖交磁束が形成され、この鎖交磁束と、ロータコア22に設けられたマグネット23により形成される有効磁束との間で磁気的な吸引力や反発力が生じる。これにより、ロータコア22が継続的に回転する。 In the sunroof motor 20, the electric power supplied from the outside to the controller board (not shown) via the terminal 32 shown in FIG. 2 is selectively supplied to each coil 28 of the motor unit 21 shown in FIG. Then, a predetermined interlinkage magnetic flux is formed on the stator 29 (teeth 30), and a magnetic attraction force or a repulsive force is formed between the interlinkage magnetic flux and the effective magnetic flux formed by the magnet 23 provided on the rotor core 22. Occurs. As a result, the rotor core 22 continuously rotates.
 そして、ロータコア22が回転すると、図3に示すロータシャフト27と一体化されているウォームシャフト43が回転し、さらに、ウォームシャフト43に噛み合っているウォームホイール42が回転する。そして、ウォームホイール42に連結されている出力ギヤ42bが回転し、所望の電装品等を駆動させることができる。 Then, when the rotor core 22 rotates, the worm shaft 43 integrated with the rotor shaft 27 shown in FIG. 3 rotates, and further, the worm wheel 42 meshing with the worm shaft 43 rotates. Then, the output gear 42b connected to the worm wheel 42 rotates, and a desired electrical component or the like can be driven.
 また、モータ部21は、ロータコア22の保持部22bの外周面にマグネット23a,23b,23c,23dを配置した構造となっている。このため、マグネット23の磁束の方向であるd軸方向のインダクタンス値を小さくすることができる。 Further, the motor portion 21 has a structure in which magnets 23a, 23b, 23c, and 23d are arranged on the outer peripheral surface of the holding portion 22b of the rotor core 22. Therefore, the inductance value in the d-axis direction, which is the direction of the magnetic flux of the magnet 23, can be reduced.
 なお、ロータコア22の保持部22bの外周面には、4つの突起22dが周方向に等間隔で設けられている。突起22dは、径方向外側に突出され、かつロータコア22の軸方向全体に延びるように形成されている。そして、4つの突起22dのそれぞれは、径方向外側の端部における周方向の幅寸法が、電気角θで20°以上40°以下に設定されていることが好ましい。このように周方向における突起22dの幅寸法を電気角θで40°以下に設定することで、上記d軸に対して磁気的に直交するq軸方向におけるインダクタンス値を小さくすることができる。その結果、減磁界を抑えるとともに、高いリラクタンストルクを得ることができる。 The outer peripheral surface of the holding portion 22b of the rotor core 22 is provided with four protrusions 22d at equal intervals in the circumferential direction. The protrusion 22d is formed so as to project outward in the radial direction and extend in the entire axial direction of the rotor core 22. It is preferable that each of the four protrusions 22d has a width dimension in the circumferential direction at the outer end in the radial direction set to 20 ° or more and 40 ° or less in the electric angle θ. By setting the width dimension of the protrusion 22d in the circumferential direction to 40 ° or less in the electric angle θ in this way, the inductance value in the q-axis direction magnetically orthogonal to the d-axis can be reduced. As a result, a demagnetizing field can be suppressed and a high reluctance torque can be obtained.
 (実施の形態2)
 本実施の形態2のロータコアユニットについて説明する。本実施の形態2のロータコアユニットには、図14に示すように、マグネットユニット26として、ロータコア22と、4つのマグネット23a,23b,23c,23dと、マグネットカバー(カバー)25と、が設けられている。実施の形態1のマグネットユニット26と異なる点は、図5に示すようなマグネットホルダ24を有していない点である。
(Embodiment 2)
The rotor core unit of the second embodiment will be described. As shown in FIG. 14, the rotor core unit of the second embodiment is provided with a rotor core 22, four magnets 23a, 23b, 23c, 23d, and a magnet cover (cover) 25 as a magnet unit 26. ing. The difference from the magnet unit 26 of the first embodiment is that it does not have the magnet holder 24 as shown in FIG.
 これにより、マグネットユニット26における部品点数を減らすことができ、マグネットユニット26の組立ての容易化およびコストの低減化を図ることができる。 As a result, the number of parts in the magnet unit 26 can be reduced, and the assembly of the magnet unit 26 can be facilitated and the cost can be reduced.
 また、本実施の形態2では、図14に示すように、マグネットカバー25におけるロータコア22のフランジ部22cへの固定部分が、円筒形のマグネットカバー25の端部の全周に亘って設けられたカシメ部25cとなっている。これにより、フランジ部22cに対してローリングカシメを行うことで、図13に示すように、フランジ部22cの全周に亘ってマグネットカバー25のカシメ部25cを固定することができ、マグネットカバー25のフランジ部22cへ接合強度を高めることができる。 Further, in the second embodiment, as shown in FIG. 14, a fixed portion of the rotor core 22 to the flange portion 22c of the magnet cover 25 is provided over the entire circumference of the end portion of the cylindrical magnet cover 25. The caulking portion is 25c. As a result, by performing rolling caulking on the flange portion 22c, as shown in FIG. 13, the caulking portion 25c of the magnet cover 25 can be fixed over the entire circumference of the flange portion 22c, and the magnet cover 25 can be fixed. The joint strength can be increased to the flange portion 22c.
 また、本実施の形態2のロータコア22は、実施の形態1のロータコア22とほぼ同様の構造であるが、図15(a),(b)に示すように、ロータコア22の第2貫通孔22gを形成する部分が肉薄部22hとなっている。具体的には、ロータコア22に設けられた貫通孔22eにおいて、図15(b)に示すように、第1貫通孔22fの直径Φ1より第2貫通孔22gの直径Φ2の方が大きくなっている(Φ1<Φ2)。すなわち、ロータコア22の貫通孔22eの内周壁が段差構造となっており、ロータコア22の保持部22bの領域の肉厚が固定部22aの領域の肉厚より薄くなっている。したがって、固定部22aの領域の第1貫通孔22fの直径Φ1より保持部22bの領域の第2貫通孔22gの直径Φ2の方が大きい。 Further, the rotor core 22 of the second embodiment has substantially the same structure as the rotor core 22 of the first embodiment, but as shown in FIGS. 15A and 15B, the second through hole 22g of the rotor core 22 The portion forming the above is the thin portion 22h. Specifically, in the through hole 22e provided in the rotor core 22, as shown in FIG. 15B, the diameter Φ2 of the second through hole 22g is larger than the diameter Φ1 of the first through hole 22f. (Φ1 <Φ2). That is, the inner peripheral wall of the through hole 22e of the rotor core 22 has a stepped structure, and the wall thickness of the region of the holding portion 22b of the rotor core 22 is thinner than the wall thickness of the region of the fixed portion 22a. Therefore, the diameter Φ2 of the second through hole 22g in the region of the holding portion 22b is larger than the diameter Φ1 of the first through hole 22f in the region of the fixing portion 22a.
 これにより、ロータコア22にロータシャフト27を組み付ける際に、ロータシャフト27の組み付け方向を、ロータシャフト27の圧入側と反対側から組み付けることが可能になる。すなわち、第2貫通孔22gの端部開口側からロータシャフト27を通して、第2貫通孔22gを案内としながらロータシャフト27を第1貫通孔22fに圧入することができる。その結果、ロータシャフト27の圧入時に治具などが不要になり、実施の形態1に比べてロータシャフト27の圧入工程を容易にすることができる。 This makes it possible to assemble the rotor shaft 27 from the side opposite to the press-fitting side of the rotor shaft 27 when assembling the rotor shaft 27 to the rotor core 22. That is, the rotor shaft 27 can be press-fitted into the first through hole 22f through the rotor shaft 27 from the end opening side of the second through hole 22g while using the second through hole 22g as a guide. As a result, a jig or the like is not required when the rotor shaft 27 is press-fitted, and the press-fitting process of the rotor shaft 27 can be facilitated as compared with the first embodiment.
 なお、本実施の形態2のロータコアユニットの各部材(ロータコア22、4つのマグネット23a,23b,23c,23dおよびマグネットカバー25)それぞれのその他の構造については、実施の形態1のロータコアユニットにおける各部材それぞれの構造と同じであるため、その重複説明は省略する。 Regarding the other structures of each member of the rotor core unit of the second embodiment (rotor core 22, four magnets 23a, 23b, 23c, 23d and the magnet cover 25), each member of the rotor core unit of the first embodiment Since each structure is the same, the duplicate description will be omitted.
 本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、上記実施の形態においては、サンルーフモータ20に組み込まれるステータ29の断面形状が、略六角形となっている場合を取り上げたが、ステータ29の断面形状は、円形であってもよい。 It goes without saying that the present invention is not limited to the above-described embodiment and can be variously modified without departing from the gist thereof. For example, in the above embodiment, the case where the cross-sectional shape of the stator 29 incorporated in the sunroof motor 20 is substantially hexagonal has been taken up, but the cross-sectional shape of the stator 29 may be circular.
 10  サンルーフ装置
 11  ルーフパネル
 12  車両
 13  ルーフ
 14  開口部
 15a,15b  シュー
 16  ガイドレール
 17a,17b  駆動ケーブル
 18  フロントガラス
 20  サンルーフモータ(モータ装置)
 21  モータ部
 22  ロータコア(保持部材)
 22a  固定部
 22b  保持部
 22c  フランジ部
 22d  突起
 22e  貫通孔
 22f  第1貫通孔
 22g  第2貫通孔
 22h  肉薄部
 23,23a,23b,23c,23d  マグネット
 24  マグネットホルダ
 24a  凸部
 24b  突起部
 25  マグネットカバー(カバー)
 25a  迫り出し部(端部)
 25b  切り欠き部
 25c  カシメ部(端部)
 26  マグネットユニット
 27  ロータシャフト(シャフト)
 28  コイル
 29  ステータ
 30  ティース
 31  回転軸線
 32  ターミナル
 40  ギヤ部
 41  ギヤケース
 41a  ウォームホイール収容部
 42  ウォームホイール
 42a  歯部
 42b  出力ギヤ
 43  ウォームシャフト
 43a ウォーム
 44  ボールベアリング
 
 
10 Sunroof device 11 Roof panel 12 Vehicle 13 Roof 14 Opening 15a, 15b Shoe 16 Guide rail 17a, 17b Drive cable 18 Windshield 20 Sunroof motor (motor device)
21 Motor part 22 Rotor core (holding member)
22a Fixing part 22b Holding part 22c Flange part 22d Protrusion 22e Through hole 22f First through hole 22g Second through hole 22h Thin part 23, 23a, 23b, 23c, 23d Magnet 24 Magnet holder 24a Convex part 24b Protrusion part 25 Magnet cover ( cover)
25a Overhang (end)
25b Notch 25c Caulking (end)
26 Magnet unit 27 Rotor shaft (shaft)
28 Coil 29 Stator 30 Teeth 31 Rotating axis 32 Terminal 40 Gear part 41 Gear case 41a Warm wheel accommodating part 42 Warm wheel 42a Tooth part 42b Output gear 43 Warm shaft 43a Warm 44 Ball bearing

Claims (4)

  1.  環状のステータと、
     前記ステータに巻かれたコイルと、
     前記ステータの径方向の内側に設けられ、かつ、回転軸線回りに回転するシャフトと、
     前記シャフトに固定され、かつ、前記回転軸線に沿って貫通する貫通孔を備え、さらに前記回転軸線を径方向中心とする保持部材と、
     前記保持部材の外周面に設けられた磁石と、
     を有し、
     前記保持部材は、前記シャフトに圧入される固定部と、前記磁石を保持する保持部とを備え、
     前記貫通孔は、前記固定部に設けられた第1貫通孔と、前記保持部に設けられた第2貫通孔とを含み、
     前記シャフトは、前記第1貫通孔に配置され、かつ、前記第2貫通孔には配置されず、
     前記固定部と前記保持部とは、前記回転軸線に沿った方向において重ならない位置に設けられていることを特徴とするモータ装置。
    With an annular stator,
    The coil wound around the stator and
    A shaft provided inside the stator in the radial direction and rotating around the axis of rotation,
    A holding member fixed to the shaft, provided with a through hole penetrating along the rotation axis, and having the rotation axis as the radial center.
    A magnet provided on the outer peripheral surface of the holding member and
    Have,
    The holding member includes a fixing portion that is press-fitted into the shaft and a holding portion that holds the magnet.
    The through hole includes a first through hole provided in the fixing portion and a second through hole provided in the holding portion.
    The shaft is arranged in the first through hole and is not arranged in the second through hole.
    A motor device characterized in that the fixed portion and the holding portion are provided at positions where they do not overlap in a direction along the rotation axis.
  2.  前記保持部材は、圧造部材であることを特徴とする請求項1に記載のモータ装置。 The motor device according to claim 1, wherein the holding member is a pressure member.
  3.  請求項1または請求項2に記載のモータ装置であって、
     前記磁石を覆う筒状のカバーが設けられ、
     前記カバーは、当該カバーの端部が前記固定部に固定されていることを特徴とするモータ装置。
    The motor device according to claim 1 or 2.
    A cylindrical cover is provided to cover the magnet.
    The cover is a motor device in which an end portion of the cover is fixed to the fixed portion.
  4.  前記固定部は、当該固定部の径方向の厚さが前記保持部の径方向の厚さより厚い部分を備えていることを特徴とする請求項1から請求項3のいずれか1項に記載のモータ装置。
     
     
    The method according to any one of claims 1 to 3, wherein the fixed portion includes a portion in which the radial thickness of the fixed portion is thicker than the radial thickness of the holding portion. Motor device.

PCT/JP2021/005249 2020-03-19 2021-02-12 Motor device WO2021186973A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-049348 2020-03-19
JP2020049348A JP7489796B2 (en) 2020-03-19 2020-03-19 Motor device

Publications (1)

Publication Number Publication Date
WO2021186973A1 true WO2021186973A1 (en) 2021-09-23

Family

ID=77768092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005249 WO2021186973A1 (en) 2020-03-19 2021-02-12 Motor device

Country Status (2)

Country Link
JP (1) JP7489796B2 (en)
WO (1) WO2021186973A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182862A (en) * 2007-01-26 2008-08-07 Mitsuba Corp Brushless motor
JP2009171736A (en) * 2008-01-16 2009-07-30 Jtekt Corp Electric motor
JP2018201274A (en) * 2017-05-25 2018-12-20 株式会社豊田自動織機 Position adjustment structure for resolver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182862A (en) * 2007-01-26 2008-08-07 Mitsuba Corp Brushless motor
JP2009171736A (en) * 2008-01-16 2009-07-30 Jtekt Corp Electric motor
JP2018201274A (en) * 2017-05-25 2018-12-20 株式会社豊田自動織機 Position adjustment structure for resolver

Also Published As

Publication number Publication date
JP7489796B2 (en) 2024-05-24
JP2021151104A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
US5901801A (en) Motor with gear reducer, and assembly method and maintenance method for same
JP5044217B2 (en) Magnet fixing structure of rotating electric machine
EP1717930B1 (en) Electric actuator and a motor used therein
US11283309B2 (en) Brushless motor and winding method for stator
JP4297929B2 (en) Motor and motor manufacturing method
JP2005020887A (en) Magnet fixing structure and magnet fixing method of rotating electric machine
US20150145370A1 (en) Rotator of rotational electric machine
US6876109B2 (en) Claw-pole type stepping motor having radial dimension reduced without detriment to performance characteristic
JP2004336841A (en) Stepping motor
JP7053381B2 (en) Rotor unit, electric motor and electric actuator
WO2020054095A1 (en) Electric motor and method for manufacturing electric motor
WO2021186973A1 (en) Motor device
US20050006965A1 (en) Rotational driving device
JP4627701B2 (en) Rotating electric machine
JP2012228024A (en) Resolver
JP2000184643A (en) Outer rotor for wheel-in motor
CN106357017A (en) Motor, motor device, and pointer type display device
JP6469563B2 (en) Rotor and brushless motor
US20200395817A1 (en) Coreless motor
JP2009183058A (en) Method for securing stator core, and brushless motor
US20230208260A1 (en) Method for manufacturing stator core
WO2024079930A1 (en) Brushless motor and method of producing rotor
JP3003308U (en) Bearing support structure for rotating electrical machines
JP6154635B2 (en) Motor equipment
WO2021205707A1 (en) Rotor, rotor manufacturing method, and motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770563

Country of ref document: EP

Kind code of ref document: A1