WO2021186958A1 - Light-receiving element and control method - Google Patents

Light-receiving element and control method Download PDF

Info

Publication number
WO2021186958A1
WO2021186958A1 PCT/JP2021/004930 JP2021004930W WO2021186958A1 WO 2021186958 A1 WO2021186958 A1 WO 2021186958A1 JP 2021004930 W JP2021004930 W JP 2021004930W WO 2021186958 A1 WO2021186958 A1 WO 2021186958A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
pixels
pixel
pair
electrodes
Prior art date
Application number
PCT/JP2021/004930
Other languages
French (fr)
Japanese (ja)
Inventor
井本 努
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2021186958A1 publication Critical patent/WO2021186958A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present disclosure relates to a light receiving element and a control method.
  • the light receiving element used in the distance measuring system using the indirect ToF (Time of Flight) method includes a pixel array in which a plurality of light receiving pixels are arranged in a matrix. Each light receiving pixel has a light receiving region that photoelectrically converts incident light into a signal charge, and a pair of electrodes that alternately apply a voltage that generates an electric field in the light receiving region that time-divides the signal charge and distributes it to a pair of charge storage electrodes. And. (See, for example, Patent Document 1).
  • a light receiving element has a pixel array, a first wiring, and a second wiring.
  • the pixel array is a pair of a light receiving region that photoelectrically converts incident light into a signal charge and a pair of voltages that alternately apply a voltage that generates an electric field in the light receiving region that time-divides the signal charge and distributes it to a pair of charge storage electrodes.
  • a plurality of light receiving pixels including the first electrode and the second electrode are arranged in a matrix.
  • the first wiring connects the first electrodes of a pair of non-adjacent light receiving pixels.
  • the second wiring connects the second electrodes of the pair of light receiving pixels to each other.
  • the present technology can be applied to, for example, a solid-state image sensor constituting a distance-finding system that measures a distance by an indirect ToF (Time of Flight) method, an image pickup device having such a solid-state image sensor, and the like.
  • a solid-state image sensor constituting a distance-finding system that measures a distance by an indirect ToF (Time of Flight) method
  • an image pickup device having such a solid-state image sensor and the like.
  • a distance measuring system is an in-vehicle system that is mounted on a vehicle and measures the distance to an object outside the vehicle, or measures the distance to an object such as a user's hand, and the user is based on the measurement result. It can be applied to a system for recognizing gestures. In this case, the result of gesture recognition can be used, for example, for operating a car navigation system.
  • FIG. 1 is a diagram showing a configuration example of an embodiment of a solid-state image sensor, which is an example of a light receiving element to which the present technology is applied.
  • the solid-state image sensor 11 shown in FIG. 1 is a back-illuminated CAPD (Current Assisted Photonic Demodulator) sensor, and is provided in an image sensor having a distance measuring function.
  • CAPD Current Assisted Photonic Demodulator
  • the solid-state image sensor 11 has a configuration including a pixel array unit 21 formed on a semiconductor substrate (not shown) and a peripheral circuit unit.
  • the peripheral circuit unit is composed of, for example, a vertical drive unit 22, a column processing unit 23, a horizontal drive unit 24, and a system control unit 25.
  • the peripheral circuit unit may be integrated on the same semiconductor substrate as the pixel array unit 21, or a part or all of the peripheral circuit unit may be formed on a semiconductor substrate different from the pixel array unit 21 so that the pixel array unit 21 may be integrated. It may be integrated with the substrate.
  • the solid-state image sensor 11 is also provided with a signal processing unit 26 and a data storage unit 27.
  • the signal processing unit 26 and the data storage unit 27 may be mounted on the same substrate as the solid-state image sensor 11, or may be arranged on a substrate different from the solid-state image sensor 11 in the image pickup device. ..
  • the pixel array unit 21 light receiving pixels (hereinafter, simply referred to as “pixels”) that generate a signal charge according to the amount of received light and output a signal corresponding to the signal charge are arranged in a row direction and a column direction, that is, a matrix. It has a structure in which it is arranged two-dimensionally. That is, the pixel array unit 21 has a plurality of pixels that perform photoelectric conversion of the incident light and output a signal corresponding to the signal charge obtained as a result.
  • the row direction means the arrangement direction of the pixels in the pixel row (that is, the horizontal direction)
  • the column direction means the arrangement direction of the pixels in the pixel row (that is, the vertical direction). That is, the row direction is the horizontal direction in the figure, and the column direction is the vertical direction in the figure.
  • pixel drive lines 28 are wired along the row direction for each pixel row with respect to the matrix-like pixel array, and two vertical signal lines 29 are wired along the column direction in each pixel row. ing.
  • the pixel drive line 28 transmits a drive signal for driving when reading a signal from a pixel.
  • the pixel drive line 28 is shown as one wiring, but the wiring is not limited to one.
  • One end of the pixel drive line 28 is connected to the output end corresponding to each line of the vertical drive unit 22.
  • the vertical drive unit 22 is composed of a shift register, an address decoder, etc., and drives each pixel of the pixel array unit 21 at the same time for all pixels or in line units. That is, the vertical drive unit 22 constitutes a drive unit that controls the operation of each pixel of the pixel array unit 21 together with the system control unit 25 that controls the vertical drive unit 22.
  • the signal output from each pixel in the pixel row according to the drive control by the vertical drive unit 22 is input to the column processing unit 23 through the vertical signal line 29.
  • the column processing unit 23 performs predetermined signal processing on the signal output from each pixel through the vertical signal line 29, and temporarily holds the pixel signal after the signal processing.
  • the column processing unit 23 performs noise removal processing, AD (Analog to Digital) conversion processing, and the like as signal processing.
  • AD Analog to Digital
  • the horizontal drive unit 24 is composed of a shift register, an address decoder, and the like, and sequentially selects unit circuits corresponding to the pixel strings of the column processing unit 23. By the selective scanning by the horizontal drive unit 24, the pixel signals processed by the column processing unit 23 for each unit circuit are sequentially output.
  • the system control unit 25 is composed of a timing generator or the like that generates various timing signals, and the vertical drive unit 22, the column processing unit 23, and the horizontal drive unit 24 are based on the various timing signals generated by the timing generator.
  • Drive control such as.
  • the signal processing unit 26 has at least an arithmetic processing function, and performs various signal processing such as arithmetic processing based on the pixel signal output from the column processing unit 23.
  • the data storage unit 27 temporarily stores the data required for the signal processing in the signal processing unit 26.
  • Pixel configuration example Next, a configuration example of the pixels provided in the pixel array unit 21 will be described.
  • the pixels provided in the pixel array unit 21 are configured as shown in FIG. 2, for example.
  • FIG. 2 shows a cross section of one pixel 51 provided in the pixel array unit 21, and the pixel 51 receives light incident on the light receiving region 50 from the outside, particularly infrared light, and performs photoelectric conversion, resulting in the result. A signal corresponding to the obtained signal charge is output.
  • the pixel 51 has, for example, a silicon substrate, that is, a substrate 61 which is a P-type semiconductor substrate composed of a P-type semiconductor region, and a condensing structure 62 including an on-chip lens 62-1 formed on the substrate 61. There is.
  • the incident surface the surface of the light receiving region 50 on the side where the light from the outside is incident
  • the light incident from the outside is collected and the light receiving region 50 is collected.
  • a condensing structure 62 is formed so as to be incident inside.
  • an inter-pixel light-shielding portion 63-1 and an inter-pixel light-shielding portion 63-2 for preventing color mixing between adjacent pixels are formed at the end portion of the pixel 51 on the incident surface of the light receiving region 50. Has been done.
  • wiring for driving a transistor or the like formed in the pixel 51 wiring for reading a signal from the pixel 51, or the like is formed.
  • the wiring layer (not shown) is formed by stacking.
  • an oxide film 64 On the surface side of the light receiving region 50 opposite to the incident surface, that is, on the inner portion of the lower surface in the drawing, an oxide film 64, a signal extraction unit 65-1 called a tap (tap), and a signal extraction unit 65-2 is formed.
  • an oxide film 64 is formed in the central portion of the pixel 51 in the vicinity of the surface of the light receiving region 50 opposite to the incident surface, and the signal extraction unit 65-1 and the signal extraction are taken out at both ends of the oxide film 64, respectively.
  • Part 65-2 is formed.
  • the signal extraction unit 65-1 includes an N-type semiconductor region 71-1 and an N-semiconductor region 72-1 and a P-type semiconductor region P + semiconductor region 73-1 and a P-semiconductor region. It has 74-1 and.
  • the N + semiconductor region 71-1 is formed at a position adjacent to the right side in the figure of the oxide film 64 on the inner surface portion of the surface of the light receiving region 50 opposite to the incident surface. Further, in the figure of the N + semiconductor region 71-1, the N-semiconductor region 72-1 is formed on the upper side so as to cover (enclose) the N + semiconductor region 71-1.
  • the P + semiconductor region 73-1 is formed at a position adjacent to the right side in the figure of the N + semiconductor region 71-1 in the surface inner portion of the surface of the light receiving region 50 opposite to the incident surface. Further, in the figure of the P + semiconductor region 73-1, the P-semiconductor region 74-1 is formed on the upper side so as to cover (enclose) the P + semiconductor region 73-1.
  • the P + semiconductor region 73-1 and the P-semiconductor region 74-1 are centered.
  • the N + semiconductor region 71-1 and the N-semiconductor region 72-1 are formed so as to surround the P + semiconductor region 73-1 and the P-semiconductor region 74-1.
  • the signal extraction unit 65-2 includes an N-semiconductor region 72-2 having a lower concentration of donor impurities than the N-type semiconductor region 71-2 and the N + semiconductor region 71-2, and a P-type semiconductor region. It has a P-semiconductor region 73-2 and a P-semiconductor region 74-2 having a lower acceptor impurity concentration than the P + semiconductor region 73-2.
  • the donor impurities include, for example, elements belonging to Group 5 in the periodic table of elements such as phosphorus (P) and arsenic (As) with respect to Si.
  • the acceptor impurities include, for example, elements belonging to Group 3 in the periodic table of elements such as boron (B) with respect to Si.
  • the N + semiconductor region 71-2 is formed at a position adjacent to the left side in the figure of the oxide film 64 on the inner surface portion of the surface of the light receiving region 50 opposite to the incident surface. Further, in the figure of the N + semiconductor region 71-2, the N-semiconductor region 72-2 is formed on the upper side so as to cover (enclose) the N + semiconductor region 71-2.
  • the P + semiconductor region 73-2 is formed at a position adjacent to the left side in the figure of the N + semiconductor region 71-2 on the inner surface portion of the surface of the light receiving region 50 opposite to the incident surface. Further, in the figure of the P + semiconductor region 73-2, the P-semiconductor region 74-2 is formed on the upper side so as to cover (enclose) the P + semiconductor region 73-2.
  • the P + semiconductor region 73-2 and the P-semiconductor region 74-2 are centered.
  • the N + semiconductor region 71-2 and the N-semiconductor region 72-2 are formed so as to surround the P + semiconductor region 73-2 and the P-semiconductor region 74-2.
  • the signal extraction unit 65 when it is not necessary to distinguish between the signal extraction unit 65-1 and the signal extraction unit 65-2, they are also simply referred to as the signal extraction unit 65.
  • N + semiconductor region 71-1 and N + semiconductor region 71-2 they are also simply referred to as N + semiconductor region 71
  • N-semiconductor region 72-1 and N-semiconductor region 72-2 are referred to as N-semiconductor region 72-1 and N-semiconductor region 72-2.
  • N-semiconductor region 72 When it is not necessary to make a distinction, it is also simply referred to as an N-semiconductor region 72.
  • the P + semiconductor region 73-1 and the P + semiconductor region 73-2 are also simply referred to as the P + semiconductor region 73, and the P-semiconductor region 74-1 and the P-semiconductor region 74-2 are referred to.
  • the P-semiconductor region 74-1 and the P-semiconductor region 74-2 are referred to.
  • it is also simply referred to as a P-semiconductor region 74.
  • a separation portion 75-1 for separating these regions is formed by an oxide film or the like between the N + semiconductor region 71-1 and the P + semiconductor region 73-1.
  • a separation portion 75-2 for separating these regions is formed by an oxide film or the like.
  • the separation unit 75-1 and the separation unit 75-2 will be simply referred to as the separation unit 75.
  • the N + semiconductor region 71 provided in the light receiving region 50 functions as a detection unit for detecting the amount of light incident on the pixel 51 from the outside, that is, the amount of signal carriers generated by the photoelectric conversion by the light receiving region 50. Further, the P + semiconductor region 73 functions as an injection contact portion for injecting a large number of carrier currents into the light receiving region 50, that is, for directly applying a voltage to the light receiving region 50 to generate an electric field in the light receiving region 50.
  • an FD (Floating Diffusion) portion (hereinafter, also referred to as a FD portion A), which is a floating diffusion region (not shown), is directly connected to the N + semiconductor region 71-1, and further, the FD portion A thereof. Is connected to the vertical signal line 29 via an amplification transistor or the like (not shown).
  • FD section B another FD section (hereinafter, also referred to as FD section B) different from the FD section A is directly connected to the N + semiconductor region 71-2, and the FD section B is not shown. It is connected to the vertical signal line 29 via an amplification transistor or the like.
  • the FD unit A and the FD unit B are connected to different vertical signal lines 29.
  • infrared light is emitted toward the object from an image pickup device provided with a solid-state image sensor 11. Then, when the infrared light is reflected by the object and returned to the image pickup apparatus as reflected light, the light receiving region 50 of the solid-state image sensor 11 receives the incident reflected light (infrared light) and performs photoelectric conversion. ..
  • the vertical drive unit 22 drives the pixel 51 and distributes the signal charge obtained by the photoelectric conversion to the FD unit A and the FD unit B.
  • the pixel 51 is driven not by the vertical drive unit 22, but by a separately provided drive unit, a horizontal drive unit 24, or the like via a vertical signal line 29 or another control line that is long in the vertical direction. You may do so.
  • a predetermined voltage is alternately applied to the pair of P + semiconductor regions 73 provided in one pixel, and the FD section A and the FD section B are obtained by photoelectric conversion. Distribute the signal charge.
  • the vertical drive unit 22 applies a voltage to the two P + semiconductor regions 73 via a contact or the like. Specifically, at a certain timing, the vertical drive unit 22 applies a voltage of 1.5 V to the electrode MIX1 connected to the P + semiconductor region 73-1 to the electrode MIX0 connected to the P + semiconductor region 73-2. Apply a voltage of 0V.
  • infrared light reflected light
  • the infrared light is photoelectrically converted in the light receiving region 50 to be positive with electrons.
  • the obtained electrons are guided in the direction of the P + semiconductor region 73-1 by the electric field between the P + semiconductor region 73 and move into the N + semiconductor region 71-1.
  • the electrons generated by the photoelectric conversion are used as a signal carrier for detecting the amount of infrared light incident on the pixel 51, that is, the signal charge corresponding to the amount of infrared light received.
  • the signal charge corresponding to the electrons moving into the N + semiconductor region 71-1 is accumulated in the N + semiconductor region 71-1, and this signal charge is stored in the FD unit A, the amplification transistor, and the vertical. It is detected by the column processing unit 23 via the signal line 29 or the like.
  • the accumulated charge of the N + semiconductor region 71-1 is transferred to the FD unit A directly connected to the N + semiconductor region 71-1, and the signal corresponding to the signal charge transferred to the FD unit A is an amplification transistor or vertical. It is read out by the column processing unit 23 via the signal line 29. Then, the read signal is subjected to processing such as AD conversion processing in the column processing unit 23, and the pixel signal obtained as a result is supplied to the signal processing unit 26.
  • This pixel signal is a signal indicating the amount of signal charge corresponding to the electrons detected by the N + semiconductor region 71-1, that is, the amount of signal charge accumulated in the FD unit A.
  • the pixel signal can be said to be a signal indicating the amount of infrared light received by the pixel 51.
  • a voltage is applied to the two P + semiconductor regions 73 by the vertical drive unit 22 via a contact or the like so that an electric field in the direction opposite to the electric field previously generated in the light receiving region 50 is generated.
  • NS a voltage of 1.5 V is applied to the electrode MIX0 connected to the P + semiconductor region 73-2, and a voltage of 0 V is applied to the electrode MIX1 connected to the P + semiconductor region 73-1.
  • infrared light reflected light
  • the infrared light is photoelectrically converted in the light receiving region 50 to convert electrons and holes.
  • the obtained electrons are guided in the direction of the P + semiconductor region 73-2 by the electric field between the P + semiconductor region 73 and move into the N + semiconductor region 71-2.
  • the signal charge corresponding to the electrons moving into the N + semiconductor region 71-2 is accumulated in the N + semiconductor region 71-2, and this signal charge is stored in the FD unit B, the amplification transistor, and the vertical. It is detected by the column processing unit 23 via the signal line 29 or the like.
  • the accumulated charge of the N + semiconductor region 71-2 is transferred to the FD unit B directly connected to the N + semiconductor region 71-2, and the signal corresponding to the signal charge transferred to the FD unit B is an amplification transistor or vertical. It is read out by the column processing unit 23 via the signal line 29. Then, the read signal is subjected to processing such as AD conversion processing in the column processing unit 23, and the pixel signal obtained as a result is supplied to the signal processing unit 26.
  • the P + semiconductor regions 73-1 and 73-2 are the first electrode and the second electrode to which a voltage of 1.5 V, which is a predetermined voltage, and a voltage of 0 V are alternately applied. Further, the N + semiconductor regions 71-1 and 71-2 serve as charge storage electrodes that detect and store signal charges generated by photoelectric conversion of light incident on the light receiving region 50.
  • the signal processing unit 26 reaches the object based on those pixel signals.
  • the distance information indicating the distance of is calculated and output to the subsequent stage.
  • the method of allocating signal carriers to N + semiconductor regions 71 that are different from each other and calculating the distance information based on the signals corresponding to those signal carriers is called the indirect ToF method.
  • the distance between the signal extraction unit 65-1 and the signal extraction unit 65-2 is reduced, but the length of the light receiving region 50 in the thickness (depth) direction is reduced. Not done.
  • the pixel 51 when the pixel 51 is miniaturized, even if a current is passed from the signal extraction unit 65-1 to the signal extraction unit 65-2, the electric field can be sufficiently expanded to the vicinity of the incident surface of light in the light receiving region 50. Can not. As a result, the pixel 51 cannot efficiently guide the photoelectrically converted signal charge to the signal extraction unit 65-1 in the vicinity of the incident surface of the light in the light receiving region 50, and the charge collection efficiency is lowered.
  • charge collection is performed by passing a current through the light receiving region 50 between the adjacent pixels 51 or between the pixels 51 separated by one or more pixels to distribute the signal charge to the FD unit A and the FD unit B. Improve efficiency.
  • FIGS. 3A and 3B are explanatory views of the current control method according to the present disclosure.
  • the direction of the current flowing in the light receiving region 50 of the six pixels 51A to 51F arranged in the same row is indicated by an arrow in the light receiving region 50.
  • FIGS. 3A and 3B of the pair of signal extraction units 65-1 and 65-2 in the pixels 51A to 51F, the one in which a positive voltage is applied to the P + semiconductor region 73 is the rectangular dotted line frame A.
  • the side to which a voltage of 0 V or less is applied is shown as a rectangular dotted line frame B.
  • the signal extraction unit 65-1 becomes the signal extraction unit A when a positive voltage is applied to the P + semiconductor region 73, and becomes the signal extraction unit B when a voltage of 0 V or less is applied.
  • the signal extraction unit 65-2 becomes the signal extraction unit A when a positive voltage is applied to the P + semiconductor region 73, and becomes the signal extraction unit B when a voltage of 0 V or less is applied.
  • the signal extraction unit 65 to which the positive voltage is applied to the P + semiconductor region 73 at a certain timing is the signal extraction unit A, and the one to which the voltage of 0 V or less is applied to the P + semiconductor region 73.
  • the signal extraction unit 65 is referred to as a signal extraction unit B.
  • a current is passed from the signal extraction unit A of the pixel 51B to the signal extraction unit B of the pixel 51C, and the signal extraction unit A of the pixel 51D to the pixel 51E.
  • a current is passed through the signal extraction unit B of.
  • the signal charges photoelectrically converted in the two pixels 51B and 51C are guided in the direction opposite to the direction of the arrow shown in the light receiving region 50 in the pixels 51B and 51C, and are transferred to the signal extraction unit A of the pixel 51B. .. Further, the signal charges photoelectrically converted in the two pixels 51D and 51E are guided in the direction opposite to the direction of the arrow shown in the light receiving region 50 in the pixels 51D and 51E, and are transferred to the signal extraction unit A of the pixels 51D.
  • the signal extraction unit A of the pixel 51A goes to the signal extraction unit B of the pixel 51B, the signal extraction unit A of the pixel 51C to the signal extraction unit B of the pixel 51D, and the pixel 51E.
  • a current is passed from the signal extraction unit A of the above to the signal extraction unit B of the pixel 51F.
  • the signal charges photoelectrically converted in the two pixels 51A and 51B are guided in the direction opposite to the direction of the arrow shown in the light receiving region 50 in the pixels 51A and 51B, and are transferred to the signal extraction unit A of the pixels 51A. ..
  • the signal charges photoelectrically converted in the two pixels 51C and 51D are guided in the direction opposite to the direction of the arrow shown in the light receiving region 50 in the pixels 51C and 51D, and are transferred to the signal extraction unit A of the pixels 51C.
  • the signal charges photoelectrically converted in the two pixels 51E and 51F are guided in the direction opposite to the direction of the arrow shown in the light receiving region 50 in the pixels 51E and 51F, and are transferred to the signal extraction unit A of the pixels 51E.
  • the current path is extended as compared with the case where a current is passed from the signal extraction unit A to the signal extraction unit B in one pixel. can do.
  • the electric field due to the current can be expanded to the vicinity of the incident surface of the light in the light receiving region 50.
  • the charge collection efficiency is improved by efficiently transferring the photoelectrically converted signal charge in the vicinity of the incident surface of the light in the light receiving region 50 to the signal extraction unit A by the electric field. Can be improved.
  • 4 to 6 are explanatory views of the voltage application method according to the present disclosure.
  • the voltage application state at t 4p + 3 (p is a natural number) is shown.
  • the P + semiconductor region 73 to which a positive voltage (for example, 1.5V) is applied is indicated by a circle surrounding “+”, and the P + semiconductor region to which 0V or a negative voltage is applied is shown. 73 is indicated by a circle surrounding "-”. Further, the P + semiconductor region 73 in the high impedance state is indicated by a circle surrounding “x”.
  • the two pixels surrounded by the broken line frame shown in FIGS. 4 to 6 are pixels to which the signal charges to be photoelectrically converted are added, in other words, pixels that distribute the signal charges to a pair of charge storage electrodes.
  • the hatched pixels are light-shielding pixels.
  • a predetermined voltage for example, 1.5 V or 0 V
  • a predetermined voltage is alternately applied between the farthest P + semiconductor region 73 in units of two pixels adjacent to each other in the column direction. It is applied and the photoelectrically converted signal charge is added. Further, the P + semiconductor region 73 other than the P + semiconductor region 73 to which a predetermined voltage is applied is brought into a high impedance state.
  • a positive voltage is applied to the P + semiconductor region 73 (an example of the first electrode) circled with “+” in the pixels in the first and third rows that are not adjacent to each other.
  • a negative voltage is applied to the P + semiconductor region 73 (an example of the second electrode) circled “ ⁇ ” in the pixels in the second and fourth rows that are not adjacent to each other.
  • a negative voltage is applied to the P + semiconductor region 73 circled with “ ⁇ ” in the pixels in the first and third rows that are not adjacent to each other.
  • a positive voltage is applied to the P + semiconductor region 73 circled with “+” in the pixels in the second and fourth rows that are not adjacent to each other.
  • a positive voltage is applied to the P + semiconductor region 73 circled with “+” in the pixels in the first and third rows that are not adjacent to each other.
  • a negative voltage is applied to the P + semiconductor region 73 circled with “ ⁇ ” in the pixels in the second and fourth rows that are not adjacent to each other.
  • a negative voltage is applied to the P + semiconductor region 73 circled with “ ⁇ ” in the pixels in the first and third rows that are not adjacent to each other.
  • a positive voltage is applied to the P + semiconductor region 73 circled with “+” in the pixels in the second and fourth rows that are not adjacent to each other.
  • the approximate value of the true 1-pixel signal charge amount of TapA can be obtained by the same calculation.
  • the distance can be calculated by indirect ToF by using the signals corresponding to the amount of one pixel signal charge of A and B thus obtained.
  • pixels that are not adjacent to each other for example, the P + semiconductor region 73 (an example of the first electrode) in which “+” in the pixels in the first row and the pixels in the third row are circled, and 2 Positive voltage and negative voltage are alternately applied to the P + semiconductor region 73 (an example of the second electrode) circled with “ ⁇ ” in the pixels in the row and the pixels in the fourth row.
  • a current flows between the pixels in the first and second rows adjacent in the column direction
  • a current flows between the pixels in the third and fourth rows adjacent in the column direction. It flows.
  • the signal charge transfer electric field in the vicinity of the light incident surface in the light receiving region 50 is strengthened, so that the signal charge photoelectrically converted in the vicinity of the light incident surface can be efficiently transferred to the charge storage electrode.
  • the path of the current can be extended to the vicinity of the light incident surface in the light receiving region 50 as compared with the case where the current is passed between the pair of P + semiconductor regions 73 provided in one pixel.
  • the photoelectrically converted signal charge can be efficiently transferred to the charge storage electrode in the vicinity of the light incident surface.
  • the P + semiconductor region 73 to which the positive voltage is applied at the same time is provided to the pixels which are not adjacent to each other, and the P + semiconductor region 73 to which the negative voltage is applied at the same time is provided to the pixels which are not adjacent to each other. Indicated.
  • the P + semiconductor region 73 to which a positive voltage is applied at the same time at a certain timing, may be provided in adjacent pixels. Further, the P + semiconductor region 73 to which the negative voltage is applied at the same time at a certain timing may be provided in the adjacent pixels.
  • a negative voltage is applied to the P + semiconductor region 73 circled “-” in the pixels in the second and third rows adjacent to each other in the column direction. ..
  • the P + semiconductor region 73 in which the “ ⁇ ” to which the negative voltage is applied is circled is an example of the second electrode having the shortest arrangement interval between the pixels in the second row and the third row.
  • a positive voltage is applied to the P + semiconductor region 73 circled with “+” in the pixels of the 0th car and the 1st row, which are a pair of adjacent pixels other than the pixels of the 2nd and 3rd rows. ..
  • the P + semiconductor region 73 in which the “+” to which the positive voltage is applied is circled is an example of the first electrode having the shortest arrangement interval between the pixels in the 0th row and the 1st row.
  • a positive voltage is applied to the P + semiconductor region 73 circled with “+” in the pixels in the first and second rows adjacent to each other in the column direction.
  • a negative voltage is applied to the P + semiconductor region 73 circled with “-” in the pixels in the third and fourth rows, which are a pair of adjacent pixels other than the pixels in the first and second rows. ..
  • the electric current in the vicinity of the light incident surface in the light receiving region 50 is strengthened by the current flowing between the pixels in the second row and the pixels in the third row, so that the signal charge transfer efficiency can be improved.
  • a negative voltage is applied to the P + semiconductor region 73 circled with “ ⁇ ” in the pixels in the first and second rows adjacent to each other in the column direction.
  • a positive voltage is applied to the P + semiconductor region 73 circled with “+” in the pixels in the third and fourth rows, which are a pair of adjacent pixels other than the pixels in the first and second rows. ..
  • the signal charge transfer electric field in the vicinity of the light incident surface in the light receiving region 50 is strengthened, so that the signal charge photoelectrically converted in the vicinity of the light incident surface is efficiently charged by the charge storage electrode. Can be transferred to.
  • the number of pixels to which the signal charges are added may be more than 2 pixels.
  • a predetermined voltage may be applied to each P + semiconductor region 73 so as to add the signal charges photoelectrically converted by the three pixels and the four pixels. That is, the number of pixels for distributing the photoelectrically converted signal charge to the pair of charge storage electrodes may be three or more.
  • the pixel array unit 21 may have a configuration in which the number of pixels for distributing the photoelectrically converted signal charge to the pair of charge storage electrodes is different for each region in the pixel array unit 21.
  • the pixels for distributing the photoelectrically converted signal charges to the pair of charge storage electrodes are pixels arranged along the column direction, but this is an example.
  • the pixels that distribute the photoelectrically converted signal charges to the pair of charge storage electrodes may be, for example, pixels arranged along the row direction.
  • the pixels that distribute the photoelectrically converted signal charges to the pair of charge storage electrodes may be, for example, pixels arranged along an oblique direction.
  • FIGS. 7A to 7C are diagrams showing an example of a pixel structure according to the present disclosure.
  • FIGS. 7A and 7B the direction of the current flowing through the light receiving region 50 of the six pixels 51A to 51F arranged in the same row is indicated by an arrow in the light receiving region 50.
  • FIGS. 7A to 7C of the pair of signal extraction units 65-1 and 65-2 in the pixels 51A to 51F, the one in which a positive voltage is applied to the P + semiconductor region 73 is the rectangular dotted line frame A.
  • the side to which a voltage of 0 V or less is applied is shown as a rectangular dotted line frame B.
  • the signal extraction unit 65-1 becomes the signal extraction unit A when a positive voltage is applied to the P + semiconductor region 73, and becomes the signal extraction unit B when a voltage of 0 V or less is applied.
  • the signal extraction unit 65-2 becomes the signal extraction unit A when a positive voltage is applied to the P + semiconductor region 73, and becomes the signal extraction unit B when a voltage of 0 V or less is applied.
  • the signal extraction unit 65 to which the positive voltage is applied to the P + semiconductor region 73 at a certain timing is the signal extraction unit A, and the one to which the voltage of 0 V or less is applied to the P + semiconductor region 73.
  • the signal extraction unit 65 is referred to as a signal extraction unit B.
  • a pixel separation region 101 that optically and electrically separates adjacent light receiving regions is provided between the light receiving regions 50 in each of the pixels 51A to 51F according to the present disclosure.
  • the pixel separation region 101 is, for example, DTI (Deep Trench Isolation), and is formed by embedding an insulator such as SiO 2 in a trench formed at a position between pixels 51A and 51F in the light receiving region 50.
  • DTI Deep Trench Isolation
  • each of the pixels 51A to 51F can suppress electrical color mixing due to leakage of the photoelectrically converted signal charge to the adjacent pixels 51A to 51F. Further, each of the pixels 51A to 51F can suppress optical color mixing due to leakage of light incident on the light receiving region 50 to adjacent pixels 51A to 51F.
  • the pixel separation region 101 reaches a halfway portion from the surface of the light receiving region 50 facing the light incident surface toward the light incident surface.
  • each of the pixels 51A to 51F passes through the region near the incident surface of light in the light receiving region 50 when a current is passed from the signal extraction unit A to the signal extraction unit B over two pixels, for example, in the signal extraction unit B.
  • the signal charge can be transferred from the signal to the signal extraction unit A of the adjacent pixel.
  • the pixel separation region 102 may have a structure that reaches a halfway portion from the light incident surface in the light receiving region 50 toward the surface facing the light incident surface. Even with such a configuration, the pixel separation region 102 can suppress color mixing due to leakage of light and signal charges to adjacent pixels.
  • the signal extraction unit B passes through a region near the surface of the light receiving region 50 facing the incident surface of light.
  • the signal charge can be transferred from the signal to the signal extraction unit A of the adjacent pixel.
  • the pixel separation region 103 may have a structure that reaches from the light incident surface in the light receiving region 50 to the surface facing the light incident surface. According to the pixel separation region 103, color mixing can be suppressed more reliably than the pixel separation regions 101 and 102 shown in FIGS. 6A and 6B, but the signal charge can be transferred across the plurality of pixels 51A to 51F. Can not.
  • the pixel separation region 103 is suitable for preventing leakage of signal charges from pixels that transfer signal charges across a plurality of pixels 51A to 51F to other pixels.
  • An example of arranging the pixel separation regions 101 and 103 will be described later with reference to FIGS. 8 to 10.
  • FIGS. 7A and 7B the voltage application method shown in FIG. 4 is adopted, and a signal is transmitted from the signal extraction unit B of one pixel to the signal extraction unit A of the other pixel among the pair of adjacent pixels.
  • the voltage application method shown in FIG. 6 can also be adopted.
  • the signal extraction unit B of the pixel 51A shown in FIGS. 7A and 7B becomes the signal extraction unit A
  • the signal extraction unit A of the pixel 51D becomes the signal extraction unit B
  • the pixel 51E The signal extraction unit B becomes the signal extraction unit A. Then, the signal charge is transferred from the signal extraction unit B to the signal extraction unit A of the adjacent pixel.
  • the signal charge can be transferred across a plurality of pixels 51A to 51F (here, 2 pixels), so that the signal charge transfer efficiency can be improved. Can be improved.
  • FIGS. 8 to 10 are diagrams showing an arrangement example of the pixel separation region according to the present disclosure.
  • the P + semiconductor region 73 to which a positive voltage is applied at a certain timing is indicated by a circle surrounding “+”
  • the P + semiconductor region 73 to which 0 V or a negative voltage is applied is indicated by “ ⁇ ”. It is indicated by a circle surrounding it.
  • the P + semiconductor region 73 in the high impedance state is indicated by a circle surrounding “x”.
  • the two pixels surrounded by the broken line frame shown in FIGS. 8 to 10 are pixels to which the signal charges to be photoelectrically converted are added, in other words, pixels that distribute the signal charges to a pair of charge storage electrodes.
  • the hatched pixels are light-shielding pixels.
  • a pixel array that transfers signal charges across pixels for each of two pixels adjacent to each other in the column direction (for example, two pixels surrounded by a broken line frame). Let's take an example.
  • the pixel array unit 21 moves from the surface of the light receiving region 50 facing the light incident surface to the light incident surface between the pixels adjacent to each other in the column direction and between the pixels adjacent to each other in the row direction.
  • a pixel separation region 101 that reaches the middle of the direction is provided.
  • the pixel array unit 21 improves the charge collection efficiency by transferring the signal charge between the pixels adjacent to each other in the column direction in which the signal charge is transferred through the region near the incident surface of the light in the light receiving region 50. Can be made to.
  • the pixel array unit 21A As shown in FIG. 9, in the pixel array unit 21A, signal charges are transferred between pixels adjacent in the column direction, but signal charges are not transferred between pixels adjacent in the row direction. Therefore, the pixel array unit 21 separates the pixels that are adjacent to each other in the column direction in which the signal charge is transferred from the surface of the light receiving region 50 facing the light incident surface to the middle portion toward the light incident surface. Region 101 is provided. As a result, the pixel array unit 21 can transfer the signal charge through the region near the incident surface of the light in the light receiving region 50 between the pixels adjacent to each other in the column direction in which the signal charge is transferred.
  • a pixel separation region 103 that penetrates from the light incident surface in the light receiving region 50 to the surface facing the light incident surface is provided between the pixels adjacent to each other in the row direction in which the signal charge is not transferred.
  • the pixel array unit 21 can prevent the signal charge from leaking to the pixels adjacent to each other in the row direction in which the signal charge is not transferred.
  • the pixel array unit 21B is provided with no pixel separation region between pixels adjacent to each other in the column direction in which the signal charge is transferred, and is in the row direction in which the signal charge is not transferred. Between the adjacent pixels, a pixel separation region 103 that penetrates from the light incident surface in the light receiving region 50 to the surface facing the light incident surface is provided.
  • the pixel array unit 21B prevents the signal charge from leaking to the pixels adjacent in the row direction in which the signal charge is not transferred, and between the pixels adjacent in the column direction in which the signal charge is transferred.
  • FIGS. 8 to 10 the voltage application method shown in FIG. 4 is adopted, and a positive voltage and a negative voltage are applied to the two farthest P + semiconductor regions 73 among the pair of pixels adjacent in the column direction.
  • the voltage application method shown in FIG. 6 can also be adopted.
  • the P + semiconductor region 73 to which the positive voltage is applied which is circled “+” in the pixels in the third row shown in FIGS. 8 to 10, is circled “ ⁇ ”. It becomes the P + semiconductor region 73 to which the negative voltage surrounded by is applied. Then, the P + semiconductor region 73 to which the negative voltage circled “ ⁇ ” is applied in the pixels of the fourth row shown in FIGS. 8 to 10 is applied with the positive voltage circled “+”. It becomes the semiconductor region 73.
  • the signal charge transfer electric field in the vicinity of the light incident surface in the light receiving region 50 is strengthened as in the voltage application method shown in FIG. 4, so that the signal charge photoelectrically converted in the vicinity of the light incident surface is efficiently charged by the charge storage electrode. Can be transferred to.
  • FIGS. 11 to 14 are explanatory views of a pixel drive circuit according to the present disclosure.
  • a pixel drive circuit that performs the voltage application method shown in FIG. 4 will be described with reference to FIGS. 11 and 12, and a pixel drive that performs the voltage application method shown in FIG. 6 will be described with reference to FIGS. 13 and 14. The circuit will be described.
  • FIGS. 11 and 12 among a plurality of pixels arranged in a matrix in the pixel array units 21 and 21C, m (m is a natural number) column to m + 3 columns, 4n (n is a natural number) row to 4n + 3 Pixels up to the row are selectively shown.
  • FIGS. 13 and 14 among a plurality of pixels arranged in a matrix in the pixel array units 21D and 21E, pixels from m column to m + 3 columns, 4n (n is a natural number) to 4n + 4 rows. Is selectively shown.
  • the P + semiconductor region 73 to which a positive voltage is applied at a certain timing is indicated by a circle surrounding “+”, and the P + semiconductor region 73 to which 0 V or a negative voltage is applied is indicated by “ ⁇ ”. It is indicated by a circle surrounding it. Further, the P + semiconductor region 73 in the high impedance state is indicated by a circle surrounding “x”.
  • MIX signal lines 4n, 4n + 1,4n + 2,4n + 3,4n + 4 described below are for applying a voltage of 1.5V or a voltage of 0V described with reference to FIG. 2 to each P + semiconductor region 73, for example. Voltage supply line.
  • the pixel array unit 21 includes a wiring L1 that connects electrodes (P + semiconductor region 73) to which a positive voltage is applied at a certain timing in a pair of pixels that are not adjacent to each other.
  • the wiring L1 is an example of the first wiring
  • the electrode connected by the wiring L1 is an example of the first electrode in a pair of light receiving pixels that are not adjacent to each other and are connected by the first wiring.
  • the pixel array unit 21 includes wirings L2 and L3 for connecting other electrodes (P + semiconductor region 73) that are brought into a high impedance state when a positive voltage is applied to the electrodes by the wiring L1.
  • the pixel array unit 21 connects other electrodes (P + semiconductor region 73) in a pair of pixels that are not adjacent to each other to which 0 V or a negative voltage is applied when a positive voltage is applied to the electrodes by wiring L1.
  • the wiring L4 is provided.
  • the wiring L4 is an example of the second wiring
  • the electrode connected by the wiring L4 is an example of the second electrode in a pair of light receiving pixels that are not adjacent to each other and are connected by the second wiring.
  • the corresponding buffer amplifiers BA 4n , BA 4n + 1 , BA 4n + 2 , and BA 4n + 3 are connected to the wirings L1, L2, L3, and L4, respectively.
  • the buffer amplifiers BA 4n , BA 4n + 1 , BA 4n + 2 , and BA 4n + 3 can output, for example, switching between a voltage of 1.5V and a voltage of 0V.
  • Switches SW 4n , SW 4n + 1 , SW 4n + 2 , and SW 4n + 3 are connected between the buffer amplifiers BA 4n , BA 4n + 1 , BA 4n + 2 , BA 4n + 3, and the pixel array unit 21.
  • the switch SW 4n is connected to the buffer amplifier BA 4n
  • the MIX signal line 4n is connected to the switch SW 4n
  • the wiring L1 is connected to the MIX signal line 4n.
  • the switch SW 4n + 1 is connected to the buffer amplifier BA 4n + 1
  • the MIX signal line 4n + 1 is connected to the switch SW 4n + 1
  • the wiring L2 is connected to the MIX signal line 4n + 1.
  • the switch SW 4n + 2 is connected to the buffer amplifier BA 4n + 2
  • the MIX signal line 4n + 2 is connected to the switch SW 4n + 2
  • the wiring L3 is connected to the MIX signal line 4n + 2.
  • the switch SW 4n + 3 is connected to the buffer amplifier BA 4n + 3
  • the MIX signal line 4n + 3 is connected to the switch SW 4n + 3
  • the wiring L4 is connected to the MIX signal line 4n + 3.
  • the switches SW 4n , SW 4n + 1 , SW 4n + 2 , and SW 4n + 3 are composed of, for example, CMOS (Complementary Metal Oxide Semiconductor) switches provided in the peripheral circuits of the pixel array unit 21.
  • CMOS Complementary Metal Oxide Semiconductor
  • the switches SW 4n , SW 4n + 1 , SW 4n + 2 , and SW 4n + 3 have a structure in which a sensor board provided with a pixel array unit 21 is laminated on a logic board provided with peripheral circuits, a CMOS switch on the logic board is used. It is composed.
  • the buffer amplifiers BA 4n , BA 4n + 1 , BA 4n + 2 , BA 4n + 3, and switches SW 4n , SW 4n + 1 , SW 4n + 2 , and SW 4n + 3 are controlled by, for example, the system control unit 25 and the vertical drive unit 22 (see FIG. 1).
  • the system control unit 25 and the vertical drive unit 22 turn on the switch SW 4n at a certain timing to output a voltage of 1.5V from the buffer amplifier BA 4n , turn on the switch SW 4n + 3 , and start from the buffer amplifier BA 4n + 3. Output 0V or negative voltage. At this time, the system control unit 25 and the vertical drive unit 22 turn off the switch SW 4n + 1 and the switch SW 4n + 2.
  • the system control unit 25 and the vertical drive unit 22 set the state of the pixel array unit 21 to the state shown in FIG. 11, pass a current between two pixels adjacent to each other in the column direction, and apply an electric field due to the current in the light receiving region 50.
  • the charge collection efficiency can be improved by extending the light to the vicinity of the incident surface.
  • buffer amplifiers BA 4n , BA 4n + 1 , BA 4n + 2 , and BA 4n + 3 are 3-stage buffers that can switch between 1.5V output state, 0V output state, and high impedance state, switches SW 4n , SW 4n + 1 , and SW 4n + 2. , SW 4n + 3 can be omitted.
  • the system control unit 25 and the vertical drive unit 22 set the buffer amplifier BA 4n to the 1.5V output state, the buffer amplifier BA 4n + 3 to the 0V output state, and the buffer amplifiers BA 4n + 1 and BA 4n + 2 at a certain timing, for example. Put it in the impedance state.
  • the system control unit 25 and the vertical drive unit 22 can change the state of the pixel array unit 21 to the state shown in FIG.
  • the pixel array unit 21C alternately applies a voltage for distributing the signal charge to the pair of charge storage electrodes instead of the switches SW 4n , SW 4n + 1 , SW 4n + 2 , and SW 4n + 3 shown in FIG.
  • the configuration may include a switch for connecting the pair of first electrodes and the second electrodes to each other.
  • the pixel array unit 21C has switches SWA 4n, m , SWA 4n that connect the first electrode and the buffer amplifier BA 4n in a pair of light receiving pixels that are not adjacent to each other. , M + 2 .
  • the switches SWA 4n, m and SWA 4n, m + 2 are examples of the first switch for connecting the first electrodes to each other.
  • the pixel array unit 21C includes switches SWB 4n, m to SWB 4n + 2, m for connecting the electrodes of a pair of light receiving pixels that are not adjacent to each other and the buffer amplifier BA 4n + 1 , instead of the switch SW 4n + 1 shown in FIG.
  • the pixel array unit 21C includes switches SWA 4n + 1, m to SWA 4n + 3, m for connecting the electrodes of a pair of light receiving pixels that are not adjacent to each other and the buffer amplifier BA 4n + 2 , instead of the switch SW 4n + 2 shown in FIG.
  • the pixel array unit 21C uses switches SWB 4n + 1, m to SWB 4n + 3, m for connecting the second electrode and the buffer amplifier BA 4n + 3 in a pair of light receiving pixels that are not adjacent to each other. Be prepared.
  • the switches SWB 4n + 1, m to SWB 4n + 3, m are examples of the second switch for connecting the second electrodes to each other.
  • the switch connected to the TapA of 4n rows and m + 3 columns is the switch SWA 4n, m + 3
  • the switch connected to the TapB of 4n + 3 rows and m + 3 columns is the switch SWB 4n + 3, m + 3 .
  • the reference numerals are omitted for the switches other than the switches SWA 4n, m + 3 and SWB 4n + 3, m + 3 provided in the pixels in the m + 3 row, and the switches provided in the pixels in the m + 1 row and the m + 2 row. There is.
  • the system control unit 25 and the vertical drive unit 22 control, for example, when driving the pixels of the m-row, the switches of the following combinations are turned on / off at the same time.
  • the system control unit 25 and the vertical drive unit 22 have switches SWA 4n, m and SWA 4n + 2, m connected to the P + semiconductor region 73 circled with “+”.
  • the switches SWB 4n + 1, m and SWB 4n + 3, m connected to the P + semiconductor region 73 circled “ ⁇ ” are turned on.
  • the system control unit 25 and the vertical drive unit 22 are switched switches SWB 4n, m , SWA 4n + 1, m , SWB 4n + 2, m , SWA 4n + 3, m connected to the P + semiconductor region 73 circled with “x”. Turn off. Then, the system control unit 25 and the vertical drive unit 22 alternately apply positive voltage and negative voltage to the wiring L1 and the wiring L4.
  • system control unit 25 and the vertical drive unit 22 also control the pixels in the m + 1 row to the m + 3 row in the same manner.
  • the system control unit 25 and the vertical drive unit 22 set the state of the pixel array unit 21C to the state shown in FIG. 12, pass a current between two pixels adjacent to each other in the column direction, and apply an electric field due to the current in the light receiving region 50.
  • the charge collection efficiency can be improved by extending the light to the vicinity of the incident surface.
  • the pixel array unit 21D for example, the pixel array unit 21 shown in FIG. 11 is connected to electrodes having the shortest arrangement interval between a pair of vertically adjacent pixels.
  • the configuration is different from.
  • the electrodes having the shortest arrangement interval between the adjacent pixels of the 4n row and the 4n + 1 row are connected by the wiring L1.
  • the electrodes having the shortest arrangement interval between the adjacent pixels of the 4n + 1 row and the 4n + 2 row are connected by the wiring L2.
  • Electrodes having the shortest arrangement interval between adjacent pixels of 4n + 2 rows and 4n + 3 rows are connected by wiring L3.
  • Electrodes having the shortest arrangement interval between adjacent pixels of 4n + 3 rows and 4n + 4 rows are connected by wiring L4.
  • the system control unit 25 and the vertical drive unit 22 are, for example, switches SW 4n , SW 4n + 2 , SW connected to the buffer amplifiers BA 4n , BA 4n + 2 , BA 4n + 4 of 4n line, 4n + 2 line, and 4n + 4 line. Turn on 4n + 4.
  • the system control unit 25 and the vertical drive unit 22 turn off the switches SW 4n + 1 and SW 4n + 3 connected to the buffer amplifiers BA 4n + 1 and BA 4n + 3 in the 4n + 1 line and the 4n + 3 line. Then, the system control unit 25 and the vertical drive unit 22 alternately apply positive voltage and negative voltage to the wiring L1 and the wiring L3.
  • the system control unit 25 and the vertical drive unit 22 have the arrangement interval between the first electrode having the shortest arrangement interval between adjacent pixels of 4n row and 4n + 1 row and the detached pixels of 4n + 2 row and 4n + 3 row. Positive voltage and negative voltage are alternately applied to the second electrode having the shortest distance. As a result, a current flows between the pixels in the 4n + 1th row and the 4n + 2nd row adjacent in the column direction, and a current flows between the pixels in the 4n + 3rd row and the 4n + 4th row adjacent in the column direction.
  • the system control unit 25 and the vertical drive unit 22 set the state of the pixel array unit 21D to the state shown in FIG. 13, pass a current between two pixels adjacent to each other in the column direction, and receive an electric field due to the current in the light receiving region 50.
  • the charge collection efficiency can be improved by extending the light to the vicinity of the incident surface of the light.
  • the pixel array unit 21E has the shortest arrangement interval between a pair of vertically adjacent pixels instead of the switches SW 4n , SW 4n + 1 , SW 4n + 2 , and SW 4n + 3 shown in FIG. It may be configured to include a switch for connecting the electrodes of the above.
  • the pixel array unit 21E is adjacent to the switches SWB 4n-1, m , SWA 4n, m that connect the electrodes having the shortest arrangement interval between the adjacent pixels of the 4n-1 row and the 4n row.
  • the switches SWB 4n, m and SWA 4n + 1, m for connecting the electrodes having the shortest arrangement interval between the pixels of the 4n row and the 4n + 1 row are provided.
  • the pixel array unit 21E includes switches SWB 4n + 1, m , SWA 4n + 2, m , and adjacent 4n + 2 rows and 4n + 3 rows, which connect electrodes having the shortest arrangement interval between adjacent pixels of 4n + 1 row and 4n + 2 rows. It is provided with switches SWB 4n + 2, m and SWA 4n + 3, m for connecting electrodes having the shortest arrangement interval between pixels. Further, the pixel array unit 21E includes switches SWB 4n + 3, m and SWA 4n + 4, m for connecting electrodes having the shortest arrangement interval between adjacent pixels of 4n + 3 rows and 4n + 4 rows.
  • the system control unit 25 and the vertical drive unit 22 control, for example, when driving the pixels of the m-row, the switches of the following combinations are turned on / off at the same time.
  • the system control unit 25 and the vertical drive unit 22 are switched switches SWB 4n-1, m , SWA 4n, which are connected to the P + semiconductor region 73 circled with “+”. Turn on m , SWB 4n + 3, m , SWA 4n + 4, m, and the switches SWB 4n + 1, m , SWA 4n + 2, m connected to the P + semiconductor region 73 circled "-”.
  • the system control unit 25 and the vertical drive unit 22 are switched switches SWB 4n, m , SWA 4n + 1, m , SWB 4n + 2, m , SWA 4n + 3, m connected to the P + semiconductor region 73 circled with “x”. Turn off. Then, the system control unit 25 and the vertical drive unit 22 alternately output positive voltage and negative voltage from the 4n line buffer amplifier BA 4n and the 4n + 2 line buffer amplifier BA 4n + 2.
  • system control unit 25 and the vertical drive unit 22 also control the pixels in the m + 1 row to the m + 3 row in the same manner.
  • the system control unit 25 and the vertical drive unit 22 change the state of the pixel array unit 21E to the state shown in FIG.
  • the charge collection efficiency can be improved by passing a current between the pixels of the row) and expanding the electric field due to the current to the vicinity of the incident surface of the light in the light receiving region 50.
  • the MIX signal lines 4n, 4n + 1,4n + 2,4n + 3,4n + 4 are arranged in the horizontal (pixel row) direction of the pixel array units 21,21C, 21D, 21E, but vertically. It is also possible to arrange in the (pixel string) direction.
  • the effects described in this specification are merely examples and are not limited, and other effects may be obtained. Further, in the present specification, the case where the pixel array portion according to the present disclosure is a back-illuminated type has been described as an example, but the pixel array portion according to the present disclosure may be a front-illuminated type.
  • the present technology can also have the following configurations.
  • a light receiving region that photoelectrically converts incident light into a signal charge, and a pair of first electrodes that alternately apply a voltage that generates an electric field that divides the signal charge into a pair of charge storage electrodes and distributes the electric field to the light receiving region.
  • a pixel array in which a plurality of light receiving pixels including the second electrode are arranged in a matrix, and The first wiring that connects the first electrodes of a pair of non-adjacent light receiving pixels, A light receiving element having a second wiring for connecting the second electrodes of the pair of light receiving pixels.
  • a light receiving region that photoelectrically converts incident light into a signal charge, and a pair of first electrodes that alternately apply a voltage that generates an electric field that divides the signal charge into a pair of charge storage electrodes and distributes the electric field to the light receiving region.
  • a pixel array in which a plurality of light receiving pixels including the second electrode are arranged in a matrix, and A light receiving element having a control unit for applying the voltage to the first electrode and the second electrode to cause a current to flow in the light receiving region between adjacent light receiving pixels or between light receiving pixels separated by one pixel or more.
  • the first switch that connects the first electrodes to each other, A second switch for connecting the second electrodes to each other is provided.
  • the control unit The first electrodes of a pair of non-adjacent light receiving pixels are connected to each other by the first switch, the second electrodes of the pair of light receiving pixels are connected to each other by the second switch, and the first electrode and the second electrode are connected to each other.
  • the control unit The voltage is applied to the first electrode having the shortest arrangement interval between a pair of adjacent light receiving pixels and the second electrode having the shortest arrangement interval between a pair of adjacent light receiving pixels other than the pair of light receiving pixels.
  • the first switch that connects the first electrodes to each other, A second switch for connecting the second electrodes to each other is provided.
  • the control unit The first electrodes having the shortest arrangement interval between a pair of adjacent light receiving pixels are connected to each other by the first switch, and the arrangement interval between a pair of adjacent light receiving pixels other than the pair of light receiving pixels is the shortest.
  • (6) The light receiving element according to any one of (1) to (5), wherein the number of light receiving pixels for distributing the signal charge to the pair of charge storage electrodes is different for each region in the pixel array.
  • the light receiving pixel that distributes the signal charge to the pair of charge storage electrodes is The light receiving element according to any one of (1) to (6) above, which is a light receiving pixel arranged along a column direction among the light receiving pixels arranged in a matrix.
  • the light receiving pixel that distributes the signal charge to the pair of charge storage electrodes is The light receiving element according to any one of (1) to (6) above, which is a light receiving pixel arranged along the row direction among the light receiving pixels arranged in a matrix.
  • the light receiving pixel that distributes the signal charge to the pair of charge storage electrodes is The light receiving element according to any one of (1) to (6) above, which is a light receiving pixel arranged along an oblique direction among the light receiving pixels arranged in a matrix.
  • the light receiving element according to any one of (1) to (9) above which is provided between the light receiving regions and has a pixel separation region that optically and electrically separates the adjacent light receiving regions.
  • the pixel separation area is The light receiving element according to (10) above, which reaches a halfway portion toward the incident surface from a surface facing the incident surface of light in the light receiving region.
  • the pixel separation area is The light receiving element according to (10) above, which reaches a halfway portion from the incident surface of light in the light receiving region toward the surface facing the incident surface.
  • the pixel separation area is The light receiving element according to (11) or (12), which is provided along a direction orthogonal to the arrangement direction of light receiving pixels that distributes the signal charge to the pair of charge storage electrodes.
  • the pixel separation area is The light receiving light according to (10), which is provided along the arrangement direction of light receiving pixels that reach from the incident surface of light in the light receiving region to the surface facing the incident surface and distribute the signal charge to the pair of charge storage electrodes. element.
  • a light receiving region that photoelectrically converts incident light into a signal charge, and a pair of first electrodes that alternately apply a voltage that generates an electric field that divides the signal charge into a pair of charge storage electrodes and distributes the electric field to the light receiving region.
  • This is a method for controlling a pixel array in which a plurality of light receiving pixels including a second electrode are arranged in a matrix.
  • a control method comprising applying the voltage to the first electrode and the second electrode to cause a current to flow in the light receiving region between adjacent light receiving pixels or between light receiving pixels separated by one pixel or more.
  • 11 solid-state image sensor 21 pixel array unit, 22 vertical drive unit, 51 pixels, 61 substrate, 62 condensing structure, 71-1, 71-2, 71 N + semiconductor region, 73-1, 73-2, 73 P + semiconductor region

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

A light-receiving element (solid state imaging element 11) according to the present disclosure has a pixel array (pixel array unit 21), a first wiring (wiring L1), and a second wiring (wiring L4). The pixel array (pixel array unit 21) has a plurality of light-receiving pixels arranged in a matrix, the plurality of light-receiving pixels including: a light-receiving region (50) that photoelectrically converts incident light to a signal charge; and pairs of first electrodes (P+ semiconductor region 73) and second electrodes (P+ semiconductor region 73) to which are alternatingly applied a voltage that generates, in the light-receiving region, an electric field that time-divides the signal charge and distributes the result to a pair of charge storage electrodes. The first wiring (wiring L1) connects the first electrodes (P+ semiconductor region 73) together in a pair of non-adjacent light-receiving pixels. The second wiring (wiring L4) connects the second electrodes (P+ semiconductor region 73) together in a pair of light-receiving pixels.

Description

受光素子および制御方法Light receiving element and control method
 本開示は、受光素子および制御方法に関する。 The present disclosure relates to a light receiving element and a control method.
 間接ToF(Time of Flight)方式を利用した測距システムに使用される受光素子は、複数の受光画素が行列状に配列される画素アレイを備える。各受光画素は、入射する光を信号電荷に光電変換する受光領域と、信号電荷を時分割して一対の電荷蓄積電極へ振り分ける電界を受光領域に発生させる電圧が交互に印加される一対の電極とを備える。(例えば、特許文献1参照)。 The light receiving element used in the distance measuring system using the indirect ToF (Time of Flight) method includes a pixel array in which a plurality of light receiving pixels are arranged in a matrix. Each light receiving pixel has a light receiving region that photoelectrically converts incident light into a signal charge, and a pair of electrodes that alternately apply a voltage that generates an electric field in the light receiving region that time-divides the signal charge and distributes it to a pair of charge storage electrodes. And. (See, for example, Patent Document 1).
特開2011-86904号公報Japanese Unexamined Patent Publication No. 2011-86904
 しかしながら、受光画素は、微細化が進むと、電荷収集効率が低下する。 However, the charge collection efficiency of the light receiving pixel decreases as the miniaturization progresses.
 そこで、本開示では、電荷収集効率を増大させることができる受光素子および制御方法を提案する。 Therefore, in the present disclosure, a light receiving element and a control method capable of increasing the charge collection efficiency are proposed.
 本開示によれば、受光素子が提供される。受光素子は、画素アレイと、第1配線と、第2配線とを有する。画素アレイは、入射する光を信号電荷に光電変換する受光領域と、前記信号電荷を時分割して一対の電荷蓄積電極へ振り分ける電界を前記受光領域に発生させる電圧が交互に印加される一対の第1電極および第2電極とを含む複数の受光画素が行列状に配列される。第1配線は、隣接しない一対の受光画素における前記第1電極同士を接続する。第2配線は、前記一対の受光画素における前記第2電極同士を接続する。 According to the present disclosure, a light receiving element is provided. The light receiving element has a pixel array, a first wiring, and a second wiring. The pixel array is a pair of a light receiving region that photoelectrically converts incident light into a signal charge and a pair of voltages that alternately apply a voltage that generates an electric field in the light receiving region that time-divides the signal charge and distributes it to a pair of charge storage electrodes. A plurality of light receiving pixels including the first electrode and the second electrode are arranged in a matrix. The first wiring connects the first electrodes of a pair of non-adjacent light receiving pixels. The second wiring connects the second electrodes of the pair of light receiving pixels to each other.
本開示に係る受光素子の一例である固体撮像素子の構成例を示す図である。It is a figure which shows the structural example of the solid-state image sensor which is an example of the light receiving element which concerns on this disclosure. 本開示に係る画素の構成例を示す図である。It is a figure which shows the structural example of the pixel which concerns on this disclosure. 本開示に係る電流制御方法の説明図である。It is explanatory drawing of the current control method which concerns on this disclosure. 本開示に係る電流制御方法の説明図である。It is explanatory drawing of the current control method which concerns on this disclosure. 本開示に係る電圧印加方法の説明図である。It is explanatory drawing of the voltage application method which concerns on this disclosure. 本開示に係る電圧印加方法の説明図である。It is explanatory drawing of the voltage application method which concerns on this disclosure. 本開示に係る電圧印加方法の説明図である。It is explanatory drawing of the voltage application method which concerns on this disclosure. 本開示に係る画素構造例を示す図である。It is a figure which shows the example of the pixel structure which concerns on this disclosure. 本開示に係る画素構造例を示す図である。It is a figure which shows the example of the pixel structure which concerns on this disclosure. 本開示に係る画素構造例を示す図である。It is a figure which shows the example of the pixel structure which concerns on this disclosure. 本開示に係る画素分離領域の配置例を示す図である。It is a figure which shows the arrangement example of the pixel separation area which concerns on this disclosure. 本開示に係る画素分離領域の配置例を示す図である。It is a figure which shows the arrangement example of the pixel separation area which concerns on this disclosure. 本開示に係る画素分離領域の配置例を示す図である。It is a figure which shows the arrangement example of the pixel separation area which concerns on this disclosure. 本開示に係る画素駆動回路の説明図である。It is explanatory drawing of the pixel drive circuit which concerns on this disclosure. 本開示に係る画素駆動回路の説明図である。It is explanatory drawing of the pixel drive circuit which concerns on this disclosure. 本開示に係る画素駆動回路の説明図である。It is explanatory drawing of the pixel drive circuit which concerns on this disclosure. 本開示に係る画素駆動回路の説明図である。It is explanatory drawing of the pixel drive circuit which concerns on this disclosure.
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In each of the following embodiments, the same parts are designated by the same reference numerals, so that duplicate description will be omitted.
[1.固体撮像素子の構成例]
 本技術は、例えば間接ToF(Time of Flight)方式により測距を行う測距システムを構成する固体撮像素子や、そのような固体撮像素子を有する撮像装置などに適用することが可能である。
[1. Configuration example of solid-state image sensor]
The present technology can be applied to, for example, a solid-state image sensor constituting a distance-finding system that measures a distance by an indirect ToF (Time of Flight) method, an image pickup device having such a solid-state image sensor, and the like.
 例えば、測距システムは、車両に搭載され、車外にある対象物までの距離を測定する車載用のシステムや、ユーザの手等の対象物までの距離を測定し、その測定結果に基づいてユーザのジェスチャを認識するジェスチャ認識用のシステムなどに適用することができる。この場合、ジェスチャ認識の結果は、例えばカーナビゲーションシステムの操作等に用いることができる。 For example, a distance measuring system is an in-vehicle system that is mounted on a vehicle and measures the distance to an object outside the vehicle, or measures the distance to an object such as a user's hand, and the user is based on the measurement result. It can be applied to a system for recognizing gestures. In this case, the result of gesture recognition can be used, for example, for operating a car navigation system.
 図1は、本技術を適用した受光素子の一例である固体撮像素子の一実施の形態の構成例を示す図である。 FIG. 1 is a diagram showing a configuration example of an embodiment of a solid-state image sensor, which is an example of a light receiving element to which the present technology is applied.
 図1に示す固体撮像素子11は、裏面照射型のCAPD(Current Assisted Photonic Demodulator)センサであり、測距機能を有する撮像装置に設けられている。 The solid-state image sensor 11 shown in FIG. 1 is a back-illuminated CAPD (Current Assisted Photonic Demodulator) sensor, and is provided in an image sensor having a distance measuring function.
 固体撮像素子11は、図示せぬ半導体基板上に形成された画素アレイ部21と、周辺回路部とを有する構成となっている。周辺回路部は、例えば垂直駆動部22、カラム処理部23、水平駆動部24、およびシステム制御部25から構成されている。周辺回路部は、画素アレイ部21と同じ半導体基板上に集積してもよいし、周辺回路部の一部または全部を画素アレイ部21とは別の半導体基板に形成し、画素アレイ部21の基板と貼り合わせて一体にしてもよい。 The solid-state image sensor 11 has a configuration including a pixel array unit 21 formed on a semiconductor substrate (not shown) and a peripheral circuit unit. The peripheral circuit unit is composed of, for example, a vertical drive unit 22, a column processing unit 23, a horizontal drive unit 24, and a system control unit 25. The peripheral circuit unit may be integrated on the same semiconductor substrate as the pixel array unit 21, or a part or all of the peripheral circuit unit may be formed on a semiconductor substrate different from the pixel array unit 21 so that the pixel array unit 21 may be integrated. It may be integrated with the substrate.
 固体撮像素子11には、さらに信号処理部26およびデータ格納部27も設けられている。なお、信号処理部26およびデータ格納部27は、固体撮像素子11と同じ基板上に搭載してもよいし、撮像装置における固体撮像素子11とは別の基板上に配置するようにしてもよい。 The solid-state image sensor 11 is also provided with a signal processing unit 26 and a data storage unit 27. The signal processing unit 26 and the data storage unit 27 may be mounted on the same substrate as the solid-state image sensor 11, or may be arranged on a substrate different from the solid-state image sensor 11 in the image pickup device. ..
 画素アレイ部21は、受光した光量に応じた信号電荷を生成し、その信号電荷に応じた信号を出力する受光画素(以下、単に「画素」記載する)が行方向および列方向に、すなわち行列状に2次元配置された構成となっている。すなわち、画素アレイ部21は、入射した光を光電変換し、その結果得られた信号電荷に応じた信号を出力する画素を複数有している。 In the pixel array unit 21, light receiving pixels (hereinafter, simply referred to as “pixels”) that generate a signal charge according to the amount of received light and output a signal corresponding to the signal charge are arranged in a row direction and a column direction, that is, a matrix. It has a structure in which it is arranged two-dimensionally. That is, the pixel array unit 21 has a plurality of pixels that perform photoelectric conversion of the incident light and output a signal corresponding to the signal charge obtained as a result.
 ここで、行方向とは画素行の画素の配列方向(すなわち、水平方向)をいい、列方向とは画素列の画素の配列方向(すなわち、垂直方向)をいう。つまり、行方向は図中、横方向であり、列方向は図中、縦方向である。 Here, the row direction means the arrangement direction of the pixels in the pixel row (that is, the horizontal direction), and the column direction means the arrangement direction of the pixels in the pixel row (that is, the vertical direction). That is, the row direction is the horizontal direction in the figure, and the column direction is the vertical direction in the figure.
 画素アレイ部21において、行列状の画素配列に対して、画素行ごとに画素駆動線28が行方向に沿って配線され、各画素列に2つの垂直信号線29が列方向に沿って配線されている。例えば画素駆動線28は、画素から信号を読み出す際の駆動を行うための駆動信号を伝送する。なお、図1では、画素駆動線28について1本の配線として示しているが、1本に限られるものではない。画素駆動線28の一端は、垂直駆動部22の各行に対応した出力端に接続されている。 In the pixel array unit 21, pixel drive lines 28 are wired along the row direction for each pixel row with respect to the matrix-like pixel array, and two vertical signal lines 29 are wired along the column direction in each pixel row. ing. For example, the pixel drive line 28 transmits a drive signal for driving when reading a signal from a pixel. In FIG. 1, the pixel drive line 28 is shown as one wiring, but the wiring is not limited to one. One end of the pixel drive line 28 is connected to the output end corresponding to each line of the vertical drive unit 22.
 垂直駆動部22は、シフトレジスタやアドレスデコーダなどによって構成され、画素アレイ部21の各画素を全画素同時あるいは行単位等で駆動する。すなわち、垂直駆動部22は、垂直駆動部22を制御するシステム制御部25とともに、画素アレイ部21の各画素の動作を制御する駆動部を構成している。 The vertical drive unit 22 is composed of a shift register, an address decoder, etc., and drives each pixel of the pixel array unit 21 at the same time for all pixels or in line units. That is, the vertical drive unit 22 constitutes a drive unit that controls the operation of each pixel of the pixel array unit 21 together with the system control unit 25 that controls the vertical drive unit 22.
 垂直駆動部22による駆動制御に応じて画素行の各画素から出力される信号は、垂直信号線29を通してカラム処理部23に入力される。カラム処理部23は、各画素から垂直信号線29を通して出力される信号に対して所定の信号処理を行うとともに、信号処理後の画素信号を一時的に保持する。 The signal output from each pixel in the pixel row according to the drive control by the vertical drive unit 22 is input to the column processing unit 23 through the vertical signal line 29. The column processing unit 23 performs predetermined signal processing on the signal output from each pixel through the vertical signal line 29, and temporarily holds the pixel signal after the signal processing.
 具体的には、カラム処理部23は、信号処理としてノイズ除去処理やAD(Analog to Digital)変換処理などを行う。 Specifically, the column processing unit 23 performs noise removal processing, AD (Analog to Digital) conversion processing, and the like as signal processing.
 水平駆動部24は、シフトレジスタやアドレスデコーダなどによって構成され、カラム処理部23の画素列に対応する単位回路を順番に選択する。この水平駆動部24による選択走査により、カラム処理部23において単位回路ごとに信号処理された画素信号が順番に出力される。 The horizontal drive unit 24 is composed of a shift register, an address decoder, and the like, and sequentially selects unit circuits corresponding to the pixel strings of the column processing unit 23. By the selective scanning by the horizontal drive unit 24, the pixel signals processed by the column processing unit 23 for each unit circuit are sequentially output.
 システム制御部25は、各種のタイミング信号を生成するタイミングジェネレータなどによって構成され、そのタイミングジェネレータで生成された各種のタイミング信号を基に、垂直駆動部22、カラム処理部23、および水平駆動部24などの駆動制御を行う。 The system control unit 25 is composed of a timing generator or the like that generates various timing signals, and the vertical drive unit 22, the column processing unit 23, and the horizontal drive unit 24 are based on the various timing signals generated by the timing generator. Drive control such as.
 信号処理部26は、少なくとも演算処理機能を有し、カラム処理部23から出力される画素信号に基づいて演算処理等の種々の信号処理を行う。データ格納部27は、信号処理部26での信号処理にあたって、その処理に必要なデータを一時的に格納する。 The signal processing unit 26 has at least an arithmetic processing function, and performs various signal processing such as arithmetic processing based on the pixel signal output from the column processing unit 23. The data storage unit 27 temporarily stores the data required for the signal processing in the signal processing unit 26.
[2.画素の構成例]
 次に、画素アレイ部21に設けられた画素の構成例について説明する。画素アレイ部21に設けられた画素は、例えば図2に示すように構成される。
[2. Pixel configuration example]
Next, a configuration example of the pixels provided in the pixel array unit 21 will be described. The pixels provided in the pixel array unit 21 are configured as shown in FIG. 2, for example.
 図2は画素アレイ部21に設けられた1つの画素51の断面を示しており、この画素51は外部から受光領域50に入射した光、特に赤外光を受光して光電変換し、その結果得られた信号電荷に応じた信号を出力する。 FIG. 2 shows a cross section of one pixel 51 provided in the pixel array unit 21, and the pixel 51 receives light incident on the light receiving region 50 from the outside, particularly infrared light, and performs photoelectric conversion, resulting in the result. A signal corresponding to the obtained signal charge is output.
 画素51は、例えばシリコン基板、すなわちP型半導体領域からなるP型半導体基板である基板61と、その基板61上に形成されたオンチップレンズ62-1を含む集光構造62とを有している。 The pixel 51 has, for example, a silicon substrate, that is, a substrate 61 which is a P-type semiconductor substrate composed of a P-type semiconductor region, and a condensing structure 62 including an on-chip lens 62-1 formed on the substrate 61. There is.
 基板61の図中、上側の表面、つまり受光領域50における外部からの光が入射する側の面(以下、入射面とも称する)上には、外部から入射した光を集光して受光領域50内に入射させる集光構造62が形成されている。 In the drawing of the substrate 61, on the upper surface, that is, the surface of the light receiving region 50 on the side where the light from the outside is incident (hereinafter, also referred to as the incident surface), the light incident from the outside is collected and the light receiving region 50 is collected. A condensing structure 62 is formed so as to be incident inside.
 また、画素51は、受光領域50の入射面上における画素51の端部分に、隣接する画素間での混色を防止するための画素間遮光部63-1および画素間遮光部63-2が形成されている。 Further, in the pixel 51, an inter-pixel light-shielding portion 63-1 and an inter-pixel light-shielding portion 63-2 for preventing color mixing between adjacent pixels are formed at the end portion of the pixel 51 on the incident surface of the light receiving region 50. Has been done.
 また、受光領域50における入射面とは反対側の面の部分には、画素51内に形成されたトランジスタ等を駆動するための配線や、画素51から信号を読み出すための配線などが形成された配線層(図示略)が積層により形成されている。 Further, on the portion of the light receiving region 50 opposite to the incident surface, wiring for driving a transistor or the like formed in the pixel 51, wiring for reading a signal from the pixel 51, or the like is formed. The wiring layer (not shown) is formed by stacking.
 受光領域50内における入射面とは反対の面側、すなわち図中、下側の面の内側の部分には、酸化膜64と、Tap(タップ)と呼ばれる信号取り出し部65-1および信号取り出し部65-2とが形成されている。 On the surface side of the light receiving region 50 opposite to the incident surface, that is, on the inner portion of the lower surface in the drawing, an oxide film 64, a signal extraction unit 65-1 called a tap (tap), and a signal extraction unit 65-2 is formed.
 この例では、受光領域50の入射面とは反対側の面近傍における画素51の中心部分に酸化膜64が形成されており、その酸化膜64の両端にそれぞれ信号取り出し部65-1および信号取り出し部65-2が形成されている。 In this example, an oxide film 64 is formed in the central portion of the pixel 51 in the vicinity of the surface of the light receiving region 50 opposite to the incident surface, and the signal extraction unit 65-1 and the signal extraction are taken out at both ends of the oxide film 64, respectively. Part 65-2 is formed.
 ここで、信号取り出し部65-1は、N型半導体領域であるN+半導体領域71-1およびN-半導体領域72-1と、P型半導体領域であるP+半導体領域73-1およびP-半導体領域74-1とを有している。 Here, the signal extraction unit 65-1 includes an N-type semiconductor region 71-1 and an N-semiconductor region 72-1 and a P-type semiconductor region P + semiconductor region 73-1 and a P-semiconductor region. It has 74-1 and.
 すなわち、受光領域50の入射面とは反対側の面の表面内側部分における、酸化膜64の図中、右側に隣接する位置にN+半導体領域71-1が形成されている。また、N+半導体領域71-1の図中、上側に、そのN+半導体領域71-1を覆うように(囲むように)N-半導体領域72-1が形成されている。 That is, the N + semiconductor region 71-1 is formed at a position adjacent to the right side in the figure of the oxide film 64 on the inner surface portion of the surface of the light receiving region 50 opposite to the incident surface. Further, in the figure of the N + semiconductor region 71-1, the N-semiconductor region 72-1 is formed on the upper side so as to cover (enclose) the N + semiconductor region 71-1.
 さらに、受光領域50の入射面とは反対側の面の表面内側部分における、N+半導体領域71-1の図中、右側に隣接する位置にP+半導体領域73-1が形成されている。また、P+半導体領域73-1の図中、上側に、そのP+半導体領域73-1を覆うように(囲むように)P-半導体領域74-1が形成されている。 Further, the P + semiconductor region 73-1 is formed at a position adjacent to the right side in the figure of the N + semiconductor region 71-1 in the surface inner portion of the surface of the light receiving region 50 opposite to the incident surface. Further, in the figure of the P + semiconductor region 73-1, the P-semiconductor region 74-1 is formed on the upper side so as to cover (enclose) the P + semiconductor region 73-1.
 なお、ここでは図示はされていないが、より詳細には受光領域50を受光領域50の面と垂直な方向から見たときに、P+半導体領域73-1およびP-半導体領域74-1を中心として、それらのP+半導体領域73-1およびP-半導体領域74-1の周囲を囲むように、N+半導体領域71-1およびN-半導体領域72-1が形成されている。 Although not shown here, more specifically, when the light receiving region 50 is viewed from the direction perpendicular to the plane of the light receiving region 50, the P + semiconductor region 73-1 and the P-semiconductor region 74-1 are centered. As a result, the N + semiconductor region 71-1 and the N-semiconductor region 72-1 are formed so as to surround the P + semiconductor region 73-1 and the P-semiconductor region 74-1.
 同様に信号取り出し部65-2は、N型半導体領域であるN+半導体領域71-2およびN+半導体領域71-2よりもドナー不純物の濃度が低いN-半導体領域72-2と、P型半導体領域であるP+半導体領域73-2およびP+半導体領域73-2よりもアクセプター不純物濃度が低いP-半導体領域74-2とを有している。ここで、ドナー不純物とは、例えばSiに対してのリン(P)やヒ素(As)等の元素の周期表で5族に属する元素が挙げられ。アクセプター不純物とは、例えばSiに対してのホウ素(B)等の元素の周期表で3族に属する元素が挙げられる。 Similarly, the signal extraction unit 65-2 includes an N-semiconductor region 72-2 having a lower concentration of donor impurities than the N-type semiconductor region 71-2 and the N + semiconductor region 71-2, and a P-type semiconductor region. It has a P-semiconductor region 73-2 and a P-semiconductor region 74-2 having a lower acceptor impurity concentration than the P + semiconductor region 73-2. Here, the donor impurities include, for example, elements belonging to Group 5 in the periodic table of elements such as phosphorus (P) and arsenic (As) with respect to Si. The acceptor impurities include, for example, elements belonging to Group 3 in the periodic table of elements such as boron (B) with respect to Si.
 すなわち、受光領域50の入射面とは反対側の面の表面内側部分における、酸化膜64の図中、左側に隣接する位置にN+半導体領域71-2が形成されている。また、N+半導体領域71-2の図中、上側に、そのN+半導体領域71-2を覆うように(囲むように)N-半導体領域72-2が形成されている。 That is, the N + semiconductor region 71-2 is formed at a position adjacent to the left side in the figure of the oxide film 64 on the inner surface portion of the surface of the light receiving region 50 opposite to the incident surface. Further, in the figure of the N + semiconductor region 71-2, the N-semiconductor region 72-2 is formed on the upper side so as to cover (enclose) the N + semiconductor region 71-2.
 さらに、受光領域50の入射面とは反対側の面の表面内側部分における、N+半導体領域71-2の図中、左側に隣接する位置にP+半導体領域73-2が形成されている。また、P+半導体領域73-2の図中、上側に、そのP+半導体領域73-2を覆うように(囲むように)P-半導体領域74-2が形成されている。 Further, the P + semiconductor region 73-2 is formed at a position adjacent to the left side in the figure of the N + semiconductor region 71-2 on the inner surface portion of the surface of the light receiving region 50 opposite to the incident surface. Further, in the figure of the P + semiconductor region 73-2, the P-semiconductor region 74-2 is formed on the upper side so as to cover (enclose) the P + semiconductor region 73-2.
 なお、ここでは図示はされていないが、より詳細には受光領域50を受光領域50の面と垂直な方向から見たときに、P+半導体領域73-2およびP-半導体領域74-2を中心として、それらのP+半導体領域73-2およびP-半導体領域74-2の周囲を囲むように、N+半導体領域71-2およびN-半導体領域72-2が形成されている。 Although not shown here, more specifically, when the light receiving region 50 is viewed from the direction perpendicular to the plane of the light receiving region 50, the P + semiconductor region 73-2 and the P-semiconductor region 74-2 are centered. As a result, the N + semiconductor region 71-2 and the N-semiconductor region 72-2 are formed so as to surround the P + semiconductor region 73-2 and the P-semiconductor region 74-2.
 以下、信号取り出し部65-1および信号取り出し部65-2を特に区別する必要のない場合、単に信号取り出し部65とも称することとする。 Hereinafter, when it is not necessary to distinguish between the signal extraction unit 65-1 and the signal extraction unit 65-2, they are also simply referred to as the signal extraction unit 65.
 また、以下、N+半導体領域71-1およびN+半導体領域71-2を特に区別する必要のない場合、単にN+半導体領域71とも称し、N-半導体領域72-1およびN-半導体領域72-2を特に区別する必要のない場合、単にN-半導体領域72とも称することとする。 Further, hereinafter, when it is not necessary to distinguish N + semiconductor region 71-1 and N + semiconductor region 71-2, they are also simply referred to as N + semiconductor region 71, and N-semiconductor region 72-1 and N-semiconductor region 72-2 are referred to as N-semiconductor region 72-1 and N-semiconductor region 72-2. When it is not necessary to make a distinction, it is also simply referred to as an N-semiconductor region 72.
 さらに、以下、P+半導体領域73-1およびP+半導体領域73-2を特に区別する必要のない場合、単にP+半導体領域73とも称し、P-半導体領域74-1およびP-半導体領域74-2を特に区別する必要のない場合、単にP-半導体領域74とも称することとする。 Further, hereinafter, when it is not necessary to distinguish between the P + semiconductor region 73-1 and the P + semiconductor region 73-2, they are also simply referred to as the P + semiconductor region 73, and the P-semiconductor region 74-1 and the P-semiconductor region 74-2 are referred to. When it is not necessary to make a distinction, it is also simply referred to as a P-semiconductor region 74.
 また、受光領域50では、N+半導体領域71-1とP+半導体領域73-1との間には、それらの領域を分離するための分離部75-1が酸化膜等により形成されている。同様にN+半導体領域71-2とP+半導体領域73-2との間にも、それらの領域を分離するための分離部75-2が酸化膜等により形成されている。以下、分離部75-1および分離部75-2を特に区別する必要のない場合、単に分離部75とも称することとする。 Further, in the light receiving region 50, a separation portion 75-1 for separating these regions is formed by an oxide film or the like between the N + semiconductor region 71-1 and the P + semiconductor region 73-1. Similarly, between the N + semiconductor region 71-2 and the P + semiconductor region 73-2, a separation portion 75-2 for separating these regions is formed by an oxide film or the like. Hereinafter, when it is not necessary to distinguish between the separation unit 75-1 and the separation unit 75-2, the separation unit 75-1 and the separation unit 75-2 will be simply referred to as the separation unit 75.
 受光領域50に設けられたN+半導体領域71は、外部から画素51に入射してきた光の光量、すなわち受光領域50による光電変換により発生した信号キャリアの量を検出するための検出部として機能する。また、P+半導体領域73は、多数キャリア電流を受光領域50に注入するための、すなわち受光領域50に直接電圧を印加して受光領域50内に電界を発生させるための注入接触部として機能する。 The N + semiconductor region 71 provided in the light receiving region 50 functions as a detection unit for detecting the amount of light incident on the pixel 51 from the outside, that is, the amount of signal carriers generated by the photoelectric conversion by the light receiving region 50. Further, the P + semiconductor region 73 functions as an injection contact portion for injecting a large number of carrier currents into the light receiving region 50, that is, for directly applying a voltage to the light receiving region 50 to generate an electric field in the light receiving region 50.
 画素51では、N+半導体領域71-1には、直接、図示せぬ浮遊拡散領域であるFD(Floating Diffusion)部(以下、特にFD部Aとも称する)が接続されており、さらにそのFD部Aは、図示せぬ増幅トランジスタ等を介して垂直信号線29に接続されている。 In the pixel 51, an FD (Floating Diffusion) portion (hereinafter, also referred to as a FD portion A), which is a floating diffusion region (not shown), is directly connected to the N + semiconductor region 71-1, and further, the FD portion A thereof. Is connected to the vertical signal line 29 via an amplification transistor or the like (not shown).
 同様に、N+半導体領域71-2には、直接、FD部Aとは異なる他のFD部(以下、特にFD部Bとも称する)が接続されており、さらにそのFD部Bは、図示せぬ増幅トランジスタ等を介して垂直信号線29に接続されている。ここで、FD部AとFD部Bとは互いに異なる垂直信号線29に接続されている。 Similarly, another FD section (hereinafter, also referred to as FD section B) different from the FD section A is directly connected to the N + semiconductor region 71-2, and the FD section B is not shown. It is connected to the vertical signal line 29 via an amplification transistor or the like. Here, the FD unit A and the FD unit B are connected to different vertical signal lines 29.
 例えば間接ToF方式により対象物までの距離を測定しようとする場合、固体撮像素子11が設けられた撮像装置から対象物に向けて赤外光が射出される。そして、その赤外光が対象物で反射されて反射光として撮像装置に戻ってくると、固体撮像素子11の受光領域50は入射してきた反射光(赤外光)を受光して光電変換する。 For example, when trying to measure the distance to an object by the indirect ToF method, infrared light is emitted toward the object from an image pickup device provided with a solid-state image sensor 11. Then, when the infrared light is reflected by the object and returned to the image pickup apparatus as reflected light, the light receiving region 50 of the solid-state image sensor 11 receives the incident reflected light (infrared light) and performs photoelectric conversion. ..
 このとき、垂直駆動部22は画素51を駆動させ、光電変換により得られた信号電荷をFD部AとFD部Bとに振り分ける。なお、上述したように画素51の駆動は垂直駆動部22ではなく、垂直信号線29や他の垂直方向に長い制御線を介して、別に設けられた駆動部や水平駆動部24等により行われるようにしてもよい。 At this time, the vertical drive unit 22 drives the pixel 51 and distributes the signal charge obtained by the photoelectric conversion to the FD unit A and the FD unit B. As described above, the pixel 51 is driven not by the vertical drive unit 22, but by a separately provided drive unit, a horizontal drive unit 24, or the like via a vertical signal line 29 or another control line that is long in the vertical direction. You may do so.
 ここで、一般的な間接ToF方式では、1画素内に設けられる一対のP+半導体領域73に対して、交互に所定の電圧を印加して、FD部AとFD部Bとに光電変換により得られた信号電荷を振り分ける。 Here, in the general indirect ToF method, a predetermined voltage is alternately applied to the pair of P + semiconductor regions 73 provided in one pixel, and the FD section A and the FD section B are obtained by photoelectric conversion. Distribute the signal charge.
 例えば、あるタイミングでは、垂直駆動部22はコンタクト等を介して2つのP+半導体領域73に電圧を印加する。具体的には、あるタイミングでは、垂直駆動部22は、P+半導体領域73-1に接続される電極MIX1に1.5Vの電圧を印加し、P+半導体領域73-2に接続される電極MIX0には0Vの電圧を印加する。 For example, at a certain timing, the vertical drive unit 22 applies a voltage to the two P + semiconductor regions 73 via a contact or the like. Specifically, at a certain timing, the vertical drive unit 22 applies a voltage of 1.5 V to the electrode MIX1 connected to the P + semiconductor region 73-1 to the electrode MIX0 connected to the P + semiconductor region 73-2. Apply a voltage of 0V.
 すると、受光領域50における2つのP+半導体領域73の間に電界が発生し、P+半導体領域73-1からP+半導体領域73-2へと電流が流れる。この場合、受光領域50内の正孔(ホール)はP+半導体領域73-2の方向へと移動することになり、電子はP+半導体領域73-1の方向へと移動することになる。 Then, an electric field is generated between the two P + semiconductor regions 73 in the light receiving region 50, and a current flows from the P + semiconductor region 73-1 to the P + semiconductor region 73-2. In this case, the holes in the light receiving region 50 move in the direction of the P + semiconductor region 73-2, and the electrons move in the direction of the P + semiconductor region 73-1.
 したがって、このような状態で集光構造62を介して外部からの赤外光(反射光)が受光領域50内に入射し、その赤外光が受光領域50内で光電変換されて電子と正孔のペアに変換されると、得られた電子はP+半導体領域73間の電界によりP+半導体領域73-1の方向へと導かれ、N+半導体領域71-1内へと移動する。 Therefore, in such a state, infrared light (reflected light) from the outside is incident on the light receiving region 50 via the condensing structure 62, and the infrared light is photoelectrically converted in the light receiving region 50 to be positive with electrons. When converted into a pair of holes, the obtained electrons are guided in the direction of the P + semiconductor region 73-1 by the electric field between the P + semiconductor region 73 and move into the N + semiconductor region 71-1.
 この場合、光電変換で発生した電子が、画素51に入射した赤外光の量、すなわち赤外光の受光量に応じた信号電荷を検出するための信号キャリアとして用いられることになる。 In this case, the electrons generated by the photoelectric conversion are used as a signal carrier for detecting the amount of infrared light incident on the pixel 51, that is, the signal charge corresponding to the amount of infrared light received.
 これにより、N+半導体領域71-1には、N+半導体領域71-1内へと移動してきた電子に応じた信号電荷が蓄積されることになり、この信号電荷がFD部Aや増幅トランジスタ、垂直信号線29等を介してカラム処理部23で検出される。 As a result, the signal charge corresponding to the electrons moving into the N + semiconductor region 71-1 is accumulated in the N + semiconductor region 71-1, and this signal charge is stored in the FD unit A, the amplification transistor, and the vertical. It is detected by the column processing unit 23 via the signal line 29 or the like.
 すなわち、N+半導体領域71-1の蓄積電荷が、そのN+半導体領域71-1に直接接続されたFD部Aに転送され、FD部Aに転送された信号電荷に応じた信号が増幅トランジスタや垂直信号線29を介してカラム処理部23により読み出される。そして、読み出された信号に対して、カラム処理部23においてAD変換処理等の処理が施され、その結果得られた画素信号が信号処理部26へと供給される。 That is, the accumulated charge of the N + semiconductor region 71-1 is transferred to the FD unit A directly connected to the N + semiconductor region 71-1, and the signal corresponding to the signal charge transferred to the FD unit A is an amplification transistor or vertical. It is read out by the column processing unit 23 via the signal line 29. Then, the read signal is subjected to processing such as AD conversion processing in the column processing unit 23, and the pixel signal obtained as a result is supplied to the signal processing unit 26.
 この画素信号は、N+半導体領域71-1により検出された電子に応じた信号電荷量、すなわちFD部Aに蓄積された信号電荷の量を示す信号となる。換言すれば、画素信号は画素51で受光された赤外光の光量を示す信号であるともいうことができる。 This pixel signal is a signal indicating the amount of signal charge corresponding to the electrons detected by the N + semiconductor region 71-1, that is, the amount of signal charge accumulated in the FD unit A. In other words, the pixel signal can be said to be a signal indicating the amount of infrared light received by the pixel 51.
 また、次のタイミングでは、これまで受光領域50内で生じていた電界と反対方向の電界が発生するように、垂直駆動部22によりコンタクト等を介して2つのP+半導体領域73に電圧が印加される。具体的には、P+半導体領域73-2に接続される電極MIX0には1.5Vの電圧が印加され、P+半導体領域73-1に接続される電極MIX1には0Vの電圧が印加される。 Further, at the next timing, a voltage is applied to the two P + semiconductor regions 73 by the vertical drive unit 22 via a contact or the like so that an electric field in the direction opposite to the electric field previously generated in the light receiving region 50 is generated. NS. Specifically, a voltage of 1.5 V is applied to the electrode MIX0 connected to the P + semiconductor region 73-2, and a voltage of 0 V is applied to the electrode MIX1 connected to the P + semiconductor region 73-1.
 これにより、受光領域50における2つのP+半導体領域73の間で電界が発生し、P+半導体領域73-2からP+半導体領域73-1へと電流が流れる。 As a result, an electric field is generated between the two P + semiconductor regions 73 in the light receiving region 50, and a current flows from the P + semiconductor region 73-2 to the P + semiconductor region 73-1.
 このような状態で集光構造62を介して外部からの赤外光(反射光)が受光領域50内に入射し、その赤外光が受光領域50内で光電変換されて電子と正孔のペアに変換されると、得られた電子はP+半導体領域73間の電界によりP+半導体領域73-2の方向へと導かれ、N+半導体領域71-2内へと移動する。 In such a state, infrared light (reflected light) from the outside is incident on the light receiving region 50 via the condensing structure 62, and the infrared light is photoelectrically converted in the light receiving region 50 to convert electrons and holes. When converted into a pair, the obtained electrons are guided in the direction of the P + semiconductor region 73-2 by the electric field between the P + semiconductor region 73 and move into the N + semiconductor region 71-2.
 これにより、N+半導体領域71-2には、N+半導体領域71-2内へと移動してきた電子に応じた信号電荷が蓄積されることになり、この信号電荷がFD部Bや増幅トランジスタ、垂直信号線29等を介してカラム処理部23で検出される。 As a result, the signal charge corresponding to the electrons moving into the N + semiconductor region 71-2 is accumulated in the N + semiconductor region 71-2, and this signal charge is stored in the FD unit B, the amplification transistor, and the vertical. It is detected by the column processing unit 23 via the signal line 29 or the like.
 すなわち、N+半導体領域71-2の蓄積電荷が、そのN+半導体領域71-2に直接接続されたFD部Bに転送され、FD部Bに転送された信号電荷に応じた信号が増幅トランジスタや垂直信号線29を介してカラム処理部23により読み出される。そして、読み出された信号に対して、カラム処理部23においてAD変換処理等の処理が施され、その結果得られた画素信号が信号処理部26へと供給される。 That is, the accumulated charge of the N + semiconductor region 71-2 is transferred to the FD unit B directly connected to the N + semiconductor region 71-2, and the signal corresponding to the signal charge transferred to the FD unit B is an amplification transistor or vertical. It is read out by the column processing unit 23 via the signal line 29. Then, the read signal is subjected to processing such as AD conversion processing in the column processing unit 23, and the pixel signal obtained as a result is supplied to the signal processing unit 26.
 上述した例では、P+半導体領域73-1および73-2は、所定の電圧である1.5Vの電圧と、0Vの電圧とが交互に印加される第1電極および第2電極となる。また、N+半導体領域71-1および71-2は、受光領域50に入射された光が光電変換されて生成された信号電荷を検出して、蓄積する電荷蓄積電極となる。 In the above example, the P + semiconductor regions 73-1 and 73-2 are the first electrode and the second electrode to which a voltage of 1.5 V, which is a predetermined voltage, and a voltage of 0 V are alternately applied. Further, the N + semiconductor regions 71-1 and 71-2 serve as charge storage electrodes that detect and store signal charges generated by photoelectric conversion of light incident on the light receiving region 50.
 このようにして、一般的な間接ToF方式では、同じ画素51において互いに異なる期間の光電変換で得られた画素信号が得られると、信号処理部26は、それらの画素信号に基づいて対象物までの距離を示す距離情報を算出し、後段へと出力する。 In this way, in the general indirect ToF method, when pixel signals obtained by photoelectric conversion of the same pixel 51 for different periods are obtained, the signal processing unit 26 reaches the object based on those pixel signals. The distance information indicating the distance of is calculated and output to the subsequent stage.
 このように互いに異なるN+半導体領域71へと信号キャリアを振り分けて、それらの信号キャリアに応じた信号に基づいて距離情報を算出する方法は、間接ToF方式と呼ばれている。 The method of allocating signal carriers to N + semiconductor regions 71 that are different from each other and calculating the distance information based on the signals corresponding to those signal carriers is called the indirect ToF method.
 しかしながら、画素51は、微細化が進むと、信号取り出し部65-1と信号取り出し部65-2との間隔が縮小されるが、受光領域50の厚さ(深さ)方向の長さは縮小されない。 However, as the miniaturization of the pixel 51 progresses, the distance between the signal extraction unit 65-1 and the signal extraction unit 65-2 is reduced, but the length of the light receiving region 50 in the thickness (depth) direction is reduced. Not done.
 このため、画素51は、微細化される場合、信号取り出し部65-1から信号取り出し部65-2へ電流を流しても、受光領域50における光の入射面近傍まで十分に電界を広げることができない。その結果、画素51は、受光領域50における光の入射面近傍において光電変換された信号電荷を効率的に信号取り出し部65-1へ誘導することができず、電荷収集効率が低下する。 Therefore, when the pixel 51 is miniaturized, even if a current is passed from the signal extraction unit 65-1 to the signal extraction unit 65-2, the electric field can be sufficiently expanded to the vicinity of the incident surface of light in the light receiving region 50. Can not. As a result, the pixel 51 cannot efficiently guide the photoelectrically converted signal charge to the signal extraction unit 65-1 in the vicinity of the incident surface of the light in the light receiving region 50, and the charge collection efficiency is lowered.
 そこで、本開示では、隣接する画素51間、または、1画素以上離れた画素51間における受光領域50内に電流を流してFD部AとFD部Bとに信号電荷を振り分けることによって、電荷収集効率を向上させる。 Therefore, in the present disclosure, charge collection is performed by passing a current through the light receiving region 50 between the adjacent pixels 51 or between the pixels 51 separated by one or more pixels to distribute the signal charge to the FD unit A and the FD unit B. Improve efficiency.
[3.電流制御方法]
 図3Aおよび図3Bは、本開示に係る電流制御方法の説明図である。図3A及び図3Bには、同一列に並ぶ6個の画素51A~51Fの受光領域50に流れる電流の向きを受光領域50内に矢印によって示している。
[3. Current control method]
3A and 3B are explanatory views of the current control method according to the present disclosure. In FIGS. 3A and 3B, the direction of the current flowing in the light receiving region 50 of the six pixels 51A to 51F arranged in the same row is indicated by an arrow in the light receiving region 50.
 また、図3Aおよび図3Bには、各画素51A~51Fにおける一対の信号取り出し部65-1,65-2のうち、P+半導体領域73に正の電圧が印加されている方を矩形点線枠A、0V以下の電圧が印加されている方を矩形点線枠Bとして示している。 Further, in FIGS. 3A and 3B, of the pair of signal extraction units 65-1 and 65-2 in the pixels 51A to 51F, the one in which a positive voltage is applied to the P + semiconductor region 73 is the rectangular dotted line frame A. The side to which a voltage of 0 V or less is applied is shown as a rectangular dotted line frame B.
 信号取り出し部65-1は、P+半導体領域73に正の電圧が印加される場合には、信号取り出し部Aとなり、0V以下の電圧が印加される場合には、信号取り出し部Bとなる。同様に、信号取り出し部65-2は、P+半導体領域73に正の電圧が印加される場合には、信号取り出し部Aとなり、0V以下の電圧が印加される場合には、信号取り出し部Bとなる。 The signal extraction unit 65-1 becomes the signal extraction unit A when a positive voltage is applied to the P + semiconductor region 73, and becomes the signal extraction unit B when a voltage of 0 V or less is applied. Similarly, the signal extraction unit 65-2 becomes the signal extraction unit A when a positive voltage is applied to the P + semiconductor region 73, and becomes the signal extraction unit B when a voltage of 0 V or less is applied. Become.
 このため、ここでは、あるタイミングにおいてP+半導体領域73に正の電圧が印加されている方の信号取り出し部65を信号取り出し部A、P+半導体領域73に0V以下の電圧が印加されている方の信号取り出し部65を信号取り出し部Bと称する。 Therefore, here, the signal extraction unit 65 to which the positive voltage is applied to the P + semiconductor region 73 at a certain timing is the signal extraction unit A, and the one to which the voltage of 0 V or less is applied to the P + semiconductor region 73. The signal extraction unit 65 is referred to as a signal extraction unit B.
 本開示に係る電流制御方法では、図3Aに示すように、あるタイミングでは、画素51Bの信号取り出し部Aから画素51Cの信号取り出し部Bへ電流を流し、画素51Dの信号取り出し部Aから画素51Eの信号取り出し部Bへ電流を流す。 In the current control method according to the present disclosure, as shown in FIG. 3A, at a certain timing, a current is passed from the signal extraction unit A of the pixel 51B to the signal extraction unit B of the pixel 51C, and the signal extraction unit A of the pixel 51D to the pixel 51E. A current is passed through the signal extraction unit B of.
 これにより、2つの画素51B,51Cにおいて光電変換された信号電荷は、画素51B,51Cにおける受光領域50に示す矢印の方向とは逆方向に誘導され、画素51Bの信号取り出し部Aへ転送される。また、2つの画素51D,51Eにおいて光電変換された信号電荷は、画素51D,51Eにおける受光領域50に示す矢印の方向とは逆方向に誘導され、画素51Dの信号取り出し部Aへ転送される。 As a result, the signal charges photoelectrically converted in the two pixels 51B and 51C are guided in the direction opposite to the direction of the arrow shown in the light receiving region 50 in the pixels 51B and 51C, and are transferred to the signal extraction unit A of the pixel 51B. .. Further, the signal charges photoelectrically converted in the two pixels 51D and 51E are guided in the direction opposite to the direction of the arrow shown in the light receiving region 50 in the pixels 51D and 51E, and are transferred to the signal extraction unit A of the pixels 51D.
 そして、次のタイミングでは、図3Bに示すように、画素51Aの信号取り出し部Aから画素51Bの信号取り出し部Bへ、画素51Cの信号取り出し部Aから画素51Dの信号取り出し部Bへ、画素51Eの信号取り出し部Aから画素51Fの信号取り出し部Bへそれぞれ電流を流す。 Then, at the next timing, as shown in FIG. 3B, the signal extraction unit A of the pixel 51A goes to the signal extraction unit B of the pixel 51B, the signal extraction unit A of the pixel 51C to the signal extraction unit B of the pixel 51D, and the pixel 51E. A current is passed from the signal extraction unit A of the above to the signal extraction unit B of the pixel 51F.
 これにより、2つの画素51A,51Bにおいて光電変換された信号電荷は、画素51A,51Bにおける受光領域50に示す矢印の方向とは逆方向に誘導され、画素51Aの信号取り出し部Aへ転送される。また、2つの画素51C,51Dにおいて光電変換された信号電荷は、画素51C,51Dにおける受光領域50に示す矢印の方向とは逆方向に誘導され、画素51Cの信号取り出し部Aへ転送される。また、2つの画素51E,51Fにおいて光電変換された信号電荷は、画素51E,51Fにおける受光領域50に示す矢印の方向とは逆方向に誘導され、画素51Eの信号取り出し部Aへ転送される。 As a result, the signal charges photoelectrically converted in the two pixels 51A and 51B are guided in the direction opposite to the direction of the arrow shown in the light receiving region 50 in the pixels 51A and 51B, and are transferred to the signal extraction unit A of the pixels 51A. .. Further, the signal charges photoelectrically converted in the two pixels 51C and 51D are guided in the direction opposite to the direction of the arrow shown in the light receiving region 50 in the pixels 51C and 51D, and are transferred to the signal extraction unit A of the pixels 51C. Further, the signal charges photoelectrically converted in the two pixels 51E and 51F are guided in the direction opposite to the direction of the arrow shown in the light receiving region 50 in the pixels 51E and 51F, and are transferred to the signal extraction unit A of the pixels 51E.
 このように、本開示に係る電流制御方法では、2画素に跨って電流を流すことにより、1画素内における信号取り出し部Aから信号取り出し部Bへ電流を流す場合に比べて、電流経路を延長することができる。これにより、本開示に係る電流制御方法では、受光領域50における光の入射面近傍まで電流による電界を広げることができる。 As described above, in the current control method according to the present disclosure, by passing a current over two pixels, the current path is extended as compared with the case where a current is passed from the signal extraction unit A to the signal extraction unit B in one pixel. can do. As a result, in the current control method according to the present disclosure, the electric field due to the current can be expanded to the vicinity of the incident surface of the light in the light receiving region 50.
 したがって、本開示に係る電流制御方法によれば、受光領域50における光の入射面近傍において光電変換された信号電荷を、電界により効率的に信号取り出し部Aへ転送することによって、電荷収集効率を向上させることができる。 Therefore, according to the current control method according to the present disclosure, the charge collection efficiency is improved by efficiently transferring the photoelectrically converted signal charge in the vicinity of the incident surface of the light in the light receiving region 50 to the signal extraction unit A by the electric field. Can be improved.
 なお、本開示に係る電流制御方法では、1画素以上離れた画素間における受光領域50に電流を流し、電流経路をさらに延長させることによって、電荷収集効率を向上させることも可能である。 In the current control method according to the present disclosure, it is also possible to improve the charge collection efficiency by passing a current through the light receiving region 50 between pixels separated by one pixel or more and further extending the current path.
[4.電流印加方法]
 次に、図4~図6を参照して本開示に係る電圧印加方法の一例について説明する。図4~図6は、本開示に係る電圧印加方法の説明図である。図4~図6には、画素アレイ部21内の行列状に配列される複数の画素のうち、m(mは、自然数)列目の画素の時刻t=t4p+0,t4p+1,t4p+2,t4p+3(pは、自然数)における電圧印加状態を示している。
[4. Current application method]
Next, an example of the voltage application method according to the present disclosure will be described with reference to FIGS. 4 to 6. 4 to 6 are explanatory views of the voltage application method according to the present disclosure. 4 to 6 show the time t = t 4p + 0 , t 4p + 1 , t 4p + 2 , of the pixels in the m (m is a natural number) column among the plurality of pixels arranged in a matrix in the pixel array unit 21. The voltage application state at t 4p + 3 (p is a natural number) is shown.
 また、図4~図6には、正電圧(例えば、1.5V)が印加されるP+半導体領域73を「+」を囲む丸によって示しており、0Vまたは負電圧が印加されるP+半導体領域73を「-」を囲む丸によって示している。また、ハイインピーダンス状態にされるP+半導体領域73を「×」を囲む丸によって示している。 Further, in FIGS. 4 to 6, the P + semiconductor region 73 to which a positive voltage (for example, 1.5V) is applied is indicated by a circle surrounding “+”, and the P + semiconductor region to which 0V or a negative voltage is applied is shown. 73 is indicated by a circle surrounding "-". Further, the P + semiconductor region 73 in the high impedance state is indicated by a circle surrounding “x”.
 また、図4~図6に示す破線枠によって囲まれる2画素は、光電変換する信号電荷が加算される画素であり、換言すれば、信号電荷を一対の電荷蓄積電極へ振り分ける画素である。なお、ハッチングが付された画素は、遮光画素である。 Further, the two pixels surrounded by the broken line frame shown in FIGS. 4 to 6 are pixels to which the signal charges to be photoelectrically converted are added, in other words, pixels that distribute the signal charges to a pair of charge storage electrodes. The hatched pixels are light-shielding pixels.
 図4に示すように、本開示に係る電圧印加方法では、列方向に隣接する2画素単位で、最も遠いP+半導体領域73間に、所定の電圧(例えば、1.5Vまたは0V)を交互に印加し、光電変換された信号電荷を加算する。また、所定の電圧が印加されるP+半導体領域73以外のP+半導体領域73は、ハイインピーダンス状態にする。 As shown in FIG. 4, in the voltage application method according to the present disclosure, a predetermined voltage (for example, 1.5 V or 0 V) is alternately applied between the farthest P + semiconductor region 73 in units of two pixels adjacent to each other in the column direction. It is applied and the photoelectrically converted signal charge is added. Further, the P + semiconductor region 73 other than the P + semiconductor region 73 to which a predetermined voltage is applied is brought into a high impedance state.
 具体的には、時刻t=t4p+0では、互いに隣接しない1行目および3行目の画素における「+」を丸で囲んだP+半導体領域73(第1電極の一例)に正電圧が印加される。このとき、互いに隣接しない2行目および4行目の画素における「-」を丸で囲んだP+半導体領域73(第2電極の一例)には、負電圧が印加される。 Specifically, at time t = t 4p + 0 , a positive voltage is applied to the P + semiconductor region 73 (an example of the first electrode) circled with “+” in the pixels in the first and third rows that are not adjacent to each other. NS. At this time, a negative voltage is applied to the P + semiconductor region 73 (an example of the second electrode) circled “−” in the pixels in the second and fourth rows that are not adjacent to each other.
 その後、時刻t=t4p+1では、互いに隣接しない1行目および3行目の画素における「-」を丸で囲んだP+半導体領域73に負電圧が印加される。このとき、互いに隣接しない2行目および4行目の画素における「+」を丸で囲んだP+半導体領域73には、正電圧が印加される。 After that, at time t = t 4p + 1 , a negative voltage is applied to the P + semiconductor region 73 circled with “−” in the pixels in the first and third rows that are not adjacent to each other. At this time, a positive voltage is applied to the P + semiconductor region 73 circled with “+” in the pixels in the second and fourth rows that are not adjacent to each other.
 その後、時刻t=t4p+2では、互いに隣接しない1行目および3行目の画素における「+」を丸で囲んだP+半導体領域73に正電圧が印加される。このとき、互いに隣接しない2行目および4行目の画素における「-」を丸で囲んだP+半導体領域73には、負電圧が印加される。 After that, at time t = t 4p + 2 , a positive voltage is applied to the P + semiconductor region 73 circled with “+” in the pixels in the first and third rows that are not adjacent to each other. At this time, a negative voltage is applied to the P + semiconductor region 73 circled with “−” in the pixels in the second and fourth rows that are not adjacent to each other.
 その後、時刻t=t4p+3では、互いに隣接しない1行目および3行目の画素における「-」を丸で囲んだP+半導体領域73に負電圧が印加される。このとき、互いに隣接しない2行目および4行目の画素における「+」を丸で囲んだP+半導体領域73には、正電圧が印加される。 After that, at time t = t 4p + 3 , a negative voltage is applied to the P + semiconductor region 73 circled with “−” in the pixels in the first and third rows that are not adjacent to each other. At this time, a positive voltage is applied to the P + semiconductor region 73 circled with “+” in the pixels in the second and fourth rows that are not adjacent to each other.
 ここで、A,BをTapA,Bの各露光期間に各画素で発生する信号電荷量とすると、各画素のTap a,bの測定電荷量a,bは、A,Bを用いて、次のように表される。
 a=A+A
 a=A+A
 a=A+A
  ・・・
 b=B
 b=B+B
 b=A+A
  ・・・
Here, A i, TapA the B i, when the amount of signal charges generated in each pixel in each exposure period B, Tap a, measured charge quantity a i of b, b i of each pixel, A i, B It is expressed as follows using i.
a 1 = A 1 + A 2 ,
a 2 = A 2 + A 3 ,
a 3 = A 3 + A 4 ,
・ ・ ・
b 1 = B 1
b 2 = B 1 + B 2 ,
b 3 = A 2 + A 3 ,
・ ・ ・
 そして、a={a},A={A}と書くと、上記式は、a=XAと表せる。ここで、X={Xij}は、N行M列の定数行列である。なお、NおよびMは、それぞれ画素アレイの中の開口画素領域の行数および列数である。このため、各画素において光電変換された信号電荷量Aは、A=X-1aと表される。 Then, by writing a = {a i } and A = {A i }, the above equation can be expressed as a = XA. Here, X = {X ij } is a constant matrix of N rows and M columns. Note that N and M are the number of rows and the number of columns of the aperture pixel region in the pixel array, respectively. Therefore, the signal charge amount A photoelectrically converted in each pixel is expressed as A = X -1 a.
 この式を用いて、行方向に隣接する2画素によって光電変換された測定信号電荷量から、TapAの真の1画素信号電荷量の近似値を得ることができる。TapBについても同様の演算によって、真の1画素信号電荷量の近似値を得ることができる。こうして得られるA,Bの1画素信号電荷量に応じた信号を用いることで間接ToFにより距離を算出することができる。 Using this equation, it is possible to obtain an approximate value of the true 1-pixel signal charge amount of TapA from the measured signal charge amount photoelectrically converted by two pixels adjacent to each other in the row direction. For TapB, the approximate value of the true one-pixel signal charge amount can be obtained by the same calculation. The distance can be calculated by indirect ToF by using the signals corresponding to the amount of one pixel signal charge of A and B thus obtained.
 また、図4に示す例では、互いに隣接しない画素、例えば、1行目の画素および3行目の画素における「+」を丸で囲んだP+半導体領域73(第1電極の一例)と、2行目の画素および4行目の画素における「-」を丸で囲んだP+半導体領域73(第2電極の一例)とに、正電圧と負電圧とを交互に印加する。これにより、例えば、時刻t=t4p+0では、列方向に隣接する1行目と2行目の画素間に電流が流れ、列方向に隣接する3行目と4行目の画素間に電流が流れる。 Further, in the example shown in FIG. 4, pixels that are not adjacent to each other, for example, the P + semiconductor region 73 (an example of the first electrode) in which “+” in the pixels in the first row and the pixels in the third row are circled, and 2 Positive voltage and negative voltage are alternately applied to the P + semiconductor region 73 (an example of the second electrode) circled with “−” in the pixels in the row and the pixels in the fourth row. As a result, for example, at time t = t 4p + 0 , a current flows between the pixels in the first and second rows adjacent in the column direction, and a current flows between the pixels in the third and fourth rows adjacent in the column direction. It flows.
 このように、列方向に隣接する2画素間において、「+」を丸で囲んだP+半導体領域73および「-」を丸で囲んだP+半導体領域73間に電流を流すことによって、電流の経路を受光領域50における光入射面近傍まで広げることができる。 In this way, a current path is passed between the two pixels adjacent to each other in the column direction by passing a current between the P + semiconductor region 73 circled with "+" and the P + semiconductor region 73 circled with "-". Can be extended to the vicinity of the light incident surface in the light receiving region 50.
 その結果、受光領域50における光入射面近傍の信号電荷転送電界が強化されるので、光入射面近傍において光電変換された信号電荷を効率よく電荷蓄積電極へ転送することができる。 As a result, the signal charge transfer electric field in the vicinity of the light incident surface in the light receiving region 50 is strengthened, so that the signal charge photoelectrically converted in the vicinity of the light incident surface can be efficiently transferred to the charge storage electrode.
 なお、図4に示す例では、列方向に隣接する2画素によって光電変換される信号電荷を加算する場合について説明したが、信号電荷を加算する画素の組合せは、2画素に限定されるものではない。例えば、図5に示すように、1.5画素毎に信号電荷を加算するように、各P+半導体領域73へ所定の電圧を印加することもできる。 In the example shown in FIG. 4, the case of adding the signal charges photoelectrically converted by the two pixels adjacent to each other in the column direction has been described, but the combination of the pixels to which the signal charges are added is not limited to two pixels. No. For example, as shown in FIG. 5, a predetermined voltage can be applied to each P + semiconductor region 73 so as to add a signal charge every 1.5 pixels.
 図5に示す例においても、例えば、1画素内に設けられる一対のP+半導体領域73間に電流を流す場合よりも、電流の経路を受光領域50における光入射面近傍まで広げることができる。これにより、図4に示す例と同様に、光入射面近傍において光電変換された信号電荷を効率よく電荷蓄積電極へ転送することができる。 Also in the example shown in FIG. 5, for example, the path of the current can be extended to the vicinity of the light incident surface in the light receiving region 50 as compared with the case where the current is passed between the pair of P + semiconductor regions 73 provided in one pixel. As a result, as in the example shown in FIG. 4, the photoelectrically converted signal charge can be efficiently transferred to the charge storage electrode in the vicinity of the light incident surface.
 なお、図4および図5では、同時に正電圧が印加されるP+半導体領域73が互いに隣接しない画素に設けられ、同時に負電圧が印加されるP+半導体領域73が互いに隣接しない画素に設けられる場合を示した。 In FIGS. 4 and 5, the P + semiconductor region 73 to which the positive voltage is applied at the same time is provided to the pixels which are not adjacent to each other, and the P + semiconductor region 73 to which the negative voltage is applied at the same time is provided to the pixels which are not adjacent to each other. Indicated.
 しかし、あるタイミングで同時に正電圧が印加されるP+半導体領域73は、隣接する画素に設けられてもよい。また、あるタイミングで同時に負電圧が印加されるP+半導体領域73は、隣接する画素に設けられてもよい。 However, the P + semiconductor region 73, to which a positive voltage is applied at the same time at a certain timing, may be provided in adjacent pixels. Further, the P + semiconductor region 73 to which the negative voltage is applied at the same time at a certain timing may be provided in the adjacent pixels.
 例えば、図6に示すように、時刻t=t4p+0では、列方向に隣接する2行目および3行目の画素における「-」を丸で囲んだP+半導体領域73に負電圧が印加される。ここで負電圧が印加される「-」を丸で囲んだP+半導体領域73は、2行目および3行目の画素間における配設間隔が最短の第2電極の一例である。 For example, as shown in FIG. 6, at time t = t 4p + 0 , a negative voltage is applied to the P + semiconductor region 73 circled “-” in the pixels in the second and third rows adjacent to each other in the column direction. .. Here, the P + semiconductor region 73 in which the “−” to which the negative voltage is applied is circled is an example of the second electrode having the shortest arrangement interval between the pixels in the second row and the third row.
 このとき、2行目および3行目の画素以外の隣接する一対の画素となる0両目および1行目の画素における「+」を丸で囲んだP+半導体領域73には正電圧が印加される。ここで正電圧が印加される「+」を丸で囲んだP+半導体領域73は、0行目および1行目の画素間における配設間隔が最短の第1電極の一例である。 At this time, a positive voltage is applied to the P + semiconductor region 73 circled with “+” in the pixels of the 0th car and the 1st row, which are a pair of adjacent pixels other than the pixels of the 2nd and 3rd rows. .. Here, the P + semiconductor region 73 in which the “+” to which the positive voltage is applied is circled is an example of the first electrode having the shortest arrangement interval between the pixels in the 0th row and the 1st row.
 これにより、1行目の画素および2行目の画素間に電流が流れ、3行目の画素および4行目の画素間に電流が流れることで、受光領域50における光入射面近傍の電界が強化されるので、信号電荷の転送効率を向上させることができる。 As a result, a current flows between the pixels in the first row and the pixels in the second row, and a current flows between the pixels in the third row and the pixels in the fourth row, so that the electric field near the light incident surface in the light receiving region 50 is generated. Since it is strengthened, the transfer efficiency of the signal charge can be improved.
 その後、時刻t=t4p+1では、列方向に隣接する2行目および3行目の画素における「+」を丸で囲んだP+半導体領域73に正電圧が印加される。このとき、2行目および3行目の画素以外の隣接する一対の画素となる0両目および1行目の画素における「-」を丸で囲んだP+半導体領域73に負電圧が印加される。これにより、時刻t=t4p+0のときと同様に、受光領域50における光入射面近傍の電界が強化されるので、信号電荷の転送効率を向上させることができる。 After that, at time t = t 4p + 1 , a positive voltage is applied to the P + semiconductor region 73 circled with “+” in the pixels in the second and third rows adjacent to each other in the column direction. At this time, a negative voltage is applied to the P + semiconductor region 73 circled with “−” in the pixels of the 0th car and the 1st row, which are a pair of adjacent pixels other than the pixels of the 2nd and 3rd rows. As a result, the electric field near the light incident surface in the light receiving region 50 is strengthened as in the case of time t = t 4p + 0, so that the signal charge transfer efficiency can be improved.
 その後、時刻t=t4p+2では、列方向に隣接する1行目および2行目の画素における「+」を丸で囲んだP+半導体領域73に正電圧が印加される。このとき、1行目および2行目の画素以外の隣接する一対の画素となる3行目および4行目の画素における「-」を丸で囲んだP+半導体領域73に負電圧が印加される。 After that, at time t = t 4p + 2 , a positive voltage is applied to the P + semiconductor region 73 circled with “+” in the pixels in the first and second rows adjacent to each other in the column direction. At this time, a negative voltage is applied to the P + semiconductor region 73 circled with “-” in the pixels in the third and fourth rows, which are a pair of adjacent pixels other than the pixels in the first and second rows. ..
 これにより、2行目の画素および3行目の画素間に電流が流れることで、受光領域50における光入射面近傍の電界が強化されるので、信号電荷の転送効率を向上させることができる。 As a result, the electric current in the vicinity of the light incident surface in the light receiving region 50 is strengthened by the current flowing between the pixels in the second row and the pixels in the third row, so that the signal charge transfer efficiency can be improved.
 その後、時刻t=t4p+3では、列方向に隣接する1行目および2行目の画素における「-」を丸で囲んだP+半導体領域73に負電圧が印加される。このとき、1行目および2行目の画素以外の隣接する一対の画素となる3行目および4行目の画素における「+」を丸で囲んだP+半導体領域73に正電圧が印加される。これにより、時刻t=t4p+2のときと同様に、受光領域50における光入射面近傍の電界が強化されるので、信号電荷の転送効率を向上させることができる。 After that, at time t = t 4p + 3 , a negative voltage is applied to the P + semiconductor region 73 circled with “−” in the pixels in the first and second rows adjacent to each other in the column direction. At this time, a positive voltage is applied to the P + semiconductor region 73 circled with “+” in the pixels in the third and fourth rows, which are a pair of adjacent pixels other than the pixels in the first and second rows. .. As a result, the electric field near the light incident surface in the light receiving region 50 is strengthened as in the case of time t = t 4p + 2, so that the signal charge transfer efficiency can be improved.
 このように、図6に示す電圧印加方法によっても、列方向に隣接する2画素間において、「+」を丸で囲んだP+半導体領域73および「-」を丸で囲んだP+半導体領域73間に電流を流すことによって、電流の経路を受光領域50における光入射面近傍まで広げることができる。 As described above, also by the voltage application method shown in FIG. 6, between the two pixels adjacent to each other in the column direction, between the P + semiconductor region 73 circled with “+” and the P + semiconductor region 73 circled with “-”. By passing a current through the light-receiving region 50, the path of the current can be extended to the vicinity of the light incident surface in the light receiving region 50.
 その結果、図4に示す電圧印加方法と同様に、受光領域50における光入射面近傍の信号電荷転送電界が強化されるので、光入射面近傍において光電変換された信号電荷を効率よく電荷蓄積電極へ転送することができる。 As a result, as in the voltage application method shown in FIG. 4, the signal charge transfer electric field in the vicinity of the light incident surface in the light receiving region 50 is strengthened, so that the signal charge photoelectrically converted in the vicinity of the light incident surface is efficiently charged by the charge storage electrode. Can be transferred to.
 また、図4~図6に示す例では、2画素または1.5画素によって光電変換される信号電荷を加算する場合について説明したが、信号電荷を加算する画素数は、2画素より多くてもよく、3画素、4画素によって光電変換される信号電荷を加算するように、各P+半導体領域73へ所定の電圧を印加してもよい。つまり、光電変換した信号電荷を一対の電荷蓄積電極へ振り分ける画素は、3画素以上であってもよい。 Further, in the examples shown in FIGS. 4 to 6, the case of adding the signal charges photoelectrically converted by 2 pixels or 1.5 pixels has been described, but the number of pixels to which the signal charges are added may be more than 2 pixels. Often, a predetermined voltage may be applied to each P + semiconductor region 73 so as to add the signal charges photoelectrically converted by the three pixels and the four pixels. That is, the number of pixels for distributing the photoelectrically converted signal charge to the pair of charge storage electrodes may be three or more.
 また、画素アレイ部21は、画素アレイ部21内における領域毎に、光電変換した信号電荷を一対の電荷蓄積電極へ振り分ける画素数が異なる構成であってもよい。 Further, the pixel array unit 21 may have a configuration in which the number of pixels for distributing the photoelectrically converted signal charge to the pair of charge storage electrodes is different for each region in the pixel array unit 21.
 また、図4~図6に示す例では、光電変換した信号電荷を一対の電荷蓄積電極へ振り分ける画素は、列方向に沿って配列される画素としたが、これは一例である。光電変換した信号電荷を一対の電荷蓄積電極へ振り分ける画素は、例えば、行方向に沿って配列される画素であってもよい。また、光電変換した信号電荷を一対の電荷蓄積電極へ振り分ける画素は、例えば、斜め方向に沿って配列される画素であってもよい。 Further, in the examples shown in FIGS. 4 to 6, the pixels for distributing the photoelectrically converted signal charges to the pair of charge storage electrodes are pixels arranged along the column direction, but this is an example. The pixels that distribute the photoelectrically converted signal charges to the pair of charge storage electrodes may be, for example, pixels arranged along the row direction. Further, the pixels that distribute the photoelectrically converted signal charges to the pair of charge storage electrodes may be, for example, pixels arranged along an oblique direction.
[5.画素構造例]
 次に、図7A~図7Cを参照して本開示に係る画素の構造例について説明する。図7A~図7Cは、本開示に係る画素構造例を示す図である。図7Aおよび図7Bには、同一列に並ぶ6個の画素51A~51Fの受光領域50に流れる電流の向きを受光領域50内に矢印によって示している。
[5. Pixel structure example]
Next, a structural example of the pixel according to the present disclosure will be described with reference to FIGS. 7A to 7C. 7A to 7C are diagrams showing an example of a pixel structure according to the present disclosure. In FIGS. 7A and 7B, the direction of the current flowing through the light receiving region 50 of the six pixels 51A to 51F arranged in the same row is indicated by an arrow in the light receiving region 50.
 また、図7A~図7Cには、各画素51A~51Fにおける一対の信号取り出し部65-1,65-2のうち、P+半導体領域73に正の電圧が印加されている方を矩形点線枠A、0V以下の電圧が印加されている方を矩形点線枠Bとして示している。 Further, in FIGS. 7A to 7C, of the pair of signal extraction units 65-1 and 65-2 in the pixels 51A to 51F, the one in which a positive voltage is applied to the P + semiconductor region 73 is the rectangular dotted line frame A. The side to which a voltage of 0 V or less is applied is shown as a rectangular dotted line frame B.
 信号取り出し部65-1は、P+半導体領域73に正の電圧が印加される場合には、信号取り出し部Aとなり、0V以下の電圧が印加される場合には、信号取り出し部Bとなる。同様に、信号取り出し部65-2は、P+半導体領域73に正の電圧が印加される場合には、信号取り出し部Aとなり、0V以下の電圧が印加される場合には、信号取り出し部Bとなる。 The signal extraction unit 65-1 becomes the signal extraction unit A when a positive voltage is applied to the P + semiconductor region 73, and becomes the signal extraction unit B when a voltage of 0 V or less is applied. Similarly, the signal extraction unit 65-2 becomes the signal extraction unit A when a positive voltage is applied to the P + semiconductor region 73, and becomes the signal extraction unit B when a voltage of 0 V or less is applied. Become.
 このため、ここでは、あるタイミングにおいてP+半導体領域73に正の電圧が印加されている方の信号取り出し部65を信号取り出し部A、P+半導体領域73に0V以下の電圧が印加されている方の信号取り出し部65を信号取り出し部Bと称する。 Therefore, here, the signal extraction unit 65 to which the positive voltage is applied to the P + semiconductor region 73 at a certain timing is the signal extraction unit A, and the one to which the voltage of 0 V or less is applied to the P + semiconductor region 73. The signal extraction unit 65 is referred to as a signal extraction unit B.
 図7Aに示すように、本開示に係る各画素51A~51Fにおける受光領域50の間には、隣接する受光領域を光学的および電気的に分離する画素分離領域101が設けられる。画素分離領域101は、例えば、DTI(Deep Trench Isolation)であり、受光領域50における画素51A~51F間となる位置に形成されるトレンチへ、例えば、SiO等の絶縁体を埋め込むことによって形成される。 As shown in FIG. 7A, a pixel separation region 101 that optically and electrically separates adjacent light receiving regions is provided between the light receiving regions 50 in each of the pixels 51A to 51F according to the present disclosure. The pixel separation region 101 is, for example, DTI (Deep Trench Isolation), and is formed by embedding an insulator such as SiO 2 in a trench formed at a position between pixels 51A and 51F in the light receiving region 50. NS.
 これにより、各画素51A~51Fは、光電変換した信号電荷が隣接する画素51A~51Fへ漏れることによる電気的な混色を抑制することができる。また、各画素51A~51Fは、受光領域50へ入射する光が隣接する画素51A~51Fへ漏れることによる光学的な混色を抑制することができる。 As a result, each of the pixels 51A to 51F can suppress electrical color mixing due to leakage of the photoelectrically converted signal charge to the adjacent pixels 51A to 51F. Further, each of the pixels 51A to 51F can suppress optical color mixing due to leakage of light incident on the light receiving region 50 to adjacent pixels 51A to 51F.
 ただし、画素分離領域101は、受光領域50における光の入射面と対向する面から光の入射面へ向かう中途部まで達する。これにより、各画素51A~51Fは、例えば、2画素に跨って信号取り出し部Aから信号取り出し部Bへ電流を流す場合に、受光領域50における光の入射面近傍の領域を通して、信号取り出し部Bから隣接画素の信号取り出し部Aの方へ信号電荷を転送することができる。 However, the pixel separation region 101 reaches a halfway portion from the surface of the light receiving region 50 facing the light incident surface toward the light incident surface. As a result, each of the pixels 51A to 51F passes through the region near the incident surface of light in the light receiving region 50 when a current is passed from the signal extraction unit A to the signal extraction unit B over two pixels, for example, in the signal extraction unit B. The signal charge can be transferred from the signal to the signal extraction unit A of the adjacent pixel.
 また、図7Bに示すように、画素分離領域102は、受光領域50における光の入射面から光の入射面と対向する面へ向かう中途部まで達する構造であってもよい。かかる構成によっても、画素分離領域102は、光や信号電荷が隣接画素へ漏れることによる混色を抑制することができる。 Further, as shown in FIG. 7B, the pixel separation region 102 may have a structure that reaches a halfway portion from the light incident surface in the light receiving region 50 toward the surface facing the light incident surface. Even with such a configuration, the pixel separation region 102 can suppress color mixing due to leakage of light and signal charges to adjacent pixels.
 ただし、画素分離領域によれば、2画素に跨って信号取り出し部Aから信号取り出し部Bへ電流を流す場合に、受光領域50における光の入射面と対向する面近傍領域を通して、信号取り出し部Bから隣接画素の信号取り出し部Aの方へ信号電荷を転送することができる。 However, according to the pixel separation region, when a current is passed from the signal extraction unit A to the signal extraction unit B over two pixels, the signal extraction unit B passes through a region near the surface of the light receiving region 50 facing the incident surface of light. The signal charge can be transferred from the signal to the signal extraction unit A of the adjacent pixel.
 また、図7Cに示すように、画素分離領域103は、受光領域50における光の入射面から光の入射面と対向する面まで達する構造であってもよい。画素分離領域103によれば、図6Aおよび図6Bに示す画素分離領域101,102よりも確実に混色を抑制することができるが、複数の画素51A~51Fに跨って信号電荷を転送することができない。 Further, as shown in FIG. 7C, the pixel separation region 103 may have a structure that reaches from the light incident surface in the light receiving region 50 to the surface facing the light incident surface. According to the pixel separation region 103, color mixing can be suppressed more reliably than the pixel separation regions 101 and 102 shown in FIGS. 6A and 6B, but the signal charge can be transferred across the plurality of pixels 51A to 51F. Can not.
 ただし、画素分離領域103は、複数の画素51A~51Fに跨って信号電荷を転送する画素から、それ以外の画素への信号電荷の漏出を防止する用途には適している。画素分離領域101,103の配置例については、図8~図10を参照して後述する。 However, the pixel separation region 103 is suitable for preventing leakage of signal charges from pixels that transfer signal charges across a plurality of pixels 51A to 51F to other pixels. An example of arranging the pixel separation regions 101 and 103 will be described later with reference to FIGS. 8 to 10.
 なお、図7Aおよび図7Bには、図4に示す電圧印加方法を採用し、隣接する一対の画素のうち、一方の画素の信号取り出し部Bから他方の画素の信号取り出し部Aの方へ信号電荷を転送する場合を示しているが、図6に示す電圧印加方法を採用することも可能である。 Note that, in FIGS. 7A and 7B, the voltage application method shown in FIG. 4 is adopted, and a signal is transmitted from the signal extraction unit B of one pixel to the signal extraction unit A of the other pixel among the pair of adjacent pixels. Although the case of transferring the electric charge is shown, the voltage application method shown in FIG. 6 can also be adopted.
 図6に示す電圧印加方法を採用した場合、図7Aおよび図7Bに示す画素51Aの信号取り出し部Bが信号取り出し部Aとなり、画素51Dの信号取り出し部Aが信号取り出し部Bとなり、画素51Eの信号取り出し部Bが信号取り出し部Aとなる。そして、信号取り出し部Bから隣接画素の信号取り出し部Aの方へ信号電荷が転送される。 When the voltage application method shown in FIG. 6 is adopted, the signal extraction unit B of the pixel 51A shown in FIGS. 7A and 7B becomes the signal extraction unit A, the signal extraction unit A of the pixel 51D becomes the signal extraction unit B, and the pixel 51E The signal extraction unit B becomes the signal extraction unit A. Then, the signal charge is transferred from the signal extraction unit B to the signal extraction unit A of the adjacent pixel.
 このため、図6に示す電圧印加方法を採用した場合、図7Aおよび図7Bに示す画素51A,51D,51E内に矢印で示す電流の流れる方向が、図7Aおよび図7Bに示す矢印とは逆方向となる。 Therefore, when the voltage application method shown in FIG. 6 is adopted, the direction of current flow indicated by the arrow in the pixels 51A, 51D, 51E shown in FIGS. 7A and 7B is opposite to the direction indicated by the arrow shown in FIGS. 7A and 7B. It becomes the direction.
 このように、図6に示す電圧印加方法を採用した場合にも、複数の画素51A~51F(ここでは、2画素)に跨って信号電荷を転送することができるので、信号電荷の転送効率を向上させることができる。 As described above, even when the voltage application method shown in FIG. 6 is adopted, the signal charge can be transferred across a plurality of pixels 51A to 51F (here, 2 pixels), so that the signal charge transfer efficiency can be improved. Can be improved.
[6.画素分離領域の配置例]
 次に、図8~図10を参照して本開示に係る画素分離領域の配置例について説明する。図8~図10は、本開示に係る画素分離領域の配置例を示す図である。なお、図8~図10には、あるタイミングで正電圧が印加されるP+半導体領域73を「+」を囲む丸によって示しており、0Vまたは負電圧が印加されるP+半導体領域73を「-」を囲む丸によって示している。また、ハイインピーダンス状態にされるP+半導体領域73を「×」を囲む丸によって示している。
[6. Arrangement example of pixel separation area]
Next, an example of arranging the pixel separation region according to the present disclosure will be described with reference to FIGS. 8 to 10. 8 to 10 are diagrams showing an arrangement example of the pixel separation region according to the present disclosure. In FIGS. 8 to 10, the P + semiconductor region 73 to which a positive voltage is applied at a certain timing is indicated by a circle surrounding “+”, and the P + semiconductor region 73 to which 0 V or a negative voltage is applied is indicated by “−”. It is indicated by a circle surrounding it. Further, the P + semiconductor region 73 in the high impedance state is indicated by a circle surrounding “x”.
 また、図8~図10に示す破線枠によって囲まれる2画素は、光電変換する信号電荷が加算される画素であり、換言すれば、信号電荷を一対の電荷蓄積電極へ振り分ける画素である。なお、ハッチングが付された画素は、遮光画素である。 Further, the two pixels surrounded by the broken line frame shown in FIGS. 8 to 10 are pixels to which the signal charges to be photoelectrically converted are added, in other words, pixels that distribute the signal charges to a pair of charge storage electrodes. The hatched pixels are light-shielding pixels.
 ここでは、行列状に配列される複数の画素のうち、例えば、列方向に隣接する2画素(例えば、破線枠によって囲まれる2画素)毎に、画素を跨いで信号電荷を転送する画素アレイを例に挙げて説明する。 Here, among a plurality of pixels arranged in a matrix, for example, a pixel array that transfers signal charges across pixels for each of two pixels adjacent to each other in the column direction (for example, two pixels surrounded by a broken line frame). Let's take an example.
 図8に示すように、画素アレイ部21は、列方向に隣接する画素間と、行方向に隣接する画素間とに、受光領域50における光の入射面と対向する面から光の入射面へ向かう中途部まで達する画素分離領域101が設けられる。 As shown in FIG. 8, the pixel array unit 21 moves from the surface of the light receiving region 50 facing the light incident surface to the light incident surface between the pixels adjacent to each other in the column direction and between the pixels adjacent to each other in the row direction. A pixel separation region 101 that reaches the middle of the direction is provided.
 これにより、画素アレイ部21は、信号電荷の転送が行われる列方向に隣接する画素間では、受光領域50における光の入射面近傍の領域を通して信号電荷を転送することによって、電荷収集効率を向上させることができる。 As a result, the pixel array unit 21 improves the charge collection efficiency by transferring the signal charge between the pixels adjacent to each other in the column direction in which the signal charge is transferred through the region near the incident surface of the light in the light receiving region 50. Can be made to.
 図9に示すように、画素アレイ部21Aは、列方向に隣接する画素間では信号電荷の転送が行われるが、行方向に隣接する画素間では信号電荷の転送が行われない。そこで、画素アレイ部21は、信号電荷の転送が行われる列方向に隣接する画素間には、受光領域50における光の入射面と対向する面から光の入射面へ向かう中途部まで達する画素分離領域101が設けられる。これにより、画素アレイ部21は、信号電荷の転送が行われる列方向に隣接する画素間では、受光領域50における光の入射面近傍の領域を通して信号電荷を転送することができる。 As shown in FIG. 9, in the pixel array unit 21A, signal charges are transferred between pixels adjacent in the column direction, but signal charges are not transferred between pixels adjacent in the row direction. Therefore, the pixel array unit 21 separates the pixels that are adjacent to each other in the column direction in which the signal charge is transferred from the surface of the light receiving region 50 facing the light incident surface to the middle portion toward the light incident surface. Region 101 is provided. As a result, the pixel array unit 21 can transfer the signal charge through the region near the incident surface of the light in the light receiving region 50 between the pixels adjacent to each other in the column direction in which the signal charge is transferred.
 一方、信号電荷の転送が行われない行方向に隣接する画素間には、受光領域50における光の入射面から、光の入射面と対向する面まで貫通する画素分離領域103が設けられる。これにより、画素アレイ部21は、信号電荷の転送が行われない行方向に隣接する画素へ信号電荷が漏出することを防止することができる。 On the other hand, a pixel separation region 103 that penetrates from the light incident surface in the light receiving region 50 to the surface facing the light incident surface is provided between the pixels adjacent to each other in the row direction in which the signal charge is not transferred. As a result, the pixel array unit 21 can prevent the signal charge from leaking to the pixels adjacent to each other in the row direction in which the signal charge is not transferred.
 また、図10に示すように、画素アレイ部21Bは、信号電荷の転送が行われる列方向に隣接する画素間には画素分離領域が設けられず、信号電荷の転送が行われない行方向に隣接する画素間には、受光領域50における光の入射面から、光の入射面と対向する面まで貫通する画素分離領域103が設けられる。 Further, as shown in FIG. 10, the pixel array unit 21B is provided with no pixel separation region between pixels adjacent to each other in the column direction in which the signal charge is transferred, and is in the row direction in which the signal charge is not transferred. Between the adjacent pixels, a pixel separation region 103 that penetrates from the light incident surface in the light receiving region 50 to the surface facing the light incident surface is provided.
 これにより、画素アレイ部21Bは、信号電荷の転送が行われない行方向に隣接する画素へ信号電荷が漏出することを防止しつつ、信号電荷の転送が行われる列方向に隣接する画素間での電荷転送効率を向上させることができる。 As a result, the pixel array unit 21B prevents the signal charge from leaking to the pixels adjacent in the row direction in which the signal charge is not transferred, and between the pixels adjacent in the column direction in which the signal charge is transferred. The charge transfer efficiency of the
 なお、図8~図10には、図4に示す電圧印加方法を採用し、列方向に隣接する一対の画素のなかで最も遠い2つのP+半導体領域73に、正電圧と負電圧とを印加して信号電荷を転送する場合を示しているが、図6に示す電圧印加方法を採用することも可能である。 In FIGS. 8 to 10, the voltage application method shown in FIG. 4 is adopted, and a positive voltage and a negative voltage are applied to the two farthest P + semiconductor regions 73 among the pair of pixels adjacent in the column direction. Although the case where the signal charge is transferred is shown, the voltage application method shown in FIG. 6 can also be adopted.
 図6に示す電圧印加方法を採用した場合、図8~図10に示す3行目の画素における「+」を丸で囲んだ正電圧が印加されるP+半導体領域73が、「-」を丸で囲んだ負電圧が印加されるP+半導体領域73になる。そして、図8~図10に示す4行目の画素における「-」を丸で囲んだ負電圧が印加されるP+半導体領域73が、「+」を丸で囲んだ正電圧が印加されるP+半導体領域73になる。 When the voltage application method shown in FIG. 6 is adopted, the P + semiconductor region 73 to which the positive voltage is applied, which is circled “+” in the pixels in the third row shown in FIGS. 8 to 10, is circled “−”. It becomes the P + semiconductor region 73 to which the negative voltage surrounded by is applied. Then, the P + semiconductor region 73 to which the negative voltage circled “−” is applied in the pixels of the fourth row shown in FIGS. 8 to 10 is applied with the positive voltage circled “+”. It becomes the semiconductor region 73.
 これにより、図4に示す電圧印加方法と同様に、受光領域50における光入射面近傍の信号電荷転送電界が強化されるので、光入射面近傍において光電変換された信号電荷を効率よく電荷蓄積電極へ転送することができる。 As a result, the signal charge transfer electric field in the vicinity of the light incident surface in the light receiving region 50 is strengthened as in the voltage application method shown in FIG. 4, so that the signal charge photoelectrically converted in the vicinity of the light incident surface is efficiently charged by the charge storage electrode. Can be transferred to.
[7.画素駆動回路]
 次に、図11~図14を参照して本開示に係る画素駆動回路について説明する。図11~図14は、本開示に係る画素駆動回路の説明図である。ここでは、図11および図12を参照して、図4に示す電圧印加方法を行う画素駆動回路を説明し、図13および図14を参照して、図6に示す電圧印加方法を行う画素駆動回路を説明する。
[7. Pixel drive circuit]
Next, the pixel drive circuit according to the present disclosure will be described with reference to FIGS. 11 to 14. 11 to 14 are explanatory views of a pixel drive circuit according to the present disclosure. Here, a pixel drive circuit that performs the voltage application method shown in FIG. 4 will be described with reference to FIGS. 11 and 12, and a pixel drive that performs the voltage application method shown in FIG. 6 will be described with reference to FIGS. 13 and 14. The circuit will be described.
 図11および図12には、画素アレイ部21,21C内の行列状に配列される複数の画素のうち、m(mは、自然数)列からm+3列、4n(nは、自然数)行から4n+3行までの画素を選択的に示している。 In FIGS. 11 and 12, among a plurality of pixels arranged in a matrix in the pixel array units 21 and 21C, m (m is a natural number) column to m + 3 columns, 4n (n is a natural number) row to 4n + 3 Pixels up to the row are selectively shown.
 また、図13および図14には、画素アレイ部21D,21E内の行列状に配列される複数の画素のうち、m列からm+3列、4n(nは、自然数)行から4n+4行までの画素を選択的に示している。 Further, in FIGS. 13 and 14, among a plurality of pixels arranged in a matrix in the pixel array units 21D and 21E, pixels from m column to m + 3 columns, 4n (n is a natural number) to 4n + 4 rows. Is selectively shown.
 また、図11~図14には、あるタイミングで正電圧が印加されるP+半導体領域73を「+」を囲む丸によって示しており、0Vまたは負電圧が印加されるP+半導体領域73を「-」を囲む丸によって示している。また、ハイインピーダンス状態にされるP+半導体領域73を「×」を囲む丸によって示している。 Further, in FIGS. 11 to 14, the P + semiconductor region 73 to which a positive voltage is applied at a certain timing is indicated by a circle surrounding “+”, and the P + semiconductor region 73 to which 0 V or a negative voltage is applied is indicated by “−”. It is indicated by a circle surrounding it. Further, the P + semiconductor region 73 in the high impedance state is indicated by a circle surrounding “x”.
 また、以下に記載するMIX信号線4n,4n+1,4n+2,4n+3,4n+4は、例えば、各P+半導体領域73に、図2を参照して説明した1.5Vの電圧または0Vの電圧を印加するための電圧供給線である。 Further, the MIX signal lines 4n, 4n + 1,4n + 2,4n + 3,4n + 4 described below are for applying a voltage of 1.5V or a voltage of 0V described with reference to FIG. 2 to each P + semiconductor region 73, for example. Voltage supply line.
 図11に示すように、画素アレイ部21は、互いに隣接しない一対の画素における、あるタイミングで正電圧が印加される電極(P+半導体領域73)同士を接続する配線L1を備える。配線L1は、第1配線の一例であり、配線L1によって接続される電極は、第1配線によって接続される互いに隣接しない一対の受光画素における第1電極の一例である。 As shown in FIG. 11, the pixel array unit 21 includes a wiring L1 that connects electrodes (P + semiconductor region 73) to which a positive voltage is applied at a certain timing in a pair of pixels that are not adjacent to each other. The wiring L1 is an example of the first wiring, and the electrode connected by the wiring L1 is an example of the first electrode in a pair of light receiving pixels that are not adjacent to each other and are connected by the first wiring.
 また、画素アレイ部21は、配線L1によって電極に正電圧が印加されるときに、ハイインピーダンス状態にされる他の電極(P+半導体領域73)同士を接続する配線L2,L3を備える。 Further, the pixel array unit 21 includes wirings L2 and L3 for connecting other electrodes (P + semiconductor region 73) that are brought into a high impedance state when a positive voltage is applied to the electrodes by the wiring L1.
 また、画素アレイ部21は、配線L1によって電極に正電圧が印加されるときに、0Vまたは負電圧が印加される互いに隣接しない一対の画素における他の電極(P+半導体領域73)同士を接続する配線L4を備える。配線L4は、第2配線の一例であり、配線L4によって接続される電極は、第2配線によって接続される互いに隣接しない一対の受光画素における第2電極の一例である。 Further, the pixel array unit 21 connects other electrodes (P + semiconductor region 73) in a pair of pixels that are not adjacent to each other to which 0 V or a negative voltage is applied when a positive voltage is applied to the electrodes by wiring L1. The wiring L4 is provided. The wiring L4 is an example of the second wiring, and the electrode connected by the wiring L4 is an example of the second electrode in a pair of light receiving pixels that are not adjacent to each other and are connected by the second wiring.
 配線L1,L2,L3,L4には、それぞれ対応するバッファアンプBA4n,BA4n+1,BA4n+2,BA4n+3が接続される。バッファアンプBA4n,BA4n+1,BA4n+2,BA4n+3は、例えば、1.5Vの電圧と、0Vの電圧とを切替えて出力することができる。各バッファアンプBA4n,BA4n+1,BA4n+2,BA4n+3と画素アレイ部21との間には、スイッチSW4n,SW4n+1,SW4n+2,SW4n+3が接続される。 The corresponding buffer amplifiers BA 4n , BA 4n + 1 , BA 4n + 2 , and BA 4n + 3 are connected to the wirings L1, L2, L3, and L4, respectively. The buffer amplifiers BA 4n , BA 4n + 1 , BA 4n + 2 , and BA 4n + 3 can output, for example, switching between a voltage of 1.5V and a voltage of 0V. Switches SW 4n , SW 4n + 1 , SW 4n + 2 , and SW 4n + 3 are connected between the buffer amplifiers BA 4n , BA 4n + 1 , BA 4n + 2 , BA 4n + 3, and the pixel array unit 21.
 具体的には、バッファアンプBA4nには、スイッチSW4nが接続され、スイッチSW4nには、MIX信号線4nが接続され、MIX信号線4nには、配線L1が接続される。バッファアンプBA4n+1には、スイッチSW4n+1が接続され、スイッチSW4n+1には、MIX信号線4n+1が接続され、MIX信号線4n+1には、配線L2が接続される。 Specifically, the switch SW 4n is connected to the buffer amplifier BA 4n , the MIX signal line 4n is connected to the switch SW 4n , and the wiring L1 is connected to the MIX signal line 4n. The switch SW 4n + 1 is connected to the buffer amplifier BA 4n + 1 , the MIX signal line 4n + 1 is connected to the switch SW 4n + 1 , and the wiring L2 is connected to the MIX signal line 4n + 1.
 また、バッファアンプBA4n+2には、スイッチSW4n+2が接続され、スイッチSW4n+2には、MIX信号線4n+2が接続され、MIX信号線4n+2には、配線L3が接続される。バッファアンプBA4n+3には、スイッチSW4n+3が接続され、スイッチSW4n+3には、MIX信号線4n+3が接続され、MIX信号線4n+3には、配線L4が接続される。 Further, the switch SW 4n + 2 is connected to the buffer amplifier BA 4n + 2 , the MIX signal line 4n + 2 is connected to the switch SW 4n + 2 , and the wiring L3 is connected to the MIX signal line 4n + 2. The switch SW 4n + 3 is connected to the buffer amplifier BA 4n + 3 , the MIX signal line 4n + 3 is connected to the switch SW 4n + 3 , and the wiring L4 is connected to the MIX signal line 4n + 3.
 スイッチSW4n,SW4n+1,SW4n+2,SW4n+3は、例えば、画素アレイ部21の周辺回路に設けられるCMOS(Complementary Metal Oxide Semiconductor)スイッチによって構成される。なお、スイッチSW4n,SW4n+1,SW4n+2,SW4n+3は、周辺回路が設けられるロジック基板上に、画素アレイ部21が設けられるセンサ基板が積層される構造の場合、ロジック基板上のCMOSスイッチによって構成される。 The switches SW 4n , SW 4n + 1 , SW 4n + 2 , and SW 4n + 3 are composed of, for example, CMOS (Complementary Metal Oxide Semiconductor) switches provided in the peripheral circuits of the pixel array unit 21. When the switches SW 4n , SW 4n + 1 , SW 4n + 2 , and SW 4n + 3 have a structure in which a sensor board provided with a pixel array unit 21 is laminated on a logic board provided with peripheral circuits, a CMOS switch on the logic board is used. It is composed.
 バッファアンプBA4n,BA4n+1,BA4n+2,BA4n+3およびスイッチSW4n,SW4n+1,SW4n+2,SW4n+3は、例えば、システム制御部25および垂直駆動部22(図1参照)によって制御される。 The buffer amplifiers BA 4n , BA 4n + 1 , BA 4n + 2 , BA 4n + 3, and switches SW 4n , SW 4n + 1 , SW 4n + 2 , and SW 4n + 3 are controlled by, for example, the system control unit 25 and the vertical drive unit 22 (see FIG. 1).
 システム制御部25および垂直駆動部22は、例えば、あるタイミングでスイッチSW4nをオンにし、バッファアンプBA4nから1.5Vの電圧を出力させると共に、スイッチSW4n+3をオンにし、バッファアンプBA4n+3から0Vまたは負の電圧を出力させる。このとき、システム制御部25および垂直駆動部22は、スイッチSW4n+1およびスイッチSW4n+2をオフにする。 For example, the system control unit 25 and the vertical drive unit 22 turn on the switch SW 4n at a certain timing to output a voltage of 1.5V from the buffer amplifier BA 4n , turn on the switch SW 4n + 3 , and start from the buffer amplifier BA 4n + 3. Output 0V or negative voltage. At this time, the system control unit 25 and the vertical drive unit 22 turn off the switch SW 4n + 1 and the switch SW 4n + 2.
 これにより、システム制御部25および垂直駆動部22は、画素アレイ部21の状態を図11に示す状態にして、列方向に隣接する2画素間に電流を流し、電流による電界を受光領域50における光の入射面近傍まで広げることによって、電荷収集効率を向上させることができる。 As a result, the system control unit 25 and the vertical drive unit 22 set the state of the pixel array unit 21 to the state shown in FIG. 11, pass a current between two pixels adjacent to each other in the column direction, and apply an electric field due to the current in the light receiving region 50. The charge collection efficiency can be improved by extending the light to the vicinity of the incident surface.
 なお、バッファアンプBA4n,BA4n+1,BA4n+2,BA4n+3が1.5V出力状態、0V出力状態、およびハイインピーダンス状態を切替え可能な3ステージバッファである場合、スイッチSW4n,SW4n+1,SW4n+2,SW4n+3を省略することができる。 If the buffer amplifiers BA 4n , BA 4n + 1 , BA 4n + 2 , and BA 4n + 3 are 3-stage buffers that can switch between 1.5V output state, 0V output state, and high impedance state, switches SW 4n , SW 4n + 1 , and SW 4n + 2. , SW 4n + 3 can be omitted.
 この場合、システム制御部25および垂直駆動部22は、例えば、あるタイミングでバッファアンプBA4nを1.5V出力状態にし、バッファアンプBA4n+3を0V出力状態にし、バッファアンプBA4n+1,BA4n+2をハイインピーダンス状態にする。これにより、システム制御部25および垂直駆動部22は、画素アレイ部21の状態を図11に示す状態にすることができる。 In this case, the system control unit 25 and the vertical drive unit 22 set the buffer amplifier BA 4n to the 1.5V output state, the buffer amplifier BA 4n + 3 to the 0V output state, and the buffer amplifiers BA 4n + 1 and BA 4n + 2 at a certain timing, for example. Put it in the impedance state. As a result, the system control unit 25 and the vertical drive unit 22 can change the state of the pixel array unit 21 to the state shown in FIG.
 また、図12に示すように、画素アレイ部21Cは、図11に示すスイッチSW4n,SW4n+1,SW4n+2,SW4n+3に代えて、信号電荷を一対の電荷蓄積電極へ振り分ける電圧が交互に印加される一対の第1電極同士および第2電極同士を接続するスイッチを備える構成であってもよい。 Further, as shown in FIG. 12, the pixel array unit 21C alternately applies a voltage for distributing the signal charge to the pair of charge storage electrodes instead of the switches SW 4n , SW 4n + 1 , SW 4n + 2 , and SW 4n + 3 shown in FIG. The configuration may include a switch for connecting the pair of first electrodes and the second electrodes to each other.
 具体的には、画素アレイ部21Cは、図11に示すスイッチSW4nの代わりに、互いに隣接しない一対の受光画素における第1電極とバッファアンプBA4nとを接続するスイッチSWA4n,m,SWA4n,m+2を備える。スイッチSWA4n,m,SWA4n,m+2は、上記第1電極同士を接続する第1スイッチの一例である。 Specifically, instead of the switch SW 4n shown in FIG. 11, the pixel array unit 21C has switches SWA 4n, m , SWA 4n that connect the first electrode and the buffer amplifier BA 4n in a pair of light receiving pixels that are not adjacent to each other. , M + 2 . The switches SWA 4n, m and SWA 4n, m + 2 are examples of the first switch for connecting the first electrodes to each other.
 また、画素アレイ部21Cは、図11に示すスイッチSW4n+1の代わりに、互いに隣接しない一対の受光画素における電極とバッファアンプBA4n+1とを接続するスイッチSWB4n,m~SWB4n+2,mを備える。 Further, the pixel array unit 21C includes switches SWB 4n, m to SWB 4n + 2, m for connecting the electrodes of a pair of light receiving pixels that are not adjacent to each other and the buffer amplifier BA 4n + 1 , instead of the switch SW 4n + 1 shown in FIG.
 また、画素アレイ部21Cは、図11に示すスイッチSW4n+2の代わりに、互いに隣接しない一対の受光画素における電極とバッファアンプBA4n+2とを接続するスイッチSWA4n+1,m~SWA4n+3,mを備える。 Further, the pixel array unit 21C includes switches SWA 4n + 1, m to SWA 4n + 3, m for connecting the electrodes of a pair of light receiving pixels that are not adjacent to each other and the buffer amplifier BA 4n + 2 , instead of the switch SW 4n + 2 shown in FIG.
 また、画素アレイ部21Cは、図11に示すスイッチSW4n+3の代わりに、互いに隣接しない一対の受光画素における第2電極とバッファアンプBA4n+3とを接続するスイッチSWB4n+1,m~SWB4n+3,mを備える。スイッチSWB4n+1,m~SWB4n+3,mは、上記第2電極同士を接続する第2スイッチの一例である。 Further, instead of the switch SW 4n + 3 shown in FIG. 11, the pixel array unit 21C uses switches SWB 4n + 1, m to SWB 4n + 3, m for connecting the second electrode and the buffer amplifier BA 4n + 3 in a pair of light receiving pixels that are not adjacent to each other. Be prepared. The switches SWB 4n + 1, m to SWB 4n + 3, m are examples of the second switch for connecting the second electrodes to each other.
 なお、上記したスイッチに付した符号に符号SWに続く「A」と「B」とはTap名(例えば、TapAならば「A」、TapBならば「B」)を表し、「4n」等は画素行番号、「m」等は画素列番号を表している。 In addition, "A" and "B" following the code SW in the code attached to the above switch represent a Tap name (for example, "A" for TapA and "B" for TapB), and "4n" and the like represent. The pixel row number, "m", etc. represent the pixel column number.
 このため、例えば、4n行、m+3列のTapAに接続されるスイッチは、スイッチSWA4n,m+3となり、4n+3行、m+3列のTapBに接続されるスイッチは、スイッチSWB4n+3,m+3となる。 Therefore, for example, the switch connected to the TapA of 4n rows and m + 3 columns is the switch SWA 4n, m + 3 , and the switch connected to the TapB of 4n + 3 rows and m + 3 columns is the switch SWB 4n + 3, m + 3 .
 なお、図12では、m+3列の画素に設けられるスイッチSWA4n,m+3,SWB4n+3,m+3以外のスイッチ、および、m+1列、m+2列の画素に設けられるスイッチについては、符号の記載を省略している。 In FIG. 12, the reference numerals are omitted for the switches other than the switches SWA 4n, m + 3 and SWB 4n + 3, m + 3 provided in the pixels in the m + 3 row, and the switches provided in the pixels in the m + 1 row and the m + 2 row. There is.
 そして、システム制御部25および垂直駆動部22は、例えば、m列の画素を駆動する場合、下記の組合せのスイッチが同時にオン/オフするように制御する。
・スイッチSWA4n,mとスイッチSWA4n+2,m
・スイッチSWB4n,mとスイッチSWB4n+2,m
・スイッチSWA4n+1,mとスイッチSWA4n+3,m
・スイッチSWB4n+1,mとスイッチSWB4n+3,m
Then, the system control unit 25 and the vertical drive unit 22 control, for example, when driving the pixels of the m-row, the switches of the following combinations are turned on / off at the same time.
・ Switch SWA 4n, m and switch SWA 4n + 2, m
・ Switch SWB 4n, m and switch SWB 4n + 2,m
・ Switch SWA 4n + 1, m and switch SWA 4n + 3, m
・ Switch SWB 4n + 1, m and switch SWB 4n + 3, m
 具体的には、図12に示すように、システム制御部25および垂直駆動部22は、「+」を丸で囲んだP+半導体領域73に接続されるスイッチSWA4n,m,SWA4n+2,mと、「-」を丸で囲んだP+半導体領域73に接続されるスイッチSWB4n+1,m,SWB4n+3,mとをオンにする。 Specifically, as shown in FIG. 12, the system control unit 25 and the vertical drive unit 22 have switches SWA 4n, m and SWA 4n + 2, m connected to the P + semiconductor region 73 circled with “+”. , The switches SWB 4n + 1, m and SWB 4n + 3, m connected to the P + semiconductor region 73 circled “−” are turned on.
 このとき、システム制御部25および垂直駆動部22は、「×」を丸で囲んだP+半導体領域73に接続されるスイッチSWB4n,m,SWA4n+1,m,SWB4n+2,m,SWA4n+3,mをオフにする。そして、システム制御部25および垂直駆動部22は、配線L1と配線L4とに正電圧および負電圧を交互に印加する。 At this time, the system control unit 25 and the vertical drive unit 22 are switched switches SWB 4n, m , SWA 4n + 1, m , SWB 4n + 2, m , SWA 4n + 3, m connected to the P + semiconductor region 73 circled with “x”. Turn off. Then, the system control unit 25 and the vertical drive unit 22 alternately apply positive voltage and negative voltage to the wiring L1 and the wiring L4.
 また、システム制御部25および垂直駆動部22は、m+1列~m+3列の画素についても同様に制御する。これにより、システム制御部25および垂直駆動部22は、画素アレイ部21Cの状態を図12に示す状態にして、列方向に隣接する2画素間に電流を流し、電流による電界を受光領域50における光の入射面近傍まで広げることによって、電荷収集効率を向上させることができる。 Further, the system control unit 25 and the vertical drive unit 22 also control the pixels in the m + 1 row to the m + 3 row in the same manner. As a result, the system control unit 25 and the vertical drive unit 22 set the state of the pixel array unit 21C to the state shown in FIG. 12, pass a current between two pixels adjacent to each other in the column direction, and apply an electric field due to the current in the light receiving region 50. The charge collection efficiency can be improved by extending the light to the vicinity of the incident surface.
 また、図13に示すように、画素アレイ部21Dは、例えば、縦方向に隣接する一対の画素間における配設間隔が最短の電極同士が接続される点が、図11に示す画素アレイ部21とは構成が異なる。 Further, as shown in FIG. 13, in the pixel array unit 21D, for example, the pixel array unit 21 shown in FIG. 11 is connected to electrodes having the shortest arrangement interval between a pair of vertically adjacent pixels. The configuration is different from.
 画素アレイ部21Dでは、隣接する4n行および4n+1行の画素間における配設間隔が最短の電極同士が配線L1によって接続される。隣接する4n+1行および4n+2行の画素間における配設間隔が最短の電極同士が配線L2によって接続される。隣接する4n+2行および4n+3行の画素間における配設間隔が最短の電極同士が配線L3によって接続される。隣接する4n+3行および4n+4行の画素間における配設間隔が最短の電極同士が配線L4によって接続される。 In the pixel array unit 21D, the electrodes having the shortest arrangement interval between the adjacent pixels of the 4n row and the 4n + 1 row are connected by the wiring L1. The electrodes having the shortest arrangement interval between the adjacent pixels of the 4n + 1 row and the 4n + 2 row are connected by the wiring L2. Electrodes having the shortest arrangement interval between adjacent pixels of 4n + 2 rows and 4n + 3 rows are connected by wiring L3. Electrodes having the shortest arrangement interval between adjacent pixels of 4n + 3 rows and 4n + 4 rows are connected by wiring L4.
 かかる構成の場合、システム制御部25および垂直駆動部22は、例えば、4n行、4n+2行、および4n+4行のバッファアンプBA4n,BA4n+2,BA4n+4に接続されるスイッチSW4n,SW4n+2,SW4n+4をオンにする。 In such a configuration, the system control unit 25 and the vertical drive unit 22 are, for example, switches SW 4n , SW 4n + 2 , SW connected to the buffer amplifiers BA 4n , BA 4n + 2 , BA 4n + 4 of 4n line, 4n + 2 line, and 4n + 4 line. Turn on 4n + 4.
 このとき、システム制御部25および垂直駆動部22は、4n+1行および4n+3行のバッファアンプBA4n+1,BA4n+3に接続されるスイッチSW4n+1,SW4n+3をオフにする。そして、システム制御部25および垂直駆動部22は、配線L1と配線L3とに、正電圧と負電圧とを交互に印加する。 At this time, the system control unit 25 and the vertical drive unit 22 turn off the switches SW 4n + 1 and SW 4n + 3 connected to the buffer amplifiers BA 4n + 1 and BA 4n + 3 in the 4n + 1 line and the 4n + 3 line. Then, the system control unit 25 and the vertical drive unit 22 alternately apply positive voltage and negative voltage to the wiring L1 and the wiring L3.
 つまり、システム制御部25および垂直駆動部22は、4n行および4n+1行の隣接する画素間における配設間隔が最短の前記第1電極と、4n+2行および4n+3行の離接する画素間における配設間隔が最短の前記第2電極とに、正電圧と負電圧とを交互に印加する。これにより、列方向に隣接する4n+1行目と4n+2行目の画素間に電流が流れ、列方向に隣接する4n+3行目と4n+4行目の画素間に電流が流れる。 That is, the system control unit 25 and the vertical drive unit 22 have the arrangement interval between the first electrode having the shortest arrangement interval between adjacent pixels of 4n row and 4n + 1 row and the detached pixels of 4n + 2 row and 4n + 3 row. Positive voltage and negative voltage are alternately applied to the second electrode having the shortest distance. As a result, a current flows between the pixels in the 4n + 1th row and the 4n + 2nd row adjacent in the column direction, and a current flows between the pixels in the 4n + 3rd row and the 4n + 4th row adjacent in the column direction.
 このように、システム制御部25および垂直駆動部22は、画素アレイ部21Dの状態を図13に示す状態にして、列方向に隣接する2画素間に電流を流し、電流による電界を受光領域50における光の入射面近傍まで広げることによって、電荷収集効率を向上させることができる。 In this way, the system control unit 25 and the vertical drive unit 22 set the state of the pixel array unit 21D to the state shown in FIG. 13, pass a current between two pixels adjacent to each other in the column direction, and receive an electric field due to the current in the light receiving region 50. The charge collection efficiency can be improved by extending the light to the vicinity of the incident surface of the light.
 また、図14に示すように、画素アレイ部21Eは、図13に示すスイッチSW4n,SW4n+1,SW4n+2,SW4n+3に代えて、縦方向に隣接する一対の画素間における配設間隔が最短の電極同士を接続するスイッチを備える構成であってもよい。 Further, as shown in FIG. 14, the pixel array unit 21E has the shortest arrangement interval between a pair of vertically adjacent pixels instead of the switches SW 4n , SW 4n + 1 , SW 4n + 2 , and SW 4n + 3 shown in FIG. It may be configured to include a switch for connecting the electrodes of the above.
 具体的には、画素アレイ部21Eは、隣接する4n-1行および4n行の画素間における配設間隔が最短の電極同士を接続するスイッチSWB4n-1,m,SWA4n,mと、隣接する4n行および4n+1行の画素間における配設間隔が最短の電極同士を接続するスイッチSWB4n,m,SWA4n+1,mとを備える。 Specifically, the pixel array unit 21E is adjacent to the switches SWB 4n-1, m , SWA 4n, m that connect the electrodes having the shortest arrangement interval between the adjacent pixels of the 4n-1 row and the 4n row. The switches SWB 4n, m and SWA 4n + 1, m for connecting the electrodes having the shortest arrangement interval between the pixels of the 4n row and the 4n + 1 row are provided.
 また、画素アレイ部21Eは、隣接する4n+1行および4n+2行の画素間における配設間隔が最短の電極同士を接続するスイッチSWB4n+1,m,SWA4n+2,mと、隣接する4n+2行および4n+3行の画素間における配設間隔が最短の電極同士を接続するスイッチSWB4n+2,m,SWA4n+3,mとを備える。さらに、画素アレイ部21Eは、隣接する4n+3行および4n+4行の画素間における配設間隔が最短の電極同士を接続するスイッチSWB4n+3,m,SWA4n+4,mを備える。 Further, the pixel array unit 21E includes switches SWB 4n + 1, m , SWA 4n + 2, m , and adjacent 4n + 2 rows and 4n + 3 rows, which connect electrodes having the shortest arrangement interval between adjacent pixels of 4n + 1 row and 4n + 2 rows. It is provided with switches SWB 4n + 2, m and SWA 4n + 3, m for connecting electrodes having the shortest arrangement interval between pixels. Further, the pixel array unit 21E includes switches SWB 4n + 3, m and SWA 4n + 4, m for connecting electrodes having the shortest arrangement interval between adjacent pixels of 4n + 3 rows and 4n + 4 rows.
 なお、上記したスイッチに付した符号に符号SWに続く「A」と「B」とはTap名(例えば、TapAならば「A」、TapBならば「B」)を表し、「4n」等は画素行番号、「m」等は画素列番号を表している。また、図14では、m+1列、m+2列、および、m+3列の画素に設けられるスイッチについては、符号の記載を省略している。 In addition, "A" and "B" following the code SW in the code attached to the above switch represent a Tap name (for example, "A" for TapA and "B" for TapB), and "4n" and the like represent. The pixel row number, "m", etc. represent the pixel column number. Further, in FIG. 14, the description of the reference numerals is omitted for the switches provided in the pixels of the m + 1 row, the m + 2 row, and the m + 3 row.
 そして、システム制御部25および垂直駆動部22は、例えば、m列の画素を駆動する場合、下記の組合せのスイッチが同時にオン/オフするように制御する。
・スイッチSWB4n-1,mとスイッチSWA4n,m
・スイッチSWB4n,mとスイッチSWA4n+1,m
・スイッチSWB4n+1,mとスイッチSWA4n+2,m
・スイッチSWB4n+2,mとスイッチSWA4n+3,m
・スイッチSWB4n+3,mとスイッチSWA4n+4,m
Then, the system control unit 25 and the vertical drive unit 22 control, for example, when driving the pixels of the m-row, the switches of the following combinations are turned on / off at the same time.
・ Switch SWB 4n-1, m and switch SWA 4n, m
・ Switch SWB 4n, m and switch SWA 4n + 1, m
・ Switch SWB 4n + 1, m and switch SWA 4n + 2, m
・ Switch SWB 4n + 2, m and switch SWA 4n + 3, m
・ Switch SWB 4n + 3, m and switch SWA 4n + 4, m
 具体的には、図14に示すように、システム制御部25および垂直駆動部22は、「+」を丸で囲んだP+半導体領域73に接続されるスイッチSWB4n-1,m,SWA4n,m,SWB4n+3,m,SWA4n+4,mと、「-」を丸で囲んだP+半導体領域73に接続されるスイッチSWB4n+1,m,SWA4n+2,mとをオンにする。 Specifically, as shown in FIG. 14, the system control unit 25 and the vertical drive unit 22 are switched switches SWB 4n-1, m , SWA 4n, which are connected to the P + semiconductor region 73 circled with “+”. Turn on m , SWB 4n + 3, m , SWA 4n + 4, m, and the switches SWB 4n + 1, m , SWA 4n + 2, m connected to the P + semiconductor region 73 circled "-".
 このとき、システム制御部25および垂直駆動部22は、「×」を丸で囲んだP+半導体領域73に接続されるスイッチSWB4n,m,SWA4n+1,m,SWB4n+2,m,SWA4n+3,mをオフにする。そして、システム制御部25および垂直駆動部22は、4n行のバッファアンプBA4nと、4n+2行のバッファアンプBA4n+2とから正電圧および負電圧を交互に出力させる。 At this time, the system control unit 25 and the vertical drive unit 22 are switched switches SWB 4n, m , SWA 4n + 1, m , SWB 4n + 2, m , SWA 4n + 3, m connected to the P + semiconductor region 73 circled with “x”. Turn off. Then, the system control unit 25 and the vertical drive unit 22 alternately output positive voltage and negative voltage from the 4n line buffer amplifier BA 4n and the 4n + 2 line buffer amplifier BA 4n + 2.
 また、システム制御部25および垂直駆動部22は、m+1列~m+3列の画素についても同様に制御する。これにより、システム制御部25および垂直駆動部22は、画素アレイ部21Eの状態を図14に示す状態にして、列方向に隣接する2画素(4n行―4n+2行の画素間、4n+2行―4n+4行の画素間)間に電流を流し、電流による電界を受光領域50における光の入射面近傍まで広げることによって、電荷収集効率を向上させることができる。 Further, the system control unit 25 and the vertical drive unit 22 also control the pixels in the m + 1 row to the m + 3 row in the same manner. As a result, the system control unit 25 and the vertical drive unit 22 change the state of the pixel array unit 21E to the state shown in FIG. The charge collection efficiency can be improved by passing a current between the pixels of the row) and expanding the electric field due to the current to the vicinity of the incident surface of the light in the light receiving region 50.
 なお、図11~図14に示す例では、MIX信号線4n,4n+1,4n+2,4n+3、4n+4を画素アレイ部21,21C,21D,21Eの水平(画素行)方向に配置しているが、垂直(画素列)方向に配置することも可能である。 In the examples shown in FIGS. 11 to 14, the MIX signal lines 4n, 4n + 1,4n + 2,4n + 3,4n + 4 are arranged in the horizontal (pixel row) direction of the pixel array units 21,21C, 21D, 21E, but vertically. It is also possible to arrange in the (pixel string) direction.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。また、本明細書では、本開示に係る画素アレイ部が裏面照射型である場合を例に挙げて説明したが、本開示に係る画素アレイ部は、表面照射型であってもよい。 Note that the effects described in this specification are merely examples and are not limited, and other effects may be obtained. Further, in the present specification, the case where the pixel array portion according to the present disclosure is a back-illuminated type has been described as an example, but the pixel array portion according to the present disclosure may be a front-illuminated type.
 なお、本技術は以下のような構成も取ることができる。
(1)
 入射する光を信号電荷に光電変換する受光領域と、前記信号電荷を時分割して一対の電荷蓄積電極へ振り分ける電界を前記受光領域に発生させる電圧が交互に印加される一対の第1電極および第2電極とを含む複数の受光画素が行列状に配列される画素アレイと、
 隣接しない一対の受光画素における前記第1電極同士を接続する第1配線と、
 前記一対の受光画素における前記第2電極同士を接続する第2配線と
 を有する受光素子。
(2)
 入射する光を信号電荷に光電変換する受光領域と、前記信号電荷を時分割して一対の電荷蓄積電極へ振り分ける電界を前記受光領域に発生させる電圧が交互に印加される一対の第1電極および第2電極とを含む複数の受光画素が行列状に配列される画素アレイと、
 前記第1電極および前記第2電極に前記電圧を印加して、隣接する受光画素間、または、1画素以上離れた受光画素間における前記受光領域内に電流を流す制御部と
 を有する受光素子。
(3)
 前記第1電極同士を接続する第1スイッチと、
 前記第2電極同士を接続する第2スイッチと
 を備え、
 前記制御部は、
 隣接しない一対の受光画素における前記第1電極同士を前記第1スイッチによって接続し、前記一対の受光画素における前記第2電極同士を前記第2スイッチによって接続して、前記第1電極および前記第2電極に前記電圧を交互に印加する
 前記(2)に記載の受光素子。
(4)
 前記制御部は、
 隣接する一対の受光画素間における配設間隔が最短の前記第1電極と、前記一対の受光画素以外の隣接する一対の受光画素間における配設間隔が最短の前記第2電極とに、前記電圧を交互に印加する
 前記(2)に記載の受光素子。
(5)
 前記第1電極同士を接続する第1スイッチと、
 前記第2電極同士を接続する第2スイッチと
 を備え、
 前記制御部は、
 隣接する一対の受光画素間における配設間隔が最短の前記第1電極同士を前記第1スイッチによって接続し、前記一対の受光画素以外の隣接する一対の受光画素間における配設間隔が最短の前記第2電極同士を前記第2スイッチによって接続して、前記第1電極および前記第2電極に前記電圧を交互に印加する
 前記(2)に記載の受光素子。
(6)
 前記画素アレイにおける領域毎に、前記信号電荷を前記一対の電荷蓄積電極へ振り分ける受光画素の数が異なる
 前記(1)から(5)のいずれか一つに記載の受光素子。
(7)
 前記信号電荷を前記一対の電荷蓄積電極へ振り分ける受光画素は、
 行列状に配列される前記受光画素のうち、列方向に沿って配列される受光画素である
 前記(1)から(6)のいずれか一つに記載の受光素子。
(8)
 前記信号電荷を前記一対の電荷蓄積電極へ振り分ける受光画素は、
 行列状に配列される前記受光画素のうち、行方向に沿って配列される受光画素である
 前記(1)から(6)のいずれか一つに記載の受光素子。
(9)
 前記信号電荷を前記一対の電荷蓄積電極へ振り分ける受光画素は、
 行列状に配列される前記受光画素のうち、斜め方向に沿って配列される受光画素である
 前記(1)から(6)のいずれか一つに記載の受光素子。
(10)
 前記受光領域の間に設けられ、隣接する前記受光領域を光学的および電気的に分離する画素分離領域
 を有する前記(1)から(9)のいずれか一つに記載の受光素子。
(11)
 前記画素分離領域は、
 前記受光領域における光の入射面と対向する面から前記入射面へ向かう中途部まで達する
 前記(10)に記載の受光素子。
(12)
 前記画素分離領域は、
 前記受光領域における光の入射面から前記入射面と対向する面へ向かう中途部まで達する
 前記(10)に記載の受光素子。
(13)
 前記画素分離領域は、
 前記信号電荷を前記一対の電荷蓄積電極へ振り分ける受光画素の配列方向と直交する方向に沿って設けられる
 前記(11)または(12)に記載の受光素子。
(14)
 前記画素分離領域は、
 前記受光領域における光の入射面から前記入射面と対向する面まで達し、前記信号電荷が前記一対の電荷蓄積電極へ振り分けられる受光画素の配列方向に沿って設けられる
 前記(10)に記載の受光素子。
(15)
 入射する光を信号電荷に光電変換する受光領域と、前記信号電荷を時分割して一対の電荷蓄積電極へ振り分ける電界を前記受光領域に発生させる電圧が交互に印加される一対の第1電極および第2電極とを含む複数の受光画素が行列状に配列される画素アレイの制御方法であって、
 前記第1電極および前記第2電極に前記電圧を印加して、隣接する受光画素間、または、1画素以上離れた受光画素間における前記受光領域内に電流を流す
 ことを含む制御方法。
The present technology can also have the following configurations.
(1)
A light receiving region that photoelectrically converts incident light into a signal charge, and a pair of first electrodes that alternately apply a voltage that generates an electric field that divides the signal charge into a pair of charge storage electrodes and distributes the electric field to the light receiving region. A pixel array in which a plurality of light receiving pixels including the second electrode are arranged in a matrix, and
The first wiring that connects the first electrodes of a pair of non-adjacent light receiving pixels,
A light receiving element having a second wiring for connecting the second electrodes of the pair of light receiving pixels.
(2)
A light receiving region that photoelectrically converts incident light into a signal charge, and a pair of first electrodes that alternately apply a voltage that generates an electric field that divides the signal charge into a pair of charge storage electrodes and distributes the electric field to the light receiving region. A pixel array in which a plurality of light receiving pixels including the second electrode are arranged in a matrix, and
A light receiving element having a control unit for applying the voltage to the first electrode and the second electrode to cause a current to flow in the light receiving region between adjacent light receiving pixels or between light receiving pixels separated by one pixel or more.
(3)
The first switch that connects the first electrodes to each other,
A second switch for connecting the second electrodes to each other is provided.
The control unit
The first electrodes of a pair of non-adjacent light receiving pixels are connected to each other by the first switch, the second electrodes of the pair of light receiving pixels are connected to each other by the second switch, and the first electrode and the second electrode are connected to each other. The light receiving element according to (2) above, wherein the voltages are alternately applied to the electrodes.
(4)
The control unit
The voltage is applied to the first electrode having the shortest arrangement interval between a pair of adjacent light receiving pixels and the second electrode having the shortest arrangement interval between a pair of adjacent light receiving pixels other than the pair of light receiving pixels. The light receiving element according to (2) above.
(5)
The first switch that connects the first electrodes to each other,
A second switch for connecting the second electrodes to each other is provided.
The control unit
The first electrodes having the shortest arrangement interval between a pair of adjacent light receiving pixels are connected to each other by the first switch, and the arrangement interval between a pair of adjacent light receiving pixels other than the pair of light receiving pixels is the shortest. The light receiving element according to (2), wherein the second electrodes are connected to each other by the second switch, and the voltage is alternately applied to the first electrode and the second electrode.
(6)
The light receiving element according to any one of (1) to (5), wherein the number of light receiving pixels for distributing the signal charge to the pair of charge storage electrodes is different for each region in the pixel array.
(7)
The light receiving pixel that distributes the signal charge to the pair of charge storage electrodes is
The light receiving element according to any one of (1) to (6) above, which is a light receiving pixel arranged along a column direction among the light receiving pixels arranged in a matrix.
(8)
The light receiving pixel that distributes the signal charge to the pair of charge storage electrodes is
The light receiving element according to any one of (1) to (6) above, which is a light receiving pixel arranged along the row direction among the light receiving pixels arranged in a matrix.
(9)
The light receiving pixel that distributes the signal charge to the pair of charge storage electrodes is
The light receiving element according to any one of (1) to (6) above, which is a light receiving pixel arranged along an oblique direction among the light receiving pixels arranged in a matrix.
(10)
The light receiving element according to any one of (1) to (9) above, which is provided between the light receiving regions and has a pixel separation region that optically and electrically separates the adjacent light receiving regions.
(11)
The pixel separation area is
The light receiving element according to (10) above, which reaches a halfway portion toward the incident surface from a surface facing the incident surface of light in the light receiving region.
(12)
The pixel separation area is
The light receiving element according to (10) above, which reaches a halfway portion from the incident surface of light in the light receiving region toward the surface facing the incident surface.
(13)
The pixel separation area is
The light receiving element according to (11) or (12), which is provided along a direction orthogonal to the arrangement direction of light receiving pixels that distributes the signal charge to the pair of charge storage electrodes.
(14)
The pixel separation area is
The light receiving light according to (10), which is provided along the arrangement direction of light receiving pixels that reach from the incident surface of light in the light receiving region to the surface facing the incident surface and distribute the signal charge to the pair of charge storage electrodes. element.
(15)
A light receiving region that photoelectrically converts incident light into a signal charge, and a pair of first electrodes that alternately apply a voltage that generates an electric field that divides the signal charge into a pair of charge storage electrodes and distributes the electric field to the light receiving region. This is a method for controlling a pixel array in which a plurality of light receiving pixels including a second electrode are arranged in a matrix.
A control method comprising applying the voltage to the first electrode and the second electrode to cause a current to flow in the light receiving region between adjacent light receiving pixels or between light receiving pixels separated by one pixel or more.
 11 固体撮像素子, 21 画素アレイ部, 22 垂直駆動部, 51 画素, 61 基板, 62 集光構造, 71-1,71-2,71 N+半導体領域, 73-1,73-2,73 P+半導体領域 11 solid-state image sensor, 21 pixel array unit, 22 vertical drive unit, 51 pixels, 61 substrate, 62 condensing structure, 71-1, 71-2, 71 N + semiconductor region, 73-1, 73-2, 73 P + semiconductor region

Claims (15)

  1.  入射する光を信号電荷に光電変換する受光領域と、前記信号電荷を時分割して一対の電荷蓄積電極へ振り分ける電界を前記受光領域に発生させる電圧が交互に印加される一対の第1電極および第2電極とを含む複数の受光画素が行列状に配列される画素アレイと、
     隣接しない一対の受光画素における前記第1電極同士を接続する第1配線と、
     前記一対の受光画素における前記第2電極同士を接続する第2配線と
     を有する受光素子。
    A light receiving region that photoelectrically converts incident light into a signal charge, and a pair of first electrodes that alternately apply a voltage that generates an electric field that divides the signal charge into a pair of charge storage electrodes and distributes the electric field to the light receiving region. A pixel array in which a plurality of light receiving pixels including the second electrode are arranged in a matrix, and
    The first wiring that connects the first electrodes of a pair of non-adjacent light receiving pixels,
    A light receiving element having a second wiring for connecting the second electrodes of the pair of light receiving pixels.
  2.  入射する光を信号電荷に光電変換する受光領域と、前記信号電荷を時分割して一対の電荷蓄積電極へ振り分ける電界を前記受光領域に発生させる電圧が交互に印加される一対の第1電極および第2電極とを含む複数の受光画素が行列状に配列される画素アレイと、
     前記第1電極および前記第2電極に前記電圧を印加して、隣接する受光画素間、または、1画素以上離れた受光画素間における前記受光領域内に電流を流す制御部と
     を有する受光素子。
    A light receiving region that photoelectrically converts incident light into a signal charge, and a pair of first electrodes that alternately apply a voltage that generates an electric field that divides the signal charge into a pair of charge storage electrodes and distributes the electric field to the light receiving region. A pixel array in which a plurality of light receiving pixels including the second electrode are arranged in a matrix, and
    A light receiving element having a control unit for applying the voltage to the first electrode and the second electrode to cause a current to flow in the light receiving region between adjacent light receiving pixels or between light receiving pixels separated by one pixel or more.
  3.  前記第1電極同士を接続する第1スイッチと、
     前記第2電極同士を接続する第2スイッチと
     を備え、
     前記制御部は、
     隣接しない一対の受光画素における前記第1電極同士を前記第1スイッチによって接続し、前記一対の受光画素における前記第2電極同士を前記第2スイッチによって接続して、前記第1電極および前記第2電極に前記電圧を交互に印加する
     請求項2に記載の受光素子。
    The first switch that connects the first electrodes to each other,
    A second switch for connecting the second electrodes to each other is provided.
    The control unit
    The first electrodes of a pair of non-adjacent light receiving pixels are connected to each other by the first switch, the second electrodes of the pair of light receiving pixels are connected to each other by the second switch, and the first electrode and the second electrode are connected to each other. The light receiving element according to claim 2, wherein the voltages are alternately applied to the electrodes.
  4.  前記制御部は、
     隣接する一対の受光画素間における配設間隔が最短の前記第1電極と、前記一対の受光画素以外の隣接する一対の受光画素間における配設間隔が最短の前記第2電極とに、前記電圧を交互に印加する
     請求項2に記載の受光素子。
    The control unit
    The voltage is applied to the first electrode having the shortest arrangement interval between a pair of adjacent light receiving pixels and the second electrode having the shortest arrangement interval between a pair of adjacent light receiving pixels other than the pair of light receiving pixels. The light receiving element according to claim 2, wherein the light receiving elements are alternately applied.
  5.  前記第1電極同士を接続する第1スイッチと、
     前記第2電極同士を接続する第2スイッチと
     を備え、
     前記制御部は、
     隣接する一対の受光画素間における配設間隔が最短の前記第1電極同士を前記第1スイッチによって接続し、前記一対の受光画素以外の隣接する一対の受光画素間における配設間隔が最短の前記第2電極同士を前記第2スイッチによって接続して、前記第1電極および前記第2電極に前記電圧を交互に印加する
     請求項2に記載の受光素子。
    The first switch that connects the first electrodes to each other,
    A second switch for connecting the second electrodes to each other is provided.
    The control unit
    The first electrodes having the shortest arrangement interval between a pair of adjacent light receiving pixels are connected to each other by the first switch, and the arrangement interval between a pair of adjacent light receiving pixels other than the pair of light receiving pixels is the shortest. The light receiving element according to claim 2, wherein the second electrodes are connected to each other by the second switch, and the voltage is alternately applied to the first electrode and the second electrode.
  6.  前記画素アレイにおける領域毎に、前記信号電荷を前記一対の電荷蓄積電極へ振り分ける受光画素の数が異なる
     請求項1に記載の受光素子。
    The light receiving element according to claim 1, wherein the number of light receiving pixels for distributing the signal charge to the pair of charge storage electrodes is different for each region in the pixel array.
  7.  前記信号電荷を前記一対の電荷蓄積電極へ振り分ける受光画素は、
     行列状に配列される前記受光画素のうち、列方向に沿って配列される受光画素である
     請求項1に記載の受光素子。
    The light receiving pixel that distributes the signal charge to the pair of charge storage electrodes is
    The light receiving element according to claim 1, which is a light receiving pixel arranged along the column direction among the light receiving pixels arranged in a matrix.
  8.  前記信号電荷を前記一対の電荷蓄積電極へ振り分ける受光画素は、
     行列状に配列される前記受光画素のうち、行方向に沿って配列される受光画素である
     請求項1に記載の受光素子。
    The light receiving pixel that distributes the signal charge to the pair of charge storage electrodes is
    The light receiving element according to claim 1, which is a light receiving pixel arranged along the row direction among the light receiving pixels arranged in a matrix.
  9.  前記信号電荷を前記一対の電荷蓄積電極へ振り分ける受光画素は、
     行列状に配列される前記受光画素のうち、斜め方向に沿って配列される受光画素である
     請求項1に記載の受光素子。
    The light receiving pixel that distributes the signal charge to the pair of charge storage electrodes is
    The light receiving element according to claim 1, which is a light receiving pixel arranged along an oblique direction among the light receiving pixels arranged in a matrix.
  10.  前記受光領域の間に設けられ、隣接する前記受光領域を光学的および電気的に分離する画素分離領域
     を有する請求項1に記載の受光素子。
    The light receiving element according to claim 1, which is provided between the light receiving regions and has a pixel separation region that optically and electrically separates the adjacent light receiving regions.
  11.  前記画素分離領域は、
     前記受光領域における光の入射面と対向する面から前記入射面へ向かう中途部まで達する
     請求項10に記載の受光素子。
    The pixel separation area is
    The light receiving element according to claim 10, wherein the light receiving element reaches a halfway portion toward the incident surface from a surface facing the incident surface of light in the light receiving region.
  12.  前記画素分離領域は、
     前記受光領域における光の入射面から前記入射面と対向する面へ向かう中途部まで達する
     請求項10に記載の受光素子。
    The pixel separation area is
    The light receiving element according to claim 10, wherein the light receiving surface reaches a halfway portion from the incident surface of light in the light receiving region toward the surface facing the incident surface.
  13.  前記画素分離領域は、
     前記信号電荷を前記一対の電荷蓄積電極へ振り分ける受光画素の配列方向と直交する方向に沿って設けられる
     請求項11に記載の受光素子。
    The pixel separation area is
    The light receiving element according to claim 11, which is provided along a direction orthogonal to the arrangement direction of the light receiving pixels that distribute the signal charge to the pair of charge storage electrodes.
  14.  前記画素分離領域は、
     前記受光領域における光の入射面から前記入射面と対向する面まで達し、前記信号電荷が前記一対の電荷蓄積電極へ振り分けられる受光画素の配列方向に沿って設けられる
     請求項10に記載の受光素子。
    The pixel separation area is
    The light receiving element according to claim 10, which is provided along the arrangement direction of light receiving pixels that reach from the incident surface of light in the light receiving region to the surface facing the incident surface and distribute the signal charge to the pair of charge storage electrodes. ..
  15.  入射する光を信号電荷に光電変換する受光領域と、前記信号電荷を時分割して一対の電荷蓄積電極へ振り分ける電界を前記受光領域に発生させる電圧が交互に印加される一対の第1電極および第2電極とを含む複数の受光画素が行列状に配列される画素アレイの制御方法であって、
     前記第1電極および前記第2電極に前記電圧を印加して、隣接する受光画素間、または、1画素以上離れた受光画素間における前記受光領域内に電流を流す
     ことを含む制御方法。
    A light receiving region that photoelectrically converts incident light into a signal charge, and a pair of first electrodes that alternately apply a voltage that generates an electric field that divides the signal charge into a pair of charge storage electrodes and distributes the electric field to the light receiving region. This is a method for controlling a pixel array in which a plurality of light receiving pixels including a second electrode are arranged in a matrix.
    A control method comprising applying the voltage to the first electrode and the second electrode to cause a current to flow in the light receiving region between adjacent light receiving pixels or between light receiving pixels separated by one pixel or more.
PCT/JP2021/004930 2020-03-17 2021-02-10 Light-receiving element and control method WO2021186958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020046911A JP2021150402A (en) 2020-03-17 2020-03-17 Light-receiving element and control method
JP2020-046911 2020-03-17

Publications (1)

Publication Number Publication Date
WO2021186958A1 true WO2021186958A1 (en) 2021-09-23

Family

ID=77768072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004930 WO2021186958A1 (en) 2020-03-17 2021-02-10 Light-receiving element and control method

Country Status (2)

Country Link
JP (1) JP2021150402A (en)
WO (1) WO2021186958A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150391A1 (en) * 2016-03-04 2017-09-08 ソニー株式会社 Imaging device and range finding system
WO2018135320A1 (en) * 2017-01-19 2018-07-26 ソニーセミコンダクタソリューションズ株式会社 Light-receiving element, imaging element and imaging device
US20190025414A1 (en) * 2016-01-15 2019-01-24 Sony Depthsensing Solutions Sa/Nv A detector device with majority current and a circuitry for controlling the current
WO2019031001A1 (en) * 2017-08-09 2019-02-14 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device, electronic device, and control method for solid-state imaging device
WO2019044569A1 (en) * 2017-08-30 2019-03-07 ソニーセミコンダクタソリューションズ株式会社 Image-capturing element and image-capturing device
WO2019065291A1 (en) * 2017-09-28 2019-04-04 ソニーセミコンダクタソリューションズ株式会社 Image capturing element and image capturing device
JP2020013910A (en) * 2018-07-18 2020-01-23 ソニーセミコンダクタソリューションズ株式会社 Light receiving element and distance measuring module
JP2020013907A (en) * 2018-07-18 2020-01-23 ソニーセミコンダクタソリューションズ株式会社 Light receiving element and distance measuring module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190025414A1 (en) * 2016-01-15 2019-01-24 Sony Depthsensing Solutions Sa/Nv A detector device with majority current and a circuitry for controlling the current
WO2017150391A1 (en) * 2016-03-04 2017-09-08 ソニー株式会社 Imaging device and range finding system
WO2018135320A1 (en) * 2017-01-19 2018-07-26 ソニーセミコンダクタソリューションズ株式会社 Light-receiving element, imaging element and imaging device
WO2019031001A1 (en) * 2017-08-09 2019-02-14 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device, electronic device, and control method for solid-state imaging device
WO2019044569A1 (en) * 2017-08-30 2019-03-07 ソニーセミコンダクタソリューションズ株式会社 Image-capturing element and image-capturing device
WO2019065291A1 (en) * 2017-09-28 2019-04-04 ソニーセミコンダクタソリューションズ株式会社 Image capturing element and image capturing device
JP2020013910A (en) * 2018-07-18 2020-01-23 ソニーセミコンダクタソリューションズ株式会社 Light receiving element and distance measuring module
JP2020013907A (en) * 2018-07-18 2020-01-23 ソニーセミコンダクタソリューションズ株式会社 Light receiving element and distance measuring module

Also Published As

Publication number Publication date
JP2021150402A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
CN109729759B (en) Imaging element and imaging device
CN108389871B (en) Image pickup device
CN107425022B (en) Solid-state imaging device and electronic apparatus
TWI516122B (en) Solid-state imaging device, signal processing method of solid-state imaging device, and electronic apparatus
JP5644177B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
CN110649050A (en) Solid-state image sensor, imaging device, and electronic apparatus
JP5320989B2 (en) Solid-state imaging device and electronic apparatus
US11477406B2 (en) Imaging device and electronic apparatus for effective pixel signal reading
JP2002270809A (en) Solid-state image sensor and its control method
JP2020202480A (en) Imaging device, imaging system, and semiconductor chip
JP5135613B2 (en) Image sensor and imaging apparatus using the same
WO2021186958A1 (en) Light-receiving element and control method
WO2021149556A1 (en) Light receiving element, imaging element, and imaging device
US20220238470A1 (en) Semiconductor element, apparatus, and chip
WO2007108129A1 (en) Solid-state image sensor
JP6813971B2 (en) Photoelectric conversion device and imaging system
JP2020191600A (en) Photoelectric conversion device and photoelectric conversion system
WO2017057397A1 (en) Image capture element and electronic camera
JP2519208B2 (en) Color solid-state imaging device
JP4951212B2 (en) Image sensor
JP2006294781A (en) Solid stage imaging device
JP4212447B2 (en) Solid-state imaging device and electronic camera
JP2019012820A (en) Optical detector and imaging apparatus
JP2019012996A (en) Optical detector and imaging apparatus
JP2007189440A (en) Method of driving ccd type solid-state imaging device, and driving device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770638

Country of ref document: EP

Kind code of ref document: A1