WO2021186661A1 - Contactless power sensor device - Google Patents

Contactless power sensor device Download PDF

Info

Publication number
WO2021186661A1
WO2021186661A1 PCT/JP2020/012209 JP2020012209W WO2021186661A1 WO 2021186661 A1 WO2021186661 A1 WO 2021186661A1 JP 2020012209 W JP2020012209 W JP 2020012209W WO 2021186661 A1 WO2021186661 A1 WO 2021186661A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
pulse signal
pulse
circuit
signal
Prior art date
Application number
PCT/JP2020/012209
Other languages
French (fr)
Japanese (ja)
Inventor
雄三 玉木
慶洋 明星
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/012209 priority Critical patent/WO2021186661A1/en
Priority to JP2021573730A priority patent/JP7034401B2/en
Publication of WO2021186661A1 publication Critical patent/WO2021186661A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage

Definitions

  • This disclosure relates to a non-contact power sensor device.
  • the coupling capacitance generated between the voltage probe and the cable conductor is a minute capacitance estimated by regarding the cable coating that covers the cable conductor as a dielectric.
  • the impedance of the coupling capacitance becomes very high.
  • accuracy deterioration due to the minute coupling capacitance can be prevented and accurate measurement becomes possible.
  • the voltage measuring device described in Patent Document 1 measures the AC voltage applied to the measurement target via a detection electrode mounted on the measurement target in a non-contact state.
  • the current flowing through the coupling capacitance is modulated to a frequency higher than the frequency of the AC voltage by turning the switching element on and off.
  • the present disclosure solves the above problems, and an object of the present disclosure is to obtain a non-contact power sensor device capable of miniaturization.
  • the non-contact power sensor device observes a voltage probe for observing a voltage generated in a measurement target in a state of non-contact with the measurement target, and a current flowing in the measurement target in a state of non-contact with the measurement target. It includes a current probe and a sensor circuit that calculates the power to be measured using the voltage probe and each signal observed by the current probe, and the sensor circuit is used for observing the transient response of the voltage signal observed by the voltage probe.
  • the switch drive unit has a processing unit that controls the drive of the switch and the second switch, and the switch drive unit outputs a positive voltage signal with a positive amplitude and a negative voltage signal with a negative voltage according to the control signal output from the processing unit.
  • the generated positive voltage signal and the generated negative voltage pulse signal are used to drive the first switch and the second switch.
  • the switch drive unit generates a positive electrode pulse signal and a negative electrode pulse signal, and drives the first switch and the second switch using the positive electrode pulse signal and the negative electrode pulse signal. Since it is not necessary to separately provide a switch drive unit for AC current measurement and AC voltage measurement, and an increase in the mounting volume of the circuit can be suppressed by that amount, the non-contact power sensor device according to the present disclosure can be miniaturized. It is possible.
  • FIG. 3A is a block diagram showing the configuration of the insulation circuit of FIG. 1
  • FIG. 3B is a waveform diagram showing the waveforms of signals input and output in the insulation circuit of FIG.
  • FIG. 1 is a block diagram showing a configuration of the non-contact power sensor device 1 according to the first embodiment.
  • the non-contact power sensor device 1 observes the voltage applied to the cable conductor 6a and the current flowing through the cable conductor 6a, respectively, and observes the AC power.
  • the cable conductor 6a is a core wire in the cable 6, and the cable coating 6b is an insulating coating that covers the cable conductor 6a.
  • An AC power supply 7 is connected to the cable conductor 6a, and a voltage is applied to the cable conductor 6a by the AC power supply 7 to allow a current to flow.
  • the non-contact power sensor device 1 includes a voltage probe 2, a current probe 3, and a sensor circuit 5.
  • the voltage probe 2 and the sensor circuit 5 are connected by a probe cable 41.
  • the current probe 3 and the sensor circuit 5 are connected by a probe cable 42.
  • the voltage probe 2 and the current probe 3 are arranged on the cable conductor 6a to be observed.
  • the voltage probe 2 arranged on the cable conductor 6a and the cable conductor 6a are in a non-contact state due to the cable coating 6b.
  • the current probe 3 and the cable conductor 6a are in a non-contact state.
  • a contactless power sensor device 1 the AC voltage V in applied to the cable conductor 6a by the AC power source 7, to observe through coupling capacitor C 0 that occur between the cable conductors 6a and voltage probes 2.
  • the coupling capacitance C 0 generated between the voltage probe 2 having a length and width of 1 (cm) and the cable conductor 6a is a minute capacitance of about several (pF).
  • the sensor circuit 5 drives a first switch 51 used for observing the transient response of a voltage signal, a second switch 52 used for observing the transient response of a current signal, and a first switch 51 and a second switch 52. It is provided with one switch drive unit 56 to be operated. The output of the first switch 51 and the output of the second switch 52 are connected in parallel, and the output AC voltage is divided by the capacitor element 53. Capacitor element 53 is a capacitance C 1.
  • the AC voltage divided by the capacitor element 53 is input to the positive input terminal of the operational amplifier 54, and is output from the operational amplifier 54 as it is.
  • the operational amplifier 54 is an output operational amplifier in which the negative electrode input terminal is connected to the output terminal and the positive electrode input terminal is connected to the capacitor element 53, and functions as a unity gain buffer amplifier.
  • the AD converter 55 converts an AC voltage analog signal output from the operational amplifier 54 into a digital signal.
  • the output of the AD converter 55 is input to the processing unit 57, and the processing unit 57 calculates and processes the observed value of electric power from the observed values of current and voltage.
  • FIG. 1 is a circuit diagram showing an equivalent circuit of the switch drive unit 56 of FIG.
  • the switch drive unit 56 includes a bipolar pulse buffer 561, an insulation circuit 562, and a pulse separation circuit 563.
  • the bipolar pulse buffer 561 is a pulse buffer capable of outputting a bipolar pulse signal having a positive amplitude and a negative amplitude according to a signal output from the processing unit 57, and its output end is connected to an insulation circuit 562.
  • a pulse signal having a positive amplitude is described as a positive pulse signal
  • a pulse signal having a negative amplitude is described as a negative pulse signal.
  • the insulation circuit 562 insulates and transmits the bipolar pulse signal generated by the bipolar pulse buffer 561 to the pulse separation circuit 563. That is, the isolation circuit 562 outputs the pulse signal input from the bipolar pulse buffer 561 to the pulse separation circuit 563 in a state where the bipolar pulse buffer 561 and the pulse separation circuit 563 are insulated.
  • the pulse separation circuit 563 converts the bipolar pulse signal output from the insulation circuit 562 into a positive electrode pulse signal and a negative electrode pulse signal by a rectifying circuit including the diode element 101 and the diode element 102, and the resistance element 103 and the resistance element 104. To separate.
  • the system of the first switch 51 is composed of a diode element 101 connected in series and a resistance element 103 connected in parallel, and the diode element 101 to which the bipolar pulse signal is applied to the positive electrode conducts the bipolar pulse signal. Of these, the positive pulse signal is output to the first switch 51 to drive the first switch 51.
  • the system of the second switch 52 is composed of a diode element 102 and a resistance element 104, and the diode element 102 in which the bipolar pulse signal is applied to the positive electrode conducts, so that the negative electrode pulse signal among the bipolar pulse signals is the first. It is output to the second switch 52 and the second switch 52 is driven.
  • the first switch 51 and the second switch 52 are driven by the positive electrode pulse signal and the negative electrode pulse signal separated by the pulse separation circuit 563.
  • the first switch 51 conducts when a positive electrode pulse signal is applied, and the second switch 52 conducts when a negative electrode pulse signal is applied.
  • the switch drive unit 56 applies a relatively high gate terminal voltage with reference to the source terminal of the first switch 51 and the source terminal of the second switch 52 by the insulation circuit 562.
  • the pulse separation circuit 563 can generate a positive pulse signal and a negative pulse signal, which are two drive signals, by a rectifying function, and uses the positive pulse signal and the negative pulse signal to generate the first switch 51 and the second switch 51. The on and off of the switch 52 is controlled.
  • FIG. 3A is a block diagram showing the configuration of the insulation circuit 562.
  • FIG. 3B is a waveform diagram showing waveforms of signals input / output in the insulation circuit 562.
  • the insulation circuit 562 includes a transformer 210 that insulates and transmits the pulse signal output from the bipolar pulse buffer 561 to the pulse separation circuit 563, and the reset circuit 200 is parallel to the primary winding of the transformer 210. Is connected.
  • the reset circuit 200 is configured by connecting the third switch 201 and the resistance element 202 in series, and waveform-shapes the bipolar pulse signal output from the transformer 210.
  • the bipolar pulse signal W1 is a bipolar pulse signal output from the bipolar pulse buffer 561.
  • the reset signal W2 is a reset signal output from the processing unit 57 to drive the third switch 201.
  • the output signal W3 is an output signal generated between the secondary windings of the transformer 210.
  • the third switch 201 switches between inputting and shutting off the bipolar pulse signal W1 output from the bipolar pulse buffer 561 to the reset circuit 200.
  • a counter electromotive force is generated in the secondary winding of the transformer 210, as shown by the broken line in FIG. 3B.
  • a negative electrode backswing with a very large amplitude occurs in the output signal W3.
  • a counter electromotive force is generated in the secondary winding of the transformer 210, as shown by the broken line in FIG. 3B.
  • a positive electrode backswing with a very large amplitude occurs in the output signal W3.
  • the backswing generated in the output signal W3 causes unintended conduction to the first switch 51 and the second switch 52.
  • the processing unit 57 controls the third switch 201 to be conductive during the period when the back electromotive force is generated in the secondary winding of the transformer 210.
  • the processing unit 57 When the bipolar pulse signal has transitioned, the processing unit 57 outputs the reset signal W2 to the third switch 201.
  • the third switch 201 conducts in response to the reset signal W2.
  • the third switch 201 becomes conductive, the counter electromotive force generated in the primary winding of the transformer 210 is consumed by the resistance element 202.
  • the output signal W3 is waveform-formed so that the backswing of the amplitude is reduced, as shown by the solid line in FIG. 3B. Since the amplitude of the backswing in the output signal W3 is reduced, it is possible to prevent unintended conduction of the first switch 51 and the second switch 52.
  • the switch drive unit 56 generates a positive electrode pulse signal and a negative electrode pulse signal, and the generated positive electrode pulse signal and negative electrode pulse signal are used to obtain a second.
  • the first switch 51 and the second switch 52 are driven. Since it is not necessary to separately provide a switch drive unit for the measurement of the AC current and the measurement of the AC voltage, and the increase in the mounting volume of the circuit is suppressed by that amount, the non-contact power sensor device 1 can be miniaturized. ..
  • the non-contact power sensor device can be used, for example, for observing AC power supplied by a power distribution cable.
  • 1 non-contact power sensor device 2 voltage probe, 3 current probe, 5 sensor circuit, 6 cable, 6a cable conductor, 6b cable coating, 7 AC power supply, 41, 42 probe cable, 51 first switch, 52 second Switch, 53 capacitor element, 54 capacitor, 55 AD converter, 56 switch drive unit, 57 processing unit, 101, 102 diode element, 103, 104, 202 resistance element, 200 reset circuit, 201 third switch, resistance element 210 Transformer, 561 diode pulse buffer, 562 insulation circuit, 563 pulse separation circuit.

Abstract

A contactless power sensor device (1) equipped with a voltage probe (2), an electric current probe (3) and a sensor circuit (5), wherein: the sensor circuit (5) has a first switch (51) used in the observation of a transient response to a voltage signal observed by the voltage probe (2), a second switch (52) used in the observation of a transient response to a current signal observed by the current probe (3), a switch-driving unit (56) for driving the first switch (51) and the second switch (52), and a processing unit (57) for controlling the driving of the first switch (51) and the second switch (52) by the switch-driving unit (56); and the switch-driving unit (56) generates a positive pulse signal, the amplitude polarity of which is positive, and a negative pulse signal, the amplitude polarity of which is negative, according to the control signal outputted by the processing unit (57), and drives the first switch (51) and the second switch (52) by using the generated positive pulse signal and negative pulse signal.

Description

非接触電力センサ装置Non-contact power sensor device
 本開示は、非接触電力センサ装置に関する。 This disclosure relates to a non-contact power sensor device.
 測定対象の交流電力を観測するためには、測定対象の交流電流と交流電圧とを測定する必要がある。従来、プローブ電極を電線の芯線に接触させることなく、ケーブル導体に流れる交流電流と、ケーブル導体に印加された交流電圧とを観測する技術がある。交流電流に対しては、磁性体を用いた電流プローブによってセンシングする技術が知られている。また、交流電圧に対しては、測定対象の電線に近接させたプローブ電極を用いる電圧プローブが知られている。 In order to observe the AC power to be measured, it is necessary to measure the AC current and AC voltage to be measured. Conventionally, there is a technique for observing an alternating current flowing through a cable conductor and an alternating current voltage applied to the cable conductor without bringing the probe electrode into contact with the core wire of the electric wire. For alternating current, a technique of sensing with a current probe using a magnetic material is known. Further, for AC voltage, a voltage probe using a probe electrode close to an electric wire to be measured is known.
 電圧プローブとケーブル導体との間に生じる結合容量は、ケーブル導体を被覆するケーブル被覆を誘電体とみなして見積もられる微小な容量である。特に、観測する信号の周波数が低い場合、結合容量のインピーダンスが非常に高くなる。これに対して、結合容量を介して流れる電流を、スイッチのオンオフにより過渡応答の信号を観測することで、結合容量が微小であることに起因する精度劣化を防ぎ、精度のよい測定が可能になる。 The coupling capacitance generated between the voltage probe and the cable conductor is a minute capacitance estimated by regarding the cable coating that covers the cable conductor as a dielectric. In particular, when the frequency of the observed signal is low, the impedance of the coupling capacitance becomes very high. On the other hand, by observing the transient response signal of the current flowing through the coupling capacitance by turning the switch on and off, accuracy deterioration due to the minute coupling capacitance can be prevented and accurate measurement becomes possible. Become.
 例えば、特許文献1に記載された電圧測定装置は、測定対象に印加された交流電圧を、測定対象に非接触状態で装着される検出電極を介して測定する。この電圧測定装置では、結合容量を通じて流れる電流が、スイッチング素子のオンオフによって交流電圧の周波数よりも高い周波数に変調される。 For example, the voltage measuring device described in Patent Document 1 measures the AC voltage applied to the measurement target via a detection electrode mounted on the measurement target in a non-contact state. In this voltage measuring device, the current flowing through the coupling capacitance is modulated to a frequency higher than the frequency of the AC voltage by turning the switching element on and off.
特開2017-194420号公報JP-A-2017-194420
 特許文献1に記載された電圧測定装置を用いて、測定対象の交流電力を測定する場合、交流電圧の測定に用いるスイッチング素子の駆動回路に加えて、交流電流の測定に用いるスイッチング素子の駆動回路が必要である。一般に、駆動回路は、トランスを含む比較的大きな回路であることから、2つの駆動回路を実装すると、装置が大型化するという課題があった。 When measuring the AC power to be measured by using the voltage measuring device described in Patent Document 1, in addition to the driving circuit of the switching element used for measuring the AC voltage, the driving circuit of the switching element used for measuring the AC current. is required. In general, since the drive circuit is a relatively large circuit including a transformer, there is a problem that the device becomes large when two drive circuits are mounted.
 本開示は上記課題を解決するものであり、小型化が可能な非接触電力センサ装置を得ることを目的とする。 The present disclosure solves the above problems, and an object of the present disclosure is to obtain a non-contact power sensor device capable of miniaturization.
 本開示に係る非接触電力センサ装置は、測定対象に非接触な状態で当該測定対象に生じた電圧を観測する電圧プローブと、測定対象に非接触な状態で当該測定対象に流れる電流を観測する電流プローブと、電圧プローブおよび電流プローブによって観測された各信号を用いて測定対象の電力を算出するセンサ回路とを備え、センサ回路は、電圧プローブによって観測された電圧信号の過渡応答の観測に用いる第一のスイッチと、電流プローブによって観測された電流信号の過渡応答の観測に用いる第二のスイッチと、第一のスイッチと第二のスイッチを駆動させるスイッチ駆動部と、スイッチ駆動部による第一のスイッチおよび第二のスイッチの駆動を制御する処理部を有し、スイッチ駆動部は、処理部から出力された制御信号に応じて振幅が正極の正極パルス信号と振幅が負極の負極パルス信号を生成し、生成した正極パルス信号および負極パルス信号を用いて、第一のスイッチおよび第二のスイッチを駆動させる。 The non-contact power sensor device according to the present disclosure observes a voltage probe for observing a voltage generated in a measurement target in a state of non-contact with the measurement target, and a current flowing in the measurement target in a state of non-contact with the measurement target. It includes a current probe and a sensor circuit that calculates the power to be measured using the voltage probe and each signal observed by the current probe, and the sensor circuit is used for observing the transient response of the voltage signal observed by the voltage probe. The first switch, the second switch used for observing the transient response of the current signal observed by the current probe, the switch drive unit that drives the first switch and the second switch, and the first switch drive unit. The switch drive unit has a processing unit that controls the drive of the switch and the second switch, and the switch drive unit outputs a positive voltage signal with a positive amplitude and a negative voltage signal with a negative voltage according to the control signal output from the processing unit. The generated positive voltage signal and the generated negative voltage pulse signal are used to drive the first switch and the second switch.
 本開示によれば、スイッチ駆動部が、正極パルス信号および負極パルス信号を生成し、正極パルス信号および負極パルス信号を用いて、第一のスイッチおよび第二のスイッチを駆動させる。交流電流の測定と交流電圧の測定にそれぞれ別個にスイッチ駆動部を設ける必要がなく、その分の回路の実装容積の増大が抑えられるので、本開示に係る非接触電力センサ装置は、小型化が可能である。 According to the present disclosure, the switch drive unit generates a positive electrode pulse signal and a negative electrode pulse signal, and drives the first switch and the second switch using the positive electrode pulse signal and the negative electrode pulse signal. Since it is not necessary to separately provide a switch drive unit for AC current measurement and AC voltage measurement, and an increase in the mounting volume of the circuit can be suppressed by that amount, the non-contact power sensor device according to the present disclosure can be miniaturized. It is possible.
実施の形態1に係る非接触電力センサ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the non-contact power sensor device which concerns on Embodiment 1. FIG. 図1のスイッチ駆動部の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of the switch drive part of FIG. 図3Aは、図1の絶縁回路の構成を示すブロック図であり、図3Bは、図1の絶縁回路において入出力される信号の波形を示す波形図である。FIG. 3A is a block diagram showing the configuration of the insulation circuit of FIG. 1, and FIG. 3B is a waveform diagram showing the waveforms of signals input and output in the insulation circuit of FIG.
実施の形態1.
 図1は、実施の形態1に係る非接触電力センサ装置1の構成を示すブロック図である。非接触電力センサ装置1は、ケーブル導体6aに印加された電圧と、ケーブル導体6aに流れる電流をそれぞれ観測し、交流電力を観測する。ケーブル導体6aは、ケーブル6における芯線であり、ケーブル被膜6bは、ケーブル導体6aを被覆する絶縁性の被膜である。ケーブル導体6aには、交流電源7が接続されており、交流電源7によってケーブル導体6aに電圧が印加され電流が流れる。
Embodiment 1.
FIG. 1 is a block diagram showing a configuration of the non-contact power sensor device 1 according to the first embodiment. The non-contact power sensor device 1 observes the voltage applied to the cable conductor 6a and the current flowing through the cable conductor 6a, respectively, and observes the AC power. The cable conductor 6a is a core wire in the cable 6, and the cable coating 6b is an insulating coating that covers the cable conductor 6a. An AC power supply 7 is connected to the cable conductor 6a, and a voltage is applied to the cable conductor 6a by the AC power supply 7 to allow a current to flow.
 図1に示すように、非接触電力センサ装置1は、電圧プローブ2、電流プローブ3およびセンサ回路5を備える。電圧プローブ2とセンサ回路5との間は、プローブケーブル41によって接続される。電流プローブ3とセンサ回路5との間は、プローブケーブル42によって接続される。電圧プローブ2および電流プローブ3は、観測対象のケーブル導体6aに配置される。ケーブル導体6aに配置された電圧プローブ2とケーブル導体6aとの間は、ケーブル被膜6bによって非接触の状態である。同様に、電流プローブ3とケーブル導体6aとの間も非接触の状態である。 As shown in FIG. 1, the non-contact power sensor device 1 includes a voltage probe 2, a current probe 3, and a sensor circuit 5. The voltage probe 2 and the sensor circuit 5 are connected by a probe cable 41. The current probe 3 and the sensor circuit 5 are connected by a probe cable 42. The voltage probe 2 and the current probe 3 are arranged on the cable conductor 6a to be observed. The voltage probe 2 arranged on the cable conductor 6a and the cable conductor 6a are in a non-contact state due to the cable coating 6b. Similarly, the current probe 3 and the cable conductor 6a are in a non-contact state.
 非接触電力センサ装置1は、交流電源7によってケーブル導体6aに印加された交流電圧Vinを、ケーブル導体6aと電圧プローブ2との間に生じた結合容量Cを通じて観測する。例えば、長さおよび幅が1(cm)である電圧プローブ2とケーブル導体6aとの間に生じる結合容量Cは、数(pF)程度の微小な容量である。 A contactless power sensor device 1, the AC voltage V in applied to the cable conductor 6a by the AC power source 7, to observe through coupling capacitor C 0 that occur between the cable conductors 6a and voltage probes 2. For example, the coupling capacitance C 0 generated between the voltage probe 2 having a length and width of 1 (cm) and the cable conductor 6a is a minute capacitance of about several (pF).
 センサ回路5は、電圧信号の過渡応答の観測に用いる第一のスイッチ51と、電流信号の過渡応答の観測に用いる第二のスイッチ52と、第一のスイッチ51および第二のスイッチ52を駆動させる一つのスイッチ駆動部56とを備える。第一のスイッチ51の出力と第二のスイッチ52の出力は並列に接続され、出力された交流電圧は、キャパシタ素子53によって分圧される。キャパシタ素子53は、容量Cである。 The sensor circuit 5 drives a first switch 51 used for observing the transient response of a voltage signal, a second switch 52 used for observing the transient response of a current signal, and a first switch 51 and a second switch 52. It is provided with one switch drive unit 56 to be operated. The output of the first switch 51 and the output of the second switch 52 are connected in parallel, and the output AC voltage is divided by the capacitor element 53. Capacitor element 53 is a capacitance C 1.
 キャパシタ素子53によって分圧された交流電圧は、オペアンプ54の正極入力端子に入力され、そのままの波形でオペアンプ54から出力される。オペアンプ54は、負極入力端子が出力端子に接続され、正極入力端子がキャパシタ素子53に接続された出力用のオペアンプであり、ユニティ利得バッファアンプとして機能する。AD変換器55は、オペアンプ54から出力された交流電圧のアナログ信号をデジタル信号へ変換する。AD変換器55の出力は、処理部57に入力され、処理部57は、電流と電圧の観測値から電力の観測値を演算処理する。 The AC voltage divided by the capacitor element 53 is input to the positive input terminal of the operational amplifier 54, and is output from the operational amplifier 54 as it is. The operational amplifier 54 is an output operational amplifier in which the negative electrode input terminal is connected to the output terminal and the positive electrode input terminal is connected to the capacitor element 53, and functions as a unity gain buffer amplifier. The AD converter 55 converts an AC voltage analog signal output from the operational amplifier 54 into a digital signal. The output of the AD converter 55 is input to the processing unit 57, and the processing unit 57 calculates and processes the observed value of electric power from the observed values of current and voltage.
 図1において、スイッチ駆動部56は、第一のスイッチ51と第二のスイッチ52との二系統の駆動を制御する。図2は、図1のスイッチ駆動部56の等価回路を示す回路図である。スイッチ駆動部56は、図2に示すように、両極パルスバッファ561、絶縁回路562およびパルス分離回路563を備える。両極パルスバッファ561は、処理部57から出力された信号に応じて、振幅が正極と振幅が負極の両極パルス信号を出力することができるパルスバッファであり、その出力端は、絶縁回路562に接続されている。以下の説明では、振幅が正極のパルス信号が正極パルス信号と記載され、振幅が負極のパルス信号が負極パルス信号と記載される。 In FIG. 1, the switch drive unit 56 controls the drive of two systems, the first switch 51 and the second switch 52. FIG. 2 is a circuit diagram showing an equivalent circuit of the switch drive unit 56 of FIG. As shown in FIG. 2, the switch drive unit 56 includes a bipolar pulse buffer 561, an insulation circuit 562, and a pulse separation circuit 563. The bipolar pulse buffer 561 is a pulse buffer capable of outputting a bipolar pulse signal having a positive amplitude and a negative amplitude according to a signal output from the processing unit 57, and its output end is connected to an insulation circuit 562. Has been done. In the following description, a pulse signal having a positive amplitude is described as a positive pulse signal, and a pulse signal having a negative amplitude is described as a negative pulse signal.
 絶縁回路562は、両極パルスバッファ561によって生成された両極パルス信号を、パルス分離回路563に絶縁伝送する。すなわち、絶縁回路562は、両極パルスバッファ561とパルス分離回路563とが絶縁された状態で、両極パルスバッファ561から入力したパルス信号をパルス分離回路563に出力する。 The insulation circuit 562 insulates and transmits the bipolar pulse signal generated by the bipolar pulse buffer 561 to the pulse separation circuit 563. That is, the isolation circuit 562 outputs the pulse signal input from the bipolar pulse buffer 561 to the pulse separation circuit 563 in a state where the bipolar pulse buffer 561 and the pulse separation circuit 563 are insulated.
 パルス分離回路563は、ダイオード素子101およびダイオード素子102と、抵抗素子103および抵抗素子104とを備えた整流回路によって、絶縁回路562から出力された両極パルス信号を、正極パルス信号と負極パルス信号に分離する。 The pulse separation circuit 563 converts the bipolar pulse signal output from the insulation circuit 562 into a positive electrode pulse signal and a negative electrode pulse signal by a rectifying circuit including the diode element 101 and the diode element 102, and the resistance element 103 and the resistance element 104. To separate.
 第一のスイッチ51の系統は、直列接続されたダイオード素子101と並列接続された抵抗素子103とによって構成され、両極パルス信号が正極に印加されたダイオード素子101が導通することで、両極パルス信号のうち、正極パルス信号が第一のスイッチ51に出力されて第一のスイッチ51が駆動する。第二のスイッチ52の系統は、ダイオード素子102と抵抗素子104とによって構成され、両極パルス信号が正極に印加されたダイオード素子102が導通することで、両極パルス信号のうち、負極パルス信号が第二のスイッチ52に出力されて第二のスイッチ52が駆動する。 The system of the first switch 51 is composed of a diode element 101 connected in series and a resistance element 103 connected in parallel, and the diode element 101 to which the bipolar pulse signal is applied to the positive electrode conducts the bipolar pulse signal. Of these, the positive pulse signal is output to the first switch 51 to drive the first switch 51. The system of the second switch 52 is composed of a diode element 102 and a resistance element 104, and the diode element 102 in which the bipolar pulse signal is applied to the positive electrode conducts, so that the negative electrode pulse signal among the bipolar pulse signals is the first. It is output to the second switch 52 and the second switch 52 is driven.
 第一のスイッチ51および第二のスイッチ52は、パルス分離回路563によって分離された正極パルス信号および負極パルス信号によって駆動する。第一のスイッチ51は、正極パルス信号が印加されると導通し、第二のスイッチ52は、負極パルス信号が印加されると導通する。 The first switch 51 and the second switch 52 are driven by the positive electrode pulse signal and the negative electrode pulse signal separated by the pulse separation circuit 563. The first switch 51 conducts when a positive electrode pulse signal is applied, and the second switch 52 conducts when a negative electrode pulse signal is applied.
 スイッチ駆動部56は、絶縁回路562によって、第一のスイッチ51のソース端子と第二のスイッチ52のソース端子を基準として相対的に高いゲート端子電圧を印加する。パルス分離回路563は、整流機能によって、2系統の駆動信号である正極パルス信号と負極パルス信号を生成可能であり、正極パルス信号および負極パルス信号を用いて、第一のスイッチ51および第二のスイッチ52のオンとオフが制御される。 The switch drive unit 56 applies a relatively high gate terminal voltage with reference to the source terminal of the first switch 51 and the source terminal of the second switch 52 by the insulation circuit 562. The pulse separation circuit 563 can generate a positive pulse signal and a negative pulse signal, which are two drive signals, by a rectifying function, and uses the positive pulse signal and the negative pulse signal to generate the first switch 51 and the second switch 51. The on and off of the switch 52 is controlled.
 図3Aは、絶縁回路562の構成を示すブロック図である。図3Bは、絶縁回路562において入出力される信号の波形を示す波形図である。絶縁回路562は、図3Aに示すように、両極パルスバッファ561から出力されたパルス信号をパルス分離回路563に絶縁伝送するトランス210を備え、トランス210の一次巻線に対して並列にリセット回路200が接続されている。 FIG. 3A is a block diagram showing the configuration of the insulation circuit 562. FIG. 3B is a waveform diagram showing waveforms of signals input / output in the insulation circuit 562. As shown in FIG. 3A, the insulation circuit 562 includes a transformer 210 that insulates and transmits the pulse signal output from the bipolar pulse buffer 561 to the pulse separation circuit 563, and the reset circuit 200 is parallel to the primary winding of the transformer 210. Is connected.
 リセット回路200は、第三のスイッチ201と抵抗素子202とが直列に接続されて構成され、トランス210から出力される両極パルス信号を波形成形する。図3Aおよび図3Bにおいて、両極パルス信号W1は、両極パルスバッファ561から出力された両極パルス信号である。リセット信号W2は、第三のスイッチ201を駆動させるために処理部57から出力されたリセット信号である。出力信号W3は、トランス210の二次巻き線間に生じる出力信号である。第三のスイッチ201は、両極パルスバッファ561から出力された両極パルス信号W1のリセット回路200への入力と遮断を切り替える。 The reset circuit 200 is configured by connecting the third switch 201 and the resistance element 202 in series, and waveform-shapes the bipolar pulse signal output from the transformer 210. In FIGS. 3A and 3B, the bipolar pulse signal W1 is a bipolar pulse signal output from the bipolar pulse buffer 561. The reset signal W2 is a reset signal output from the processing unit 57 to drive the third switch 201. The output signal W3 is an output signal generated between the secondary windings of the transformer 210. The third switch 201 switches between inputting and shutting off the bipolar pulse signal W1 output from the bipolar pulse buffer 561 to the reset circuit 200.
 正極パルスがトランス210に入力され、正極パルスが立ち下がってオフレベルに遷移した直後の時点で、トランス210の二次巻き線には逆起電力が生じて、図3Bに破線で示すように、非常に大きな振幅の負極のバックスイングが出力信号W3に生じる。また、負極パルスがトランス210に入力され、負極パルスが立ち上がってオフレベルに遷移した直後の時点で、トランス210の二次巻き線に逆起電力が生じて、図3Bに破線で示すように、出力信号W3に非常に大きな振幅の正極のバックスイングが生じる。 Immediately after the positive electrode pulse is input to the transformer 210 and the positive electrode pulse falls and transitions to the off level, a counter electromotive force is generated in the secondary winding of the transformer 210, as shown by the broken line in FIG. 3B. A negative electrode backswing with a very large amplitude occurs in the output signal W3. Further, immediately after the negative electrode pulse is input to the transformer 210 and the negative electrode pulse rises and transitions to the off level, a counter electromotive force is generated in the secondary winding of the transformer 210, as shown by the broken line in FIG. 3B. A positive electrode backswing with a very large amplitude occurs in the output signal W3.
 出力信号W3に生じたバックスイングは、第一のスイッチ51と第二のスイッチ52に対して意図しない導通を生じる要因となる。このバックスイングを防止するために、処理部57は、トランス210の二次巻き線に逆起電力が発生する期間、第三のスイッチ201が導通するように制御する。なお、トランス210の二次巻き線に逆起電力が発生する期間の始まりは、例えば、両極パルス信号がオフレベルに遷移した時点である。 The backswing generated in the output signal W3 causes unintended conduction to the first switch 51 and the second switch 52. In order to prevent this backswing, the processing unit 57 controls the third switch 201 to be conductive during the period when the back electromotive force is generated in the secondary winding of the transformer 210. The period in which the counter electromotive force is generated in the secondary winding of the transformer 210 starts, for example, when the bipolar pulse signal transitions to the off level.
 両極パルス信号が遷移した時点で、処理部57は、リセット信号W2を第三のスイッチ201に出力する。第三のスイッチ201は、リセット信号W2に応じて導通する。第三のスイッチ201が導通すると、トランス210の一次巻線に生じた逆起電力が抵抗素子202によって消費される。これにより、出力信号W3は、図3Bに実線で示すように、振幅のバックスイングが低減されるように波形成形される。出力信号W3におけるバックスイングの振幅が低減されるので、第一のスイッチ51および第二のスイッチ52の意図しない導通を防止することが可能である。 When the bipolar pulse signal has transitioned, the processing unit 57 outputs the reset signal W2 to the third switch 201. The third switch 201 conducts in response to the reset signal W2. When the third switch 201 becomes conductive, the counter electromotive force generated in the primary winding of the transformer 210 is consumed by the resistance element 202. As a result, the output signal W3 is waveform-formed so that the backswing of the amplitude is reduced, as shown by the solid line in FIG. 3B. Since the amplitude of the backswing in the output signal W3 is reduced, it is possible to prevent unintended conduction of the first switch 51 and the second switch 52.
 以上のように、実施の形態1に係る非接触電力センサ装置1において、スイッチ駆動部56が、正極パルス信号および負極パルス信号を生成し、生成した正極パルス信号および負極パルス信号を用いて、第一のスイッチ51および第二のスイッチ52を駆動させる。交流電流の測定と交流電圧の測定にそれぞれ別個にスイッチ駆動部を設ける必要がなく、その分の回路の実装容積の増大が抑えられるので、非接触電力センサ装置1は、小型化が可能である。 As described above, in the non-contact power sensor device 1 according to the first embodiment, the switch drive unit 56 generates a positive electrode pulse signal and a negative electrode pulse signal, and the generated positive electrode pulse signal and negative electrode pulse signal are used to obtain a second. The first switch 51 and the second switch 52 are driven. Since it is not necessary to separately provide a switch drive unit for the measurement of the AC current and the measurement of the AC voltage, and the increase in the mounting volume of the circuit is suppressed by that amount, the non-contact power sensor device 1 can be miniaturized. ..
 なお、各実施の形態の組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。 It should be noted that the combination of each embodiment, the modification of each arbitrary component of the embodiment, or the omission of any component in each of the embodiments is possible.
 本開示に係る非接触電力センサ装置は、例えば、配電ケーブルによって供給される交流電力の観測に利用可能である。 The non-contact power sensor device according to the present disclosure can be used, for example, for observing AC power supplied by a power distribution cable.
 1 非接触電力センサ装置、2 電圧プローブ、3 電流プローブ、5 センサ回路、6 ケーブル、6a ケーブル導体、6b ケーブル被膜、7 交流電源、41,42 プローブケーブル、51 第一のスイッチ、52 第二のスイッチ、53 キャパシタ素子、54 オペアンプ、55 AD変換器、56 スイッチ駆動部、57 処理部、101,102 ダイオード素子、103,104,202 抵抗素子、200 リセット回路、201 第三のスイッチ、抵抗素子210 トランス、561 両極パルスバッファ、562 絶縁回路、563 パルス分離回路。 1 non-contact power sensor device, 2 voltage probe, 3 current probe, 5 sensor circuit, 6 cable, 6a cable conductor, 6b cable coating, 7 AC power supply, 41, 42 probe cable, 51 first switch, 52 second Switch, 53 capacitor element, 54 capacitor, 55 AD converter, 56 switch drive unit, 57 processing unit, 101, 102 diode element, 103, 104, 202 resistance element, 200 reset circuit, 201 third switch, resistance element 210 Transformer, 561 diode pulse buffer, 562 insulation circuit, 563 pulse separation circuit.

Claims (3)

  1.  測定対象に非接触な状態で当該測定対象に生じた電圧を観測する電圧プローブと、
     前記測定対象に非接触な状態で当該測定対象に流れる電流を観測する電流プローブと、
     前記電圧プローブおよび前記電流プローブによって観測された各信号を用いて前記測定対象の電力を算出するセンサ回路と、
     を備え、
     前記センサ回路は、
     前記電圧プローブによって観測された電圧信号の過渡応答の観測に用いる第一のスイッチと、
     前記電流プローブによって観測された電流信号の過渡応答の観測に用いる第二のスイッチと、
     前記第一のスイッチと前記第二のスイッチを駆動させるスイッチ駆動部と、
     前記スイッチ駆動部による前記第一のスイッチおよび前記第二のスイッチの駆動を制御する処理部と、
     を有し、
     前記スイッチ駆動部は、
     前記処理部から出力された制御信号に応じて、振幅が正極の正極パルス信号と、振幅が負極の負極パルス信号を生成し、生成した前記正極パルス信号および前記負極パルス信号を用いて、前記第一のスイッチおよび前記第二のスイッチを駆動させること
     を特徴とする非接触電力センサ装置。
    A voltage probe that observes the voltage generated in the measurement target in a non-contact state with the measurement target,
    A current probe that observes the current flowing through the measurement target in a state of non-contact with the measurement target, and
    A sensor circuit that calculates the power of the measurement target using each signal observed by the voltage probe and the current probe, and
    With
    The sensor circuit
    The first switch used for observing the transient response of the voltage signal observed by the voltage probe,
    A second switch used for observing the transient response of the current signal observed by the current probe,
    The switch drive unit that drives the first switch and the second switch,
    A processing unit that controls the drive of the first switch and the second switch by the switch drive unit,
    Have,
    The switch drive unit
    A positive pulse signal having a positive amplitude and a negative pulse signal having a negative amplitude are generated according to a control signal output from the processing unit, and the generated positive pulse signal and negative pulse signal are used to generate the first pulse signal. A non-contact power sensor device comprising driving one switch and the second switch.
  2.  前記スイッチ駆動部は、
     振幅が正極と負極の両極パルス信号を出力可能なパルスバッファと、
     前記パルスバッファから出力された前記両極パルス信号を、前記正極パルス信号と前記負極パルス信号とに分離するパルス分離回路と、
     前記パルスバッファと前記パルス分離回路とが絶縁された状態で、前記パルスバッファから入力したパルス信号を前記パルス分離回路に出力する絶縁回路と、
     を有し、
     前記パルス分離回路は、
     前記正極パルス信号を前記第一のスイッチへ出力し、前記負極パルス信号を前記第二のスイッチへ出力すること
     を特徴とする請求項1記載の非接触電力センサ装置。
    The switch drive unit
    A pulse buffer capable of outputting bipolar pulse signals with amplitudes of positive and negative electrodes,
    A pulse separation circuit that separates the bipolar pulse signal output from the pulse buffer into the positive electrode pulse signal and the negative electrode pulse signal.
    An insulating circuit that outputs a pulse signal input from the pulse buffer to the pulse separation circuit in a state where the pulse buffer and the pulse separation circuit are insulated.
    Have,
    The pulse separation circuit
    The non-contact power sensor device according to claim 1, wherein the positive electrode pulse signal is output to the first switch, and the negative electrode pulse signal is output to the second switch.
  3.  前記絶縁回路は、
     前記パルスバッファと前記パルス分離回路とが絶縁された状態で、前記両極パルス信号を前記パルス分離回路に出力するトランスと、
     前記トランスから出力される前記両極パルス信号を波形成形するリセット回路と、
     を有し、
     前記リセット回路は、
     前記パルスバッファから出力された前記両極パルス信号の前記リセット回路への入力と遮断を切り替える第三のスイッチと、
     前記トランスに発生した逆起電力を消費する抵抗素子と、
     を有し、
     前記処理部は、
     前記パルスバッファから出力された前記両極パルス信号がオフレベルに遷移した時点で前記第三のスイッチを駆動させることにより、前記両極パルス信号を前記リセット回路へ入力すること
     を特徴とする請求項2記載の非接触電力センサ装置。
    The insulation circuit
    A transformer that outputs the bipolar pulse signal to the pulse separation circuit in a state where the pulse buffer and the pulse separation circuit are insulated.
    A reset circuit that waveform-shapes the bipolar pulse signal output from the transformer, and
    Have,
    The reset circuit
    A third switch that switches between inputting and blocking the bipolar pulse signal output from the pulse buffer to the reset circuit, and
    A resistance element that consumes the counter electromotive force generated in the transformer, and
    Have,
    The processing unit
    The second aspect of claim 2, wherein the bipolar pulse signal is input to the reset circuit by driving the third switch when the bipolar pulse signal output from the pulse buffer transitions to the off level. Non-contact power sensor device.
PCT/JP2020/012209 2020-03-19 2020-03-19 Contactless power sensor device WO2021186661A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/012209 WO2021186661A1 (en) 2020-03-19 2020-03-19 Contactless power sensor device
JP2021573730A JP7034401B2 (en) 2020-03-19 2020-03-19 Non-contact power sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/012209 WO2021186661A1 (en) 2020-03-19 2020-03-19 Contactless power sensor device

Publications (1)

Publication Number Publication Date
WO2021186661A1 true WO2021186661A1 (en) 2021-09-23

Family

ID=77771954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012209 WO2021186661A1 (en) 2020-03-19 2020-03-19 Contactless power sensor device

Country Status (2)

Country Link
JP (1) JP7034401B2 (en)
WO (1) WO2021186661A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187774U (en) * 1982-06-10 1983-12-13 横河電機株式会社 power measurement device
JPS63298169A (en) * 1987-05-29 1988-12-05 Yokogawa Electric Corp Power factor transducer
JP2000338141A (en) * 1999-03-25 2000-12-08 Tokyo Electric Power Co Inc:The Apparatus and method for measuring voltage and apparatus and method for measuring electric energy
JP2002311066A (en) * 2001-04-16 2002-10-23 Yokogawa Electric Corp Electric power measuring device
JP2007163415A (en) * 2005-12-16 2007-06-28 Hioki Ee Corp Variable capacitance circuit, voltage measuring apparatus, and electric power measuring apparatus
US20140312895A1 (en) * 2011-02-09 2014-10-23 International Business Machines Corporation Non-contact current and voltage sensor
JP2015510102A (en) * 2012-02-10 2015-04-02 シャープ株式会社 System and method for calculating power using a non-contact voltage waveform sensor
JP2016109474A (en) * 2014-12-03 2016-06-20 富士電機株式会社 Noncontact voltage sensor and electric power measurement device
US20170102417A1 (en) * 2015-10-08 2017-04-13 Everspring Industry Co.,Ltd. Device and method for measuring the power consumption, contactless device and method for measuring power supply status

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187774U (en) * 1982-06-10 1983-12-13 横河電機株式会社 power measurement device
JPS63298169A (en) * 1987-05-29 1988-12-05 Yokogawa Electric Corp Power factor transducer
JP2000338141A (en) * 1999-03-25 2000-12-08 Tokyo Electric Power Co Inc:The Apparatus and method for measuring voltage and apparatus and method for measuring electric energy
JP2002311066A (en) * 2001-04-16 2002-10-23 Yokogawa Electric Corp Electric power measuring device
JP2007163415A (en) * 2005-12-16 2007-06-28 Hioki Ee Corp Variable capacitance circuit, voltage measuring apparatus, and electric power measuring apparatus
US20140312895A1 (en) * 2011-02-09 2014-10-23 International Business Machines Corporation Non-contact current and voltage sensor
JP2015510102A (en) * 2012-02-10 2015-04-02 シャープ株式会社 System and method for calculating power using a non-contact voltage waveform sensor
JP2016109474A (en) * 2014-12-03 2016-06-20 富士電機株式会社 Noncontact voltage sensor and electric power measurement device
US20170102417A1 (en) * 2015-10-08 2017-04-13 Everspring Industry Co.,Ltd. Device and method for measuring the power consumption, contactless device and method for measuring power supply status

Also Published As

Publication number Publication date
JP7034401B2 (en) 2022-03-11
JPWO2021186661A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
US9201100B2 (en) Voltage detecting apparatus and line voltage detecting apparatus
US8035528B2 (en) Fast detection of contact status with AC wetting voltage using ratiometric approach
US5233305A (en) Partial discharge detecting device for resin-molded transformer
KR101750644B1 (en) Measuring apparatus and measuring method
US9694686B2 (en) Multifunctional monitoring of electrical systems
JP2018132346A (en) Voltage detection device
US7358717B2 (en) Input by-pass circuit for a current probe
JP2010025918A (en) Voltage detection device and line voltage detection device
JP4925595B2 (en) AC impedance measuring apparatus and method
WO2021186661A1 (en) Contactless power sensor device
US6963196B2 (en) Output termination auto detection circuit for an input device
KR101067180B1 (en) Analog input device
JP2015137989A (en) Signal switching circuit and impedance measurement device
JP3892345B2 (en) Microcurrent measuring device
JP3255817B2 (en) Ion concentration measurement device
RU2211456C1 (en) Gear testing insulation of power cable and solid dielectric
EP4303598A3 (en) A test device and a method for verifying a protective relay operation at an electrical substation and a rogowski coil for the electrical substation
JP2836623B2 (en) Insulation diagnostic equipment for substation equipment
RU2716015C2 (en) Smooth start system of electric motor
SU1499245A1 (en) Current meter without opening electric circuit
RU1795380C (en) Device for measuring network insulation resistance equipment with induction motor
JPH04357474A (en) Grounding circuit checker
CN114910684A (en) Microphone polarization voltage measuring device
JPS5852543Y2 (en) Poor contact detection device
JPH0432778A (en) Current detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573730

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925948

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20925948

Country of ref document: EP

Kind code of ref document: A1