WO2021186577A1 - Laser microdissection device, laser microdissection method, and quantitative analysis system - Google Patents

Laser microdissection device, laser microdissection method, and quantitative analysis system Download PDF

Info

Publication number
WO2021186577A1
WO2021186577A1 PCT/JP2020/011793 JP2020011793W WO2021186577A1 WO 2021186577 A1 WO2021186577 A1 WO 2021186577A1 JP 2020011793 W JP2020011793 W JP 2020011793W WO 2021186577 A1 WO2021186577 A1 WO 2021186577A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
sample piece
unit
data
laser microdissection
Prior art date
Application number
PCT/JP2020/011793
Other languages
French (fr)
Japanese (ja)
Inventor
暎淳 洪
誠 澤田
健治 小野
弘美 鈴木
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Priority to PCT/JP2020/011793 priority Critical patent/WO2021186577A1/en
Priority to JP2022508676A priority patent/JPWO2021186577A1/ja
Publication of WO2021186577A1 publication Critical patent/WO2021186577A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to a laser microdissection (LMD) apparatus, a laser microdissection method, and a quantitative analysis system.
  • LMD laser microdissection
  • Mass spectrometric imaging is used to investigate the distribution of target compounds contained in samples such as biological tissue sections.
  • a plurality of measurement regions are set in a sample, and mass spectrometry is performed for each measurement region.
  • MALDI Matrix Assisted Laser Desorption / Ionization
  • Patent Document 1 Matrix Assisted Laser Desorption / Ionization
  • MALDI matrix-assisted laser desorption / ionization
  • the sample contains a large number of compounds such as biological tissue sections
  • the target compound is not isolated by the MALDI method, and contaminating components and matrix substances other than the target compound are also ionized at the same time as the target compound, so that the target compound is isolated.
  • the ionization efficiency may be lower than that in the case of the above, and the detection sensitivity may be deteriorated.
  • the abundance of contaminants and matrix substances is not uniform between the measurement regions, the quantitativeness of the target compound may be lacking.
  • thermoplastic resin sheet is irradiated with laser light from the support side in a state where the support made of a material (for example, acrylic resin or polycarbonate resin) is in contact with the support.
  • a material having a low melting point for example, 50 to 70 ° C.
  • the output of the laser beam and the irradiation time are adjusted so that the thermoplastic resin sheet does not melt and the sample is not denatured. ..
  • thermoplastic resin sheet melts in the measurement region irradiated with the laser beam, and then the molten thermoplastic resin sheet solidifies by stopping the irradiation of the laser beam, so that the sample is formed in the measurement region. Adhere to the thermoplastic resin sheet.
  • sample piece The portion obtained by peeling from the sample in this way is hereinafter referred to as a "sample piece".
  • sample pieces are collected from a large number of measurement areas.
  • a liquid sample for each measurement region can be obtained.
  • Data for each measurement region for imaging can be obtained by quantitatively analyzing the target component using the liquid chromatograph mass spectrometry for each of the liquid samples in each measurement region.
  • the problem to be solved by the present invention is a laser microdissection apparatus capable of reducing an error in data obtained by quantitative analysis caused by a difference in the amount of sample pieces obtained for each measurement region by the laser microdissection method. Is to provide.
  • the laser microdissection apparatus which has been made to solve the above problems, performs quantitative analysis for each sample piece obtained by the laser microdissection method from a plurality of measurement regions in the sample to be measured. It has a data correction unit that corrects the data obtained by doing so.
  • the data correction unit includes an area acquisition unit that obtains an area value of the sample piece for each sample piece, and a correction calculation unit that performs a calculation that corrects data for each sample piece based on the area value of the sample piece. ..
  • the calculation for correcting the data for each sample piece by the area value of the sample piece includes a calculation in which the data is divided by the area value, a calculation in which the data is further multiplied by a predetermined reference value after the calculation, or a predetermined value in the area value.
  • the calculation includes a calculation in which the correction parameter is obtained by multiplying and dividing the reference value of, and then the data is divided by the correction parameter.
  • the predetermined reference value the average value, the median value, or the like of the area values obtained from each of the plurality of sample pieces can be used.
  • the laser microdissection device since there is generally a correlation close to a proportional relationship between the amount of the sample piece and the area value, the data for each sample piece is obtained from the area value of the sample piece. By performing the correction calculation, it is possible to reduce the data error caused by the difference in the amount of each sample piece.
  • FIG. 6 is a schematic configuration diagram of an overall configuration of a quantitative analysis system including a laser microdissection device according to an embodiment of the present invention.
  • the schematic block diagram of the laser microdissection device which is the sampling part which the quantitative analysis system of this embodiment has.
  • the schematic block diagram of the microscope image acquisition part which the quantitative analysis system of this embodiment has.
  • the schematic block diagram of the liquid chromatograph part which the quantitative analysis system of this embodiment has.
  • the sampling section includes a slide glass with a sample attached to one surface and a support having a thermoplastic resin sheet attached to one surface. The figure which shows the state which held in.
  • the quantitative analysis system of the present embodiment is for explaining the operation of component separation in the LC section (upper figure), the operation of storing the eluate in the LC section (middle figure), and the operation of analysis in the MS section (lower figure). figure.
  • a micrograph of four sample pieces collected by the sampling unit in the quantitative analysis system of the present embodiment observed with a phase-contrast microscope. The figure which shows an example of the image which shows the data after correction at each position in a sample.
  • FIG. 1 shows the overall configuration of the quantitative analysis system 1 including the laser microdissection device 2 of the present embodiment.
  • the quantitative analysis system 1 includes a laser microdissection device 2, a liquid chromatograph mass spectrometer 30, a control unit 41, a data processing unit 42, an input unit 43, and a display unit 44.
  • the laser microdissection device 2 has a sampling unit 10 and a data correction unit 20. As will be described later, some of the components of the data correction unit 20 are incorporated in the data processing unit 42.
  • the sampling unit 10 includes an XY stage 11, a laser light source 12, and a thermoplastic film moving device 13.
  • the XY stage 11 is a table that supports the slide glass 92 on which the sample 91 is placed, and moves the supported slide glass 92 back and forth and left and right.
  • the laser light source 12 is provided so as to face the base of the XY stage 11, and emits a laser beam toward the XY stage 11.
  • the thermoplastic film moving device 13 is a slide in which a thermoplastic resin sheet (thermosoluble sheet) 94 supported by a support 93 made of a material that transmits a laser beam emitted by a laser light source 12 is supported by an XY stage 11.
  • thermoplastic film moving device 13 includes an adsorber 131 that sucks gas and adsorbs it on the upper surface of the support 93 (the surface opposite to the surface on which the thermoplastic resin sheet 94 is supported). It has an arm 132 that moves the adsorber 131 back and forth, left, right, up and down.
  • the data correction unit 20 includes a microscope image acquisition unit 21, an area acquisition unit 22, an area data storage unit 23, and a correction calculation unit 24.
  • the microscope image acquisition unit 21 includes a phase-contrast microscope 211 and a camera (CCD camera) 212 that captures an image observed by the phase-contrast microscope 211.
  • the phase-contrast microscope 211 used in this embodiment is a normal phase-contrast microscope having a light source 2111, a phase-contrast observation capacitor 2112, a sample stage 2113, and a phase-contrast observation objective lens 2114.
  • the electronic data of the microscope image taken by the camera 212 is transmitted to the area acquisition unit 22.
  • the area acquisition unit 22, the area data storage unit 23, and the correction calculation unit 24 are incorporated in the data processing unit 42, and will be described later together with other components of the data processing unit 42.
  • the liquid chromatograph mass spectrometer 30 has a pretreatment unit 31, an LC (liquid chromatograph) unit 32, a sample switching unit 33, and an MS (mass spectrometry) unit 34.
  • the pretreatment unit 31 prepares a liquid sample from each of a plurality of sample pieces collected by the sampling unit 10.
  • the LC unit 32 has n LC units 32a, 32b, 32c ... 32n having the same configuration (n is a natural number of 2 or more).
  • each LC unit 32k (k is any of a to n) is a mobile phase container 320 for storing the mobile phase, and a liquid feeding liquid that sucks and sends the mobile phase in the mobile phase container 320.
  • Pump 321, injector 322 that injects a liquid sample into the fed mobile phase
  • column 323 that separates various components contained in the liquid sample according to its holding time, and eluent that elutes from the outlet of column 323.
  • a sample storage unit 324 for storing is provided.
  • the injector 322 is held by a liquid sample container 3220 for accommodating a liquid sample, a needle 3221 and a sample holding unit 3222 for sucking and holding a predetermined amount of the liquid sample in the liquid sample container 3220, and a sample holding unit 3222. It includes a sample injection unit 3223 that injects a liquid sample into the mobile phase at a predetermined timing.
  • the sample storage unit 324 includes a plurality of storage containers 3241 and 3242, an inlet side flow path switching unit 3243 for selectively supplying the eluate from the outlet of the column 323 to one of the plurality of storage containers 3241 and 3242, and a storage container. Includes an outlet-side flow path switching unit 3244 that selectively supplies the eluate stored in 3241 and 3242 to the subsequent stage.
  • the eluate supplied from the storage containers 3241 and 3242 of the sample storage unit 324 will be referred to as an "eluent sample”.
  • the sample storage unit 324 is appropriately provided with a cleaning mechanism for cleaning the storage containers 3241 and 3242 and the flow path. In No. 4, the description of such a cleaning mechanism is omitted.
  • the sample switching unit 33 selects one of the eluate samples supplied in parallel from the sample storage unit 324 of each of the n LC units 32a to n and introduces the eluate sample into the MS unit 34. It switches the flow path.
  • the MS unit 34 is equipped with an ion source using an ionization method based on the Electrospray Ionization (ESI) method in the present embodiment, and is equipped with a Quadrupole-Time of Flight (Q-TOF) type mass.
  • the Q-TOF mass spectrometer ionizes the components of the eluent sample with an ion source and dissociates the ions by collision-induced dissociation (CID), resulting in a predetermined mass-to-charge ratio range for the product ions.
  • CID collision-induced dissociation
  • Mass spectrometry is performed over the period.
  • the Q-TOF mass spectrometer can acquire mass spectrum data for ions derived from sample components as well as product ion spectrum (MS / MS spectrum) data. Since the Q-TOF mass spectrometer is a known device, detailed description and illustration of the configuration will be omitted.
  • LC units 32a to 32n including all the components from the mobile phase container 320 to the sample storage unit 324 are arranged side by side, but these are in different samples. Any configuration may be used as long as the components can be separated in parallel. Therefore, although a plurality of columns 323 need to be arranged side by side, it is possible to have a configuration in which other components are shared. For example, the mobile phase container 320 can be shared. Further, the injector 322 shares each component except the sample injection unit 3223, and the flow path is switched so that the sample held in the common sample holding unit 3222 is selectively sent to one of the plurality of sample injection units 3223. It is also possible to provide a mechanism.
  • each column It is better to install a liquid feed pump in.
  • the control unit 41 controls the operations of the respective units described so far, as well as the data processing unit 42, the input unit 43, and the display unit 44 described below.
  • the data processing unit 42 has an area acquisition unit 22, an area data storage unit 23, and a correction calculation unit 24, which are a part of the data correction unit 20, as well as a measurement data storage unit 421 and a position information storage unit 422. It has a pre-correction data calculation unit 423, an imaging image creation unit 424, and a display processing unit 425. Details of each component of the data processing unit 42 will be described later together with a description of the operation of the quantitative analysis system 1 including the data correction unit 20.
  • the control unit 41 and the data processing unit 42 are configured such that the entity is a computer and their respective functions are realized by operating the dedicated control / processing software installed on the computer on the computer.
  • the quantitative analysis system 1 has an input unit 43 for inputting necessary information to the computer by the user, and a display unit (display) 44 for displaying a mass spectrometry imaging image or the like showing the analysis result.
  • FIGS. 5A to 5D the XY stage 11 and the thermoplastic film moving device 13 are not shown.
  • the user prepares one in which the sample 91 to be measured is attached to one surface of the slide glass 92 and one in which the thermoplastic resin sheet (film) 94 is attached to one surface of the support 93.
  • the sample 91 is placed on the XY stage 11 with the sample 91 facing upward, and in the latter, the thermoplastic resin sheet 94 is adsorbed on the adsorber 131 with the thermoplastic resin sheet 94 facing downward (FIG. 5A).
  • thermoplastic film moving device 13 brings the support 93 into contact with the slide glass 92 and holds it so that the surface of the thermoplastic resin sheet 94 is in close contact with the sample 91 (FIG. 5B).
  • a laser beam (near-infrared laser beam) 95 is irradiated for a short time from the surface of the support 93 opposite to the surface to which the thermoplastic resin sheet 94 is attached so as to be substantially orthogonal to the surface (near-infrared laser light) 95.
  • FIG. 5C The range of irradiating the laser beam 95 is a range corresponding to a portion (one measurement point) to be measured once on the sample 91.
  • the irradiated laser beam 95 passes through the support 93 and heats the thermoplastic resin sheet 94.
  • the thermoplastic resin sheet 94 near the area irradiated with the laser beam 95 melts and permeates into the structure of the sample 91.
  • the thermoplastic film moving device 13 pulls the support 93 away from the slide glass 92 so as to separate the thermoplastic resin sheet 94 from the sample 91.
  • the sample piece 911 which is a part of the sample 91, is collected on the surface of the thermoplastic resin sheet 94 (FIG. 5D).
  • the sample piece 911 having an inner diameter of 1 to several hundred ⁇ m does not affect the components contained in the collected biological tissue. Can be collected on the thermoplastic resin sheet 94.
  • the processing operation is an operation of collecting a small amount of sample piece 911 near a certain measurement point on the sample 91, and in the sampling unit 10, the position where the slide glass 91 and the support 93 are brought close to each other is set. The same operation is repeated while moving in the plane direction. As a result, as shown in FIG. 6, sample pieces 911 near a large number of measurement points 913 in a predetermined two-dimensional region 912 on the sample 91 are collected on the thermoplastic resin sheet 94, respectively.
  • the distance between the measurement points 913 on the sample 91 corresponds to the spatial resolution in the mass spectrometry imaging image, and is very narrow, for example, 1 ⁇ m, but the distance between the sample pieces 911 collected on the thermoplastic resin sheet 94 is
  • the sampling position is controlled so as to be as wide as several mm.
  • the two-dimensional positional relationship between the plurality of measurement points 913 on the sample 91 and the two-dimensional positional relationship of the sample piece 911 collected on the thermoplastic resin sheet 94 need not necessarily be maintained. As long as the correspondence between the position of the measurement point 913 on the sample 91 (the position defined by the address information in the X and Y directions) and the position of the sample piece 911 on the thermoplastic resin sheet 94 is determined. good.
  • FIG. 6 is a simplified drawing for illustration purposes only, and usually, the number of measurement points 913 on the sample 91 is much larger than that shown in the drawing, and a sample piece of several hundreds or more from one sample 91. 911 is obtained.
  • the phase contrast of the remaining part of the sample 91 (the part remaining without being collected as the sample piece 911) is possessed by the microscope image acquisition unit 21. It is placed on the sample stage 2113 of the microscope 211. The camera 212 of the microscope image acquisition unit 21 photographs the rest of the sample 91. The captured image data is transmitted to the area acquisition unit 22 via the control unit 41. The area acquisition unit 22 binarizes the obtained image data and analyzes it to obtain the position and area value of each portion of the remaining part of the sample 91 in which the sample piece 911 is collected and becomes a void. Ask for.
  • the position of each of these parts corresponds to the position of each measurement point 913, and the area value of each of these parts corresponds to the area value of each sample piece 911.
  • the contour becomes clearer than when a normal optical microscope or the like is used, so that the accuracy of the image analysis is improved. Binarizing the image data also contributes to clarifying the outline.
  • the data of the position of each of these cut parts, that is, the position of the measurement point 913 is stored in the position information storage unit 422, and the area value is associated with the position information data in the position information storage unit 422 and is associated with the area data storage unit. It is stored in 23.
  • thermoplastic resin sheet 94 Since the correspondence between the position of the measurement point 913 on the sample 91 and the position of the sample piece 911 on the thermoplastic resin sheet 94 is determined as described above, heat is obtained from the position of the measurement point 913 obtained by image analysis. The position of each sample piece 911 on the plastic resin sheet 94 can also be specified.
  • the area value has a different value for each sample piece 911. This is when the support 93 is removed from the upper surface of the sample 91 when the adhesion of the sample 91 to the thermoplastic resin sheet 94 is partially insufficient due to the presence of irregularities on the surface of the sample 91 or the like. Since a part of the sample 91 remains on the slide glass 91 side without adhering to the thermoplastic resin sheet 94, for example, as shown in FIG. 7, each sample piece 911 is collected in a different planar shape. However, in general, since there is a closely proportional correlation between the amount of the sample piece 911 and the area value, the area value for each sample piece 911 is based on the data obtained by the quantitative analysis as described later. It can be used for correction.
  • the pretreatment unit 31 receives the support 93 from which the sample piece 911 is collected from the sample collection unit 10, and the individual sample pieces collected on the thermoplastic resin sheet 94. Prepare a liquid sample from 911. Specifically, as shown in FIG. 6, a microtiter plate (MTP) 3200 having a large number of wells 320 is used, and a predetermined value for extracting components in the sample piece 911 in advance in each well 320 of the MTP 3200 is used. Inject the extract.
  • MTP microtiter plate
  • the support 93 is attached to the upper surface of the MTP3200 (the surface on the side where each well 320 is open) so that the sample piece 911 on the thermoplastic resin sheet 94 is located inside each well 320.
  • the sample piece 911 is immersed in the extract in each well 320 to prepare a liquid sample in which the components in the sample piece 911 are dissolved. If the correspondence between the position of the measurement point 913 on the sample 91 and the position of the sample piece 911 on the thermoplastic resin sheet 94 is determined as described above, each prepared liquid sample and the measurement point 913 on the sample 91 are determined. The relationship with the position of is also uniquely determined.
  • FIG. 6 is a simplified drawing for explanation, and the number of wells 320 is much larger than that shown in the figure.
  • FIG. 9 is a diagram for explaining the operations of the LC unit 32 and the MS unit 34, in that order from the top, the LC unit component separation operation (upper figure), the LC unit eluate storage operation (middle figure), and the MS unit analysis operation. ( Figure below) is shown.
  • the case where the number of LC units 32a to 32n is 100 will be described as an example, but the present invention is not limited to this example.
  • the 100 LC units 32a to 32n perform a process of separating the components in the given liquid sample in parallel (upper figure of FIG. 9). That is, in the injector 322 of the LC unit 32, the sample holding unit 3222 sucks and holds a predetermined amount of the liquid sample in the well (liquid sample container) 3220 through the needle 3221.
  • the mobile phase is fed to the column 323 at a constant flow rate by the liquid feed pump 321 via the sample injection unit 3223, and the sample injection unit 3223 is held in the sample holding unit 322 in response to an instruction from the control unit 41. Inject the sample into the mobile phase.
  • the injected liquid sample is introduced into the column 323 along with the flow of the mobile phase, the components in the liquid sample are separated according to the retention time while passing through the column 323, and the eluate containing the separated components is the column. Elute from the outlet of 323.
  • the inlet side flow path switching unit 3243 switches the supply destination of the eluate every t1 (in this example, every 10 seconds) for a predetermined time. As shown by an arrow in FIG. 4, when the eluate is supplied to one storage container 3241, the outlet side flow path switching unit 3244 closes the eluate outflow path from the storage container 3241, and the storage container The eluate is stored in 3241.
  • the inlet side flow path switching unit 3243 switches the supply destination of the eluate to the storage container 3242.
  • the outlet-side flow path switching unit 3244 closes the eluate outflow path from the storage container 3242, and this time, the eluate is stored in the storage container 3242.
  • the eluate sample which is the stored eluate in a predetermined amount, contains the components in the eluate eluted from the outlet of the column 323 within a predetermined time t1, and the plurality of components once separated in the column 323 are stored. It may remix when stored in container 3241 or 3242.
  • the LC unit 32 it can be considered that the liquid sample after the components are separated by the column 323 is fractionated and stored every t1 for a predetermined time.
  • the outlet side flow path switching unit 3244 stores the eluent.
  • the eluent discharge path on the container 3241 side is opened, and the eluent sample stored in the storage container 3241 is flowed to the sample switching unit 33.
  • the sample switching unit 33 sequentially selects the eluate samples supplied from the sample storage units 324a to 324n in the 100 LC units 32a to 32n and sends them to the MS unit 34. Switch the flow path to supply.
  • the time for supplying the eluate sample supplied from the sample storage unit 324 in one LC unit 32 to the MS unit 34 is about 100 msec. Therefore, within a predetermined time t1 of 10 seconds, the eluate samples supplied from all the sample storage units 324a to 324n of 100 LC units 32a to 32n can be selected once and supplied to the MS unit 34. Is.
  • the MS unit 34 ionizes various components contained in the eluate sample supplied from the sample storage unit 324 in one LC unit 32 during the period of 100 msec, and mass spectrometrically analyzes the generated ions. Alternatively, an ion having a specific mass-to-charge ratio is selected from the generated ions and then dissociated by CID, and the product ion generated by the dissociation is mass-analyzed.
  • the MS unit 34 executes such mass spectrometry each time the eluate supplied by the sample switching unit 33 is switched (lower figure of FIG. 9). That is, mass spectrometry or MS / MS analysis is performed once every 100 msec period.
  • the spectral data obtained for each liquid sample in this way is stored in the measurement data storage unit 421.
  • the measurement data storage unit 421 the spectrum data of each liquid sample stored therein and the position information of the sample piece 911 (or measurement point 913) corresponding to each liquid sample stored in the position information storage unit 422. Data is associated.
  • the pre-correction data calculation unit 423 acquires information on the range of the mass-to-charge ratio and the holding time corresponding to the component from the memory, and stores the measurement data for each liquid sample. From the spectrum data stored in the part 421, the spectrum data at the mass-to-charge ratio within the holding time range is extracted, and the integrated value obtained by integrating the mass chromatogram within the range is obtained.
  • the integrated value obtained here corresponds to the amount of the component to be analyzed that each liquid sample has, but also depends on the amount of each sample piece 911 that is the source of each liquid sample. Therefore, the correction calculation unit 24 acquires the area value of the sample piece 911 from the area data storage unit 23 for each liquid sample, and divides the integrated value of the mass chromatogram calculated by the pre-correction data calculation unit 423 by the area value. By doing so, the data error caused by the difference in the amount of 911 for each sample piece is corrected.
  • Table 1 shows the area values of the sample pieces and the integrated values of the mass chromatograms before and after the correction for a certain component for the four sample pieces 9111 to 9114 shown in FIG. show.
  • FIG. 10 is an image obtained by observing the sample pieces 9111 to 9114 with a phase contrast microscope 211. By observing with a phase contrast microscope 211, the contrast between the sample pieces 9111 to 9114 and their surroundings becomes clear.
  • Table 1 also shows the standard deviation, the average value, and the CV value obtained by dividing the standard deviation of the four sample pieces 9111 to 9114 by the average value for each of the mass chromatograms before and after the correction. bottom.
  • the CV value is an index showing the variation of the data with respect to the average value, and is smaller after the correction than before the correction. This means that the data variability that was larger than it actually was before the correction was corrected by the correction.
  • one corrected data (integral value) can be obtained for one sample piece 911.
  • the imaging image creation unit 424 is based on the corrected data of each sample piece 911 and the position information of each sample piece 911 stored in the position information storage unit 422, and the hue and saturation of the color are displayed on the two-dimensional map. And any one or more differences in brightness create an image representing the corrected data at each position in the sample 91.
  • FIG. 11 shows an example of an image created by the imaging image creation unit 424.
  • the created image is converted into a signal for display on the display unit 44 by the display processing unit 425, and the signal is transmitted to the display unit 44.
  • the display unit 44 receives the signal and displays the created image.
  • the data is corrected by the area value of each sample piece 911, so that the error of the data caused by the difference in the amount of each sample piece 911 is reduced. be able to.
  • a microscope image is acquired using a phase-contrast microscope 211 and then image analysis is performed.
  • a normal optical microscope is used.
  • a laser microscope or the like may be used.
  • the sample piece may be photographed with a camera without using a microscope.
  • the area of the sample piece 911 may be obtained by a method other than image analysis.
  • the image analysis is performed after binarizing the data of the microscope image, but the image analysis may be performed without binarizing.
  • a microscope image of the rest of the sample 91 that remains without being collected as the sample piece 911 is acquired, and the area value of the sample piece 911 is based on the image of each part where the sample piece 911 is collected and becomes a void.
  • a microscopic image of the surface of the thermoplastic resin sheet 94 to which the collected sample piece 911 is attached is acquired, and the sample piece 911 is taken from the image of the sample piece 911 included in the microscopic image. The area value of may be obtained.
  • the MS unit 34 is not limited to the above-mentioned Q-TOF type mass spectrometer, and may be appropriately used as a single type quadrupole mass spectrometer, a triple quadrupole mass spectrometer, an ion trap-time-of-flight mass spectrometer, or the like.
  • the device of the above method can be used.
  • the ESI method it is equipped with an ion source that uses other ionization methods such as the atmospheric pressure chemical ionization (APCI) method and the atmospheric pressure photoionization (APPI) method. It may be a mass analyzer.
  • APCI atmospheric pressure chemical ionization
  • APPI atmospheric pressure photoionization
  • a plurality of sample pieces are analyzed in parallel using a liquid chromatograph mass spectrometer provided with a plurality of LC units 32a to 32n, but a liquid chromatograph mass spectrometer provided with only one LC unit. May be used to analyze the sample pieces one by one.
  • the laser microdissection device is data for correcting data obtained by performing quantitative analysis for each sample piece obtained by the laser microdissection method from a plurality of measurement regions in the sample to be measured.
  • the data correction unit includes an area acquisition unit that obtains an area value of the sample piece for each sample piece, and a correction calculation unit that calculates data for each sample piece by the area value of the sample piece. Be prepared.
  • the data for each sample piece is used to obtain the area value of the sample piece.
  • the calculation corrected by it is possible to reduce the data error caused by the difference in the amount of each sample piece.
  • Data obtained by performing quantitative analysis for each sample piece include, for example, the peak area and peak top value of the chromatogram or mass spectrum obtained by the liquid chromatograph mass spectrometry.
  • Calculations to be corrected by the area value of a sample piece include a calculation in which the data obtained by performing a quantitative analysis on the sample piece is divided by the area value, and a calculation in which a predetermined reference value is further multiplied after the calculation.
  • a calculation or the like in which the correction parameter is obtained by multiplying the area value by a predetermined reference value and then the data is divided by the correction parameter is included. By performing the operation of multiplying and dividing the reference value in this way, the data can be brought closer to a more accurate value.
  • the reference value the average value, the median value, or the like of the area values obtained from each of the plurality of sample pieces can be used.
  • the calculation is performed by dividing the data by those values.
  • the value after the calculation is a numerical value that does not represent the original data (peak area or peak top value), but such a numerical value is used. It is possible to determine the relative difference between the sample pieces (measurement areas in the sample).
  • the laser microdissection device according to the second item is the laser microdissection device according to the first item. Also has a microscope, The area acquisition unit obtains an area value for each sample piece by performing image analysis on a microscope image acquired for each sample piece by the microscope.
  • the data can be easily corrected by obtaining the area value of each sample piece by using a known image analysis method.
  • the microscope is a phase contrast microscope in the laser microdissection device according to the second item.
  • the laser microdissection apparatus by using a phase contrast microscope, even if the sample piece is almost transparent, the light transmitted through the sample piece and the light passing around the sample piece can be obtained. Since the image of the sample piece can be clearly obtained by the phase difference of the above, the area value can be obtained more accurately based on the image analysis in the area acquisition unit. As a result, the data can be corrected more accurately.
  • the laser microdissection device according to the fourth item is the laser microdissection device according to the second or third item, in which the area acquisition unit binarizes the microscope image and then performs the image analysis. Is.
  • the laser microdissection device by performing image analysis on the microscope image acquired for each sample piece, the outline of the sample piece becomes clearer, so that the area acquisition unit performs image analysis.
  • the area value can be obtained more accurately based on. As a result, the data can be corrected more accurately.
  • the laser microdissection method is A sample piece acquisition process in which a sample piece is obtained from a plurality of measurement regions in the sample to be measured by the laser microdissection method, respectively.
  • the laser microdissection method by performing a calculation in which the data for each sample piece is corrected by the area value of the sample piece, the error of the data caused by the difference in the amount for each sample piece can be obtained. It can be made smaller.
  • the quantitative analysis system according to item 6 is The laser microdissection device according to any one of items 1 to 4 and It is provided with a liquid chromatograph mass spectrometer that performs quantitative analysis for each sample piece.
  • the quantitative analysis system by using the laser microdissection device according to any one of the first to fourth items, it is possible to perform a quantitative analysis with a small error caused by a difference in the amount of each sample piece. can.
  • Quantitative analysis system 10 ... Sampling unit 11 ... XY stage 12 ... Laser light source 13 ... Thermoplastic film moving device 131 ... Adsorber 132 ... Arm 2 ... Laser microdissection device 20 ... Data correction unit 21 ... Microscopic image acquisition unit 211 ... Phase difference microscope 2111 ... Light source 2112 ... Phase difference observation capacitor 2113 ... Sample stage 2114 ... Phase difference observation objective lens 212 ... Camera 22 ... Area acquisition unit 23 ... Area data storage unit 24 ... Correction calculation unit 30 ... Liquid chromatography Graph mass analyzer 31 ... Pretreatment unit 32, 32a to 32n ... LC (liquid chromatograph) unit 320 ... Mobile phase container 3200 ... MTP 321 ...

Abstract

A laser microdissection device (2) has a data correction unit (20) that corrects data obtained by performing quantitative analysis on sample pieces (911) obtained by a laser microdissection method from a plurality of measurement regions in a sample (91) to be measured. The data correction unit (20) is provided with: an area acquisition unit (22) that, for each of the sample pieces (911), obtains an area value of said sample piece (911); and a correction calculation unit (23) that performs calculation to correct data for each of the sample pieces (911) with the area value of said sample piece (911).

Description

レーザマイクロダイセクション装置、レーザマイクロダイセクション方法、及び定量分析システムLaser microdissection equipment, laser microdissection method, and quantitative analysis system
 本発明は、レーザマイクロダイセクション(LMD:Laser Microdissection)装置、レーザマイクロダイセクション方法、及び定量分析システムに関する。 The present invention relates to a laser microdissection (LMD) apparatus, a laser microdissection method, and a quantitative analysis system.
 生体組織切片等の試料に含まれる目的化合物の分布を調べるために、質量分析イメージング法が用いられている。質量分析イメージング法では一般に、試料内に複数の測定領域を設定し、測定領域毎に質量分析を実施する。 Mass spectrometric imaging is used to investigate the distribution of target compounds contained in samples such as biological tissue sections. In the mass spectrometry imaging method, generally, a plurality of measurement regions are set in a sample, and mass spectrometry is performed for each measurement region.
 これまで、質量分析イメージング法は、マトリクス支援レーザ脱離イオン化(MALDI: Matrix Assisted Laser Desorption/Ionization)を用いて行うのが一般的であった(例えば特許文献1)。MALDIでは、予め試料にマトリックス物質を塗布しておき、測定領域毎にレーザ光を照射して、それにより生成されたイオンを質量分析する。しかし、生体組織切片のように試料が数多くの化合物を含む場合、MALDI法では目的化合物を単離せず、目的化合物以外の夾雑成分やマトリクス物質も目的化合物と同時にイオン化するため、目的化合物を単離した場合と比較してイオン化効率が低くなり検出感度が悪化してしまう場合がある。さらに、夾雑成分やマトリクス物質の存在量は測定領域間において均一ではないため、目的化合物の定量性に欠けたりする場合があった。 Until now, the mass spectrometric imaging method has generally been performed using matrix-assisted laser desorption / ionization (MALDI: Matrix Assisted Laser Desorption / Ionization) (for example, Patent Document 1). In MALDI, a matrix substance is applied to a sample in advance, laser light is irradiated for each measurement region, and the ions generated by the laser beam are mass-analyzed. However, when the sample contains a large number of compounds such as biological tissue sections, the target compound is not isolated by the MALDI method, and contaminating components and matrix substances other than the target compound are also ionized at the same time as the target compound, so that the target compound is isolated. The ionization efficiency may be lower than that in the case of the above, and the detection sensitivity may be deteriorated. Furthermore, since the abundance of contaminants and matrix substances is not uniform between the measurement regions, the quantitativeness of the target compound may be lacking.
 そこで最近、LMD法と呼ばれる試料採取方法と液体クロマトグラフ質量分析法とを組み合わせたクロマトグラフ質量分析イメージング法が提案されている(例えば特許文献2)。 Therefore, recently, a chromatographic mass spectrometry imaging method that combines a sampling method called the LMD method and a liquid chromatograph mass spectrometry method has been proposed (for example, Patent Document 2).
 特許文献2に記載のLMD法では、試料をスライドガラス上に載置し、試料の上面に熱可塑性樹脂製のシートを当接させ、この熱可塑性樹脂シートの上面に後述のレーザ光を透過する材料(例えばアクリル樹脂やポリカーボネイト樹脂)製の支持体を当接させた状態で、支持体側から熱可塑性樹脂シートにレーザ光を照射する。ここで、熱可塑性樹脂シートには低い融点(例えば50~70℃)を有する材料を用い、レーザ光の出力及び照射時間は、熱可塑性樹脂シートが溶融し、且つ試料が変性しないように調整する。これにより、レーザ光が照射されている測定領域において熱可塑性樹脂シートが溶融し、その後、レーザ光の照射を停止することで溶融した熱可塑性樹脂シートが固化することにより、該測定領域において試料が熱可塑性樹脂シートに接着する。この状態で支持体を試料から外すと、試料のうち該測定領域の部分のみが剥離して、支持体の表面に移行する。このように試料から剥離して得られた部分を、以下では「試料片」と呼ぶ。 In the LMD method described in Patent Document 2, a sample is placed on a slide glass, a sheet made of a thermoplastic resin is brought into contact with the upper surface of the sample, and a laser beam described later is transmitted to the upper surface of the thermoplastic resin sheet. The thermoplastic resin sheet is irradiated with laser light from the support side in a state where the support made of a material (for example, acrylic resin or polycarbonate resin) is in contact with the support. Here, a material having a low melting point (for example, 50 to 70 ° C.) is used for the thermoplastic resin sheet, and the output of the laser beam and the irradiation time are adjusted so that the thermoplastic resin sheet does not melt and the sample is not denatured. .. As a result, the thermoplastic resin sheet melts in the measurement region irradiated with the laser beam, and then the molten thermoplastic resin sheet solidifies by stopping the irradiation of the laser beam, so that the sample is formed in the measurement region. Adhere to the thermoplastic resin sheet. When the support is removed from the sample in this state, only the portion of the sample in the measurement region is peeled off and transferred to the surface of the support. The portion obtained by peeling from the sample in this way is hereinafter referred to as a "sample piece".
 以上の操作を繰り返すことにより、多数の測定領域からそれぞれ試料片が採取される。このように採取された試料片をそれぞれ溶媒中に分散させ、目的化合物を抽出することにより、測定領域毎の液体試料が得られる。それら測定領域毎の液体試料に対してそれぞれ、液体クロマトグラフ質量分析法を用いて目的成分の定量分析を行うことにより、イメージングのための測定領域毎のデータが得られる。 By repeating the above operation, sample pieces are collected from a large number of measurement areas. By dispersing the sample pieces thus collected in a solvent and extracting the target compound, a liquid sample for each measurement region can be obtained. Data for each measurement region for imaging can be obtained by quantitatively analyzing the target component using the liquid chromatograph mass spectrometry for each of the liquid samples in each measurement region.
国際公開WO2018/037491号International release WO 2018/037491 国際公開WO2015/053039号International release WO2015 / 053039
 特許文献2に記載の方法では、例えば試料の表面に凹凸が存在すること等に起因して、測定領域の一部で熱可塑性樹脂シートへの接着が不十分である場合には、支持体を試料の上面から外す際に測定領域の一部が元の試料側に残ってしまうことがある。そうすると、各測定領域から得られる試料片の量にバラツキが生じ、目的成分の定量分析に誤差が生じる。そのため何らかの手法によって、データを補正しなければならない。 In the method described in Patent Document 2, if the adhesion to the thermoplastic resin sheet is insufficient in a part of the measurement area due to, for example, the presence of irregularities on the surface of the sample, the support is used. When removing from the top surface of the sample, a part of the measurement area may remain on the original sample side. Then, the amount of the sample piece obtained from each measurement region varies, and an error occurs in the quantitative analysis of the target component. Therefore, the data must be corrected by some method.
 本発明が解決しようとする課題は、レーザマイクロダイセクション法によって測定領域毎に得られる試料片の量の相違により生じる、定量分析で得られるデータの誤差を小さくすることができるレーザマイクロダイセクション装置を提供することである。 The problem to be solved by the present invention is a laser microdissection apparatus capable of reducing an error in data obtained by quantitative analysis caused by a difference in the amount of sample pieces obtained for each measurement region by the laser microdissection method. Is to provide.
 上記課題を解決するために成された、本発明に係るレーザマイクロダイセクション装置は、測定対象の試料内における複数の測定領域からそれぞれレーザマイクロダイセクション法により得られた試料片毎に定量分析を行うことにより得られるデータを補正するデータ補正部を有し、
 該データ補正部が、前記試料片毎に該試料片の面積値を求める面積取得部と、前記試料片毎のデータを該試料片の前記面積値により補正する計算を行う補正計算部とを備える。
The laser microdissection apparatus according to the present invention, which has been made to solve the above problems, performs quantitative analysis for each sample piece obtained by the laser microdissection method from a plurality of measurement regions in the sample to be measured. It has a data correction unit that corrects the data obtained by doing so.
The data correction unit includes an area acquisition unit that obtains an area value of the sample piece for each sample piece, and a correction calculation unit that performs a calculation that corrects data for each sample piece based on the area value of the sample piece. ..
 試料片毎のデータを該試料片の面積値により補正する計算には、データを面積値で除する計算や、該計算を行った後にさらに所定の基準値を乗除する計算、あるいは面積値に所定の基準値を乗除することによって補正パラメータを求めたうえで前記データを該補正パラメータで除する計算等が含まれる。ここで所定の基準値には、複数の試料片からそれぞれ得られた面積値の平均値や中央値等を用いることができる。 The calculation for correcting the data for each sample piece by the area value of the sample piece includes a calculation in which the data is divided by the area value, a calculation in which the data is further multiplied by a predetermined reference value after the calculation, or a predetermined value in the area value. The calculation includes a calculation in which the correction parameter is obtained by multiplying and dividing the reference value of, and then the data is divided by the correction parameter. Here, as the predetermined reference value, the average value, the median value, or the like of the area values obtained from each of the plurality of sample pieces can be used.
 本発明に係るレーザマイクロダイセクション装置によれば、一般に試料片の量と面積値の間に比例関係に近い相関関係があることから、試料片毎のデータを、該試料片の前記面積値により補正する計算を行うことにより、試料片毎の量の相違により生じるデータの誤差を小さくすることができる。 According to the laser microdissection device according to the present invention, since there is generally a correlation close to a proportional relationship between the amount of the sample piece and the area value, the data for each sample piece is obtained from the area value of the sample piece. By performing the correction calculation, it is possible to reduce the data error caused by the difference in the amount of each sample piece.
本発明の一実施形態である、レーザマイクロダイセクション装置を有する定量分析システムの全体構成の概略構成図。FIG. 6 is a schematic configuration diagram of an overall configuration of a quantitative analysis system including a laser microdissection device according to an embodiment of the present invention. 本実施形態の定量分析システムが有する試料採取部であるレーザマイクロダイセクション装置の概略構成図。The schematic block diagram of the laser microdissection device which is the sampling part which the quantitative analysis system of this embodiment has. 本実施形態の定量分析システムが有する顕微鏡画像取得部の概略構成図。The schematic block diagram of the microscope image acquisition part which the quantitative analysis system of this embodiment has. 本実施形態の定量分析システムが有する液体クロマトグラフ部の概略構成図。The schematic block diagram of the liquid chromatograph part which the quantitative analysis system of this embodiment has. 本実施形態の定量分析システムにおける試料採取部の動作の一工程であって、一方の面に試料を貼り付けたスライドガラス及び一方の面に熱可塑性樹脂シートを貼り付けた支持体を試料採取部に保持させた状態を示す図。In one step of the operation of the sampling section in the quantitative analysis system of the present embodiment, the sampling section includes a slide glass with a sample attached to one surface and a support having a thermoplastic resin sheet attached to one surface. The figure which shows the state which held in. 試料採取部の動作の一工程であって、試料と熱可塑性樹脂シートを接触させた状態を示す図。The figure which shows the state in which a sample and a thermoplastic resin sheet are in contact with each other in one step of the operation of a sampling part. 試料採取部の動作の一工程であって、レーザビームを熱可塑性樹脂シートに照射している状態を示す図。The figure which shows the state which irradiates a thermoplastic resin sheet with a laser beam which is one process of the operation of a sampling part. 試料採取部の動作の一工程であって、熱可塑性樹脂シートを試料から離脱させるように、支持体をスライドガラスから引き離した状態を示す図。The figure which shows the state in which the support was pulled away from the slide glass so that the thermoplastic resin sheet was separated from a sample in one step of the operation of a sampling part. 試料から試料片を採取して前処理を行う操作を説明するための概略斜視図。The schematic perspective view for demonstrating the operation which collects a sample piece from a sample and performs a pretreatment. 採取された複数の試料片の例を示す平面図。The plan view which shows the example of a plurality of sample pieces collected. マウスの肝臓を試料として、採取された試料片の面積と、採取されずに試料に残存した残存部に所定の光量の光を照射した際に残存部を透過した光の透過光量との関係を示すグラフ。Using the mouse liver as a sample, the relationship between the area of the sample piece collected and the amount of transmitted light transmitted through the remaining part when the remaining part remaining in the sample without being collected is irradiated with a predetermined amount of light. The graph to show. 本実施形態の定量分析システムについて、LC部における成分分離の動作(上図)、LC部における溶出液の貯留の動作(中図)、及びMS部における分析の動作(下図)を説明するための図。The quantitative analysis system of the present embodiment is for explaining the operation of component separation in the LC section (upper figure), the operation of storing the eluate in the LC section (middle figure), and the operation of analysis in the MS section (lower figure). figure. 本実施形態の定量分析システムにおいて試料採取部が採取した4個の試料片を位相差顕微鏡で観察した顕微鏡写真。A micrograph of four sample pieces collected by the sampling unit in the quantitative analysis system of the present embodiment observed with a phase-contrast microscope. 試料内の各位置における補正後のデータを表す画像の一例を示す図。The figure which shows an example of the image which shows the data after correction at each position in a sample.
 図1~図11を用いて、本発明に係るレーザマイクロダイセクション装置の実施形態を説明する。 An embodiment of the laser microdissection device according to the present invention will be described with reference to FIGS. 1 to 11.
(1) 本実施形態のレーザマイクロダイセクション装置及びそれを含む定量分析システムの構成
 図1に、本実施形態のレーザマイクロダイセクション装置2を含む定量分析システム1の全体構成を示す。この定量分析システム1は、レーザマイクロダイセクション装置2、液体クロマトグラフ質量分析装置30、制御部41、データ処理部42、入力部43及び表示部44を有する。レーザマイクロダイセクション装置2は、試料採取部10とデータ補正部20とを有する。なお、後述のように、データ補正部20が有する構成要素の一部は、データ処理部42に組み込まれている。
(1) Configuration of Laser Microdissection Device of the Present Embodiment and Quantitative Analysis System Included FIG. 1 shows the overall configuration of the quantitative analysis system 1 including the laser microdissection device 2 of the present embodiment. The quantitative analysis system 1 includes a laser microdissection device 2, a liquid chromatograph mass spectrometer 30, a control unit 41, a data processing unit 42, an input unit 43, and a display unit 44. The laser microdissection device 2 has a sampling unit 10 and a data correction unit 20. As will be described later, some of the components of the data correction unit 20 are incorporated in the data processing unit 42.
 試料採取部10は、図2に示すように、XYステージ11と、レーザ光源12と、熱可塑性フィルム移動装置13とを有する。XYステージ11は、試料91が載置されたスライドガラス92を支持する台であって、支持したスライドガラス92を前後左右に移動させるものである。レーザ光源12は、XYステージ11の台に対向して設けられており、XYステージ11に向かってレーザビームを出射するものである。熱可塑性フィルム移動装置13は、レーザ光源12が出射するレーザビームを透過する材料製の支持体93に支持された熱可塑性樹脂シート(熱溶解性シート)94を、XYステージ11に支持されたスライドガラス92上の試料91に当接させると共に、試料91に当接した熱可塑性樹脂シート94を試料91の上面から外すように、それら支持体93及び熱可塑性樹脂シート94を移動させるものである。具体的には、熱可塑性フィルム移動装置13は、気体を吸引することによって支持体93の上面(熱可塑性樹脂シート94が支持された面とは反対側の面)に吸着する吸着器131と、吸着器131を前後左右上下に移動させるアーム132とを有する。 As shown in FIG. 2, the sampling unit 10 includes an XY stage 11, a laser light source 12, and a thermoplastic film moving device 13. The XY stage 11 is a table that supports the slide glass 92 on which the sample 91 is placed, and moves the supported slide glass 92 back and forth and left and right. The laser light source 12 is provided so as to face the base of the XY stage 11, and emits a laser beam toward the XY stage 11. The thermoplastic film moving device 13 is a slide in which a thermoplastic resin sheet (thermosoluble sheet) 94 supported by a support 93 made of a material that transmits a laser beam emitted by a laser light source 12 is supported by an XY stage 11. The support 93 and the thermoplastic resin sheet 94 are moved so as to come into contact with the sample 91 on the glass 92 and remove the thermoplastic resin sheet 94 in contact with the sample 91 from the upper surface of the sample 91. Specifically, the thermoplastic film moving device 13 includes an adsorber 131 that sucks gas and adsorbs it on the upper surface of the support 93 (the surface opposite to the surface on which the thermoplastic resin sheet 94 is supported). It has an arm 132 that moves the adsorber 131 back and forth, left, right, up and down.
 データ補正部20は、顕微鏡画像取得部21と、面積取得部22と、面積データ格納部23と、補正計算部24とを有する。顕微鏡画像取得部21は、図3に示すように、位相差顕微鏡211と、該位相差顕微鏡211で観察される画像を撮影するカメラ(CCDカメラ)212とを有する。本実施形態で用いる位相差顕微鏡211は、光源2111、位相差観察用コンデンサ2112、試料ステージ2113及び位相差観察用対物レンズ2114を有する通常の位相差顕微鏡である。カメラ212で撮影される顕微鏡画像の電子データは面積取得部22に送信されるようになっている。面積取得部22、面積データ格納部23及び補正計算部24は、データ処理部42に組み込まれており、データ処理部42が有する他の構成要素と合わせて後述する。 The data correction unit 20 includes a microscope image acquisition unit 21, an area acquisition unit 22, an area data storage unit 23, and a correction calculation unit 24. As shown in FIG. 3, the microscope image acquisition unit 21 includes a phase-contrast microscope 211 and a camera (CCD camera) 212 that captures an image observed by the phase-contrast microscope 211. The phase-contrast microscope 211 used in this embodiment is a normal phase-contrast microscope having a light source 2111, a phase-contrast observation capacitor 2112, a sample stage 2113, and a phase-contrast observation objective lens 2114. The electronic data of the microscope image taken by the camera 212 is transmitted to the area acquisition unit 22. The area acquisition unit 22, the area data storage unit 23, and the correction calculation unit 24 are incorporated in the data processing unit 42, and will be described later together with other components of the data processing unit 42.
 液体クロマトグラフ質量分析装置30は、前処理部31、LC(液体クロマトグラフ)部32、試料切替部33及びMS(質量分析)部34を有する。 The liquid chromatograph mass spectrometer 30 has a pretreatment unit 31, an LC (liquid chromatograph) unit 32, a sample switching unit 33, and an MS (mass spectrometry) unit 34.
 前処理部31は、試料採取部10で採取された複数の試料片からそれぞれ液体試料を調製するものである。 The pretreatment unit 31 prepares a liquid sample from each of a plurality of sample pieces collected by the sampling unit 10.
 LC部32は、同じ構成を有するn個(nは2以上の自然数)のLC部32a、32b、32c…32nを有する。各LC部32k(kはa~nのいずれか)は、図4に示すように、移動相を貯留する移動相容器320、移動相容器320内の移動相を吸引して送液する送液ポンプ321、送液された移動相中に液体試料を注入するインジェクタ322、液体試料に含まれる各種成分をその保持時間に応じて分離するカラム323、及び、カラム323の出口から溶出する溶出液を貯留する試料貯留部324を備える。 The LC unit 32 has n LC units 32a, 32b, 32c ... 32n having the same configuration (n is a natural number of 2 or more). As shown in FIG. 4, each LC unit 32k (k is any of a to n) is a mobile phase container 320 for storing the mobile phase, and a liquid feeding liquid that sucks and sends the mobile phase in the mobile phase container 320. Pump 321, injector 322 that injects a liquid sample into the fed mobile phase, column 323 that separates various components contained in the liquid sample according to its holding time, and eluent that elutes from the outlet of column 323. A sample storage unit 324 for storing is provided.
 インジェクタ322は、液体試料を収容する液体試料容器3220、液体試料容器3220内の液体試料を所定量だけ吸引して保持するニードル3221及び試料保持部3222、並びに、試料保持部3222に保持されている液体試料を所定のタイミングで移動相中に注入する試料注入部3223を含む。 The injector 322 is held by a liquid sample container 3220 for accommodating a liquid sample, a needle 3221 and a sample holding unit 3222 for sucking and holding a predetermined amount of the liquid sample in the liquid sample container 3220, and a sample holding unit 3222. It includes a sample injection unit 3223 that injects a liquid sample into the mobile phase at a predetermined timing.
 試料貯留部324は、複数の貯留容器3241及び3242、カラム323の出口からの溶出液を複数の貯留容器3241、3242の1つに選択的に供給する入口側流路切替部3243、並びに貯留容器3241、3242に貯留された溶出液を後段へと選択的に供給する出口側流路切替部3244を含む。以下、試料貯留部324の貯留容器3241、3242から供給される溶出液を「溶出液試料」と呼ぶ。なお、貯留容器3241、3242に貯留された液体試料のコンタミネーションを回避するために、試料貯留部324には貯留容器3241、3242や流路を洗浄する洗浄機構を適宜設けることが好ましいが、図4ではそうした洗浄機構の記載を省略している。 The sample storage unit 324 includes a plurality of storage containers 3241 and 3242, an inlet side flow path switching unit 3243 for selectively supplying the eluate from the outlet of the column 323 to one of the plurality of storage containers 3241 and 3242, and a storage container. Includes an outlet-side flow path switching unit 3244 that selectively supplies the eluate stored in 3241 and 3242 to the subsequent stage. Hereinafter, the eluate supplied from the storage containers 3241 and 3242 of the sample storage unit 324 will be referred to as an "eluent sample". In order to avoid contamination of the liquid samples stored in the storage containers 3241 and 3242, it is preferable that the sample storage unit 324 is appropriately provided with a cleaning mechanism for cleaning the storage containers 3241 and 3242 and the flow path. In No. 4, the description of such a cleaning mechanism is omitted.
 試料切替部33は、n個のLC部32a~nの各々が有する試料貯留部324から並列に供給される溶出液試料の1つを選択してMS部34に導入するよう、溶出液試料の流路を切り替えるものである。 The sample switching unit 33 selects one of the eluate samples supplied in parallel from the sample storage unit 324 of each of the n LC units 32a to n and introduces the eluate sample into the MS unit 34. It switches the flow path.
 MS部34には、本実施形態でエレクトロスプレーイオン化(Electrospray Ionization:ESI)法によるイオン化法を利用したイオン源を搭載した四重極-飛行時間(Quadrupole-Time of Flight:Q-TOF)型質量分析装置を用いる。Q-TOF型質量分析装置は、溶出液試料の成分をイオン源でイオン化し、そのイオンを衝突誘起解離(Collision Induced Dissociation:CID)により解離させることで生成したプロダクトイオンについて所定の質量電荷比範囲に亘って質量分析を行うものである。Q-TOF型質量分析装置では、試料成分由来のイオンについてのマススペクトルデータのほか、プロダクトイオンスペクトル(MS/MSスペクトル)データを取得することができる。Q-TOF型質量分析装置は公知の装置であるため、詳細な構成の説明及び図示を省略する。 The MS unit 34 is equipped with an ion source using an ionization method based on the Electrospray Ionization (ESI) method in the present embodiment, and is equipped with a Quadrupole-Time of Flight (Q-TOF) type mass. Use an analyzer. The Q-TOF mass spectrometer ionizes the components of the eluent sample with an ion source and dissociates the ions by collision-induced dissociation (CID), resulting in a predetermined mass-to-charge ratio range for the product ions. Mass spectrometry is performed over the period. The Q-TOF mass spectrometer can acquire mass spectrum data for ions derived from sample components as well as product ion spectrum (MS / MS spectrum) data. Since the Q-TOF mass spectrometer is a known device, detailed description and illustration of the configuration will be omitted.
 なお、図1及び図4に示した構成では、移動相容器320から試料貯留部324までの全ての構成要素を含むLC部32a~32nが並設されているが、これらは、異なる試料中の成分を並行して分離できる構成であればよい。したがって、カラム323は複数並設されている必要があるものの、それ以外の構成要素を共用する構成とすることは可能である。例えば、移動相容器320は共用することが可能である。また、インジェクタ322において試料注入部3223を除く各構成要素を共用とし、共通の試料保持部3222に保持した試料を複数の試料注入部3223のうちの一つに選択的に送るような流路切替え機構を設ける構成とすることも可能である。また、複数のカラム323に対し送液ポンプ321を共通に利用することも原理的には可能であるもの、各カラム323に流れる移動相の流速を高い精度で一定に維持するには、カラム毎に送液ポンプを設けたほうがよい。 In the configuration shown in FIGS. 1 and 4, LC units 32a to 32n including all the components from the mobile phase container 320 to the sample storage unit 324 are arranged side by side, but these are in different samples. Any configuration may be used as long as the components can be separated in parallel. Therefore, although a plurality of columns 323 need to be arranged side by side, it is possible to have a configuration in which other components are shared. For example, the mobile phase container 320 can be shared. Further, the injector 322 shares each component except the sample injection unit 3223, and the flow path is switched so that the sample held in the common sample holding unit 3222 is selectively sent to one of the plurality of sample injection units 3223. It is also possible to provide a mechanism. Further, although it is possible in principle to use the liquid feed pump 321 for a plurality of columns 323 in common, in order to maintain the flow velocity of the mobile phase flowing through each column 323 with high accuracy and constant, each column It is better to install a liquid feed pump in.
 制御部41は、ここまでに述べた各部、並びに、以下に述べるデータ処理部42、入力部43及び表示部44の動作を制御するものである。 The control unit 41 controls the operations of the respective units described so far, as well as the data processing unit 42, the input unit 43, and the display unit 44 described below.
 データ処理部42は、前述のようにデータ補正部20の一部である面積取得部22、面積データ格納部23及び補正計算部24を有すると共に、測定データ格納部421、位置情報格納部422、補正前データ計算部423、イメージング画像作成部424及び表示処理部425を有する。これらデータ処理部42が有する各構成要素の詳細は、データ補正部20を含む定量分析システム1の動作の説明と共に後述する。 As described above, the data processing unit 42 has an area acquisition unit 22, an area data storage unit 23, and a correction calculation unit 24, which are a part of the data correction unit 20, as well as a measurement data storage unit 421 and a position information storage unit 422. It has a pre-correction data calculation unit 423, an imaging image creation unit 424, and a display processing unit 425. Details of each component of the data processing unit 42 will be described later together with a description of the operation of the quantitative analysis system 1 including the data correction unit 20.
 これら制御部41及びデータ処理部42は、その実体がコンピュータであって、該コンピュータにインストールされた専用の制御・処理ソフトウェアを該コンピュータ上で動作させることによりそれぞれの機能を実現する構成とすることができる The control unit 41 and the data processing unit 42 are configured such that the entity is a computer and their respective functions are realized by operating the dedicated control / processing software installed on the computer on the computer. Can
 その他、定量分析システム1は、ユーザが必要な情報をコンピュータに入力するための入力部43と、分析結果を示す質量分析イメージング画像等を表示する表示部(ディスプレイ)44を有する。 In addition, the quantitative analysis system 1 has an input unit 43 for inputting necessary information to the computer by the user, and a display unit (display) 44 for displaying a mass spectrometry imaging image or the like showing the analysis result.
(2) 本実施形態のレーザマイクロダイセクション装置及び定量分析システムの動作
 以下、本実施形態のレーザマイクロダイセクション装置2を含む定量分析システム1の動作を説明する。
(2) Operation of Laser Microdissection Device and Quantitative Analysis System of the Present Embodiment The operation of the quantitative analysis system 1 including the laser microdissection device 2 of the present embodiment will be described below.
 まず、図5A~Dを用いて試料採取部10の動作を説明する。なお、図5A~DではXYステージ11及び熱可塑性フィルム移動装置13の図示を省略する。ユーザは、スライドガラス92の一方の面に測定対象である試料91を貼り付けたものと、支持体93の一方の面に熱可塑性樹脂シート(フィルム)94を貼り付けたものを用意する。前者は試料91を上側に向けてXYステージ11の上に配置し、後者は熱可塑性樹脂シート94を下側に向けて吸着器131に吸着させる(図5A)。次に、熱可塑性フィルム移動装置13により熱可塑性樹脂シート94の表面が試料91に密着するように支持体93をスライドガラス92に接触させて保持する(図5B)。その状態で、支持体93の熱可塑性樹脂シート94を貼り付けた面とは反対側の面から、その面に略直交するようにレーザビーム(近赤外レーザ光)95を短時間照射する(図5C)。このレーザビーム95を照射する範囲は、試料91上で1回の測定の対象としたい部位(1つの測定点)に相当する範囲である。 First, the operation of the sampling unit 10 will be described with reference to FIGS. 5A to 5D. In FIGS. 5A to 5D, the XY stage 11 and the thermoplastic film moving device 13 are not shown. The user prepares one in which the sample 91 to be measured is attached to one surface of the slide glass 92 and one in which the thermoplastic resin sheet (film) 94 is attached to one surface of the support 93. In the former, the sample 91 is placed on the XY stage 11 with the sample 91 facing upward, and in the latter, the thermoplastic resin sheet 94 is adsorbed on the adsorber 131 with the thermoplastic resin sheet 94 facing downward (FIG. 5A). Next, the thermoplastic film moving device 13 brings the support 93 into contact with the slide glass 92 and holds it so that the surface of the thermoplastic resin sheet 94 is in close contact with the sample 91 (FIG. 5B). In this state, a laser beam (near-infrared laser beam) 95 is irradiated for a short time from the surface of the support 93 opposite to the surface to which the thermoplastic resin sheet 94 is attached so as to be substantially orthogonal to the surface (near-infrared laser light) 95. FIG. 5C). The range of irradiating the laser beam 95 is a range corresponding to a portion (one measurement point) to be measured once on the sample 91.
 照射されたレーザビーム95は支持体93を通過して熱可塑性樹脂シート94を加熱する。これにより、レーザビーム95が照射された範囲付近の熱可塑性樹脂シート94が溶融し、試料91の組織中に浸透する。その後、熱可塑性フィルム移動装置13は、熱可塑性樹脂シート94を試料91から離脱させるように、支持体93をスライドガラス92から引き離す。すると、熱可塑性樹脂シート94の表面に試料91の一部である試料片911が貼り付いた状態で採取される(図5D)。レーザビーム95として近赤外レーザ光を用い、且つそのパワーを適切に調整することにより、採取される生体組織に含まれる成分等に影響を与えることなく、内径1~数百μmの試料片911を熱可塑性樹脂シート94上に採取することができる。 The irradiated laser beam 95 passes through the support 93 and heats the thermoplastic resin sheet 94. As a result, the thermoplastic resin sheet 94 near the area irradiated with the laser beam 95 melts and permeates into the structure of the sample 91. After that, the thermoplastic film moving device 13 pulls the support 93 away from the slide glass 92 so as to separate the thermoplastic resin sheet 94 from the sample 91. Then, the sample piece 911, which is a part of the sample 91, is collected on the surface of the thermoplastic resin sheet 94 (FIG. 5D). By using near-infrared laser light as the laser beam 95 and adjusting its power appropriately, the sample piece 911 having an inner diameter of 1 to several hundred μm does not affect the components contained in the collected biological tissue. Can be collected on the thermoplastic resin sheet 94.
 上記処理動作は試料91上の或る1つの測定点付近にある微量の試料片911を採取する動作であり、試料採取部10では、スライドガラス91と支持体93とを互いに近接させる位置を、その面方向に移動させつつ同様の動作を繰り返す。これにより、図6に示すように、試料91上の所定の2次元領域912内の多数の測定点913付近の試料片911を、それぞれ熱可塑性樹脂シート94上に採取する。このとき、試料91上の測定点913の間隔は質量分析イメージング画像における空間分解能に対応しており、例えば1μmと非常に狭いが、熱可塑性樹脂シート94上に採取される試料片911の間隔は例えば数mm程度と広くなるように、その採取位置が制御される。なお、試料91上の複数の測定点913の間の2次元的な位置関係と熱可塑性樹脂シート94上に採取された試料片911の2次元的な位置関係とは、必ずしも保たれている必要はなく、試料91上の測定点913の位置(X方向及びY方向のアドレス情報で規定される位置)と熱可塑性樹脂シート94上の試料片911の位置との対応関係が決まっていさえすればよい。なお、図6はあくまでも説明のための簡略化した図面であり、通常、試料91上の測定点913の数は図示したものより遙かに多く、1つの試料91から数百個以上の試料片911が得られる。 The processing operation is an operation of collecting a small amount of sample piece 911 near a certain measurement point on the sample 91, and in the sampling unit 10, the position where the slide glass 91 and the support 93 are brought close to each other is set. The same operation is repeated while moving in the plane direction. As a result, as shown in FIG. 6, sample pieces 911 near a large number of measurement points 913 in a predetermined two-dimensional region 912 on the sample 91 are collected on the thermoplastic resin sheet 94, respectively. At this time, the distance between the measurement points 913 on the sample 91 corresponds to the spatial resolution in the mass spectrometry imaging image, and is very narrow, for example, 1 μm, but the distance between the sample pieces 911 collected on the thermoplastic resin sheet 94 is For example, the sampling position is controlled so as to be as wide as several mm. The two-dimensional positional relationship between the plurality of measurement points 913 on the sample 91 and the two-dimensional positional relationship of the sample piece 911 collected on the thermoplastic resin sheet 94 need not necessarily be maintained. As long as the correspondence between the position of the measurement point 913 on the sample 91 (the position defined by the address information in the X and Y directions) and the position of the sample piece 911 on the thermoplastic resin sheet 94 is determined. good. Note that FIG. 6 is a simplified drawing for illustration purposes only, and usually, the number of measurement points 913 on the sample 91 is much larger than that shown in the drawing, and a sample piece of several hundreds or more from one sample 91. 911 is obtained.
 以上のように熱可塑性樹脂シート94上に多数の試料片911が採取された後、試料91の残部(試料片911として採取されずに残った部分)を、顕微鏡画像取得部21が有する位相差顕微鏡211の試料ステージ2113に載置する。顕微鏡画像取得部21のカメラ212は、試料91の残部を撮影する。撮影された画像のデータは、制御部41を介して面積取得部22に送信される。面積取得部22では、得られた画像のデータを二値化したうえで解析することにより、試料91の残部のうち、試料片911が採取されて空隙になっている各部分の位置及び面積値を求める。これら各部分の位置は各測定点913の位置に対応し、それら各部分の面積値は各試料片911の面積値に対応している。ここで、画像が位相差顕微鏡211によって取得されていることにより、通常の光学顕微鏡等を用いた場合よりも輪郭が明瞭になるため、画像解析の精度が高くなる。画像のデータを二値化することも、輪郭を明瞭にすることに寄与する。これら切り取られている各部分の位置、すなわち測定点913の位置のデータは位置情報格納部422に格納され、面積値は位置情報格納部422内の位置情報のデータと関連付けられて面積データ格納部23に格納される。 After a large number of sample pieces 911 are collected on the thermoplastic resin sheet 94 as described above, the phase contrast of the remaining part of the sample 91 (the part remaining without being collected as the sample piece 911) is possessed by the microscope image acquisition unit 21. It is placed on the sample stage 2113 of the microscope 211. The camera 212 of the microscope image acquisition unit 21 photographs the rest of the sample 91. The captured image data is transmitted to the area acquisition unit 22 via the control unit 41. The area acquisition unit 22 binarizes the obtained image data and analyzes it to obtain the position and area value of each portion of the remaining part of the sample 91 in which the sample piece 911 is collected and becomes a void. Ask for. The position of each of these parts corresponds to the position of each measurement point 913, and the area value of each of these parts corresponds to the area value of each sample piece 911. Here, since the image is acquired by the phase-contrast microscope 211, the contour becomes clearer than when a normal optical microscope or the like is used, so that the accuracy of the image analysis is improved. Binarizing the image data also contributes to clarifying the outline. The data of the position of each of these cut parts, that is, the position of the measurement point 913 is stored in the position information storage unit 422, and the area value is associated with the position information data in the position information storage unit 422 and is associated with the area data storage unit. It is stored in 23.
 前述のように試料91上の測定点913の位置と熱可塑性樹脂シート94上の試料片911の位置との対応関係が決まっていることから、画像解析によって得られる測定点913の位置から、熱可塑性樹脂シート94上の各試料片911の位置も特定することができる。 Since the correspondence between the position of the measurement point 913 on the sample 91 and the position of the sample piece 911 on the thermoplastic resin sheet 94 is determined as described above, heat is obtained from the position of the measurement point 913 obtained by image analysis. The position of each sample piece 911 on the plastic resin sheet 94 can also be specified.
 面積値は、試料片911毎に異なる値を有する。これは、試料91の表面に凹凸が存在すること等によって、熱可塑性樹脂シート94への試料91の接着が部分的に不十分である場合等に、支持体93を試料91の上面から外す際に試料91の一部が熱可塑性樹脂シート94に付着することなくスライドガラス91側に残ってしまうため、例えば図7に示すように試料片911毎に異なる平面形状で採取されることによる。しかし、一般的には、試料片911の量と面積値の間には比例関係に近い相関関係があることから、試料片911毎の面積値は、後述のように定量分析で得られるデータを補正するために用いることができる。 The area value has a different value for each sample piece 911. This is when the support 93 is removed from the upper surface of the sample 91 when the adhesion of the sample 91 to the thermoplastic resin sheet 94 is partially insufficient due to the presence of irregularities on the surface of the sample 91 or the like. Since a part of the sample 91 remains on the slide glass 91 side without adhering to the thermoplastic resin sheet 94, for example, as shown in FIG. 7, each sample piece 911 is collected in a different planar shape. However, in general, since there is a closely proportional correlation between the amount of the sample piece 911 and the area value, the area value for each sample piece 911 is based on the data obtained by the quantitative analysis as described later. It can be used for correction.
 ここで定量分析システム1の動作の説明から一旦離れ、試料片911の量と面積値の関係を求める実験を行った結果を説明する。この実験では、マウスの肝臓をスライスしたものを試料91として、試料採取部10を用いて試料片911を採取し、試料片911の面積値を画像解析で求めた。それと共に、試料片911の採取後にスライドガラス92側に残った試料91に対して、試料片911の採取した領域を含む所定の範囲内に光を照射し、試料91を透過した光の透過光量を測定した。スライドガラス92側の試料91の残存量が少ないほど、透過光量は大きくなり、試料片911の量は多くなると考えられる。実験結果を図8に示す。この実験結果は、試料片911の面積値と試料91を透過した光の透過光量が比例関係にあることを示しており、この結果から、試料片911の面積値と試料片911の量も比例関係にあると考えられる。 Here, apart from the explanation of the operation of the quantitative analysis system 1, the result of conducting an experiment to obtain the relationship between the amount of the sample piece 911 and the area value will be explained. In this experiment, a sliced mouse liver was used as a sample 91, and a sample piece 911 was collected using the sampling unit 10, and the area value of the sample piece 911 was obtained by image analysis. At the same time, the sample 91 remaining on the slide glass 92 side after the sample piece 911 is collected is irradiated with light within a predetermined range including the sampled area of the sample piece 911, and the amount of transmitted light transmitted through the sample 91. Was measured. It is considered that the smaller the remaining amount of the sample 91 on the slide glass 92 side, the larger the amount of transmitted light and the larger the amount of the sample piece 911. The experimental results are shown in FIG. This experimental result shows that the area value of the sample piece 911 and the amount of transmitted light transmitted through the sample 91 are in a proportional relationship, and from this result, the area value of the sample piece 911 and the amount of the sample piece 911 are also proportional. It is considered to be in a relationship.
 定量分析システム1の動作の説明に戻る。顕微鏡画像取得部21での処理の終了後、前処理部31は、試料片911が採取された支持体93を試料採取部10から受け取り、熱可塑性樹脂シート94上に採取された個々の試料片911から液体試料を調製する。具体的には、図6に示すような、多数のウェル320を備えるマイクロタイタープレート(MTP)3200を用い、そのMTP3200の各ウェル320に予め、試料片911中の成分を抽出するための所定の抽出液を注入しておく。その各ウェル320の内側に熱可塑性樹脂シート94上の試料片911が位置するように、支持体93をMTP3200の上面(各ウェル320が開口している側の面)に貼り付ける。その状態で、例えばMTP3200全体を上下反転させることで、試料片911を各ウェル320中の抽出液中に浸漬させ、試料片911中の成分が溶解した液体試料を調製する。上述のように試料91上の測定点913の位置と熱可塑性樹脂シート94上の試料片911の位置との対応関係が決まっていれば、調製された各液体試料と試料91上の測定点913の位置との関係も一義的に決まる。なお、前述の通り図6は説明のための簡略化した図面であり、ウェル320の数は図示したものより遙かに多い。 Return to the explanation of the operation of the quantitative analysis system 1. After the processing by the microscope image acquisition unit 21 is completed, the pretreatment unit 31 receives the support 93 from which the sample piece 911 is collected from the sample collection unit 10, and the individual sample pieces collected on the thermoplastic resin sheet 94. Prepare a liquid sample from 911. Specifically, as shown in FIG. 6, a microtiter plate (MTP) 3200 having a large number of wells 320 is used, and a predetermined value for extracting components in the sample piece 911 in advance in each well 320 of the MTP 3200 is used. Inject the extract. The support 93 is attached to the upper surface of the MTP3200 (the surface on the side where each well 320 is open) so that the sample piece 911 on the thermoplastic resin sheet 94 is located inside each well 320. In that state, for example, by turning the entire MTP 3200 upside down, the sample piece 911 is immersed in the extract in each well 320 to prepare a liquid sample in which the components in the sample piece 911 are dissolved. If the correspondence between the position of the measurement point 913 on the sample 91 and the position of the sample piece 911 on the thermoplastic resin sheet 94 is determined as described above, each prepared liquid sample and the measurement point 913 on the sample 91 are determined. The relationship with the position of is also uniquely determined. As described above, FIG. 6 is a simplified drawing for explanation, and the number of wells 320 is much larger than that shown in the figure.
 その後、液体クロマトグラフ質量分析装置30は、制御部41による制御の下で、各ウェル320中に調製された多数の液体試料に対して次のように分析を実行する。図9は、LC部32及びMS部34の動作を説明するための図であり、上から順にLC部成分分離動作(上図)、LC部溶出液貯留動作(中図)、MS部分析動作(下図)を示している。以下では、LC部32a~32nの個数が100個である場合を例として説明するが、その例には限定されない。 After that, the liquid chromatograph mass spectrometer 30 executes analysis on a large number of liquid samples prepared in each well 320 as follows under the control of the control unit 41. FIG. 9 is a diagram for explaining the operations of the LC unit 32 and the MS unit 34, in that order from the top, the LC unit component separation operation (upper figure), the LC unit eluate storage operation (middle figure), and the MS unit analysis operation. (Figure below) is shown. Hereinafter, the case where the number of LC units 32a to 32n is 100 will be described as an example, but the present invention is not limited to this example.
 制御部41の制御の下で、100個のLC部32a~32nは並行して、それぞれ与えられた液体試料中の成分を分離する処理を実施する(図9の上図)。即ち、LC部32のインジェクタ322において試料保持部3222は、ウェル(液体試料容器)3220中の液体試料を、ニードル3221を通して所定量吸引して保持する。送液ポンプ321により試料注入部3223を介してカラム323には一定流量で移動相が送給され、制御部41からの指示に応じて試料注入部3223は試料保持部322に保持されている液体試料を移動相中に注入する。 Under the control of the control unit 41, the 100 LC units 32a to 32n perform a process of separating the components in the given liquid sample in parallel (upper figure of FIG. 9). That is, in the injector 322 of the LC unit 32, the sample holding unit 3222 sucks and holds a predetermined amount of the liquid sample in the well (liquid sample container) 3220 through the needle 3221. The mobile phase is fed to the column 323 at a constant flow rate by the liquid feed pump 321 via the sample injection unit 3223, and the sample injection unit 3223 is held in the sample holding unit 322 in response to an instruction from the control unit 41. Inject the sample into the mobile phase.
 注入された液体試料は移動相の流れに乗ってカラム323に導入され、カラム323を通過する間に液体試料中の成分は保持時間に応じて分離され、分離後の成分を含む溶出液がカラム323の出口から溶出する。入口側流路切替部3243は所定時間t1毎(本例では10秒毎)に溶出液の供給先を切り替える。図4中に矢印で示すように、1つの貯留容器3241に溶出液が供給されているとき、出口側流路切替部3244は貯留容器3241からの溶出液流出路を閉鎖しており、貯留容器3241に溶出液が貯留される。所定時間t1が経過すると入口側流路切替部3243は溶出液の供給先を貯留容器3242へと切り替える。このとき、出口側流路切替部3244は貯留容器3242からの溶出液流出路を閉鎖しており、今度は貯留容器3242に溶出液が貯留される。 The injected liquid sample is introduced into the column 323 along with the flow of the mobile phase, the components in the liquid sample are separated according to the retention time while passing through the column 323, and the eluate containing the separated components is the column. Elute from the outlet of 323. The inlet side flow path switching unit 3243 switches the supply destination of the eluate every t1 (in this example, every 10 seconds) for a predetermined time. As shown by an arrow in FIG. 4, when the eluate is supplied to one storage container 3241, the outlet side flow path switching unit 3244 closes the eluate outflow path from the storage container 3241, and the storage container The eluate is stored in 3241. When the predetermined time t1 elapses, the inlet side flow path switching unit 3243 switches the supply destination of the eluate to the storage container 3242. At this time, the outlet-side flow path switching unit 3244 closes the eluate outflow path from the storage container 3242, and this time, the eluate is stored in the storage container 3242.
 即ち、図9の中図に示すように、所定時間t1(=10秒)毎に、2つの貯留容器3241、3242に交互に溶出液が貯留される。このため、貯留された所定量の溶出液である溶出液試料は、所定時間t1内にカラム323の出口から溶出した溶出液中の成分を含み、カラム323において一旦分離された複数の成分は貯留容器3241又は3242に貯留される時点で再び混じることもあり得る。言い換えれば、LC部32ではカラム323で成分分離したあとの液体試料を所定時間t1毎に分画して貯留しているとみることができる。100台のLC部32a~32n(図9の上図におけるLC#1~LC#100)でこうした動作がほぼ同じタイミングで並行して実施されるから、100個のウェル3220にそれぞれ収容されている液体試料がほぼ同時に処理されることになる。 That is, as shown in the middle figure of FIG. 9, the eluate is alternately stored in the two storage containers 3241 and 3242 every predetermined time t1 (= 10 seconds). Therefore, the eluate sample, which is the stored eluate in a predetermined amount, contains the components in the eluate eluted from the outlet of the column 323 within a predetermined time t1, and the plurality of components once separated in the column 323 are stored. It may remix when stored in container 3241 or 3242. In other words, in the LC unit 32, it can be considered that the liquid sample after the components are separated by the column 323 is fractionated and stored every t1 for a predetermined time. Since these operations are performed in parallel in 100 LC units 32a to 32n (LC # 1 to LC # 100 in the upper figure of FIG. 9) at substantially the same timing, they are housed in 100 wells 3220, respectively. Liquid samples will be processed at about the same time.
 各LC部32a~32nの試料貯留部324a~324nにおいて、貯留容器3241に溶出液が貯留されたあと、他の貯留容器3242に溶出液が貯留され始めると、出口側流路切替部3244は貯留容器3241側の溶出液排出路を開放し、貯留容器3241に貯留されている溶出液試料を試料切替部33へと流す。測定開始時点から所定時間t1が経過した時点以降、試料切替部33は100台のLC部32a~32nにおける試料貯留部324a~324nから供給される溶出液試料を順番に選択してMS部34に供給するよう流路を切り替える。ここでは、一台のLC部32における試料貯留部324から供給される溶出液試料をMS部34に供給する時間は100msec程度である。したがって、10秒という所定時間t1内に、100台のLC部32a~32n全ての試料貯留部324a~324nから供給される溶出液試料を1回ずつ選択してMS部34に供給することが可能である。 In the sample storage units 324a to 324n of the LC units 32a to 32n, when the eluate is stored in the storage container 3241 and then the eluate begins to be stored in the other storage container 3242, the outlet side flow path switching unit 3244 stores the eluent. The eluent discharge path on the container 3241 side is opened, and the eluent sample stored in the storage container 3241 is flowed to the sample switching unit 33. After a predetermined time t1 has elapsed from the start of measurement, the sample switching unit 33 sequentially selects the eluate samples supplied from the sample storage units 324a to 324n in the 100 LC units 32a to 32n and sends them to the MS unit 34. Switch the flow path to supply. Here, the time for supplying the eluate sample supplied from the sample storage unit 324 in one LC unit 32 to the MS unit 34 is about 100 msec. Therefore, within a predetermined time t1 of 10 seconds, the eluate samples supplied from all the sample storage units 324a to 324n of 100 LC units 32a to 32n can be selected once and supplied to the MS unit 34. Is.
 MS部34は、上記100msecの期間に或る1個のLC部32における試料貯留部324から供給される溶出液試料に含まれる各種成分をイオン化し、生成されたイオンを質量分析する。或いは、生成されたイオンの中で特定の質量電荷比を有するイオンを選択したうえでCIDにより解離させ、その解離により生成されたプロダクトイオンを質量分析する。MS部34は試料切替部33により供給される溶出液が切り替えられる毎に、こうした質量分析を実行する(図9の下図)。つまり、100msec期間に1回の質量分析又はMS/MS分析を実施する。従って、MS部34では、異なるウェル3220中の液体試料を成分分離して得られる一部の(所定時間t1分の)溶出液に含まれる成分を反映したマススペクトル(又はMS/MSスペクトル)データを、100msec毎に順次得ることができる(図9の下図)。このように各液体試料に対して得られるスペクトルのデータは、測定データ格納部421に格納される。測定データ格納部421では、それに格納された各液体試料のスペクトルのデータと、位置情報格納部422内に格納されている、各液体試料に対応する試料片911(又は測定点913)の位置情報のデータが関連付けられている。 The MS unit 34 ionizes various components contained in the eluate sample supplied from the sample storage unit 324 in one LC unit 32 during the period of 100 msec, and mass spectrometrically analyzes the generated ions. Alternatively, an ion having a specific mass-to-charge ratio is selected from the generated ions and then dissociated by CID, and the product ion generated by the dissociation is mass-analyzed. The MS unit 34 executes such mass spectrometry each time the eluate supplied by the sample switching unit 33 is switched (lower figure of FIG. 9). That is, mass spectrometry or MS / MS analysis is performed once every 100 msec period. Therefore, in the MS unit 34, mass spectrum (or MS / MS spectrum) data reflecting the components contained in a part of the eluate (for a predetermined time of t1 minute) obtained by separating the components of the liquid samples in the different wells 3220. Can be sequentially obtained every 100 msec (lower figure of FIG. 9). The spectral data obtained for each liquid sample in this way is stored in the measurement data storage unit 421. In the measurement data storage unit 421, the spectrum data of each liquid sample stored therein and the position information of the sample piece 911 (or measurement point 913) corresponding to each liquid sample stored in the position information storage unit 422. Data is associated.
 全ての液体試料についての測定終了後、ユーザは入力部43から2次元分布を確認したい成分を指示する。データ処理部42の内部のメモリには、各種の成分に対応する質量電荷比とおおよその保持時間の範囲についての情報が予め格納されている。そこで、分析対象の成分が指示されると、補正前データ計算部423は、その成分に対応した質量電荷比と保持時間の範囲の情報を前記メモリから取得し、各液体試料について、測定データ格納部421に格納されているスペクトルのデータから、当該保持時間の範囲内にある当該質量電荷比におけるスペクトルのデータを抽出し、マスクロマトグラムを当該範囲内で積分した積分値を求める。ここで求められた積分値は、各液体試料が有する分析対象の成分の量に対応しているが、各液体試料の元となった試料片911毎の量にも依存する。そこで補正計算部24は各液体試料について、面積データ格納部23から試料片911の面積値を取得し、補正前データ計算部423が計算したマスクロマトグラムの積分値を面積値で除する計算を行うことにより、試料片毎911の量の相違により生じるデータの誤差を補正する。 After the measurement for all the liquid samples is completed, the user instructs the component whose two-dimensional distribution is to be confirmed from the input unit 43. In the internal memory of the data processing unit 42, information about the mass-to-charge ratio corresponding to various components and the range of the approximate holding time is stored in advance. Therefore, when the component to be analyzed is instructed, the pre-correction data calculation unit 423 acquires information on the range of the mass-to-charge ratio and the holding time corresponding to the component from the memory, and stores the measurement data for each liquid sample. From the spectrum data stored in the part 421, the spectrum data at the mass-to-charge ratio within the holding time range is extracted, and the integrated value obtained by integrating the mass chromatogram within the range is obtained. The integrated value obtained here corresponds to the amount of the component to be analyzed that each liquid sample has, but also depends on the amount of each sample piece 911 that is the source of each liquid sample. Therefore, the correction calculation unit 24 acquires the area value of the sample piece 911 from the area data storage unit 23 for each liquid sample, and divides the integrated value of the mass chromatogram calculated by the pre-correction data calculation unit 423 by the area value. By doing so, the data error caused by the difference in the amount of 911 for each sample piece is corrected.
 この補正計算の例として、表1に、図10に示した4個の試料片9111~9114につき、試料片の面積値、並びに或る成分に関する補正前及び補正後のマスクロマトグラムの積分値を示す。なお、図10は、試料片9111~9114を位相差顕微鏡211で観察した画像である。位相差顕微鏡211で観察することにより、試料片9111~9114とその周囲とのコントラストが明確になる。表1は併せて、補正前及び補正後のマスクロマトグラムのそれぞれにつき、4個の試料片9111~9114の標準偏差、平均値、及び標準偏差を平均値で除した値であるCV値を記載した。CV値は、平均値に対するデータのばらつきを示す指標であり、補正前よりも補正後の方が小さくなっている。これは、補正前には実際よりもデータのばらつきが大きくなっていたものが、補正によって是正されたことを意味している。
Figure JPOXMLDOC01-appb-T000001
As an example of this correction calculation, Table 1 shows the area values of the sample pieces and the integrated values of the mass chromatograms before and after the correction for a certain component for the four sample pieces 9111 to 9114 shown in FIG. show. Note that FIG. 10 is an image obtained by observing the sample pieces 9111 to 9114 with a phase contrast microscope 211. By observing with a phase contrast microscope 211, the contrast between the sample pieces 9111 to 9114 and their surroundings becomes clear. Table 1 also shows the standard deviation, the average value, and the CV value obtained by dividing the standard deviation of the four sample pieces 9111 to 9114 by the average value for each of the mass chromatograms before and after the correction. bottom. The CV value is an index showing the variation of the data with respect to the average value, and is smaller after the correction than before the correction. This means that the data variability that was larger than it actually was before the correction was corrected by the correction.
Figure JPOXMLDOC01-appb-T000001
 補正計算部24が行う以上の操作によって、1つの試料片911に対して1つの補正後のデータ(積分値)が得られる。イメージング画像作成部424は、各試料片911の補正後のデータと、位置情報格納部422に格納されている各試料片911の位置情報に基づいて、2次元マップ上に色の色相、彩度及び明度のいずれか1つ又は複数の相違によって、試料91内の各位置における補正後のデータを表す画像を作成する。イメージング画像作成部424で作成される画像の一例を図11に示す。作成された画像は、表示処理部425によって表示部44で表示するための信号に変換され、該信号が表示部44に送信される。表示部44は該信号を受けて、作成された画像を表示する。 By the above operation performed by the correction calculation unit 24, one corrected data (integral value) can be obtained for one sample piece 911. The imaging image creation unit 424 is based on the corrected data of each sample piece 911 and the position information of each sample piece 911 stored in the position information storage unit 422, and the hue and saturation of the color are displayed on the two-dimensional map. And any one or more differences in brightness create an image representing the corrected data at each position in the sample 91. FIG. 11 shows an example of an image created by the imaging image creation unit 424. The created image is converted into a signal for display on the display unit 44 by the display processing unit 425, and the signal is transmitted to the display unit 44. The display unit 44 receives the signal and displays the created image.
 本実施形態の定量分析システム1及びレーザマイクロダイセクション装置2によれば、各試料片911の面積値によってデータが補正されるため、試料片911毎の量の相違により生じるデータの誤差を小さくすることができる。 According to the quantitative analysis system 1 and the laser microdissection device 2 of the present embodiment, the data is corrected by the area value of each sample piece 911, so that the error of the data caused by the difference in the amount of each sample piece 911 is reduced. be able to.
(3) 変形例
 本発明は上記実施形態には限定されず、種々の変形が可能である。
(3) Modifications The present invention is not limited to the above embodiment, and various modifications are possible.
 例えば上記実施形態では、試料片911の面積値を求めるために、位相差顕微鏡211を用いて顕微鏡画像を取得したうえで画像解析を行っているが、位相差顕微鏡211の代わりに通常の光学顕微鏡やレーザ顕微鏡等を用いてもよい。また、比較的大きい試料片を取り扱う場合には、顕微鏡を用いることなくカメラで試料片を撮影するようにしてもよい。さらには、画像解析以外の手法によって試料片911の面積を求めるようにしてもよい。 For example, in the above embodiment, in order to obtain the area value of the sample piece 911, a microscope image is acquired using a phase-contrast microscope 211 and then image analysis is performed. However, instead of the phase-contrast microscope 211, a normal optical microscope is used. Or a laser microscope or the like may be used. Further, when handling a relatively large sample piece, the sample piece may be photographed with a camera without using a microscope. Further, the area of the sample piece 911 may be obtained by a method other than image analysis.
 上記実施形態では、顕微鏡画像のデータを二値化したうえで画像解析を行っているが、二値化することなく画像解析を行ってもよい。 In the above embodiment, the image analysis is performed after binarizing the data of the microscope image, but the image analysis may be performed without binarizing.
 上記実施形態では試料片911として採取されずに残った試料91の残部の顕微鏡画像を取得し、試料片911が採取されて空隙になっている各部分の画像に基づいて試料片911の面積値を求めているが、その代わりに、採取された試料片911が付着している熱可塑性樹脂シート94の表面の顕微鏡画像を取得し、該顕微鏡画像に含まれる試料片911の画像から試料片911の面積値を求めるようにしてもよい。 In the above embodiment, a microscope image of the rest of the sample 91 that remains without being collected as the sample piece 911 is acquired, and the area value of the sample piece 911 is based on the image of each part where the sample piece 911 is collected and becomes a void. However, instead, a microscopic image of the surface of the thermoplastic resin sheet 94 to which the collected sample piece 911 is attached is acquired, and the sample piece 911 is taken from the image of the sample piece 911 included in the microscopic image. The area value of may be obtained.
 MS部34は上述のQ-TOF型質量分析装置には限られず、シングルタイプの四重極型質量分析装置、トリプル四重極型質量分析装置、イオントラップ-飛行時間型質量分析装置等、適宜の方式の装置を用いることができる。また、ESI法ではなく、大気圧化学イオン化(Atmospheric Pressure Chemical Ionization:APCI)法、大気圧光イオン化(Atmospheric Pressure Photoionization:APPI)法等の、他の方式のイオン化法を利用したイオン源を搭載した質量分析装置でもよい。 The MS unit 34 is not limited to the above-mentioned Q-TOF type mass spectrometer, and may be appropriately used as a single type quadrupole mass spectrometer, a triple quadrupole mass spectrometer, an ion trap-time-of-flight mass spectrometer, or the like. The device of the above method can be used. In addition, instead of the ESI method, it is equipped with an ion source that uses other ionization methods such as the atmospheric pressure chemical ionization (APCI) method and the atmospheric pressure photoionization (APPI) method. It may be a mass analyzer.
 上記実施形態では複数のLC部32a~32nを備える液体クロマトグラフ質量分析装置を用いて複数の試料片の分析を同時並行で行っているが、1つのLC部のみを備える液体クロマトグラフ質量分析装置を用いて試料片を1個ずつ分析するようにしてもよい。 In the above embodiment, a plurality of sample pieces are analyzed in parallel using a liquid chromatograph mass spectrometer provided with a plurality of LC units 32a to 32n, but a liquid chromatograph mass spectrometer provided with only one LC unit. May be used to analyze the sample pieces one by one.
[態様]
 上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Aspect]
It will be understood by those skilled in the art that the above-described exemplary embodiments are specific examples of the following embodiments.
 (第1項)
 第1項に係るレーザマイクロダイセクション装置は、測定対象の試料内における複数の測定領域からそれぞれレーザマイクロダイセクション法により得られた試料片毎に定量分析を行うことにより得られるデータを補正するデータ補正部を有し、
 該データ補正部が、前記試料片毎に該試料片の面積値を求める面積取得部と、前記試料片毎のデータを、該試料片の前記面積値により補正する計算を行う補正計算部とを備える。
(Section 1)
The laser microdissection device according to the first item is data for correcting data obtained by performing quantitative analysis for each sample piece obtained by the laser microdissection method from a plurality of measurement regions in the sample to be measured. Has a correction part,
The data correction unit includes an area acquisition unit that obtains an area value of the sample piece for each sample piece, and a correction calculation unit that calculates data for each sample piece by the area value of the sample piece. Be prepared.
 第1項に係るレーザマイクロダイセクション装置によれば、一般に試料片の量と面積値の間に比例関係に近い相関関係があることから、試料片毎のデータを、該試料片の前記面積値により補正する計算を行うことにより、試料片毎の量の相違により生じるデータの誤差を小さくすることができる。 According to the laser microdissection device according to the first item, since there is generally a correlation close to a proportional relationship between the amount of the sample piece and the area value, the data for each sample piece is used to obtain the area value of the sample piece. By performing the calculation corrected by, it is possible to reduce the data error caused by the difference in the amount of each sample piece.
 試料片毎に定量分析を行うことにより得られるデータには、例えば液体クロマトグラフ質量分析法によって得られるクロマトグラムやマススペクトルのピーク面積やピークトップの値が挙げられる。 Data obtained by performing quantitative analysis for each sample piece include, for example, the peak area and peak top value of the chromatogram or mass spectrum obtained by the liquid chromatograph mass spectrometry.
 試料片の面積値により補正する計算には、該試料片に定量分析を行うことにより得られるデータを面積値で除する計算や、該計算を行った後にさらに所定の基準値を乗除する計算、あるいは面積値に所定の基準値を乗除することによって補正パラメータを求めたうえで前記データを該補正パラメータで除する計算等が含まれる。このように基準値を乗除する演算を行うことにより、データをより正確な値に近づけることができる。基準値には、複数の試料片からそれぞれ得られた面積値の平均値や中央値等を用いることができる。面積値の平均値や中央値を基準値に用いる場合には、データをそれらの値で除する計算を行う。一方、データを面積値で除する演算のみを行う場合には、演算後の値は本来のデータ(ピーク面積やピークトップの値)を表さない数値となるが、そのような数値を用いて試料片同士(試料中の測定領域同士)の相対的な相違を求めることは可能である。 Calculations to be corrected by the area value of a sample piece include a calculation in which the data obtained by performing a quantitative analysis on the sample piece is divided by the area value, and a calculation in which a predetermined reference value is further multiplied after the calculation. Alternatively, a calculation or the like in which the correction parameter is obtained by multiplying the area value by a predetermined reference value and then the data is divided by the correction parameter is included. By performing the operation of multiplying and dividing the reference value in this way, the data can be brought closer to a more accurate value. As the reference value, the average value, the median value, or the like of the area values obtained from each of the plurality of sample pieces can be used. When the average value or median value of the area value is used as the reference value, the calculation is performed by dividing the data by those values. On the other hand, when only the calculation of dividing the data by the area value is performed, the value after the calculation is a numerical value that does not represent the original data (peak area or peak top value), but such a numerical value is used. It is possible to determine the relative difference between the sample pieces (measurement areas in the sample).
 (第2項)
 第2項に係るレーザマイクロダイセクション装置は、第1項に係るレーザマイクロダイセクション装置において、
 さらに顕微鏡を有し、
 前記面積取得部が、前記顕微鏡によって前記試料片毎に取得される顕微鏡画像に対して画像解析を行うことによって該試料片毎の面積値を求めるものである。
(Section 2)
The laser microdissection device according to the second item is the laser microdissection device according to the first item.
Also has a microscope,
The area acquisition unit obtains an area value for each sample piece by performing image analysis on a microscope image acquired for each sample piece by the microscope.
 第2項に係るレーザマイクロダイセクション装置によれば、公知である画像解析の手法を用いて試料片毎の面積値を求めることにより、データの補正を容易に行うことができる。 According to the laser microdissection device according to the second item, the data can be easily corrected by obtaining the area value of each sample piece by using a known image analysis method.
 (第3項)
 第3項に係るレーザマイクロダイセクション装置は、第2項に係るレーザマイクロダイセクション装置において、前記顕微鏡が位相差顕微鏡である。
(Section 3)
In the laser microdissection device according to the third item, the microscope is a phase contrast microscope in the laser microdissection device according to the second item.
 第3項に係るレーザマイクロダイセクション装置によれば、位相差顕微鏡を用いることにより、透明に近い試料片であっても、該試料片を透過する光と該試料片の周囲を通過する光との位相差によって該試料片の画像を明瞭に得ることができるため、面積取得部において画像解析に基づいて面積値をより正確に求めることができる。その結果、データの補正をより正確に行うことができる。 According to the laser microdissection apparatus according to the third item, by using a phase contrast microscope, even if the sample piece is almost transparent, the light transmitted through the sample piece and the light passing around the sample piece can be obtained. Since the image of the sample piece can be clearly obtained by the phase difference of the above, the area value can be obtained more accurately based on the image analysis in the area acquisition unit. As a result, the data can be corrected more accurately.
 (第4項)
 第4項に係るレーザマイクロダイセクション装置は、第2項又は第3項に係るレーザマイクロダイセクション装置において、前記面積取得部が、前記顕微鏡画像を二値化したうえで前記画像解析を行うものである。
(Section 4)
The laser microdissection device according to the fourth item is the laser microdissection device according to the second or third item, in which the area acquisition unit binarizes the microscope image and then performs the image analysis. Is.
 第4項に係るレーザマイクロダイセクション装置によれば、試料片毎に取得される顕微鏡画像に対して画像解析を行うことにより、試料片の輪郭がより明確になるため、面積取得部において画像解析に基づいて面積値をより正確に求めることができる。その結果、データの補正をより正確に行うことができる。 According to the laser microdissection device according to the fourth item, by performing image analysis on the microscope image acquired for each sample piece, the outline of the sample piece becomes clearer, so that the area acquisition unit performs image analysis. The area value can be obtained more accurately based on. As a result, the data can be corrected more accurately.
 第5項に係るレーザマイクロダイセクション方法は、
 測定対象の試料内における複数の測定領域からそれぞれレーザマイクロダイセクション法により試料片を取得する試料片取得工程と、
 前記試料片毎に該試料片の面積値を求める面積取得工程と、
 前記試料片毎に定量分析を行うことにより得られるデータを、該試料片の前記面積値により補正する計算を行う補正計算工程と
 を有する。
The laser microdissection method according to item 5 is
A sample piece acquisition process in which a sample piece is obtained from a plurality of measurement regions in the sample to be measured by the laser microdissection method, respectively.
An area acquisition step for obtaining the area value of the sample piece for each sample piece, and
It has a correction calculation step of performing a calculation in which the data obtained by performing a quantitative analysis for each sample piece is corrected by the area value of the sample piece.
 第5項に係るレーザマイクロダイセクション方法によれば、試料片毎のデータを、該試料片の前記面積値により補正する計算を行うことにより、試料片毎の量の相違により生じるデータの誤差を小さくすることができる。 According to the laser microdissection method according to the fifth item, by performing a calculation in which the data for each sample piece is corrected by the area value of the sample piece, the error of the data caused by the difference in the amount for each sample piece can be obtained. It can be made smaller.
 (第6項)
 第6項に係る定量分析システムは、
 第1~4項のいずれかに係るレーザマイクロダイセクション装置と、
 前記試料片毎に定量分析を行う液体クロマトグラフ質量分析装置と
を備える。
(Section 6)
The quantitative analysis system according to item 6 is
The laser microdissection device according to any one of items 1 to 4 and
It is provided with a liquid chromatograph mass spectrometer that performs quantitative analysis for each sample piece.
 第6項に係る定量分析システムによれば、第1~4項のいずれかに係るレーザマイクロダイセクション装置を用いることで、試料片毎の量の相違により生じる誤差が小さい定量分析を行うことができる。 According to the quantitative analysis system according to the sixth item, by using the laser microdissection device according to any one of the first to fourth items, it is possible to perform a quantitative analysis with a small error caused by a difference in the amount of each sample piece. can.
1…定量分析システム
10…試料採取部
11…XYステージ
12…レーザ光源
13…熱可塑性フィルム移動装置
131…吸着器
132…アーム
2…レーザマイクロダイセクション装置
20…データ補正部
21…顕微鏡画像取得部
211…位相差顕微鏡
2111…光源
2112…位相差観察用コンデンサ
2113…試料ステージ
2114…位相差観察用対物レンズ
212…カメラ
22…面積取得部
23…面積データ格納部
24…補正計算部
30…液体クロマトグラフ質量分析装置
31…前処理部
32、32a~32n…LC(液体クロマトグラフ)部
320…移動相容器
3200…MTP
321…送液ポンプ
322…インジェクタ
322…試料保持部
3220…液体試料容器(ウェル)
3221…ニードル
3222…試料保持部
3223…試料注入部
323…カラム
324、324a~324n…試料貯留部
3241、3242…貯留容器
3243…入口側流路切替部
3244…出口側流路切替部
33…試料切替部
34…MS(質量分析)部
41…制御部
42…データ処理部
421…測定データ格納部
422…位置情報格納部
423…補正前データ計算部
424…イメージング画像作成部
425…表示処理部
43…入力部
44…表示部
91…スライドガラス
91…試料
911、9111~9114…試料片
912…2次元領域
913…測定点
92…スライドガラス
93…支持体
94…熱可塑性樹脂シート
95…レーザビーム
1 ... Quantitative analysis system 10 ... Sampling unit 11 ... XY stage 12 ... Laser light source 13 ... Thermoplastic film moving device 131 ... Adsorber 132 ... Arm 2 ... Laser microdissection device 20 ... Data correction unit 21 ... Microscopic image acquisition unit 211 ... Phase difference microscope 2111 ... Light source 2112 ... Phase difference observation capacitor 2113 ... Sample stage 2114 ... Phase difference observation objective lens 212 ... Camera 22 ... Area acquisition unit 23 ... Area data storage unit 24 ... Correction calculation unit 30 ... Liquid chromatography Graph mass analyzer 31 ... Pretreatment unit 32, 32a to 32n ... LC (liquid chromatograph) unit 320 ... Mobile phase container 3200 ... MTP
321 ... Liquid feed pump 322 ... Injector 322 ... Sample holder 3220 ... Liquid sample container (well)
3221 ... Needle 3222 ... Sample holding part 3223 ... Sample injection part 323 ... Columns 324, 324a to 324n ... Sample storage parts 3241, 3242 ... Storage container 3243 ... Inlet side flow path switching part 3244 ... Outlet side flow path switching part 33 ... Sample Switching unit 34 ... MS (mass analysis) unit 41 ... Control unit 42 ... Data processing unit 421 ... Measurement data storage unit 422 ... Position information storage unit 423 ... Pre-correction data calculation unit 424 ... Imaging image creation unit 425 ... Display processing unit 43 ... Input unit 44 ... Display unit 91 ... Slide glass 91 ... Sample 911, 9111-9114 ... Sample piece 912 ... Two-dimensional region 913 ... Measurement point 92 ... Slide glass 93 ... Support 94 ... Thermoplastic resin sheet 95 ... Laser beam

Claims (6)

  1.  測定対象の試料内における複数の測定領域からそれぞれレーザマイクロダイセクション法により得られた試料片毎に定量分析を行うことにより得られるデータを補正するデータ補正部を有し、
     該データ補正部が、前記試料片毎に該試料片の面積値を求める面積取得部と、前記試料片毎のデータを、該試料片の前記面積値により補正する計算を行う補正計算部とを備える、
     レーザマイクロダイセクション装置。
    It has a data correction unit that corrects the data obtained by performing quantitative analysis for each sample piece obtained by the laser microdissection method from a plurality of measurement regions in the sample to be measured.
    The data correction unit includes an area acquisition unit that obtains an area value of the sample piece for each sample piece, and a correction calculation unit that calculates data for each sample piece by the area value of the sample piece. Prepare, prepare
    Laser microdissection device.
  2.  さらに顕微鏡を有し、
     前記面積取得部が、前記顕微鏡によって前記試料片毎に取得される顕微鏡画像に対して画像解析を行うことによって該試料片毎の面積値を求めるものである、
     請求項1に記載のレーザマイクロダイセクション装置。
    Also has a microscope,
    The area acquisition unit obtains an area value for each sample piece by performing image analysis on a microscope image acquired for each sample piece by the microscope.
    The laser microdissection device according to claim 1.
  3.  前記顕微鏡が位相差顕微鏡である、請求項2に記載のレーザマイクロダイセクション装置。 The laser microdissection apparatus according to claim 2, wherein the microscope is a phase contrast microscope.
  4.  前記面積取得部が、前記顕微鏡画像を二値化したうえで前記画像解析を行うものである、請求項2に記載のレーザマイクロダイセクション装置。 The laser microdissection device according to claim 2, wherein the area acquisition unit binarizes the microscope image and then performs the image analysis.
  5.  測定対象の試料内における複数の測定領域からそれぞれレーザマイクロダイセクション法により試料片を取得する試料片取得工程と、
     前記試料片毎に該試料片の面積値を求める面積取得工程と、
     前記試料片毎に定量分析を行うことにより得られるデータを、該試料片の前記面積値により補正する計算を行う補正計算工程と
     を有する、レーザマイクロダイセクション方法。
    A sample piece acquisition process in which a sample piece is obtained from a plurality of measurement regions in the sample to be measured by the laser microdissection method, respectively.
    An area acquisition step for obtaining the area value of the sample piece for each sample piece, and
    A laser microdissection method comprising a correction calculation step of performing a calculation in which data obtained by performing a quantitative analysis for each sample piece is corrected by the area value of the sample piece.
  6.  請求項1~4のいずれか1項に記載のレーザマイクロダイセクション装置と、
     前記試料片毎に定量分析を行う液体クロマトグラフ質量分析装置と
    を備える定量分析システム。
    The laser microdissection device according to any one of claims 1 to 4.
    A quantitative analysis system including a liquid chromatograph mass spectrometer that performs quantitative analysis for each sample piece.
PCT/JP2020/011793 2020-03-17 2020-03-17 Laser microdissection device, laser microdissection method, and quantitative analysis system WO2021186577A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/011793 WO2021186577A1 (en) 2020-03-17 2020-03-17 Laser microdissection device, laser microdissection method, and quantitative analysis system
JP2022508676A JPWO2021186577A1 (en) 2020-03-17 2020-03-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/011793 WO2021186577A1 (en) 2020-03-17 2020-03-17 Laser microdissection device, laser microdissection method, and quantitative analysis system

Publications (1)

Publication Number Publication Date
WO2021186577A1 true WO2021186577A1 (en) 2021-09-23

Family

ID=77770945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011793 WO2021186577A1 (en) 2020-03-17 2020-03-17 Laser microdissection device, laser microdissection method, and quantitative analysis system

Country Status (2)

Country Link
JP (1) JPWO2021186577A1 (en)
WO (1) WO2021186577A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245998A (en) * 2012-05-24 2013-12-09 Olympus Corp Tissue distribution computing method
WO2015053039A1 (en) * 2013-10-07 2015-04-16 国立大学法人名古屋大学 Laser microdissection device, analysis device containing laser microdissection device, and method for producing microchip
US20160126073A1 (en) * 2013-06-07 2016-05-05 Vanderbilt University Pathology interface system for mass spectrometry
WO2016163385A1 (en) * 2015-04-06 2016-10-13 国立大学法人名古屋大学 Laser microdissection apparatus, analyzing apparatus including laser microdissection apparatus, sample collecting method, and device employed in laser microdissection apparatus
WO2018037491A1 (en) * 2016-08-24 2018-03-01 株式会社島津製作所 Imaging mass spectrometry device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245998A (en) * 2012-05-24 2013-12-09 Olympus Corp Tissue distribution computing method
US20160126073A1 (en) * 2013-06-07 2016-05-05 Vanderbilt University Pathology interface system for mass spectrometry
WO2015053039A1 (en) * 2013-10-07 2015-04-16 国立大学法人名古屋大学 Laser microdissection device, analysis device containing laser microdissection device, and method for producing microchip
WO2016163385A1 (en) * 2015-04-06 2016-10-13 国立大学法人名古屋大学 Laser microdissection apparatus, analyzing apparatus including laser microdissection apparatus, sample collecting method, and device employed in laser microdissection apparatus
WO2018037491A1 (en) * 2016-08-24 2018-03-01 株式会社島津製作所 Imaging mass spectrometry device

Also Published As

Publication number Publication date
JPWO2021186577A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
EP2633327B1 (en) System layout for an automated system for sample preparation and analysis
Wiseman et al. Ambient molecular imaging by desorption electrospray ionization mass spectrometry
US7968842B2 (en) Apparatus and systems for processing samples for analysis via ion mobility spectrometry
US7180058B1 (en) LDI/MALDI source for enhanced spatial resolution
US20130299688A1 (en) Techniques for analyzing mass spectra from thermal desorption response
US8735813B2 (en) Method and device for carrying out a quantitative spatially resolved local analysis and distribution analysis of chemical elements and in situ characterization of ablated surface regions
Bodzon‐Kulakowska et al. Desorption electrospray ionisation (DESI) for beginners–how to adjust settings for tissue imaging
US20150357173A1 (en) Laser ablation atmospheric pressure ionization mass spectrometry
JP4284104B2 (en) Atmospheric pressure laser ionization mass spectrometer
Verhaert et al. Imaging of similar mass neuropeptides in neuronal tissue by enhanced resolution maldi ms with an ion trap–orbitrap tm hybrid instrument
JP7375640B2 (en) Imaging mass spectrometry system and analysis method using imaging mass spectrometry
Simon et al. The liquid micro junction-surface sampling probe (LMJ-SSP); a versatile ambient mass spectrometry interface
WO2021186577A1 (en) Laser microdissection device, laser microdissection method, and quantitative analysis system
JP3831867B2 (en) Sample sorting method and apparatus therefor
JP5365547B2 (en) Sample preparation method for MALDI-MS
JP2023504585A (en) Systems and methods for imaging and ablating samples
WO2021130840A1 (en) Imaging data processing method, imaging data processing device, and imaging data processing program
JP2004184149A (en) Sample preparing device for maldi-tofms
Abu‐Rabie Direct analysis of dried blood spot samples
JP7293219B2 (en) Multi-analyte ion source
WO2020129118A1 (en) Mass spectrometer
Gershon Mass spectrometry: gaining mass appeal in proteomics
Cahill et al. Laser Capture Microdissection–Liquid Vortex Capture Mass Spectrometry Metabolic Profiling of Single Onion Epidermis and Microalgae Cells
Nollet Mass Spectrometry Imaging
US20220148866A1 (en) A System and Method to Conduct Correlated Chemical Mapping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925547

Country of ref document: EP

Kind code of ref document: A1