WO2021130840A1 - Imaging data processing method, imaging data processing device, and imaging data processing program - Google Patents

Imaging data processing method, imaging data processing device, and imaging data processing program Download PDF

Info

Publication number
WO2021130840A1
WO2021130840A1 PCT/JP2019/050515 JP2019050515W WO2021130840A1 WO 2021130840 A1 WO2021130840 A1 WO 2021130840A1 JP 2019050515 W JP2019050515 W JP 2019050515W WO 2021130840 A1 WO2021130840 A1 WO 2021130840A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
dimensional data
value
data
measurement points
Prior art date
Application number
PCT/JP2019/050515
Other languages
French (fr)
Japanese (ja)
Inventor
龍太 松本
潔 小河
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2019/050515 priority Critical patent/WO2021130840A1/en
Publication of WO2021130840A1 publication Critical patent/WO2021130840A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers

Definitions

  • the present invention relates to a technique for processing imaging data obtained by using a chromatographic mass spectrometer.
  • Mass spectrometric imaging is used to investigate the distribution of target compounds contained in samples such as biological tissue sections.
  • a plurality of measurement points are set in the analysis target area of the sample, mass spectrometry is performed at each measurement point, and mass spectrometry data is acquired.
  • Mass spectrometric imaging is generally performed using a matrix-assisted laser desorption / ionization (MALDI) -time-of-flight mass spectrometer (TOFMS: Time of Flight Mass Spectrometer) (TOFMS).
  • MALDI matrix-assisted laser desorption / ionization
  • TOFMS Time of Flight Mass Spectrometer
  • Patent Document 1 a matrix substance is applied to a sample in advance, laser light is irradiated at each measurement point, and the ions generated by the laser beam are subjected to mass spectrometry.
  • the distribution of the target compound is shown by collecting the intensity data of the mass peak having the mass-to-charge ratio corresponding to the ion derived from the target compound from the mass spectrum data obtained at each measurement point and associating it with the position information of the measurement point.
  • An MS imaging image is obtained.
  • Patent Document 2 describes a mode in which the hot melt LMD method is used as the LMD method.
  • the hot melt LMD method first, a film that melts by heat is attached to a slide glass, the slide glass is placed on the sample so that the film is on the sample side, and the film is brought into close contact with the sample to approach the measurement point. Irradiate infrared laser light. Then, the sample adheres to the film melted by the heat generated by the irradiation of the laser beam, and when the slide glass is separated from the sample, the sample is collected on the slide glass side. This is dissolved in an appropriate liquid to prepare a liquid sample. A sample is collected on a slide glass in this way at each of the plurality of measurement points, a liquid sample is prepared, and the sample is analyzed by a liquid chromatograph mass spectrometer.
  • the retention time and mass-to-charge ratio of the target compound are not always known, and in such a case, the user sets a set of retention time and mass-to-charge ratio, and confirms the mass spectrometric imaging image obtained by the set of the set. The work of judging suitability is repeated.
  • each time the user inputs a set of retention time and mass-to-charge ratio the value of the ion intensity corresponding to the set is read out from the three-dimensional data of each measurement point, and it corresponds to the position information of the measurement point.
  • the process of generating an image is repeated, but there is a problem that it takes time to create image data from imaging data including 1,000 or more three-dimensional data.
  • the problem to be solved by the present invention is three-dimensional data having three axes of retention time, mass-to-charge ratio, and ionic strength obtained by performing chromatographic mass spectrometry at each of a plurality of measurement points of a sample. This is to reduce the time required to create image data from imaging data including.
  • the first aspect of the present invention made to solve the above problems is the retention time and mass charge obtained for each measurement point by performing chromatographic mass spectrometry at each of a plurality of measurement points of the sample.
  • a method of processing imaging data including three-dimensional data centered on ratio and ionic strength.
  • two-dimensional data is created by integrating or averaging the ionic strength values in the axial direction of one of the retention time and the mass-to-charge ratio in the three-dimensional data corresponding to the measurement points.
  • Accepts the input of the specified value which is the other value of the retention time and the mass-to-charge ratio.
  • image data is created by reading out the ionic strength value corresponding to the specified value from the two-dimensional data corresponding to the measurement point.
  • the imaging data including the three-dimensional data obtained for a plurality of measurement points is not used as it is, but the ion intensity value is set in the axial direction of one of the retention time and the mass-to-charge ratio.
  • Two-dimensional data is created by reducing the dimension of the data by one by integrating or averaging. Then, the input of the specified value is accepted for the other of the holding time and the mass-to-charge ratio (that is, the one in which the ionic strength values are not integrated or averaged), and the specified value corresponds to the two-dimensional data of a plurality of measurement points.
  • Image data is created by reading out the ionic strength value.
  • the imaging data processing method since the image data is created by reading the image creation data file which is lightened by reducing the dimension from the three-dimensional data included in the original imaging data, the time required for the processing is reduced. Can be shortened.
  • the specified value may be input by the user himself / herself, or may be automatically input based on the analysis result of the two-dimensional data by a program for analyzing chromatograph mass spectrometric data or the like.
  • a second aspect of the present invention which has been made to solve the above problems, is a retention time obtained for each measurement point by performing chromatographic mass spectrometry at each of a plurality of measurement points of a sample.
  • a device that processes imaging data including three-dimensional data with the mass-to-charge ratio and ionic strength as the three axes. For each of the plurality of measurement points, two-dimensional data is created by integrating or averaging the ion intensity values in the axial direction of one of the retention time and the mass charge ratio in the three-dimensional data corresponding to the measurement points.
  • Dimensional data creation department and A parameter input receiving unit that accepts input of a specified value, which is the other value of the holding time and the mass-to-charge ratio, For each of the plurality of measurement points, an image data creation unit is provided which reads out the ion intensity value corresponding to the designated value from the two-dimensional data corresponding to the measurement point and creates image data.
  • the program for imaging data processing according to the third aspect of the present invention is Chromatograph mass spectrometry including three-dimensional data having retention time, mass-to-charge ratio, and ion intensity as three axes obtained for each measurement point by performing chromatograph mass spectrometry at each of a plurality of measurement points of a sample.
  • a computer with a storage unit in which imaging data is stored For each of the plurality of measurement points, two-dimensional data is created by integrating or averaging the ion intensity values in the axial direction of one of the retention time and the mass charge ratio in the three-dimensional data corresponding to the measurement points.
  • Dimensional data creation department and A parameter input receiving unit that accepts input of a specified value, which is the other value of the holding time and the mass-to-charge ratio, For each of the plurality of measurement points, the ion intensity value corresponding to the specified value is read out from the two-dimensional data corresponding to the measurement point, and the image data is operated as an image data creation unit.
  • the retention time, mass-to-charge ratio, and ion intensity obtained by performing chromatograph mass spectrometry at each of a plurality of measurement points of a sample are set as three axes.
  • the time required to create image data from imaging data including three-dimensional data can be shortened.
  • FIG. 6 is a configuration diagram of a main part of a liquid chromatograph mass spectrometry imaging analysis system including the first embodiment of the imaging data processing apparatus according to the present invention.
  • the flowchart of 1st Example of the imaging data processing method which concerns on this invention.
  • the figure explaining the sampling by the hot melt laser microdissection method Another figure illustrating sampling by the hot melt laser microdissection method.
  • FIG. 6 is a configuration diagram of a main part of a liquid chromatograph mass spectrometry imaging analysis system including the imaging data processing apparatus of the second embodiment.
  • FIG. 1 is a configuration diagram of a main part of a liquid chromatograph mass spectrometry imaging analysis system in which a control unit 4 including an imaging data processing apparatus of this embodiment is combined with a liquid chromatograph mass spectrometer.
  • the liquid chromatograph mass spectrometer is composed of a liquid chromatograph 1 and a mass spectrometer 2.
  • the liquid chromatograph 1 includes a mobile phase container 10 in which a mobile phase is stored, a pump 11 that sucks the mobile phase and feeds it at a constant flow rate, and an injector 12 that injects a predetermined amount of sample liquid into the mobile phase. It is provided with a column 13 for separating various compounds contained in the sample liquid in the time direction. Further, an autosampler 14 for introducing a plurality of liquid samples one by one into the injector 12 is connected to the liquid chromatograph 1.
  • local samples are collected in advance at a plurality of measurement points of the sample by the hot melt laser microdissection (LMD) method, and a liquid sample is prepared from each of them. Then, the liquid samples corresponding to each of the plurality of measurement points are set in the autosampler 14, and they are sequentially subjected to liquid chromatograph mass spectrometry.
  • LMD hot melt laser microdissection
  • the mass spectrometer 2 is a first intermediate vacuum in which the degree of vacuum is gradually increased between the ionization chamber 20 having a substantially atmospheric pressure and the high vacuum analysis chamber 23 evacuated by a vacuum pump (not shown). It has a multi-stage differential exhaust system configuration including a chamber 21 and a second intermediate vacuum chamber 22. In the ionization chamber 20, an electrospray ionization probe (ESI probe) 201 that sprays the sample solution while applying an electric charge is installed.
  • ESI probe electrospray ionization probe
  • the ionization chamber 20 and the first intermediate vacuum chamber 21 in the subsequent stage communicate with each other via a small-diameter heating capillary 202.
  • the first intermediate vacuum chamber 21 and the second intermediate vacuum chamber 22 are separated by a skimmer 212 having a small hole at the top, and ions are converged in the first intermediate vacuum chamber 21 and the second intermediate vacuum chamber 22, respectively.
  • ion guides 211 and 221 are installed for transporting to the subsequent stage.
  • the analysis chamber 23 in order from the upstream side (the side of the ionization chamber 20), the front quadrupole mass filter (Q1) 231 and the multi-pole ion guide (q2) 233 are installed inside the collision cell 232 and the rear quadrupole.
  • a polar mass filter (Q3) 234 and an ion detector 235 are installed.
  • Collision-Induced Dissociation (CID) gas such as argon or nitrogen is appropriately supplied to the inside of the collision cell 232 according to the measurement conditions.
  • the mass spectrometer 2 performs selective ion monitoring (SIM: Selected Ion Monitoring) measurement, MS / MS scan measurement (product ion scan measurement, precursor ion scan measurement), multiple reaction monitoring (MRM: Multiple Reaction Monitoring) measurement, and the like. Can be done.
  • SIM selective ion monitoring
  • MS / MS scan measurement product ion scan measurement, precursor ion scan measurement
  • MRM Multiple Reaction Monitoring
  • the front quadrupole mass filter (Q1) 231 does not select ions (does not function as a mass filter), and the mass-to-charge ratio of ions that pass through the rear quadrupole mass filter (Q3) 234 is fixed. Ions are detected.
  • the control unit 4 has a storage unit 41, and also has a measurement control unit 421, a two-dimensional data file creation unit 422, an integrated mass spectrum data creation unit 423, an integrated mass chromatogram data creation unit 424, and a first designated value as functional blocks. It includes an input reception unit 425, a peak processing unit 426, a second designated value input reception unit 427, an image data file creation unit 428, and a display image update unit 429.
  • the substance of the control unit 4 is a personal computer, and each of the above functional blocks is embodied by executing the chromatograph mass spectrometry imaging program 42 pre-installed in the computer on the processor. Of the chromatographic mass spectrometric imaging program 42, the portion that embodies the functional blocks excluding the measurement control unit 421 corresponds to the imaging data processing program of the present invention. Further, an input unit 6 and a display unit 7 are connected to the control unit 4.
  • the storage unit 41 stores the three-dimensional data file 411, the two-dimensional data file 412, and the image data file 413.
  • various data for example, a method file describing measurement conditions in liquid chromatograph mass spectrometry
  • necessary for the processing described later are also stored in the storage unit 41.
  • local samples are collected in advance at a plurality of measurement points of the sample by the hot melt LMD method, and a liquid sample is prepared from each (step 1).
  • a section-shaped sample 101 to be measured is attached to one surface of the sample holding slide glass 100, and a heat-soluble film 103 is attached to one surface of another sampling slide glass 102.
  • Prepare a sample is set so that the sample 101 and the heat-soluble film 103 face each other (procedure 1 in FIG. 3).
  • a laser beam (near infrared laser beam) 104 is formed so as to be substantially orthogonal to the surface of the sample collection slide glass 102 from the side of the sample collection slide glass 102 opposite to the surface to which the heat-soluble film 103 is attached. (Procedure 3 in FIG. 3).
  • the laser beam 104 is irradiated to a range corresponding to one measurement point set on the sample 101.
  • the irradiated laser beam 104 passes through the sample-collecting slide glass 102 and heats the heat-soluble film 103.
  • the heat-soluble film 103 near the area irradiated with the laser beam 104 is melted and locally penetrates into the measurement point of the sample 101.
  • the sample holding slide glass 100 and the sample collecting slide glass 102 are separated from each other to separate the heat-soluble film 103 from the sample 101.
  • the local sample 105 which is a part of the sample 101, is collected on the surface of the heat-soluble film 103 (procedure 4 in FIG. 4).
  • the local area in a very small range is not affected by the components contained in the collected biological tissue.
  • the sample 105 can be collected on the heat-soluble film 103.
  • the above process is an operation of collecting a local sample 105 at one measurement point on the sample 101.
  • Local samples 105 near a plurality of measurement points 1012 can be collected on the heat-soluble film 103, respectively.
  • the distance between the measurement points 1012 on the sample 101 corresponds to the spatial resolution in the mass spectrometric imaging image, and is very narrow, for example, 1 ⁇ m, but the distance between the local samples 105 collected on the thermosoluble film 103 is
  • the sampling position is controlled so as to be as wide as several mm.
  • the two-dimensional positional relationship between the plurality of measurement points on the sample 101 and the two-dimensional positional relationship of the local sample 105 collected on the thermosoluble film 103 need not necessarily be maintained. It suffices that the correspondence between the position of the measurement point on the sample 101 (the position defined by the address information in the X direction and the Y direction) and the position of the local sample 105 on the thermosoluble film 103 is determined.
  • a liquid sample is prepared from the individual local samples 105 collected on the heat-soluble film 103.
  • a microtiter plate (MTP) 110 having a large number of wells 1101 is used, and a predetermined extract for extracting components in the local sample 105 is previously applied to each well 1101 of the MTP 110.
  • the slide glass 102 for sampling is attached to the upper surface of the MTP 110 (the surface on the side where each well 1101 is open) so that the local sample 105 on the thermosoluble film 103 is located inside each well 1101.
  • the local sample 105 is immersed in the extract in each well 1101 to prepare a liquid sample in which the components in the local sample 105 are dissolved.
  • the position of each prepared liquid sample and the measurement point on the sample 101 is determined.
  • the relationship with is also uniquely determined. In this way, liquid samples are prepared from each of the plurality of measurement points and set in the autosampler 14.
  • FIG. 4 is a simplification for the sake of explanation, and usually, the number of measurement points on the sample 101 is much larger than that shown in the figure (typically at least 1,000 points or more), and one sample 101 Prepares a liquid sample contained in each well 1101 of a large number of MTP 110s.
  • the measurement control unit 421 After setting the liquid sample obtained from a plurality of measurement points of the sample in the auto sampler 14, when the user instructs the start of measurement, the measurement control unit 421 reads out the method file previously stored in the storage unit 41, and there. Based on the measurement conditions described in the above, a plurality of liquid samples are introduced into a liquid chromatograph mass analyzer in a predetermined order for measurement.
  • the liquid sample is introduced from the autosampler 14 into the injector 12 of the liquid chromatograph, and the sample liquid after the components are separated by the column 13 is repeatedly MS / at a predetermined timing (t1, t2,..., tm).
  • MS scan measurement product ion scan measurement. In this way, as shown in the upper part of FIG.
  • mass spectrum data (product ion spectrum data) can be obtained for each of the plurality of measurement points at each of the plurality of holding times (bands). Then, by integrating these plurality of mass spectrum data, three-dimensional data having the retention time, the mass-to-charge ratio, and the ionic strength as the three axes can be obtained (step 2).
  • the three-dimensional data is associated with the position information of the measurement point of the sample, and is sequentially stored in the storage unit 41.
  • the two-dimensional data file creation unit 422 displays the ions in the retention time axis direction in the three-dimensional data of each measurement point. Intensity values are integrated (or averaged) (step 3) to create two-dimensional data (mass spectrum data). Then, a two-dimensional data file in which the position information of the measurement point and the two-dimensional data are associated with each other is created (step 4) and stored in the storage unit 41.
  • the integrated mass spectrum data creation unit 423 creates integrated mass spectrum data by integrating (or averaging) the ion intensity values of the two-dimensional data of a plurality of measurement points (step 5), and displays the integrated mass spectrum. Display on the screen of 7 (step 6). This results in a single integrated mass spectrum that reflects the total intensity (or average intensity) of the ions produced from the various compounds present at multiple measurement points of the sample.
  • the first designated value input receiving unit 425 receives the input of the mass-to-charge ratio value (or range) by the user. This is done, for example, by clicking on the peak of the integrated mass spectrum displayed on the screen or by specifying the range with the mouse (step 7).
  • the integrated mass chromatogram data creation unit 424 determines the input mass-to-charge ratio from each of the three-dimensional data obtained at the plurality of measurement points. Mass chromatogram data is extracted based on the value, and one integrated mass chromatogram data is created by integrating the mass chromatogram data of a plurality of measurement points, and the integrated mass chromatogram is displayed on the screen of the display unit 7. (Step 8). Note that this process may be performed in the order of first integrating the three-dimensional data to create the integrated three-dimensional data, and then extracting the integrated mass chromatogram data based on the input mass-to-charge ratio value. ..
  • the peak processing unit 426 When the integrated mass chromatogram is displayed on the screen of the display unit 7, the peak processing unit 426 performs peak picking of the integrated mass chromatogram based on a predetermined algorithm to extract the peak (step 9), and the peak top thereof. Retention time (or peak retention time range) is calculated.
  • peak picking an appropriate method may be used from various conventionally proposed methods (for example, Patent Document 3).
  • the value of the peak top holding time (or the peak holding time range) of that peak is determined as the second specified value.
  • a display specifying the peak position on the integrated mass chromatogram for example, passing through the peak top as shown by a broken line in FIG. 6). (Lines, etc.) are superimposed to let the user select one of the peaks.
  • the value of the peak top holding time (or the peak holding time range) of the peak is determined as the second designated value.
  • the second designated value input receiving unit 427 accepts the input of the second designated value determined as described above (step 12).
  • peak picking was performed based on a predetermined algorithm to extract the peak, but the user confirmed the integrated mass chromatogram to identify the peak, and the retention time of the peak top (or the retention time of the peak). Range) may be entered.
  • the image data file creation unit 428 corresponds to the first designated value (mass-to-charge ratio) and the second designated value (holding time) from the three-dimensional data of each of the plurality of measurement points.
  • the ion intensity to be measured is read out, image data in which the ion intensity of each measurement point is mapped is created (step 13), and the image is displayed on the screen of the display unit 7.
  • This image shows the intensity of ions having the first specified value (mass-to-charge ratio) in the mass spectrometer 2 produced from the compound flowing out from the column 13 of the liquid chromatograph 1 at the second specified value (holding time). It was done. Therefore, the user confirms whether or not this image correctly represents the distribution of the target compound. For example, when it is considered that the distributions of compounds other than the target compound appear to overlap, the first designated value (mass-to-charge ratio) or the second designated value (holding time) is changed (YES in step 14).
  • the display image updating unit 429 causes each of the above units to execute the above processing, and the updated first specified value ( Image data in which the ionic strength of each measurement point is mapped corresponding to the mass-to-charge ratio) and the second designated value (holding time) is created, and the image is displayed on the screen of the display unit 7.
  • the image data file creation unit 428 uses the image data corresponding to the image displayed on the display unit 7 as the first specified value (mass charge ratio) used for creating the image data and the image data.
  • An image data file associated with the second specified value (holding time) is created (step 15), and the image data file is stored in the storage unit 41.
  • one integrated mass chromatogram data obtained by integrating the ionic strengths derived from the target compound distributed in the analysis target range of the sample is confirmed, and the mass-to-charge ratio (specified value) is first determined. You can specify it. Then, after specifying the mass-to-charge ratio, the integrated mass chromatogram may be confirmed and the holding time (second designated value) may be specified. Therefore, even those unfamiliar with the analysis can easily obtain image data showing the distribution of the target compound.
  • the imaging data including the three-dimensional data obtained for a plurality of measurement points is not used as it is, but the ion intensity in the axial direction of one of the retention time and the mass-to-charge ratio.
  • Two-dimensional data is created by reducing the dimension of the data by one by integrating or averaging the values. Then, the input of the specified value is accepted for the other of the holding time and the mass-to-charge ratio (that is, the one in which the ionic strength values are not integrated or averaged), and the specified value corresponds to the two-dimensional data of a plurality of measurement points.
  • Image data is created by reading out the ionic strength value. That is, in the imaging data processing method of the present embodiment, the image data is created by reading the image creation data file which is lightened by reducing the dimension from the three-dimensional data included in the original imaging data, so that the processing is required. You can save time.
  • the liquid chromatograph mass spectrometric system including the imaging data processing apparatus of the second embodiment has a control unit 5 shown in FIG. 7 in place of the control unit 4 of the first embodiment.
  • the description of the configuration and the process common to the first embodiment will be omitted as appropriate.
  • the control unit 5 has a storage unit 51, and also has a measurement control unit 521, a two-dimensional data file creation unit 522, an integrated chromatogram data creation unit 523, an integrated mass chromatogram data creation unit 524, and a first designated value as functional blocks. It includes an input reception unit 525, a peak processing unit 526, a second designated value input reception unit 527, an image data file creation unit 528, and a display image update unit 529.
  • the substance of the control unit 5 is a personal computer, and each of the above functional blocks is embodied by executing the chromatograph mass spectrometry imaging program 52 pre-installed in the computer on the processor.
  • the portion that embodies the functional blocks excluding the measurement control unit 521 corresponds to the imaging data processing program of the present invention. Further, as in the first embodiment, the input unit 6 and the display unit 7 are connected to the control unit 5.
  • the two-dimensional data file creation unit 522 indicates the ions in the mass-to-charge ratio axial direction in the three-dimensional data of each measurement point.
  • the intensity values are integrated (or averaged) (step 23) to create two-dimensional data (total ion current chromatogram data).
  • a two-dimensional data file in which the position information of the measurement point and the two-dimensional data are associated with each other is created (step 24) and stored in the storage unit 51.
  • the integrated chromatogram data creation unit 523 creates integrated chromatogram data by integrating (or averaging) the ionic strength values of a plurality of two-dimensional data (step 25), and displays the integrated chromatogram on the screen of the display unit 7. Is displayed in (step 26). This results in a single integrated chromatogram that reflects the total intensity (or average intensity) of the ions produced from the various compounds present at multiple measurement points on the sample.
  • the peak processing unit 526 When the integrated chromatogram is displayed on the screen of the display unit 7, the peak processing unit 526 performs peak picking of the integrated chromatogram based on a predetermined algorithm to extract the peak (step 27), and holds the peak top. Find the time (or peak retention time range).
  • the value of the peak top holding time (or the peak holding time range) of that peak is determined as the specified value.
  • a code for specifying the peak position (such as a line passing through the peak top) is superimposed and displayed on the integrated chromatogram, and eventually the user is informed. Let the peak be selected.
  • the value of the peak top holding time (or the peak holding time range) of the peak is determined as the specified value.
  • the first designated value input receiving unit 525 accepts the input of the designated value determined as described above (step 30).
  • peak picking was performed based on a predetermined algorithm to extract peaks, but the user confirmed the integrated chromatogram to identify the peak, and the retention time (or peak retention time range) of the peak top was identified. ) May be entered as the specified value.
  • the integrated mass chromatogram data creation unit 524 extracts mass chromatogram data from each of the three-dimensional data obtained at the plurality of measurement points based on the input retention time value, and further extracts the mass chromatogram data from the plurality of measurement points.
  • One integrated mass chromatogram data is created by integrating the mass chromatogram data of the above, and the integrated mass chromatogram is displayed on the screen of the display unit 7 (step 31).
  • the second designated value input receiving unit 527 causes the user to input the value (or range) of the mass-to-charge ratio, which is the second designated value, by an operation such as selecting a peak on the integrated mass chromatogram (step). 32).
  • the image data file creation unit receives the ion intensity corresponding to the specified value (holding time) and the second specified value (mass-to-charge ratio) from the three-dimensional data of each of the plurality of measurement points. Is read out, image data whose intensity is mapped is created (step 33), and the image is displayed on the screen of the display unit 7. Subsequent steps 14 and 15 are the same as those in the first embodiment, and thus the description thereof will be omitted.
  • the first embodiment and the second embodiment are both examples, and can be appropriately changed according to the gist of the present invention.
  • the two-dimensional data of all measurement points are integrated to create an integrated mass spectrum or an integrated chromatogram, but it is not always necessary to integrate the two-dimensional data of all measurement points.
  • the two-dimensional data of those one or more measurement points may be integrated.
  • three-dimensional data was acquired using a liquid chromatograph mass spectrometer, but a gas chromatograph mass spectrometer can also be used.
  • the prepared liquid sample may be vaporized and introduced into a gas chromatograph.
  • a compound is fragmented at the time of ionization, such as the electron ionization (EI) method, which is an ionization method widely used in gas chromatograph mass spectrometers
  • EI electron ionization
  • a pseudo-mass spectrum is acquired by performing SIM measurement or MRM measurement using (a set of) one or more mass-to-charge ratios, and the pseudo-mass spectrum is combined with the retention time in three dimensions.
  • the data may be analyzed.
  • the second designated value is input, and the ionic strength corresponding to both the designated value and the second designated value is read out to create the image data.
  • the specified value does not necessarily have to be entered.
  • the image data may be created from the integrated value (or average value) of the ionic strength corresponding to the specified value. This corresponds to the peak intensity of the total ion chromatogram, for example, when the specified value is the retention time.
  • One aspect of the present invention is a three-dimensional structure having a retention time, a mass-to-charge ratio, and an ionic strength as three axes, which are obtained for each measurement point by performing chromatographic mass spectrometry at each of a plurality of measurement points of a sample.
  • a method of processing imaging data including data.
  • two-dimensional data is created by integrating or averaging the ionic strength values in the axial direction of one of the retention time and the mass-to-charge ratio in the three-dimensional data corresponding to the measurement points.
  • image data is created by reading out the ionic strength value corresponding to the designated value from the two-dimensional data corresponding to the measurement point.
  • FIG. 16 Another aspect of the present invention has three axes of retention time, mass-to-charge ratio, and ionic strength obtained for each measurement point by performing chromatographic mass spectrometry at each of the plurality of measurement points of the sample.
  • a device that processes imaging data including three-dimensional data. For each of the plurality of measurement points, two-dimensional data is created by integrating or averaging the ion intensity values in the axial direction of one of the retention time and the mass charge ratio in the three-dimensional data corresponding to the measurement points.
  • Dimensional data creation department and A designated value input receiving unit that accepts input of a designated value that is the other value or range of the holding time and the mass-to-charge ratio, and For each of the plurality of measurement points, an image data creation unit is provided which reads out the ion intensity value corresponding to the designated value from the two-dimensional data corresponding to the measurement point and creates image data.
  • the imaging data processing program is Chromatograph mass spectrometry including three-dimensional data having retention time, mass-to-charge ratio, and ion intensity as three axes obtained for each measurement point by performing chromatograph mass spectrometry at each of a plurality of measurement points of a sample.
  • a computer with a storage unit in which imaging data is stored For each of the plurality of measurement points, two-dimensional data is created by integrating or averaging the ion intensity values in the axial direction of one of the retention time and the mass charge ratio in the three-dimensional data corresponding to the measurement points.
  • Dimensional data creation department and A parameter input receiving unit that accepts input of a specified value, which is the other value of the holding time and the mass-to-charge ratio, For each of the plurality of measurement points, the ion intensity value corresponding to the specified value is read out from the two-dimensional data corresponding to the measurement point, and the image data is operated as an image data creation unit.
  • the imaging data processing method according to paragraph 1, the imaging data processing apparatus according to paragraph 16, and the imaging data processing program according to paragraph 17 include imaging including three-dimensional data obtained for a plurality of measurement points. Instead of using the data as it is, two-dimensional data is created by reducing the dimension of the data by one by integrating or averaging the ion intensity values in the axial direction of one of the retention time and the mass charge ratio. Then, the input of the specified value is accepted for the other of the holding time and the mass-to-charge ratio (that is, the one in which the ionic strength values are not integrated or averaged), and the specified value corresponds to the two-dimensional data of a plurality of measurement points. Image data is created by reading out the ionic strength value. In the imaging data processing method according to the present invention, since the image data is created by reading the image creation data file which is lightened by reducing the dimension from the three-dimensional data included in the original imaging data, the time required for the processing is reduced. Can be shortened.
  • image data representing the distribution of the target compound can be obtained based on the mass-to-charge ratio of ions generated from the target compound.
  • Integrated mass spectrum data is created by integrating or averaging the ionic strength values of some or all of the two-dimensional data of the plurality of measurement points.
  • the user can easily determine the specified value by confirming only one integrated mass spectrum data.
  • a characteristic portion is designated as a region of interest based on an image of the sample surface obtained by an observation device, and two measurement points located within the region of interest are designated. By integrating or averaging the ion intensity values of the dimensional data, integrated mass spectrum data with more emphasized sample characteristics can be obtained.
  • both the mass-to-charge ratio value or range corresponding to the target compound and the retention time value or range are simply specified to obtain image data representing the distribution of the target compound. Can be done.
  • the second specified value can be input even if the user is not familiar with chromatographic mass spectrometry.
  • image data representing the distribution of the target compound can be obtained based on the retention time of the target compound in the chromatograph.
  • Integrated chromatogram data is created by integrating or averaging the ionic strength values of some or all of the two-dimensional data of the plurality of measurement points.
  • the user can easily determine a specified value by confirming only one integrated chromatogram data.
  • a characteristic portion is designated as a region of interest based on an image of the sample surface obtained by the observation device, and two measurement points located within the region of interest are designated.
  • integrated chromatogram data emphasizing the characteristics of the sample can be obtained.
  • the specified value can be determined even if the person is not familiar with the analysis of the chromatogram.
  • both the value or range of the mass-to-charge ratio corresponding to the target compound and the value or range of the retention time are simply specified to obtain image data representing the distribution of the target compound. Can be done.
  • the three-dimensional data is Local samples are taken from each of the multiple measurement points of the sample using the laser microdissection method. Liquid samples are individually prepared from the local samples collected at the plurality of measurement points. It was obtained by performing chromatographic mass spectrometry on the prepared sample.
  • ion suppression can be suppressed, and chromatographic mass spectrometric data having high sensitivity and quantification can be acquired and analyzed.

Abstract

In this method for processing imaging data that is three-dimensional data having three axes for the retention times, mass-to-charge ratios, and ion intensities obtained for each of a plurality of measurement points on a sample through chromatograph mass spectrometry: two-dimensional data is created for each of the plurality of measurement points through the accumulation or averaging of ion intensity values in the three-dimensional data corresponding to the measurement point along the axial direction of one from among the retention times and mass-to-charge ratios (step 4); the input of a designated value for the other from among the retention times and mass-to-charge ratios is received (step 7); and image data is created by, for each of the plurality of measurement points, reading the ion intensity value corresponding to the designated value from the two-dimensional data corresponding to the measurement point (step 13).

Description

イメージングデータ処理方法、イメージングデータ処理装置、及びイメージングデータ処理用プログラムImaging data processing method, imaging data processing device, and imaging data processing program
 本発明は、クロマトグラフ質量分析装置を用いて得られたイメージングデータを処理する技術に関する。 The present invention relates to a technique for processing imaging data obtained by using a chromatographic mass spectrometer.
 生体組織切片などの試料に含まれる目的化合物の分布を調べるために質量分析イメージング法が用いられている。質量分析イメージング法では、試料の分析対象領域内に複数の測定点を設定し、各測定点で質量分析を実施して質量分析データを取得する。 Mass spectrometric imaging is used to investigate the distribution of target compounds contained in samples such as biological tissue sections. In the mass spectrometry imaging method, a plurality of measurement points are set in the analysis target area of the sample, mass spectrometry is performed at each measurement point, and mass spectrometry data is acquired.
 質量分析イメージング法は、マトリクス支援レーザ脱離イオン化(MALDI: Matrix Assisted Laser Desorption/Ionization)-飛行時間型質量分析装置(TOFMS: Time of Flight Mass Spectrometer)を用いて行われることが一般的である(例えば特許文献1)。MALDI-TOFMSでは、予め試料にマトリックス物質を塗布しておき、測定点毎にレーザ光を照射して、それにより生成されたイオンを質量分析する。各測定点で得られたマススペクトルデータから目的化合物由来のイオンに対応する質量電荷比を有するマスピークの強度データを収集し、それを測定点の位置情報と対応づけることで目的化合物の分布を示すMSイメージング画像が得られる。 Mass spectrometric imaging is generally performed using a matrix-assisted laser desorption / ionization (MALDI) -time-of-flight mass spectrometer (TOFMS: Time of Flight Mass Spectrometer) (TOFMS). For example, Patent Document 1). In MALDI-TOFMS, a matrix substance is applied to a sample in advance, laser light is irradiated at each measurement point, and the ions generated by the laser beam are subjected to mass spectrometry. The distribution of the target compound is shown by collecting the intensity data of the mass peak having the mass-to-charge ratio corresponding to the ion derived from the target compound from the mass spectrum data obtained at each measurement point and associating it with the position information of the measurement point. An MS imaging image is obtained.
 MALDI-TOFMSでは、試料から生成されたイオンをそのまま質量分析するため、目的化合物以外にも多くの化合物が同時にイオン化される。例えば、生体組織切片のように数多くの化合物を含む試料の場合、目的化合物よりもイオン化しやすい化合物がマトリクス物質からエネルギーを吸収して目的化合物よりも先にイオン化してしまい、目的化合物がイオン化しにくくなる。こうした現象はイオンサプレッションと呼ばれる。その結果、目的化合物の検出感度が悪くなったり定量性に欠けたりする場合があった。 In MALDI-TOFMS, since the ions generated from the sample are subjected to mass spectrometry as they are, many compounds other than the target compound are ionized at the same time. For example, in the case of a sample containing a large number of compounds such as a biological tissue section, a compound that is easier to ionize than the target compound absorbs energy from the matrix substance and is ionized before the target compound, so that the target compound is ionized. It becomes difficult. This phenomenon is called ion suppression. As a result, the detection sensitivity of the target compound may be deteriorated or the quantitativeness may be poor.
 上記の点を解消すべく、最近では、レーザマイクロダイセクション(LMD)法と呼ばれる試料採取方法と液体クロマトグラフ質量分析法とを組み合わせたクロマトグラフ質量分析イメージング法が提案されている。例えば、特許文献2には、LMD法としてホットメルトLMD法を使用する形態が記載されている。 Recently, in order to solve the above points, a chromatographic mass spectrometry imaging method that combines a sampling method called a laser microdissection (LMD) method and a liquid chromatograph mass spectrometry method has been proposed. For example, Patent Document 2 describes a mode in which the hot melt LMD method is used as the LMD method.
 ホットメルトLMD法では、まず、熱により溶解するフィルムをスライドガラスに貼り付け、該フィルムが試料側となるようにして該スライドガラスを試料に被せ、該フィルムを試料に密着させて測定点に近赤外レーザ光を照射する。すると、レーザ光の照射による熱で溶解したフィルムに試料が付着し、スライドガラスを試料から引き離すと試料がスライドガラス側に採取される。これを適宜の液体に溶解させて液体試料を調製する。複数の測定点のそれぞれにおいてこのようにしてスライドガラスに試料を採取し、液体試料を調製して液体クロマトグラフ質量分析装置で分析する。これにより、測定点毎に、保持時間、質量電荷比、及びイオン強度を軸とする三次元データが得られる。この三次元データから目的化合物に対応する保持時間及び質量電荷比におけるイオン強度を抽出し、測定点の位置情報と対応付けることにより目的化合物の分布を示す液体クロマトグラフ質量分析イメージング画像を得ることができる。この質量分析イメージング法では、試料に含まれる目的化合物を液体クロマトグラフにおいて他の化合物と分離してイオン化するため、イオンサプレッションに起因する上記の問題を解消することができる。 In the hot melt LMD method, first, a film that melts by heat is attached to a slide glass, the slide glass is placed on the sample so that the film is on the sample side, and the film is brought into close contact with the sample to approach the measurement point. Irradiate infrared laser light. Then, the sample adheres to the film melted by the heat generated by the irradiation of the laser beam, and when the slide glass is separated from the sample, the sample is collected on the slide glass side. This is dissolved in an appropriate liquid to prepare a liquid sample. A sample is collected on a slide glass in this way at each of the plurality of measurement points, a liquid sample is prepared, and the sample is analyzed by a liquid chromatograph mass spectrometer. As a result, three-dimensional data centered on the holding time, mass-to-charge ratio, and ionic strength can be obtained for each measurement point. By extracting the ionic strength at the retention time and mass-to-charge ratio corresponding to the target compound from this three-dimensional data and associating it with the position information of the measurement point, a liquid chromatograph mass spectrometric imaging image showing the distribution of the target compound can be obtained. .. In this mass spectrometric imaging method, since the target compound contained in the sample is separated from other compounds and ionized in the liquid chromatograph, the above-mentioned problem caused by ion suppression can be solved.
国際公開第2018/037491号International Publication No. 2018/037941 国際公開第2016/163385号International Publication No. 2016/1633385 特開2009-8582号公報Japanese Unexamined Patent Publication No. 2009-8582
 一般に、目的化合物の分布を調べる際には、画像の視認性等を考慮して少なくとも1,000点以上の測定点が設定される。従って、特許文献2の質量分析イメージング法では、1,000個以上の三次元データを含むイメージングデータが生成される。 Generally, when examining the distribution of the target compound, at least 1,000 or more measurement points are set in consideration of the visibility of the image and the like. Therefore, in the mass spectrometric imaging method of Patent Document 2, imaging data including 1,000 or more three-dimensional data is generated.
 目的化合物の保持時間や質量電荷比は必ずしも既知ではなく、そうした場合には、使用者が保持時間と質量電荷比の組を設定し、それにより得られる質量分析イメージング画像を確認して該組の適否を判断する、という作業を繰り返し行う。その過程では、使用者が保持時間と質量電荷比の組を入力する毎に、各測定点の三次元データから該組に対応するイオン強度の値を読み出し、それを測定点の位置情報と対応づけて画像を生成する処理を繰り返すことになるが、1,000個以上もの三次元データを含むイメージングデータから画像データを作成するには時間がかかるという問題があった。 The retention time and mass-to-charge ratio of the target compound are not always known, and in such a case, the user sets a set of retention time and mass-to-charge ratio, and confirms the mass spectrometric imaging image obtained by the set of the set. The work of judging suitability is repeated. In the process, each time the user inputs a set of retention time and mass-to-charge ratio, the value of the ion intensity corresponding to the set is read out from the three-dimensional data of each measurement point, and it corresponds to the position information of the measurement point. The process of generating an image is repeated, but there is a problem that it takes time to create image data from imaging data including 1,000 or more three-dimensional data.
 本発明が解決しようとする課題は、試料の複数の測定点のそれぞれにおいてクロマトグラフ質量分析を実行することにより得られた、保持時間、質量電荷比、及びイオン強度を三軸とする三次元データを含んだイメージングデータから画像データを作成する際に要する時間を短縮することである。 The problem to be solved by the present invention is three-dimensional data having three axes of retention time, mass-to-charge ratio, and ionic strength obtained by performing chromatographic mass spectrometry at each of a plurality of measurement points of a sample. This is to reduce the time required to create image data from imaging data including.
 上記課題を解決するために成された本発明の第1の態様は、試料の複数の測定点のそれぞれにおいてクロマトグラフ質量分析を実行することにより測定点毎に得られた、保持時間、質量電荷比、及びイオン強度を三軸とする三次元データを含むイメージングデータを処理する方法であって、
 前記複数の測定点のそれぞれについて、当該測定点に対応する三次元データにおける保持時間と質量電荷比のうちの一方の軸方向にイオン強度値を積算又は平均することにより二次元データを作成し、
 前記保持時間と質量電荷比のうちの他方の値である指定値の入力を受け付け、
 前記複数の測定点のそれぞれについて、当該測定点に対応する二次元データから、前記指定値に対応するイオン強度値を読み出して画像データを作成する
 ものである。
The first aspect of the present invention made to solve the above problems is the retention time and mass charge obtained for each measurement point by performing chromatographic mass spectrometry at each of a plurality of measurement points of the sample. A method of processing imaging data including three-dimensional data centered on ratio and ionic strength.
For each of the plurality of measurement points, two-dimensional data is created by integrating or averaging the ionic strength values in the axial direction of one of the retention time and the mass-to-charge ratio in the three-dimensional data corresponding to the measurement points.
Accepts the input of the specified value, which is the other value of the retention time and the mass-to-charge ratio.
For each of the plurality of measurement points, image data is created by reading out the ionic strength value corresponding to the specified value from the two-dimensional data corresponding to the measurement point.
 本発明に係るイメージングデータ処理方法では、複数の測定点について得られた三次元データを含むイメージングデータをそのまま用いるのではなく、保持時間と質量電荷比のうちの一方の軸方向にイオン強度値を積算又は平均することによりデータの次元を一つ減らして二次元データを作成する。そして、保持時間と質量電荷比のうちの他方(即ち、イオン強度値が積算又は平均されていない方)について指定値の入力を受け付け、複数の測定点の二次元データから該指定値に対応するイオン強度値を読み出すことにより画像データを作成する。本発明に係るイメージングデータ処理方法では、元のイメージングデータに含まれる三次元データから次元を減らして軽量化した画像作成用データファイルを読み込んで画像データを作成するため、それらの処理に要する時間を短縮することができる。上記指定値は、使用者が自ら入力してもよく、クロマトグラフ質量分析データ解析用のプログラム等による前記二次元データの解析結果に基づいて自動的に入力されるものとしてもよい。 In the imaging data processing method according to the present invention, the imaging data including the three-dimensional data obtained for a plurality of measurement points is not used as it is, but the ion intensity value is set in the axial direction of one of the retention time and the mass-to-charge ratio. Two-dimensional data is created by reducing the dimension of the data by one by integrating or averaging. Then, the input of the specified value is accepted for the other of the holding time and the mass-to-charge ratio (that is, the one in which the ionic strength values are not integrated or averaged), and the specified value corresponds to the two-dimensional data of a plurality of measurement points. Image data is created by reading out the ionic strength value. In the imaging data processing method according to the present invention, since the image data is created by reading the image creation data file which is lightened by reducing the dimension from the three-dimensional data included in the original imaging data, the time required for the processing is reduced. Can be shortened. The specified value may be input by the user himself / herself, or may be automatically input based on the analysis result of the two-dimensional data by a program for analyzing chromatograph mass spectrometric data or the like.
 また、上記課題を解決するために成された本発明の第2の態様は、試料の複数の測定点のそれぞれにおいてクロマトグラフ質量分析を実行することにより測定点毎に得られた、保持時間、質量電荷比、及びイオン強度を三軸とする三次元データを含むイメージングデータを処理する装置であって、
 前記複数の測定点のそれぞれについて、当該測定点に対応する三次元データにおける保持時間と質量電荷比のうちの一方の軸方向にイオン強度値を積算又は平均することにより二次元データを作成する二次元データ作成部と、
 前記保持時間と質量電荷比のうちの他方の値である指定値の入力を受け付けるパラメータ入力受付部と、
 前記複数の測定点のそれぞれについて、当該測定点に対応する二次元データから、前記指定値に対応するイオン強度値を読み出して画像データを作成する画像データ作成部と
 を備える。
A second aspect of the present invention, which has been made to solve the above problems, is a retention time obtained for each measurement point by performing chromatographic mass spectrometry at each of a plurality of measurement points of a sample. A device that processes imaging data including three-dimensional data with the mass-to-charge ratio and ionic strength as the three axes.
For each of the plurality of measurement points, two-dimensional data is created by integrating or averaging the ion intensity values in the axial direction of one of the retention time and the mass charge ratio in the three-dimensional data corresponding to the measurement points. Dimensional data creation department and
A parameter input receiving unit that accepts input of a specified value, which is the other value of the holding time and the mass-to-charge ratio,
For each of the plurality of measurement points, an image data creation unit is provided which reads out the ion intensity value corresponding to the designated value from the two-dimensional data corresponding to the measurement point and creates image data.
 上記課題を解決するために成された本発明の第3の態様に係るイメージングデータ処理用のプログラムは、
 試料の複数の測定点のそれぞれにおいてクロマトグラフ質量分析を実行することにより測定点毎に得られた、保持時間、質量電荷比、及びイオン強度を三軸とする三次元データを含むクロマトグラフ質量分析イメージングデータが保存された記憶部を備えたコンピュータを、
 前記複数の測定点のそれぞれについて、当該測定点に対応する三次元データにおける保持時間と質量電荷比のうちの一方の軸方向にイオン強度値を積算又は平均することにより二次元データを作成する二次元データ作成部と、
 前記保持時間と質量電荷比のうちの他方の値である指定値の入力を受け付けるパラメータ入力受付部と、
 前記複数の測定点のそれぞれについて、当該測定点に対応する二次元データから、前記指定値に対応するイオン強度値を読み出して画像データを作成する画像データ作成部
 として動作させるものである。
The program for imaging data processing according to the third aspect of the present invention, which is made to solve the above problems, is
Chromatograph mass spectrometry including three-dimensional data having retention time, mass-to-charge ratio, and ion intensity as three axes obtained for each measurement point by performing chromatograph mass spectrometry at each of a plurality of measurement points of a sample. A computer with a storage unit in which imaging data is stored,
For each of the plurality of measurement points, two-dimensional data is created by integrating or averaging the ion intensity values in the axial direction of one of the retention time and the mass charge ratio in the three-dimensional data corresponding to the measurement points. Dimensional data creation department and
A parameter input receiving unit that accepts input of a specified value, which is the other value of the holding time and the mass-to-charge ratio,
For each of the plurality of measurement points, the ion intensity value corresponding to the specified value is read out from the two-dimensional data corresponding to the measurement point, and the image data is operated as an image data creation unit.
 本発明に係るイメージングデータ処理技術を用いることにより、試料の複数の測定点のそれぞれにおいてクロマトグラフ質量分析を実行することにより得られた、保持時間、質量電荷比、及びイオン強度を三軸とする三次元データを含んだイメージングデータから画像データを作成する際に要する時間を短縮することができる。 By using the imaging data processing technique according to the present invention, the retention time, mass-to-charge ratio, and ion intensity obtained by performing chromatograph mass spectrometry at each of a plurality of measurement points of a sample are set as three axes. The time required to create image data from imaging data including three-dimensional data can be shortened.
本発明に係るイメージングデータ処理装置の第1実施例を含む液体クロマトグラフ質量分析イメージング解析システムの要部構成図。FIG. 6 is a configuration diagram of a main part of a liquid chromatograph mass spectrometry imaging analysis system including the first embodiment of the imaging data processing apparatus according to the present invention. 本発明に係るイメージングデータ処理方法の第1実施例のフローチャート。The flowchart of 1st Example of the imaging data processing method which concerns on this invention. ホットメルトレーザマイクロダイセクション法による試料の採取について説明する図。The figure explaining the sampling by the hot melt laser microdissection method. ホットメルトレーザマイクロダイセクション法による試料の採取について説明する別の図。Another figure illustrating sampling by the hot melt laser microdissection method. 第1実施例における三次元データ及び二次元データを説明する図。The figure explaining the 3D data and the 2D data in the 1st Example. 第1実施例における統合マスクロマトグラムの一例。An example of an integrated mass chromatogram in the first embodiment. 第2実施例のイメージングデータ処理装置を含む液体クロマトグラフ質量分析イメージング解析システムの要部構成図。FIG. 6 is a configuration diagram of a main part of a liquid chromatograph mass spectrometry imaging analysis system including the imaging data processing apparatus of the second embodiment. 第2実施例のイメージングデータ処理方法のフローチャート。The flowchart of the imaging data processing method of 2nd Example.
 本発明に係るイメージングデータ処理方法、イメージングデータ処理装置、及びイメージングデータ処理用プログラムの第1実施例について、以下、図面を参照して説明する。図1は、本実施例のイメージングデータ処理装置を含む制御部4を液体クロマトグラフ質量分析装置と組み合わせてなる、液体クロマトグラフ質量分析イメージング解析システムの要部構成図である。 The imaging data processing method, the imaging data processing apparatus, and the first embodiment of the imaging data processing program according to the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a main part of a liquid chromatograph mass spectrometry imaging analysis system in which a control unit 4 including an imaging data processing apparatus of this embodiment is combined with a liquid chromatograph mass spectrometer.
 液体クロマトグラフ質量分析装置は液体クロマトグラフ1と質量分析装置2から構成される。液体クロマトグラフ1は、移動相が貯留された移動相容器10と、移動相を吸引して一定流量で送給するポンプ11と、移動相中に所定量の試料液を注入するインジェクタ12と、試料液に含まれる各種化合物を時間方向に分離するカラム13とを備えている。また、液体クロマトグラフ1には、インジェクタ12に複数の液体試料を1つずつ導入するオートサンプラ14が接続されている。本実施例のイメージング質量分析イメージング解析システムでは、予めホットメルトレーザマイクロダイセクション(LMD)法により、試料の複数の測定点における局所試料を採取し、それぞれから液体試料を調製しておく。そして、複数の測定点のそれぞれに対応する液体試料をオートサンプラ14にセットし、それらを順に液体クロマトグラフ質量分析する。 The liquid chromatograph mass spectrometer is composed of a liquid chromatograph 1 and a mass spectrometer 2. The liquid chromatograph 1 includes a mobile phase container 10 in which a mobile phase is stored, a pump 11 that sucks the mobile phase and feeds it at a constant flow rate, and an injector 12 that injects a predetermined amount of sample liquid into the mobile phase. It is provided with a column 13 for separating various compounds contained in the sample liquid in the time direction. Further, an autosampler 14 for introducing a plurality of liquid samples one by one into the injector 12 is connected to the liquid chromatograph 1. In the imaging mass spectrometry imaging analysis system of this example, local samples are collected in advance at a plurality of measurement points of the sample by the hot melt laser microdissection (LMD) method, and a liquid sample is prepared from each of them. Then, the liquid samples corresponding to each of the plurality of measurement points are set in the autosampler 14, and they are sequentially subjected to liquid chromatograph mass spectrometry.
 質量分析装置2は、略大気圧であるイオン化室20と真空ポンプ(図示なし)により真空排気された高真空の分析室23との間に、段階的に真空度が高められた第1中間真空室21と第2中間真空室22とを備えた多段差動排気系の構成を有している。イオン化室20には、試料溶液に電荷を付与しながら噴霧するエレクトロスプレイイオン化用プローブ(ESIプローブ)201が設置されている。イオン化室20と後段の第1中間真空室21との間は細径の加熱キャピラリ202を介して連通している。第1中間真空室21と第2中間真空室22との間は頂部に小孔を有するスキマー212で隔てられ、第1中間真空室21と第2中間真空室22にはそれぞれ、イオンを収束させつつ後段へ輸送するためのイオンガイド211、221が設置されている。分析室23には、上流側(イオン化室20の側)から順に、前段四重極マスフィルタ(Q1)231、多重極イオンガイド(q2)233が内部に設置されたコリジョンセル232、後段四重極マスフィルタ(Q3)234、及びイオン検出器235が設置されている。コリジョンセル232の内部には、測定条件に合わせてアルゴン、窒素などの衝突誘起解離(CID: Collision-Induced Dissociation)ガスが適宜に供給される。 The mass spectrometer 2 is a first intermediate vacuum in which the degree of vacuum is gradually increased between the ionization chamber 20 having a substantially atmospheric pressure and the high vacuum analysis chamber 23 evacuated by a vacuum pump (not shown). It has a multi-stage differential exhaust system configuration including a chamber 21 and a second intermediate vacuum chamber 22. In the ionization chamber 20, an electrospray ionization probe (ESI probe) 201 that sprays the sample solution while applying an electric charge is installed. The ionization chamber 20 and the first intermediate vacuum chamber 21 in the subsequent stage communicate with each other via a small-diameter heating capillary 202. The first intermediate vacuum chamber 21 and the second intermediate vacuum chamber 22 are separated by a skimmer 212 having a small hole at the top, and ions are converged in the first intermediate vacuum chamber 21 and the second intermediate vacuum chamber 22, respectively. At the same time, ion guides 211 and 221 are installed for transporting to the subsequent stage. In the analysis chamber 23, in order from the upstream side (the side of the ionization chamber 20), the front quadrupole mass filter (Q1) 231 and the multi-pole ion guide (q2) 233 are installed inside the collision cell 232 and the rear quadrupole. A polar mass filter (Q3) 234 and an ion detector 235 are installed. Collision-Induced Dissociation (CID) gas such as argon or nitrogen is appropriately supplied to the inside of the collision cell 232 according to the measurement conditions.
 質量分析装置2では、選択イオンモニタリング(SIM: Selected Ion Monitoring)測定、MS/MSスキャン測定(プロダクトイオンスキャン測定、プリカーサイオンスキャン測定)、多重反応モニタリング(MRM: Multiple Reaction Monitoring)測定等を行うことができる。SIM測定では、前段四重極マスフィルタ(Q1)231ではイオンを選別せず(マスフィルタとして機能させず)、後段四重極マスフィルタ(Q3)234を通過させるイオンの質量電荷比を固定してイオンを検出する。 The mass spectrometer 2 performs selective ion monitoring (SIM: Selected Ion Monitoring) measurement, MS / MS scan measurement (product ion scan measurement, precursor ion scan measurement), multiple reaction monitoring (MRM: Multiple Reaction Monitoring) measurement, and the like. Can be done. In SIM measurement, the front quadrupole mass filter (Q1) 231 does not select ions (does not function as a mass filter), and the mass-to-charge ratio of ions that pass through the rear quadrupole mass filter (Q3) 234 is fixed. Ions are detected.
 プロダクトイオンスキャンスキャン測定では前段四重極マスフィルタ(Q1)231を通過させるプリカーサイオンの質量電荷比を固定したまま後段四重極マスフィルタ(Q3)234を通過させるプロダクトイオンの質量電荷比を走査しつつ該後段四重極マスフィルタ(Q3)234を通過したプロダクトイオンを検出する。MRM測定では前段四重極マスフィルタ(Q1)231を通過させるプリカーサイオンの質量電荷比と、後段四重極マスフィルタ(Q3)234を通過させるプロダクトイオンイオンの質量電荷比の両方を固定し、該後段四重極マスフィルタ(Q3)234を通過したプロダクトイオンを検出する。プリカーサイオンスキャン測定では前段四重極マスフィルタ(Q3)231を通過させるプリカーサイオンイオンの質量電荷比を走査しつつ、後段四重極マスフィルタ(Q3)234を通過させるプロダクトイオンイオンの質量電荷比を固定し、該後段四重極マスフィルタ(Q3)234を通過したプロダクトイオンを検出する。これらの測定では、プリカーサイオンを開裂させてプロダクトイオンを生成するために、コリジョンセル232の内部にCIDガスを供給する。 Product ion scan In scan measurement, the mass-to-charge ratio of product ions that pass through the rear quadrupole mass filter (Q3) 234 is scanned while the mass-to-charge ratio of precursor ions that pass through the front quadrupole mass filter (Q1) 231 is fixed. While doing so, the product ions that have passed through the subsequent quadrupole mass filter (Q3) 234 are detected. In the MRM measurement, both the mass-to-charge ratio of precursor ions passing through the front quadrupole mass filter (Q1) 231 and the mass-to-charge ratio of product ion ions passing through the rear quadrupole mass filter (Q3) 234 are fixed. Product ions that have passed through the subsequent quadrupole mass filter (Q3) 234 are detected. In the precursor ion scan measurement, the mass-to-charge ratio of the product ion ion passing through the rear quadrupole mass filter (Q3) 234 while scanning the mass-to-charge ratio of the precursor ion passing through the front quadrupole mass filter (Q3) 231. Is fixed, and product ions that have passed through the subsequent quadrupole mass filter (Q3) 234 are detected. In these measurements, CID gas is supplied to the inside of the collision cell 232 in order to cleave the precursor ions to generate product ions.
 制御部4は、記憶部41を有するとともに、機能ブロックとして、測定制御部421、二次元データファイル作成部422、統合マススペクトルデータ作成部423、統合マスクロマトグラムデータ作成部424、第1指定値入力受付部425、ピーク処理部426、第2指定値入力受付部427、画像データファイル作成部428、表示画像更新部429を備えている。制御部4の実体はパーソナルコンピュータであり、該コンピュータに予めインストールされたクロマトグラフ質量分析イメージング用プログラム42をプロセッサで実行することにより上記の各機能ブロックが具現化される。なお、クロマトグラフ質量分析イメージング用プログラム42のうち、測定制御部421を除く機能ブロックを具現化する部分が本発明のイメージングデータ処理用プログラムに相当する。また、制御部4には、入力部6、表示部7が接続されている。 The control unit 4 has a storage unit 41, and also has a measurement control unit 421, a two-dimensional data file creation unit 422, an integrated mass spectrum data creation unit 423, an integrated mass chromatogram data creation unit 424, and a first designated value as functional blocks. It includes an input reception unit 425, a peak processing unit 426, a second designated value input reception unit 427, an image data file creation unit 428, and a display image update unit 429. The substance of the control unit 4 is a personal computer, and each of the above functional blocks is embodied by executing the chromatograph mass spectrometry imaging program 42 pre-installed in the computer on the processor. Of the chromatographic mass spectrometric imaging program 42, the portion that embodies the functional blocks excluding the measurement control unit 421 corresponds to the imaging data processing program of the present invention. Further, an input unit 6 and a display unit 7 are connected to the control unit 4.
 記憶部41には、三次元データファイル411、二次元データファイル412、及び画像データファイル413が保存される。また、後述する処理に必要な各種のデータ(例えば、液体クロマトグラフ質量分析における測定条件を記載したメソッドファイル)も記憶部41に保存されている。 The storage unit 41 stores the three-dimensional data file 411, the two-dimensional data file 412, and the image data file 413. In addition, various data (for example, a method file describing measurement conditions in liquid chromatograph mass spectrometry) necessary for the processing described later are also stored in the storage unit 41.
 次に、図2のフローチャートを参照し、本実施例の液体クロマトグラフ質量分析イメージング解析システムを用いて試料中の目的化合物の分布を解析する手順を説明する。 Next, the procedure for analyzing the distribution of the target compound in the sample using the liquid chromatograph mass spectrometric imaging analysis system of this example will be described with reference to the flowchart of FIG.
 上述のとおり、本実施例のイメージング質量分析イメージング解析システムでは、予めホットメルトLMD法により、試料の複数の測定点における局所試料を採取し、それぞれから液体試料を調製する(ステップ1)。 As described above, in the imaging mass spectrometry imaging analysis system of this example, local samples are collected in advance at a plurality of measurement points of the sample by the hot melt LMD method, and a liquid sample is prepared from each (step 1).
 ホットメルトLMD法により試料を採取する手順について図3及び4を参照して説明する。まず、試料保持用スライドガラス100の一方の面に測定対象である切片状の試料101を貼り付けたものと、別の試料採取用スライドガラス102の一方の面に熱溶解性フィルム103を貼り付けたものを用意する。そして、試料101と熱溶解性フィルム103が対向するように、両者をセットする(図3の手順1)。 The procedure for collecting a sample by the hot melt LMD method will be described with reference to FIGS. 3 and 4. First, a section-shaped sample 101 to be measured is attached to one surface of the sample holding slide glass 100, and a heat-soluble film 103 is attached to one surface of another sampling slide glass 102. Prepare a sample. Then, both are set so that the sample 101 and the heat-soluble film 103 face each other (procedure 1 in FIG. 3).
 次に、2枚の試料保持用スライドガラス100と試料採取用スライドガラス102を近接させて熱溶解性フィルム103を試料101に密着させる(図3の手順2)。そして、試料採取用スライドガラス102の、熱溶解性フィルム103を貼り付けた面とは反対側から、試料採取用スライドガラス102の表面に略直交するようにレーザ光(近赤外レーザ光)104を照射する(図3の手順3)。レーザ光104は、試料101に設定した1つの測定点に相当する範囲に照射される。 Next, the two sample holding slide glasses 100 and the sample collecting slide glass 102 are brought close to each other to bring the heat-soluble film 103 into close contact with the sample 101 (procedure 2 in FIG. 3). Then, a laser beam (near infrared laser beam) 104 is formed so as to be substantially orthogonal to the surface of the sample collection slide glass 102 from the side of the sample collection slide glass 102 opposite to the surface to which the heat-soluble film 103 is attached. (Procedure 3 in FIG. 3). The laser beam 104 is irradiated to a range corresponding to one measurement point set on the sample 101.
 照射されたレーザ光104は試料採取用スライドガラス102を通過し熱溶解性フィルム103を加熱する。これにより、レーザ光104が照射された範囲付近の熱溶解性フィルム103が溶解し、試料101の測定点に局所的に浸透する。その後、試料保持用スライドガラス100と試料採取用スライドガラス102を引き離して熱溶解性フィルム103を試料101から離脱させる。すると、熱溶解性フィルム103の表面に試料101の一部である局所試料105が張り付いた状態で採取される(図4の手順4)。レーザ光104として近赤外レーザ光を用い、そのレーザ光の波長や強度を適切に調整することで、採取される生体組織に含まれる成分等に影響を与えることなく、ごく微小な範囲の局所試料105を熱溶解性フィルム103上に採取することができる。 The irradiated laser beam 104 passes through the sample-collecting slide glass 102 and heats the heat-soluble film 103. As a result, the heat-soluble film 103 near the area irradiated with the laser beam 104 is melted and locally penetrates into the measurement point of the sample 101. After that, the sample holding slide glass 100 and the sample collecting slide glass 102 are separated from each other to separate the heat-soluble film 103 from the sample 101. Then, the local sample 105, which is a part of the sample 101, is collected on the surface of the heat-soluble film 103 (procedure 4 in FIG. 4). By using a near-infrared laser beam as the laser beam 104 and appropriately adjusting the wavelength and intensity of the laser beam, the local area in a very small range is not affected by the components contained in the collected biological tissue. The sample 105 can be collected on the heat-soluble film 103.
 上記処理は試料101上の1つの測定点で局所試料105を採取する動作である。試料保持用スライドガラス100と試料採取用スライドガラス102の相対位置を、それらの面方向に移動させつつ同様の動作を繰り返すことにより、図4に示すように、試料101の分析対象領域1011内の複数の測定点1012付近の局所試料105を、それぞれ熱溶解性フィルム103上に採取することができる。このとき、試料101上の測定点1012の間隔は質量分析イメージング画像における空間分解能に対応しており、例えば1μmと非常に狭いが、熱溶解性フィルム103上に採取される局所試料105の間隔は例えば数mm程度と広くなるように、その採取位置が制御される。なお、試料101上の複数の測定点の間の二次元的な位置関係と熱溶解性フィルム103上に採取された局所試料105の二次元的な位置関係とは、必ずしも保たれている必要はなく、試料101上の測定点の位置(X方向及びY方向のアドレス情報で規定される位置)と熱溶解性フィルム103上の局所試料105の位置との対応関係が決まっていればよい。 The above process is an operation of collecting a local sample 105 at one measurement point on the sample 101. By repeating the same operation while moving the relative positions of the sample holding slide glass 100 and the sample collecting slide glass 102 in the plane direction thereof, as shown in FIG. 4, in the analysis target region 1011 of the sample 101. Local samples 105 near a plurality of measurement points 1012 can be collected on the heat-soluble film 103, respectively. At this time, the distance between the measurement points 1012 on the sample 101 corresponds to the spatial resolution in the mass spectrometric imaging image, and is very narrow, for example, 1 μm, but the distance between the local samples 105 collected on the thermosoluble film 103 is For example, the sampling position is controlled so as to be as wide as several mm. The two-dimensional positional relationship between the plurality of measurement points on the sample 101 and the two-dimensional positional relationship of the local sample 105 collected on the thermosoluble film 103 need not necessarily be maintained. It suffices that the correspondence between the position of the measurement point on the sample 101 (the position defined by the address information in the X direction and the Y direction) and the position of the local sample 105 on the thermosoluble film 103 is determined.
 次に、熱溶解性フィルム103上に採取された個々の局所試料105から液体試料を調製する。例えば、図4に示すような、多数のウェル1101を備えるマイクロタイタープレート(MTP)110を用い、そのMTP110の各ウェル1101に予め、局所試料105中の成分を抽出するための所定の抽出液を注入しておく。その各ウェル1101の内側に熱溶解性フィルム103上の局所試料105が位置するように、試料採取用スライドガラス102をMTP110の上面(各ウェル1101が開口している側の面)に貼り付ける。その状態で、例えばMTP110全体を上下反転させることで、局所試料105を各ウェル1101中の抽出液中に浸漬させ、局所試料105中の成分が溶解した液体試料を調製する。上述したように試料101上の測定点の位置と熱溶解性フィルム103上の局所試料105の位置との対応関係が決まっていれば、調製された各液体試料と試料101上の測定点の位置との関係も一義的に決まる。こうして複数の測定点のそれぞれから液体試料を調製し、それらをオートサンプラ14にセットする。 Next, a liquid sample is prepared from the individual local samples 105 collected on the heat-soluble film 103. For example, as shown in FIG. 4, a microtiter plate (MTP) 110 having a large number of wells 1101 is used, and a predetermined extract for extracting components in the local sample 105 is previously applied to each well 1101 of the MTP 110. Inject. The slide glass 102 for sampling is attached to the upper surface of the MTP 110 (the surface on the side where each well 1101 is open) so that the local sample 105 on the thermosoluble film 103 is located inside each well 1101. In that state, for example, by turning the entire MTP 110 upside down, the local sample 105 is immersed in the extract in each well 1101 to prepare a liquid sample in which the components in the local sample 105 are dissolved. As described above, if the correspondence between the position of the measurement point on the sample 101 and the position of the local sample 105 on the thermosoluble film 103 is determined, the position of each prepared liquid sample and the measurement point on the sample 101 is determined. The relationship with is also uniquely determined. In this way, liquid samples are prepared from each of the plurality of measurement points and set in the autosampler 14.
 なお、図4は説明のために簡略化したものであり、通常、試料101上の測定点の数は図示したものより遙かに多く(典型的には少なくとも1,000点以上)、一つの試料101から、多数のMTP110の各ウェル1101に収容された液体試料が調製される。 Note that FIG. 4 is a simplification for the sake of explanation, and usually, the number of measurement points on the sample 101 is much larger than that shown in the figure (typically at least 1,000 points or more), and one sample 101 Prepares a liquid sample contained in each well 1101 of a large number of MTP 110s.
 試料の複数の測定点から得られた液体試料をオートサンプラ14にセットした後、使用者が測定開始を指示すると、測定制御部421は、予め記憶部41に保存されたメソッドファイルを読み出し、そこに記載された測定条件に基づいて複数の液体試料を所定の順で液体クロマトグラフ質量分析装置に導入して測定する。本実施例では、オートサンプラ14から液体試料を液体クロマトグラフのインジェクタ12に導入し、カラム13で成分分離された後の試料液を所定のタイミング(t1, t2, …, tm)で繰り返しMS/MSスキャン測定(プロダクトイオンスキャン測定)する。こうして、複数の測定点のそれぞれについて、図5の上段に示すように、複数の保持時間(帯)のそれぞれでマススペクトルデータ(プロダクトイオンスペクトルのデータ)が得られる。そして、これら複数のマススペクトルデータを統合することにより、保持時間、質量電荷比、及びイオン強度を三軸とする三次元データが得られる(ステップ2)。三次元データは、試料の測定点の位置情報と対応付けられ、順次、記憶部41に保存される。 After setting the liquid sample obtained from a plurality of measurement points of the sample in the auto sampler 14, when the user instructs the start of measurement, the measurement control unit 421 reads out the method file previously stored in the storage unit 41, and there. Based on the measurement conditions described in the above, a plurality of liquid samples are introduced into a liquid chromatograph mass analyzer in a predetermined order for measurement. In this embodiment, the liquid sample is introduced from the autosampler 14 into the injector 12 of the liquid chromatograph, and the sample liquid after the components are separated by the column 13 is repeatedly MS / at a predetermined timing (t1, t2,…, tm). MS scan measurement (product ion scan measurement). In this way, as shown in the upper part of FIG. 5, mass spectrum data (product ion spectrum data) can be obtained for each of the plurality of measurement points at each of the plurality of holding times (bands). Then, by integrating these plurality of mass spectrum data, three-dimensional data having the retention time, the mass-to-charge ratio, and the ionic strength as the three axes can be obtained (step 2). The three-dimensional data is associated with the position information of the measurement point of the sample, and is sequentially stored in the storage unit 41.
 全ての液体試料について液体クロマトグラフ質量分析が完了し、三次元データが記憶部41に保存されると、二次元データファイル作成部422は、各測定点の三次元データにおける保持時間軸方向のイオン強度値を積算(あるいは平均)し(ステップ3)、二次元データ(マススペクトルデータ)を作成する。そして、測定点の位置情報と二次元データを対応付けた二次元データファイルを作成して(ステップ4)、記憶部41に保存する。 When the liquid chromatograph mass analysis is completed for all the liquid samples and the three-dimensional data is stored in the storage unit 41, the two-dimensional data file creation unit 422 displays the ions in the retention time axis direction in the three-dimensional data of each measurement point. Intensity values are integrated (or averaged) (step 3) to create two-dimensional data (mass spectrum data). Then, a two-dimensional data file in which the position information of the measurement point and the two-dimensional data are associated with each other is created (step 4) and stored in the storage unit 41.
 続いて、統合マススペクトルデータ作成部423は、複数の測定点の二次元データのイオン強度値を積算(あるいは平均)した統合マススペクトルデータを作成し(ステップ5)、その統合マススペクトルを表示部7の画面に表示する(ステップ6)。これにより、試料の複数の測定点に存在する各種の化合物から生成されたイオンの全強度値(あるいは平均強度値)を反映した1つの統合マススペクトルが得られる。 Subsequently, the integrated mass spectrum data creation unit 423 creates integrated mass spectrum data by integrating (or averaging) the ion intensity values of the two-dimensional data of a plurality of measurement points (step 5), and displays the integrated mass spectrum. Display on the screen of 7 (step 6). This results in a single integrated mass spectrum that reflects the total intensity (or average intensity) of the ions produced from the various compounds present at multiple measurement points of the sample.
 表示部7の画面に統合マススペクトルを表示すると、第1指定値入力受付部425は、使用者による質量電荷比の値(又は範囲)の入力を受け付ける。これは、例えば画面表示されている統合マススペクトルのピークをクリックしたりマウスで範囲指定したりすることにより行われる(ステップ7)。 When the integrated mass spectrum is displayed on the screen of the display unit 7, the first designated value input receiving unit 425 receives the input of the mass-to-charge ratio value (or range) by the user. This is done, for example, by clicking on the peak of the integrated mass spectrum displayed on the screen or by specifying the range with the mouse (step 7).
 使用者により質量電荷比の値(又は範囲)が入力されると、統合マスクロマトグラムデータ作成部424は、複数の測定点で得られた三次元データのそれぞれから、入力された質量電荷比の値に基づきマスクロマトグラムデータを抽出し、さらに複数の測定点のマスクロマトグラムデータを統合した、1つの統合マスクロマトグラムデータを作成し、その統合マスクロマトグラムを表示部7の画面に表示する(ステップ8)。なお、この処理は、三次元データを先に統合して統合三次元データを作成し、その後に入力された質量電荷比の値に基づき統合マスクロマトグラムデータを抽出する、という順に行ってもよい。 When the value (or range) of the mass-to-charge ratio is input by the user, the integrated mass chromatogram data creation unit 424 determines the input mass-to-charge ratio from each of the three-dimensional data obtained at the plurality of measurement points. Mass chromatogram data is extracted based on the value, and one integrated mass chromatogram data is created by integrating the mass chromatogram data of a plurality of measurement points, and the integrated mass chromatogram is displayed on the screen of the display unit 7. (Step 8). Note that this process may be performed in the order of first integrating the three-dimensional data to create the integrated three-dimensional data, and then extracting the integrated mass chromatogram data based on the input mass-to-charge ratio value. ..
 表示部7の画面に統合マスクロマトグラムを表示すると、ピーク処理部426は、予め決められたアルゴリズムに基づいて統合マスクロマトグラムのピークピッキングを行ってピークを抽出し(ステップ9)、そのピークトップの保持時間(又はピークの保持時間範囲)を求める。ピークピッキングには、従来提案されている種々の手法の中から適宜のものを用いればよい(例えば特許文献3)。 When the integrated mass chromatogram is displayed on the screen of the display unit 7, the peak processing unit 426 performs peak picking of the integrated mass chromatogram based on a predetermined algorithm to extract the peak (step 9), and the peak top thereof. Retention time (or peak retention time range) is calculated. For peak picking, an appropriate method may be used from various conventionally proposed methods (for example, Patent Document 3).
 ピークピッキングによって抽出されたピークが1つである場合には(ステップ10でNO)、そのピークのピークトップの保持時間の値(あるいはピークの保持時間範囲)を第2指定値に決定する。 If there is only one peak extracted by peak picking (NO in step 10), the value of the peak top holding time (or the peak holding time range) of that peak is determined as the second specified value.
 一方、ピークピッキングにより複数のピークが抽出された場合には(ステップ10でYES)、統合マスクロマトグラム上にピーク位置を特定する表示(例えば、図6に破線で示すような、ピークトップを通る線など)を重畳させて、使用者にいずれかのピークを選択させる。使用者がいずれかのピークを選択すると(ステップ11)、そのピークのピークトップの保持時間の値(あるいはピークの保持時間範囲)を第2指定値に決定する。 On the other hand, when a plurality of peaks are extracted by peak picking (YES in step 10), a display specifying the peak position on the integrated mass chromatogram (for example, passing through the peak top as shown by a broken line in FIG. 6). (Lines, etc.) are superimposed to let the user select one of the peaks. When the user selects one of the peaks (step 11), the value of the peak top holding time (or the peak holding time range) of the peak is determined as the second designated value.
 第2指定値入力受付部427は、上記のようにして決められた第2指定値の入力を受け付ける(ステップ12)。ここでは、予め決められたアルゴリズムに基づいてピークピッキングを行ってピークを抽出したが、使用者が統合マスクロマトグラムを確認してピークを特定し、そのピークトップの保持時間(あるいはピークの保持時間範囲)を入力するようにしてもよい。 The second designated value input receiving unit 427 accepts the input of the second designated value determined as described above (step 12). Here, peak picking was performed based on a predetermined algorithm to extract the peak, but the user confirmed the integrated mass chromatogram to identify the peak, and the retention time of the peak top (or the retention time of the peak). Range) may be entered.
 第2指定値が入力されると、画像データファイル作成部428は、複数の測定点のそれぞれの三次元データから、第1指定値(質量電荷比)及び第2指定値(保持時間)に対応するイオン強度を読み出し、各測定点のイオン強度をマッピングした画像データを作成して(ステップ13)、その画像を表示部7の画面に表示する。 When the second designated value is input, the image data file creation unit 428 corresponds to the first designated value (mass-to-charge ratio) and the second designated value (holding time) from the three-dimensional data of each of the plurality of measurement points. The ion intensity to be measured is read out, image data in which the ion intensity of each measurement point is mapped is created (step 13), and the image is displayed on the screen of the display unit 7.
 この画像は、第2指定値(保持時間)に液体クロマトグラフ1のカラム13から流出した化合物から生成された、質量分析装置2において第1指定値(質量電荷比)を有するイオンの強度を表したものである。そこで、使用者はこの画像が目的化合物の分布を正しく表したものであるかを確認する。例えば、目的化合物以外の化合物の分布が重なって表れていると考えられる場合には、第1指定値(質量電荷比)又は第2指定値(保持時間)を変更する(ステップ14でYES)。第1指定値(質量電荷比)又は第2指定値(保持時間)が更新された場合には、表示画像更新部429は、上記各部に上記処理を実行させて更新後の第1指定値(質量電荷比)及び第2指定値(保持時間)に対応する、各測定点のイオン強度をマッピングした画像データを作成し、その画像を表示部7の画面に表示する。 This image shows the intensity of ions having the first specified value (mass-to-charge ratio) in the mass spectrometer 2 produced from the compound flowing out from the column 13 of the liquid chromatograph 1 at the second specified value (holding time). It was done. Therefore, the user confirms whether or not this image correctly represents the distribution of the target compound. For example, when it is considered that the distributions of compounds other than the target compound appear to overlap, the first designated value (mass-to-charge ratio) or the second designated value (holding time) is changed (YES in step 14). When the first designated value (mass-to-charge ratio) or the second designated value (holding time) is updated, the display image updating unit 429 causes each of the above units to execute the above processing, and the updated first specified value ( Image data in which the ionic strength of each measurement point is mapped corresponding to the mass-to-charge ratio) and the second designated value (holding time) is created, and the image is displayed on the screen of the display unit 7.
 使用者が、目的化合物が正しくマッピングされていると判断した場合には、決定ボタンをマウスでクリックする等の所定の入力操作により解析終了を指示する(指定値更新なし。ステップ14でNO)。解析終了が指示されると、画像データファイル作成部428は、表示部7に表示している画像に対応する画像データを、その画像データの作成に使用した第1指定値(質量電荷比)及び第2指定値(保持時間)と対応付けた画像データファイルを作成し(ステップ15)、それを記憶部41に保存する。 When the user determines that the target compound is correctly mapped, the user instructs the end of the analysis by a predetermined input operation such as clicking the enter button with the mouse (no update of the specified value. NO in step 14). When the end of analysis is instructed, the image data file creation unit 428 uses the image data corresponding to the image displayed on the display unit 7 as the first specified value (mass charge ratio) used for creating the image data and the image data. An image data file associated with the second specified value (holding time) is created (step 15), and the image data file is stored in the storage unit 41.
 従来のイメージングデータ処理方法では、目的化合物の分布を知るために、ある1つの測定点を指定し、さらに保持時間と質量電荷比の組を一度に指定する必要があった。目的化合物が確実に存在する測定点を特定することや、保持時間と質量電荷比の両方を同時に、かつ的確に指定することは必ずしも容易でなく、不慣れなものが解析を行おうとする場合には、測定点の選択、及び保持時間と質量電荷比の組の入力を何度も試行錯誤して決めなければならなかった。 In the conventional imaging data processing method, in order to know the distribution of the target compound, it was necessary to specify one measurement point and further specify a set of retention time and mass-to-charge ratio at a time. It is not always easy to identify the measurement point where the target compound is surely present, or to specify both the retention time and the mass-to-charge ratio at the same time and accurately. , The selection of measurement points, and the input of the set of retention time and mass-to-charge ratio had to be determined by trial and error many times.
 一方、本実施例のイメージングデータ処理方法では、試料の分析対象範囲に分布する目的化合物由来のイオン強度を積算した、1つの統合マスクロマトグラムデータを確認し、まず質量電荷比(指定値)を指定すればよい。そして、質量電荷比を指定した後に、統合マスクロマトグラムを確認して保持時間(第2指定値)を指定すればよい。従って、解析に不慣れなものでも容易に目的化合物の分布を表す画像データを得ることができる。 On the other hand, in the imaging data processing method of this example, one integrated mass chromatogram data obtained by integrating the ionic strengths derived from the target compound distributed in the analysis target range of the sample is confirmed, and the mass-to-charge ratio (specified value) is first determined. You can specify it. Then, after specifying the mass-to-charge ratio, the integrated mass chromatogram may be confirmed and the holding time (second designated value) may be specified. Therefore, even those unfamiliar with the analysis can easily obtain image data showing the distribution of the target compound.
 また、本実施例のイメージングデータ処理方法では、複数の測定点について得られた三次元データを含むイメージングデータをそのまま用いるのではなく、保持時間と質量電荷比のうちの一方の軸方向にイオン強度値を積算又は平均することによりデータの次元を一つ減らして二次元データを作成する。そして、保持時間と質量電荷比のうちの他方(即ち、イオン強度値が積算又は平均されていない方)について指定値の入力を受け付け、複数の測定点の二次元データから該指定値に対応するイオン強度値を読み出すことにより画像データを作成する。つまり、本実施例のイメージングデータ処理方法では、元のイメージングデータに含まれる三次元データから次元を減らして軽量化した画像作成用データファイルを読み込んで画像データを作成するため、それらの処理に要する時間を短縮することができる。 Further, in the imaging data processing method of this embodiment, the imaging data including the three-dimensional data obtained for a plurality of measurement points is not used as it is, but the ion intensity in the axial direction of one of the retention time and the mass-to-charge ratio. Two-dimensional data is created by reducing the dimension of the data by one by integrating or averaging the values. Then, the input of the specified value is accepted for the other of the holding time and the mass-to-charge ratio (that is, the one in which the ionic strength values are not integrated or averaged), and the specified value corresponds to the two-dimensional data of a plurality of measurement points. Image data is created by reading out the ionic strength value. That is, in the imaging data processing method of the present embodiment, the image data is created by reading the image creation data file which is lightened by reducing the dimension from the three-dimensional data included in the original imaging data, so that the processing is required. You can save time.
 次に、本発明に係るイメージングデータ処理方法、イメージングデータ処理装置、及びイメージングデータ処理用プログラムの第2実施例について説明する。第2実施例のイメージングデータ処理装置を含む液体クロマトグラフ質量分析システムは、第1実施例の制御部4に代えて、図7に示す制御部5を有する。以下の説明では、第1実施例と共通する構成及び工程の説明を適宜省略する。 Next, a second embodiment of the imaging data processing method, the imaging data processing apparatus, and the imaging data processing program according to the present invention will be described. The liquid chromatograph mass spectrometric system including the imaging data processing apparatus of the second embodiment has a control unit 5 shown in FIG. 7 in place of the control unit 4 of the first embodiment. In the following description, the description of the configuration and the process common to the first embodiment will be omitted as appropriate.
 制御部5は、記憶部51を有するとともに、機能ブロックとして、測定制御部521、二次元データファイル作成部522、統合クロマトグラムデータ作成部523、統合マスクロマトグラムデータ作成部524、第1指定値入力受付部525、ピーク処理部526、第2指定値入力受付部527、画像データファイル作成部528、表示画像更新部529を備えている。制御部5の実体はパーソナルコンピュータであり、該コンピュータに予めインストールされたクロマトグラフ質量分析イメージング用プログラム52をプロセッサで実行することにより上記の各機能ブロックが具現化される。クロマトグラフ質量分析イメージング用プログラム52のうち、測定制御部521を除く機能ブロックを具現化する部分が本発明のイメージングデータ処理用プログラムに相当する。また、第1実施例と同様に、制御部5には入力部6及び表示部7が接続されている。 The control unit 5 has a storage unit 51, and also has a measurement control unit 521, a two-dimensional data file creation unit 522, an integrated chromatogram data creation unit 523, an integrated mass chromatogram data creation unit 524, and a first designated value as functional blocks. It includes an input reception unit 525, a peak processing unit 526, a second designated value input reception unit 527, an image data file creation unit 528, and a display image update unit 529. The substance of the control unit 5 is a personal computer, and each of the above functional blocks is embodied by executing the chromatograph mass spectrometry imaging program 52 pre-installed in the computer on the processor. Of the chromatographic mass spectrometric imaging program 52, the portion that embodies the functional blocks excluding the measurement control unit 521 corresponds to the imaging data processing program of the present invention. Further, as in the first embodiment, the input unit 6 and the display unit 7 are connected to the control unit 5.
 次に、図8のフローチャートを参照し、本実施例の液体クロマトグラフ質量分析イメージング解析システムを用いて試料中の目的化合物の分布を解析する手順を説明する。ホットメルトLMD法による試料の採取と調整、及び液体クロマトグラフ質量分析による三次元データの取得は第1実施例と同じであるため、説明を省略する。 Next, the procedure for analyzing the distribution of the target compound in the sample using the liquid chromatograph mass spectrometric imaging analysis system of this example will be described with reference to the flowchart of FIG. Since the collection and preparation of the sample by the hot melt LMD method and the acquisition of the three-dimensional data by the liquid chromatograph mass spectrometry are the same as those in the first embodiment, the description thereof will be omitted.
 全ての液体試料について液体クロマトグラフ質量分析を完了して三次元データが得られると(ステップ2)、二次元データファイル作成部522は、各測定点の三次元データにおける質量電荷比軸方向のイオン強度値を積算(あるいは平均)し(ステップ23)、二次元データ(トータルイオンカレントクロマトグラムデータ)を作成する。そして、測定点の位置情報と二次元データを対応付けた二次元データファイルを作成して(ステップ24)、記憶部51に保存する。 When the liquid chromatograph mass spectrometry is completed for all the liquid samples and the three-dimensional data is obtained (step 2), the two-dimensional data file creation unit 522 indicates the ions in the mass-to-charge ratio axial direction in the three-dimensional data of each measurement point. The intensity values are integrated (or averaged) (step 23) to create two-dimensional data (total ion current chromatogram data). Then, a two-dimensional data file in which the position information of the measurement point and the two-dimensional data are associated with each other is created (step 24) and stored in the storage unit 51.
 続いて、統合クロマトグラムデータ作成部523は、複数の二次元データのイオン強度値を積算(あるいは平均)した統合クロマトグラムデータを作成し(ステップ25)、その統合クロマトグラムを表示部7の画面に表示する(ステップ26)。これにより、試料の複数の測定点に存在する各種の化合物から生成されたイオンの全強度値(あるいは平均強度値)を反映した1つの統合クロマトグラムが得られる。 Subsequently, the integrated chromatogram data creation unit 523 creates integrated chromatogram data by integrating (or averaging) the ionic strength values of a plurality of two-dimensional data (step 25), and displays the integrated chromatogram on the screen of the display unit 7. Is displayed in (step 26). This results in a single integrated chromatogram that reflects the total intensity (or average intensity) of the ions produced from the various compounds present at multiple measurement points on the sample.
 表示部7の画面に統合クロマトグラムを表示すると、ピーク処理部526は、予め決められたアルゴリズムに基づいて統合クロマトグラムのピークピッキングを行ってピークを抽出し(ステップ27)、そのピークトップの保持時間(又はピークの保持時間範囲)を求める。 When the integrated chromatogram is displayed on the screen of the display unit 7, the peak processing unit 526 performs peak picking of the integrated chromatogram based on a predetermined algorithm to extract the peak (step 27), and holds the peak top. Find the time (or peak retention time range).
 ピークピッキングによって抽出されたピークが1つである場合には(ステップ28でNO)、そのピークのピークトップの保持時間の値(あるいはピークの保持時間範囲)を指定値に決定する。 If there is only one peak extracted by peak picking (NO in step 28), the value of the peak top holding time (or the peak holding time range) of that peak is determined as the specified value.
 一方、ピークピッキングにより複数のピークが抽出された場合には(ステップ28でYES)、統合クロマトグラム上にピーク位置を特定する符号(ピークトップを通る線など)を重畳表示し、使用者にいずれかのピークを選択させる。使用者がいずれかのピークを選択すると(ステップ29)、そのピークのピークトップの保持時間の値(あるいはピークの保持時間範囲)を指定値に決定する。 On the other hand, when a plurality of peaks are extracted by peak picking (YES in step 28), a code for specifying the peak position (such as a line passing through the peak top) is superimposed and displayed on the integrated chromatogram, and eventually the user is informed. Let the peak be selected. When the user selects one of the peaks (step 29), the value of the peak top holding time (or the peak holding time range) of the peak is determined as the specified value.
 第1指定値入力受付部525は、上記のようにして決められた指定値の入力を受け付ける(ステップ30)。ここでは、予め決められたアルゴリズムに基づいてピークピッキングを行ってピークを抽出したが、使用者が統合クロマトグラムを確認してピークを特定し、そのピークトップの保持時間(あるいはピークの保持時間範囲)を指定値として入力するようにしてもよい。 The first designated value input receiving unit 525 accepts the input of the designated value determined as described above (step 30). Here, peak picking was performed based on a predetermined algorithm to extract peaks, but the user confirmed the integrated chromatogram to identify the peak, and the retention time (or peak retention time range) of the peak top was identified. ) May be entered as the specified value.
 次に、統合マスクロマトグラムデータ作成部524は、複数の測定点で得られた三次元データのそれぞれから、入力された保持時間の値に基づきマスクロマトグラムデータを抽出し、さらに複数の測定点のマスクロマトグラムデータを統合した、1つの統合マスクロマトグラムデータを作成し、その統合マスクロマトグラムを表示部7の画面に表示する(ステップ31)。 Next, the integrated mass chromatogram data creation unit 524 extracts mass chromatogram data from each of the three-dimensional data obtained at the plurality of measurement points based on the input retention time value, and further extracts the mass chromatogram data from the plurality of measurement points. One integrated mass chromatogram data is created by integrating the mass chromatogram data of the above, and the integrated mass chromatogram is displayed on the screen of the display unit 7 (step 31).
 続いて、第2指定値入力受付部527は、統合マスクロマトグラム上でピークを選択させる等の操作により使用者に第2指定値である質量電荷比の値(又は範囲)を入力させる(ステップ32)。 Subsequently, the second designated value input receiving unit 527 causes the user to input the value (or range) of the mass-to-charge ratio, which is the second designated value, by an operation such as selecting a peak on the integrated mass chromatogram (step). 32).
 第2指定値が入力されると、画像データファイル作成部は、複数の測定点のそれぞれの三次元データから、指定値(保持時間)及び第2指定値(質量電荷比)に対応するイオン強度を読み出し、その強度をマッピングした画像データを作成して(ステップ33)、その画像を表示部7の画面に表示する。以降のステップ14及び15は第1実施例と同じであるため説明を省略する。 When the second specified value is input, the image data file creation unit receives the ion intensity corresponding to the specified value (holding time) and the second specified value (mass-to-charge ratio) from the three-dimensional data of each of the plurality of measurement points. Is read out, image data whose intensity is mapped is created (step 33), and the image is displayed on the screen of the display unit 7. Subsequent steps 14 and 15 are the same as those in the first embodiment, and thus the description thereof will be omitted.
 上記第1実施例及び第2実施例はいずれも一例であって、本発明の趣旨に沿って適宜に変更することができる。 The first embodiment and the second embodiment are both examples, and can be appropriately changed according to the gist of the present invention.
 上記実施例では、全測定点の二次元データを統合して統合マススペクトルあるいは統合クロマトグラムを作成したが、必ずしも全測定点の二次元データを統合しなくてもよい。例えば、観察装置などにより試料を観察する等して目的化合物が存在する1乃至複数の測定点が分かっている場合には、それら1乃至複数の測定点の二次元データを統合してもよい。 In the above embodiment, the two-dimensional data of all measurement points are integrated to create an integrated mass spectrum or an integrated chromatogram, but it is not always necessary to integrate the two-dimensional data of all measurement points. For example, when one or more measurement points where the target compound exists are known by observing the sample with an observation device or the like, the two-dimensional data of those one or more measurement points may be integrated.
 また、上記実施例では液体クロマトグラフ質量分析装置を用いて三次元データを取得したが、ガスクロマトグラフ質量分析装置を用いることもできる。その場合には、調製した液体試料を気化させてガスクロマトグラフに導入すればよい。また、ガスクロマトグラフ質量分析装置において広く用いられるイオン化法である電子イオン化(EI)法のように、イオン化の時点で化合物が断片化する場合にはMSスキャン測定を行うことにより三次元データを取得してもよい。また、必ずしもスキャン測定を行う必要はなく、1乃至複数の質量電荷比(の組)を用いたSIM測定やMRM測定を行うことにより疑似マススペクトルを取得し、それを保持時間と組み合わせた三次元データを解析するものとしてもよい。 Further, in the above embodiment, three-dimensional data was acquired using a liquid chromatograph mass spectrometer, but a gas chromatograph mass spectrometer can also be used. In that case, the prepared liquid sample may be vaporized and introduced into a gas chromatograph. In addition, when a compound is fragmented at the time of ionization, such as the electron ionization (EI) method, which is an ionization method widely used in gas chromatograph mass spectrometers, three-dimensional data is acquired by performing MS scan measurement. You may. In addition, it is not always necessary to perform scan measurement, and a pseudo-mass spectrum is acquired by performing SIM measurement or MRM measurement using (a set of) one or more mass-to-charge ratios, and the pseudo-mass spectrum is combined with the retention time in three dimensions. The data may be analyzed.
 さらに、上記実施例では、統合マスクロマトグラムデータを作成したあと、第2指定値を入力し、指定値及び第2指定値の両方に対応するイオン強度を読み出して画像データを作成したが、第2指定値は必ずしも入力しなくてもよい。その場合には、指定値に対応するイオン強度の積算値(あるいは平均値)から画像データを作成すればよい。これは、例えば指定値が保持時間である場合、トータルイオンクロマトグラムのピーク強度に相当する。 Further, in the above embodiment, after creating the integrated mass chromatogram data, the second designated value is input, and the ionic strength corresponding to both the designated value and the second designated value is read out to create the image data. 2 The specified value does not necessarily have to be entered. In that case, the image data may be created from the integrated value (or average value) of the ionic strength corresponding to the specified value. This corresponds to the peak intensity of the total ion chromatogram, for example, when the specified value is the retention time.
[態様]
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Aspect]
It will be understood by those skilled in the art that the plurality of exemplary embodiments described above are specific examples of the following embodiments.
(第1項)
 本発明の一態様は、試料の複数の測定点のそれぞれにおいてクロマトグラフ質量分析を実行することにより測定点毎に得られた、保持時間、質量電荷比、及びイオン強度を三軸とする三次元データを含むイメージングデータを処理する方法であって、
 前記複数の測定点のそれぞれについて、当該測定点に対応する三次元データにおける保持時間と質量電荷比のうちの一方の軸方向にイオン強度値を積算又は平均することにより二次元データを作成し、
 前記保持時間と質量電荷比のうちの他方の値である指定値の入力を受け付け、
 前記複数の測定点のそれぞれについて、当該測定点に対応する二次元データから、前記指定値に対応するイオン強度値を読み出して画像データを作成する。
(Section 1)
One aspect of the present invention is a three-dimensional structure having a retention time, a mass-to-charge ratio, and an ionic strength as three axes, which are obtained for each measurement point by performing chromatographic mass spectrometry at each of a plurality of measurement points of a sample. A method of processing imaging data, including data.
For each of the plurality of measurement points, two-dimensional data is created by integrating or averaging the ionic strength values in the axial direction of one of the retention time and the mass-to-charge ratio in the three-dimensional data corresponding to the measurement points.
Accepts the input of the specified value, which is the other value of the retention time and the mass-to-charge ratio.
For each of the plurality of measurement points, image data is created by reading out the ionic strength value corresponding to the designated value from the two-dimensional data corresponding to the measurement point.
 (第16項)
 本発明の別の一態様は、試料の複数の測定点のそれぞれにおいてクロマトグラフ質量分析を実行することにより測定点毎に得られた、保持時間、質量電荷比、及びイオン強度を三軸とする三次元データを含むイメージングデータを処理する装置であって、
 前記複数の測定点のそれぞれについて、当該測定点に対応する三次元データにおける保持時間と質量電荷比のうちの一方の軸方向にイオン強度値を積算又は平均することにより二次元データを作成する二次元データ作成部と、
 前記保持時間と質量電荷比のうちの他方の値又は範囲である指定値の入力を受け付ける指定値入力受付部と、
 前記複数の測定点のそれぞれについて、当該測定点に対応する二次元データから、前記指定値に対応するイオン強度値を読み出して画像データを作成する画像データ作成部と
 を備える。
(Section 16)
Another aspect of the present invention has three axes of retention time, mass-to-charge ratio, and ionic strength obtained for each measurement point by performing chromatographic mass spectrometry at each of the plurality of measurement points of the sample. A device that processes imaging data including three-dimensional data.
For each of the plurality of measurement points, two-dimensional data is created by integrating or averaging the ion intensity values in the axial direction of one of the retention time and the mass charge ratio in the three-dimensional data corresponding to the measurement points. Dimensional data creation department and
A designated value input receiving unit that accepts input of a designated value that is the other value or range of the holding time and the mass-to-charge ratio, and
For each of the plurality of measurement points, an image data creation unit is provided which reads out the ion intensity value corresponding to the designated value from the two-dimensional data corresponding to the measurement point and creates image data.
 (第17項)
 本発明のさらに別の一態様に係るイメージングデータ処理用プログラムは、
 試料の複数の測定点のそれぞれにおいてクロマトグラフ質量分析を実行することにより測定点毎に得られた、保持時間、質量電荷比、及びイオン強度を三軸とする三次元データを含むクロマトグラフ質量分析イメージングデータが保存された記憶部を備えたコンピュータを、
 前記複数の測定点のそれぞれについて、当該測定点に対応する三次元データにおける保持時間と質量電荷比のうちの一方の軸方向にイオン強度値を積算又は平均することにより二次元データを作成する二次元データ作成部と、
 前記保持時間と質量電荷比のうちの他方の値である指定値の入力を受け付けるパラメータ入力受付部と、
 前記複数の測定点のそれぞれについて、当該測定点に対応する二次元データから、前記指定値に対応するイオン強度値を読み出して画像データを作成する画像データ作成部
 として動作させる。
(Section 17)
The imaging data processing program according to still another aspect of the present invention is
Chromatograph mass spectrometry including three-dimensional data having retention time, mass-to-charge ratio, and ion intensity as three axes obtained for each measurement point by performing chromatograph mass spectrometry at each of a plurality of measurement points of a sample. A computer with a storage unit in which imaging data is stored,
For each of the plurality of measurement points, two-dimensional data is created by integrating or averaging the ion intensity values in the axial direction of one of the retention time and the mass charge ratio in the three-dimensional data corresponding to the measurement points. Dimensional data creation department and
A parameter input receiving unit that accepts input of a specified value, which is the other value of the holding time and the mass-to-charge ratio,
For each of the plurality of measurement points, the ion intensity value corresponding to the specified value is read out from the two-dimensional data corresponding to the measurement point, and the image data is operated as an image data creation unit.
 第1項に記載のイメージングデータ処理方法、第16項に記載のイメージングデータ処理装置、及び第17項に記載のイメージングデータ処理用プログラムでは、複数の測定点について得られた三次元データを含むイメージングデータをそのまま用いるのではなく、保持時間と質量電荷比のうちの一方の軸方向にイオン強度値を積算又は平均することによりデータの次元を一つ減らして二次元データを作成する。そして、保持時間と質量電荷比のうちの他方(即ち、イオン強度値が積算又は平均されていない方)について指定値の入力を受け付け、複数の測定点の二次元データから該指定値に対応するイオン強度値を読み出すことにより画像データを作成する。本発明に係るイメージングデータ処理方法では、元のイメージングデータに含まれる三次元データから次元を減らして軽量化した画像作成用データファイルを読み込んで画像データを作成するため、それらの処理に要する時間を短縮することができる。 The imaging data processing method according to paragraph 1, the imaging data processing apparatus according to paragraph 16, and the imaging data processing program according to paragraph 17 include imaging including three-dimensional data obtained for a plurality of measurement points. Instead of using the data as it is, two-dimensional data is created by reducing the dimension of the data by one by integrating or averaging the ion intensity values in the axial direction of one of the retention time and the mass charge ratio. Then, the input of the specified value is accepted for the other of the holding time and the mass-to-charge ratio (that is, the one in which the ionic strength values are not integrated or averaged), and the specified value corresponds to the two-dimensional data of a plurality of measurement points. Image data is created by reading out the ionic strength value. In the imaging data processing method according to the present invention, since the image data is created by reading the image creation data file which is lightened by reducing the dimension from the three-dimensional data included in the original imaging data, the time required for the processing is reduced. Can be shortened.
 (第2項)
 第1項に記載のイメージングデータ処理方法において、
 前記一方が保持時間であり、前記指定値が質量電荷比の値又は範囲である。
(Section 2)
In the imaging data processing method described in paragraph 1,
One of the above is the holding time, and the specified value is the value or range of the mass-to-charge ratio.
 第2項に記載のイメージングデータ処理方法では、目的化合物から生成されるイオンの質量電荷比に基づいて目的化合物の分布を表す画像データを得ることができる。 In the imaging data processing method described in item 2, image data representing the distribution of the target compound can be obtained based on the mass-to-charge ratio of ions generated from the target compound.
 (第3項)
 第2項に記載のイメージングデータ処理方法において、
 前記三次元データが、前記クロマトグラフ質量分析においてスキャン測定を行うことにより得られたものである。
(Section 3)
In the imaging data processing method described in Section 2,
The three-dimensional data is obtained by performing a scan measurement in the chromatograph mass spectrometry.
 第3項に記載のイメージングデータ処理方法では、マススペクトル上に現れる多数のピークから目的化合物に特徴的なイオンの質量電荷比のピークを選出して目的化合物の分布を表す画像データを得ることができる。 In the imaging data processing method described in item 3, it is possible to select peaks of the mass-to-charge ratio of ions characteristic of the target compound from a large number of peaks appearing on the mass spectrum and obtain image data showing the distribution of the target compound. it can.
 (第4項)
 第2項又は第3項に記載のイメージングデータ処理方法において、さらに、
 前記複数の測定点のうちの一部又は全部の前記二次元データのイオン強度値を積算又は平均することにより統合マススペクトルデータを作成する。
(Section 4)
In the imaging data processing method according to the second or third paragraph, further
Integrated mass spectrum data is created by integrating or averaging the ionic strength values of some or all of the two-dimensional data of the plurality of measurement points.
 第4項に記載のイメージングデータ処理方法では、使用者が1つの統合マススペクトルデータのみを確認して簡便に指定値を決めることができる。また、第4項に記載のイメージングデータ処理方法では、観察装置で得られた試料表面の画像等に基づいて特徴的な部分を関心領域として指定し、該関心領域内に位置する測定点の二次元データのイオン強度値を積算又は平均することにより、試料の特徴をより強調した統合マススペクトルデータを得ることができる。 In the imaging data processing method described in item 4, the user can easily determine the specified value by confirming only one integrated mass spectrum data. Further, in the imaging data processing method described in item 4, a characteristic portion is designated as a region of interest based on an image of the sample surface obtained by an observation device, and two measurement points located within the region of interest are designated. By integrating or averaging the ion intensity values of the dimensional data, integrated mass spectrum data with more emphasized sample characteristics can be obtained.
 (第5項)
 第2項から第4項のいずれかに記載のイメージングデータ処理方法において、さらに、
 前記複数の測定点の前記三次元データを統合した統合三次元データにおける前記指定値に対応する統合マスクロマトグラムデータを作成し、
 前記統合マスクロマトグラムデータにおける保持時間の値又は範囲である第2指定値の入力を受け付け、
 前記複数の測定点のそれぞれにおいて、前記三次元データにおける前記指定値及び前記第2指定値に対応するイオン強度を読み出して前記画像データを作成する。
(Section 5)
In the imaging data processing method according to any one of paragraphs 2 to 4, further
An integrated mass chromatogram data corresponding to the specified value in the integrated three-dimensional data in which the three-dimensional data of the plurality of measurement points are integrated is created.
Accepting the input of the second designated value which is the value or range of the retention time in the integrated mass chromatogram data,
At each of the plurality of measurement points, the ionic strength corresponding to the designated value and the second designated value in the three-dimensional data is read out to create the image data.
 第5項に記載のイメージングデータ処理方法では、目的化合物に対応する質量電荷比の値又は範囲と保持時間の値又は範囲の両方を簡便に指定して目的化合物の分布を表す画像データを得ることができる。 In the imaging data processing method described in item 5, both the mass-to-charge ratio value or range corresponding to the target compound and the retention time value or range are simply specified to obtain image data representing the distribution of the target compound. Can be done.
 (第6項)
 第5項に記載のイメージングデータ処理方法において、さらに、
 所定のアルゴリズムに基づいて前記統合マスクロマトグラムデータに含まれるピークを抽出し、該ピークの保持時間の値又は範囲を前記第2指定値として入力する。
(Section 6)
In the imaging data processing method described in Section 5, further
A peak included in the integrated mass chromatogram data is extracted based on a predetermined algorithm, and a value or range of the retention time of the peak is input as the second designated value.
 第6項に記載のイメージングデータ処理方法では、使用者がクロマトグラフ質量分析に精通していなくても第2指定値を入力することができる。 In the imaging data processing method described in item 6, the second specified value can be input even if the user is not familiar with chromatographic mass spectrometry.
 (第7項)
 第1項から第6項のいずれかに記載のイメージングデータ処理方法において、さらに、
 前記指定値又は前記第2指定値が入力される毎に、前記画像を更新して表示する。
(Section 7)
In the imaging data processing method according to any one of paragraphs 1 to 6, further
Every time the designated value or the second designated value is input, the image is updated and displayed.
 第7項に記載のイメージングデータ処理方法では、指定値又は第2指定値を変更するごとに表示部に表示される画像が更新されるため、指定値及び第2指定値の組み合わせの適否を容易かつ即座に確認することができる。 In the imaging data processing method described in item 7, since the image displayed on the display unit is updated every time the specified value or the second specified value is changed, it is easy to determine the suitability of the combination of the specified value and the second specified value. And it can be confirmed immediately.
 (第8項)
 第1項に記載のイメージングデータ処理方法において、
 前記一方が質量電荷比であり、前記指定値が保持時間の値又は範囲である。
(Section 8)
In the imaging data processing method described in paragraph 1,
One of the above is the mass-to-charge ratio, and the specified value is the value or range of the holding time.
 第8項に記載のイメージングデータ処理方法では、クロマトグラフにおける目的化合物の保持時間に基づいて目的化合物の分布を表す画像データを得ることができる。 With the imaging data processing method described in item 8, image data representing the distribution of the target compound can be obtained based on the retention time of the target compound in the chromatograph.
 (第9項)
 第8項に記載のイメージングデータ処理方法において、
 前記三次元データが、前記クロマトグラフ質量分析においてスキャン測定を行うことにより得られたものである。
(Section 9)
In the imaging data processing method described in item 8,
The three-dimensional data is obtained by performing a scan measurement in the chromatograph mass spectrometry.
 第9項に記載のイメージングデータ処理方法では、試料から生成されるイオンのうち、スキャン測定を行った質量電荷比範囲内の全てのイオンの強度を積算したクロマトグラムから目的化合物の分布を表す画像データを得ることができる。 In the imaging data processing method described in item 9, an image showing the distribution of the target compound from a chromatogram obtained by integrating the intensities of all the ions generated from the sample within the mass-to-charge ratio range obtained by scanning measurement. You can get the data.
 (第10項)
 第8項又は第9項に記載のイメージングデータ処理方法において、さらに、
 前記複数の測定点のうちの一部又は全部の前記二次元データのイオン強度値を積算又は平均することにより統合クロマトグラムデータを作成する。
(Section 10)
In the imaging data processing method according to paragraph 8 or 9, further
Integrated chromatogram data is created by integrating or averaging the ionic strength values of some or all of the two-dimensional data of the plurality of measurement points.
 第10項に記載のイメージングデータ処理方法では、使用者が1つの統合クロマトグラムデータのみを確認して簡便に指定値を決めることができる。また、第10項に記載のイメージングデータ処理方法では、観察装置で得られた試料表面の画像等に基づいて特徴的な部分を関心領域として指定し、該関心領域内に位置する測定点の二次元データのイオン強度値を積算又は平均することにより、試料の特徴を強調した統合クロマトグラムデータを得ることができる。 In the imaging data processing method described in paragraph 10, the user can easily determine a specified value by confirming only one integrated chromatogram data. Further, in the imaging data processing method described in item 10, a characteristic portion is designated as a region of interest based on an image of the sample surface obtained by the observation device, and two measurement points located within the region of interest are designated. By integrating or averaging the ion intensity values of the dimensional data, integrated chromatogram data emphasizing the characteristics of the sample can be obtained.
 (第11項)
 第10項に記載のイメージングデータ処理方法において、さらに、
 所定のアルゴリズムに基づいて前記統合クロマトグラムデータに含まれるピークを抽出し、該ピークの保持時間の値又は範囲を前記指定値として入力する。
(Section 11)
In the imaging data processing method according to paragraph 10, further
A peak included in the integrated chromatogram data is extracted based on a predetermined algorithm, and a value or range of the retention time of the peak is input as the specified value.
 第11項に記載のイメージングデータ処理方法では、クロマトグラムの解析に精通していなくても指定値を決定することができる。 In the imaging data processing method described in paragraph 11, the specified value can be determined even if the person is not familiar with the analysis of the chromatogram.
 (第12項)
 第8項から第11項のいずれかに記載のイメージングデータ処理方法において、さらに、
 前記複数の測定点の前記三次元データを統合した統合三次元データにおける前記指定値に対応する統合マスクロマトグラムデータを作成し、
 前記統合マススペクトルデータにおける質量電荷比の値又は範囲である第2指定値の入力を受け付け、
 前記複数の測定点のそれぞれにおいて、前記三次元データにおける前記指定値及び前記第2指定値に対応するイオン強度を読み出して前記画像データを作成する。
(Section 12)
In the imaging data processing method according to any one of items 8 to 11, further
An integrated mass chromatogram data corresponding to the specified value in the integrated three-dimensional data in which the three-dimensional data of the plurality of measurement points are integrated is created.
Accepting the input of the second designated value which is the value or range of the mass-to-charge ratio in the integrated mass spectrum data,
At each of the plurality of measurement points, the ionic strength corresponding to the designated value and the second designated value in the three-dimensional data is read out to create the image data.
 第12項に記載のイメージングデータ処理方法では、目的化合物に対応する質量電荷比の値又は範囲と保持時間の値又は範囲の両方を簡便に指定して目的化合物の分布を表す画像データを得ることができる。 In the imaging data processing method according to Item 12, both the value or range of the mass-to-charge ratio corresponding to the target compound and the value or range of the retention time are simply specified to obtain image data representing the distribution of the target compound. Can be done.
 (第13項)
 第8項から第12項に記載のイメージングデータ処理方法において、さらに、
 前記指定値又は前記第2指定値が入力される毎に、前記画像データを更新して表示する。
(Section 13)
In the imaging data processing method according to the eighth to twelfth items, further
Every time the designated value or the second designated value is input, the image data is updated and displayed.
 第13項に記載のイメージングデータ処理方法では、指定値又は第2指定値を変更するごとに表示部に表示される画像が更新されるため、指定値及び第2指定値の組み合わせの適否を容易かつ即座に確認することができる。 In the imaging data processing method described in item 13, since the image displayed on the display unit is updated every time the specified value or the second specified value is changed, it is easy to determine the suitability of the combination of the specified value and the second specified value. And it can be confirmed immediately.
 (第14項)
 第1項に記載のイメージングデータ処理方法において、さらに、
 前記三次元データとは別に、前記二次元データを記載した画像データ作成用のデータファイルを作成する。
(Section 14)
In the imaging data processing method described in paragraph 1, further
In addition to the three-dimensional data, a data file for creating image data in which the two-dimensional data is described is created.
 第14項に記載のイメージングデータ処理方法では、二次元データを記載した画像データを用いて任意のタイミングで目的化合物の分布を示す画像データを得ることができる。 In the imaging data processing method described in paragraph 14, it is possible to obtain image data showing the distribution of the target compound at an arbitrary timing by using the image data in which the two-dimensional data is described.
 (第15項)
 第1項に記載のイメージング処理方法において、前記三次元データが、
 レーザマイクロダイセクション法を用いて前記試料の複数の測定点のそれぞれから局所試料を採取し、
 前記複数の測定点で採取された局所試料から個別に液体試料を調製し、
 前記調製された試料についてクロマトグラフ質量分析を実行する
 ことにより得られたものである。
(Section 15)
In the imaging processing method described in paragraph 1, the three-dimensional data is
Local samples are taken from each of the multiple measurement points of the sample using the laser microdissection method.
Liquid samples are individually prepared from the local samples collected at the plurality of measurement points.
It was obtained by performing chromatographic mass spectrometry on the prepared sample.
 第15項に記載のイメージングデータ処理方法では、イオンサプレッションを抑制し、高感度で定量性を有するクロマトグラフ質量分析データを取得して解析することができる。 In the imaging data processing method described in paragraph 15, ion suppression can be suppressed, and chromatographic mass spectrometric data having high sensitivity and quantification can be acquired and analyzed.
1…液体クロマトグラフ
2…質量分析装置
4、5…制御部
 41、51…記憶部
  411、511…三次元データファイル
  412、512…二次元データファイル
  413、513…画像データファイル
 42、52…クロマトグラフ質量分析イメージング用プログラム
  421、521…測定制御部
  422、522…二次元データファイル作成部
  423…統合マススペクトルデータ作成部
  523…統合クロマトグラムデータ作成部
  424、524…統合マスクロマトグラムデータ作成部
  425、525…第1指定値入力受付部
  426、526…ピーク処理部
  427、527…第2指定値入力受付部
  428、528…画像データファイル作成部
  429、529…表示画像更新部
6…入力部
7…表示部
100…試料保持用スライドガラス
101…試料
 1011…分析対象領域
 1012…測定点
102…試料採取用スライドガラス
103…熱溶解性フィルム
104…レーザ光
105…局所試料
1 ... Liquid chromatograph 2 ... Mass analyzer 4, 5 ... Control unit 41, 51 ... Storage unit 411, 511 ... Three-dimensional data file 412, 512 ... Two-dimensional data file 413, 513 ... Image data file 42, 52 ... Chromato Graph mass analysis Imaging program 421 ... Measurement control unit 422, 522 ... Two-dimensional data file creation unit 423 ... Integrated mass spectrum data creation unit 523 ... Integrated chromatogram data creation unit 424, 524 ... Integrated mass chromatogram data creation unit 425, 525 ... 1st designated value input reception unit 426, 526 ... Peak processing unit 427, 527 ... 2nd designated value input reception unit 428, 528 ... Image data file creation unit 429, 259 ... Display image update unit 6 ... Input unit 7 ... Display unit 100 ... Sample holding slide glass 101 ... Sample 1011 ... Analysis target area 1012 ... Measurement point 102 ... Sample sampling slide glass 103 ... Thermolytic film 104 ... Laser light 105 ... Local sample

Claims (17)

  1.  試料の複数の測定点のそれぞれにおいてクロマトグラフ質量分析を実行することにより測定点毎に得られた、保持時間、質量電荷比、及びイオン強度を三軸とする三次元データであるイメージングデータを処理する方法であって、
     前記複数の測定点のそれぞれについて、当該測定点に対応する三次元データにおける保持時間と質量電荷比のうちの一方の軸方向にイオン強度値を積算又は平均することにより二次元データを作成し、
     前記保持時間と質量電荷比のうちの他方の値である指定値の入力を受け付け、
     前記複数の測定点のそれぞれについて、当該測定点に対応する二次元データから、前記指定値に対応するイオン強度値を読み出して画像データを作成する、イメージングデータ処理方法。
    Processing imaging data, which is three-dimensional data centered on retention time, mass-to-charge ratio, and ionic strength, obtained for each measurement point by performing chromatographic mass spectrometry at each of the multiple measurement points of the sample. How to do
    For each of the plurality of measurement points, two-dimensional data is created by integrating or averaging the ionic strength values in the axial direction of one of the retention time and the mass-to-charge ratio in the three-dimensional data corresponding to the measurement points.
    Accepts the input of the specified value, which is the other value of the retention time and the mass-to-charge ratio.
    An imaging data processing method for creating image data by reading out an ionic strength value corresponding to the specified value from two-dimensional data corresponding to the measurement point for each of the plurality of measurement points.
  2.  前記一方が保持時間であり、前記指定値が質量電荷比の値又は範囲である、請求項1に記載のイメージングデータ処理方法。 The imaging data processing method according to claim 1, wherein one of the above is a holding time and the specified value is a value or a range of a mass-to-charge ratio.
  3.  前記三次元データが、前記クロマトグラフ質量分析においてスキャン測定を行うことにより得られたものである、請求項2に記載のイメージングデータ処理方法。 The imaging data processing method according to claim 2, wherein the three-dimensional data is obtained by performing a scan measurement in the chromatographic mass spectrometry.
  4.  さらに、
     前記複数の測定点のうちの一部又は全部の前記二次元データのイオン強度値を積算又は平均することにより統合マススペクトルデータを作成する、請求項2に記載のイメージングデータ処理方法。
    further,
    The imaging data processing method according to claim 2, wherein integrated mass spectrum data is created by integrating or averaging the ionic strength values of some or all of the two-dimensional data of the plurality of measurement points.
  5.  さらに、
     前記複数の測定点の前記三次元データを統合した統合三次元データにおける前記指定値に対応する統合マスクロマトグラムデータを作成し、
     前記統合マスクロマトグラムデータにおける保持時間の値又は範囲である第2指定値の入力を受け付け、
     前記複数の測定点のそれぞれにおいて、前記三次元データにおける前記指定値及び前記第2指定値に対応するイオン強度を読み出して前記画像データを作成する、請求項2に記載のイメージングデータ処理方法。
    further,
    An integrated mass chromatogram data corresponding to the specified value in the integrated three-dimensional data in which the three-dimensional data of the plurality of measurement points are integrated is created.
    Accepting the input of the second designated value which is the value or range of the retention time in the integrated mass chromatogram data,
    The imaging data processing method according to claim 2, wherein the image data is created by reading out the ionic strength corresponding to the designated value and the second designated value in the three-dimensional data at each of the plurality of measurement points.
  6.  さらに、
     所定のアルゴリズムに基づいて前記統合マスクロマトグラムデータに含まれるピークを抽出し、該ピークの保持時間の値又は範囲を前記第2指定値として入力する、請求項5に記載のイメージングデータ処理方法。
    further,
    The imaging data processing method according to claim 5, wherein a peak included in the integrated mass chromatogram data is extracted based on a predetermined algorithm, and a value or range of the retention time of the peak is input as the second designated value.
  7.  さらに、
     前記指定値又は前記第2指定値が入力される毎に、前記画像データを更新して表示する、請求項1に記載のイメージングデータ処理方法。
    further,
    The imaging data processing method according to claim 1, wherein the image data is updated and displayed each time the designated value or the second designated value is input.
  8.  前記一方が質量電荷比であり、前記指定値が保持時間の値又は範囲である、請求項1に記載のイメージングデータ処理方法。 The imaging data processing method according to claim 1, wherein one of them is a mass-to-charge ratio and the specified value is a value or range of holding time.
  9.  さらに、
     所定のアルゴリズムに基づいて前記二次元データに含まれるピークを抽出し、該ピークの保持時間の値又は範囲を前記指定値として入力する、請求項8に記載のイメージングデータ処理方法。
    further,
    The imaging data processing method according to claim 8, wherein a peak included in the two-dimensional data is extracted based on a predetermined algorithm, and a value or range of the holding time of the peak is input as the specified value.
  10.  前記三次元データが、前記クロマトグラフ質量分析においてスキャン測定を行うことにより得られたものである、請求項8に記載のイメージングデータ処理方法。 The imaging data processing method according to claim 8, wherein the three-dimensional data is obtained by performing a scan measurement in the chromatographic mass spectrometry.
  11.  さらに、
     前記複数の測定点のうちの一部又は全部の前記二次元データのイオン強度値を積算又は平均することにより統合クロマトグラムデータを作成する、請求項8に記載のイメージングデータ処理方法。
    further,
    The imaging data processing method according to claim 8, wherein integrated chromatogram data is created by integrating or averaging the ionic strength values of some or all of the two-dimensional data of the plurality of measurement points.
  12.  さらに、
     前記複数の測定点の前記三次元データを統合した統合三次元データにおける前記指定値に対応する統合マススペクトルデータを作成し、
     前記統合マススペクトルデータにおける質量電荷比の値又は範囲である第2指定値の入力を受け付け、
     前記複数の測定点のそれぞれにおいて、前記三次元データにおける前記指定値及び前記第2指定値に対応するイオン強度を読み出して前記画像データを作成する、請求項8に記載のイメージングデータ処理方法。
    further,
    An integrated mass spectrum data corresponding to the specified value in the integrated three-dimensional data in which the three-dimensional data of the plurality of measurement points are integrated is created.
    Accepting the input of the second designated value which is the value or range of the mass-to-charge ratio in the integrated mass spectrum data,
    The imaging data processing method according to claim 8, wherein the image data is created by reading out the ionic strength corresponding to the designated value and the second designated value in the three-dimensional data at each of the plurality of measurement points.
  13.  さらに、
     前記指定値又は前記第2指定値が入力される毎に、前記画像データを更新して表示する、請求項8に記載のイメージングデータ処理方法。
    further,
    The imaging data processing method according to claim 8, wherein the image data is updated and displayed each time the designated value or the second designated value is input.
  14.  さらに、
     前記三次元データとは別に、前記二次元データを記載した画像データ作成用のデータファイルを作成する、請求項1に記載のイメージングデータ処理方法。
    further,
    The imaging data processing method according to claim 1, wherein a data file for creating image data in which the two-dimensional data is described is created separately from the three-dimensional data.
  15.  前記三次元データが、
     レーザマイクロダイセクション法を用いて前記試料の複数の測定点のそれぞれから局所試料を採取し、
     前記複数の測定点で採取された局所試料から個別に液体試料を調製し、
     前記調製された試料についてクロマトグラフ質量分析を実行する
     ことにより得られたものである、請求項1に記載のイメージングデータ処理方法。
    The three-dimensional data is
    Local samples are taken from each of the multiple measurement points of the sample using the laser microdissection method.
    Liquid samples are individually prepared from the local samples collected at the plurality of measurement points.
    The imaging data processing method according to claim 1, which is obtained by performing chromatographic mass spectrometry on the prepared sample.
  16.  試料の複数の測定点のそれぞれにおいてクロマトグラフ質量分析を実行することにより測定点毎に得られた、保持時間、質量電荷比、及びイオン強度を三軸とする三次元データを含むイメージングデータを処理する装置であって、
     前記複数の測定点のそれぞれについて、当該測定点に対応する三次元データにおける保持時間と質量電荷比のうちの一方の軸方向にイオン強度値を積算又は平均することにより二次元データを作成する二次元データ作成部と、
     前記保持時間と質量電荷比のうちの他方の値又は範囲である指定値の入力を受け付ける指定値入力受付部と、
     前記複数の測定点のそれぞれについて、当該測定点に対応する二次元データから、前記指定値に対応するイオン強度値を読み出して画像データを作成する画像データ作成部と
     を備える、イメージングデータ処理装置。
    Processing imaging data, including three-dimensional data centered on retention time, mass-to-charge ratio, and ionic strength, obtained for each measurement point by performing chromatographic mass spectrometry at each of the multiple measurement points of the sample. It is a device that
    For each of the plurality of measurement points, two-dimensional data is created by integrating or averaging the ion intensity values in the axial direction of one of the retention time and the mass charge ratio in the three-dimensional data corresponding to the measurement points. Dimensional data creation department and
    A designated value input receiving unit that accepts input of a designated value that is the other value or range of the holding time and the mass-to-charge ratio, and
    An imaging data processing apparatus including an image data creation unit that reads out an ion intensity value corresponding to the specified value from two-dimensional data corresponding to the measurement point and creates image data for each of the plurality of measurement points.
  17.  試料の複数の測定点のそれぞれにおいてクロマトグラフ質量分析を実行することにより測定点毎に得られた、保持時間、質量電荷比、及びイオン強度を三軸とする三次元データを含むクロマトグラフ質量分析イメージングデータが保存された記憶部を備えたコンピュータを、
     前記複数の測定点のそれぞれについて、当該測定点に対応する三次元データにおける保持時間と質量電荷比のうちの一方の軸方向にイオン強度値を積算又は平均することにより二次元データを作成する二次元データ作成部と、
     前記保持時間と質量電荷比のうちの他方の値である指定値の入力を受け付けるパラメータ入力受付部と、
     前記複数の測定点のそれぞれについて、当該測定点に対応する二次元データから、前記指定値に対応するイオン強度値を読み出して画像データを作成する画像データ作成部
     として動作させる、イメージングデータ処理用プログラム。
    Chromatograph mass spectrometry including three-dimensional data having retention time, mass-to-charge ratio, and ion intensity as three axes obtained for each measurement point by performing chromatograph mass spectrometry at each of a plurality of measurement points of a sample. A computer with a storage unit in which imaging data is stored,
    For each of the plurality of measurement points, two-dimensional data is created by integrating or averaging the ion intensity values in the axial direction of one of the retention time and the mass charge ratio in the three-dimensional data corresponding to the measurement points. Dimensional data creation department and
    A parameter input receiving unit that accepts input of a specified value, which is the other value of the holding time and the mass-to-charge ratio,
    An imaging data processing program that operates as an image data creation unit that creates image data by reading out the ion intensity value corresponding to the specified value from the two-dimensional data corresponding to the measurement point for each of the plurality of measurement points. ..
PCT/JP2019/050515 2019-12-24 2019-12-24 Imaging data processing method, imaging data processing device, and imaging data processing program WO2021130840A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/050515 WO2021130840A1 (en) 2019-12-24 2019-12-24 Imaging data processing method, imaging data processing device, and imaging data processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/050515 WO2021130840A1 (en) 2019-12-24 2019-12-24 Imaging data processing method, imaging data processing device, and imaging data processing program

Publications (1)

Publication Number Publication Date
WO2021130840A1 true WO2021130840A1 (en) 2021-07-01

Family

ID=76575755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050515 WO2021130840A1 (en) 2019-12-24 2019-12-24 Imaging data processing method, imaging data processing device, and imaging data processing program

Country Status (1)

Country Link
WO (1) WO2021130840A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032181A1 (en) * 2021-09-06 2023-03-09 株式会社島津製作所 Mass spectrometry data analysis method, and imaging mass spectrometry device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500617A (en) * 2005-07-08 2009-01-08 メタノミクス ゲーエムベーハー System and method for characterizing chemical samples
JP2011203239A (en) * 2010-03-05 2011-10-13 Shimadzu Corp Method and device for processing mass spectrometric data
US20130080073A1 (en) * 2010-06-11 2013-03-28 Waters Technologies Corporation Techniques for mass spectrometry peak list computation using parallel processing
WO2014132387A1 (en) * 2013-02-28 2014-09-04 株式会社島津製作所 Tandem quadrupole mass spectrometer
WO2014175211A1 (en) * 2013-04-22 2014-10-30 株式会社島津製作所 Imaging mass spectrometry data processing method and imaging mass spectrometer
WO2016163385A1 (en) * 2015-04-06 2016-10-13 国立大学法人名古屋大学 Laser microdissection apparatus, analyzing apparatus including laser microdissection apparatus, sample collecting method, and device employed in laser microdissection apparatus
WO2018037569A1 (en) * 2016-08-26 2018-03-01 株式会社島津製作所 Mass-spectrometry-imaging-data processing device and method
JP2018091634A (en) * 2016-11-30 2018-06-14 国立大学法人名古屋大学 Sample treatment method and kit for sample treatment
WO2019150553A1 (en) * 2018-02-02 2019-08-08 株式会社島津製作所 Imaging mass spectrometry device
WO2019229902A1 (en) * 2018-05-30 2019-12-05 株式会社島津製作所 Imaging-mass-spectrometry-data processing device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500617A (en) * 2005-07-08 2009-01-08 メタノミクス ゲーエムベーハー System and method for characterizing chemical samples
JP2011203239A (en) * 2010-03-05 2011-10-13 Shimadzu Corp Method and device for processing mass spectrometric data
US20130080073A1 (en) * 2010-06-11 2013-03-28 Waters Technologies Corporation Techniques for mass spectrometry peak list computation using parallel processing
WO2014132387A1 (en) * 2013-02-28 2014-09-04 株式会社島津製作所 Tandem quadrupole mass spectrometer
WO2014175211A1 (en) * 2013-04-22 2014-10-30 株式会社島津製作所 Imaging mass spectrometry data processing method and imaging mass spectrometer
WO2016163385A1 (en) * 2015-04-06 2016-10-13 国立大学法人名古屋大学 Laser microdissection apparatus, analyzing apparatus including laser microdissection apparatus, sample collecting method, and device employed in laser microdissection apparatus
WO2018037569A1 (en) * 2016-08-26 2018-03-01 株式会社島津製作所 Mass-spectrometry-imaging-data processing device and method
JP2018091634A (en) * 2016-11-30 2018-06-14 国立大学法人名古屋大学 Sample treatment method and kit for sample treatment
WO2019150553A1 (en) * 2018-02-02 2019-08-08 株式会社島津製作所 Imaging mass spectrometry device
WO2019229902A1 (en) * 2018-05-30 2019-12-05 株式会社島津製作所 Imaging-mass-spectrometry-data processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032181A1 (en) * 2021-09-06 2023-03-09 株式会社島津製作所 Mass spectrometry data analysis method, and imaging mass spectrometry device

Similar Documents

Publication Publication Date Title
EP1894226B1 (en) Multiple ion injection in mass spectrometry
CN108389772B (en) Quantization based on high-resolution MS1
US6770871B1 (en) Two-dimensional tandem mass spectrometry
US7855357B2 (en) Apparatus and method for ion calibrant introduction
JP6569805B2 (en) Imaging mass spectrometer
JP2001249114A (en) Mass spectrometry and mass spectrometer
EP3605077B1 (en) Mass spectrometer and chromatographic mass spectrometer
CN106341983B (en) Optimize the method for spectroscopic data
WO2020194582A1 (en) Chromatograph mass spectrometer
JP6806253B2 (en) Mass spectrometer, mass spectrometry method, and program for mass spectrometry
CA2718535A1 (en) Systems and methods for analyzing substances using a mass spectrometer
WO2021130840A1 (en) Imaging data processing method, imaging data processing device, and imaging data processing program
JP7375640B2 (en) Imaging mass spectrometry system and analysis method using imaging mass spectrometry
JP7295942B2 (en) mass correction
US11848182B2 (en) Method and device for processing imaging-analysis data
WO2022003890A1 (en) Imaging mass spectrometer and imaging mass spectrometry data processing method
JP2016513797A (en) Automated tuning for MALDI ion imaging
JP7380866B2 (en) Chromatograph mass spectrometry data processing method, chromatograph mass spectrometer, and program for chromatograph mass spectrometry data processing
JP6521041B2 (en) Mass spectrometry data processing apparatus and mass spectrometry data processing method
JP2004184149A (en) Sample preparing device for maldi-tofms
WO2020129118A1 (en) Mass spectrometer
JP2022056935A (en) Molecule structure analysis system and molecule structure analysis method
Adams et al. Mass Spectrometry and Chemical Imaging
CN115516302A (en) Method for processing chromatography mass spectrometry data, chromatography mass spectrometer, and program for processing chromatography mass spectrometry data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP