WO2021186545A1 - Wire electrical discharge machining machine and machine learning apparatus - Google Patents

Wire electrical discharge machining machine and machine learning apparatus Download PDF

Info

Publication number
WO2021186545A1
WO2021186545A1 PCT/JP2020/011699 JP2020011699W WO2021186545A1 WO 2021186545 A1 WO2021186545 A1 WO 2021186545A1 JP 2020011699 W JP2020011699 W JP 2020011699W WO 2021186545 A1 WO2021186545 A1 WO 2021186545A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
wire electrode
workpiece
wire
electric discharge
Prior art date
Application number
PCT/JP2020/011699
Other languages
French (fr)
Japanese (ja)
Inventor
信行 太田
大介 関本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020541466A priority Critical patent/JP6775719B1/en
Priority to CN202080098267.2A priority patent/CN115243817B/en
Priority to PCT/JP2020/011699 priority patent/WO2021186545A1/en
Publication of WO2021186545A1 publication Critical patent/WO2021186545A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting

Definitions

  • the present disclosure relates to a wire electric discharge machine and a machine learning device that machine a workpiece using a wire electrode.
  • EDM is to melt and remove the workpiece by the heat of the discharge generated between the electrode and the workpiece.
  • the machined surface of the workpiece after machining that is, the surface after machining is separated from the wire electrode by the discharge gap generated between the workpiece and the wire electrode.
  • the wire electrode is conveyed from the upper surface side of the workpiece toward the lower surface of the workpiece while generating an electric discharge facing the workpiece, it is consumed before being conveyed to the lower surface of the workpiece.
  • an offset is provided in the wire electrode locus with respect to a desired machined surface in consideration of these discharge gaps and the amount of wire electrode consumption (for example, Patent Document 1).
  • Patent Document 1 by performing machining while changing the offset amount set in the wire electrode locus, it is possible to improve the machining accuracy when machining a workpiece (workpiece) whose plate thickness changes. do.
  • the wire electrode In the wire electric discharge machine, the wire electrode is conveyed while rotating in a certain direction due to the bobbin winding habit and friction with the roller in the transfer path. This rotation of the wire electrode causes deterioration of processing accuracy.
  • the amount of wear on the side surface of the wire electrode differs between the right side and the left side with respect to the machining direction on the lower surface of the workpiece. Therefore, on the lower surface of the workpiece, the position of the center of the machined groove after machining is displaced with respect to the wire electrode locus by the difference in the amount of wear on the side surface of the wire electrode, and as a result, the position of the machined surface is displaced and a machining error occurs. ..
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a wire electric discharge machining apparatus capable of improving machining accuracy.
  • the wire discharge processing apparatus includes a wire electrode for processing a work piece by discharging electricity from the work piece while rotating in the twisting direction, and a work piece. It is provided with an upper guide that supports the wire electrode above and a lower guide that supports the wire electrode below the workpiece. Further, the wire discharge processing apparatus is based on the positional relationship between the machining direction and the workpiece to be left and the machining program, depending on whether the workpiece to be left is located on the right side or the left side with respect to the machining direction.
  • At least one of the offset amount of the wire electrode with respect to the machined surface and the inclination of the wire electrode is adjusted, and the work is machined.
  • a control device for compensating for a machining dimensional error which is an error between the dimension of the target shape of the work piece obtained and the dimension of the actual shape, is provided.
  • the wire electric discharge machining apparatus has the effect of being able to improve the machining accuracy.
  • a bird's-eye view of the machining groove formed as a result of wire electric discharge machining of a workpiece The first figure for demonstrating the problem that a wire electric discharge machine tries to solve.
  • FIG. 3 for explaining the problem to be solved by the wire electric discharge machine.
  • FIG. 4 for explaining the problem to be solved by the wire electric discharge machine.
  • FIG. The figure which shows the relation example of the processing direction of wire electric discharge machining, and the consumption amount of a wire electrode.
  • FIG. 1 is a diagram showing a configuration example of the wire electric discharge machine according to the first embodiment.
  • the wire discharge processing apparatus 100 includes a wire electrode bobbin 1, a wire electrode 2 drawn from the wire electrode bobbin 1, a wire electrode transfer roller 3 for conveying the wire electrode 2, and a wire electrode 2 during processing of the workpiece 7.
  • the upper guide 6 and the lower guide 11 that support the position and inclination of the above, the table 8 for installing the workpiece 7, the lower roller 13 that conveys the wire electrode 2 after being machined by the machined portion 16, and the wire electrode 2
  • a recovery roller 9 for generating a driving force for carrying the wire electrode 2 and a wire electrode recovery box 10 for discarding the processed wire electrode 2 are provided.
  • the processed portion 16 is composed of an upper guide 6 and a lower guide 11, and a wire electrode 2 supported by the upper guide 6 and the lower guide 11.
  • the wire discharge processing apparatus 100 includes a plate thickness detector 4 for detecting the plate thickness of the workpiece 7, a wire electrode rotation detector 5 for detecting the rotation direction, rotation speed or rotation angle of the wire electrode 2, and a wire electrode.
  • the wire electrode consumption measuring instrument 12 for measuring the consumption of 2 is provided.
  • the plate thickness detector 4 detects the plate thickness of the workpiece 7 in the vertical direction, that is, in the transport direction of the wire electrode 2, and generates plate thickness information.
  • the "rotation angle of the wire electrode 2" in the present embodiment is the angle at which the wire electrode 2 rotates while machining the workpiece 7, that is, the arbitrary position of the wire electrode 2 is the upper guide 6 of the workpiece 7.
  • the angle is set so that the workpiece 7 is rotated while being electric-discharged while being conveyed from the side to the lower guide 11 side.
  • the rotation speed information is configured to include information on the rotation speed of the wire electrode 2 and information on the rotation direction.
  • the rotation angle information is configured to include the above-mentioned information on the rotation angle of the wire electrode 2 while processing the workpiece 7 and information on the rotation direction.
  • the "consumable amount of the wire electrode 2" is the amount of the wire electrode 2 consumed while the workpiece 7 is being machined, that is, the wire electrode 2 is moved from the upper guide 6 side to the lower guide 11 side of the workpiece 7. The amount of decrease in the diameter of the wire electrode 2 during transportation.
  • the wire discharge processing apparatus 100 includes plate thickness information indicating the plate thickness detected by the plate thickness detector 4, rotation information of the wire electrode 2 indicating the result detected by the wire electrode rotation detector 5, and wire electrode. Based on the consumption information indicating the consumption amount measured by the consumption amount measuring device 12, it is estimated by the machining dimension displacement estimator 15 and the machining dimension displacement estimator 15 for estimating the machining groove center displacement amount or the machining surface position displacement amount. It is provided with a control device 14 that controls the positions of the upper guide 6 and the lower guide 11 based on the displacement amount of the center of the machined groove or the displacement amount of the machined surface position and the machining program.
  • FIG. 2 is a diagram showing a configuration example of the control device 14 of the wire electric discharge machining device 100 according to the first embodiment.
  • the control device 14 includes an NC (Numerical Control) device 141 and a drive unit 142.
  • the NC device 141 and the drive unit 142 are realized by, for example, a control circuit in which a processor and a memory are combined. That is, the control device 14 includes a processor and a memory that realizes the NC device 141 and the drive unit 142.
  • the memory corresponds to, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory.
  • the NC device 141 and the drive unit 142 are realized by the processor reading and executing a program stored in a memory for operating as the NC device 141 and the drive unit 142.
  • the NC device 141 and the drive unit 142 may be realized by an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a circuit combining these.
  • the NC device 141 analyzes the machining program and corrects the wire electrode position command, which is a position command for the wire electrode 2, among the commands described in the machining program, based on the machining groove center displacement amount or the machining surface position displacement amount. do.
  • the NC device 141 outputs the corrected wire electrode position command to the drive unit 142.
  • the drive unit 142 obtains the command positions of the upper guide 6 and the lower guide 11 based on the corrected wire electrode position command received from the NC device 141, and the upper guide 6 and the lower guide 11 move to the obtained command positions.
  • the upper guide 6 and the lower guide 11 are driven so as to do so.
  • the command position is a position commanded by a position command described in the machining program.
  • the drive unit 142 when the drive unit 142 obtains the command positions of the upper guide 6 and the lower guide 11, for example, the drive unit 142 first analyzes the corrected wire electrode position command to obtain the command position of the wire electrode 2, and obtains the command position of the wire electrode.
  • the command positions of the upper guide 6 and the lower guide 11 are calculated from the command position and the positional relationship between the wire electrode 2, the upper guide 6 and the lower guide 11.
  • the position commanded by the command position of the wire electrode 2 means the position of the wire electrode 2 relative to the workpiece 7. Therefore, the command position of the upper guide 6 indicates the relative position of the upper guide 6 with respect to the workpiece 7, and the command position of the lower guide 11 indicates the relative position of the lower guide 11 with respect to the workpiece 7.
  • the positional relationship between the wire electrode 2, the upper guide 6 and the lower guide 11 is fixed if there is no change in the inclination of the wire electrode 2, and the command positions of the upper guide 6 and the lower guide 11 are calculated based on the command position of the wire electrode 2. It is possible to do.
  • the drive unit 142 holds information on the default positional relationship between the wire electrode 2, the upper guide 6, and the lower guide 11, and is based on this information, the command position of the wire electrode 2, and the inclination of the wire electrode 2. , The command positions of the upper guide 6 and the lower guide 11 are calculated. Information on the inclination of the wire electrode 2 is obtained by analyzing the machining program.
  • the NC device 141 may calculate the command positions of the upper guide 6 and the lower guide 11.
  • the wire electrode position command is described in the machining program, but the position command for each of the upper guide 6 and the lower guide 11 is described in the machining program, and the NC device 141 describes the upper guide 6 and the lower guide 11.
  • the position command for each of the above may be corrected, and the corrected position command may be output to the drive unit 142.
  • FIG. 3 is a diagram showing another configuration example of the wire electric discharge machining apparatus according to the first embodiment.
  • the wire electric discharge machining device 101 shown in FIG. 3 includes a control device 18 in which these are integrated, instead of the machining dimension displacement estimator 15 and the control device 14 of the wire electric discharge machining device 100 shown in FIG.
  • the configuration shown in FIG. 1 is assumed.
  • FIG. 4 is a bird's-eye view of a machined groove formed as a result of wire electric discharge machining of a workpiece.
  • the center line of the machining groove 21 formed after the wire electrode 2 has passed is defined as the machining groove center 20, and the wall surface of the workpiece forming the machining groove 21 is defined as the machining surface 19.
  • FIG. 5 is a first diagram for explaining a problem to be solved by the wire electric discharge machining apparatus 100.
  • FIG. 6 is a second diagram for explaining a problem to be solved by the wire electric discharge machine 100.
  • the wire electrode 2 moves in the machining direction 22 and is transported in the wire electrode transport direction 26 while machining the workpiece, and the wire electrode 2 is rotating in the rotation direction 24. ..
  • the wire electrode 2 has a different wire cross-sectional shape between the upper part 23 of the workpiece and the lower part 25 of the workpiece due to wear due to machining. Specifically, the wire electrode 2 wears only the surface in the machining direction 22 at the upper part 23 of the workpiece.
  • the wire electrode consumable surface 27 and the wire electrode non-consumable surface 28 are present on the left and right sides of the wire electrode 2 with respect to the machining direction 22 as the wire electrode 2 is conveyed and rotated.
  • the wire electrode is actually worn and the shape is changed with respect to the shape 39 of the wire electrode 2 when there is no wear. Therefore, considering the discharge gap 31, the machining direction of the workpiece The position of the machined surface deviates from the ideal target position between the work piece 32 on the left side and the work piece 33 on the right side in the machining direction. As shown in FIG.
  • the actual machined surface position 37 at the lower part 25 of the workpiece is the amount of displacement of the machined surface position on the left side of the wire electrode with respect to the machined direction 22 with respect to the target machined surface which is the ideal machined surface position 38. There is a deviation between 34 and the machined surface position displacement 35 on the right side of the wire electrode. Further, the actual machined groove center 29 at the lower part 25 of the workpiece also deviates from the machine-commanded wire electrode center 30 by the amount of displacement 36 at the center of the machined groove.
  • FIG. 7 is a third diagram for explaining a problem to be solved by the wire electric discharge machine 100.
  • FIG. 8 is a fourth diagram for explaining a problem to be solved by the wire electric discharge machine 100.
  • the radius of the wire electrode and the electric discharge gap are set as the offset of the center locus of the wire electrode of the machine command in consideration of the direction in which the workpiece to be left exists.
  • the offset here is the distance between the machined surface of the workpiece and the center of the machined groove.
  • the machining direction is not taken into consideration when setting this offset amount. Therefore, the problem described with reference to FIGS. 5 to 8 above is not addressed.
  • the actual machining groove center 29 at the lower part 25 of the workpiece shown in FIGS. 5 to 8 and the wire electrode center 30 of the machine command are deviated from each other, or It has a function of correcting the position and inclination of the wire electrode 2 based on the deviation between the actual machined surface position 37 and the ideal machined surface position 38 at the lower part 25 of the workpiece shown in FIG.
  • the wire electric discharge machining apparatus 100 has a function of correcting the central locus of the wire electrode 2 according to the machining direction.
  • FIG. 9 is a diagram showing an outline of a machining operation by the wire electric discharge machining apparatus 100 according to the first embodiment.
  • FIG. 9 is a diagram showing an outline of a machining operation by the wire electric discharge machining apparatus 100 according to the first embodiment.
  • FIG. 9A shows a wire electrode center locus represented by a machine command of wire electric discharge machining (wire electrode command position locus of a machine command) and a target shape of a workpiece created by wire electric discharge machining.
  • FIG. 9B shows an actual wire electrode center locus when processing is performed by moving the wire electrode clockwise (CW: clockwise) along the wire electrode command position locus of the machine command shown in FIG. 9A. And the shape of the work piece to be created.
  • FIG. 9 (c) shows the actual wire electrode center when the wire electrode is moved counterclockwise (CCW: counterclockwise) along the wire electrode command position locus of the machine command shown in FIG. 9 (a) for processing. The trajectory and the shape of the work piece to be created are shown. As shown in FIGS.
  • the wire electrode center locus of the machine command and the actual wire electrode center locus are different. Further, even if the wire electrode center locus of the machine command is the same, if the machining direction, which is the direction in which the wire electrode moves, is different, the actual wire electrode center locus does not match, and the shape of the created workpiece also matches. do not. Therefore, as shown in FIG. 9D, the wire electric discharge machining apparatus 100 according to the present embodiment corrects the position of the center of the wire electrode with a different correction amount for each machining direction, and performs machining in any machining direction. Even if this is done, a work piece with a target shape can be obtained.
  • the wire electric discharge machining apparatus 100 corrects the position of the wire electrode commanded by the machine command with a correction amount determined in consideration of the machining direction, and controls the position of the wire electrode so as to be the corrected position. ..
  • FIG. 10 is a diagram showing another example of the correction method by the wire electric discharge machine 100 according to the first embodiment. Further, in the wire electric discharge machine 100, the command value of the UV axis or the command value of the XY axis shown in FIG. 11 is used to correct the offset amount of the wire electrode 2 and the inclination of the wire electrode 2.
  • the command value of the UV axis is defined by the position in the UV coordinates defined by the orthogonal U-axis and the V-axis, that is, the command value of commanding the coordinates
  • the command value of the XY axis is defined by the orthogonal X-axis and the Y-axis. It is a command value that commands a position in XY coordinates, that is, coordinates.
  • the correction of the offset amount of the wire electrode 2 means the correction of the relative position of the wire electrode 2 with respect to the workpiece 7.
  • FIG. 11 is a diagram showing coordinate axes used when the wire electric discharge machine 100 performs correction.
  • the machining dimensional error is an error between the dimension of the target shape of the workpiece obtained by wire electric discharge machining of the workpiece and the dimension of the actual shape.
  • the machining dimensional error includes the displacement of the center of the machining groove, which is the amount of deviation between the actual machining groove center 29 and the wire electrode center 30 of the machine command, or the actual machining surface position 37 and the ideal machining surface position.
  • the machined surface position displacements 34 and 35 which are the amount of deviation from 38, correspond (see FIG. 6).
  • FIG. 12 is a first flowchart showing an example of an operation in which the wire electric discharge machining apparatus 100 according to the first embodiment corrects a machining dimensional error in wire electric discharge machining.
  • the control device 14 of the wire electric discharge machining device 100 acquires a machining dimensional error (step S11). That is, the control device 14 acquires the machined groove center displacement amount 36 or the machined surface position displacement amounts 34 and 35. The control device 14 acquires this information from the machined dimensional displacement estimator 15.
  • the wire electrode 2 is consumed as the electric discharge machining progresses, and the actual machined groove center 29 gradually deviates from the machine-commanded wire electrode center 30. However, if the wire electrode transport speed is constant, the wire electrode 2 is consumed. The amount of deviation per hour is almost constant. Similarly, the amount of deviation between the actual machined surface position 37 and the ideal machined surface position 38 per hour is also substantially constant.
  • the wire discharge processing apparatus 100 holds the machining dimensional error (the amount of displacement at the center of the machining groove 36 or the amount of displacement of the machining surface position 34 and 35) that has been converted into data in advance in the memory, and the control device 14 holds the memory. It is also possible to obtain the machining dimensional error from.
  • the machining dimensional errors digitized in advance include, for example, the distance from the reference position on the wire electrode 2 in the wire electrode transport direction 26 (for example, the position where the discharge to the workpiece 7 is started), the machining direction, and the machining.
  • the data is tabulated with the dimensional error associated with it.
  • information such as the thickness of the workpiece, the material of the wire electrode, the material of the workpiece, the transport speed of the wire electrode, the thickness of the wire electrode, the machining speed, and the machining voltage are stored in a table in the memory. You may. Various information registered in the table may be acquired, for example, by repeatedly performing a simulation under various conditions.
  • the control device 14 After acquiring the machining dimensional error, the control device 14 corrects the wire electrode position command based on the positional relationship between the machining direction and the workpiece to be left and the machining dimensional error (step S12). Specifically, the NC device 141 of the control device 14 determines on which side of the machining direction the workpiece is desired to be left with respect to the machining direction, and compensates for the machining dimensional error based on the judgment result. Determine the amount of correction for. That is, the NC device 141 determines the correction amount individually in each case by dividing into the case where the workpiece to be left exists on the right side with respect to the machining direction and the case where the workpiece to be left exists on the left side. ..
  • the NC device 141 corrects the wire electrode position command with the determined correction amount. That is, in the NC device 141, the work piece that the wire electrode 2 wants to leave is due to the machining dimensional error (machine groove center displacement amount 36, machined surface position displacement amount 34, 35) that occurs on the side where the work piece to be left is located. Correct the wire electrode position command to move to a certain side. From the analysis result of the machining program, the NC apparatus 141 determines on which side the machining direction and the workpiece to be left exist with respect to the machining direction.
  • control device 14 moves the wire electrode 2 according to the corrected wire electrode position command (step S13). Specifically, the drive unit 142 of the control device 14 drives the upper guide 6 and the lower guide 11 so that the wire electrode 2 moves to the position commanded by the corrected wire electrode position command.
  • the control device 14 of the wire electric discharge machining device 100 reads and executes each command described in the machining program in order, and when the wire electrode position command is read, executes each of the above steps S11 to S13.
  • FIG. 13 is a second flowchart showing an example of an operation in which the wire electric discharge machining apparatus 100 according to the first embodiment corrects a machining dimensional error in wire electric discharge machining.
  • FIG. 14 is a diagram showing a connection relationship of each component that realizes an operation example shown in FIG. 13 of the wire electric discharge machining apparatus 100 according to the first embodiment.
  • the second flowchart shown in FIG. 13 is such that steps S21 to S23 are executed instead of step S11 of the first flowchart shown in FIG. Since steps S12 and S13 in FIG. 13 are the same as steps S12 and S13 in FIG. 12, detailed description thereof will be omitted.
  • the machining dimension displacement estimator 15 of the wire electric discharge machining device 100 acquires information regarding the rotation of the wire electrode 2 (step S21).
  • the information regarding the rotation of the wire electrode 2 acquired in step S21 is any one of the rotation direction, the rotation angle, and the rotation speed of the wire electrode 2 during transportation.
  • the machined dimension displacement estimator 15 acquires rotation information, which is information on the rotation of the wire electrode 2, from the wire electrode rotation detector 5. It is considered that the rotation direction, the rotation angle, and the rotation speed of the wire electrode 2 are constant in the state where the processing is normally performed. Therefore, the wire discharge processing apparatus 100 holds in advance data on the rotation of the wire electrode 2 (rotation direction, rotation speed, or rotation angle of the wire electrode 2) in the memory, and the processing dimension displacement estimator 15 is used. , It is also possible to acquire information on the rotation of the wire electrode 2 from the memory. It should be noted that there is no problem even if the order of execution of this step S21 and step S22 described below is changed.
  • the machined dimension displacement estimator 15 then acquires the amount of wear of the wire electrode 2 (step S22).
  • the machining dimension displacement estimator 15 acquires the wear amount of the wire electrode 2 from the wire electrode wear amount measuring device 12.
  • the wire electric discharge machining device 100 holds the consumption amount of the wire electrode 2 that has been converted into data in advance in a memory, and the machining dimension displacement estimator 15 is configured to acquire the consumption amount of the wire electrode 2 from the memory. It is also possible.
  • the pre-datad consumption amount of the wire electrode 2 is associated with, for example, the distance from the reference position on the wire electrode 2 in the wire electrode transport direction 26, the processing direction, and the consumption amount of the wire electrode 2.
  • the data tabulated in the state that is, the data showing how much the wire electrode 2 is consumed while the wire electrode 2 is transported from the reference position on the wire electrode 2 in the wire electrode transport direction 26 to a certain position. ..
  • information such as the material of the wire electrode 2, the material of the workpiece 7, the transport speed of the wire electrode 2, the thickness of the wire electrode 2 and the like may be tabulated and stored in the memory.
  • the machining dimensional displacement estimator 15 calculates the machining dimensional error based on the information regarding the rotation of the wire electrode 2 and the consumption amount of the wire electrode 2 (step S23). The method by which the machining dimensional displacement estimator 15 calculates the machining dimensional error will be described later.
  • the machining dimension displacement estimator 15 outputs the calculated machining dimension error to the control device 14.
  • the control device 14 corrects the wire electrode position command based on the machining dimensional error received from the machining dimensional displacement estimator 15, and moves the wire electrode 2 (steps S12 and S13). That is, as shown in FIG. 14, in the control device 14, the wire electrode position command extraction unit 141A of the NC device 141 extracts the wire electrode position command from the machining program, and the command correction unit 141B issues the wire electrode position command. Correct based on the machining dimensional error.
  • the drive unit 142 drives the upper guide 6 and the lower guide 11 of the processing unit 16 to move the wire electrode 2 in accordance with the corrected wire electrode position command.
  • FIG. 15 is a third flowchart showing an example of an operation in which the wire electric discharge machining apparatus 100 according to the first embodiment corrects a machining dimensional error in wire electric discharge machining.
  • FIG. 16 is a diagram showing a connection relationship of each component that realizes an operation example shown in FIG. 15 of the wire electric discharge machining apparatus according to the first embodiment.
  • the third flowchart shown in FIG. 15 is such that steps S31 to S33 are executed instead of step S11 of the first flowchart shown in FIG. Since steps S12 and S13 in FIG. 15 are the same as steps S12 and S13 in FIG. 12, detailed description thereof will be omitted.
  • the machining dimension displacement estimator 15 of the wire electric discharge machining device 100 acquires the plate thickness information of the workpiece 7 (step S31).
  • the machining dimension displacement estimator 15 acquires plate thickness information from the plate thickness detector 4.
  • the wire electric discharge machine 100 may receive input of the plate thickness information of the workpiece 7 from the user in advance and hold the input plate thickness information in the memory. That is, the machining dimension displacement estimator 15 may acquire the plate thickness information of the workpiece 7 that has been input by the user from the memory.
  • the machining dimension displacement estimator 15 calculates the rotation angle of the wire electrode 2 and the amount of wear of the wire electrode 2 based on the plate thickness information (step S32).
  • the transport speed of the wire electrode 2 during machining of the workpiece 7 is constant, and similarly, the rotation speed of the wire electrode 2 is also constant. Therefore, the machining dimension displacement estimator 15 holds, for example, the transport speed and the rotation speed of the wire electrode 2 in advance, and the rotation angle of the wire electrode 2 is based on these information and the plate thickness information of the workpiece 7. That is, the angle of rotation is calculated while the workpiece 7 is being machined.
  • the consumption of the wire electrode 2 at an arbitrary position is proportional to the number of discharges, and the number of discharges during machining depends on the plate thickness of the workpiece 7. Therefore, the machining dimension displacement estimator 15 holds, for example, the transport speed of the wire electrode 2 and the number of discharges per hour in advance, and calculates the consumption amount of the wire electrode 2 based on these information and the plate thickness information. do.
  • the machining dimensional displacement estimator 15 calculates the machining dimensional error based on the rotation angle of the wire electrode 2 and the consumption amount of the wire electrode 2 (step S33).
  • a method of calculating the machining dimensional error based on the rotation angle of the wire electrode 2 and the consumption amount of the wire electrode 2 by the machining dimensional displacement estimator 15 will be described with reference to FIGS. 17 and 18.
  • a method for calculating the machining dimensional error will be described when the machining dimensional error is set to the machining surface position displacement amounts 34 and 35 shown in FIG. 6 and the machining groove center displacement amount 36.
  • the explanation of the machining dimensional error is divided into two stages, specifically, a method of calculating the consumption amount of the wire electrode 2, a method of calculating the correction amount for correcting the displacement of the machined surface position, and a wire electrode center. The method of calculating the correction amount for correcting the locus will be described separately.
  • FIG. 17 is a diagram showing an example of the relationship between the processing direction of wire electric discharge machining and the amount of wear of the wire electrode 2.
  • FIG. 18 is a diagram showing an example of the relationship between the processing direction of wire electric discharge machining, the rotation direction of the wire electrode 2, and the amount of wear of the wire electrode 2.
  • f ( ⁇ ) is a consumption function whose variable is the angle ⁇ formed with the machining direction. This consumption function f ( ⁇ ) is obtained by simulation or experiment.
  • the wire discharge processing apparatus 100 detects the processing dimensional error based on the rotation direction, rotation speed or rotation angle of the wire electrode 2 during transportation and the consumption amount of the wire electrode 2.
  • the machining dimensional error is compensated by using different correction amounts depending on whether the workpiece to be left is on the right side or the left side with respect to the machining direction. Thereby, the processing accuracy can be improved.
  • Embodiment 2 Next, the wire electric discharge machining apparatus according to the second embodiment will be described.
  • the configuration of the wire electric discharge machine according to the second embodiment is the same as that of the wire electric discharge machine 100 according to the first embodiment (see FIG. 1).
  • the description of the portion overlapping with the wire electric discharge machine 100 according to the first embodiment will be omitted.
  • the wire electric discharge machining apparatus according to the second embodiment will be referred to as a wire electric discharge machining apparatus 100a.
  • FIG. 19 is a diagram showing a configuration example of a control device 14a included in the wire electric discharge machining device 100a according to the second embodiment.
  • the control device 14a is a device in which the machine learning device 50 is added to the control device 14 included in the wire electric discharge machining device 100.
  • the machine learning device 50 is included in the control device 14a, but the machine learning device 50 exists outside the control device 14a, that is, the machine learning device 50 and the control device 14a. May exist as a separate device.
  • the machine learning device 50 machine-learns the correction amount for compensating for the machining dimensional error described in the first embodiment.
  • the NC device 141 determines a correction amount for compensating for the machining dimensional error based on the learning result of the machine learning device 50, and compensates for the machining dimensional error, that is, corrects the wire electrode position command with the determined correction amount. ..
  • the machine learning device 50 includes a state observation unit 51 and a learning unit 52.
  • the state observing unit 51 states the rotation information including the rotation direction, rotation angle, or rotation speed of the wire electrode 2, the consumption amount of the wire electrode 2, the machining dimensional error, and the correction amount for compensating for the machining dimensional error. Observe as a variable.
  • the learning unit 52 machine-learns the correction amount (correction amount for compensating the machining dimensional error) used for compensating the machining dimensional error according to the data set created based on the state variable observed by the state observing section 51.
  • Any learning algorithm may be used as the learning algorithm used by the learning unit 52.
  • Reinforcement learning is that an agent (behavior) in a certain environment observes the current state and decides the action to be taken. Agents get rewarded from the environment by choosing an action and learn how to get the most reward through a series of actions.
  • Q-learning and TD-learning are known as typical methods of reinforcement learning.
  • the general update equation (behavior value table) of the action value function Q (s, a) is expressed by the following equation (5).
  • s t represents the environment at time t
  • a t represents the behavior in time t.
  • the environment is changed to s t + 1.
  • rt + 1 represents the reward received by the change of the environment
  • represents the discount rate
  • represents the learning coefficient. Note that ⁇ is in the range of 0 ⁇ ⁇ 1 and ⁇ is in the range of 0 ⁇ ⁇ 1.
  • the learning unit 52 includes a reward calculation unit 521 and a function update unit 522 for machine learning the correction amount used for compensating for the machining dimensional error.
  • the reward calculation unit 521 calculates the reward based on the state variables observed by the state observation unit 51.
  • the reward calculation unit 521 calculates the reward r based on the machining dimensional error. For example, when the machining dimensional error is smaller than a predetermined reference value (for example, 1 ⁇ m), the reward r is increased (for example, a reward of “1” is given). On the other hand, when the machining dimensional error is larger than the reference value, the reward r is reduced (for example, a reward of "-1" is given).
  • the reference value of the machining dimensional error may be appropriately changed by the user according to the desired machining dimensional error.
  • the function update unit 522 updates the function for determining the correction amount used for compensating the machining dimensional error according to the reward calculated by the reward calculation unit 521. For example, in the case of Q-learning, it is used as a function for calculating a correction amount used action value represented by the formula (5) function Q (s t, a t) to compensate for the processing dimension error.
  • reinforcement learning is applied to the learning algorithm used by the learning unit 52
  • the present invention is not limited to this.
  • the learning algorithm in addition to reinforcement learning, supervised learning, unsupervised learning, semi-supervised learning, and the like can also be applied.
  • deep learning which learns the extraction of the feature amount itself
  • other known methods such as neural networks, genetic programming, functional logic programming, and support vectors can be used.
  • Machine learning may be executed according to the machine or the like.
  • the machine learning device 50 is used to learn the correction amount used for compensating for the machining dimensional error of the wire electric discharge machine 100a.
  • the machine learning device 50 is connected to the wire electric discharge machine 100a via a network and the wire electric discharge machining is performed. It may be a device separate from the device 100a. Further, the machine learning device 50 may be built in the wire electric discharge machining device 100a as shown in FIG. Further, the machine learning device 50 may exist on the cloud server.
  • the machine learning device 50 may learn the correction amount used for compensating for the machining dimensional error according to the data set created for the plurality of wire electric discharge machining devices 100a.
  • the machine learning device 50 may acquire a data set from a plurality of wire electric discharge machines 100a used at the same site, or a plurality of wire electric discharge machines 100a operating independently at different sites.
  • the amount of correction used to compensate for machining dimensional errors may be learned using the data set collected from.
  • the wire electric discharge machine 100a for collecting the data set can be added to the target on the way, or conversely, can be removed from the target.
  • a machine learning device 50 that has learned the correction amount used for compensating the machining dimensional error for a certain wire electric discharge machining device 100a is attached to another wire electric discharge machining device 100a, and machining is performed for the other wire electric discharge machining device 100a.
  • the correction amount used for compensating for the dimensional error may be relearned and updated.
  • the wire discharge processing apparatus 100a includes rotation information including the rotation direction, rotation angle or rotation speed of the wire electrode 2, consumption amount of the wire electrode 2, processing dimension error, and processing dimension.
  • a machine learning device 50 for observing a correction amount for compensating for an error and learning a correction amount for compensating for a machining dimensional error is provided, and the machining dimensional error is compensated based on the learning result by the machine learning device 50. .. As a result, it is possible to improve the processing accuracy as in the first embodiment.
  • machine learning device 50 is added to the wire discharge processing device 100 shown in FIG. 1 to use machine learning has been described, but the machine learning device 50 is added to the wire discharge processing device 101 shown in FIG. It is also possible to add.
  • the configuration shown in the above embodiment is an example of the content, can be combined with another known technique, and a part of the configuration is omitted or changed without departing from the gist. It is also possible.

Abstract

A wire electrical discharge machining machine (100) is provided with a wire electrode (2) discharging electricity between the wire electrode (2) and a workpiece (7) as the wire electrode (2) is torsionally rotating, to machine the workpiece (7); an upper guide (6) supporting the wire electrode (2) above the workpiece (7); a lower guide (11) supporting the wire electrode (2) below the workpiece (7); and a controller (14). The controller (14) is for adjusting at least one of the offset amount of the wire electrode (2) with respect to a face to be machined of the workpiece (7), and the inclination of the wire electrode (2), by correction of the positions of the upper guide (6) and the lower guide (11) individually with values respectively determined for a case where part of the workpiece (7) which is to remain is positioned on the right side with respect to a machining direction and for a case where the part is positioned on the left side with respect thereto, based on the positional relationship between the machining direction and the part, and a machining program; and compensating a machining dimensional error that is an error in the dimensions of an actual shape of a machined object to be obtained by machining the workpiece (7) compared to the dimensions of a target shape thereof.

Description

ワイヤ放電加工装置および機械学習装置Wire EDM and Machine Learning Equipment
 本開示は、ワイヤ電極を用いて工作物を加工するワイヤ放電加工装置および機械学習装置に関する。 The present disclosure relates to a wire electric discharge machine and a machine learning device that machine a workpiece using a wire electrode.
 放電加工は、電極と工作物の間に発生させる放電の熱により工作物を溶融除去するものである。ワイヤ放電加工で工作物を加工する場合、加工後の工作物の加工面すなわち加工が行われた後の面は、ワイヤ電極との間に発生する放電ギャップだけワイヤ電極から離れる。また、ワイヤ電極は工作物と対向して放電を発生させながら工作物の上面側から工作物の下面方向に搬送されるため、工作物の下面に搬送されるまでに消耗する。ワイヤ放電加工ではこれらの放電ギャップおよびワイヤ電極の消耗量を考慮して、所望の加工面に対してワイヤ電極軌跡にオフセットを設けている(例えば、特許文献1)。特許文献1に記載の発明では、ワイヤ電極軌跡に設定するオフセット量を変化させながら加工を行うことにより、板厚が変化する被加工物(工作物)を加工する際の加工精度の向上を実現する。 EDM is to melt and remove the workpiece by the heat of the discharge generated between the electrode and the workpiece. When a workpiece is machined by wire electric discharge machining, the machined surface of the workpiece after machining, that is, the surface after machining is separated from the wire electrode by the discharge gap generated between the workpiece and the wire electrode. Further, since the wire electrode is conveyed from the upper surface side of the workpiece toward the lower surface of the workpiece while generating an electric discharge facing the workpiece, it is consumed before being conveyed to the lower surface of the workpiece. In wire electric discharge machining, an offset is provided in the wire electrode locus with respect to a desired machined surface in consideration of these discharge gaps and the amount of wire electrode consumption (for example, Patent Document 1). In the invention described in Patent Document 1, by performing machining while changing the offset amount set in the wire electrode locus, it is possible to improve the machining accuracy when machining a workpiece (workpiece) whose plate thickness changes. do.
特開昭53-83192号公報Japanese Unexamined Patent Publication No. 53-83192
 ワイヤ放電加工機において、ワイヤ電極は、ボビンの巻き癖および搬送経路中のローラとの摩擦によって、一定方向に回転しながら搬送される。このワイヤ電極の回転は加工精度を劣化させる原因となる。ワイヤ電極が回転しながら搬送される場合、工作物の下面において、加工方向に対して右側と左側ではワイヤ電極側面の消耗量が異なる。そのため、工作物下面において、加工後の加工溝中心位置はワイヤ電極軌跡に対して、ワイヤ電極側面の消耗量の差異分の変位が生じ、その結果、加工面位置が変位し、加工誤差が生じる。 In the wire electric discharge machine, the wire electrode is conveyed while rotating in a certain direction due to the bobbin winding habit and friction with the roller in the transfer path. This rotation of the wire electrode causes deterioration of processing accuracy. When the wire electrode is conveyed while rotating, the amount of wear on the side surface of the wire electrode differs between the right side and the left side with respect to the machining direction on the lower surface of the workpiece. Therefore, on the lower surface of the workpiece, the position of the center of the machined groove after machining is displaced with respect to the wire electrode locus by the difference in the amount of wear on the side surface of the wire electrode, and as a result, the position of the machined surface is displaced and a machining error occurs. ..
 特許文献1に記載の発明など、従来のワイヤ放電加工では、加工を行う際のワイヤ電極の回転について考慮されていないため、ワイヤ電極の回転に伴い発生する加工誤差を補償することができない。 In conventional wire electric discharge machining such as the invention described in Patent Document 1, since the rotation of the wire electrode during machining is not considered, it is not possible to compensate for the machining error generated by the rotation of the wire electrode.
 本開示は、上記に鑑みてなされたものであって、加工精度の向上を実現可能なワイヤ放電加工装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a wire electric discharge machining apparatus capable of improving machining accuracy.
 上述した課題を解決し、目的を達成するために、本開示にかかるワイヤ放電加工装置は、ねじり方向に回転しながら工作物との間で放電し、工作物を加工するワイヤ電極と、工作物の上方でワイヤ電極を支持する上部ガイドと、工作物の下方でワイヤ電極を支持する下部ガイドとを備える。また、ワイヤ放電加工装置は、加工方向と残したい工作物との位置関係と、加工プログラムとに基づいて、残したい工作物が加工方向に対して右側に位置する場合と左側に位置する場合で、それぞれ、上部ガイドおよび下部ガイドの位置を個別に決定した値で補正することで、ワイヤ電極の工作物の加工面に対するオフセット量およびワイヤ電極の傾きの少なくとも一方を調整し、工作物を加工して得られる加工物の目標形状の寸法と実際の形状の寸法との誤差である加工寸法誤差を補償する制御装置、を備える。 In order to solve the above-mentioned problems and achieve the object, the wire discharge processing apparatus according to the present disclosure includes a wire electrode for processing a work piece by discharging electricity from the work piece while rotating in the twisting direction, and a work piece. It is provided with an upper guide that supports the wire electrode above and a lower guide that supports the wire electrode below the workpiece. Further, the wire discharge processing apparatus is based on the positional relationship between the machining direction and the workpiece to be left and the machining program, depending on whether the workpiece to be left is located on the right side or the left side with respect to the machining direction. By correcting the positions of the upper guide and the lower guide with individually determined values, at least one of the offset amount of the wire electrode with respect to the machined surface and the inclination of the wire electrode is adjusted, and the work is machined. A control device for compensating for a machining dimensional error, which is an error between the dimension of the target shape of the work piece obtained and the dimension of the actual shape, is provided.
 本開示にかかるワイヤ放電加工装置は、加工精度の向上を実現できるという効果を奏する。 The wire electric discharge machining apparatus according to the present disclosure has the effect of being able to improve the machining accuracy.
実施の形態1にかかるワイヤ放電加工装置の構成例を示す図The figure which shows the structural example of the wire electric discharge machining apparatus which concerns on Embodiment 1. 実施の形態1にかかるワイヤ放電加工機の制御装置の構成例を示す図The figure which shows the structural example of the control device of the wire electric discharge machine which concerns on Embodiment 1. 実施の形態1にかかるワイヤ放電加工装置の他の構成例を示す図The figure which shows the other configuration example of the wire electric discharge machining apparatus which concerns on Embodiment 1. 工作物をワイヤ放電加工した際に加工結果として形成される加工溝の俯瞰図A bird's-eye view of the machining groove formed as a result of wire electric discharge machining of a workpiece ワイヤ放電加工装置が解決しようとする課題を説明するための第1の図The first figure for demonstrating the problem that a wire electric discharge machine tries to solve. ワイヤ放電加工装置が解決しようとする課題を説明するための第2の図The second figure for demonstrating the problem that a wire electric discharge machine tries to solve. ワイヤ放電加工装置が解決しようとする課題を説明するための第3の図FIG. 3 for explaining the problem to be solved by the wire electric discharge machine. ワイヤ放電加工装置が解決しようとする課題を説明するための第4の図FIG. 4 for explaining the problem to be solved by the wire electric discharge machine. 実施の形態1にかかるワイヤ放電加工装置による加工動作の概要を示す図The figure which shows the outline of the processing operation by the wire electric discharge machining apparatus which concerns on Embodiment 1. 実施の形態1にかかるワイヤ放電加工装置による補正方法の他の例を示す図The figure which shows another example of the correction method by the wire electric discharge machining apparatus which concerns on Embodiment 1. ワイヤ放電加工装置が補正を行う際に用いる座標軸を示す図The figure which shows the coordinate axis used when the wire electric discharge machine makes correction. 実施の形態1にかかるワイヤ放電加工装置がワイヤ放電加工における加工寸法誤差を補正する動作の一例を示す第1のフローチャートA first flowchart showing an example of an operation in which the wire electric discharge machining apparatus according to the first embodiment corrects a machining dimensional error in wire electric discharge machining. 実施の形態1にかかるワイヤ放電加工装置がワイヤ放電加工における加工寸法誤差を補正する動作の一例を示す第2のフローチャートA second flowchart showing an example of an operation in which the wire electric discharge machining apparatus according to the first embodiment corrects a machining dimensional error in wire electric discharge machining. 実施の形態1にかかるワイヤ放電加工装置の図13に示す動作例を実現する各構成要素の接続関係を示す図The figure which shows the connection relation of each component which realizes the operation example shown in FIG. 13 of the wire electric discharge machining apparatus which concerns on Embodiment 1. FIG. 実施の形態1にかかるワイヤ放電加工装置がワイヤ放電加工における加工寸法誤差を補正する動作の一例を示す第3のフローチャートA third flowchart showing an example of an operation in which the wire electric discharge machining apparatus according to the first embodiment corrects a machining dimensional error in wire electric discharge machining. 実施の形態1にかかるワイヤ放電加工装置の図15に示す動作例を実現する各構成要素の接続関係を示す図The figure which shows the connection relation of each component which realizes the operation example shown in FIG. 15 of the wire electric discharge machining apparatus which concerns on Embodiment 1. FIG. ワイヤ放電加工の加工方向と、ワイヤ電極の消耗量との関係例を示す図The figure which shows the relation example of the processing direction of wire electric discharge machining, and the consumption amount of a wire electrode. ワイヤ放電加工の加工方向、ワイヤ電極の回転方向およびワイヤ電極の消耗量の関係例を示す図The figure which shows the relation example of the processing direction of wire electric discharge machining, the rotation direction of a wire electrode, and the consumption amount of a wire electrode. 実施の形態2にかかるワイヤ放電加工装置が備える制御装置の構成例を示す図The figure which shows the structural example of the control apparatus included in the wire electric discharge machining apparatus which concerns on Embodiment 2.
 以下に、本開示の実施の形態にかかるワイヤ放電加工装置および機械学習装置を図面に基づいて詳細に説明する。 The wire electric discharge machine and the machine learning device according to the embodiment of the present disclosure will be described in detail below with reference to the drawings.
実施の形態1.
 図1は、実施の形態1にかかるワイヤ放電加工装置の構成例を示す図である。ワイヤ放電加工装置100は、ワイヤ電極ボビン1と、ワイヤ電極ボビン1から引き出されるワイヤ電極2と、ワイヤ電極2を搬送するためのワイヤ電極搬送ローラ3と、工作物7の加工中にワイヤ電極2の位置および傾きを支持する上部ガイド6および下部ガイド11と、工作物7を設置するためのテーブル8と、加工部16で加工した後のワイヤ電極2を搬送する下部ローラ13と、ワイヤ電極2を搬送する駆動力を発生させる回収ローラ9と、加工後のワイヤ電極2を廃棄するためのワイヤ電極回収箱10と、を備えている。なお、加工部16は、上部ガイド6および下部ガイド11と、上部ガイド6および下部ガイド11で支持されたワイヤ電極2とで構成される。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of the wire electric discharge machine according to the first embodiment. The wire discharge processing apparatus 100 includes a wire electrode bobbin 1, a wire electrode 2 drawn from the wire electrode bobbin 1, a wire electrode transfer roller 3 for conveying the wire electrode 2, and a wire electrode 2 during processing of the workpiece 7. The upper guide 6 and the lower guide 11 that support the position and inclination of the above, the table 8 for installing the workpiece 7, the lower roller 13 that conveys the wire electrode 2 after being machined by the machined portion 16, and the wire electrode 2 A recovery roller 9 for generating a driving force for carrying the wire electrode 2 and a wire electrode recovery box 10 for discarding the processed wire electrode 2 are provided. The processed portion 16 is composed of an upper guide 6 and a lower guide 11, and a wire electrode 2 supported by the upper guide 6 and the lower guide 11.
 また、ワイヤ放電加工装置100は、工作物7の板厚を検出する板厚検出器4と、ワイヤ電極2の回転方向、回転速度または回転角度を検出するワイヤ電極回転検出器5と、ワイヤ電極2の消耗量を計測するワイヤ電極消耗量計測器12と、を備えている。なお、板厚検出器4は、上下方向、すなわち、ワイヤ電極2の搬送方向における工作物7の板厚を検出し、板厚情報を生成する。本実施の形態における「ワイヤ電極2の回転角度」は、ワイヤ電極2が工作物7を加工している間に回転する角度、すなわち、ワイヤ電極2の任意の位置が工作物7の上部ガイド6側から下部ガイド11側に搬送されながら工作物7を放電加工している間に回転する角度とする。回転速度の情報は、ワイヤ電極2が回転する速度の情報と、回転方向の情報とを含んで構成されるものとする。また、回転角度の情報は、上述した、ワイヤ電極2が工作物7を加工している間に回転する角度の情報と、回転方向の情報とを含んで構成されるものとする。また、「ワイヤ電極2の消耗量」は、ワイヤ電極2が工作物7を加工している間に消耗する量、すなわち、ワイヤ電極2が工作物7の上部ガイド6側から下部ガイド11側に搬送される間のワイヤ電極2の径の減少量とする。 Further, the wire discharge processing apparatus 100 includes a plate thickness detector 4 for detecting the plate thickness of the workpiece 7, a wire electrode rotation detector 5 for detecting the rotation direction, rotation speed or rotation angle of the wire electrode 2, and a wire electrode. The wire electrode consumption measuring instrument 12 for measuring the consumption of 2 is provided. The plate thickness detector 4 detects the plate thickness of the workpiece 7 in the vertical direction, that is, in the transport direction of the wire electrode 2, and generates plate thickness information. The "rotation angle of the wire electrode 2" in the present embodiment is the angle at which the wire electrode 2 rotates while machining the workpiece 7, that is, the arbitrary position of the wire electrode 2 is the upper guide 6 of the workpiece 7. The angle is set so that the workpiece 7 is rotated while being electric-discharged while being conveyed from the side to the lower guide 11 side. The rotation speed information is configured to include information on the rotation speed of the wire electrode 2 and information on the rotation direction. Further, the rotation angle information is configured to include the above-mentioned information on the rotation angle of the wire electrode 2 while processing the workpiece 7 and information on the rotation direction. The "consumable amount of the wire electrode 2" is the amount of the wire electrode 2 consumed while the workpiece 7 is being machined, that is, the wire electrode 2 is moved from the upper guide 6 side to the lower guide 11 side of the workpiece 7. The amount of decrease in the diameter of the wire electrode 2 during transportation.
 また、ワイヤ放電加工装置100は、板厚検出器4で検出された板厚を示す板厚情報、ワイヤ電極回転検出器5で検出された結果を示すワイヤ電極2の回転情報、および、ワイヤ電極消耗量計測器12で計測された消耗量を示す消耗情報に基づいて、加工溝中心変位量または加工面位置変位量を推定する加工寸法変位推定器15と、加工寸法変位推定器15で推定された加工溝中心変位量または加工面位置変位量と加工プログラムとに基づいて上部ガイド6および下部ガイド11の位置を制御する制御装置14と、を備えている。 Further, the wire discharge processing apparatus 100 includes plate thickness information indicating the plate thickness detected by the plate thickness detector 4, rotation information of the wire electrode 2 indicating the result detected by the wire electrode rotation detector 5, and wire electrode. Based on the consumption information indicating the consumption amount measured by the consumption amount measuring device 12, it is estimated by the machining dimension displacement estimator 15 and the machining dimension displacement estimator 15 for estimating the machining groove center displacement amount or the machining surface position displacement amount. It is provided with a control device 14 that controls the positions of the upper guide 6 and the lower guide 11 based on the displacement amount of the center of the machined groove or the displacement amount of the machined surface position and the machining program.
 図2は、実施の形態1にかかるワイヤ放電加工装置100の制御装置14の構成例を示す図である。図2に示すように、制御装置14は、NC(Numerical Control)装置141および駆動部142を備える。ここで、NC装置141および駆動部142は、例えば、プロセッサとメモリとを組み合わせた制御回路で実現される。すなわち、制御装置14は、NC装置141および駆動部142を実現するプロセッサおよびメモリを備える。メモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリなどの、不揮発性または揮発性の半導体メモリなどが該当する。NC装置141および駆動部142は、プロセッサがメモリに記憶された、NC装置141および駆動部142として動作するためのプログラムを読みだして実行することにより実現される。なお、NC装置141および駆動部142は、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせた回路で実現されてもよい。 FIG. 2 is a diagram showing a configuration example of the control device 14 of the wire electric discharge machining device 100 according to the first embodiment. As shown in FIG. 2, the control device 14 includes an NC (Numerical Control) device 141 and a drive unit 142. Here, the NC device 141 and the drive unit 142 are realized by, for example, a control circuit in which a processor and a memory are combined. That is, the control device 14 includes a processor and a memory that realizes the NC device 141 and the drive unit 142. The memory corresponds to, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory. The NC device 141 and the drive unit 142 are realized by the processor reading and executing a program stored in a memory for operating as the NC device 141 and the drive unit 142. The NC device 141 and the drive unit 142 may be realized by an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a circuit combining these.
 NC装置141は、加工プログラムを解析し、加工プログラムに記述された指令のうち、ワイヤ電極2に対する位置指令であるワイヤ電極位置指令を、加工溝中心変位量または加工面位置変位量に基づいて補正する。NC装置141は、補正後のワイヤ電極位置指令を駆動部142に出力する。駆動部142は、NC装置141から受け取った補正後のワイヤ電極位置指令に基づいて上部ガイド6および下部ガイド11それぞれの指令位置を求め、求めた各指令位置に上部ガイド6および下部ガイド11が移動するよう、上部ガイド6および下部ガイド11を駆動する。指令位置とは、加工プログラムに記述された位置指令によって指令される位置である。ここで、駆動部142は、上部ガイド6および下部ガイド11それぞれの指令位置を求める際、例えば、まず、補正後のワイヤ電極位置指令を解析してワイヤ電極2の指令位置を求め、ワイヤ電極の指令位置と、ワイヤ電極2、上部ガイド6および下部ガイド11の位置関係とから、上部ガイド6および下部ガイド11それぞれの指令位置を算出する。ここで、ワイヤ電極2の指令位置で指令される位置は、工作物7に対するワイヤ電極2の相対的な位置を意味する。よって、上部ガイド6の指令位置は、工作物7に対する上部ガイド6の相対的な位置を示し、下部ガイド11の指令位置は、工作物7に対する下部ガイド11の相対的な位置を示す。ワイヤ電極2、上部ガイド6および下部ガイド11の位置関係は、ワイヤ電極2の傾きに変化が無ければ固定であり、ワイヤ電極2の指令位置に基づき上部ガイド6および下部ガイド11の指令位置を算出することが可能である。駆動部142は、ワイヤ電極2、上部ガイド6および下部ガイド11のデフォルトの位置関係の情報を保持しており、この情報と、ワイヤ電極2の指令位置と、ワイヤ電極2の傾きとに基づいて、上部ガイド6および下部ガイド11それぞれの指令位置を算出する。ワイヤ電極2の傾きの情報は、加工プログラムを解析することで求める。なお、上部ガイド6および下部ガイド11それぞれの指令位置の算出をNC装置141が行うようにしてもよい。また、加工プログラムにワイヤ電極位置指令が記述されているものとしたが、上部ガイド6および下部ガイド11のそれぞれに対する位置指令が加工プログラムに記述され、NC装置141は、上部ガイド6および下部ガイド11のそれぞれに対する位置指令を補正し、補正後の各位置指令を駆動部142に出力する構成としてもよい。 The NC device 141 analyzes the machining program and corrects the wire electrode position command, which is a position command for the wire electrode 2, among the commands described in the machining program, based on the machining groove center displacement amount or the machining surface position displacement amount. do. The NC device 141 outputs the corrected wire electrode position command to the drive unit 142. The drive unit 142 obtains the command positions of the upper guide 6 and the lower guide 11 based on the corrected wire electrode position command received from the NC device 141, and the upper guide 6 and the lower guide 11 move to the obtained command positions. The upper guide 6 and the lower guide 11 are driven so as to do so. The command position is a position commanded by a position command described in the machining program. Here, when the drive unit 142 obtains the command positions of the upper guide 6 and the lower guide 11, for example, the drive unit 142 first analyzes the corrected wire electrode position command to obtain the command position of the wire electrode 2, and obtains the command position of the wire electrode. The command positions of the upper guide 6 and the lower guide 11 are calculated from the command position and the positional relationship between the wire electrode 2, the upper guide 6 and the lower guide 11. Here, the position commanded by the command position of the wire electrode 2 means the position of the wire electrode 2 relative to the workpiece 7. Therefore, the command position of the upper guide 6 indicates the relative position of the upper guide 6 with respect to the workpiece 7, and the command position of the lower guide 11 indicates the relative position of the lower guide 11 with respect to the workpiece 7. The positional relationship between the wire electrode 2, the upper guide 6 and the lower guide 11 is fixed if there is no change in the inclination of the wire electrode 2, and the command positions of the upper guide 6 and the lower guide 11 are calculated based on the command position of the wire electrode 2. It is possible to do. The drive unit 142 holds information on the default positional relationship between the wire electrode 2, the upper guide 6, and the lower guide 11, and is based on this information, the command position of the wire electrode 2, and the inclination of the wire electrode 2. , The command positions of the upper guide 6 and the lower guide 11 are calculated. Information on the inclination of the wire electrode 2 is obtained by analyzing the machining program. The NC device 141 may calculate the command positions of the upper guide 6 and the lower guide 11. Further, it is assumed that the wire electrode position command is described in the machining program, but the position command for each of the upper guide 6 and the lower guide 11 is described in the machining program, and the NC device 141 describes the upper guide 6 and the lower guide 11. The position command for each of the above may be corrected, and the corrected position command may be output to the drive unit 142.
 図1に示す構成例では加工寸法変位推定器15と制御装置14とを別構成としたが、図3に示すように、これらを一体化した構成としてもよい。図3は、実施の形態1にかかるワイヤ放電加工装置の他の構成例を示す図である。図3に示すワイヤ放電加工装置101は、図1に示すワイヤ放電加工装置100の加工寸法変位推定器15および制御装置14に代えて、これらが一体化された制御装置18を備える。以下の説明では、図1に示す構成を前提とする。 In the configuration example shown in FIG. 1, the machining dimension displacement estimator 15 and the control device 14 are separately configured, but as shown in FIG. 3, these may be integrated. FIG. 3 is a diagram showing another configuration example of the wire electric discharge machining apparatus according to the first embodiment. The wire electric discharge machining device 101 shown in FIG. 3 includes a control device 18 in which these are integrated, instead of the machining dimension displacement estimator 15 and the control device 14 of the wire electric discharge machining device 100 shown in FIG. In the following description, the configuration shown in FIG. 1 is assumed.
 ここで、本実施の形態にかかるワイヤ放電加工装置100が解決しようとする課題について説明する。 Here, the problem to be solved by the wire electric discharge machine 100 according to the present embodiment will be described.
 図4は、工作物をワイヤ放電加工した際に加工結果として形成される加工溝の俯瞰図である。図4において、ワイヤ電極2が通過した後に形成される加工溝21の中心線を加工溝中心20と定義し、加工溝21を形成する工作物の壁面を加工面19と定義する。 FIG. 4 is a bird's-eye view of a machined groove formed as a result of wire electric discharge machining of a workpiece. In FIG. 4, the center line of the machining groove 21 formed after the wire electrode 2 has passed is defined as the machining groove center 20, and the wall surface of the workpiece forming the machining groove 21 is defined as the machining surface 19.
 図5は、ワイヤ放電加工装置100が解決しようとする課題を説明するための第1の図である。図6は、ワイヤ放電加工装置100が解決しようとする課題を説明するための第2の図である。図5において、ワイヤ電極2が加工方向22の方向に移動して工作物を加工しながらワイヤ電極搬送方向26に搬送され、かつワイヤ電極2が回転方向24の方向に回転しているものとする。この場合、ワイヤ電極2は、加工に伴う消耗によって、工作物上部23と工作物下部25ではワイヤ断面形状が異なる。具体的には、ワイヤ電極2は、工作物上部23では加工方向22の面のみが消耗する。一方、工作物下部25では、ワイヤ電極2の搬送と回転に伴い、加工方向22に対してワイヤ電極2の左右でワイヤ電極消耗面27およびワイヤ電極非消耗面28が存在する。工作物下部25では、消耗がない場合のワイヤ電極2の形状39に対して、実際にはワイヤ電極が消耗しており形状が変化しているため、放電ギャップ31を考慮すると工作物の加工方向左側の工作物32と加工方向右側の工作物33とで加工面の位置が理想的な位置である目標位置からずれる。図6に示すように、工作物下部25での実際の加工面位置37は、理想的な加工面位置38である目標加工面に対して、加工方向22に対するワイヤ電極左側の加工面位置変位量34とワイヤ電極右側の加工面位置変位量35だけずれる。また、工作物下部25での実際の加工溝中心29も、機械指令のワイヤ電極中心30に対して、加工溝中心変位量36だけずれる。 FIG. 5 is a first diagram for explaining a problem to be solved by the wire electric discharge machining apparatus 100. FIG. 6 is a second diagram for explaining a problem to be solved by the wire electric discharge machine 100. In FIG. 5, it is assumed that the wire electrode 2 moves in the machining direction 22 and is transported in the wire electrode transport direction 26 while machining the workpiece, and the wire electrode 2 is rotating in the rotation direction 24. .. In this case, the wire electrode 2 has a different wire cross-sectional shape between the upper part 23 of the workpiece and the lower part 25 of the workpiece due to wear due to machining. Specifically, the wire electrode 2 wears only the surface in the machining direction 22 at the upper part 23 of the workpiece. On the other hand, in the lower part 25 of the workpiece, the wire electrode consumable surface 27 and the wire electrode non-consumable surface 28 are present on the left and right sides of the wire electrode 2 with respect to the machining direction 22 as the wire electrode 2 is conveyed and rotated. In the lower part 25 of the workpiece, the wire electrode is actually worn and the shape is changed with respect to the shape 39 of the wire electrode 2 when there is no wear. Therefore, considering the discharge gap 31, the machining direction of the workpiece The position of the machined surface deviates from the ideal target position between the work piece 32 on the left side and the work piece 33 on the right side in the machining direction. As shown in FIG. 6, the actual machined surface position 37 at the lower part 25 of the workpiece is the amount of displacement of the machined surface position on the left side of the wire electrode with respect to the machined direction 22 with respect to the target machined surface which is the ideal machined surface position 38. There is a deviation between 34 and the machined surface position displacement 35 on the right side of the wire electrode. Further, the actual machined groove center 29 at the lower part 25 of the workpiece also deviates from the machine-commanded wire electrode center 30 by the amount of displacement 36 at the center of the machined groove.
 つまり、図7に示すように、工作物下部25では、実際の加工溝中心29が機械指令のワイヤ電極中心30から加工溝中心変位量36だけずれる。この結果、加工方向左側の工作物32の加工面の位置および傾きと加工方向右側の工作物33の加工面の位置および傾きとが理想的なものと異なることになる。図7は、ワイヤ放電加工装置100が解決しようとする課題を説明するための第3の図である。 That is, as shown in FIG. 7, in the lower part 25 of the workpiece, the actual machined groove center 29 deviates from the machine-commanded wire electrode center 30 by the machined groove center displacement amount 36. As a result, the position and inclination of the machined surface of the workpiece 32 on the left side of the machining direction and the position and tilt of the machined surface of the workpiece 33 on the right side of the machining direction are different from the ideal ones. FIG. 7 is a third diagram for explaining a problem to be solved by the wire electric discharge machine 100.
 また、図8に示すように、加工方向22が異なると、工作物下部25における、実際の加工溝中心29の、機械指令のワイヤ電極中心30からのずれる方向が異なる。すなわち、工作物下部25において実際の加工溝中心29が機械指令のワイヤ電極中心30からずれる方向は加工方向22に応じて異なる。これは、実際の加工溝中心29が機械指令のワイヤ電極中心30からずれることにより生じる加工面の傾きおよび位置が、加工方向22によって異なることを意味する。図8は、ワイヤ放電加工装置100が解決しようとする課題を説明するための第4の図である。なお、ワイヤ電極2の回転方向24が図で示される方向から逆転した場合も同様に、工作物下部25において実際の加工溝中心29が機械指令のワイヤ電極中心30からずれる方向は加工方向22に応じて異なる。 Further, as shown in FIG. 8, if the machining direction 22 is different, the direction in which the actual machining groove center 29 in the lower part 25 of the workpiece deviates from the wire electrode center 30 of the machine command is different. That is, the direction in which the actual machining groove center 29 deviates from the machine-commanded wire electrode center 30 in the lower part 25 of the workpiece differs depending on the machining direction 22. This means that the inclination and position of the machined surface caused by the actual machined groove center 29 deviating from the machine-commanded wire electrode center 30 differ depending on the machined direction 22. FIG. 8 is a fourth diagram for explaining a problem to be solved by the wire electric discharge machine 100. Similarly, when the rotation direction 24 of the wire electrode 2 is reversed from the direction shown in the figure, the direction in which the actual machining groove center 29 deviates from the machine-commanded wire electrode center 30 in the lower part 25 of the workpiece is in the machining direction 22. It depends.
 従来のワイヤ放電加工では、ワイヤ電極の半径と放電ギャップ分だけ、機械指令のワイヤ電極中心軌跡を、残したい工作物が存在する方向を考慮してオフセットを設定している。なお、ここでのオフセットは、工作物の加工面と加工溝中心との距離である。しかし、このオフセット量を設定する際に加工方向は考慮されていない。そのため、上記の図5~図8を用いて説明した問題に対処されていない。 In the conventional wire electric discharge machining, the radius of the wire electrode and the electric discharge gap are set as the offset of the center locus of the wire electrode of the machine command in consideration of the direction in which the workpiece to be left exists. The offset here is the distance between the machined surface of the workpiece and the center of the machined groove. However, the machining direction is not taken into consideration when setting this offset amount. Therefore, the problem described with reference to FIGS. 5 to 8 above is not addressed.
 これに対し、本実施の形態にかかるワイヤ放電加工装置100は、図5~図8に示す工作物下部25での実際の加工溝中心29と機械指令のワイヤ電極中心30とのずれ、または、図6に示す工作物下部25での実際の加工面位置37と理想的な加工面位置38とのずれ、に基づいてワイヤ電極2の位置および傾きを補正する機能を有する。具体的には、ワイヤ放電加工装置100は、図9に示すように、加工方向に伴って、ワイヤ電極2の中心軌跡を補正する機能を有する。図9は、実施の形態1にかかるワイヤ放電加工装置100による加工動作の概要を示す図である。図9(a)は、ワイヤ放電加工の機械指令で表されるワイヤ電極中心軌跡(機械指令のワイヤ電極指令位置軌跡)と、ワイヤ放電加工により作成する加工物の目標形状を示す。図9(b)は、図9(a)に示す機械指令のワイヤ電極指令位置軌跡に沿って時計周り(CW:clockwise)にワイヤ電極を移動させて加工を行う場合の実際のワイヤ電極中心軌跡および作成される加工物の形状を示す。図9(c)は、図9(a)に示す機械指令のワイヤ電極指令位置軌跡に沿って反時計周り(CCW:counterclockwise)にワイヤ電極を移動させて加工を行う場合の実際のワイヤ電極中心軌跡および作成される加工物の形状を示す。図9(a)~図9(c)に示すように、機械指令のワイヤ電極中心軌跡と実際のワイヤ電極中心軌跡とは異なる。また、機械指令のワイヤ電極中心軌跡が同じであっても、ワイヤ電極が移動する方向である加工方向が異なる場合、実際のワイヤ電極中心軌跡は一致せず、作成される加工物の形状も一致しない。そのため、本実施の形態にかかるワイヤ放電加工装置100は、図9(d)に示すように、ワイヤ電極中心の位置を、加工方向ごとに異なる補正量で補正し、いずれの加工方向で加工を行う場合であっても目標形状の加工物が得られるようにする。なお、図9(d)の「補正前のワイヤ電極指令位置軌跡」は、図9(a)の「機械指令のワイヤ電極指令位置軌跡」と一致する。つまり、ワイヤ放電加工装置100は、機械指令で指令されるワイヤ電極の位置を、加工方向を考慮して決定した補正量で補正し、補正後の位置となるようにワイヤ電極の位置を制御する。 On the other hand, in the wire electric discharge machining apparatus 100 according to the present embodiment, the actual machining groove center 29 at the lower part 25 of the workpiece shown in FIGS. 5 to 8 and the wire electrode center 30 of the machine command are deviated from each other, or It has a function of correcting the position and inclination of the wire electrode 2 based on the deviation between the actual machined surface position 37 and the ideal machined surface position 38 at the lower part 25 of the workpiece shown in FIG. Specifically, as shown in FIG. 9, the wire electric discharge machining apparatus 100 has a function of correcting the central locus of the wire electrode 2 according to the machining direction. FIG. 9 is a diagram showing an outline of a machining operation by the wire electric discharge machining apparatus 100 according to the first embodiment. FIG. 9A shows a wire electrode center locus represented by a machine command of wire electric discharge machining (wire electrode command position locus of a machine command) and a target shape of a workpiece created by wire electric discharge machining. FIG. 9B shows an actual wire electrode center locus when processing is performed by moving the wire electrode clockwise (CW: clockwise) along the wire electrode command position locus of the machine command shown in FIG. 9A. And the shape of the work piece to be created. FIG. 9 (c) shows the actual wire electrode center when the wire electrode is moved counterclockwise (CCW: counterclockwise) along the wire electrode command position locus of the machine command shown in FIG. 9 (a) for processing. The trajectory and the shape of the work piece to be created are shown. As shown in FIGS. 9 (a) to 9 (c), the wire electrode center locus of the machine command and the actual wire electrode center locus are different. Further, even if the wire electrode center locus of the machine command is the same, if the machining direction, which is the direction in which the wire electrode moves, is different, the actual wire electrode center locus does not match, and the shape of the created workpiece also matches. do not. Therefore, as shown in FIG. 9D, the wire electric discharge machining apparatus 100 according to the present embodiment corrects the position of the center of the wire electrode with a different correction amount for each machining direction, and performs machining in any machining direction. Even if this is done, a work piece with a target shape can be obtained. The “wire electrode command position locus before correction” in FIG. 9 (d) coincides with the “machine command wire electrode command position locus” in FIG. 9 (a). That is, the wire electric discharge machining apparatus 100 corrects the position of the wire electrode commanded by the machine command with a correction amount determined in consideration of the machining direction, and controls the position of the wire electrode so as to be the corrected position. ..
 なお、以下の説明では、図6に示す実際の加工溝中心29と機械指令のワイヤ電極中心30とのずれ、または、実際の加工面位置37と理想的な加工面位置38とのずれ、に基づいて補正を行うこととするが、図10に示すような、工作物を加工して得られる形状の平均寸法に基づく補正、すなわち、加工して得られる形状が平均寸法となるようにする補正を行うようにしてもよい。図10は、実施の形態1にかかるワイヤ放電加工装置100による補正方法の他の例を示す図である。また、ワイヤ放電加工装置100においては、ワイヤ電極2のオフセット量の補正、および、ワイヤ電極2の傾きの補正のために、図11に示したUV軸の指令値、または、XY軸の指令値を補正する。つまり、ワイヤ電極2の傾きを補正する場合はUV軸の指令値を補正し、ワイヤ電極2のオフセット量を補正する場合はXY軸の指令値を補正する。UV軸の指令値とは、直交するU軸およびV軸で定義されるUV座標における位置すなわち座標を指令する指令値、XY軸の指令値とは、直交するX軸およびY軸で定義されるXY座標における位置すなわち座標を指令する指令値である。なお、ワイヤ電極2のオフセット量の補正は工作物7に対するワイヤ電極2の相対的な位置の補正を意味する。図11は、ワイヤ放電加工装置100が補正を行う際に用いる座標軸を示す図である。 In the following description, the deviation between the actual machined groove center 29 and the machine-commanded wire electrode center 30 shown in FIG. 6 or the difference between the actual machined surface position 37 and the ideal machined surface position 38. The correction is made based on the above, but as shown in FIG. 10, the correction is based on the average dimension of the shape obtained by processing the workpiece, that is, the correction so that the shape obtained by processing becomes the average dimension. May be done. FIG. 10 is a diagram showing another example of the correction method by the wire electric discharge machine 100 according to the first embodiment. Further, in the wire electric discharge machine 100, the command value of the UV axis or the command value of the XY axis shown in FIG. 11 is used to correct the offset amount of the wire electrode 2 and the inclination of the wire electrode 2. To correct. That is, when correcting the inclination of the wire electrode 2, the command value of the UV axis is corrected, and when correcting the offset amount of the wire electrode 2, the command value of the XY axis is corrected. The command value of the UV axis is defined by the position in the UV coordinates defined by the orthogonal U-axis and the V-axis, that is, the command value of commanding the coordinates, and the command value of the XY axis is defined by the orthogonal X-axis and the Y-axis. It is a command value that commands a position in XY coordinates, that is, coordinates. The correction of the offset amount of the wire electrode 2 means the correction of the relative position of the wire electrode 2 with respect to the workpiece 7. FIG. 11 is a diagram showing coordinate axes used when the wire electric discharge machine 100 performs correction.
 つづいて、本実施の形態にかかるワイヤ放電加工装置100の動作、具体的には、ワイヤ放電加工装置100がワイヤ放電加工で発生する加工寸法誤差を補正する動作について、図12~図16を参照しながら説明する。加工寸法誤差とは、工作物をワイヤ放電加工して得られる加工物の目標形状の寸法と実際の形状の寸法との誤差である。加工寸法誤差には、上述した実際の加工溝中心29と機械指令のワイヤ電極中心30とのずれ量である加工溝中心変位量36、または、実際の加工面位置37と理想的な加工面位置38とのずれ量である加工面位置変位量34および35が該当する(図6参照)。 Next, refer to FIGS. 12 to 16 for the operation of the wire electric discharge machining apparatus 100 according to the present embodiment, specifically, the operation of the wire electric discharge machining apparatus 100 for correcting the machining dimensional error generated in the wire electric discharge machining. I will explain while. The machining dimensional error is an error between the dimension of the target shape of the workpiece obtained by wire electric discharge machining of the workpiece and the dimension of the actual shape. The machining dimensional error includes the displacement of the center of the machining groove, which is the amount of deviation between the actual machining groove center 29 and the wire electrode center 30 of the machine command, or the actual machining surface position 37 and the ideal machining surface position. The machined surface position displacements 34 and 35, which are the amount of deviation from 38, correspond (see FIG. 6).
 図12は、実施の形態1にかかるワイヤ放電加工装置100がワイヤ放電加工における加工寸法誤差を補正する動作の一例を示す第1のフローチャートである。 FIG. 12 is a first flowchart showing an example of an operation in which the wire electric discharge machining apparatus 100 according to the first embodiment corrects a machining dimensional error in wire electric discharge machining.
 図12に示す動作例では、まず、ワイヤ放電加工装置100の制御装置14が加工寸法誤差を取得する(ステップS11)。すなわち、制御装置14は、加工溝中心変位量36、または、加工面位置変位量34および35を取得する。制御装置14は、これらの情報を加工寸法変位推定器15から取得する。なお、ワイヤ電極2は放電加工が進むにつれて消耗し、これに伴い実際の加工溝中心29が機械指令のワイヤ電極中心30から徐々にずれていくが、ワイヤ電極の搬送速度が一定であれば、時間あたりのずれ量は概ね一定となる。同様に、実際の加工面位置37と理想的な加工面位置38の時間あたりのずれ量も概ね一定となる。そのため、ワイヤ放電加工装置100は、予めデータ化された加工寸法誤差(加工溝中心変位量36、または、加工面位置変位量34および35)をメモリで保持しておき、制御装置14は、メモリから加工寸法誤差を取得する構成とすることも可能である。予めデータ化された加工寸法誤差とは、例えば、ワイヤ電極搬送方向26におけるワイヤ電極2上の基準位置からの距離(例えば、工作物7への放電を開始する位置)と、加工方向と、加工寸法誤差とが対応付けられた状態でテーブル化されたデータである。これらの情報に加えて、工作物の板厚、ワイヤ電極の材質、工作物の材質、ワイヤ電極の搬送速度、ワイヤ電極の太さ、加工速度、加工電圧などの情報をテーブル化してメモリで保持してもよい。テーブルに登録される各種情報は、例えば、様々な条件でシミュレーションを繰り返し行うなどして取得すればよい。 In the operation example shown in FIG. 12, first, the control device 14 of the wire electric discharge machining device 100 acquires a machining dimensional error (step S11). That is, the control device 14 acquires the machined groove center displacement amount 36 or the machined surface position displacement amounts 34 and 35. The control device 14 acquires this information from the machined dimensional displacement estimator 15. The wire electrode 2 is consumed as the electric discharge machining progresses, and the actual machined groove center 29 gradually deviates from the machine-commanded wire electrode center 30. However, if the wire electrode transport speed is constant, the wire electrode 2 is consumed. The amount of deviation per hour is almost constant. Similarly, the amount of deviation between the actual machined surface position 37 and the ideal machined surface position 38 per hour is also substantially constant. Therefore, the wire discharge processing apparatus 100 holds the machining dimensional error (the amount of displacement at the center of the machining groove 36 or the amount of displacement of the machining surface position 34 and 35) that has been converted into data in advance in the memory, and the control device 14 holds the memory. It is also possible to obtain the machining dimensional error from. The machining dimensional errors digitized in advance include, for example, the distance from the reference position on the wire electrode 2 in the wire electrode transport direction 26 (for example, the position where the discharge to the workpiece 7 is started), the machining direction, and the machining. The data is tabulated with the dimensional error associated with it. In addition to this information, information such as the thickness of the workpiece, the material of the wire electrode, the material of the workpiece, the transport speed of the wire electrode, the thickness of the wire electrode, the machining speed, and the machining voltage are stored in a table in the memory. You may. Various information registered in the table may be acquired, for example, by repeatedly performing a simulation under various conditions.
 制御装置14は、加工寸法誤差を取得後、加工方向と残したい工作物との位置関係と、加工寸法誤差とに基づいて、ワイヤ電極位置指令を補正する(ステップS12)。具体的には、制御装置14のNC装置141が、加工方向に対して、加工方向のどちら側に残したい工作物が存在するかを判断し、判断結果に基づいて、加工寸法誤差を補償するための補正量を決定する。つまり、NC装置141は、加工方向に対して右側に残したい工作物が存在する場合と、左側に残したい工作物が存在する場合とに分けて、それぞれの場合で個別に補正量を決定する。そして、NC装置141は、決定した補正量でワイヤ電極位置指令を補正する。すなわち、NC装置141は、残したい工作物がある側で発生する加工寸法誤差(加工溝中心変位量36、加工面位置変位量34,35)の分だけ、ワイヤ電極2が残したい工作物がある側に移動するよう、ワイヤ電極位置指令を補正する。NC装置141は、加工プログラムの解析結果から、加工方向および残したい工作物が加工方向に対してどちら側に存在するかを判断する。 After acquiring the machining dimensional error, the control device 14 corrects the wire electrode position command based on the positional relationship between the machining direction and the workpiece to be left and the machining dimensional error (step S12). Specifically, the NC device 141 of the control device 14 determines on which side of the machining direction the workpiece is desired to be left with respect to the machining direction, and compensates for the machining dimensional error based on the judgment result. Determine the amount of correction for. That is, the NC device 141 determines the correction amount individually in each case by dividing into the case where the workpiece to be left exists on the right side with respect to the machining direction and the case where the workpiece to be left exists on the left side. .. Then, the NC device 141 corrects the wire electrode position command with the determined correction amount. That is, in the NC device 141, the work piece that the wire electrode 2 wants to leave is due to the machining dimensional error (machine groove center displacement amount 36, machined surface position displacement amount 34, 35) that occurs on the side where the work piece to be left is located. Correct the wire electrode position command to move to a certain side. From the analysis result of the machining program, the NC apparatus 141 determines on which side the machining direction and the workpiece to be left exist with respect to the machining direction.
 制御装置14は、次に、補正後のワイヤ電極位置指令に従いワイヤ電極2を移動させる(ステップS13)。具体的には、制御装置14の駆動部142が、補正後のワイヤ電極位置指令が指令する位置にワイヤ電極2が移動するよう、上部ガイド6および下部ガイド11を駆動する。 Next, the control device 14 moves the wire electrode 2 according to the corrected wire electrode position command (step S13). Specifically, the drive unit 142 of the control device 14 drives the upper guide 6 and the lower guide 11 so that the wire electrode 2 moves to the position commanded by the corrected wire electrode position command.
 ワイヤ放電加工装置100の制御装置14は、加工プログラムに記述された各指令を順番に読み込み実行し、ワイヤ電極位置指令を読み込んだ場合には上記のステップS11~S13の各処理を実行する。 The control device 14 of the wire electric discharge machining device 100 reads and executes each command described in the machining program in order, and when the wire electrode position command is read, executes each of the above steps S11 to S13.
 図13は、実施の形態1にかかるワイヤ放電加工装置100がワイヤ放電加工における加工寸法誤差を補正する動作の一例を示す第2のフローチャートである。図14は、実施の形態1にかかるワイヤ放電加工装置100の図13に示す動作例を実現する各構成要素の接続関係を示す図である。 FIG. 13 is a second flowchart showing an example of an operation in which the wire electric discharge machining apparatus 100 according to the first embodiment corrects a machining dimensional error in wire electric discharge machining. FIG. 14 is a diagram showing a connection relationship of each component that realizes an operation example shown in FIG. 13 of the wire electric discharge machining apparatus 100 according to the first embodiment.
 図13に示す第2のフローチャートは、図12に示す第1のフローチャートのステップS11に代えてステップS21~S23を実行するようにしたものである。図13のステップS12およびS13は図12のステップS12およびS13と同一であるため、詳しい説明は省略する。 The second flowchart shown in FIG. 13 is such that steps S21 to S23 are executed instead of step S11 of the first flowchart shown in FIG. Since steps S12 and S13 in FIG. 13 are the same as steps S12 and S13 in FIG. 12, detailed description thereof will be omitted.
 まず、ワイヤ放電加工装置100の加工寸法変位推定器15が、ワイヤ電極2の回転に関する情報を取得する(ステップS21)。このステップS21で取得するワイヤ電極2の回転に関する情報は、搬送時のワイヤ電極2の回転方向、回転角度および回転速度の中のいずれかとする。加工寸法変位推定器15は、ワイヤ電極2の回転に関する情報である回転情報を、ワイヤ電極回転検出器5から取得する。なお、正常に加工が行われている状態ではワイヤ電極2の回転方向、回転角度および回転速度は一定と考えられる。そのため、ワイヤ放電加工装置100は、予めデータ化されたワイヤ電極2の回転に関する情報(ワイヤ電極2の回転方向、回転速度または回転角度)をメモリで保持しておき、加工寸法変位推定器15は、メモリからワイヤ電極2の回転に関する情報を取得する構成とすることも可能である。なお、このステップS21と以下で説明するステップS22とは実行する順番が入れ替わっても問題ない。 First, the machining dimension displacement estimator 15 of the wire electric discharge machining device 100 acquires information regarding the rotation of the wire electrode 2 (step S21). The information regarding the rotation of the wire electrode 2 acquired in step S21 is any one of the rotation direction, the rotation angle, and the rotation speed of the wire electrode 2 during transportation. The machined dimension displacement estimator 15 acquires rotation information, which is information on the rotation of the wire electrode 2, from the wire electrode rotation detector 5. It is considered that the rotation direction, the rotation angle, and the rotation speed of the wire electrode 2 are constant in the state where the processing is normally performed. Therefore, the wire discharge processing apparatus 100 holds in advance data on the rotation of the wire electrode 2 (rotation direction, rotation speed, or rotation angle of the wire electrode 2) in the memory, and the processing dimension displacement estimator 15 is used. , It is also possible to acquire information on the rotation of the wire electrode 2 from the memory. It should be noted that there is no problem even if the order of execution of this step S21 and step S22 described below is changed.
 加工寸法変位推定器15は、次に、ワイヤ電極2の消耗量を取得する(ステップS22)。加工寸法変位推定器15は、ワイヤ電極2の消耗量を、ワイヤ電極消耗量計測器12から取得する。なお、ワイヤ放電加工装置100は、予めデータ化されたワイヤ電極2の消耗量をメモリで保持しておき、加工寸法変位推定器15は、メモリからワイヤ電極2の消耗量を取得する構成とすることも可能である。予めデータ化されたワイヤ電極2の消耗量とは、例えば、ワイヤ電極搬送方向26におけるワイヤ電極2上の基準位置からの距離と、加工方向と、ワイヤ電極2の消耗量とが対応付けられた状態でテーブル化されたデータ、つまり、ワイヤ電極搬送方向26におけるワイヤ電極2上の基準位置からある位置までワイヤ電極2が搬送される間にワイヤ電極2がどれだけ消耗するかを表すデータである。これらの情報に加えて、ワイヤ電極2の材質、工作物7の材質、ワイヤ電極2の搬送速度、ワイヤ電極2の太さ、などの情報をテーブル化してメモリで保持してもよい。 The machined dimension displacement estimator 15 then acquires the amount of wear of the wire electrode 2 (step S22). The machining dimension displacement estimator 15 acquires the wear amount of the wire electrode 2 from the wire electrode wear amount measuring device 12. The wire electric discharge machining device 100 holds the consumption amount of the wire electrode 2 that has been converted into data in advance in a memory, and the machining dimension displacement estimator 15 is configured to acquire the consumption amount of the wire electrode 2 from the memory. It is also possible. The pre-datad consumption amount of the wire electrode 2 is associated with, for example, the distance from the reference position on the wire electrode 2 in the wire electrode transport direction 26, the processing direction, and the consumption amount of the wire electrode 2. The data tabulated in the state, that is, the data showing how much the wire electrode 2 is consumed while the wire electrode 2 is transported from the reference position on the wire electrode 2 in the wire electrode transport direction 26 to a certain position. .. In addition to these information, information such as the material of the wire electrode 2, the material of the workpiece 7, the transport speed of the wire electrode 2, the thickness of the wire electrode 2 and the like may be tabulated and stored in the memory.
 加工寸法変位推定器15は、ステップS21およびステップS22を実行後、ワイヤ電極2の回転に関する情報と、ワイヤ電極2の消耗量とに基づいて加工寸法誤差を算出する(ステップS23)。加工寸法変位推定器15が加工寸法誤差を算出する方法については後述する。 After executing steps S21 and S22, the machining dimensional displacement estimator 15 calculates the machining dimensional error based on the information regarding the rotation of the wire electrode 2 and the consumption amount of the wire electrode 2 (step S23). The method by which the machining dimensional displacement estimator 15 calculates the machining dimensional error will be described later.
 加工寸法変位推定器15は、算出した加工寸法誤差を制御装置14に出力する。制御装置14は、加工寸法変位推定器15から受け取った加工寸法誤差に基づいてワイヤ電極位置指令を補正し、ワイヤ電極2を移動させる(ステップS12,S13)。すなわち、図14に示すように、制御装置14において、NC装置141のワイヤ電極位置指令抽出部141Aが、加工プログラムからワイヤ電極位置指令を抽出し、指令補正部141Bが、ワイヤ電極位置指令を、加工寸法誤差に基づいて補正する。駆動部142は、補正後のワイヤ電極位置指令に従い加工部16の上部ガイド6および下部ガイド11を駆動してワイヤ電極2を移動させる。 The machining dimension displacement estimator 15 outputs the calculated machining dimension error to the control device 14. The control device 14 corrects the wire electrode position command based on the machining dimensional error received from the machining dimensional displacement estimator 15, and moves the wire electrode 2 (steps S12 and S13). That is, as shown in FIG. 14, in the control device 14, the wire electrode position command extraction unit 141A of the NC device 141 extracts the wire electrode position command from the machining program, and the command correction unit 141B issues the wire electrode position command. Correct based on the machining dimensional error. The drive unit 142 drives the upper guide 6 and the lower guide 11 of the processing unit 16 to move the wire electrode 2 in accordance with the corrected wire electrode position command.
 図15は、実施の形態1にかかるワイヤ放電加工装置100がワイヤ放電加工における加工寸法誤差を補正する動作の一例を示す第3のフローチャートである。図16は、実施の形態1にかかるワイヤ放電加工装置の図15に示す動作例を実現する各構成要素の接続関係を示す図である。 FIG. 15 is a third flowchart showing an example of an operation in which the wire electric discharge machining apparatus 100 according to the first embodiment corrects a machining dimensional error in wire electric discharge machining. FIG. 16 is a diagram showing a connection relationship of each component that realizes an operation example shown in FIG. 15 of the wire electric discharge machining apparatus according to the first embodiment.
 図15に示す第3のフローチャートは、図12に示す第1のフローチャートのステップS11に代えてステップS31~S33を実行するようにしたものである。図15のステップS12およびS13は図12のステップS12およびS13と同一であるため、詳しい説明は省略する。 The third flowchart shown in FIG. 15 is such that steps S31 to S33 are executed instead of step S11 of the first flowchart shown in FIG. Since steps S12 and S13 in FIG. 15 are the same as steps S12 and S13 in FIG. 12, detailed description thereof will be omitted.
 まず、ワイヤ放電加工装置100の加工寸法変位推定器15が、工作物7の板厚情報を取得する(ステップS31)。加工寸法変位推定器15は、板厚情報を、板厚検出器4から取得する。なお、ワイヤ放電加工装置100は、工作物7の板厚情報の入力を予めユーザから受け付け、入力された板厚情報をメモリで保持しておいてもよい。すなわち、加工寸法変位推定器15は、ユーザが入力済みの工作物7の板厚情報をメモリから取得してもよい。 First, the machining dimension displacement estimator 15 of the wire electric discharge machining device 100 acquires the plate thickness information of the workpiece 7 (step S31). The machining dimension displacement estimator 15 acquires plate thickness information from the plate thickness detector 4. The wire electric discharge machine 100 may receive input of the plate thickness information of the workpiece 7 from the user in advance and hold the input plate thickness information in the memory. That is, the machining dimension displacement estimator 15 may acquire the plate thickness information of the workpiece 7 that has been input by the user from the memory.
 加工寸法変位推定器15は、次に、板厚情報に基づいて、ワイヤ電極2の回転角度およびワイヤ電極2の消耗量を算出する(ステップS32)。工作物7を加工する間のワイヤ電極2の搬送速度は一定であり、同様にワイヤ電極2の回転速度も一定である。そのため、加工寸法変位推定器15は、例えば、ワイヤ電極2の搬送速度および回転速度を予め保持しておき、これらの情報と工作物7の板厚情報とに基づいて、ワイヤ電極2の回転角度すなわち工作物7を加工している間に回転する角度を算出する。また、ワイヤ電極2の任意の位置の消耗は放電回数に比例し、加工中の放電回数は工作物7の板厚に依存する。そのため、加工寸法変位推定器15は、例えば、ワイヤ電極2の搬送速度および時間あたりの放電回数を予め保持しておき、これらの情報と板厚情報とに基づいてワイヤ電極2の消耗量を算出する。 Next, the machining dimension displacement estimator 15 calculates the rotation angle of the wire electrode 2 and the amount of wear of the wire electrode 2 based on the plate thickness information (step S32). The transport speed of the wire electrode 2 during machining of the workpiece 7 is constant, and similarly, the rotation speed of the wire electrode 2 is also constant. Therefore, the machining dimension displacement estimator 15 holds, for example, the transport speed and the rotation speed of the wire electrode 2 in advance, and the rotation angle of the wire electrode 2 is based on these information and the plate thickness information of the workpiece 7. That is, the angle of rotation is calculated while the workpiece 7 is being machined. Further, the consumption of the wire electrode 2 at an arbitrary position is proportional to the number of discharges, and the number of discharges during machining depends on the plate thickness of the workpiece 7. Therefore, the machining dimension displacement estimator 15 holds, for example, the transport speed of the wire electrode 2 and the number of discharges per hour in advance, and calculates the consumption amount of the wire electrode 2 based on these information and the plate thickness information. do.
 加工寸法変位推定器15は、次に、ワイヤ電極2の回転角度とワイヤ電極2の消耗量とに基づいて、加工寸法誤差を算出する(ステップS33)。 Next, the machining dimensional displacement estimator 15 calculates the machining dimensional error based on the rotation angle of the wire electrode 2 and the consumption amount of the wire electrode 2 (step S33).
 加工寸法変位推定器15がワイヤ電極2の回転角度とワイヤ電極2の消耗量とに基づいて加工寸法誤差を算出する方法について、図17および図18を参照しながら説明する。ここでは、加工寸法誤差を上述した図6に示す加工面位置変位量34,35とする場合と加工溝中心変位量36とする場合の加工寸法誤差の算出方法を説明する。また、加工寸法誤差の説明を2段階に分けて、具体的には、ワイヤ電極2の消耗量を算出する方法と、加工面位置変位を補正するための補正量の計算方法と、ワイヤ電極中心軌跡を補正するための補正量の計算方法とに分けて説明する。図17は、ワイヤ放電加工の加工方向と、ワイヤ電極2の消耗量との関係例を示す図である。図18は、ワイヤ放電加工の加工方向、ワイヤ電極2の回転方向およびワイヤ電極2の消耗量の関係例を示す図である。 A method of calculating the machining dimensional error based on the rotation angle of the wire electrode 2 and the consumption amount of the wire electrode 2 by the machining dimensional displacement estimator 15 will be described with reference to FIGS. 17 and 18. Here, a method for calculating the machining dimensional error will be described when the machining dimensional error is set to the machining surface position displacement amounts 34 and 35 shown in FIG. 6 and the machining groove center displacement amount 36. Further, the explanation of the machining dimensional error is divided into two stages, specifically, a method of calculating the consumption amount of the wire electrode 2, a method of calculating the correction amount for correcting the displacement of the machined surface position, and a wire electrode center. The method of calculating the correction amount for correcting the locus will be described separately. FIG. 17 is a diagram showing an example of the relationship between the processing direction of wire electric discharge machining and the amount of wear of the wire electrode 2. FIG. 18 is a diagram showing an example of the relationship between the processing direction of wire electric discharge machining, the rotation direction of the wire electrode 2, and the amount of wear of the wire electrode 2.
 図17に示すように、ワイヤ電極2の消耗は、主に、加工方向に発生し、加工方向とのなす角度がθの部分における消耗量は以下の式(1)のように計算される。
  (加工方向とのなす角度がθの部分におけるワイヤ電極の消耗量)=f(θ) …(1)
As shown in FIG. 17, the wear of the wire electrode 2 mainly occurs in the machining direction, and the amount of wear in the portion where the angle formed with the machining direction is θ is calculated by the following equation (1).
(Consumed amount of wire electrode in the portion where the angle formed by the machining direction is θ) = f (θ)… (1)
 式(1)において、f(θ)は、加工方向とのなす角度θを変数とする消耗量関数である。この消耗量関数f(θ)は、シミュレーションや実験などにより求める。 In equation (1), f (θ) is a consumption function whose variable is the angle θ formed with the machining direction. This consumption function f (θ) is obtained by simulation or experiment.
 式(1)にワイヤ電極2の回転を考慮すると、加工方向の左右の加工面位置の補正量とワイヤ電極中心軌跡の補正量はそれぞれ、式(2)、(3)、(4)のように計算される。
   (加工方向左側の加工面位置の補正量)=f(-π/2)  …(2)
   (加工方向右側の加工面位置の補正量)=f(π/2)   …(3)
   (ワイヤ電極中心軌跡の補正量)
          ={f(-π/2)-f(π/2)}/2   …(4)
Considering the rotation of the wire electrode 2 in the equation (1), the correction amount of the left and right machining surface positions in the machining direction and the correction amount of the wire electrode center locus are as shown in the equations (2), (3), and (4), respectively. Is calculated to.
(Correction amount of the machining surface position on the left side in the machining direction) = f (-π / 2) ... (2)
(Correction amount of machining surface position on the right side of machining direction) = f (π / 2) ... (3)
(Correction amount of wire electrode center locus)
= {F (-π / 2) -f (π / 2)} / 2 ... (4)
 以上のように、本実施の形態にかかるワイヤ放電加工装置100は、ワイヤ電極2の搬送中の回転方向、回転速度または回転角度と、ワイヤ電極2の消耗量とに基づいて加工寸法誤差を検出し、加工寸法誤差を、残したい工作物が加工方向に対して右側にある場合と左側にある場合とで異なる補正量を用いて補償する。これにより、加工精度の向上を実現できる。 As described above, the wire discharge processing apparatus 100 according to the present embodiment detects the processing dimensional error based on the rotation direction, rotation speed or rotation angle of the wire electrode 2 during transportation and the consumption amount of the wire electrode 2. However, the machining dimensional error is compensated by using different correction amounts depending on whether the workpiece to be left is on the right side or the left side with respect to the machining direction. Thereby, the processing accuracy can be improved.
実施の形態2.
 つづいて、実施の形態2にかかるワイヤ放電加工装置を説明する。なお、実施の形態2にかかるワイヤ放電加工装置の構成は、実施の形態1にかかるワイヤ放電加工装置100と同様である(図1参照)。本実施の形態では、実施の形態1にかかるワイヤ放電加工装置100と重複する部分については説明を省略する。また、これ以降の説明では、便宜上、実施の形態2にかかるワイヤ放電加工装置をワイヤ放電加工装置100aと記載する。
Embodiment 2.
Next, the wire electric discharge machining apparatus according to the second embodiment will be described. The configuration of the wire electric discharge machine according to the second embodiment is the same as that of the wire electric discharge machine 100 according to the first embodiment (see FIG. 1). In the present embodiment, the description of the portion overlapping with the wire electric discharge machine 100 according to the first embodiment will be omitted. Further, in the following description, for convenience, the wire electric discharge machining apparatus according to the second embodiment will be referred to as a wire electric discharge machining apparatus 100a.
 実施の形態2にかかるワイヤ放電加工装置100aにおいては、実施の形態1で説明した加工寸法誤差を補償するための補正量を、機械学習を利用して決定する。図19は、実施の形態2にかかるワイヤ放電加工装置100aが備える制御装置14aの構成例を示す図である。制御装置14aは、ワイヤ放電加工装置100が備える制御装置14に機械学習装置50が追加されたものである。なお、図19に示す例では機械学習装置50が制御装置14aに含まれる構成としたが、機械学習装置50が制御装置14aの外部に存在する構成、すなわち、機械学習装置50と制御装置14aとが別の装置として存在する構成としてもよい。 In the wire electric discharge machining apparatus 100a according to the second embodiment, the correction amount for compensating for the machining dimensional error described in the first embodiment is determined by using machine learning. FIG. 19 is a diagram showing a configuration example of a control device 14a included in the wire electric discharge machining device 100a according to the second embodiment. The control device 14a is a device in which the machine learning device 50 is added to the control device 14 included in the wire electric discharge machining device 100. In the example shown in FIG. 19, the machine learning device 50 is included in the control device 14a, but the machine learning device 50 exists outside the control device 14a, that is, the machine learning device 50 and the control device 14a. May exist as a separate device.
 制御装置14aにおいて、機械学習装置50は、実施の形態1で説明した加工寸法誤差を補償するための補正量を機械学習する。NC装置141は、機械学習装置50による学習結果に基づいて加工寸法誤差を補償するための補正量を決定し、決定した補正量で加工寸法誤差の補償、すなわち、ワイヤ電極位置指令の補正を行う。 In the control device 14a, the machine learning device 50 machine-learns the correction amount for compensating for the machining dimensional error described in the first embodiment. The NC device 141 determines a correction amount for compensating for the machining dimensional error based on the learning result of the machine learning device 50, and compensates for the machining dimensional error, that is, corrects the wire electrode position command with the determined correction amount. ..
 図19に示すように、機械学習装置50は、状態観測部51および学習部52を備える。 As shown in FIG. 19, the machine learning device 50 includes a state observation unit 51 and a learning unit 52.
 状態観測部51は、ワイヤ電極2の回転方向、回転角度または回転速度を含む回転情報と、ワイヤ電極2の消耗量と、加工寸法誤差と、加工寸法誤差を補償するための補正量とを状態変数として観測する。 The state observing unit 51 states the rotation information including the rotation direction, rotation angle, or rotation speed of the wire electrode 2, the consumption amount of the wire electrode 2, the machining dimensional error, and the correction amount for compensating for the machining dimensional error. Observe as a variable.
 学習部52は、状態観測部51が観測した状態変数に基づいて作成されるデータセットに従って、加工寸法誤差の補償に用いる補正量(加工寸法誤差を補償するための補正量)を機械学習する。学習部52が用いる学習アルゴリズムはどのようなものを用いてもよい。一例として、強化学習(Reinforcement Learning)を適用した場合について説明する。強化学習は、ある環境内におけるエージェント(行動主体)が、現在の状態を観測し、取るべき行動を決定する、というものである。エージェントは行動を選択することで環境から報酬を得て、一連の行動を通じて報酬が最も多く得られるような方策を学習する。強化学習の代表的な手法として、Q学習(Q-learning)およびTD学習(TD-learning)が知られている。例えば、Q学習の場合、行動価値関数Q(s,a)の一般的な更新式(行動価値テーブル)は次式(5)で表される。 The learning unit 52 machine-learns the correction amount (correction amount for compensating the machining dimensional error) used for compensating the machining dimensional error according to the data set created based on the state variable observed by the state observing section 51. Any learning algorithm may be used as the learning algorithm used by the learning unit 52. As an example, the case where reinforcement learning is applied will be described. Reinforcement learning is that an agent (behavior) in a certain environment observes the current state and decides the action to be taken. Agents get rewarded from the environment by choosing an action and learn how to get the most reward through a series of actions. Q-learning and TD-learning are known as typical methods of reinforcement learning. For example, in the case of Q-learning, the general update equation (behavior value table) of the action value function Q (s, a) is expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(5)において、stは時刻tにおける環境を表し、atは時刻tにおける行動を表す。行動atにより、環境はst+1に変わる。rt+1はその環境の変化によってもらえる報酬を表し、γは割引率を表し、αは学習係数を表す。なお、γは0<γ≦1、αは0<α≦1の範囲とする。Q学習を適用した場合、加工寸法誤差の補償に用いる補正量を算出することが行動atとなる。 In the formula (5), s t represents the environment at time t, a t represents the behavior in time t. By the action a t, the environment is changed to s t + 1. rt + 1 represents the reward received by the change of the environment, γ represents the discount rate, and α represents the learning coefficient. Note that γ is in the range of 0 <γ ≦ 1 and α is in the range of 0 <α ≦ 1. When applying the Q-learning, it calculates a correction amount to be used for compensation of the processing dimension error becomes action a t.
 式(5)で表される更新式は、時刻t+1における最良の行動at+1の行動価値が、時刻tにおいて実行された行動atの行動価値Qよりも大きければ、行動価値Qを大きくし、逆の場合は、行動価値Qを小さくする。換言すれば、時刻tにおける行動atの行動価値Qを、時刻t+1における最良の行動価値に近づけるように、行動価値関数Q(s,a)を更新する。それにより、或る環境における最良の行動価値が、それ以前の環境における行動価値に順次伝播していくようになる。 In the update formula represented by the equation (5), if the action value of the best action a t + 1 at time t + 1 is larger than the action value Q of the action a t executed at time t, the action value Q is increased. However, in the opposite case, the action value Q is reduced. In other words, the action value Q action a t at time t, so as to approach the best action value at time t + 1, and updates the action value function Q (s, a). As a result, the best behavioral value in a certain environment is sequentially propagated to the behavioral value in the previous environment.
 学習部52は、加工寸法誤差の補償に用いる補正量を機械学習するための報酬計算部521および関数更新部522を備える。 The learning unit 52 includes a reward calculation unit 521 and a function update unit 522 for machine learning the correction amount used for compensating for the machining dimensional error.
 報酬計算部521は、状態観測部51が観測した状態変数に基づいて報酬を計算する。報酬計算部521は、加工寸法誤差に基づいて、報酬rを計算する。例えば、加工寸法誤差が予め定められた基準値(例えば1μm)よりも小さい場合には報酬rを増大させる(例えば「1」の報酬を与える)。他方、加工寸法誤差が基準値よりも大きい場合には報酬rを低減する(例えば「-1」の報酬を与える)。加工寸法誤差の基準値は、所望の加工寸法誤差によって適宜、ユーザが変更するようにしてもよい。 The reward calculation unit 521 calculates the reward based on the state variables observed by the state observation unit 51. The reward calculation unit 521 calculates the reward r based on the machining dimensional error. For example, when the machining dimensional error is smaller than a predetermined reference value (for example, 1 μm), the reward r is increased (for example, a reward of “1” is given). On the other hand, when the machining dimensional error is larger than the reference value, the reward r is reduced (for example, a reward of "-1" is given). The reference value of the machining dimensional error may be appropriately changed by the user according to the desired machining dimensional error.
 関数更新部522は、報酬計算部521によって計算される報酬に従って、加工寸法誤差の補償に用いる補正量を決定するための関数を更新する。例えばQ学習の場合、式(5)で表される行動価値関数Q(st,at)を加工寸法誤差の補償に用いる補正量を算出するための関数として用いられる。 The function update unit 522 updates the function for determining the correction amount used for compensating the machining dimensional error according to the reward calculated by the reward calculation unit 521. For example, in the case of Q-learning, it is used as a function for calculating a correction amount used action value represented by the formula (5) function Q (s t, a t) to compensate for the processing dimension error.
 なお、本実施の形態では、学習部52が用いる学習アルゴリズムに強化学習を適用した場合について説明したが、これに限られるものではない。学習アルゴリズムについては、強化学習以外にも、教師あり学習、教師なし学習、または半教師あり学習等を適用することも可能である。 In the present embodiment, the case where reinforcement learning is applied to the learning algorithm used by the learning unit 52 has been described, but the present invention is not limited to this. As for the learning algorithm, in addition to reinforcement learning, supervised learning, unsupervised learning, semi-supervised learning, and the like can also be applied.
 また、上述した学習アルゴリズムとしては、特徴量そのものの抽出を学習する、深層学習(Deep Learning)を用いることもでき、他の公知の方法、例えばニューラルネットワーク、遺伝的プログラミング、機能論理プログラミング、サポートベクターマシンなどに従って機械学習を実行してもよい。 Further, as the learning algorithm described above, deep learning, which learns the extraction of the feature amount itself, can also be used, and other known methods such as neural networks, genetic programming, functional logic programming, and support vectors can be used. Machine learning may be executed according to the machine or the like.
 機械学習装置50は、ワイヤ放電加工装置100aの加工寸法誤差の補償に用いる補正量を学習するために使用されるが、例えば、ネットワークを介してワイヤ放電加工装置100aに接続され、このワイヤ放電加工装置100aとは別個の装置であってもよい。また、機械学習装置50は、図19に示すようにワイヤ放電加工装置100aに内蔵されていてもよい。さらに、機械学習装置50は、クラウドサーバ上に存在していてもよい。 The machine learning device 50 is used to learn the correction amount used for compensating for the machining dimensional error of the wire electric discharge machine 100a. For example, the machine learning device 50 is connected to the wire electric discharge machine 100a via a network and the wire electric discharge machining is performed. It may be a device separate from the device 100a. Further, the machine learning device 50 may be built in the wire electric discharge machining device 100a as shown in FIG. Further, the machine learning device 50 may exist on the cloud server.
 また、機械学習装置50は、複数のワイヤ放電加工装置100aに対して作成されるデータセットに従って、加工寸法誤差の補償に用いる補正量を学習するようにしてもよい。なお、機械学習装置50は、同一の現場で使用される複数のワイヤ放電加工装置100aからデータセットを取得してもよいし、或いは、異なる現場で独立して稼働する複数のワイヤ放電加工装置100aから収集されるデータセットを利用して加工寸法誤差の補償に用いる補正量を学習してもよい。さらに、データセットを収集するワイヤ放電加工装置100aを途中で対象に追加し、或いは、逆に対象から除去することも可能である。さらに、あるワイヤ放電加工装置100aに関して加工寸法誤差の補償に用いる補正量を学習した機械学習装置50を、これとは別のワイヤ放電加工装置100aに取り付け、当該別のワイヤ放電加工装置100aに関して加工寸法誤差の補償に用いる補正量を再学習して更新するようにしてもよい。 Further, the machine learning device 50 may learn the correction amount used for compensating for the machining dimensional error according to the data set created for the plurality of wire electric discharge machining devices 100a. The machine learning device 50 may acquire a data set from a plurality of wire electric discharge machines 100a used at the same site, or a plurality of wire electric discharge machines 100a operating independently at different sites. The amount of correction used to compensate for machining dimensional errors may be learned using the data set collected from. Further, the wire electric discharge machine 100a for collecting the data set can be added to the target on the way, or conversely, can be removed from the target. Further, a machine learning device 50 that has learned the correction amount used for compensating the machining dimensional error for a certain wire electric discharge machining device 100a is attached to another wire electric discharge machining device 100a, and machining is performed for the other wire electric discharge machining device 100a. The correction amount used for compensating for the dimensional error may be relearned and updated.
 このように、本実施の形態にかかるワイヤ放電加工装置100aは、ワイヤ電極2の回転方向、回転角度または回転速度を含む回転情報と、ワイヤ電極2の消耗量と、加工寸法誤差と、加工寸法誤差を補償するための補正量とを観測し、加工寸法誤差を補償するための補正量を学習する機械学習装置50を備え、機械学習装置50による学習結果に基づいて、加工寸法誤差を補償する。これにより、実施の形態1と同様に加工精度の向上を実現できる。 As described above, the wire discharge processing apparatus 100a according to the present embodiment includes rotation information including the rotation direction, rotation angle or rotation speed of the wire electrode 2, consumption amount of the wire electrode 2, processing dimension error, and processing dimension. A machine learning device 50 for observing a correction amount for compensating for an error and learning a correction amount for compensating for a machining dimensional error is provided, and the machining dimensional error is compensated based on the learning result by the machine learning device 50. .. As a result, it is possible to improve the processing accuracy as in the first embodiment.
 なお、本実施の形態では図1に示すワイヤ放電加工装置100に機械学習装置50を追加して機械学習を利用する場合について説明したが、図3に示すワイヤ放電加工装置101に機械学習装置50を追加することも可能である。 In the present embodiment, the case where the machine learning device 50 is added to the wire discharge processing device 100 shown in FIG. 1 to use machine learning has been described, but the machine learning device 50 is added to the wire discharge processing device 101 shown in FIG. It is also possible to add.
 以上の実施の形態に示した構成は、内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment is an example of the content, can be combined with another known technique, and a part of the configuration is omitted or changed without departing from the gist. It is also possible.
 1 ワイヤ電極ボビン、2 ワイヤ電極、3 ワイヤ電極搬送ローラ、4 板厚検出器、5 ワイヤ電極回転検出器、6 上部ガイド、7 工作物、8 テーブル、9 回収ローラ、10 ワイヤ電極回収箱、11 下部ガイド、12 ワイヤ電極消耗量計測器、13 下部ローラ、14,14a,18 制御装置、15 加工寸法変位推定器、16 加工部、19 加工面、20 加工溝中心、21 加工溝、22 加工方向、23 工作物上部、24 回転方向、25 工作物下部、26 ワイヤ電極搬送方向、27 ワイヤ電極消耗面、28 ワイヤ電極非消耗面、29 実際の加工溝中心、30 機械指令のワイヤ電極中心、31 放電ギャップ、32 加工方向左側の工作物、33 加工方向右側の工作物、34,35 加工面位置変位量、36 加工溝中心変位量、37 実際の加工面位置、38 理想的な加工面位置、39 消耗がない場合のワイヤ電極の形状、50 機械学習装置、51 状態観測部、52 学習部、100,100a,101 ワイヤ放電加工装置、141 NC装置、141A ワイヤ電極位置指令抽出部、141B 指令補正部、142 駆動部、521 報酬計算部、522 関数更新部。 1 wire electrode bobbin, 2 wire electrode, 3 wire electrode transfer roller, 4 plate thickness detector, 5 wire electrode rotation detector, 6 upper guide, 7 workpiece, 8 table, 9 recovery roller, 10 wire electrode recovery box, 11 Lower guide, 12 Wire electrode wear measuring instrument, 13 Lower roller, 14, 14a, 18 Control device, 15 Machining dimension displacement estimator, 16 Machining part, 19 Machining surface, 20 Machining groove center, 21 Machining groove, 22 Machining direction , 23 Upper part of workpiece, 24 Rotation direction, 25 Lower part of workpiece, 26 Wire electrode transfer direction, 27 Wire electrode consumable surface, 28 Wire electrode non-consumable surface, 29 Actual machined groove center, 30 Machine command wire electrode center, 31 Discharge gap, 32 Work piece on the left side in the machining direction, 33 Work piece on the right side in the machining direction, 34, 35 Machining surface position displacement amount, 36 Machining groove center displacement amount, 37 Actual machining surface position, 38 Ideal machining surface position, 39 Wire electrode shape when there is no wear, 50 Machine learning device, 51 State observation unit, 52 Learning unit, 100, 100a, 101 Wire discharge processing device, 141 NC device, 141A Wire electrode position command extraction unit, 141B Command correction Department, 142 drive unit, 521 reward calculation unit, 522 function update unit.

Claims (12)

  1.  ねじり方向に回転しながら工作物との間で放電し、前記工作物を加工するワイヤ電極と、
     前記工作物の上方で前記ワイヤ電極を支持する上部ガイドと、
     前記工作物の下方で前記ワイヤ電極を支持する下部ガイドと、
     加工方向と残したい工作物との位置関係と、加工プログラムとに基づいて、残したい工作物が加工方向に対して右側に位置する場合と左側に位置する場合で、それぞれ、前記上部ガイドおよび前記下部ガイドの位置を個別に決定した値で補正することで、前記ワイヤ電極の前記工作物の加工面に対するオフセット量および前記ワイヤ電極の傾きの少なくとも一方を調整し、前記工作物を加工して得られる加工物の目標形状の寸法と実際の形状の寸法との誤差である加工寸法誤差を補償する制御装置と、
     を備えることを特徴とするワイヤ放電加工装置。
    A wire electrode that discharges from the workpiece while rotating in the twisting direction to process the workpiece, and
    An upper guide that supports the wire electrode above the workpiece and
    A lower guide that supports the wire electrode below the workpiece,
    Based on the positional relationship between the machining direction and the workpiece to be left, and the machining program, the upper guide and the above-mentioned upper guide and the said By correcting the position of the lower guide with a value determined individually, at least one of the offset amount of the wire electrode with respect to the machined surface of the work and the inclination of the wire electrode is adjusted, and the work is machined. A control device that compensates for the machining dimension error, which is the error between the target shape dimension of the workpiece and the actual shape dimension.
    A wire electric discharge machine characterized by being provided with.
  2.  前記制御装置は、前記加工プログラムに記述された、前記ワイヤ電極に対する位置指令を前記加工寸法誤差および前記位置関係に基づいて補正し、補正後の前記位置指令に従い前記上部ガイドおよび前記下部ガイドを移動させる、
     ことを特徴とする請求項1に記載のワイヤ放電加工装置。
    The control device corrects the position command for the wire electrode described in the machining program based on the machining dimensional error and the positional relationship, and moves the upper guide and the lower guide according to the corrected position command. Let,
    The wire electric discharge machining apparatus according to claim 1.
  3.  前記加工寸法誤差を、前記工作物に形成される加工溝の中心軌跡と前記加工プログラムで表される前記ワイヤ電極の中心の軌跡とのずれ量である加工溝中心変位量とする、
     ことを特徴とする請求項1または2に記載のワイヤ放電加工装置。
    The machining dimensional error is defined as the amount of displacement of the center of the machining groove, which is the amount of deviation between the locus of the center of the machining groove formed in the workpiece and the locus of the center of the wire electrode represented by the machining program.
    The wire electric discharge machining apparatus according to claim 1 or 2.
  4.  前記加工寸法誤差を、前記工作物を加工して得られる加工物の実際の加工面と前記加工プログラムで表される前記加工物の目標加工面とのずれ量である加工面位置変位量とする、
     ことを特徴とする請求項1または2に記載のワイヤ放電加工装置。
    The machining dimensional error is the amount of displacement of the machining surface position, which is the amount of deviation between the actual machining surface of the workpiece obtained by machining the workpiece and the target machining surface of the workpiece represented by the machining program. ,
    The wire electric discharge machining apparatus according to claim 1 or 2.
  5.  前記制御装置は、搬送時の前記ワイヤ電極の回転に関する情報である回転情報、および、前記工作物の加工中における前記ワイヤ電極の消耗量に基づき推定された、加工方向と残したい工作物との位置関係と、加工プログラムとに基づいて前記上部ガイドおよび前記下部ガイドの位置を制御して前記加工寸法誤差を補償する、
     ことを特徴とする請求項1から4のいずれか一つに記載のワイヤ放電加工装置。
    The control device relates to a machining direction and a workpiece to be retained, which is estimated based on rotation information which is information on the rotation of the wire electrode during transportation and the amount of wear of the wire electrode during machining of the workpiece. The positions of the upper guide and the lower guide are controlled based on the positional relationship and the machining program to compensate for the machining dimensional error.
    The wire electric discharge machining apparatus according to any one of claims 1 to 4.
  6.  搬送時の前記ワイヤ電極の回転方向、回転速度または回転角度を検出し、検出結果を示す前記回転情報を生成するワイヤ電極回転検出器と、
     前記消耗量を計測するワイヤ電極消耗量計測器と、
     前記回転情報および前記消耗量に基づいて前記加工寸法誤差を推定する加工寸法変位推定器と、
     を備えることを特徴とする請求項5に記載のワイヤ放電加工装置。
    A wire electrode rotation detector that detects the rotation direction, rotation speed, or rotation angle of the wire electrode during transportation and generates the rotation information indicating the detection result.
    A wire electrode consumption measuring instrument that measures the consumption, and
    A machining dimensional displacement estimator that estimates the machining dimensional error based on the rotation information and the consumption amount, and
    The wire electric discharge machining apparatus according to claim 5, further comprising.
  7.  前記工作物の上下方向の板厚を検出し、検出結果を示す板厚情報を生成する板厚検出器と、
     前記板厚情報に基づいて前記加工寸法誤差を推定する加工寸法変位推定器と、
     を備えることを特徴とする請求項1から5のいずれか一つに記載のワイヤ放電加工装置。
    A plate thickness detector that detects the plate thickness in the vertical direction of the workpiece and generates plate thickness information indicating the detection result, and
    A machining dimensional displacement estimator that estimates the machining dimensional error based on the plate thickness information,
    The wire electric discharge machining apparatus according to any one of claims 1 to 5, wherein the wire electric discharge machining apparatus is provided.
  8.  前記加工寸法変位推定器が前記制御装置の内部に存在する、
     ことを特徴とする請求項6または7に記載のワイヤ放電加工装置。
    The machined dimensional displacement estimator exists inside the control device.
    The wire electric discharge machining apparatus according to claim 6 or 7.
  9.  搬送時の前記ワイヤ電極の回転に関する情報である回転情報、前記工作物の加工中における前記ワイヤ電極の消耗量、前記加工寸法誤差、および、前記加工寸法誤差の補償に用いる補正量を観測し、前記観測で得られた状態変数を用いて機械学習を行う機械学習装置、
     を備え、
     前記制御装置は、前記機械学習装置による学習結果および前記加工プログラムに基づいて前記加工寸法誤差を補償する、
     ことを特徴とする請求項1から8のいずれか一つに記載のワイヤ放電加工装置。
    The rotation information, which is information on the rotation of the wire electrode during transportation, the amount of wear of the wire electrode during machining of the workpiece, the machining dimensional error, and the correction amount used to compensate for the machining dimensional error are observed. A machine learning device that performs machine learning using the state variables obtained from the above observations.
    With
    The control device compensates for the machining dimensional error based on the learning result by the machine learning device and the machining program.
    The wire electric discharge machining apparatus according to any one of claims 1 to 8.
  10.  ワイヤ放電加工装置が工作物を加工して得られる加工物の目標形状の寸法と実際の形状の寸法との誤差である加工寸法誤差を補償するための補正量を機械学習する機械学習装置であって、
     搬送時のワイヤ電極の回転に関する情報である回転情報と、前記加工物の加工中における前記ワイヤ電極の消耗量と、前記加工寸法誤差と、前記補正量とを状態変数として観測する状態観測部と、
     前記状態変数に従って前記補正量を機械学習する学習部と、
     を備えることを特徴とする機械学習装置。
    It is a machine learning device that machine-learns the correction amount to compensate for the machining dimensional error, which is the error between the dimension of the target shape of the workpiece obtained by machining the workpiece by the wire discharge machining device and the dimension of the actual shape. hand,
    A state observing unit that observes rotation information, which is information on the rotation of the wire electrode during transportation, the amount of wear of the wire electrode during processing of the workpiece, the processing dimensional error, and the correction amount as state variables. ,
    A learning unit that machine-learns the correction amount according to the state variable,
    A machine learning device characterized by being equipped with.
  11.  前記学習部は、
     前記状態変数に基づいて報酬を計算する報酬計算部と、
     前記報酬に基づいて、前記補正量を決定するための関数を更新する関数更新部と、
     を備えることを特徴とする請求項10に記載の機械学習装置。
    The learning unit
    A reward calculation unit that calculates rewards based on the state variables,
    A function update unit that updates a function for determining the correction amount based on the reward,
    10. The machine learning apparatus according to claim 10.
  12.  前記報酬計算部は、
     前記加工寸法誤差が予め定められた基準値よりも小さい場合に前記報酬を増大させ、前記加工寸法誤差が前記基準値よりも大きい場合に前記報酬を低減する、
     ことを特徴とする請求項11に記載の機械学習装置。
    The reward calculation unit
    The reward is increased when the machining dimensional error is smaller than a predetermined reference value, and the reward is decreased when the machining dimensional error is larger than the reference value.
    The machine learning device according to claim 11.
PCT/JP2020/011699 2020-03-17 2020-03-17 Wire electrical discharge machining machine and machine learning apparatus WO2021186545A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020541466A JP6775719B1 (en) 2020-03-17 2020-03-17 Wire EDM and Machine Learning Equipment
CN202080098267.2A CN115243817B (en) 2020-03-17 2020-03-17 Wire electric discharge machine and machine learning device
PCT/JP2020/011699 WO2021186545A1 (en) 2020-03-17 2020-03-17 Wire electrical discharge machining machine and machine learning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/011699 WO2021186545A1 (en) 2020-03-17 2020-03-17 Wire electrical discharge machining machine and machine learning apparatus

Publications (1)

Publication Number Publication Date
WO2021186545A1 true WO2021186545A1 (en) 2021-09-23

Family

ID=72916071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011699 WO2021186545A1 (en) 2020-03-17 2020-03-17 Wire electrical discharge machining machine and machine learning apparatus

Country Status (3)

Country Link
JP (1) JP6775719B1 (en)
CN (1) CN115243817B (en)
WO (1) WO2021186545A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233615B1 (en) * 2022-02-21 2023-03-06 三菱電機株式会社 WIRE EDM MACHINE, WIRE EDM METHOD, LEARNING DEVICE, AND REASONING DEVICE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109228A (en) * 1981-12-18 1983-06-29 Inoue Japax Res Inc Wire cut electric discharge machining
JPH01121125A (en) * 1987-11-04 1989-05-12 Nec Corp Wire-cut electric discharge machining device
WO2015145569A1 (en) * 2014-03-25 2015-10-01 三菱電機株式会社 Machining path calculation device, control device, and wire electric discharge machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146626A (en) * 1980-04-16 1981-11-14 Fanuc Ltd Wire-cut discharge processing method
JPS58114823A (en) * 1981-12-28 1983-07-08 Fanuc Ltd Machining control system for wire-cut electric discharge machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109228A (en) * 1981-12-18 1983-06-29 Inoue Japax Res Inc Wire cut electric discharge machining
JPH01121125A (en) * 1987-11-04 1989-05-12 Nec Corp Wire-cut electric discharge machining device
WO2015145569A1 (en) * 2014-03-25 2015-10-01 三菱電機株式会社 Machining path calculation device, control device, and wire electric discharge machine

Also Published As

Publication number Publication date
CN115243817A (en) 2022-10-25
CN115243817B (en) 2023-07-28
JPWO2021186545A1 (en) 2021-09-23
JP6775719B1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
EP3382475B1 (en) Wire electric discharge machine comprising control device and machine learning device
JP6680748B2 (en) Control device and machine learning device
JP2017030067A (en) Control device-added machining apparatus with machining time measuring function and on-machine measuring function
JP2015009324A (en) Visual sensor and deburring device provided with force sensor
WO2021186545A1 (en) Wire electrical discharge machining machine and machine learning apparatus
WO2022185431A1 (en) Wire electrical discharge machining device, shape dimension compensator, wire electrical discharge machining method, learning device, and inference device
US9399260B2 (en) Wire electrical discharge machining apparatus
JP2014200864A (en) Wire electric discharge machine having wire electrode tension control function
JP6359847B2 (en) Interference avoidance device
JP2015134407A (en) Visual sensor and deburring device provided with force sensor
US9442479B2 (en) Wire electric discharge machine controller, wire electric discharge machine, and wire electric discharge machining method
KR101991173B1 (en) Wire electrical discharge machine and wire electrical discharge machining method
WO2021001974A1 (en) Machine learning device, numerical control device, wire electric discharge machine, machine learning method
JP5307696B2 (en) Wire cut electric discharge machining method and wire cut electric discharge machining apparatus
WO2020194751A1 (en) Numerical control device, electric discharge machining device, and electric discharge machining method
CN108356371B (en) Numerical controller
JP7234420B6 (en) Method for scanning the surface of a metal workpiece and method for performing a welding process
CN111273610B (en) Machine tool
JP3875253B2 (en) EDM machine
WO2021111530A1 (en) Control device, electric discharge machine, and machine learning device
JP7233615B1 (en) WIRE EDM MACHINE, WIRE EDM METHOD, LEARNING DEVICE, AND REASONING DEVICE
CN109041572B (en) Wire electric discharge machine and wire electric discharge machining method
JP2016157216A (en) Numerical control device having tool correction function in skiving processing
JP5850087B2 (en) Robot, control device and robot system
JP3736118B2 (en) Electric discharge machining control method and control apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020541466

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925810

Country of ref document: EP

Kind code of ref document: A1