WO2021185100A1 - 一种网络接入系统、方法及终端 - Google Patents
一种网络接入系统、方法及终端 Download PDFInfo
- Publication number
- WO2021185100A1 WO2021185100A1 PCT/CN2021/079350 CN2021079350W WO2021185100A1 WO 2021185100 A1 WO2021185100 A1 WO 2021185100A1 CN 2021079350 W CN2021079350 W CN 2021079350W WO 2021185100 A1 WO2021185100 A1 WO 2021185100A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- access network
- network device
- access
- voice service
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 90
- 238000005259 measurement Methods 0.000 claims abstract description 260
- 230000004044 response Effects 0.000 claims description 24
- 238000012360 testing method Methods 0.000 claims description 15
- 230000009977 dual effect Effects 0.000 claims description 7
- 238000010295 mobile communication Methods 0.000 abstract description 41
- 238000004891 communication Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 17
- 230000006870 function Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 238000006073 displacement reaction Methods 0.000 description 7
- 238000007726 management method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 230000007774 longterm Effects 0.000 description 6
- 238000004590 computer program Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 208000034423 Delivery Diseases 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
- H04W36/0058—Transmission of hand-off measurement information, e.g. measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/14—Reselecting a network or an air interface
- H04W36/144—Reselecting a network or an air interface over a different radio air interface technology
- H04W36/1443—Reselecting a network or an air interface over a different radio air interface technology between licensed networks
Definitions
- This specification relates to the field of mobile communication technology, and specifically to a network access system, method and terminal.
- Voice services have high requirements for network coverage, and the radio access network (RAN) of the fifth generation ((5th generation, 5G) mobile communication system, that is, the next generation radio access network, Most of the spectrum of NG RAN is in the high frequency band.
- the signal coverage of the high frequency band network is small, and it is difficult to meet the coverage requirements of voice services. Therefore, in the early or even mid-term deployment of 5G mobile communication systems, most operators’ 5G networks may not support voice For services, it is more inclined to use evolved packet system (EPS) fallback to provide voice services to users.
- EPS evolved packet system
- NG RAN switches the terminal To the E-UTRAN cell, and further through the fourth generation ((4th generation, 4G) core network (evolved packet core, EPC) for voice services.
- 4G fourth generation
- EPC evolved packet core
- the terminal that resides in the 5G cell is For voice services, you can switch to a 4G cell and perform voice services through long-term evolution voice bearer (voice over long-term evolution, VOLTE).
- the embodiments of this specification provide a network access system, method, and terminal, which enable the terminal to actively send a measurement report to the network side after the EPS fallback voice call ends, so as to trigger the network test to issue a different system measurement control message for The terminal quickly returned to the 5G network.
- the embodiments of this specification provide a network access system, including 4G access network equipment, 5G access network equipment, and terminals; wherein the 5G access network equipment does not support VoNR, and/or, 5G access
- the 5G core network equipment corresponding to the network equipment does not support VoNR; when the terminal resides in the network provided by the 5G access network equipment and the terminal is performing voice services, the 5G access network equipment can instruct the terminal to connect to the 4G connection through the EPS fallback procedure.
- Network access equipment so that the terminal can perform the voice service through 4G access network equipment; the terminal can receive the user-initiated hang-up operation, and in response to the hang-up operation, terminate the voice service; or, the terminal is used to connect from 4G
- the network access device receives the hang-up instruction, and in response to the hang-up instruction, ends the voice service; when the terminal and the 4G access network device maintain an RRC connection, the terminal is used to actively send a measurement report to the 4G access network device to make the terminal Reconnect to the 5G access network equipment.
- the terminal connected to the 5G network when the terminal connected to the 5G network performs voice service, it can access the 4G network through the EPS fallback procedure to perform voice service; when the voice service ends If the terminal is in the connected state under the 4G network, the terminal can actively send a measurement report to the network side in order to return to the 5G network as soon as possible.
- the 4G access network device is used to respond to the measurement report and send a different system measurement control message to the terminal, and the different system measurement control message is used to trigger the terminal to measure the signal quality of the neighboring cell of the different system.
- the measurement report that the terminal actively sends to the network side can trigger the network side to issue a different system measurement control message, and the different system measurement control message can trigger the terminal residing in the 4G network to measure the 5G network.
- the signal quality so that it can be connected to the 5G network.
- the terminal being used to actively send a measurement report to the 4G access network device includes: when the terminal does not receive a measurement control message of a different system within the first time period, the terminal is used to actively connect to the 4G access network.
- the network-connected device sends a measurement report, and the first time period is a time period starting at or after the end of the voice service.
- the terminal can first wait for the network side to send the measurement control message of the different system. If it does not wait for the measurement message of the different system sent by the network side within a certain period of time, the terminal actively sends The network side sends a measurement report in order to return to the 5G network as soon as possible, and avoid conflicts with the measurement control message of the different system normally issued by the network side.
- that the terminal is used to actively send a measurement report to the 4G access network device includes: the terminal is used to determine that the terminal meets a first condition; where the first condition includes at least one of the following:
- Delay-sensitive data services are not implemented, voice services are non-emergency call services, and are not in emergency call callback mode.
- the execution time of voice services is less than the first threshold.
- the terminal's moving speed is less than the second threshold and is not in EN-DC state, not in test mode;
- the terminal is used to actively send the measurement report to the 4G access network device.
- the terminal first determines whether the terminal is currently executing a specific type of service. If this type of service is affected by the process of reconnecting to the 5G network, the user's network experience may be reduced. If the terminal is not currently executing the specific type of service, the terminal actively sends a measurement report to the network side in order to re-access the 5G network as soon as possible.
- the terminal is also used to actively measure the signal quality of the network provided by the 5G access network device when it does not receive the measurement control message of the different system; when the signal quality of the network provided by the 5G access network device When the threshold is higher, the terminal is also used to actively disconnect the RRC connection between the terminal and the 4G access network device, and try to access the network provided by the 5G access network device.
- the terminal can actively measure the signal quality of the 5G network in order to quickly return to the 5G network.
- the terminal is also used to send an RRC connection re-establishment request to the 4G access network device when the terminal attempts to access the network provided by the 5G access network device and fails to re-establish the terminal and 4G access RRC connection of network equipment.
- the terminal can initiate the re-establishment of the RRC connection between it and the 4G access network equipment, so that when the access to the 5G network fails, it can access the 4G network as soon as possible. .
- the embodiments of this specification provide a network access method, including: a terminal is connected to a 5G access network device, the 5G access network device does not support VoNR, and/or the 5G core corresponding to the 5G access network device
- the network equipment does not support VoNR; when the terminal performs voice services, the terminal connects to the 4G access network equipment to perform voice services through the 4G access network equipment, where the terminal accesses the 4G access through the instructions of the 5G access network equipment Network equipment, the instruction is an instruction given by the 5G access network equipment through the EPS fallback procedure; the terminal receives the hang-up operation initiated by the user, and in response to the hang-up operation, terminates the voice service; or, the terminal receives from the 4G access network device Hang up instructions, and in response to the hang up instructions, end the voice service; when the terminal and the 4G access network device maintain an RRC connection, the terminal actively sends a measurement report to the 4G access network device to reconnect the terminal to the 5G access network equipment.
- the method further includes: the terminal receives a different system measurement control message from the 4G access network device, where the different system measurement control message is a message sent by the 4G access network device in response to the measurement report; and the terminal responds Measure control messages in different systems, and measure signal quality in neighboring areas of different systems.
- the terminal actively sending a measurement report to the 4G access network device includes: when the terminal does not receive a different system measurement control message within the first time period, the terminal actively sends the measurement report to the 4G access network device.
- the 4G access network device sends the measurement report, and the first time period is a time period starting at or after the end of the voice service.
- the terminal actively sending a measurement report to the 4G access network device includes: the terminal determines that the terminal meets a first condition; where the first condition includes at least one of the following:
- Delay-sensitive data services are not implemented, voice services are non-emergency call services, and are not in emergency call callback mode.
- the execution time of voice services is less than the first threshold.
- the terminal's moving speed is less than the second threshold and is not in EN-DC state, not in test mode;
- the terminal actively sends the measurement report to the 4G access network device.
- the method further includes: when the terminal does not receive a different system measurement control message, the terminal actively measures the signal quality of the first network provided by the 5G access network device; when the signal quality of the first network is high When the first threshold is reached, the terminal actively disconnects the RRC connection between the terminal and the 4G access network device, and attempts to access the first network.
- the method further includes: when the terminal fails to attempt to access the first network, sending an RRC connection re-establishment request to the 4G access network device to re-establish the connection between the terminal and the 4G access network device. RRC connection.
- the network access method provided in the second aspect is the method executed by the terminal in the network access system provided in the first aspect. Therefore, the beneficial effects that can be achieved can refer to the aforementioned corresponding beneficial effects.
- the embodiments of this specification provide a terminal, including: a processor, a memory, and a transceiver; the memory is used to store computer instructions; when the terminal is running, the processor executes the computer instructions so that the terminal executes: Network access equipment, 5G access network equipment does not support VoNR, and/or the 5G core network equipment corresponding to the 5G access network equipment does not support VoNR; when the terminal performs voice services, it connects to the 4G access network equipment to pass 4G The access network equipment performs voice services, where the terminal accesses the 4G access network equipment through the instructions of the 5G access network equipment.
- the instructions are the instructions given by the 5G access network equipment through the EPS fallback procedure; the user initiates the hang-up.
- the processor executes the computer instructions, so that the terminal also executes: receiving a different system measurement control message from the 4G access network device, and the different system measurement control message is sent by the 4G access network device in response to the measurement report Message; in response to the measurement control message of the different system, measure the signal quality of the neighboring cell of the different system.
- the processor executes computer instructions so that the terminal also executes: when the terminal does not receive a different system measurement control message within the first time period, it actively sends a measurement report to the 4G access network device,
- the first time period is the time period starting at or after the end of the voice service.
- the processor executes the computer instruction, so that the terminal further executes: determining that the terminal satisfies the first condition; where the first condition includes at least one of the following:
- Delay-sensitive data services are not implemented, voice services are non-emergency call services, and are not in emergency call callback mode.
- the execution time of voice services is less than the first threshold.
- the terminal's moving speed is less than the second threshold and is not in Evolved unified terrestrial wireless access network-new air interface dual connection EN-DC state, not in test mode; actively send measurement reports to 4G access network equipment.
- the processor executes computer instructions so that the terminal also executes: when the terminal does not receive a different system measurement control message, measure the signal quality of the first network provided by the 5G access network device; when the first When the signal quality of the network is higher than the first threshold, actively disconnect the RRC connection between the terminal and the 4G access network device, and try to access the first network.
- the processor executes computer instructions so that the terminal also executes: when the terminal fails to access the first network, it sends an RRC connection re-establishment request to the 4G access network device to re-establish the terminal and 4G RRC connection of access network equipment.
- the terminal provided in the third aspect is used to execute the method provided in the second aspect, and therefore, the beneficial effects that it can achieve can refer to the aforementioned corresponding beneficial effects.
- the embodiments of the present specification provide a chip system, including: a processor and an interface circuit, the processor and the interface circuit are connected to execute instructions so that the terminal installed with the chip system executes the chip system provided in the second aspect method.
- the embodiments of the present specification provide a computer storage medium, the computer storage medium includes computer instructions, and when the computer instructions run on a terminal, the terminal executes the method provided in the second aspect.
- the embodiments of the present application provide a computer program product, and when the program code contained in the computer program product is executed by a processor in a terminal, the method provided in the second aspect is implemented.
- the network access system, method, and terminal provided in the embodiments of this specification enable the terminal connected to the 5G network to access the 4G network through the EPS fallback procedure when performing voice services; when the voice service ends If the terminal is in the connected state under the 4G network, the terminal can actively send a measurement report to the network side, so that it can quickly return to the 5G network.
- FIG. 1 is a schematic diagram of a network system applicable to an embodiment of the present application
- FIG. 2 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
- FIG. 3 is a schematic block diagram of a software structure of a terminal according to an embodiment of the application.
- FIG. 4 is a flowchart of a network access method provided by an embodiment of this application.
- FIG. 5 is a schematic diagram of a user interface provided by an embodiment of the application.
- FIG. 6A is a schematic diagram of a user interface provided by an embodiment of the application.
- FIG. 6B is a schematic diagram of a user interface provided by an embodiment of the application.
- FIG. 6C is a schematic diagram of a user interface provided by an embodiment of the application.
- FIG. 6D is a schematic diagram of a user interface provided by an embodiment of this application.
- FIG. 6E is a schematic diagram of a user interface provided by an embodiment of the application.
- FIG. 7A is a schematic diagram of a user interface provided by an embodiment of this application.
- FIG. 7B is a schematic diagram of a user interface provided by an embodiment of the application.
- FIG. 8 is a schematic diagram of a user interface provided by an embodiment of the application.
- FIG. 9 is a flowchart of a terminal entering the EN-DC state according to an embodiment of the application.
- FIG. 10 is a schematic diagram of a user interface provided by an embodiment of this application.
- FIG. 11 is a flowchart of a network access method provided by an embodiment of this application.
- FIG. 12 is a schematic structural diagram of a terminal provided by an embodiment of this application.
- FIG. 13 is a schematic structural diagram of a chip system provided by an embodiment of the application.
- first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
- the terms “including”, “including”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized.
- FIG. 1 shows a network system.
- the network system may include a terminal 100, an access network device 200, and an access network device 300.
- the access network device 200 and the access network device 300 may belong to different mobile communication systems, respectively.
- the access network device 200 may be an evolved base station (evolutional node B, eNB) in a fourth generation (4G) mobile communication system
- the access network device 200 may be a fifth generation or new air interface ( new radio, NR)
- the next generation base station (next generation node B, gNB) in a mobile communication system.
- the access network device 200 may be an access network device under a stand-alone network (stand-alone, SA).
- the access network device 200 can provide wireless network coverage 210
- the access network device 300 can provide wireless network coverage 310. It can be understood that when the access network device 300 is the access network device of the 5G mobile communication system, and the access network device 200 is the access network device of the 4G mobile communication system, the frequency spectrum of the 5G mobile communication system is generally higher than that of the 4G mobile communication system.
- the range of the wireless network coverage 310 is smaller than the range of the wireless network coverage 210, and is within the wireless network coverage 210.
- the terminal 100 may support a variety of mobile communication systems, for example, it may support a 4G mobile communication system and a 5G mobile communication system.
- the terminal 100 may be distributed in the network system shown in FIG. 1, and may be stationary or mobile.
- the terminal 100 may be a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, a user agent, a mobile client, and so on.
- the terminal 100 may be a portable electronic device such as a mobile phone, a tablet computer, a digital camera, a personal digital assistant (PDA), a wearable device, and a laptop computer (laptop).
- PDA personal digital assistant
- Exemplary embodiments of portable electronic devices include, but are not limited to, carrying Or portable electronic devices with other operating systems.
- the above-mentioned portable electronic device may also be other portable electronic devices, such as a laptop computer with a touch-sensitive surface (such as a touch panel). It should also be understood that in some other embodiments of the present application, the terminal 100 may not be a portable electronic device, but a desktop computer with a touch-sensitive surface (such as a touch panel). The embodiments of the present application do not specifically limit the type of electronic equipment.
- FIG. 2 shows a schematic structural diagram of the terminal 100.
- the terminal 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2, Mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone interface 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, and user An identification module (subscriber identification module, SIM) card interface 195, etc.
- SIM subscriber identification module
- the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light Sensor 180L, bone conduction sensor 180M, etc.
- the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the terminal 100.
- the terminal 100 may include more or fewer components than those shown in the figure, or combine certain components, or split certain components, or arrange different components.
- the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
- the processor 110 may include one or more processing units.
- the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU), etc.
- AP application processor
- modem processor modem processor
- GPU graphics processing unit
- image signal processor image signal processor
- ISP image signal processor
- controller video codec
- digital signal processor digital signal processor
- DSP digital signal processor
- NPU neural-network processing unit
- the different processing units may be independent devices or integrated in one or more processors.
- the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching instructions and executing instructions.
- a memory may also be provided in the processor 110 to store instructions and data.
- the memory in the processor 110 is a cache memory.
- the memory can store instructions or data that have just been used or recycled by the processor 110. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
- the wireless communication function of the terminal 100 can be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor, and the baseband processor.
- the antenna 1 and the antenna 2 are used to transmit and receive electromagnetic wave signals.
- Each antenna in the terminal 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
- Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
- the antenna can be used in combination with a tuning switch.
- the mobile communication module 150 may provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the terminal 100.
- the mobile communication module 150 may include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), and the like.
- the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
- the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic waves for radiation via the antenna 1.
- at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
- at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
- the modem processor may include a modulator and a demodulator.
- the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
- the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
- the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
- the application processor outputs a sound signal through an audio device (not limited to the speaker 170A, the receiver 170B, etc.), or displays an image or video through the display screen 194.
- the modem processor may be an independent device.
- the modem processor may be independent of the processor 110 and be provided in the same device as the mobile communication module 150 or other functional modules.
- the wireless communication module 160 can provide applications on the terminal 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), and global navigation satellite systems. (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
- WLAN wireless local area networks
- BT Bluetooth
- GNSS global navigation satellite system
- frequency modulation frequency modulation, FM
- NFC near field communication technology
- infrared technology infrared, IR
- the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
- the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
- the wireless communication module 160 may also receive a signal to be sent from the processor 110, perform frequency modulation, amplify, and convert it into electromagnetic waves to radiate through the antenna 2.
- the antenna 1 of the terminal 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal 100 can communicate with the network and other devices through wireless communication technology.
- the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), fifth generation, new air interface ( new radio, NR), BT, GNSS, WLAN, NFC, FM, and/or IR technologies, etc.
- GSM global system for mobile communications
- GPRS general packet radio service
- CDMA code division multiple access
- WCDMA broadband Code division multiple access
- TD-SCDMA time-division code division multiple access
- LTE long term evolution
- 5 generation new air interface (new radio, NR), BT, GNSS, WLAN, NFC, FM, and/or IR technologies, etc.
- the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite-based augmentation systems (SBAS).
- GPS global positioning system
- GLONASS global navigation satellite system
- BDS Beidou navigation satellite system
- QZSS quasi-zenith satellite system
- SBAS satellite-based augmentation systems
- the software system of the terminal 100 may adopt a layered architecture, an event-driven architecture, a microkernel architecture, a microservice architecture, or a cloud architecture.
- the embodiment of the present invention takes an Android system with a layered architecture as an example to illustrate the software structure of the terminal 100 by way of example.
- FIG. 3 shows a block diagram of a software structure of the terminal 100.
- the layered architecture divides the software into several layers, and each layer has a clear role and division of labor. Communication between layers through software interface.
- the The system is divided into four layers, from top to bottom are the application layer, application framework layer, Android runtime (Android runtime), system runtime library layer and kernel layer.
- the application layer can include a series of application packages. As shown in Figure 3, the application package may include applications such as phone, game, map, instant messaging, and camera.
- the application framework layer provides an application programming interface (application programming interface, API) and a programming framework for applications in the application layer.
- the application framework layer can include some predefined functions.
- the application framework layer may specifically include content providers, view systems, and managers.
- the managers include activity managers and location managers. (location manager), package manager, notification manager, resource manager, telephony manager, window manager, etc.
- the content provider is used to store and retrieve data and make these data accessible to applications.
- the data may include videos, images, audios, phone calls made and received, browsing history and bookmarks, phone book, etc.
- the activity manager is used to manage the life cycle of the application, and Activity stack management.
- the location manager is used for geographic location and status function services.
- the package manager is used to provide and manage installed application information.
- the phone manager is used to provide the communication function of the terminal 100. For example, the management of the call status (including connecting, hanging up, etc.).
- the system runtime library layer includes Android runtime library and native C/C++ library.
- the Android runtime library is responsible for the scheduling and management of the Android system, which includes the Android runtime environment and core libraries.
- the native C/C++ library can include multiple functional modules. For example: browser engine (Webkit), multimedia framework standard (for example, OpenMAX AL), Libc library, multimedia framework (media framework), 3D graphics processing library (for example: OpenGL ES), etc.
- browser engine Webkit
- multimedia framework standard for example, OpenMAX AL
- Libc library multimedia framework (media framework)
- multimedia framework for example: OpenGL ES
- 3D graphics processing library for example: OpenGL ES
- the kernel layer is the layer between hardware and software.
- the kernel layer can include modem drivers, audio drivers, display drivers, Bluetooth drivers, camera drivers, sensor drivers, Wi-Fi drivers, GPS drivers, key mapping drivers, etc.
- the corresponding hardware interrupt is sent to the kernel layer.
- the kernel layer processes touch operations into original input events (including touch coordinates, time stamps of touch operations, etc.).
- the original input events are stored in the kernel layer.
- the application framework layer obtains the original input event from the kernel layer and identifies the control corresponding to the input event.
- the touch operation is a touch click operation
- the control corresponding to the click operation is the control corresponding to the dial icon.
- the call application calls the interface of the application framework layer, and realizes functions such as dialing and calling through a modem.
- the access network equipment 200 is the access network equipment of the 4G mobile communication system
- the access network equipment 300 is the access network equipment of the 5G mobile communication system
- the terminal 100 is at least supporting 4G mobile communication.
- the communication system and the 5G mobile communication system are taken as examples, and the solutions provided in the embodiments of the present application are introduced.
- the access network equipment of the 4G mobile communication system may be referred to as 4G access network equipment or 4G base station
- the access network equipment of the 5G mobile communication system may be referred to as 5G access network equipment or 5G base station.
- the terminal 100 when the terminal 100 is located in the range of the wireless network coverage 310, the terminal 100 can access the wireless access network provided by the access network device 300 (that is, the 5G wireless access network) through the random access procedure. )middle.
- the terminal 100 may send a random access preamble (RAP), that is, Message1, to the access network device 300; the access network device 300 may feed back a random access response (RAR) to the terminal 100 ), that is, Message2; the terminal 100 can send a contention resolution request, that is, Message3; the access network device 300 can send a contention resolution result, that is, Message4, to the terminal 100; when the terminal receives Message4, the terminal 100 resides on the access network In the wireless access network provided by the device 300, that is, the terminal 100 successfully accesses the 5G wireless access network.
- RAP random access preamble
- RAR random access response
- the wireless network icon in the status bar of the terminal 100 may be the 5G network icon 501.
- the terminal 100 when the terminal 100 has voice services, it can fall back through the EPS, fall back to the 4G network, and perform voice services through the 4G network.
- the terminal 100 when the terminal 100 resides in the 5G wireless access network, the terminal 100 can respond to the user's call operation and initiate a voice call, that is, perform a calling voice service.
- the voice service may specifically refer to the voice service of the IP multiple subsystem (IMS), that is, the IMS voice service.
- IMS IP multiple subsystem
- the terminal 100 can access the wireless access network provided by the access network device 200 (ie, the 4G wireless access network) from the 5G wireless access network through redirection or handover. ), that is, the wireless network icon in the status bar of the terminal 100 can be changed to the 4G network icon 502.
- the terminal sends an invite signaling to the 5G core network through the 5G access network to trigger the session establishment process of the IMS domain and the 5G system.
- the 5G core network can determine whether it supports voice over new radio (VoNR) and whether the 5G access network supports VoNR.
- VoIP voice over new radio
- the 5G core network can instruct the 5G access network equipment to establish a dedicated voice bearer. If the 5G core network does not support VoNR (for example, the 5G core network is not equipped with VoNR related software or hardware) and/or the 5G access network does not support VoNR (for example, the 5G access network is not equipped with VoNR related software or hardware), the 5G core network can indicate The 5G access network performs EPS fall back. . The 5G access network equipment judges whether to trigger the EPS fallback and requests a measurement report from the terminal based on information such as the capabilities of the terminal and whether there is an N26 interface between the 5G core network and the 4G core network.
- the 5G access network device instructs the terminal to access the 4G wireless access network through redirection or handover.
- the 4G core network establishes a dedicated bearer for the voice service, so as to realize the voice service through the 4G network.
- the wireless network icon in the status bar of the terminal 100 may change to the 4G network icon 502.
- the wireless network icon in the status bar of the terminal 100 is the 5G network icon 502 during the ringing of the other party and during the call.
- the terminal 100 resides on the 4G wireless access network.
- the terminal 100 when the terminal 100 resides in a 5G wireless access network, the terminal 100 may serve as a called terminal of a voice service, and the voice service may be an IMS voice service.
- the wireless network icon in the status bar of the terminal 100 may change from the 5G network icon 501 to the 4G network icon 502.
- the terminal 100 sends an invite signaling to the 5G core network through the 5G access network to trigger the session establishment process of the IMS domain and the 5G system.
- the 5G core network can determine whether it supports VoNR and whether the 5G access network supports VoNR.
- the 5G core network can instruct the 5G access network equipment to establish a dedicated voice bearer. If the 5G core network does not support VoNR and/or the 5G access network does not support VoNR, the 5G core network can instruct the 5G access network to perform EPS fallback.
- the 5G access network equipment judges whether to trigger the EPS fallback and requests a measurement report from the terminal based on information such as the capabilities of the terminal and whether there is an N26 interface between the 5G core network and the 4G core network. If it is decided to trigger the EPS fallback, the 5G access network device instructs the terminal to access the 4G wireless access network through redirection or handover.
- the 4G core network When the terminal resides on the 4G wireless access network, the 4G core network establishes a dedicated bearer for the voice service, so as to realize the voice service through the 4G network.
- the wireless network icon in the status bar of the terminal 100 may change to the 4G network icon 502.
- the wireless network icon in the status bar of the terminal 100 is the 4G network icon 502.
- the terminal 100 when the above-mentioned voice service of the calling terminal or the called terminal ends, the terminal 100 still resides in the 4G wireless access network when the voice service of the EPS fallback ends.
- the terminal 100 In order to utilize the more stable, higher-speed, and more reliable network performance provided by the 5G wireless access network, it is necessary for the terminal 100 to return from the 4G wireless access network to the 5G wireless access network.
- the following solutions are available for returning from the 4G network to the 5G network.
- the network side issues a measurement control message of event B1 (event B1) to the terminal.
- the terminal can respond to the measurement control message of event B1, and report the signal energy of the neighboring cell of the different system to the network side when the measurement result indicates that the signal energy of the neighboring cell of the different system is higher than the measurement threshold (inter RAT neighboring better than threshold).
- the network side can trigger the terminal to return to the 5G wireless access network through redirection according to the signal energy of the neighboring cell of the different system reported by the terminal.
- the network side issues a measurement control message of event B1 to the terminal.
- the terminal can respond to the measurement control message of the event B1, and when the measurement result indicates that the signal energy of the neighboring cell of the different system is higher than the measurement threshold, report the signal energy of the neighboring cell of the different system to the network side.
- the network side can trigger the terminal to switch from the 4G wireless access network to the 5G wireless access network according to the signal energy of the neighboring cell of the different system reported by the terminal.
- the network side issues a different system reselection configuration to the terminal, triggers the terminal to perform the different system reselection process, and then the terminal returns through reselection To the 5G wireless access network.
- the network side issues a radio resource control (radio resource control, RRC) release to the terminal.
- RRC radio resource control
- a5 When the terminal is in a 4G radio access network and is in an idle state, the terminal searches for a 5G cell while camping on a long term evolution (LTE) cell. When a 5G cell is found, the terminal can return to the 5G wireless access network.
- LTE long term evolution
- the terminal when the terminal resides in the 4G wireless access network and is in the connected state, the terminal needs to wait for the measurement control message of event B1 issued by the network side, and then proceed to the neighboring cell of the different system. Measurement, etc. in order to return to the 5G network.
- the network side may not issue the measurement control message of event B1 for a long time after the end of the voice call with EPS fall. For example, the issuance of the measurement control message of event B1 needs to be triggered by high-rate services.
- the network side does not issue the measurement control message of event B1 .
- the network side does not enable the function of issuing the measurement control message of the event B1, and therefore, the network side does not issue the measurement control message of the event B1.
- the terminal because the terminal is in a connected state, it cannot return to the 5G network through solutions a3, a4, and a5.
- the embodiment of the present application provides a network access method.
- the terminal 100 can actively communicate to the access network device. 200 sends a measurement report E1 to induce the access network device 200 to send different system measurement control information to the terminal 100, so as to trigger the terminal 100 to return to the 5G access network process, so as to realize that the EPS falling back voice service ends and quickly returns to the 5G network.
- the measurement report E1 actively sent by the terminal 100 refers to a false measurement report used to induce the network side to issue a measurement control message for a different system. False measurement report sent to the network side proactively under the circumstances.
- the network access method provided by the embodiment of the present application will be introduced as an example.
- the terminal 100 may perform step 401 to determine that the voice service is ended and is in a connection state under the 4G network.
- the terminal 100 may determine that the voice service with the EPS falling back ends. Exemplarily, the terminal 100 may determine that VoLTE is over in response to a user's hang-up operation or a hang-up instruction issued by the access network device 200, and determine that the VoLTE is a voice service performed through EPS fallback. In an example, the terminal 100 may record that the terminal 100 falls back from the 5G network to the 4G network when the voice service is being performed, so that it may be determined that the voice service is a voice service performed through EPS fallback. In an example, when VoLTE ends and the VoLTE is a voice service performed through EPS fallback, the terminal 100 may modify the value of "VOLTE_END, callStartInNrFlag" to "true".
- the hang-up instruction is an instruction issued by the access network device 200 to the terminal 100 when the voice service is hanged up by the peer device.
- the opposite terminal device is the other terminal of the terminal 100 that performs the voice service.
- the hang-up indication may be BYE signaling.
- voice service V1 For the convenience of presentation, the voice service where the EPS falls back can be referred to as voice service V1.
- the terminal 100 can determine whether it is in the RRC connected state, that is, it can determine whether there is an RRC link between it and the network side (for example, the access network device 200).
- the terminal 100 may determine whether it is in the RRC connected state in the following manner.
- the terminal 100 accesses the 4G wireless access network through redirection or handover.
- the terminal 100 may establish an RRC link with the access network device 200 through a random access procedure, and then redirect or switch to access the 4G wireless access network.
- the random access procedure of the 4G network is similar to the random access procedure of the 5G network. Therefore, the random access procedure of the 4G network can refer to the introduction of the random access procedure of the 5G network above, which will not be repeated here.
- the access network device 200 After the RRC link is established between the terminal 100 and the access network device 200, if the terminal 100 receives an RRC connection release (RRC connection release) message from the access network device 200, the RRC link is released and the terminal 100 enters RRC idle state. If the terminal 100 does not receive the RRC connection release message from the access network device 200, the RRC link between the terminal 100 and the access network device 200 continues to be maintained, and the terminal 100 continues to be in the RRC connected state. Generally, when there is no service data transmission between the terminal 100 and the access network device 200, the access network device 200 may deliver an RRC connection release message to the terminal 100.
- RRC connection release RRC connection release
- the terminal 100 can determine whether it receives an RRC connection release message when and after the end of the voice service V1. If the RRC connection release message is not received, it can be determined that the terminal 100 is in the RRC connected state.
- the terminal 100 can determine that the voice service V1 ends, and the terminal 100 is in the connected state under the 4G network.
- the terminal 100 Step 405 may be performed to actively send the measurement report E1 to the access network device 200.
- the measurement report E1 may be a message used to pretend that the signal quality of the serving cell of the terminal 100 is lower than the measurement threshold, so as to trigger the network side to issue a different system measurement control message to the terminal 100.
- the serving cell of the terminal 100 refers to a cell where the terminal 100 currently resides.
- the signal quality of the cell may be characterized by the reference signal receiving power (RSRP) of the cell.
- RSRP reference signal receiving power
- signal quality may also be referred to as signal energy.
- the signal quality of the cell may be characterized by the reference signal received quality (RSRQ) of the cell.
- RSRQ reference signal received quality
- the signal quality of the cell may be determined by the signal to interference plus noise ratio (SINR) of the cell.
- SINR signal to interference plus noise ratio
- the signal quality of the cell may be received signal strength indication (RSSI) of the cell.
- RSSI received signal strength indication
- the signal quality of the cell may be jointly characterized by two or more of the RSRP, RSRQ, SINR, and RSSI of the cell.
- the measurement report E1 may specifically be a false measurement report or a false measurement report corresponding to event A2 (event A2).
- event A2 refers to when the signal quality of the serving cell of the terminal is lower than the threshold (serving becomes Worse Than Threshold), the terminal reports to the network side A measurement report, which is used to inform the network side that the signal quality of its serving cell is lower than the threshold, so that the network side issues a measurement control message for the different system to the terminal.
- the threshold value can refer to the 3GPP protocol, which will not be repeated here.
- the measurement report used to inform the network that the signal quality of its serving cell is lower than the threshold specified in the existing 3GPP protocol can be referred to as the measurement report of event A2.
- the network side may send a measurement control message of the A2 event to the terminal, and the terminal responds to the measurement control message of the A2 event to measure the signal quality of the serving cell.
- the signal quality can be RSRP, RSRQ, SINR, or RSSI.
- the terminal reports a measurement report of the A2 event to the network side.
- the network side can respond to the measurement report and issue a different system measurement control message to the terminal.
- the measurement report E1 may refer to a report directly generated by the terminal 100 without measuring the serving cell.
- the measurement report E1 may also refer to a report generated when the terminal 100 has measured the serving cell, but the signal quality of the serving cell is not lower than the threshold value.
- the measurement report E1 includes information used to pretend that the signal quality of the serving cell of the terminal 100 is lower than the threshold, and/or the preset signal quality of the serving cell of the terminal 100.
- the preset signal quality here refers to the preset signal quality, not the signal quality obtained through actual measurement.
- the measurement report E1 may include the measurement identity of the event A2.
- the measurement ID can also be referred to as a measurement ID.
- the measurement identifier of event A2 can be used by the network side to identify the measurement report E1 as the measurement report of event A2, so that the network side can determine or consider that the signal quality of the serving cell of the terminal 100 is lower than the threshold value, and then issue the measurement of the different system Control information.
- the terminal 100 may extract the measurement identifier of the event A2 from the measurement control information of the event A2, so that the measurement identifier of the event A2 may be carried in the measurement report E1 when the measurement report E1 is generated.
- the network side can deliver the measurement control message of event A2.
- the measurement control message of event A2 carries the measurement identifier of event A2, so that the terminal 100 can obtain The measurement control message of event A2, and the measurement identifier of event A2 is extracted.
- the terminal 100 can generate the measurement report E1 with reference to the format and generation method of the measurement report of the event A2 specified by the existing 3GPP protocol.
- the measurement report E1 is generated by the terminal 100 when the serving cell is not measured, or when the serving cell is measured but the signal quality of the serving cell is not lower than the threshold value.
- the information used to indicate that the serving cell is below the threshold in the measurement report E1 is false information, and/or the signal quality of the serving cell carried in the measurement report E1 is a preset signal quality.
- the preset signal quality here refers to the preset signal quality, not the signal quality obtained through actual measurement.
- the measurement report E1 may be a message used to pretend that the signal quality of the neighboring cell of the same system of the serving cell of the terminal 100 is higher than the signal quality of the serving cell, thereby triggering the network side to issue a different system to the terminal 100 Measurement control message.
- the serving cell of the terminal 100 refers to a cell where the terminal 100 currently resides.
- the neighboring cell of the same system of the serving cell can be referred to as the neighboring cell of the same system for short.
- the measurement report E1 may specifically be a false measurement report or a false measurement report corresponding to event A3 (event A3).
- event A3 refers to when the signal quality of the neighboring cell of the same system of the terminal is higher than the signal quality of the serving cell (neighbour becomes offset better than serving), the terminal reports a measurement report to the network side.
- the measurement report is used to inform the network side that the signal quality of the neighboring cell of the same system is higher than the signal quality of the serving cell, so that the network side sends a different system measurement control message to the terminal.
- the threshold value can refer to the 3GPP protocol, which will not be repeated here.
- the measurement report specified in the existing 3GPP protocol for informing the network side that the signal quality of the neighboring cell of the same system is higher than the signal quality of the serving cell can be referred to as the measurement report of event A3.
- the network side can send a measurement control message of the A3 event to the terminal, and the terminal responds to the measurement control message of the A3 event to measure the signal quality of the serving cell and neighboring cells of the same system.
- the signal quality can be RSRP, RSRQ, SINR, or RSSI.
- the terminal reports the measurement report of the A3 event to the network side.
- the network side can respond to the measurement report and issue a different system measurement control message to the terminal.
- the measurement report E1 may refer to a false report directly generated by the terminal 100 without measuring the serving cell and/or neighboring cells in the same system.
- the measurement report E1 may also refer to a false report generated when the terminal 100 has measured the serving cell and the neighboring cell of the same system, but the signal quality of the neighboring cell of the same system is not higher than that of the serving cell.
- the measurement report E1 includes information used to pretend that the signal quality of the neighboring cell of the same system is higher than the signal quality of the serving cell, and/or the preset signal quality of the serving cell and the preset signal quality of the neighboring cell of the same system.
- the preset signal quality here refers to the preset signal quality, not the signal quality obtained through actual measurement.
- the measurement report E1 may include the measurement identification of the event A3.
- the measurement identifier of the event A3 can be used by the network side to identify the measurement report E1 as the measurement report of the event A3, so that the network side can determine or consider that the signal quality of the neighboring cell in the same system of the terminal 100 is higher than the signal quality of the serving cell, and then issue Different systems measure control information.
- the terminal 100 may extract the measurement identifier of the event A3 from the measurement control information of the event A3, so that the measurement identifier of the event A3 may be carried in the measurement report E1 when the measurement report E1 is generated.
- the network side can deliver the measurement control message of event A3.
- the measurement control message of event A3 carries the measurement identifier of event A3, so that the terminal 100 can obtain The measurement control message of event A3, and the measurement identifier of event A3 is extracted.
- the terminal 100 can generate the measurement report E1 by referring to the format and generation method of the measurement report of the event A3 specified by the existing 3GPP protocol. Different from the provisions of the existing 3GPP protocol, the measurement report E1 is generated when the terminal 100 does not measure the serving cell and/or does not measure the neighboring cells of the same system; or the measurement report E1 is the measurement report E1 when the terminal 100 measures the serving cell and the same system. It is generated when the neighboring cell of the system, but the signal quality of the neighboring cell of the same system is not higher than that of the serving cell.
- the information used in the measurement report E1 to indicate that the signal quality of the neighboring cell of the same system is higher than the signal quality of the serving cell is false information, and/or the signal quality of the serving cell and the signal quality of the neighboring cell of the same system carried in the measurement report E1 are The preset signal quality.
- the preset signal quality here refers to the preset signal quality, not the signal quality obtained through actual measurement.
- the terminal 100 can send a measurement report E1 to the network side (for example, the access network device 200) to trigger the network side to send a different system measurement control message to the terminal 100 to trigger the terminal 100 to return to the 5G wireless access network process.
- the network side for example, the access network device 200
- step 403 may also be performed to determine that the terminal 100 meets the condition C1, and/or start the timer D1.
- the terminal 100 in order to reduce the impact of the terminal 100 accessing from one mobile communication system to another mobile communication system on the current ongoing services of the terminal 100 or to reduce the impact on important services, the terminal 100 sends a measurement report to the network side. Before E1, the terminal 100 can also determine whether the terminal 100 satisfies a certain condition C1. When the terminal 100 satisfies the condition C1, the terminal 100 sends a measurement report E1 to the network side.
- the condition C1 may include a condition C11, and the condition C11 is that the terminal does not perform a delay-sensitive data service.
- an application blacklist may be preset, and the application blacklist includes application identities of multiple applications.
- the application identifier may be the package name of the application.
- the service corresponding to the application in the application blacklist is attributed to the delay-sensitive data service.
- the application blacklist may include game applications, online video playback applications, and so on.
- the terminal 100 can determine whether the application running in the foreground is an application in the application blacklist. For example, it can obtain the package name of the application running in the foreground, and match or search the package name in the application blacklist.
- the application running in the foreground is determined to be an application in the application blacklist.
- the running application of the front station is an application in the application blacklist, it is determined that the terminal 100 is performing a delay-sensitive data service, and the terminal 100 does not satisfy the condition C11.
- the running application of the front station is not an application in the application blacklist, it is determined that the terminal 100 is not performing the delay-sensitive data service or is not in the delay-sensitive data service, and the terminal 100 meets the condition C11.
- the condition C1 may include the condition C12, and the condition C12 is that the voice service V1 is not an emergency call.
- a blacklist of phone numbers can be preset.
- the phone number blacklist may include multiple emergency call numbers, such as 110, 911, 120, 112, and so on.
- the terminal 100 may obtain the phone number corresponding to the voice service V1.
- the terminal 100 can match or search the phone number blacklist according to the phone number corresponding to the voice service V1. If a phone number that is consistent with the phone number corresponding to the voice service V1 is matched or searched, it is determined that the voice service V1 is an emergency call.
- the terminal 100 does not satisfy the condition C12. If the phone number that is consistent with the phone number corresponding to the voice service V1 is not matched or searched, it is determined that the voice service V1 is not an emergency call, and the terminal 100 meets the condition C12.
- the condition C1 may include a condition C13, and the condition C13 is that the terminal 100 is not in the emergency call callback mode.
- the condition C13 is that the terminal 100 is not in the emergency call callback mode.
- the callback time list can be preset, which includes the emergency call number and the callback time corresponding to the emergency call number.
- the terminal 100 can determine whether the time difference between the current moment and the end moment of the emergency call is less than the callback time. If the time difference between the current time and the end time of the emergency call is less than the callback time, it can be determined that the terminal 100 is in the emergency callback mode, and the condition C13 is not met. If the time difference between the current time and the end time of the emergency call is not less than the callback time, it can be determined that the terminal 100 is not in the emergency callback mode, and the condition C13 is satisfied.
- the condition C1 may include a condition C14, and the condition C14 is that during the execution of the voice service V1, the moving speed of the terminal 100 is less than the speed threshold.
- the speed threshold can be preset based on experience or experiment, for example, it can be 30km/h. 1, before the terminal 100 executes the voice service V1, the terminal 100 is in the wireless coverage provided by the 5G access network equipment, that is, in the wireless coverage 310. Because the frequency spectrum of the 5G wireless access network is mostly in the high frequency band. The signal coverage of the high-frequency band network is relatively small, especially in the initial or even mid-term deployment of the 5G mobile communication system, the coverage of the 5G wireless access network is not comprehensive enough.
- the terminal 100 may leave the coverage of the 5G wireless access network, making the attempt to access the 5G wireless access network fail. If the moving speed of the terminal 100 is relatively slow, when the voice service V1 ends, the terminal 100 is likely to be still in the coverage of the 5G wireless access network. Therefore, it is necessary to induce the network side to issue a different system measurement control message.
- the terminal 100 can measure the moving speed of the terminal 100 through the acceleration sensor 180E.
- the terminal 100 uses the global navigation satellite system (GNSS) to measure the displacement of the terminal during the execution of the voice service V1, and then removes the bit and uses the execution time of the voice service V1 to obtain the terminal 100 The speed of movement.
- GNSS global navigation satellite system
- the execution duration of the voice service V1 may refer to the duration of a call, specifically the time difference between the time when the called party connects the call to the time when the call is hung up (the end time of the voice service).
- the terminal 100 can record the time stamp of the time when the call is connected, and the time stamp of the time when the phone is hung up, and obtain the duration of the call based on the two time stamps.
- the displacement during the execution of the voice service V1 refers to the displacement that occurs between two time stamps.
- the execution duration of the voice service V1 may refer to the time difference between the moment when the called terminal rings to the moment when the call is hung up.
- the terminal 100 can record the time stamp of the time when the called terminal rings, and the time stamp of the time when the phone is hung up, and obtain the execution time of the voice service V1 based on the two time stamps.
- the displacement during the execution of the voice service V1 refers to the displacement that occurs between two time stamps.
- the execution duration of the voice service C1 may refer to the time difference between the moment when the calling terminal initiates a dialing and the moment when the call is hung up.
- the terminal 100 can record the time stamp of the time when the dialing is initiated, and the time stamp of the time when the phone is hung up, and obtain the execution time of the voice service V1 based on the two time stamps.
- the displacement during the execution of the voice service V1 refers to the displacement that occurs between two time stamps.
- the condition C1 may include a condition C15, and the condition C15 is that the execution duration of the voice service V1 is less than the duration threshold.
- the speed threshold can be preset based on experience or experiment, for example, it can be 30 minutes.
- the terminal 100 Before the terminal 100 executes the voice service V1, the terminal 100 is in the wireless coverage provided by the 5G access network equipment.
- the wireless network signal coverage of 5G access network equipment is relatively small, especially in the early or even mid-term deployment of 5G mobile communication systems, the coverage of 5G wireless access network is not comprehensive enough. If the call duration of the voice service V1 is long, when the voice service V1 ends, the terminal 100 may leave the coverage of the 5G wireless access network, so that the attempt to access the 5G wireless access network fails.
- the terminal 100 is likely to be still in the coverage of the 5G wireless access network. Therefore, it is necessary to induce the network side to issue a measurement control message of the different system.
- the execution time of the voice service V1 please refer to the previous example introduction, which will not be repeated here.
- condition C1 may include the condition C16, and the condition C16 is that the terminal 100 is not in an evolved universal terrestrial radio access network (E-UTRAN)-NR dual connectivity (E-UTRA). -NR dual connectivity, EN-DC) status.
- E-UTRAN evolved universal terrestrial radio access network
- E-UTRA evolved universal terrestrial radio access network
- EN-DC EN-DC
- 3GPP release (R) 15 defines a dual connectivity (DC) framework for long term evolution (LTE) and new radio (NR), including the EN-DC architecture.
- the EN-DC architecture is a non-stand-alone (NSA) network structure.
- the EN-DC architecture does not need to add a 5G core network. It only needs to add a 5G base station, which cooperates with the existing 4G base station to provide the terminal with 5G+4G joint access, that is, the terminal can reside in a 4G cell and a 5G cell at the same time .
- the control plane consists of a 4G base station as the primary node and a 5G base station as the secondary node.
- the 4G base station as the master node may be called MeNB (master eNB), and the 5G base station as the secondary node may be called SgNB (secondary gNB).
- the 4G cell can be referred to as a master cell, and the 5G cell can be referred to as a secondary cell.
- the 5G base station under the EN-DC architecture here is not the access network device 300 shown in FIG. 1.
- the access network device 300 shown in FIG. 1 refers to a 5G access network under an independent networking architecture.
- the 4G base station to which the EPS of the terminal 100 falls back is a 4G base station in the EN-DC architecture, and the terminal 100 has EN-DC capability
- the 4G base station may add a secondary cell, that is, a 5G cell, for the terminal 100.
- the specific adding process can be shown in Figure 9, and specifically includes the following steps.
- the MeNB sends an addition request (addition request) from the SgNB to the SgNB.
- the SgNB adds a request acknowledgement message (addition request acknowledgement) to the MeNB.
- the MeNB sends a radio resource control (radio resource control, RRC) connection reconfiguration (connection reconfiguration) request to the terminal.
- RRC radio resource control
- the terminal sends an RRC reconfiguration complete (connection reconfiguration complete) message to the MeNB.
- the MeNB sends an SgNB reconfiguration complete (reconfiguration complete) message to the SgNB.
- a random access procedure (random access procedure) is performed between the terminal and the SgNB.
- the MeNB sends an SgNB status transfer (status transfer) to the SgNB.
- the MeNB sends data forwarding (data forwarding) to the SgNB.
- a path update procedure (path update procedure) is performed between the MeNB and a mobility management entity (mobility management entity, MME). Among them, include the following steps:
- the MeNB sends an evolved radio access bearer (E-RAB) modification indication to the MME.
- E-RAB evolved radio access bearer
- the MME sends a bearer modication request to a service gateway (service gateway, S-GW).
- service gateway service gateway
- the MeNB sends an end marker packet (end marker packet) to the SgNB.
- the MME sends an E-RAB modification confirmation (modification confirm) message to the MeNB.
- MME and S-GW are network devices in a 4G core network (evolved packet core, EPC).
- EPC evolved packet core
- the 4G base station adds a 5G cell to the terminal 100, so that the terminal 100 enters the EN-DU state.
- the terminal 100 may first determine whether the terminal 100 is in the EN-DU state before sending the measurement report to the network side.
- the solution for determining whether there is a 5G RRC link between the terminal 100 and the network side is similar to the solution for determining whether there is a 4G RRC link between the terminal 100 and the network side. Specifically, it can be known from the solution shown in FIG. 9 that when a 5G cell is added to the terminal 100, a random access procedure between the terminal and the SgNB needs to be performed. The RRC link between the terminal 100 and the SgNB, that is, the 5G RRC link, is established through the random access procedure.
- the terminal 100 does not receive the 5G RRC connection release message issued by the MeNB, there is still a 5G RRC link between the terminal 100 and the network side, and it can be determined that the terminal 100 is in the EC-DC state, that is, the terminal 100 does not meet the condition C16 . If there is no 5G RRC link between the terminal 100 and the network side, the terminal 100 is not in the ED-DC state, and the condition C16 is satisfied.
- the condition C1 may include a condition C17, which is that the terminal 100 is not in a test mode.
- the test mode may refer to the mode that the mobile phone designer or network operator tests the terminal, but the terminal enters.
- SIM subscriber identification module
- the terminal 100 can determine whether it is in the test mode based on the information carried in the installed SIM card. If the terminal 100 is in the test mode, the terminal does not meet the condition C17. If the terminal is not in the test mode, the terminal meets the condition C17.
- condition C1 may include any two or more of the conditions C11, C12, C13, C14, C15, C16, and C17, and the terminal 100 satisfies the condition C1 specifically means that the terminal 100 satisfies these two items at the same time. Or multiple.
- the conditions that need to be met before the terminal 100 sends the measurement report E1 to the network side are illustrated by examples, which are not limiting, and other conditions can also be set, which will not be listed here.
- the network side may normally issue measurement control messages for different systems.
- the normal delivery of the measurement control message of the different system by the network side may mean that the network side delivers the measurement control message of the different system without being induced by the measurement report E1 provided in the embodiment of the present application.
- the network side may issue the different system without receiving the measurement report E1. Measurement control message.
- this is to avoid conflicts with the measurement control message of the different system sent by the network side normally.
- the terminal 100 may start the timer D1. If the timer D1 starts counting and the timer D1 expires, the terminal 100 has not received a different system measurement control message, and the terminal 100 may send a measurement report E1 to the network side. Since the timer D1 is a timer set to avoid conflicts with the measurement control messages sent by the network side normally, the timer D1 may also be called a protection timer or a fast return NR (5G) protection timer.
- 5G fast return NR
- the duration of the timer D1 may be determined by returning 5G duration big data.
- the 5G return duration may be the duration of the time period between the end time of the voice service and the time when the 5G wireless access network is re-accessed.
- the distribution of each duration in the 5G duration big data can be calculated. Specifically, it is possible to collect the time length experienced by the existing terminal from the end of the voice service of the EPS fall back to the return to 5G, and obtain the large data of the return time to 5G.
- the duration of the timer D1 can be determined according to the distribution of each duration in the returned 5G duration big data. For example, the duration with the highest probability can be set as the duration of timer D1.
- the duration of the timer D1 can be preset through experience or experiment, for example, it can be a duration of 2s.
- the terminal 100 when the terminal 100 satisfies the condition C1 and the timer D1 expires, and has not received the different system control message, the terminal 100 sends the measurement report E1 to the network side.
- the network side such as the access network device 200
- the network side has enabled the function of issuing a different system measurement control message
- it can respond to the measurement when receiving the measurement report E1 sent by the terminal 100 Report E1, and execute step 407 to send a different system measurement control message to the terminal 100.
- the measurement report E1 includes the measurement identifier of the event A2 (or event A3), and the access network device 200 can identify the measurement report E1 as the event A2 according to the measurement identifier of the event A2 (or event A3). Or the measurement report of event A3), it can be determined or considered that the signal quality of the serving cell of the terminal 100 is lower than the threshold (or the signal quality of the neighboring cell in the same system of the terminal 100 is higher than the signal quality of the serving cell). Send a different system measurement control message to the terminal 100.
- the format and generation method of the measurement report E1 are the same as or similar to the format and generation method of the measurement report for event A2 (or event A3) specified in the 3GPP protocol. Therefore, when the access network device 200 receives the measurement report E1, it can be determined or considered that the signal quality of the serving cell of the terminal 100 is lower than the threshold (or the signal quality of the neighboring cell in the same system of the terminal 100 is higher than that of the serving cell). Quality), so that a different system measurement control message can be sent to the terminal 100.
- the terminal 100 receives the different system measurement control message, and can perform step 409 to measure the different system network in response to the different system measurement control message.
- the 5G mobile communication system is a different system of the 4G mobile communication system.
- the measurement on the different system network may specifically refer to the measurement on the 5G network.
- the terminal 100 may report the measurement result to the access network device 200, so that the access network device 200 instructs the terminal 100 to access the 5G network according to the measurement result.
- the terminal 100 may also perform step 411 to send a measurement report E2 to the access network device 200.
- the measurement control message of the different system may be the measurement control message of event B1 (event B1), which refers to when the signal quality of the neighboring cell of the different system is higher than the threshold (inter RAT neighbor becomes better than threshold)
- event B1 event B1
- the terminal 100 reports a measurement report E2 to the access network device 200.
- the measurement report E2 is used to report the signal quality of the neighboring cell of the different system to the access network device 200, so that the access network device 200 can report to the access network device 200 according to the different system in the measurement report E2.
- the signal quality of the neighboring cell indicates that the terminal is connected to a different system network.
- the different system network may be a 5G network
- the neighboring cell of the different system may be a 5G cell.
- the terminal 100 can respond to the measurement control message of the event B1 to measure the signal quality (such as RSRP or RSRQ or SINR or RSSI) on the 5G frequency band, and the signal quality of the neighboring cell of the different system whose signal quality is higher than the threshold is carried in the measurement report It is reported to the access network device 200.
- the signal quality such as RSRP or RSRQ or SINR or RSSI
- the access network device 200 may instruct the terminal 100 to access the 5G wireless access network through redirection or handover.
- the access network device 200 may send an RRC release message to the terminal 100 and carry the indication information in the RRC release message.
- the indication information is used to indicate the frequency of the 5G cell whose signal quality is higher than the threshold.
- the terminal 100 may perform 5G cell search and access at the frequency indicated by the indication information carried in the RRC release message according to the RRC release message, and camp on the 5G cell.
- the access to the 5G cell can be realized through the random access procedure, and the random access procedure can refer to the above introduction, which will not be repeated here.
- the access network device 200 may determine the target cell for the terminal 100 according to the 5G cell in the measurement report of the event B1.
- the target cell is a cell whose signal quality is higher than the threshold.
- the access network device 200 may send an RRC connection reconfiguration (RRC connection reconfiguration) message to the terminal 100.
- RRC connection reconfiguration message includes the physical cell identity of the target cell.
- the terminal 100 can access the target cell through a random access procedure, thereby accessing the 5G network.
- the wireless network icon in the status bar of the terminal 100 may change to a 5G network icon 501.
- the terminal 100 may not receive the measurement control message of the different system.
- the access network device 200 does not enable the function of issuing a different system measurement control message. Therefore, after receiving the measurement report E1, the access network device 200 does not respond to the measurement report E1 but issues a different system measurement control message.
- the terminal 100 may start the timer D2 when sending the measurement report E1 to the access network device 200. If the timer D2 starts to count and the timer D2 expires, the terminal 100 has not received a different system measurement control message, and the terminal 100 can start the autonomous return to 5G process.
- the duration of the timer D2 may be determined by receiving the data of the duration of the different system measurement control message.
- the duration of receiving the different system measurement control message may be the duration of the time period between the sending time of the measurement report of the event A2 (and/or event A3) and the receiving time of the different system measurement control message.
- the duration of the timer D2 can be determined according to the distribution of the durations in the big data of the duration of receiving the different system measurement control messages. For example, the duration with the highest probability can be set as the duration of timer D2.
- the duration of the timer D2 can be preset through experience or experiment, for example, it can be a duration of 1s.
- the terminal 100 if the timer D2 starts to count until the timer D2 expires, the terminal 100 has not received a different system measurement control message.
- the terminal 100 residing on the 4G wireless access network can actively measure the network signal on the 5G frequency band, that is, the terminal 100 residing on the 4G wireless access network can be used when there is no indication information from the network side (for example, a measurement control message for a different system). In this case, independently measure the network signal on the 5G frequency band.
- the terminal 100 may search for cells on the 5G full frequency band, and measure the signal quality of the searched cells. For example, the RSRP of the cell can be measured, the RSRQ can also be measured, the SINR of the cell can be measured, and the RSSI of the cell can also be measured.
- the terminal 100 can perform the procedure of locally releasing the RRC link and return to the idle state. That is, the terminal 100 can release the RRC link autonomously without receiving the RRC release message issued by the network side.
- the terminal 100 in the idle state can try to access the 5G cell through a random access procedure.
- the random access procedure can refer to the above introduction, and will not be repeated here.
- the threshold value can refer to the 3GPP protocol, which will not be repeated here.
- the terminal 100 may successfully access the 5G cell.
- the wireless network icon in the status bar of the terminal 100 can be changed to a 5G network icon 501.
- the terminal 100 may fail to access the 5G cell.
- the terminal 100 may send an RRC connection reestablishment request (RRC connection reestablishment request) to the access network device 200.
- the access network device 200 sends an RRC connection reestablishment (RRC connection reestablishment) message to the terminal 100 in response to the RRC connection reestablishment request.
- the terminal 100 may send an RRC connection reestablishment complete (RRC connection reestablishment complete) message to the access network device 200.
- RRC connection reestablishment complete RRC connection reestablishment complete
- the terminal 100 can re-establish the RRC link between the terminal 100 and the access network device 200 in the case of a failure to access the 5G cell, so that the original data service can be continued through the 4G network.
- the terminal 100 continues to maintain the RRC link between it and the access network device 200.
- the measurement report can be actively sent to the network side to induce the network side to issue the measurement control message of the different system, so that the terminal can be quickly turned on and quickly returned to 5G
- the flow of the network allows the terminal to quickly return to the 5G network and improve the user's network experience.
- the embodiment of the present application provides another network access method.
- the network access method may be executed by the terminal 100.
- the network access method is as follows.
- the terminal 100 can start the timer D1.
- the terminal 100 does not receive a different system measurement control message. That is, from the time the timer D1 starts to time until the timer D1 expires, the terminal 100 does not receive a different system measurement control message.
- the terminal can search the network on the 5G frequency band and measure the signal quality of the network.
- the signal quality can be RSPR, RSRQ, SINR, or RSSI.
- the terminal 100 can locally release the 4G RRC link and try to access a 5G cell whose signal meets the threshold.
- the network access method is introduced with examples.
- the terminal 100 may include a call module, an LTE access layer module, and an NR access layer module.
- the LTE access layer module may also be referred to as a 4G access layer module, which can implement related functions according to the radio resource control layer protocol of LTE (4G).
- the NR access layer module may also be called a 5G access layer module, which can implement related functions according to the NR (5G) radio resource control layer protocol.
- the call module can be used to detect the end of the voice service, and send a voice service end notification to the LTE access layer module.
- the call module, the LTE access layer module, and the NR access layer module may be modules or functional entities in a modem (modem) of the terminal 100.
- modem modem
- the terminal 100 when the terminal 100 resides on the 5G wireless access network, if the terminal 100 has voice services to be executed, it will perform EPS fall back, fall back from the 5G wireless access network to the 4G wireless access network, and then pass the 4G wireless access network.
- the wireless access network performs voice over long-term evolution (VOLTE) calls. That is, through the EPS fallback, an RRC link is established between the LTE access layer module and the access network device 200, and data transmission of the voice service is performed through the RRC link.
- VOLTE voice over long-term evolution
- the LTE access layer module can determine that the terminal 100 is in the connected state under the 4G network, that is, it can be determined that there is an RRC link between the LTE access layer module and the access network device 200. Then, the LTE access layer module can determine whether the terminal 100 satisfies the condition C1. For details, please refer to the above introduction, which will not be repeated here. If the terminal 100 meets the condition C1, the LTE access layer module can start the timer D1.
- the LTE access layer module can send a network search request to the NR access layer module.
- the NR access layer module searches for 5G cells on the 5G frequency band. If a 5G cell is found, and the signal quality of the 5G cell is higher than the threshold. The NR access layer module sends a network search success message to the LTE access layer module.
- the LTE access layer module can respond to the network search success message and actively release the RRC link of LTE (4G), that is, release the RRC link between the LTE access layer module and the access network device 200.
- the LTE access layer module can send a link release success message to the NR access layer module.
- the NR access layer module can try to access the 5G cell after receiving the link release success message. Specifically, a random access procedure can be used to try to access a 5G cell.
- the NR access layer module may fail to access the 5G cell. For example, in the random access procedure, when the timer expires, the NR access layer module does not receive the contention sent by the access network device 300 The solution result indicates that access to the 5G cell fails.
- the LTE access layer module may send an RRC connection re-establishment request to the access network device 200.
- the access network device 200 sends an RRC connection re-establishment message to the LTE access layer module.
- the LTE access layer module may send an RRC connection re-establishment complete message to the access network device 200.
- the NR access layer module can re-establish the RRC link between the LTE access layer module and the access network device 200 in the event of a failure to access the 5G cell, so that the original data service can be continued through the 4G network.
- the LTE access layer module continues to maintain the RRC link between it and the access network device 200.
- the terminal can actively search for the 5G frequency band when the terminal does not receive the measurement control message of the different system within the preset time period after the voice service of the EPS fallback ends.
- the RRC link of the LTE can be released locally, and an attempt to access the 5G cell can be attempted, so that the terminal can quickly return to the 5G network and improve the user's network experience.
- an embodiment of the present application provides a terminal 1200, and the terminal 1200 can perform operations performed by the terminal in the foregoing method embodiments shown in FIG. 4 or FIG. 11.
- the terminal 1200 may include a processor 1210, a memory 1220, and a transceiver 1230. Instructions are stored in the memory 1220, and the instructions can be executed by the processor 1210. When the instruction is executed by the processor 1210, the terminal 1200 can execute the operations performed by the terminal in the foregoing method embodiments shown in FIG. 4 or FIG. 11. Specifically, the processor 1210 may perform data processing operations, and the transceiver 1230 may perform data sending and/or receiving operations.
- an embodiment of the present application provides a chip system 1300, which can be applied to a terminal.
- the chip system 1300 includes a processor 1310 and an interface circuit 1320.
- the processor 1310 is connected to the interface circuit 1320, and is configured to perform operations performed by the terminal in the foregoing method embodiments shown in FIG. 4 or FIG. 11.
- the chip system 1300 further includes a memory 1330. Instructions are stored in the memory, and the instructions can be executed by the processor 1310. When the instruction is executed by the processor 1310, the chip system 1300 can execute the operations executed by the terminal in the method embodiments shown in FIG. 4 or FIG. 11.
- the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits. (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
- the general-purpose processor may be a microprocessor or any conventional processor.
- the method steps in the embodiments of the present application can be implemented by hardware, and can also be implemented by a processor executing software instructions.
- Software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory (programmable rom) , PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or well-known in the art Any other form of storage medium.
- An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
- the storage medium may also be an integral part of the processor.
- the processor and the storage medium may be located in the ASIC.
- the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
- software it can be implemented in the form of a computer program product in whole or in part.
- the computer program product includes one or more computer instructions.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
- the computer instructions may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
- the computer instructions can be sent from a website site, computer, server, or data center to another website site via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) , Computer, server or data center for transmission.
- the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
- the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本说明书涉及移动通信技术领域,具体涉及一种网络接入系统、方法及终端。该系统包括4G接入网设备、5G接入网设备和终端;其中,5G接入网设备不支持VoNR,和/或,5G接入网设备对应的5G核心网设备不支持VoNR;当终端驻留在5G接入网设备提供的网络中,且终端进行语音业务时,5G接入网设备可通过EPS回落程序指示终端连接到4G接入网设备,以使终端通过4G接入网设备进行该语音业务;当该语音业务结束,且终端和4G接入网设备保持RRC连接时,终端主动向4G接入网设备发送测量报告,以使终端重新连接到5G接入网设备。在该系统中,当EPS回落的语音业务结束,且终端处于4G网络下的连接态时,终端可主动向网络侧发送测量报告,以期尽快返回到5G网络。
Description
本申请要求于2020年03月20日提交中国国家知识产权局、申请号为202010200462.3、申请名称为“一种网络接入系统、方法及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本说明书涉及移动通信技术领域,具体涉及一种网络接入系统、方法及终端。
语音业务对网络覆盖要求较高,而第五代((5th generation,5G)移动通信系统的无线接入网(radio access network,RAN),即下一代无线接入网络(next generation radio access network,NG RAN)的频谱大多处于高频段。高频段网络信号覆盖范围较小,难以满足语音业务的覆盖需求。因此在5G移动通信系统部署的初期甚至中期,多数运营商的5G网络可能并不支持语音业务,更倾向于使用演进分组系统(evolved packet system,EPS)回落(fallback)为用户提供语音业务。具体而言,当驻留在NG RAN小区的终端发起语音业务时,则NG RAN将终端切换至E-UTRAN小区,并进一步通过第四代((4th generation,4G)核心网络(evolved packet core,EPC)进行语音业务。换言之,在EPS回落方案中,驻留在5G小区的终端,在发生语音业务时,可以切换到4G小区,并通过长期演进语音承载(voice over long-term evolution,VOLTE)进行语音业务。
在语音业务结束后,为了使终端能够充分利用5G网络所提供的更稳定、更高速、更可靠的网络性能,需要使终端尽快返回5G网络。
发明内容
本说明书实施例提供了一种网络接入系统、方法和终端,可以使得终端在EPS回落的语音通话结束后,主动向网络侧发送测量报告,以触发网络测下发异系统测量控制消息,以便终端快速回到5G网络。
第一方面,本说明书实施例提供了一种网络接入系统,包括4G接入网设备、5G接入网设备和终端;其中,5G接入网设备不支持VoNR,和/或,5G接入网设备对应的5G核心网设备不支持VoNR;当终端驻留在5G接入网设备提供的网络中,且终端进行语音业务时,5G接入网设备可以通过EPS回落程序指示终端连接到4G接入网设备,以使终端通过4G接入网设备进行该语音业务;终端可以接收用户起始的挂断操作,并响应于该挂断操作,结束该语音业务;或者,终端用于从4G接入网设备接收挂断指示,并响应于挂断指示,结束该语音业务;当终端和4G接入网设备保持RRC连接时,终端用于主动向4G接入网设备发送测量报告,以使终端重新连接到5G接入网设备。
也就是说,在本申请实施例提供的网络接入系统中,接入到5G网络的终端在进行语音业务时,可以通过EPS回落程序接入到4G网络中进行语音业务;在语音业务结束时,若终端处于4G网络下的连接态,终端可以主动向网络侧发送测量报告,以期尽快返回到5G网络。
在一种可能的实现方式中4G接入网设备用于响应测量报告,向终端发送异系统测量控制消息,异系统测量控制消息用于触发终端测量异系统邻区的信号质量。
也就是说,在该实现方式中,终端主动向网络侧发送的测量报告,可以触发网络侧下发异系统测量控制消息,异系统测量控制消息可以触发驻留在4G网络中的终端测量5G网络的信号质量,以便可以接入到5G网络。
在一种可能的实现方式中,终端用于主动向4G接入网设备发送测量报告包括:当在第一时间段内,终端没有接收到异系统测量控制消息时,终端用于主动向4G接入网设备发送测量报告,该第一时间段为语音业务结束时或之后起始的时间段。
也就是说,在该实现方式中,在语音业务结束后,终端可以先等待网络侧下发异系统测量控制消息,若在一定时间内没有等待网络侧下发的异系统测量消息,终端主动向网络侧发送测量报告,以期尽快返回到5G网络,并且避免和网络侧正常下发的异系统测量控制消息冲突。
在一种可能的实现方式中,终端用于主动4G接入网设备发送测量报告包括:终端用于确定终端满足第一条件;其中,第一条件包括以下至少一项:
没有执行时延敏感数据业务,语音业务是非紧急呼叫业务,没有处于紧急呼叫回拨模式,语音业务的执行时长小于第一阈值,在语音业务的执行期间终端的移动速度小于第二阈值,没有处于EN-DC状态,没有处于测试模式;
终端用于主动向所述4G接入网设备发送所述测量报告。
也就是说,在该实现方式中,终端先判断终端当前是否在执行特定类型的业务,该类型的业务若被重新接入5G网络的过程影响,可能会降低用户网络体验。若终端当前没有执行该特定类型的业务,则终端主动向网络侧发送测量报告,以期尽快重新接入到5G网络。
在一种可能的实现方式中,终端还用于当没有接收到异系统测量控制消息时,主动测量5G接入网设备提供的网络的信号质量;当5G接入网设备提供的网络的信号质量高于门限时,终端还用于主动断开终端和4G接入网设备的RRC连接,并尝试接入5G接入网设备提供的网络。
也就是说,在该实现方式中,若终端没有接收到异系统测量控制消息,终端可以主动测量5G网络的信号质量,以便快速返回5G网络。
在一种可能的实现方式中,终端还用于当终端尝试接入5G接入网设备提供的网络失败时,向4G接入网设备发送RRC连接重建立请求,以重新建立终端和4G接入网设备的RRC连接。
也就是说,在该实现方式中,若终端接入5G网络失败,终端可以发起重建立其和4G接入网设备间的RRC连接,以便在接入5G网络失败时,尽快接入到4G网络。
第二方面,本说明书实施例提供了一种网络接入方法,包括:终端连接到5G接入网设备,5G接入网设备不支持VoNR,和/或,5G接入网设备对应的5G核心网设备不支持VoNR;当终端进行语音业务时,终端连接到4G接入网设备,以通过4G接入网设备进行语音业务,其中,终端通过5G接入网设备的指示接入到4G接入网设备,该指示为5G接入网设备通过EPS回落程序进行的指示;终端接收用户起始的挂断操作,并响应于挂断操作,结束语音业务;或者,终端从4G接入网设备接收挂断指示,并响应于挂断指示,结束语音业务;当终端和4G接入网设备保持RRC连接时,终端主动向4G接入网设备发送测量报告,以使终端重新连接到5G接入网设备。
在一种可能的实现方式中,该方法还包括:终端从4G接入网设备接收异系统测量控制消息,异系统测量控制消息为4G接入网设备响应于测量报告而发送的消息;终端响应于异系统测量控制消息,测量异系统邻区的信号质量。
在一种可能的实现方式中,终端主动向4G接入网设备发送测量报告包括:当在第一时间段内,所述终端没有接收到异系统测量控制消息时,所述终端主动向所述4G接入网设备发送所述测量报告,所述第一时间段为所述语音业务结束时或之后起始的时间段。
一种可能的实现方式中,终端主动向4G接入网设备发送测量报告包括:终端确定终端满足第一条件;其中,第一条件包括以下至少一项:
没有执行时延敏感数据业务,语音业务是非紧急呼叫业务,没有处于紧急呼叫回拨模式,语音业务的执行时长小于第一阈值,在语音业务的执行期间终端的移动速度小于第二阈值,没有处于EN-DC状态,没有处于测试模式;
终端主动向所述4G接入网设备发送所述测量报告。
一种可能的实现方式中,该方法还包括:当终端没有接收到异系统测量控制消息时,终端主动测量5G接入网设备提供的第一网络的信号质量;当第一网络的信号质量高于第一门限时,终端主动断开终端和4G接入网设备的RRC连接,并尝试接入第一网络。
一种可能的实现方式中,该方法还包括:当终端尝试接入所述第一网络失败时,向4G接入网设备发送RRC连接重建立请求,以重新建立终端和4G接入网设备的RRC连接。
可以理解,第二方面提供的网络接入方法为第一方面提供的网络接入系统中终端执行的方法,因此,其所能达到的有益效果可以参考前述相应的有益效果。
第三方面,本说明书实施例提供了一种终端,包括:处理器、存储器、收发器;存储器用于存储计算机指令;当终端运行时,处理器执行计算机指令,使得终端执行:连接到5G接入网设备,5G接入网设备不支持VoNR,和/或,5G接入网设备对应的5G核心网设备不支持VoNR;当终端进行语音业务时,连接到4G接入网设备,以通过4G接入网设备进行语音业务,其中,终端通过5G接入网设备的指示接入到4G接入网设备,该指示为5G接入网设备通过EPS回落程序进行的指示;接收用户起始的挂断操作,并响应于挂断操作,结束语音业务;或者,从4G接入网设备接收挂断指示,并响应于挂断指示,结束语音业务;当终端和4G接入网设备保持RRC连接时,主动向4G接入网设备发送测量报告,以使终端重新连接到5G接入网设备。
在一种可能的实现方式中,处理器执行计算机指令,使得终端还执行:从4G接入网设备接收异系统测量控制消息,异系统测量控制消息为4G接入网设备响应于测量报告而发送的消息;响应于异系统测量控制消息,测量异系统邻区的信号质量。
在一种可能的实现方式中,处理器执行计算机指令,使得终端还执行:当在第一时间段内,终端没有接收到异系统测量控制消息时,主动向4G接入网设备发送测量报告,第一时间段为语音业务结束时或之后起始的时间段。
在一种可能的实现方式中,处理器执行计算机指令,使得终端还执行:确定终端满足第一条件;其中,第一条件包括以下至少一项:
没有执行时延敏感数据业务,语音业务是非紧急呼叫业务,没有处于紧急呼叫回拨模式,语音业务的执行时长小于第一阈值,在语音业务的执行期间终端的移动速度小于第二阈值,没有处于演进型的统一陆地无线接入网络-新空口双连接EN-DC状态,没有处于测试模式;主动向4G接入网设备发送测量报告。
在一种可能的实现方式中,处理器执行计算机指令,使得终端还执行:当终端没有接收到异系统测量控制消息时,测量5G接入网设备提供的第一网络的信号质量;当第一网络的信号质量高于第一门限时,主动断开终端和4G接入网设备的RRC连接,并尝试接入第一网络。
在一种可能的实现方式中,处理器执行计算机指令,使得终端还执行:当终端尝试接入第一网络失败时,向4G接入网设备发送RRC连接重建立请求,以重新建立终端和4G接入网设备的RRC连接。
可以理解,第三方面提供的终端用于执行第二方面提供的方法,因此,其所能达到的有益效果可以参考前述相应的有益效果。
第四方面,本说明书实施例提供了一种芯片系统,包括:处理器和接口电路,处理器和接口电路连接,用于执行指令以使得安装有该芯片系统的终端执行第二方面所提供的方法。
第五方面,本说明书实施例提供了一种计算机存储介质,该计算机存储介质包括计算机指令,当该计算机指令在终端上运行时,使得终端执行第二方面所提供的方法。
第六方面,本申请实施例提供了一种计算机程序产品,该计算机程序产品包含的程序代码被终端中的处理器执行时,实现第二方面所提供的方法。
本说明书实施例提供的网络接入系统、方法和终端,可使接入到5G网络的终端在进行语音业务时,可通过EPS回落程序接入到4G网络中进行语音业务;在语音业务结束时,若终端处于4G网络下的连接态,终端可以主动向网络侧发送测量报告,从而可以快速返回到5G网络。
图1是一种本申请实施例可适用网络系统的示意图;
图2是本申请实施例提供的一种终端的结构示意图;
图3为本申请实施例提供的一种终端的软件结构示意性框图;
图4为本申请实施例提供的一种网络接入方法流程图;
图5为本申请实施例提供的一种用户界面示意图;
图6A为本申请实施例提供的一种用户界面示意图;
图6B为本申请实施例提供的一种用户界面示意图;
图6C为本申请实施例提供的一种用户界面示意图;
图6D为本申请实施例提供的一种用户界面示意图;
图6E为本申请实施例提供的一种用户界面示意图;
图7A为本申请实施例提供的一种用户界面示意图;
图7B为本申请实施例提供的一种用户界面示意图;
图8为本申请实施例提供的一种用户界面示意图;
图9为本申请实施例提供的一种终端进入EN-DC状态的流程图;
图10为本申请实施例提供的一种用户界面示意图;
图11为本申请实施例提供的一种网络接入方法流程图;
图12为本申请实施例提供的一种终端的结构示意图;
图13为本申请实施例提供的一种芯片系统的结构示意图。
下面将结合附图,对本发明实施例中的技术方案进行描述。显然,所描述的实施例仅是本说明书一部分实施例,而不是全部的实施例。
在本说明书的描述中“一个实施例”或“一些实施例”等意味着在本说明书的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。
其中,在本说明书的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如, A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本说明书实施例的描述中,“多个”是指两个或多于两个。
在本说明书的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
图1示出了一种网络系统。该网络系统可以包括终端100、接入网设备200、接入网设备300。其中,接入网设备200和接入网设备300可以分别属于不同的移动通信系统。示例性的,接入网设备200可以为第四代(4th generation,4G)移动通信系统中的演进型基站(evolutional node B,eNB),接入网设备200可以为第五代或新空口(new radio,NR)移动通信系统中的下一代基站(next generation node B,gNB)。
接入网设备200可以为独立组网(stand-alone,SA)下的接入网设备。接入网设备200可以提供无线网络覆盖210,接入网设备300可以提供无线网络覆盖310。可以理解,接入网设备300为5G移动通信系统的接入网设备,接入网设备200为4G移动通信系统的接入网设备时,由于5G移动通信系统的频谱一般高于4G移动通信系统的频谱,无线网络覆盖310的范围小于无线网络覆盖210的范围,且处于无线网络覆盖210之内。
终端100可以支持多种移动通信系统,例如可以支持4G移动通信系统和5G移动通信系统。终端100可以分布在图1所示的网络系统中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端100可以是移动设备、移动台(mobile station)、移动单元(mobile unit)、无线单元,远程单元、用户代理、移动客户端等等。更具体的,终端100可以为手机、平板电脑、数码相机、个人数字助理(personal digitalassistant,PDA)、可穿戴设备、膝上型计算机(laptop)等便携式电子设备。便携式电子设备的示例性实施例包括但不限于搭载
或者其他操作系统的便携式电子设备。上述便携式电子设备也可以是其他便携式电子设备,诸如具有触敏表面(例如触控面板)的膝上型计算机(laptop)等。还应当理解的是,在本申请其他一些实施例中,终端100也可以不是便携式电子设备,而是具有触敏表面(例如触控面板)的台式计算机。本申请实施例对电子设备的类型不做具体限定。
图2示出了终端100的一种结构示意图。
终端100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对终端100的具体限定。在本申请另一些实施例中,终端100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
终端100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。终端100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在终端100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,终端100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE), 第五代,新空口(new radio,NR),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
终端100的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本发明实施例以分层架构的Android系统为例,示例性说明终端100的软件结构。
图3示出了终端100的一种软件结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将
系统分为四层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime)、系统运行库层以及内核层。
应用程序层可以包括一系列应用程序包。如图3所示,应用程序包可以包括电话、游戏、地图、即时通讯、相机等应用程序。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层可以包括一些预先定义的函数。
如图3所示,应用程序框架层具体可以包括内容提供器(content providers)、视图系统(view system)以及管理器(managers),其中,管理器包括活动管理器(activity manager)、位置管理器(location manager)、包管理器(package manager)、通知管理器(notification manager)、资源管理器(resoure manager)、电话管理器(telephony manager)、窗口管理器(window manager)等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
活动管理器用于管理应用程序的生命周期,及Activity栈管理等。
位置管理器用于地理位置及地位功能服务。
包管理器用于提供和管理安装的应用程序信息。
电话管理器用于提供终端100的通信功能。例如通话状态的管理(包括接通,挂断等)。
系统运行库层包括安卓运行时库和原生C/C++库。安卓运行时库负责安卓系统的调度和管理,其包括安卓运行环境和核心库。
原生C/C++库可以包括多个功能模块。例如:浏览器引擎(Webkit)、多媒体框架标准(例如,OpenMAX AL)、Libc库、多媒体框架(media framework)、三维图形处理库(例如:OpenGL ES)等。
内核层是硬件和软件之间的层。内核层可以包含调制解调器(modem)驱动、音频驱动、显示驱动、蓝牙驱动、摄像头驱动,传感器驱动、Wi-Fi驱动、GPS驱动、键映射驱动等。
下面结合用户拨打电话场景,示例性说明终端100软件以及硬件的工作流程。
当触摸传感器180K接收到触摸操作,相应的硬件中断被发给内核层。内核层将触摸操作加工成原始输入事件(包括触摸坐标,触摸操作的时间戳等信息)。原始输入事件被存储在内核层。应用程序框架层从内核层获取原始输入事件,识别该输入事件所对应的控件。以该触摸操作是触摸单击操作,该单击操作所对应的控件为拨号图标对应的控件,通话应用调用应用框架层的接口,通过调制解调器(modem)实现拨打电话、通话等功能。
接下来,结合图1和图4,以接入网设备200为4G移动通信系统的接入网设备,接入网设备300为5G移动通信系统的接入网设备,终端100为至少支持4G移动通信系统和5G移 动通信系统为例,对本申请实施例提供的方案进行介绍。其中,为方便描述,4G移动通信系统的接入网设备可以称为4G接入网设备或4G基站,5G移动通信系统的接入网设备可以称为5G接入网设备或5G基站。
参阅图1和图4,当终端100位于无线网络覆盖310的范围中时,终端100可以通过随机接入程序,接入到接入网设备300提供的无线接入网(即5G无线接入网)中。具体而言,终端100可以向接入网设备300发送随机接入前导码(random access preamble,RAP),即Message1;接入网设备300可以向终端100反馈随机接入响应(random access response,RAR),即Message2;终端100可以向发送竞争解决请求,即Message3;接入网设备300可以向终端100发送竞争解决结果,即Message4;当终端接收到Message4时,则终端100驻留到接入网设备300提供的无线接入网中,即终端100成功接入到5G无线接入网。
参阅图5,当终端100成功接入到5G无线接入网时,终端100的状态栏中的无线网络图标可以为5G网络图标501。
在终端100驻留在5G无线接入网的情况下,终端100有语音业务时,可以通过EPS回落,回落到4G网络上,通过4G网络进行语音业务。
在一些实施例中,如图6A和图6B所示,在终端100驻留在5G无线接入网的情况下,终端100可以响应用户打电话的操作,发起语音呼叫,即进行主叫语音业务。语音业务具体可以是指IP多媒体子系统(IP multiple subsystem,IMS)的语音业务,即IMS语音业务。由于在5G移动通信系统部署的初期甚至中期,多数运营商的5G网络可能并不支持语音业务,而更倾向于使用EPS回落为用户提供语音业务。因此,参阅图6C,在语音呼叫的拨号期间,终端100可以从5G无线接入网,通过重定向或切换来接入到接入网设备200提供的无线接入网(即4G无线接入网)中,即终端100的状态栏中的无线网络图标可以变为4G网络图标502。具体而言,当接入到5G无线接入网的终端有主叫语音业务时,终端通过5G接入网向5G核心网发送invite信令,以触发IMS域、5G系统的会话建立过程。5G核心网可以判断其是否支持新空口语音承载(voice over new radio,VoNR),以及5G接入网是否支持VoNR。若5G核心网和5G接入网均支持VoNR,则5G核心网可以指示5G接入网设备建立语音专用承载。若5G核心网不支持VoNR(例如5G核心网没有配置VoNR相关软件或硬件)和/或5G接入网不支持VoNR(例如5G接入网没有配置VoNR相关软件或硬件),5G核心网可以指示5G接入网进行EPS回落。。5G接入网设备根据终端的能力、5G核心网和4G核心网间是否有N26接口等信息,判断是否触发EPS回落,以及向终端请求测量报告。若决定触发EPS回落,5G接入网设备指示终端通过重定向或切换来接入4G无线接入网。当终端驻留到4G无线接入网时,4G核心网为语音业务建立专用承载,以实现通过4G网络进行语音业务。其中,当终端100驻留到4G无线接入网时,终端100的状态栏中的无线网络图标可以变为4G网络图标502。
参阅图6D和图6E,在对方响铃期间以及通话期间,终端100的状态栏中的无线网络图标为5G网络图标502。换言之,在对方响铃期间以及通话期间,终端100驻留在4G无线接入网。
在一些实施例中,在终端100驻留在5G无线接入网的情况下,终端100可以作为语音业务的被叫终端,该语音业务可以为IMS语音业务。参阅图7A,当终端100开始响铃时,终端100的状态栏中的无线网络图标可以从5G网络图标501变为为4G网络图标502。具体而言,当终端100有被叫语音业务时,终端100通过5G接入网向5G核心网发送invite信令,以触发IMS域、5G系统的会话建立过程。5G核心网可以判断其是否支持VoNR,以及5G 接入网是否支持VoNR。若5G核心网和5G接入网均支持VoNR,则5G核心网可以指示5G接入网设备建立语音专用承载。若5G核心网不支持VoNR和/或5G接入网不支持VoNR,5G核心网可以指示5G接入网进行EPS回落。5G接入网设备根据终端的能力、5G核心网和4G核心网间是否有N26接口等信息,判断是否触发EPS回落,以及向终端请求测量报告。若决定触发EPS回落,5G接入网设备指示终端通过重定向或切换来接入4G无线接入网。当终端驻留到4G无线接入网时,4G核心网为语音业务建立专用承载,以实现通过4G网络进行语音业务。其中,当终端100驻留到4G无线接入网时,终端100的状态栏中的无线网络图标可以变为4G网络图标502。
参阅图7B,在终端100作为被叫终端的语音业务通话期间,终端100的状态栏中的无线网络图标为4G网络图标502。
参阅图8,当终端100为主叫终端或被叫终端的上述语音业务结束时,即EPS回落的语音业务结束时,终端100仍驻留在4G无线接入网中。为了利用5G无线接入网所提供的更稳定、更高速、更可靠的网络性能,需要终端100从4G无线接入网返回到5G无线接入网中。从4G网络返回5G网络可有如下解决方案。
a1,在终端在4G无线接入网中,且处于连接态(connected)的情况下,网络侧向终端下发事件B1(event B1)的测量控制消息。终端可以响应事件B1的测量控制消息,并当测量结果表示异系统邻区的信号能量高于测量门限(inter RAT neighbour becomes better than threshold)时,向网络侧上报异系统邻区的信号能量。网络侧可以根据终端上报的异系统邻区的信号能量触发终端通过重定向回到5G无线接入网。
a2,在终端在4G无线接入网中,且处于连接态(connected)的情况下,网络侧向终端下发事件B1的测量控制消息。终端可以响应事件B1的测量控制消息,并当测量结果表示异系统邻区的信号能量高于测量门限时,向网络侧上报异系统邻区的信号能量。网络侧可以根据终端上报的异系统邻区的信号能量触发终端从4G无线接入网切换到5G无线接入网的。
a3,在终端在4G无线接入网中,且处于空闲态(idle)的情况下,网络侧向终端下发异系统重选配置,触发终端执行异系统重选流程,随后终端通过重选回到5G无线接入网。
a4,在终端在4G无线接入网中,且处于空闲态(idle)的情况下,网络侧向终端下发无线资源控制(radio resource control,RRC)释放(release)。终端通过自主快速返回(fast return)方式回到5G无线接入网。
a5,在终端在4G无线接入网中,且处于空闲态(idle)的情况下,终端在驻留在长期演进(long term evolution,LTE)的小区的情况下搜索5G小区。当搜索到5G小区时,终端可以返回5G无线接入网。
通过上述描述,可知,在终端驻留在4G无线接入网中,且处于连接态(connected)的情况下,终端需要等待网络侧下发的事件B1的测量控制消息,然后进行异系统邻区的测量等,以便返回到5G网络。但在实际应用时,特别是在5G移动通信系统部署不成熟的阶段,在EPS回落的语音通话结束后的较长时间内,网络侧可能不下发事件B1的测量控制消息。例如,在事件B1的测量控制消息的下发需要高速率业务触发,若在EPS回落的语音通话结束后的较长时间中,终端没有高速率业务,则网络侧不下发事件B1的测量控制消息。再例如,网络侧没有开通下发事件B1的测量控制消息的功能,因此,网络侧不下发事件B1的测量控制消息。另外,由于终端处于连接态,也无法通过方案a3、a4、a5回到5G网络。
本申请实施例提供了一种网络接入方法,可以在终端100的EPS回落的语音业务结束时或之后,且终端100处于4G网络的连接态的情况下,终端100可以主动向接入网设备200 发送测量报告E1,以诱发接入网设备200向终端100发送异系统测量控制信息,以便触发终端100返回5G接入网的流程,从而实现EPS回落的语音业务结束后,快速返回5G网络,提高用户的网络体验。在本申请实施例中,终端100主动发送的测量报告E1是指用于诱发网络侧下发异系统测量控制消息的假测量报告,其是终端100在不根据实际测量结果,或者没有测量结果的情况下主动向网络侧发送的假测量报告。
接下来,继续结合图4,在不同实施例中,对本申请实施例提供的网络接入方法进行示例介绍。
终端100可以执行步骤401,确定语音业务结束,且处于4G网络下的连接态。
终端100可以确定EPS回落的语音业务结束。示例性的,终端100可以响应于用户的挂断操作或接入网设备200下发的挂断指示,而确定VoLTE结束,并确定该VoLTE为通过EPS回落而进行的语音业务。在一个例子中,终端100可以记录终端100在进行该语音业务时,从5G网络回落到了4G网络,从而可以确定该语音业务为通过EPS回落而进行的语音业务。在一个例子中,当VoLTE结束,且该VoLTE为通过EPS回落而进行的语音业务时,终端100可以将“VOLTE_END,callStartInNrFlag”的值修改为“true”。因此,当终端100检测到VOLTE_END,callStartInNrFlag=true时,可以确定EPS回落的语音业务结束。其中,该挂断指示为在语音业务被对端设备挂断时,接入网设备200向终端100下发的指示。该对端设备为终端100进行该语音业务的另一端终端。在一个例子中,该挂断指示可以为BYE信令。
为方便表述,可以将此处的EPS回落的语音业务称为语音业务V1。
当语音业务V1结束时,终端100可以判断其是否处于RRC连接态,即可以判断其与网络侧(例如接入网设备200)之间是否存在RRC链路。
在一个说明性示例中,终端100可以通过如下方式,判断其是否处于RRC连接态。
由上所述,在进行EPS回落时,终端100通过重定向或切换而接入到4G无线接入网。示例性的,终端100可以通过随机接入程序和接入网设备200建立RRC链路,而重定向或切换地接入到4G无线接入网。4G网络的随机接入程序与5G网络的随机接入程序类似,因此,4G网络的随机接入程序可以参考上文对5G网络的随机接入程序的介绍,在此不再赘述。
在终端100和接入网设备200之间建立RRC链路后,若终端100从接入网设备200接收到RRC连接释放(RRC connection release)消息,则RRC链路被释放,终端100进入RRC空闲态。若终端100没有从接入网设备200接收到RRC连接释放消息,则终端100和接入网设备200之间的RRC链路继续保持,终端100继续处于RRC连接态。通常,在终端100和接入网设备200之间没有业务数据传输时,接入网设备200可以向终端100下发RRC连接释放消息。
因此,终端100可以判断其在语音业务V1结束时及之后,是否接收到RRC连接释放消息。若没有接收到RRC连接释放消息,则可以确定终端100处于RRC连接态。
通过上述方式,终端100可以确定语音业务V1结束,且终端100处于4G网络下的连接态。
继续参阅图4,在语音业务V1结束,且终端100处于4G网络下的连接态的情况下,为了触发网络侧(例如接入网设备200)向终端100下发异系统测量控制消息,终端100可以执行步骤405,主动向接入网设备200发送测量报告E1。
在一些实施例中,测量报告E1可以为用于假称终端100的服务小区信号质量低于测量门限的消息,从而可以触发网络侧向终端100下发异系统测量控制消息。终端100的服务小区是指终端100当前驻留的小区。
在一些实施例中,小区的信号质量可以通过小区的参考信号接收功率(reference signal receiving power,RSRP)来表征。在该实施例中,信号质量也可以称为信号能量。
在一些实施例中,小区的信号质量可以通过小区的参考信号接收质量(reference signal received quality,RSRQ)来表征。
在一些实施例中,小区的信号质量可以通过小区的信号与干扰加噪声比(signal to interference plus noise ratio,SINR)。
在一些实施例中,小区的信号质量可以通过小区的接收的信号强度指示(received signal strength indication,RSSI)。
在一些实施例中,小区的信号质量可以通过小区的RSRP、RSRQ、SINR、RSSI中的两项或更多项联合表征。
示例性的,测量报告E1具体可以为对应于事件A2(event A2)的伪测量报告或假测量报告。
根据第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关协议,事件A2是指当终端的服务小区的信号质量低于门限值(serving becomes worse than threshold)时,终端向网络侧上报测量报告,该测量报告用于告知网络侧其服务小区的信号质量低于门限值,使得网络侧向终端下发异系统测量控制消息。门限值可以参考3GPP协议规定,在此不再赘述。为方便描述,可以将3GPP现有协议中规定的用于告知网络侧其服务小区的信号质量低于门限值的测量报告称为事件A2的测量报告。具体而言,在终端处于连接态时,网络侧可以向终端发送A2事件的测量控制消息,终端响应A2事件的测量控制消息,测量服务小区的信号质量。该信号质量可以为RSRP,也可以为RSRQ,也可为SINR,也可以为RSSI。当服务小区的信号质量低于门限值时,终端向网络侧上报A2事件的测量报告。网络侧可以响应该测量报告,向终端下发异系统测量控制消息。
在本申请实施例中,测量报告E1可以是指终端100在没有测量服务小区的情况下直接生成的报告。测量报告E1也可以是指在终端100在测量了服务小区,但服务小区的信号质量不低于门限值的情况下,生成的报告。测量报告E1包括了用于假称终端100的服务小区的信号质量低于门限值的信息,和/或,终端100的服务小区的预设信号质量。此处的预设信号质量是指预先设置的,而非通过实际测量得到的信号质量。
在一个说明性示例中,测量报告E1可以包括事件A2的测量标识(measurement identity)。测量标识也可以称为测量ID。事件A2的测量标识可以用于网络侧将测量报告E1识别为事件A2的测量报告,从而使得网络侧可以确定或者认为终端100的服务小区的信号质量低于门限值,而下发异系统测量控制信息。在一个例子中,终端100可以从事件A2的测量控制信息中提取事件A2的测量标识,从而可以在生成测量报告E1时,将事件A2的测量标识携带在测量报告E1中。如上所述,根据3GPP现有协议,在终端100处于连接态时,网络侧可以下发事件A2的测量控制消息,事件A2的测量控制消息携带有事件A2的测量标识,从而使得终端100可以获取事件A2的测量控制消息,并提取事件A2的测量标识。
在一个说明性示例中,终端100可以参照3GPP现有协议规定的事件A2的测量报告的格式和生成方式,生成测量报告E1。与3GPP现有协议的规定不同,测量报告E1是终端100在没有测量服务小区的情况下,或在测量了服务小区但服务小区的信号质量不低于门限值的情况下生成的。测量报告E1中用于表示服务小区低于门限值的信息为虚假信息,和/或,测量报告E1携带的服务小区的信号质量为预设的信号质量。此处的预设信号质量是指预先设置的,而非通过实际测量得到的信号质量。
在一些实施例中,测量报告E1可以为用于假称终端100的服务小区的同系统邻区的信号质量高于服务小区的信号质量的消息,从而可以触发网络侧向终端100下发异系统测量控制消息。终端100的服务小区是指终端100当前驻留的小区。为方便表述,可以将服务小区的同系统邻区简称为同系统邻区。
示例性的,测量报告E1具体可以为对应于事件A3(event A3)的伪测量报告或假测量报告。
根据第三代合作伙伴计划的相关协议,事件A3是指当终端的同系统邻区的信号质量高于服务小区的信号质量(neighbour becomes offset better than serving)时,终端向网络侧上报测量报告,该测量报告用于告知网络侧同系统邻区的信号质量高于服务小区的信号质量,使得网络侧向终端下发异系统测量控制消息。门限值可以参考3GPP协议规定,在此不再赘述。为方便描述,可以将3GPP现有协议中规定的用于告知网络侧同系统邻区的信号质量高于服务小区的信号质量的测量报告称为事件A3的测量报告。具体而言,在终端处于连接态时,网络侧可以向终端发送A3事件的测量控制消息,终端响应A3事件的测量控制消息,测量服务小区和同系统邻区的信号质量。该信号质量可以为RSRP,也可以为RSRQ,也可以为SINR,也可为RSSI。当同系统邻区的信号质量高于服务小区的信号质量时,终端向网络侧上报A3事件的测量报告。网络侧可以响应该测量报告,向终端下发异系统测量控制消息。
在本申请实施例中,测量报告E1可以是指终端100在没有测量服务小区和/或同系统邻区的情况下直接生成的假报告。测量报告E1也可以是指在终端100在测量了服务小区和同系统邻区,但同系统邻区的信号质量不高于服务小区的情况下,生成的假报告。测量报告E1包括了用于假称同系统邻区的信号质量高于服务小区的信号质量的信息,和/或,服务小区的预设信号质量和同系统邻区的预设信号质量。此处的预设信号质量是指预先设置的,而非通过实际测量得到的信号质量。
在一个说明性示例中,测量报告E1可以包括事件A3的测量标识。事件A3的测量标识可以用于网络侧将测量报告E1识别为事件A3的测量报告,从而使得网络侧确定或认为终端100的同系统邻区的信号质量高于服务小区的信号质量,而下发异系统测量控制信息。在一个例子中,终端100可以从事件A3的测量控制信息中提取事件A3的测量标识,从而可以在生成测量报告E1时,将事件A3的测量标识携带在测量报告E1中。如上所述,根据3GPP现有协议,在终端100处于连接态时,网络侧可以下发事件A3的测量控制消息,事件A3的测量控制消息携带有事件A3的测量标识,从而使得终端100可以获取事件A3的测量控制消息,并提取事件A3的测量标识。
在一个说明性示例中,终端100可以参照3GPP现有协议规定的事件A3的测量报告的格式和生成方式,生成测量报告E1。与3GPP现有协议的规定不同,测量报告E1是终端100在没有测量服务小区和/或没有测量同系统邻区的情况下,生成的;或者测量报告E1是终端100在测量了服务小区和同系统邻区,但同系统邻区的信号质量不高于服务小区的情况下,生成的。测量报告E1中用于表示同系统邻区的信号质量高于服务小区的信号质量的信息为虚假信息,和/或,测量报告E1携带的服务小区的信号质量和同系统邻区的信号质量为预设的信号质量。此处的预设信号质量是指预先设置的,而非通过实际测量得到的信号质量。
通过上述方式,终端100可以向网络侧(例如接入网设备200)发送测量报告E1,以触发网络侧向终端100发送异系统测量控制消息,以触发终端100返回5G无线接入网的流程。
继续参阅图4,在一些实施例中,在终端在执行步骤405之前,还可以执行步骤403,确定终端100满足条件C1,和/或,启动定时器D1。
可以理解,终端从一个移动通信系统接入到另一个移动通信系统,会对终端当前正在进行的业务造成影响。
在一些实施例中,为了减少终端100从一个移动通信系统接入到另一个移动通信系统而对终端100当前正在进行业务的影响或者减少对重要业务的影响,终端100在向网络侧发送测量报告E1之前,终端100还可以判断终端100是否满足一定的条件C1。在终端100满足该条件C1的情况下,终端100向网络侧发送测量报告E1。
在一个说明性示例中,条件C1可以包括条件C11,条件C11为终端没有执行时延敏感数据业务。示例性的,可以预设应用黑名单,应用黑名单中包括多个应用的应用标识。应用标识可以为应用的包名(package name)。将应用黑名单中的应用对应的业务归属于时延敏感数据业务。例如,应用黑名单可以包括游戏应用、在线视频播放应用等。终端100可以判断其前台运行应用是否为应用黑名单中的应用,例如,可以获取前台运行应用的包名,并将该包名在应用黑名单中进行匹配或搜索,若匹配到或搜索到与该包名一致的包名,则确定前台运行应用为应用黑名单中的应用。当前台运行应用为应用黑名单中的应用时,则确定终端100正在执行时延敏感数据业务,终端100不满足条件C11。当前台运行应用不为应用黑名单中的应用时,则确定终端100没有执行时延敏感数据业务或没有处于时延敏感数据业务中,终端100满足条件C11。
在一个说明性示例中,条件C1可以包括条件C12,条件C12为语音业务V1不为紧急呼叫。示例性的,可以预设电话号码黑名单。该电话号码黑名单可以包括多个紧急呼叫号码,例如110、911、120、112等。在进行语音业务V1时,例如发起呼叫时,或者语音通话期间,终端100可以获取语音业务V1对应的电话号码。终端100可以根据语音业务V1对应的电话号码,在电话号码黑名单中匹配或搜索,若匹配到或搜索到与语音业务V1对应的电话号码一致的电话号码,则确定语音业务V1为紧急呼叫,终端100不满足条件C12。若没有匹配到或没有搜索到与语音业务V1对应的电话号码一致的电话号码,则确定语音业务V1不为紧急呼叫,终端100满足条件C12。
在一个说明性示例中,条件C1可以包括条件C13,条件C13为终端100没有处于紧急呼叫回拨模式。示例性的,可以理解,在紧急呼叫的语音业务结束后的一段时间(5分钟)内,发起该语音呼叫的终端处于紧急回拨模式,以便紧急呼叫中心可以进行回拨。可以将该段时间称为紧急呼叫的回拨时间。可以预设回拨时间列表,其中包括紧急呼叫号码以及该紧急呼叫号码对应的回拨时间。当语音业务V1为紧急呼叫时,可以通过回拨时间列表获取该紧急呼叫的紧急呼叫号码对应的回拨时间。终端100可以确定当前时刻和该紧急呼叫的结束时刻之间的时间差是否小于该回拨时间。若当前时刻和该紧急呼叫的结束时刻之间的时间差小于该回拨时间,则可以确定终端100处于紧急回拨模式,不满足条件C13。若当前时刻和该紧急呼叫的结束时刻之间的时间差不小于该回拨时间,则可以确定终端100没有处于紧急回拨模式,满足条件C13。
在一个说明性示例中,条件C1可以包括条件C14,条件C14为在语音业务V1的执行期间,终端100的移动速度小于速度阈值。该速度阈值可以根据经验或实验预设,例如可以为30km/h。参阅图1,终端100在执行语音业务V1之前,终端100处于5G接入网设备提供的无线覆盖内,即处于无线覆盖310内。由于5G的无线接入网的频谱大多处于高频段。高频段网络信号覆盖范围较小,特别是在5G移动通信系统部署的初期甚至中期,5G无线接入网的覆盖范围不够全面。当在语音业务V1的执行期间,若终端100的移动速度比较快,则在语音业务V1结束时,终端100可能离开了5G无线接入网的覆盖,使得尝试接入5G无线接 入网失败。若终端100的移动速度比较慢,则在语音业务V1结束时,终端100大概率还处于5G无线接入网的覆盖中,因此,有必要诱发网络侧下发异系统测量控制消息。
在一个例子中,终端100可以通过加速度传感器180E,测量终端100的移动速度。
在一个例子中,终端100通过全球导航卫星系统(global navigation satellite system,GNSS),测量终端在语音业务V1执行期间的位移,然后,将该位移除以语音业务V1的执行时长,得到终端100的移动速度。
示例性的,语音业务V1的执行时长可以是指通话时长,具体是指被叫方接通电话的时刻到电话被挂断的时刻(语音业务结束时刻)之间的时间差。终端100可以记录接通电话的时刻的时间戳,以及记录电话被挂断的时刻的时间戳,并根据两个时间戳,得到通话时长。相应地,语音业务V1执行期间的位移是指在两个时间戳之间发生的位移。
示例性的,若终端100为被叫终端,语音业务V1的执行时长可以是指被叫终端响铃的时刻到电话被挂断的时刻之间的时间差。终端100可以记录被叫终端响铃的时刻的时间戳,以及记录电话被挂断的时刻的时间戳,并根据两个时间戳,得到语音业务V1的执行时长。相应地,语音业务V1执行期间的位移是指在两个时间戳之间发生的位移。
示例性的,若终端100为主叫终端,语音业务C1的执行时长可以是指主叫终端发起拨号的时刻到电话被挂断的时刻之间的时间差。终端100可以记录发起拨号的时刻的时间戳,以及记录电话被挂断的时刻的时间戳,并根据这两个时间戳,得到语音业务V1的执行时长。相应地,语音业务V1执行期间的位移是指在两个时间戳之间发生的位移。
在一个说明性示例中,条件C1可以包括条件C15,条件C15为在语音业务V1的执行时长小于时长阈值。该速度阈值可以根据经验或实验预设,例如可以为30min。终端100在执行语音业务V1之前,终端100处于5G接入网设备提供的无线覆盖内。5G接入网设备的无线网络信号覆盖范围较小,特别是在5G移动通信系统部署的初期甚至中期,5G无线接入网的覆盖范围不够全面。若语音业务V1的通话时长较长,则在语音业务V1结束时,终端100可能离开了5G无线接入网的覆盖,使得尝试接入5G无线接入网失败。若语音业务V1的通话时长较短,则在语音业务V1结束时,终端100大概率还处于5G无线接入网的覆盖中,因此,有必要诱发网络侧下发异系统测量控制消息。语音业务V1的执行时长可以参考上一示例介绍,在此不再赘述。
在一个说明性示例中,条件C1可以包括条件C16,条件C16为终端100没有处于演进型的统一陆地无线接入网络(evolved universal terrestrial radio access network,E-UTRAN)-NR双连接(E-UTRA-NR dual connectivity,EN-DC)状态。
3GPP版本(release,R)15定义了长期演进(long term evolution,LTE)和新空口(new radio,NR)的双连接(dual connectivity,DC)框架,其中,包括EN-DC架构。EN-DC架构为一种非独立组网(Non stand-alone,NSA)的网络结构。EN-DC架构不用新增5G核心网,只需要新增5G基站,跟现有的4G基站协同,为终端提供5G+4G的联合接入,即终端可以同时驻留在4G小区和5G小区中。在EN-DC架构下,控制面由4G基站作为主节点,5G基站作为辅节点。其中,作为主节点的4G基站可以称为MeNB(master eNB),作为辅节点的5G基站可以称为SgNB(secondary gNB)。可以将4G小区可以称为主小区(master cell),5G小区可以称为辅小区(secondary cell)。需要说明的是,此处EN-DC架构下的5G基站并非图1所示的接入网设备300。图1所示的接入网设备300是指独立组网架构下的5G接入网。
当终端100的EPS回落到的4G基站为EN-DC架构中的4G基站,且终端100具有EN-DC能力时,4G基站有可能为终端100添加辅小区,即5G小区。具体添加过程可如图9所示, 具体包括如下步骤。
901、MeNB向SgNB发送从SgNB添加请求(addition request)。
902、SgNB向MeNB添加请求确认消息(addition request acknowledge)。
903、MeNB向终端发送无线资源控制(radio resource control,RRC)连接重配(connection reconfiguration)请求。
904、终端向MeNB发送RRC重配完成(connection reconfiguration complete)消息。
905、MeNB向SgNB发送SgNB重配完成(reconfiguration complete)消息。
906、终端和SgNB之间进行随机接入程序(random access procedure)。
907、MeNB向SgNB发送SgNB状态转移(status transfer)。
908、MeNB向SgNB发送数据传送(data forwarding)。
MeNB和移动性管理实体(mobility management entity,MME)之间进行路径更新程序(path update procedure)。其中,包括如下步骤:
909、MeNB向MME发送演进的无线接入承载(evolved radio access bearer,E-RAB)修改指示(modification indication)。
910、MME向服务网关(service gateway,S-GW)发送承载修改(bearer modication)请求。
911、MeNB向SgNB发送结束标记包(end marker packet)。
912、MME向MeNB发送E-RAB修改确认(modification confirm)消息。
其中,MME和S-GW为4G核心网(evolved packet core,EPC)中的网络设备。
通常,在终端100执行大吞吐量数据业务时,4G基站为终端100添加5G小区,使终端100进入EN-DU状态。为了避免对大吞吐量数据业务的影响,终端100在向网络侧发送为测量报告之前,可以先判断终端100是否处于EN-DU状态。
可以通过判断终端100和网络侧之间是否还存在5G的RRC链路。若终端100和网络侧之间还存在5G的RRC链路,则确定终端100处于EN-DC状态。
判断终端100和网络侧之间是否存在5G的RRC链路的方案,与判断终端100和网络侧之间是否存在4G的RRC链路的方案类似。具体而言,通过图9所示的方案可知,在为终端100添加5G小区时,需要进行终端和SgNB之间进行随机接入程序。通过随机接入程序建立了终端100和SgNB之间的RRC链路,即5G的RRC链路。若终端100没有接收到MeNB下发的5G的RRC连接释放消息,则终端100和网络侧之间还存在5G的RRC链路,可确定终端100处于EC-DC状态,即终端100不满足条件C16。若终端100和网络侧之间不存在5G的RRC链路,则终端100没有处于ED-DC状态,满足条件C16。
在一个说明性示例中,条件C1可以包括条件C17,条件C17为终端100没有处于测试模式中。示例性的,测试模式可以是指手机设计厂商或网络运营商对终端进行测试,而是终端进入的模式。通常,手机设计厂商或网络运营商使用专门的测试用户识别模块(subscriber identification module,SIM)卡,来对终端进行测试。因此,终端100可以通过其安装的SIM卡中携带的信息,来判断其是否处于测试模式。若终端100处于测试模式,则终端不满足条件C17。若终端没有处于测试模式,则终端满足条件C17。
在一个说明性示例中,条件C1可以包括条件C11、C12、C13、C14、C15、C16、C17中的任意两项或多项,则终端100满足条件C1具体是指终端100同时满足该两项或多项。
上文,对终端100向网络侧发送测量报告E1前,需要满足的条件进行示例说明,并非限制,还可以设置其他条件,在此不再一一列举。
可以理解,网络侧有可能正常下发异系统测量控制消息。网络侧正常下发异系统测量控 制消息可以是指网络侧在没有经过本申请实施例提供的测量报告E1的诱发的情况下,下发异系统测量控制消息。例如,EPS回落的语音业务结束为触发网络侧下发异系统测量控制消息的条件时,在EPS回落的语音业务结束后,网络侧有可能在无需接收测量报告E1的情况下,下发异系统测量控制消息。
在一些实施例中,为了避免与网络侧正常下发异系统测量控制消息冲突。在语音业务V1结束时,终端100可以启动定时器D1。若从定时器D1开始计时,到定时器D1超时,终端100一直没有接收到异系统测量控制消息,终端100可以向网络侧发送测量报告E1。由于定时器D1是为了避免与网络侧正常下发异系统测量控制消息冲突而设置的定时器,因此,定时器D1也可以称为保护定时器或快速回NR(5G)保护定时器。
在一个说明性示例中,定时器D1的时长可以通过返回5G时长大数据确定。返回5G时长可以为语音业务的结束时刻和重新接入到5G无线接入网的时刻之间的时间段的时长。可以计算5G时长大数据中各时长的分布。具体而言,可以收集现有终端从EPS回落的语音业务结束,到返回到5G所经历的时长,得到返回5G时长大数据。可以根据返回5G时长大数据中各时长的分布确定定时器D1的时长。例如,可以将概率最大的时长设定为定时器D1的时长。
在一个说明性示例中,定时器D1的时长可以通过经验或实验预设,例如可以为2s的时长。
在一些实施例中,在终端100在满足条件C1,且定时器D1超时时,一直没有收到异系统控制消息的情况下,终端100向网络侧发送测量报告E1。
继续参阅图4,在一些实施例中,若网络侧,例如接入网设备200,开启了下发异系统测量控制消息的功能,在接收到终端100发送的测量报告E1时,可以响应该测量报告E1,而执行步骤407,向终端100发送异系统测量控制消息。
示例性的,如上所述,测量报告E1包括事件A2(或事件A3)的测量标识,接入网设备200可以根据事件A2(或事件A3)的测量标识,将测量报告E1识别为事件A2(或事件A3)的测量报告,从而可以确定或认为终端100的服务小区的信号质量低于门限值(或者,终端100的同系统邻区的信号质量高于服务小区的信号质量),从而可以向终端100发送异系统测量控制消息。
示例性的,如上所述,测量报告E1的格式和生成方式,与,3GPP协议中规定的事件A2(或事件A3)的测量报告的格式和生成方式,相同或相似。因此,接入网设备200接收到测量报告E1时,可以确定或认为终端100的服务小区的信号质量低于门限值(或者,终端100的同系统邻区的信号质量高于服务小区的信号质量),从而可以向终端100发送异系统测量控制消息。
继续参阅图4,终端100接收到异系统测量控制消息,可以响应于异系统测量控制消息,执行步骤409,测量异系统网络。可以理解,在图1所示的网络系统中,5G移动通信系统为4G移动通信系统的异系统。在终端100当前驻留网络为4G网络的情况下,对异系统网络的测量具体可以是指对5G网络的测量。终端100可以将测量结果上报给接入网设备200,以便接入网设备200根据测量结果,指示终端100接入到5G网络。
终端100还可以执行步骤411,向接入网设备200发送测量报告E2。
在一些实施例中,异系统测量控制消息可以为事件B1(event B1)的测量控制消息,事件B1是指当异系统邻区的信号质量高于门限值(inter RAT neighbour becomes better than threshold)时,终端100向接入网设备200上报测量报告E2,该测量报告E2用于向接入网 设备200报告异系统邻区的信号质量,以便接入网设备200根据测量报告E2中的异系统邻区的信号质量指示终端接入到异系统网络。该异系统网络可以为5G网络,异系统邻区可以为5G小区。
具体而言。终端100可以响应于事件B1的测量控制消息,测量5G频段上的信号质量(例如RSRP或RSRQ或SINR或RSSI),并且信号质量高于门限值的异系统邻区的信号质量携带在测量报告中上报给接入网设备200。具体可以参考3GPP相关协议,在此不再赘述。
继续参阅图4,在一些实施例中,接入网设备200可以通过重定向或切换方式,指示终端100接入5G无线接入网。
示例性的,若接入网200通过重定向方式,指示终端100接入5G无线接入网,接入网设备200可以向终端100发送RRC释放消息,并在RRC释放消息中携带指示信息,该指示信息用于指示信号质量高于门限值的5G小区的频点。终端100可以根据RRC释放消息,在其携带的指示信息指示的频点上进行5G小区搜索和接入,并驻留到5G小区中。其中,可以通过随机接入程序实现5G小区的接入,随机接入程序可以参考上文介绍,在此不再赘述。
示例性的,若接入网200通过重定向方式,指示终端100接入5G无线接入网,接入网设备200可以根据事件B1的测量报告中的5G小区,为终端100确定目标小区,该目标小区为信号质量高于门限值的小区。接入网设备200可以向终端100发送RRC连接重配(RRC connection reconfiguration)消息。RRC连接重配消息包括目标小区的物理小区标识(identity)。终端100可以通过随机接入程序接入到该目标小区,从而接入到5G网络中。
参阅图10,当终端100接入到5G小区时,终端100的状态栏中的无线网络图标可以变为5G网络图标501。
在一些实施例中,即使终端100向接入网设备200发送了测量报告E1,终端100也有可能接收不到异系统测量控制消息。例如,接入网设备200没有开启下发异系统测量控制消息的功能,因此,接入网设备200在接收到测量报告E1后,不响应测量报告E1而下发异系统测量控制消息。为此,终端100在向接入网设备200发送测量报告E1时,可以启动定时器D2。若从定时器D2开始计时,到定时器D2超时,终端100一直没有接收到异系统测量控制消息,终端100可以开启自主返回5G流程。接下来进行具体介绍。
在一个说明性示例中,定时器D2的时长可以通过接收异系统测量控制消息的时长大数据确定。接收异系统测量控制消息的时长可以为事件A2(和/或事件A3)的测量报告的发送时刻和异系统测量控制消息接收时刻之间的时间段的时长。具体而言,可以收集现有终端从向网络侧发送事件A2(和/或事件A3)的测量报告,到接收到异系统测量控制消息所经历的时长,得到异系统测量控制消息的时长大数据。换言之,可以计算接收异系统测量控制消息的时长大数据中各时长的分布。可以根据接收异系统测量控制消息的时长大数据中各时长的分布确定定时器D2的时长。例如,可以将概率最大的时长设定为定时器D2的时长。
在一个说明性示例中,定时器D2的时长可以通过经验或实验预设,例如可以为1s的时长。
在一个说明性示例中,若从定时器D2开始计时,到定时器D2超时,终端100一直没有收到异系统测量控制消息。驻留在4G无线接入网的终端100可以主动测量5G频段上的网络信号,即驻留在4G无线接入网的终端100可以在没有网络侧的指示信息(例如异系统测量控制消息)的情况下,自主测量5G频段上的网络信号。示例性的,终端100可以在5G全频段上搜索小区,并测量搜索到的小区的信号质量。例如可以测量小区的RSRP,也可以测量RSRQ,也可以测量小区的SINR,也可以测量小区的RSSI。
若在5G频段上搜索到小区,即搜索到5G小区,且5G小区的信号质量高于门限值。终端100可以执行本地释放RRC链路流程,而回到空闲态。即终端100可以在没有接收到网络侧下发的RRC释放消息的情况下,自主释放掉RRC链路。处于空闲态的终端100可以通过随机接入程序尝试接入5G小区。随机接入程序可以参考上文介绍,在此不再赘述。门限值可以参考3GPP协议,在此不再赘述。
示例性的,终端100有可能成功接入5G小区成功。当终端100成功接入5G小区时,如图10所示,终端100的状态栏中的无线网络图标可以变为5G网络图标501。
示例性的,终端100有可能接入5G小区失败,例如,在随机接入程序中,在定时器超时时,终端100没有接收到网络侧(例如接入网设备300)发送的竞争解决结果,则说明接入5G小区失败。当终端100接入5G小区失败,终端100可以向接入网设备200发送RRC连接重建立请求(RRC connection reestablishment request)。接入网设备200响应于RRC连接重建立请求,向终端100发送RRC连接重建立(RRC connection reestablishment)消息。终端100可以向接入网设备200发送RRC连接重建立完成(RRC connection reestablishment complete)消息。由此,终端100可以在接入5G小区失败的情况下,重新建立终端100和接入网设备200之间的RRC链路,从而可以继续通过4G网络进行原有数据业务。
在一些实施例中,若在5G频段上没有搜索到小区,或者搜索到的小区的信号质量不满足门限值。终端100继续维持其和接入网设备200之间的RRC链路。
通过本申请实施例提供的网络接入方法,在EPS回落的语音业务结束后,可以主动向网络侧发送测量报告,以诱发网络侧下发异系统测量控制消息,从而可以快速开启终端快速返回5G网络的流程,使得终端可以快速返回5G网络,改善用户网络体验。
本申请实施例提供了另一种网络接入方法。该网络接入方法可以有终端100执行。该网络接入方法具体如下。
当语音业务V1结束时,可以判断终端100是否满足条件C1。具体可以参考上文介绍,在此不再赘述。
若终端100满足条件C1,终端100可以启动定时器D1。
若定时器D1超时,终端100没有接收到异系统测量控制消息。即从定时器D1开始计时,到定时器D1超时这个期间,终端100没有接收到异系统测量控制消息。终端可以在5G频段上进行搜网,以及测量网络的信号质量。信号质量可以为RSPR,也可以为RSRQ,也可以为SINR,也可以为RSSI。
若搜索到5G小区,且5G小区的信号质量满足门限值,终端100可以本地释放4G的RRC链路,并且尝试接入信号满足门限值的5G小区。
接下来,在一个具体实例中,对该网络接入方法,进行举例介绍。
参阅图11,终端100可以包括通话模块、LTE接入层模块、NR接入层模块。其中,LTE接入层模块也可以称为4G接入层模块,其可以根据LTE(4G)的无线资源控制层协议,实现相关功能。NR接入层模块也可以称为5G接入层模块,其可以根据NR(5G)的无线资源控制层协议,实现相关功能。通话模块可以用于检测语音业务的结束,并向LTE接入层模块发送语音业务结束通知。
示例性的,如图11所示,通话模块、LTE接入层模块、NR接入层模块可以为终端100的调制解调器(modem)中的模块或功能实体。
如图11所示,当终端100驻留在5G无线接入网时,若终端100有语音业务要执行,则进行EPS回落,从5G无线接入网络回落到4G无线接入网络,然后通过4G无线接入网络进 行长期演进语音承载(voice over long-term evolution,VOLTE)通话。也就是说,通过EPS回落,LTE接入层模块和接入网设备200之间建立RRC链路,并通过该RRC链路进行语音业务的数据传输。
当语音业务结束时,通话模块可以向LTE接入层模块发送VOLTE通话结束通知,其中,VOLTE通话结束通知可以包括“VOLTE_END,callStartInNrFlag=true”字段。
LTE接入层模块可以确定终端100处于4G网络下的连接态,即可以确定LTE接入层模块和接入网设备200之间具有RRC链路。然后,LTE接入层模块可以判断终端100是否满足条件C1,具体可以参考上文介绍,在此不再赘述。若终端100满足条件C1,LTE接入层模块可以启动定时器D1。
若定时器D1超时,终端100没有接收到异系统测量控制消息。LTE接入层模块可以向NR接入层模块发送搜网请求。
NR接入层模块响应该搜网请求,在5G频段上搜索5G小区。若搜索到5G小区,且5G小区的信号质量高于门限值。NR接入层模块向LTE接入层模块发送搜网成功消息。
LTE接入层模块可以响应该搜网成功消息,主动释放LTE(4G)的RRC链路,即释放LTE接入层模块和接入网设备200之间的RRC链路。
LTE接入层模块可以向NR接入层模块发送链路释放成功消息。NR接入层模块,在收到链路释放成功消息后,可以尝试接入5G小区。具体可以通过随机接入程序尝试接入5G小区。
在一些实施例中,NR接入层模块有可能接入5G小区失败,例如,在随机接入程序中,在定时器超时时,NR接入层模块没有接收到接入网设备300发送的竞争解决结果,则说明接入5G小区失败。当NR接入层模块接入5G小区失败时,LTE接入层模块可以向接入网设备200发送RRC连接重建立请求。接入网设备200响应于RRC连接重建立请求,向LTE接入层模块发送RRC连接重建立消息。LTE接入层模块可以向接入网设备200发送RRC连接重建立完成消息。由此,NR接入层模块可以在接入5G小区失败的情况,重新建立LTE接入层模块和接入网设备200之间的RRC链路,从而可以继续通过4G网络进行原有数据业务。
在一些实施例中,若在5G频段上没有搜索到小区,或者搜索到的小区的信号质量不满足门限值。LTE接入层模块继续维持其和接入网设备200之间的RRC链路。
通过本申请实施例提供的网络接入方法,终端在EPS回落的语音业务结束后的预设时间段内,没有接收到异系统测量控制消息的情况下,终端可以主动搜索5G频段。当搜索到5G小区,且5G小区信号质量满足门限值时,可以本地释放LTE的RRC链路,并尝试接入5G小区,使得终端可以快速返回5G网络,改善用户网络体验。
参阅图12,本申请实施例提供了一种终端1200,终端1200可以执行上述图4或图11所示各方法实施例中终端执行的操作。其中,终端1200可以包括处理器1210、存储器1220和收发器1230。存储器1220中存储有指令,该指令可被处理器1210执行。当该指令在被处理器1210执行时,终端1200可以执行上述图4或图11所示各方法实施例中终端执行的操作。具体而言,处理器1210可以进行数据处理操作,收发器1230可以进行数据发送和/或接收的操作。
参阅图13,本申请实施例提提供了一种芯片系统1300,可应用于终端中。芯片系统1300包括:处理器1310和接口电路1320。处理器1310和接口电路1320连接,用于执行上述图4或图11所示各方法实施例中终端执行的操作。
在一些实施例中,芯片系统1300还包括存储器1330。存储器中存储有指令,该指令可被处理器1310执行。该指令在被处理器1310执行时,芯片系统1300可以执行上述图4或图 11所示各方法实施例中终端执行的操作。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable rom,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
Claims (20)
- 一种网络接入系统,其特征在于,包括4G接入网设备、5G接入网设备和终端;其中,所述终端连接到5G接入网设备,所述5G接入网设备不支持VoNR,和/或,所述5G接入网设备对应的5G核心网设备不支持VoNR;当所述终端进行语音业务时,所述5G接入网设备用于通过EPS回落程序指示所述终端连接到所述4G接入网设备,以使所述终端通过所述4G接入网设备进行所述语音业务;所述终端用于接收用户起始的挂断操作,并响应于所述挂断操作,结束所述语音业务;或者,所述终端用于从所述4G接入网设备接收挂断指示,并响应于所述挂断指示,结束所述语音业务;当所述终端和所述4G接入网设备保持RRC连接时,所述终端用于主动向所述4G接入网设备发送测量报告,以使所述终端重新连接到所述5G接入网设备。
- 根据权利要求1所述的系统,其特征在于,所述4G接入网设备用于响应所述测量报告,向所述终端发送异系统测量控制消息,所述异系统测量控制消息用于触发所述终端测量异系统邻区的信号质量。
- 根据权利要求1所述的系统,其特征在于,所述终端用于主动向所述4G接入网设备发送测量报告包括:当在第一时间段内,所述终端没有接收到异系统测量控制消息时,所述终端用于主动向所述4G接入网设备发送所述测量报告,所述第一时间段为所述语音业务结束时或之后起始的时间段。
- 根据权利要求1-3任一项所述的系统,其特征在于,所述终端用于主动向所述4G接入网设备发送测量报告包括:所述终端用于确定所述终端满足第一条件;其中,所述第一条件包括以下至少一项:没有执行时延敏感数据业务,所述语音业务是非紧急呼叫业务,没有处于紧急呼叫回拨模式,所述语音业务的执行时长小于第一阈值,在所述语音业务的执行期间所述终端的移动速度小于第二阈值,没有处于演进型的统一陆地无线接入网络-新空口双连接EN-DC状态,没有处于测试模式;所述终端用于主动向所述4G接入网设备发送所述测量报告。
- 根据权利要求1-3任一项所述的系统,其特征在于,所述终端还用于当没有接收到异系统测量控制消息时,主动测量所述5G接入网设备提供的第一网络的信号质量;所述终端还用于当所述第一网络的信号质量高于第一门限时,主动断开所述终端和所述4G接入网设备的RRC连接,并尝试接入所述第一网络。
- 根据权利要求5所述的系统,其特征在于,所述终端还用于当所述终端尝试接入所述第一网络失败时,向所述4G接入网设备发送RRC连接重建立请求,以重新建立所述终端和所述4G接入网设备的RRC连接。
- 一种网络接入方法,其特征在于,包括:终端连接到5G接入网设备,所述5G接入网设备不支持VoNR,和/或,所述5G接入网设备对应的5G核心网设备不支持VoNR;当所述终端进行语音业务时,所述终端连接到4G接入网设备,以通过所述4G接入网设备进行所述语音业务,其中,所述终端通过所述5G接入网设备的指示接入到所述4G接入网设备,所述指示为所述5G接入网设备通过EPS回落程序进行的指示;所述终端接收用户起始的挂断操作,并响应于所述挂断操作,结束所述语音业务;或者,所述终端从所述4G接入网设备接收挂断指示,并响应于所述挂断指示,结束所述语音业务;当所述终端和所述4G接入网设备保持RRC连接时,所述终端主动向所述4G接入网设备发送测量报告,以使所述终端重新连接到所述5G接入网设备。
- 根据权利要求7所述的方法,其特征在于,所述方法还包括:所述终端从所述4G接入网设备接收异系统测量控制消息,所述异系统测量控制消息为所述4G接入网设备响应于所述测量报告而发送的消息;所述终端响应于所述异系统测量控制消息,测量异系统邻区的信号质量。
- 根据权利要求7所述的方法,其特征在于,所述终端主动向所述4G接入网设备发送测量报告包括:当在第一时间段内,所述终端没有接收到异系统测量控制消息时,所述终端主动向所述4G接入网设备发送所述测量报告,所述第一时间段为所述语音业务结束时或之后起始的时间段。
- 根据权利要求7-9任一项所述的方法,其特征在于,所述终端主动向所述4G接入网设备发送测量报告包括:所述终端确定所述终端满足第一条件;其中,所述第一条件包括以下至少一项:没有执行时延敏感数据业务,所述语音业务是非紧急呼叫业务,没有处于紧急呼叫回拨模式,所述语音业务的执行时长小于第一阈值,在所述语音业务的执行期间所述终端的移动速度小于第二阈值,没有处于演进型的统一陆地无线接入网络-新空口双连接EN-DC状态,没有处于测试模式;所述终端主动向所述4G接入网设备发送所述测量报告。
- 根据权利要求7-9任一项所述的方法,其特征在于,所述方法还包括:当所述终端没有接收到异系统测量控制消息时,所述终端主动测量所述5G接入网设备提供的第一网络的信号质量;当所述第一网络的信号质量高于第一门限时,所述终端主动断开所述终端和所述4G接入网设备的RRC连接,并尝试接入所述第一网络。
- 根据权利要求11所述的方法,其特征在于,所述方法还包括:当所述终端尝试接入所述第一网络失败时,向所述4G接入网设备发送RRC连接重建立请求,以重新建立所述终端和所述4G接入网设备的RRC连接。
- 一种终端,其特征在于,包括:处理器、存储器、收发器;所述存储器用于存储计算机指令;当所述终端运行时,所述处理器执行所述计算机指令,使得所述终端执行:连接到5G接入网设备,所述5G接入网设备不支持VoNR,和/或,所述5G接入网设备对应的5G核心网设备不支持VoNR;当所述终端进行语音业务时,连接到4G接入网设备,以通过所述4G接入网设备进行所述语音业务,其中,所述终端通过所述5G接入网设备的指示接入到所述4G接入网设备,所述指示为所述5G接入网设备通过EPS回落程序进行的指示;接收用户起始的挂断操作,并响应于所述挂断操作,结束所述语音业务;或者,从所述4G接入网设备接收挂断指示,并响应于所述挂断指示,结束所述语音业务;当所述终端和所述4G接入网设备保持RRC连接时,主动向所述4G接入网设备发送测量报告,以使所述终端重新连接到所述5G接入网设备。
- 根据权利要求13所述的终端,其特征在于,所述处理器执行所述计算机指令,使得所述终端还执行:从所述4G接入网设备接收异系统测量控制消息,所述异系统测量控制消息为所述4G接入网设备响应于所述测量报告而发送的消息;响应于所述异系统测量控制消息,测量异系统邻区的信号质量。
- 根据权利要求13所述的终端,其特征在于,所述处理器执行所述计算机指令,使得所述终端还执行:当在第一时间段内,所述终端没有接收到异系统测量控制消息时,主动向所述4G接入网设备发送所述测量报告,所述第一时间段为所述语音业务结束时或之后起始的时间段。
- 根据权利要求13-15任一项所述的终端,其特征在于,所述处理器执行所述计算机指令,使得所述终端还执行:确定所述终端满足第一条件;其中,所述第一条件包括以下至少一项:没有执行时延敏感数据业务,所述语音业务是非紧急呼叫业务,没有处于紧急呼叫回拨模式,所述语音业务的执行时长小于第一阈值,在所述语音业务的执行期间所述终端的移动速度小于第二阈值,没有处于演进型的统一陆地无线接入网络-新空口双连接EN-DC状态,没有处于测试模式;主动向所述4G接入网设备发送所述测量报告。
- 根据权利要求13-15任一项所述的终端,其特征在于,所述处理器执行所述计算机指令,使得所述终端还执行:当所述终端没有接收到异系统测量控制消息时,测量所述5G接入网设备提供的第一网络的信号质量;当所述第一网络的信号质量高于第一门限时,主动断开所述终端和所述4G接入网设备的RRC连接,并尝试接入所述第一网络。
- 根据权利要求17所述的终端,其特征在于,所述处理器执行所述计算机指令,使得 所述终端还执行:当所述终端尝试接入所述第一网络失败时,向所述4G接入网设备发送RRC连接重建立请求,以重新建立所述终端和所述4G接入网设备的RRC连接。
- 一种芯片系统,其特征在于,包括:处理器和接口电路;所述处理器和所述接口电路连接,用于执行指令以使得安装有所述芯片系统的终端执行权利要求7-12任一项所述的方法。
- 一种计算机存储介质,其特征在于,所述计算机存储介质包括计算机指令,当所述计算机指令在终端上运行时,使得所述终端执行权利要求7-12任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010200462.3 | 2020-03-20 | ||
CN202010200462.3A CN113498123B (zh) | 2020-03-20 | 2020-03-20 | 一种网络接入系统、方法及终端 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021185100A1 true WO2021185100A1 (zh) | 2021-09-23 |
Family
ID=77771477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/079350 WO2021185100A1 (zh) | 2020-03-20 | 2021-03-05 | 一种网络接入系统、方法及终端 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113498123B (zh) |
WO (1) | WO2021185100A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114245430A (zh) * | 2021-12-27 | 2022-03-25 | 维沃移动通信有限公司 | 语音接入方法和终端设备 |
CN114339749A (zh) * | 2021-09-29 | 2022-04-12 | 荣耀终端有限公司 | 降低掉话率的方法及终端 |
CN114727346A (zh) * | 2022-03-31 | 2022-07-08 | 联想(北京)有限公司 | 一种异系统重定向方法、装置及电子设备 |
CN115361702A (zh) * | 2022-08-11 | 2022-11-18 | Oppo广东移动通信有限公司 | 新空口承载语音VoNR能力的识别方法和装置 |
CN115915040A (zh) * | 2021-09-30 | 2023-04-04 | 中国移动通信集团北京有限公司 | Eps fb端到端的时延定位方法和装置 |
WO2023236751A1 (zh) * | 2022-05-25 | 2023-12-14 | 大唐移动通信设备有限公司 | 语音回退的信息处理方法、装置、终端及网络侧设备 |
WO2023240453A1 (zh) * | 2022-06-14 | 2023-12-21 | 北京小米移动软件有限公司 | 网络切换方法及装置、存储介质 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113225781B (zh) * | 2021-03-22 | 2023-09-26 | 闻泰通讯股份有限公司 | 网络接入方法、装置、电子设备和计算机可读存储介质 |
CN114040461B (zh) * | 2021-11-26 | 2024-06-21 | 维沃移动通信有限公司 | 通话方法及装置 |
CN114698046B (zh) * | 2021-12-15 | 2024-05-14 | 荣耀终端有限公司 | 呼叫接收方法和通信装置 |
CN114245418B (zh) * | 2022-01-14 | 2024-06-25 | 北京小米移动软件有限公司 | 驻网方法、装置、电子设备和存储介质 |
CN116801334A (zh) * | 2022-03-16 | 2023-09-22 | 维沃移动通信有限公司 | 语音业务处理方法、设备及可读存储介质 |
CN114760655B (zh) * | 2022-04-15 | 2023-09-29 | 中国电信股份有限公司 | 触发异频测量的方法、装置、产品、介质及设备 |
CN115087062B (zh) * | 2022-06-14 | 2024-05-14 | Oppo广东移动通信有限公司 | 网络切换方法、装置、终端及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019095119A1 (zh) * | 2017-11-14 | 2019-05-23 | Oppo广东移动通信有限公司 | 切换网络的方法、网络设备和终端设备 |
CN109819481A (zh) * | 2017-11-20 | 2019-05-28 | 华为技术有限公司 | 一种网络切换方法及会话管理网元 |
CN110351796A (zh) * | 2018-04-08 | 2019-10-18 | 维沃移动通信有限公司 | 一种网络间互操作的方法、终端及网络单元 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108476449B (zh) * | 2016-03-30 | 2020-10-27 | 华为技术有限公司 | 处理语音业务的方法和终端设备 |
US11184807B2 (en) * | 2017-08-25 | 2021-11-23 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method for enabling network to fall back, terminal device, and access network device |
CN107592644B (zh) * | 2017-09-25 | 2020-11-06 | 中国联合网络通信集团有限公司 | 电路域回落方法、基站及终端 |
WO2019071496A1 (zh) * | 2017-10-11 | 2019-04-18 | Oppo广东移动通信有限公司 | 网络切换之后返回的方法、接入网设备和核心网设备 |
CN110710265B (zh) * | 2018-02-05 | 2021-03-05 | Oppo广东移动通信有限公司 | 一种网络返回方法及装置、计算机存储介质 |
CN110831257B (zh) * | 2018-08-08 | 2021-09-10 | 中国移动通信有限公司研究院 | 一种发起语音业务的方法、终端及基站 |
CN110881193B (zh) * | 2018-09-05 | 2023-05-05 | 中国移动通信有限公司研究院 | 一种针对语音起呼回落的测量方法、终端和网络设备 |
-
2020
- 2020-03-20 CN CN202010200462.3A patent/CN113498123B/zh active Active
-
2021
- 2021-03-05 WO PCT/CN2021/079350 patent/WO2021185100A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019095119A1 (zh) * | 2017-11-14 | 2019-05-23 | Oppo广东移动通信有限公司 | 切换网络的方法、网络设备和终端设备 |
CN109819481A (zh) * | 2017-11-20 | 2019-05-28 | 华为技术有限公司 | 一种网络切换方法及会话管理网元 |
CN110351796A (zh) * | 2018-04-08 | 2019-10-18 | 维沃移动通信有限公司 | 一种网络间互操作的方法、终端及网络单元 |
Non-Patent Citations (1)
Title |
---|
ERICSSON ET AL.: "Return to NR from EPS/RAT Fallback", 3GPP TSG-SA WG2 MEETING #133 S2-19063934, 22 May 2019 (2019-05-22), XP051736273 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114339749A (zh) * | 2021-09-29 | 2022-04-12 | 荣耀终端有限公司 | 降低掉话率的方法及终端 |
CN114339749B (zh) * | 2021-09-29 | 2023-09-19 | 荣耀终端有限公司 | 降低掉话率的方法及终端 |
CN115915040A (zh) * | 2021-09-30 | 2023-04-04 | 中国移动通信集团北京有限公司 | Eps fb端到端的时延定位方法和装置 |
CN114245430A (zh) * | 2021-12-27 | 2022-03-25 | 维沃移动通信有限公司 | 语音接入方法和终端设备 |
CN114727346A (zh) * | 2022-03-31 | 2022-07-08 | 联想(北京)有限公司 | 一种异系统重定向方法、装置及电子设备 |
WO2023236751A1 (zh) * | 2022-05-25 | 2023-12-14 | 大唐移动通信设备有限公司 | 语音回退的信息处理方法、装置、终端及网络侧设备 |
WO2023240453A1 (zh) * | 2022-06-14 | 2023-12-21 | 北京小米移动软件有限公司 | 网络切换方法及装置、存储介质 |
CN115361702A (zh) * | 2022-08-11 | 2022-11-18 | Oppo广东移动通信有限公司 | 新空口承载语音VoNR能力的识别方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113498123B (zh) | 2023-06-02 |
CN113498123A (zh) | 2021-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021185100A1 (zh) | 一种网络接入系统、方法及终端 | |
US11457497B2 (en) | Connection reestablishment method and apparatus | |
CN110267245B (zh) | 通信控制方法及电子设备 | |
WO2021227615A1 (zh) | 一种提升通话质量的方法及终端 | |
JP2023166438A (ja) | 情報送信方法および装置 | |
US20200120470A1 (en) | Methods, Core Network Node and RAN Node for Enabling Emergency Services | |
WO2019183792A1 (zh) | 一种从低制式网络返回高制式网络的方法和通信装置 | |
US11963027B2 (en) | Measurement method, terminal and network side device | |
CN109862622B (zh) | 上报能力信息的方法、设备及系统 | |
EP3678449A1 (en) | Connection management method, user equipment, core network entity, and system | |
EP3979697A1 (en) | Data transmission method and apparatus, and terminal | |
WO2018137579A1 (zh) | 通信方法和设备 | |
WO2022001573A1 (zh) | 报告传输方法、装置及系统 | |
US20210176684A1 (en) | Terminal camping method, information transmission method, terminal, and network device | |
US20230080142A1 (en) | Communication method, apparatus, and system | |
US10827403B2 (en) | Data transmission method, user equipment, base station, and system | |
US20230276518A1 (en) | Network Connection Method, System, and Related Apparatus | |
CN113676891B (zh) | 一种网络接入方法及终端 | |
US20230239933A1 (en) | Random access method and apparatus, and related device | |
WO2021228238A1 (zh) | 一种网络接入方法及终端 | |
JP2023539805A (ja) | 機器の検索と登録方法、ネットワーク側機器 | |
WO2024108760A1 (zh) | 用于避免业务失败的方法及装置 | |
WO2023174321A1 (zh) | 语音业务的实现方法、装置及终端 | |
CN117279061B (zh) | 通话方法和终端 | |
WO2023109679A1 (zh) | 语音回落方法、装置、终端及可读存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21771018 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21771018 Country of ref document: EP Kind code of ref document: A1 |