WO2021185099A1 - 电源合路电路、诊断方法、装置及系统 - Google Patents

电源合路电路、诊断方法、装置及系统 Download PDF

Info

Publication number
WO2021185099A1
WO2021185099A1 PCT/CN2021/079318 CN2021079318W WO2021185099A1 WO 2021185099 A1 WO2021185099 A1 WO 2021185099A1 CN 2021079318 W CN2021079318 W CN 2021079318W WO 2021185099 A1 WO2021185099 A1 WO 2021185099A1
Authority
WO
WIPO (PCT)
Prior art keywords
field effect
effect tube
power
input voltage
voltage
Prior art date
Application number
PCT/CN2021/079318
Other languages
English (en)
French (fr)
Inventor
程佳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21772345.1A priority Critical patent/EP4113784A4/en
Publication of WO2021185099A1 publication Critical patent/WO2021185099A1/zh
Priority to US17/948,341 priority patent/US20230015317A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity

Definitions

  • This application relates to the field of power supply technology, and in particular to a power combining circuit, diagnosis method, device and system.
  • a dual power supply is usually used to power the circuit system.
  • the power combining circuit came into being.
  • the existing power combined circuit is usually used to supply power for low-power low-voltage circuit systems, and failing (such as short circuit or open circuit) devices in the power combined circuit cannot be diagnosed, which leads to a decrease in the safety of the low-voltage circuit system.
  • This application provides a power combining circuit, a diagnosis method, a device, and a system, which can diagnose failed devices in the power combining circuit, thereby improving the safety of the load circuit system.
  • the present application provides a power combining circuit, which is applied to a power combining circuit system, and the power combining circuit includes a combining circuit module and a control module.
  • the combined circuit module includes a first power supply, a first field effect tube, a second power supply, and a second field effect tube; the first power supply is connected to the input end of the first field effect tube, and the second power supply is connected to the second field effect tube.
  • the input end of the first field effect tube and the output end of the second field effect tube are both connected to the power input end of the load circuit.
  • the control module is used to control the combining circuit module to supply power to the load circuit and obtain the first input voltage, the second input voltage, and the third input voltage.
  • the control module is also used to diagnose whether the combined circuit module is abnormal based on the acquired voltage.
  • the first input voltage is the input side voltage of the first field effect tube
  • the second input voltage is the input side voltage of the second field effect tube
  • the third input voltage is the voltage at the power input terminal of the load circuit.
  • the power combining circuit can be diagnosed before it supplies power to the load circuit, thereby improving the safety of the use of the load circuit.
  • the power combining circuit uses a field effect tube as a key component. Since the voltage drop of the field effect tube when it is turned on is extremely small (millivolt level), even if the current flowing through the field effect tube is large, the field effect tube will not generate excessive heat loss. That is to say, the power combining circuit can provide multiple (such as dual) power supplies for a higher-power low-voltage load circuit.
  • the above-mentioned control module is also used to diagnose whether the combined circuit module is abnormal based on the acquired voltage and preset parameters.
  • the preset parameters include at least one of the following: the minimum forward voltage drop of the internal body diode of the first field effect tube, the maximum forward voltage drop of the internal body diode of the first field effect tube, and the second field effect tube The minimum forward voltage drop of the internal body diode of the second FET, the maximum forward voltage drop of the internal body diode of the second FET, the maximum voltage difference of the first FET calculated based on the maximum current of the load circuit, or based on the load The maximum voltage difference of the second FET calculated by the maximum current of the circuit.
  • the power combining circuit can be diagnosed.
  • the aforementioned power combining circuit further includes a sampling module.
  • the sampling module is respectively connected with the input end of the first field effect tube, the input end of the second field effect tube and the power input end of the load circuit.
  • the sampling module is used to collect the first input voltage, the second input voltage and the third input voltage.
  • the above-mentioned control module is also used to obtain the first input voltage, the second input voltage, and the third input voltage collected by the sampling module. In this case, by collecting the first input voltage, the second input voltage, and the third input voltage, the power combining circuit can be diagnosed.
  • the above-mentioned control module is also used to control the states of the first field effect tube and the second field effect tube; the states include an on state and an off state.
  • the control module is also used to obtain the first input voltage, the second input voltage, and the third input voltage of the first field effect tube and the second field effect under the target state combination collected by the sampling module.
  • the target state combination includes any one of the following: the first field effect tube and the second field effect tube are both in the on state; the first field effect tube and the second field effect tube are both in the off state; the first field effect tube is In the on state, the second field effect tube is in the off state; the first field effect tube is in the off state, and the second field effect tube is in the on state.
  • the control module detects the first input voltage, the second input voltage, and the third input voltage by combining the first field effect transistor corresponding to the first power source and the second field effect transistor corresponding to the second power source in different state combinations, and determines In each state combination, whether the values of the first input voltage, the second input voltage, and the third input voltage are within the theoretical range, so as to diagnose the failure of the device in the combined circuit module.
  • the foregoing combining circuit module further includes: a first combining controller and a second combining controller.
  • the first combining controller is connected with the excitation end of the first field effect tube
  • the second combining controller is connected with the excitation end of the second field effect tube.
  • the above-mentioned control module is also used to control the first combining controller to output a first excitation voltage, and the first excitation voltage is used to control the first field effect transistor to be in a conducting state.
  • the above-mentioned control module is also used to control the second combining controller to output a second excitation voltage, and the second excitation voltage is used to control the second field effect transistor to be in a conducting state.
  • the above-mentioned control module is also used to: if the diagnosis result of the combining circuit module is normal, control the first field effect transistor and the second field effect transistor to be in a conducting state to control the combination
  • the circuit circuit module supplies power to the load circuit; if the diagnosis result of the combined circuit module is abnormal, an alarm signal is output.
  • an alarm signal can be output to prompt the user to stop powering on the load circuit to ensure that the load circuit will not be due to power supply circuit during the power supply process.
  • the circuit is abnormal and malfunctions, thereby improving the safety of the load circuit.
  • the power of the control module is less than or equal to a preset threshold, and the power of the load circuit is greater than or equal to the preset threshold.
  • the present application provides a method for diagnosing a power combining circuit, and the method is used in a power combining circuit system.
  • the power combining circuit system includes a power combining circuit.
  • the power combining circuit includes a combining circuit module and a control module.
  • the combined circuit module includes a first power supply, a first field effect tube, a second power supply, and a second field effect tube.
  • the first power supply is connected to the input end of the first field effect tube
  • the second power supply is connected to the input end of the second field effect tube
  • the output end of the first field effect tube and the output end of the second field effect tube are both connected to the load.
  • the power port of the circuit is connected.
  • the control module is used to control the combining circuit module to supply power to the load circuit.
  • the method is executed by the control module.
  • the method includes: obtaining a first input voltage, a second input voltage, and a third input voltage, where the first input voltage is the first input voltage.
  • the input side voltage of the field effect tube, the second input voltage is the input side voltage of the second field effect tube, and the third input voltage is the voltage of the power supply terminal of the load circuit; based on the obtained voltage, it is diagnosed whether the combined circuit module is abnormal.
  • the above “diagnosing whether the combined circuit module is abnormal based on the acquired voltage” includes: diagnosing whether the combined circuit module is abnormal based on the acquired voltage and preset parameters.
  • the preset parameters include at least one of the following: the minimum forward voltage drop of the internal body diode of the first field effect tube, the maximum forward voltage drop of the internal body diode of the first field effect tube, and the second field effect tube The minimum forward voltage drop of the internal body diode of the second FET, the maximum forward voltage drop of the internal body diode of the second FET, the maximum voltage difference of the first FET calculated based on the maximum current of the load circuit, or based on the load The maximum voltage difference of the second FET calculated by the maximum current of the circuit.
  • the above-mentioned power combining circuit further includes a sampling module.
  • the sampling module is respectively connected with the input end of the first field effect tube, the input end of the second field effect tube and the power input end of the load circuit.
  • the sampling module is used to collect the first input voltage, the second input voltage and the third input voltage.
  • the aforementioned "acquiring the first input voltage, the second input voltage, and the third input voltage" includes: obtaining the first input voltage, the second input voltage, and the third input voltage collected by the sampling module.
  • the above method further includes: controlling the states of the first field effect tube and the second field effect tube, and the states include an on state and an off state.
  • the above "acquiring the first input voltage, the second input voltage and the third input voltage collected by the sampling module” includes: obtaining the first input voltage of the first field effect tube and the second field effect tube collected by the sampling module in the target state combination , The second input voltage and the third input voltage.
  • the target state combination includes any one of the following: the first field effect tube and the second field effect tube are both in the on state; the first field effect tube and the second field effect tube are both in the off state; the first field effect tube is In the on state, the second field effect tube is in the off state; the first field effect tube is in the off state, and the second field effect tube is in the on state.
  • the above-mentioned combination circuit module further includes a first combination controller and a second combination controller.
  • the first combination controller is connected to the excitation end of the first field effect transistor, and the second The combination controller is connected with the excitation end of the second field effect tube.
  • the above "controlling the state of the first field effect tube and the second field effect” includes: controlling the first combining controller to output a first excitation voltage, and the first excitation voltage is used to control the first field effect tube to be in a conducting state; and controlling The second combining controller outputs a second excitation voltage, and the second excitation voltage is used to control the second field effect transistor to be in a conducting state.
  • the above method further includes: if the diagnosis result of the combined circuit module is normal, controlling the first field effect transistor and the second field effect transistor to be in a conducting state to control the combined circuit The module supplies power to the load circuit. If the diagnosis result of the combined circuit module is abnormal, an alarm signal will be output.
  • the power of the control module is less than or equal to the preset threshold, and the power of the load circuit is greater than or equal to the preset threshold.
  • an embodiment of the present application provides a diagnostic device for a power combining circuit, and the diagnostic device is applied to a power combining circuit in a power combining circuit system.
  • the diagnostic device includes: a memory and one or more processors, and the memory and the processor are coupled.
  • the memory is used to store computer instructions
  • the processor is used to call the computer instructions to execute any method provided in the second aspect and any of its possible design methods.
  • the present application provides a power combining circuit system.
  • the power combining circuit system includes a load circuit and the power combining circuit provided in the first aspect and any of its possible design methods, wherein the The power combining circuit is used to supply power to the load circuit.
  • the present application provides a computer-readable storage medium, such as a non-transitory computer-readable storage medium.
  • a computer program (or instruction) is stored thereon, and when the computer program (or instruction) runs on the diagnostic device of the power combining circuit, the diagnostic device is made to execute any one of the possible implementations provided in the second aspect. Either method.
  • a computer program product which when running on a diagnosis device of a power combining circuit, enables any method provided in any possible implementation manner in the second aspect to be executed.
  • a chip system including a processor, configured to call and run a computer program stored in the memory from a memory, and execute any method provided in the implementation manner in the second aspect.
  • FIG. 1 is a schematic diagram of a power combining circuit provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of another power combining circuit provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a power combining circuit system provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of another power combining circuit system provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a combined circuit module provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of another combination circuit module provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a control module provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of another power combining circuit system provided by an embodiment of the application.
  • FIG. 9 is a schematic flowchart of a method for diagnosing a power combining circuit according to an embodiment of the application.
  • the embodiment of the present application provides a power combining circuit and system, which solves the problem of high heat loss of the power combining circuit when at least two power sources are provided for a load circuit with higher power.
  • the present application also provides a method and device for diagnosing a power combining circuit, and the method is applied to a power combining circuit system. This method can diagnose failed devices in the power combining circuit when the power combining circuit system is powered on, and alert the user when the diagnosis result is abnormal.
  • the load circuit can be a circuit system with any function, for example, it can be an ECU that implements multiple functions, such as a vehicle controller (VCU) in an electric vehicle control system, and an electronic stability program (electronic stability program). , ESP) and advanced driving assistance system (advanced driving assistance system, ADAS), etc.
  • VCU and ESP are ECUs with lower power (for example, power lower than 100W), ADAS with higher autopilot level (for example, L3 (level 3) or L4 (level 4) or higher) has higher power ( For example, an ECU with a power higher than 100W).
  • the embodiment of the present application is described by taking an example in which the power combining circuit provides dual power supply for the load circuit.
  • FIG. 1 shows a power combining circuit 10 provided by an embodiment of the present application.
  • the power combining circuit 10 is used to combine two power sources (for example, power source 1 and power source 2) into one power source (ie, combined power source) to supply power to the load circuit 14.
  • the power combining circuit 10 includes a combining circuit module 11, a control module 12 and a sampling module 13.
  • the combined circuit module 11 is used to provide a combined circuit of two power sources.
  • the control module 12 is used for diagnosing the combining circuit module 11 when the power combining circuit system is powered on, and controlling the combining circuit module 11 to provide dual power supply for the load circuit when the diagnosis result is normal.
  • the control module 12 may implement its functions through a micro controller unit (MCU), or may implement its functions through an ECU with a certain function, which is not limited.
  • the sampling module 13 is used to collect the voltage on the input side of the combining circuit module 11 and the input voltage of the load circuit, so that the control module 12 can diagnose the combining circuit module 11 according to the collected voltage.
  • sampling module 13 and the control module 12 may exist independently or integrated together, which is not limited.
  • the embodiment of the present application takes the integration of the control module 12 and the sampling module 13 as an example for description. It can be understood that the control module 12 described below includes a sampling module 13.
  • control module 12 needs to be powered separately to ensure its normal operation.
  • a dual combined power supply 15 controlled by diodes can generally be used to supply power to the control module 12.
  • power supply 1 is connected to diode D1
  • power supply 2 is connected to diode D2
  • D1 and D2 are connected to the power input terminals of control module 12 at the same time, so as to provide control module 12 with dual combined power supply.
  • the power supply 1 and the power supply 2 shown in FIG. 2 are respectively the power supply 1 and the power supply 2 to which the combining circuit module 11 in FIG. 1 is connected. Due to the inherent voltage drop of the diode itself, the diode-controlled dual combined power supply 15 cannot afford a higher power (for example, a power higher than 100W (watt)) low voltage (for example, lower than 48V (volt)) load circuit.
  • the MCU or ECU that implements the functions of the control module 12 is usually a low-power MCU or ECU.
  • the ECU may be the aforementioned VCU.
  • the power combining circuit 10 provided in the embodiment of the present application shown in FIG. 1 can provide dual power supply for a higher-power low-voltage load circuit. For details, please refer to the following description, which will not be repeated here.
  • the embodiment of the present application also provides a power combining circuit system, and the above-mentioned power combining circuit 10 can be applied to the power combining circuit system.
  • the power combining circuit system also includes a load circuit 14. Wherein, the power combining circuit 10 is used to provide dual power supply for the load circuit.
  • the power combining circuit 10 can be used as an independent electronic unit to provide dual power supply for any load circuit 14.
  • the load circuit 14 may be an ECU having any function in the above-mentioned electric vehicle.
  • the control module 12 in the power combining circuit 10 may be an independent MCU.
  • the combining circuit module 11 and the control module 12 in the power combining circuit 10 can be integrated in different circuit systems, respectively, and provide dual power for the circuit system of the integrated combining circuit module 11. powered by.
  • the different circuit systems may be different ECUs.
  • the combined circuit module 11 may be integrated in the ECU 1
  • the control module 12 may be integrated in the ECU 2.
  • the control module 12 in the ECU 2 controls the combining circuit module 11 in the ECU 1, so as to realize the dual power supply for the ECU 1 load circuit (corresponding to the aforementioned load circuit 14).
  • ECU 1 may be the aforementioned ADAS
  • ECU 2 may be the aforementioned VCU, which is not limited.
  • the combining circuit module 11 and the control module 12 in the power combining circuit 10 may also be integrated in the same circuit system, and provide dual power supply for the circuit system.
  • the circuit system may be an ECU.
  • both the combining circuit module 11 and the control module 12 can be integrated in the ECU 3 and serve as the power circuit of the load circuit of the ECU 3 (corresponding to the load circuit 14 mentioned above) to provide dual power supply for it.
  • the control module 12 can implement its functions through the MCU integrated in the ECU 3.
  • the combining circuit module 11 and the control module 12 in the power combining circuit 10 shown in FIG. 1 will be described in detail below.
  • FIG. 5 shows a combination circuit module 11 provided by an embodiment of the present application.
  • the combining circuit module 11 includes a field effect tube Q1, a combining controller U1, a field effect tube Q2, and a combining controller U2.
  • Q1 and Q2 are both N-channel field effect transistors.
  • Q1 corresponds to the combining controller U1
  • Q2 corresponds to the combining controller U2.
  • Q1 includes two states: on and off.
  • the internal resistance of Q1 is very small (for example, in the milliohm level). In this case, even if the current through Q1 is large, Q1 will not generate too much heat.
  • the load circuit connected to Q1 can be a high-power low-voltage load circuit.
  • Q1 When Q1 is in the off state, Q1 does not conduct current.
  • Q2 also includes two states of on and off. For the related description of Q2, please refer to the description of Q1, which will not be repeated.
  • Q1 and Q2 in the power combining circuit 10 can also be P-channel field effect transistors, or, among Q1 and Q2, one is an N-channel field effect transistor and the other is a P-channel field effect transistor.
  • the field effect transistor is not limited in the embodiment of this application. In FIG. 5, only the field effect transistors in which both Q1 and Q2 are N-channels are taken as an example for illustration.
  • the first terminal Q11 of Q1 (corresponding to the excitation terminal of the first field effect transistor in the embodiment of the present application) can be connected to the excitation port U11 of the combining controller U1.
  • the enable terminal U14 of the combined controller U1 When the enable terminal U14 of the combined controller U1 is activated, the combined controller U1 is in a working state. At this time, the combining controller U1 can input the first excitation voltage to the first terminal Q11 of Q1 through the excitation port U11 to excite Q1 to be in a conducting state.
  • the enable terminal U14 of the combined controller U1 is closed, the combined controller U1 is in a non-working state, and at this time, Q1 is in an off state.
  • the first terminal Q11 of Q1 may be a gate, and the voltage value of the first excitation voltage needs to be greater than or equal to the threshold voltage value for making Q1 in a conducting state.
  • the activation or deactivation of the enable terminal U14 of the combining controller U1 can be controlled by a control signal sent by the control module 12.
  • the control module 12 For a detailed description, please refer to the description of the control module 12 below, which will not be repeated here.
  • the first terminal Q21 of Q2 corresponds to the excitation terminal of the second field effect transistor in the embodiment of the application) and can be connected to the excitation port U21 of the combining controller U2.
  • the enable terminal U24 of the combined controller U2 is activated, the combined controller U2 is in the working state.
  • the combining controller U2 can input the second excitation voltage to the first terminal Q21 of Q2 through the excitation port U21 to excite Q2 to be in a conducting state.
  • the enable terminal U24 of the combined controller U2 is closed, the combined controller U2 is in a non-working state, and at this time, Q2 is in an off state.
  • the first terminal Q21 of Q2 may be a gate, and the voltage value of the second excitation voltage needs to be greater than or equal to the threshold voltage value for making Q2 in the on state.
  • the activation or deactivation of the enable terminal U24 of the combining controller U2 can be controlled by a control signal sent by the control module 12.
  • the control module 12 For a detailed description, please refer to the description of the control module 12 below, which will not be repeated here.
  • the second terminal Q12 of Q1 (corresponding to the input terminal of the first FET in the embodiment of the present application) can be connected to the power supply 1, and the second terminal Q12 of Q1 can be a source. It can be understood that, between the second terminal Q12 of Q1 and the power supply 1, devices such as a voltage stabilizing device or a fuse (not shown in FIG. 5) may also be included.
  • the second terminal Q22 of Q2 (corresponding to the input terminal of the second FET in the embodiment of the present application) can be connected to the power supply 2, and the second terminal Q22 of Q2 can be a source. It can be understood that, between the second terminal Q22 of Q2 and the power supply 2, devices such as voltage stabilizing devices or fuses (not shown in FIG. 5) may also be included.
  • both Q1 and Q2 are P-channel field effect transistors, both the second terminal Q12 of Q1 and the second terminal Q22 of Q2 can be drains. At this time, the drain of Q1 is connected to power supply 1, and the drain of Q2 is connected to power supply 2.
  • the second terminal Q12 of Q1 can also be connected to the port U12 of the combining controller U1.
  • the power supply 1 is connected to the port U12 of the combining controller U1.
  • the power supply 1 can be used as the power supply of the combining controller U1, so that the combining controller U1 is in a power-on standby state.
  • the combining controller U1 can also collect the first input voltage of the second terminal Q12 of Q1 through the port U12, and the first input voltage is the input side voltage of Q1.
  • the third terminal Q13 of Q1 (corresponding to the output terminal of the first FET in the embodiment of the present application) can be connected to the port U13 of the combining controller U1.
  • the enable terminal U14 of the combining controller U1 When the enable terminal U14 of the combining controller U1 is activated, the combining controller U1 can collect the first output voltage of the third terminal Q13 of Q1 through the port U13, and the first output voltage is the voltage on the output side of Q1.
  • the combining controller U1 controls the output voltage of the excitation port U11 to be lower than the first excitation voltage, or combining The controller U1 controls the excitation port U11 to stop outputting voltage, so that Q1 is in an off state. In this way, current can be prevented from flowing back to the power supply 1.
  • the second terminal Q22 of Q2 can also be connected to the port U22 of the combining controller U2.
  • the power supply 2 is connected to the port U22 of the combining controller U2.
  • the power supply 2 can be used as the power supply of the combiner controller U2, so that the combiner controller U2 is in a power-on standby state.
  • the combining controller U2 can also collect the second input voltage of the second terminal Q22 of Q2 through the port U22, and the second input voltage is the input side voltage of Q2 .
  • the third terminal Q23 of Q2 (corresponding to the output terminal of the second FET in the embodiment of the present application) can be connected to the port U23 of the combining controller U2.
  • the combining controller U2 can collect the second output voltage of the third terminal Q23 of Q2 through the port U23, and the second output voltage is the voltage on the output side of Q2.
  • the combining controller U2 controls the output voltage of the excitation port U21 to be lower than the second excitation voltage, or combining
  • the controller U2 controls the excitation port U21 to stop outputting voltage, so that Q2 is in the cut-off state. In this way, current can be prevented from flowing back to the power supply 2.
  • the third terminal Q13 of Q1 and the third terminal Q23 of Q2 can both be connected to a load circuit (not shown in Fig. 5) to serve as a combined power supply to supply power to the load circuit.
  • the third terminal Q13 of Q1 and the third terminal Q23 of Q2 are both drains.
  • the third terminal Q13 of Q1 and the third terminal Q23 of Q2 can both be sources, that is, the source of Q1 and the source of Q2 are respectively It is connected to the load circuit and used as a combined power supply to supply power to the load circuit.
  • the third terminal Q13 of Q1 is the drain.
  • Q2 is a P-channel field effect transistor, the third terminal Q23 of Q2 is the source.
  • the drain of Q1 and the source of Q2 are respectively connected to the load circuit to serve as a combined power supply to supply power to the load circuit.
  • the third terminal Q13 of Q1 is the source.
  • Q2 is an N-channel field effect transistor, the third terminal Q23 of Q2 is the drain.
  • the source of Q1 and the drain of Q2 are respectively connected to the load circuit to serve as a combined power supply to supply power to the load circuit.
  • FIG. 6 shows another combination circuit module 11 provided by an embodiment of the present application.
  • the difference from the combination circuit module shown in FIG. 5 is that only one combination controller is provided in FIG. .
  • Q1 and Q2 in the combined circuit module 11 are both N-channel field effect transistors.
  • Q1 and Q2 share a combined controller U1.
  • the interconnection between Q1, power supply 1 and the combination controller U1 can refer to the description of the interconnection between Q1, power supply 1 and the combination controller U1 in the combination circuit module 11 in FIG.
  • the interconnection between the circuit controllers U1 can refer to the description of the interconnection between Q2, the power supply 2 and the circuit controller U2 in the combination circuit module 11 in FIG. 5, which will not be repeated here.
  • excitation port U11, the port U12, the port U13, and the enable terminal U14 connected to Q1 in the combining controller U1 are used as the first port group to control the on or off of Q1.
  • the excitation port U15, the port U16, the port U17, and the enable terminal U18 connected to the Q2 in the combining controller U1 are used as a second port group for controlling the on or off of Q2.
  • FIG. 7 shows a schematic structural diagram of a control module 12 provided by an embodiment of the present application.
  • the control module 12 includes the sampling module 13 as an example for description.
  • the control module 12 is used to control the combining circuit module 11 to provide dual power supply to the load circuit.
  • the control module 12 may be an MCU or an ECU, which is not limited.
  • the control module 12 may include a processor 71, an analog-to-digital converter (ADC) 72 (corresponding to the sampling module in the embodiment of the present application), and an input and output interface 73.
  • the control module 12 may also have a memory 74.
  • the ADC 72 (equivalent to the sampling module in the embodiment of the present application), the input/output interface 73, and the memory 74 may be respectively connected and communicated with the processor 71.
  • the processor 71 is the control center of the control module 12. It can be a general-purpose central processing unit (CPU), or other general-purpose processors, digital signal processing (DSP), and application-specific integrated circuits ( application-specific integrated circuit (ASIC), field-programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the processor 71 may include one or more CPUs, such as CPU 0 and CPU 1 shown in FIG. 7.
  • ADC 72 is used to collect the first input voltage of Q1, the second input voltage of Q2, and the third input voltage of the load circuit in the combining circuit module 11.
  • the ADC 72 also sends the collected first input voltage, second input voltage, and third input voltage to the processor 71 for diagnosis and analysis.
  • the first input voltage is the input side voltage of Q1
  • the second input voltage is the input side voltage of Q2
  • the third input voltage is the input voltage of the load circuit, that is, the voltage of the power input terminal of the load circuit.
  • the number of ADC 72 is related to the number of power supplies that the combining circuit module 11 needs to combine. If the number of power supplies that the combination circuit module 11 needs to be combined is m, the number of ADC 72 is m+1. Wherein, m is an integer greater than or equal to 1.
  • the combining circuit module 11 includes two power supplies (power supply 1 and power supply 2) that need to be combined. Therefore, the control module 12 can Including 3 ADC 72 (ADC 72_1, ADC 72_2, ADC 72_3).
  • the ADC 72_1 may be connected to the second terminal Q12 of Q1 through the port 121, and collect the first input voltage VA of the second terminal Q12 of Q1.
  • the ADC 72_2 may be connected to the second terminal Q22 of Q2 through the port 122, and collect the second input voltage VB of the second terminal Q22 of Q2.
  • the ADC 72_3 may be connected to the power input terminal 141 of the load circuit 14 through the port 123, and collect the third input voltage VC of the power input terminal 141 of the load circuit 14.
  • the input and output interface 73 may be a general-purpose input/output (GPIO).
  • the input and output interface 73 is used to send a control signal to the combining circuit module 11 to activate or deactivate the enable terminal of the combining controller in the combining circuit module 11. Furthermore, when the enable terminal of the combining controller in the combining circuit module 11 is activated, the combining controller is in a working state.
  • GPIO general-purpose input/output
  • the combining controller can input an excitation voltage to the field effect tube through the excitation port to make The field effect tube is in the on state; or, when the enable terminal of the combining controller in the combining circuit module 11 is turned off, the combining controller is in a non-working state, so that the field effect tube cannot receive the combining control
  • the excitation voltage input through the excitation port is in the cut-off state.
  • control signal may be a level signal, and the control signal may include at least one of a high-level signal or a low-level signal.
  • the input/output interface 73 may send a high-level signal to the enable terminal of the combiner controller to activate the combiner controller, and the input-output interface 73 may send a low-level signal to the enable terminal of the combiner controller. To turn off the joint controller.
  • the input-output interface 73 may send a low-level signal to the enable terminal of the combiner controller to activate the combiner controller, and the input-output interface 73 may send a high-level signal to the enable terminal of the combiner controller to Close the joint controller.
  • the embodiment of the application does not limit this.
  • the number of input and output interfaces 73 is the same as the number of power supplies that the combining circuit module 11 needs to combine. If the number of power supplies to be combined by the combining circuit module 11 is m, the number of the input and output interfaces 73 is m.
  • the combining circuit module 11 includes two power supplies (power supply 1 and power supply 2) that need to be combined. Therefore, the control module 12 may include two input and output interfaces 73 (port 124 and port 125). ). Wherein, the port 124 of the control module 12 is connected to the enabling terminal U14 of the combining controller U1, and can send a control signal to the enabling terminal U14 of the combining controller U1 according to the instruction of the processor 71.
  • This control signal can be used to activate the combiner controller U1, which in turn makes Q1 in a conducting state. Alternatively, the control signal can be used to turn off the combiner controller U1, thereby making Q1 in the cut-off state.
  • the control signal may include at least one of a high level or a low level, which is not limited.
  • the port 125 of the control module 12 is connected to the enabling terminal U24 of the combining controller U2, and can send a control signal to the enabling terminal U24 of the combining controller U2 according to the instruction of the processor 71.
  • This control signal can be used to activate the combiner controller U2, and then make Q2 in the on state.
  • the control signal can be used to turn off the combiner controller U2, thereby making Q2 in the cut-off state.
  • the ADC 72 and the input/output interface 73 may be integrated with the processor 71.
  • the device integrating the ADC 72, the input/output interface 73, and the processor 71 may be called an MCU.
  • the memory 74 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data structures
  • the desired program code and any other medium that can be accessed by the computer but not limited to this.
  • the memory 74 may exist independently of the processor 71.
  • the memory 74 may be connected to the processor 71 through a bus, and is used to store data, instructions or program codes.
  • the processor 71 calls and executes the instructions or program codes stored in the memory 74, it can implement the diagnosis method of the power combining circuit provided in the embodiment of the present application.
  • the memory 74 may also be integrated with the processor 71.
  • control module 12 does not constitute a limitation on the control module 12.
  • the control module 12 may include more or less components than shown, or a combination of certain components. Some components, or different component arrangements.
  • control module 12 in the power combining circuit 10 described above controls the conduction of the field effect transistor in the combining circuit module 11, so that the power supply 1 and the power supply 2 are combined into one power supply and supply power to the load circuit.
  • an embodiment of the present application also provides a power combining circuit diagnosis method.
  • the diagnosis method is used to diagnose failed devices in the power combining circuit 10, and alarm the user after the fault is diagnosed.
  • FIG. 9 shows a schematic flowchart of a method for diagnosing a power combining circuit provided by an embodiment of the present application.
  • the method is applied to the power combining circuit system shown in FIG. 8.
  • the method may include the following steps:
  • the control module 12 sends a control signal to the combining circuit module 11 to control the state combination of the field effect transistors in the combining circuit module 11 to be obtained.
  • the control module 12 may send the first group of control signals, the second group of control signals, and the third group of control signals to the combining circuit module 11 through the input and output interface after the power combining circuit system shown in FIG. 8 is powered on.
  • Signal and the fourth group of control signals are four groups of control signals sent by the control module 12 to the combining circuit module 11 at different times.
  • each group of control signals in the first group of control signals, the second group of control signals, the third group of control signals, and the fourth group of control signals includes the first signal and the second signal.
  • the first signal is used to control the enable terminal of the combining controller U1 in the combining circuit module 11
  • the second signal is used to control the enabling terminal of the combining controller U2 in the combining circuit module 11.
  • the first signal in the first group of control signals may be used to activate the enable terminal of the combining controller U1 in the combining circuit module 11, so that the combining controller U1 is in a working state.
  • the second signal in the first group of control signals can be used to activate the enable terminal of the combined controller U2, so that the combined controller U2 is in working state.
  • the combining controller U1 can control Q1 to be in a conducting state
  • the combining controller U2 can control Q2 to be in a conducting state.
  • the first signal in the second group of control signals can be used to activate the enable end of the combining controller U1 in the combining circuit module 11, so that the combining controller U1 is in a working state.
  • the second signal in the second group of control signals can be used to turn off the enable end of the combining controller U2 in the combining circuit module 11, so that the combining controller U2 is in a non-working state.
  • the combining controller U1 can control Q1 to be in an on state
  • the combining controller U2 can control Q2 to be in an off state.
  • the first signal in the third group of control signals can be used to activate the enable terminal of the combining controller U2 in the combining circuit module 11, so that the combining controller U2 is in a working state.
  • the second signal in the third group of control signals can be used to turn off the enable end of the combining controller U1 in the combining circuit module 11, so that the combining controller U1 is in a non-working state.
  • the combining controller U2 can control Q2 to be in the on state
  • the combining controller U1 can control Q1 to be in the off state.
  • the first signal in the fourth group of control signals can be used to turn off the enable terminal of the combining controller U1 in the combining circuit module 11, so that the combining controller U1 is in a non-working state.
  • the second signal in the fourth group of control signals can be used to turn off the enable terminal of the combining controller U2 in the combining circuit module 11, so that the combining controller U2 is in a non-working state.
  • the combining controller U1 can control Q1 to be in the cut-off state
  • the combining controller U2 can control Q2 to be in the cut-off state.
  • the embodiment of the present application does not limit the timing of the control module 12 sending the first group of control signals, the second group of control signals, the third group of control signals, and the fourth group of control signals to the combining circuit module 11.
  • the control module 12 may send the first group of control signals, the second group of control signals, the third group of control signals, and the fourth group of control signals to the combining circuit module 11 in sequence.
  • the control module 12 may first send the second group of control signals, and then send the first group of control signals, the third group of control signals, and the fourth group of control signals in sequence.
  • the embodiment of the present application does not limit the time sequence for controlling the control module 12 to obtain the state combination of the field effect transistors in the combining circuit module 11.
  • the control module 12 can sequentially control to obtain the first state combination, the second state combination, the third state combination, and the fourth state combination of the field effect transistors in the combining circuit module 11.
  • the control module 12 can also control to obtain the combination first.
  • the second state combination of the field effect transistor in the circuit module 11 is followed by the third state combination, the first state combination, and the fourth state combination, etc., which is not limited.
  • the states of the field effect transistors in the combining circuit module 11 may be in the first state combination, the second state combination, the third state combination, and the fourth state combination, respectively.
  • the control module 12 obtains the first input voltage, the second input voltage, and the third input voltage of the field effect transistor in the combination circuit module 11 under different state combinations.
  • control module 12 may collect the first input voltage, the second input voltage, and the third input voltage of the field effect transistors in the combination circuit module 11 under different state combinations through the sampling module to obtain the combination circuit module 11 The first input voltage, the second input voltage, and the third input voltage of the FET under different state combinations.
  • the sampling module collects the first input voltage, the second input voltage, and the third input voltage of the field effect transistor in the combination circuit module 11 under different state combinations, and collects The voltage of is sent to the control module 12, so that the control module 12 can obtain the first input voltage, the second input voltage, and the third input voltage of the field effect transistor in the combining circuit module 11 under different state combinations.
  • the first input voltage may be the input side voltage VA of Q1
  • the second input voltage may be the input side voltage VB of Q2
  • the third input voltage may be the input voltage VC of the load circuit.
  • control module 12 may separately collect the first input voltage VA1, the second input voltage VB1, and the third input voltage VC1 when the states of the field effect transistors in the combining circuit module 11 are combined into the first state combination through the ADC.
  • the control control module 12 can separately collect the first input voltage VA2, the second input voltage VB2, and the third input voltage VC2 when the states of the field effect transistors in the combining circuit module 11 are combined into the second state combination through the ADC.
  • the control control module 12 may separately collect the first input voltage VA3, the second input voltage VB3, and the third input voltage VC3 when the states of the field effect transistors in the combining circuit module 11 are combined into the third state combination through the ADC.
  • the control control module 12 can separately collect the first input voltage VA4, the second input voltage VB4, and the third input voltage VC4 when the states of the field effect transistors in the combining circuit module 11 are combined into the fourth state combination through the ADC.
  • the control module 12 diagnoses the combination circuit module 11 based on the first input voltage, the second input voltage, the third input voltage and the preset parameters of the field effect transistors in the combination circuit module 11 under different state combinations.
  • the preset parameters may include: the minimum forward voltage drop of the internal body diode of Q1 (VQ1_D_min), the maximum forward voltage drop of the internal body diode of Q1 (VQ1_D_max), and the forward voltage drop of the internal body diode of Q2
  • control module can diagnose the combined circuit module 11 according to the diagnostic criteria shown in Table 1, and obtain corresponding diagnostic results.
  • the state combination of the field effect transistors in the combining circuit module 11 is the first state combination, that is, both Q1 and Q2 are in the on state.
  • VC1 must meet at the same time: greater than or equal to (VA1-VQ1_max), and greater than or equal to (VB1-VQ2_max). That is, when VC1 is greater than or equal to the larger one of (VA1-VQ1_max) and (VB1-VQ2_max), it means that the combined circuit module 11 is normal. Otherwise, it means that the combined circuit module 11 is abnormal.
  • VA2 is greater than or equal to ((VB2-VQ2_D_min)+VQ1_max)
  • VC2 is greater than or equal to (VA2-VQ1_max)
  • VC4 should be within the normal voltage drop range of the body diodes inside Q1 and Q2. Therefore, when VC4 is between (VA4-VQ1_D_max) and (VA4-VQ1_D_min), or when VC4 is between (VB4-VQ2_D_max) and (VB4-VQ2_D_min), it means that the combined circuit module 11 is normal. Otherwise, it means that the combined circuit module 11 is abnormal.
  • the “four state combinations of the field effect transistors in the combining circuit module 11” are simply referred to as “four state combinations” in the embodiment of the present application.
  • the control module 12 diagnoses the combined circuit module 11 based on the first input voltage, the second input voltage, and the third input voltage collected under the four state combinations, and according to the above-mentioned diagnostic criteria. If all are normal, it means that the combined circuit module 11 is normal. At this time, the control module 12 can continuously control both Q1 and Q2 to be in a conducting state, so as to realize normal power supply for the load circuit. When the diagnosis result of at least one of the four state combinations is abnormal, the control module 12 can control both Q1 and Q2 to be in the cut-off state, and send an alarm message to the user interaction module to remind the user that the power combined circuit system has abnormal.
  • control module 12 diagnoses the combined circuit module 11 based on the first input voltage, the second input voltage, and the third input voltage collected under the combination of the four states, it can be implemented in any of the following ways.
  • the control module 12 can obtain the field effect transistors in the combining circuit module 11 under control.
  • a diagnosis is performed on the combined circuit module 11, and a diagnosis result is obtained.
  • the control module can perform four diagnostics based on the first input voltage, the second input voltage, and the third input voltage collected each time, and obtain four diagnostic results. Then, the control module 12 determines whether the combining circuit module 11 is normal based on the four diagnosis results.
  • control module 12 may stop the diagnosis of the combined circuit module 11 when the first diagnosis result is "abnormal", control Q1 and Q2 to be in the cut-off state, and send alarm information to the user interaction module to Remind the user that there is an abnormality in the power supply circuit system.
  • diagnosis result indicating "abnormal" is not the diagnosis result of the fourth diagnosis
  • the number of times that the control module 12 collects the first input voltage, the second input voltage, and the third input voltage of the combining circuit module 11 is reduced , And reduce the number of times of diagnosing the combining circuit module 11, thereby improving the efficiency of the power combining circuit diagnosis method provided in the embodiment of the present application.
  • control module 12 may also first collect the first input voltage, the second input voltage, and the third input voltage under the four state combinations, and then perform the combination circuit according to the standards in Table 1 above.
  • the circuit module 11 performs a diagnosis to determine whether the combined circuit module 11 is normal.
  • the control module 12 detects the first input voltage, the second input voltage, and the third input voltage under different state combinations of Q1 corresponding to the first power source and Q2 corresponding to the second power source, and determines that in each state combination, Whether the values of the first input voltage, the second input voltage, and the third input voltage are within the theoretical range, and then the failure of the device in the combining circuit module 11 is diagnosed.
  • the embodiments of the present application provide a method for diagnosing the power combining circuit, which can diagnose the power combining circuit before the power combining circuit supplies power to the load circuit. When it is diagnosed that the components in the power combining circuit are abnormal, the power supply to the load circuit can be terminated to ensure that the load circuit will not fail due to the abnormality of the power combining circuit during the power supply process, thereby improving the safety of the load circuit .
  • the embodiments of the present application also provide a power combining circuit and system.
  • the power combining circuit uses a field effect transistor as a key component.
  • the power combining circuit provided in the embodiment of the present application can provide dual or multiple power supply for a higher-power low-voltage load circuit.
  • the embodiments of the present application can divide the functional modules of the diagnosis device of the power combining circuit according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 10 shows a schematic structural diagram of a diagnostic device 100 for a power combining circuit provided by an embodiment of the present application.
  • the diagnostic device 100 is applied to a power combining circuit in a power combining circuit system, and the power combining circuit further includes a combining circuit module.
  • the combined circuit module includes a first power supply, a first field effect tube, a second power supply, and a second field effect tube. Wherein, the first power supply is connected to the input end of the first field effect tube, the second power supply is connected to the input end of the second field effect tube, and the output end of the first field effect tube and the output end of the second field effect tube are both connected to the load.
  • the power port of the circuit is connected.
  • the diagnostic device 100 is used to control the combined circuit module to supply power to the load circuit.
  • the diagnosis device 100 is used for diagnosing the power combined circuit. And it is used to execute the above diagnosis method of the power combining circuit, for example, it is used to execute the method shown in FIG. 9.
  • the diagnosis apparatus 100 may include an acquisition unit 101 and a diagnosis unit 102.
  • the obtaining unit 101 is configured to obtain a first input voltage, a second input voltage, and a third input voltage.
  • the first input voltage is the input side voltage of the first field effect tube
  • the second input voltage is the input side voltage of the second field effect tube
  • the third input voltage is the voltage of the power terminal of the load circuit.
  • the diagnosis unit 102 is configured to diagnose whether the combined circuit module is abnormal based on the obtained voltage.
  • the obtaining unit 101 may be used to perform S102, and the diagnosis unit 102 may be used to perform S103.
  • the diagnosis unit 102 is specifically configured to diagnose whether the combined circuit module is abnormal based on the acquired voltage and preset parameters.
  • the preset parameters include at least one of the following: the minimum forward voltage drop of the internal body diode of the first field effect tube, the maximum forward voltage drop of the internal body diode of the first field effect tube, and the second field effect tube The minimum forward voltage drop of the internal body diode of the second FET, the maximum forward voltage drop of the internal body diode of the second FET, the maximum voltage difference of the first FET calculated based on the maximum current of the load circuit, or based on the load The maximum voltage difference of the second FET calculated by the maximum current of the circuit.
  • the diagnosis unit 102 may be used to execute S103.
  • the aforementioned power combining circuit further includes a sampling module.
  • the sampling module is respectively connected to the input terminal of the first field effect tube, the input terminal of the second field effect tube and the power input terminal of the load circuit, and the sampling module is used to collect the first input voltage, the second input voltage and the third input Voltage.
  • the obtaining unit 101 is specifically configured to obtain the first input voltage, the second input voltage, and the third input voltage collected by the sampling module.
  • the acquiring unit 101 may be used to perform S102.
  • the above-mentioned diagnostic device 100 further includes: a control unit 103 for controlling the states of the first field effect transistor and the second field effect transistor, the states including an on state and an off state.
  • the acquiring unit 101 is specifically configured to acquire the first input voltage, the second input voltage, and the third input voltage of the first field effect tube and the second field effect tube in the target state combination collected by the sampling module; wherein, the target state combination It includes any one of the following: the first field effect tube and the second field effect tube are both in the on state; the first field effect tube and the second field effect tube are both in the off state; the first field effect tube is in the on state, and the first field effect tube is in the on state.
  • the second field effect tube is in an off state; the first field effect tube is in an off state, and the second field effect tube is in an on state.
  • control unit 103 may be used to perform S101, and the acquisition unit 101 may be used to perform S102.
  • the foregoing combining circuit module further includes a first combining controller and a second combining controller.
  • the first combining controller is connected with the excitation end of the first field effect tube
  • the second combining controller is connected with the excitation end of the second field effect tube.
  • the control unit 103 is specifically configured to control the first combining controller to output a first excitation voltage, and the first excitation voltage is used to control the first field effect transistor to be in a conducting state.
  • the control unit 103 is also used to control the second combining controller to output a second excitation voltage, and the second excitation voltage is used to control the second field effect transistor to be in a conducting state.
  • control unit 103 may be used to execute S101.
  • control unit 103 is further configured to, if the diagnosis result of the combined circuit module is normal, control the first field effect transistor and the second field effect transistor to be in a conducting state, so as to control the combined circuit module as a load circuit powered by.
  • the above-mentioned diagnosis device 100 further includes: an output unit 104 for outputting an alarm signal if the diagnosis result of the combined circuit module is abnormal.
  • the power of the diagnostic device 100 is less than or equal to a preset threshold, and the power of the load circuit is greater than or equal to the preset threshold.
  • the functions implemented by the acquisition unit 101, the diagnosis unit 102 and the control unit 103 in the diagnostic apparatus 100 may be implemented by the processor 71 in FIG. 7 executing program instructions in the memory 74.
  • the functions implemented by the output unit 104 can be implemented through the input and output interface 73 in FIG. 7.
  • Another embodiment of the present application further provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the diagnostic device of the power combining circuit executes The steps performed by the diagnostic device of the power combining circuit in the method flow shown in the foregoing method embodiment.
  • the disclosed methods may be implemented as computer program instructions encoded on a computer-readable storage medium in a machine-readable format or encoded on other non-transitory media or articles.
  • the embodiment of the present application also provides a reasonable power supply circuit system, the system includes a power supply combining circuit as shown in FIG. 1 or FIG. , I won’t repeat it here.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer execution instructions When the computer execution instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as a server or a data center that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Electronic Switches (AREA)

Abstract

本申请公开了一种电源合路电路、诊断方法、装置及系统,涉及电源技术领域,该电源合路电路是带有诊断功能的电源合路电路。该电源合路电路系统包括:合路电路模块和控制模块。合路电路模块包括第一电源、第一场效应管、第二电源以及第二场效应管。控制模块用于控制合路电路模块为负载电路供电,并获取第一输入电压、第二输入电压和第三输入电压,以及,基于所获取的电压,诊断合路电路模块是否异常;其中,第一输入电压是第一场效应管的输入侧电压,第二输入电压是第二场效应管的输入侧电压,第三输入电压是负载电路的电源输入端的电压。

Description

电源合路电路、诊断方法、装置及系统
本申请要求于2020年3月20日提交国家知识产权局、申请号为202010203132.X、申请名称为“电源合路电路、诊断方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电源技术领域,尤其涉及一种电源合路电路、诊断方法、装置及系统。
背景技术
为保证电路系统(例如具有各种功能的电子控制单元(electronic control unit,ECU))的可靠用电,通常采用双路电源为电路系统供电。为实现双路电源的供电,电源合路电路应运而生。
现有的电源合路电路通常用于为较低功率的低压电路系统供电,并且无法对电源合路电路中的失效(例如短路或开路)器件进行诊断,导致该低压电路系统的安全性降低。
发明内容
本申请提供了一种电源合路电路、诊断方法、装置及系统,可以对电源合路电路中的失效器件进行诊断,从而提高负载电路系统的安全性。
第一方面,本申请提供了一种电源合路电路,该电源合路电路应用于电源合路电路系统中,该电源合路电路包括合路电路模块和控制模块。其中,合路电路模块包括第一电源、第一场效应管、第二电源以及第二场效应管;第一电源与第一场效应管的输入端连接,第二电源与第二场效应管的输入端连接,第一场效应管的输出端、第二场效应管的输出端均与负载电路的电源输入端连接。控制模块,用于控制合路电路模块为负载电路供电,并获取第一输入电压、第二输入电压和第三输入电压。控制模块还用于基于所获取的电压,诊断合路电路模块是否异常。其中,第一输入电压是第一场效应管的输入侧电压,第二输入电压是第二场效应管的输入侧电压,第三输入电压是负载电路的电源输入端的电压。
通过采用上述电源合路电路,可以在其为负载电路供电前,对电源合路电路进行诊断,从而提高了负载电路使用的安全性。此外,由于电源合路电路以场效应管作为关键器件。由于场效应管在导通时的压降极小(毫伏级),因此,即使流经场效应管的电流较大,场效应管也不会产生过多的热损耗。也就是说,该电源合路电路可以为较高功率的低压负载电路提供多路(如双路)电源供电。
在一种可能的设计方式中,上述控制模块,还用于基于所获取的电压和预设参数,诊断合路电路模块是否异常。其中,预设参数包括以下至少一种:第一场效应管的内部体二极管的正向压降最小值、第一场效应管的内部体二极管的正向压降最大值、第二场效应管的内部体二极管的正向压降最小值、第二场效应管的内部体二极管的正向压降最大值、基于负载电路最大电流计算的第一场效应管的最大压差值,或基于负载电路最大电流计算的第二场效应管的最大压差值。
基于上述获取的第一输入电压、第二输入电压、第三输入电压以及预设参数,即 可对电源合路电路进行诊断。
在另一种可能的设计方式中,上述电源合路电路还包括:采样模块。该采样模块分别与第一场效应管的输入端、第二场效应管的输入端以及负载电路的电源输入端连接。该采样模块,用于采集第一输入电压、第二输入电压和第三输入电压。上述控制模块,还用于获取采样模块采集的第一输入电压、第二输入电压和第三输入电压。这样的话,通过采集第一输入电压、第二输入电压以及第三输入电压,即可对电源合路电路进行诊断。
在另一种可能的设计方式中,上述控制模块,还用于控制第一场效应管和第二场效应管的状态;状态包括导通状态和截止状态。上述控制模块,还用于获取上述采样模块采集的第一场效应管和第二场效应在目标状态组合下的第一输入电压、第二输入电压和第三输入电压。其中,目标状态组合包括以下任一种:第一场效应管和第二场效应管均为导通状态;第一场效应管和第二场效应管均为截止状态;第一场效应管为导通状态,第二场效应管为截止状态;第一场效应管为截止状态,第二场效应管为导通状态。
控制模块通过在第一电源对应的第一场效应管和第二电源对应的第二场效应管在不同状态组合下,检测第一输入电压、第二输入电压以及第三输入电压,并通过确定在每种状态组合下,该第一输入电压、第二输入电压以及第三输入电压的值是否处于理论范围内,进而对合路电路模块中的器件失效做出诊断。
在另一种可能的设计方式中,上述合路电路模块还包括:第一合路控制器和第二合路控制器。其中,第一合路控制器与第一场效应管的激励端连接,第二合路控制器与第二场效应管的激励端连接。上述控制模块,还用于控制第一合路控制器输出第一激励电压,第一激励电压用于控制第一场效应管处于导通状态。上述控制模块,还用于控制第二合路控制器输出第二激励电压,第二激励电压用于控制第二场效应管处于导通状态。
在另一种可能的设计方式中,上述控制模块还用于:若合路电路模块的诊断结果为正常,则控制第一场效应管和第二场效应管均为导通状态,以控制合路电路模块为负载电路供电;若合路电路模块的诊断结果为异常,则输出报警信号。通过该可能的设计方式,当诊断出电源合路电路中的器件存在异常时,可以输出报警信号,以提示用户终止为负载电路上电,以确保负载电路不会在供电过程中由于电源合路电路的异常而出现故障,从而提高了负载电路使用的安全性。
在另一种可能的设计方式中,上述控制模块的功率小于等于预设阈值,上述负载电路的功率大于等于预设阈值。
第二方面,本申请提供了一种电源合路电路的诊断方法,该方法用于电源合路电路系统。该电源合路电路系统包括电源合路电路。该电源合路电路包括合路电路模块和控制模块。其中,合路电路模块包括第一电源、第一场效应管、第二电源以及第二场效应管。这里,第一电源与第一场效应管的输入端连接,第二电源与第二场效应管的输入端连接,第一场效应管的输出端、第二场效应管的输出端均与负载电路的电源端口连接。该控制模块用于控制合路电路模块为负载电路供电,该方法由控制模块执行,该方法包括:获取第一输入电压、第二输入电压和第三输入电压,其中,第一输 入电压是第一场效应管的输入侧电压,第二输入电压是第二场效应管的输入侧电压,第三输入电压是负载电路的电源端的电压;基于所获取的电压,诊断合路电路模块是否异常。
在一种可能的设计方式中,上述“基于所获取的电压,诊断合路电路模块是否异常”包括:基于所获取的电压和预设参数,诊断合路电路模块是否异常。其中,预设参数包括以下至少一种:第一场效应管的内部体二极管的正向压降最小值、第一场效应管的内部体二极管的正向压降最大值、第二场效应管的内部体二极管的正向压降最小值、第二场效应管的内部体二极管的正向压降最大值、基于负载电路最大电流计算的第一场效应管的最大压差值,或基于负载电路最大电流计算的第二场效应管的最大压差值。
在另一种可能的设计方式中,上述电源合路电路还包括采样模块。该采样模块分别与第一场效应管的输入端、第二场效应管的输入端以及负载电路的电源输入端连接。该采样模块用于采集第一输入电压、第二输入电压和第三输入电压。上述“获取第一输入电压、第二输入电压和第三输入电压”包括:获取采样模块采集的第一输入电压、第二输入电压和第三输入电压。
在另一种可能的设计方式中,上述方法还包括:控制第一场效应管和第二场效应管的状态,状态包括导通状态和截止状态。上述“获取采样模块采集的第一输入电压、第二输入电压和第三输入电压”包括:获取采样模块采集的第一场效应管和第二场效应管在目标状态组合下的第一输入电压、第二输入电压和第三输入电压。其中,目标状态组合包括以下任一种:第一场效应管和第二场效应管均为导通状态;第一场效应管和第二场效应管均为截止状态;第一场效应管为导通状态,第二场效应管为截止状态;第一场效应管为截止状态,第二场效应管为导通状态。
在另一种可能的设计方式中,上述合路电路模块还包括第一合路控制器和第二合路控制器,第一合路控制器与第一场效应管的激励端连接,第二合路控制器与第二场效应管的激励端连接。上述“控制第一场效应管和第二场效应的状态”包括:控制第一合路控制器输出第一激励电压,第一激励电压用于控制第一场效应管处于导通状态;以及控制第二合路控制器输出第二激励电压,第二激励电压用于控制第二场效应管处于导通状态。
在另一种可能的设计方式中,上述方法还包括:若合路电路模块的诊断结果为正常,则控制第一场效应管和第二场效应管均为导通状态,以控制合路电路模块为负载电路供电。若合路电路模块的诊断结果为异常,则输出报警信号。
在另一种可能的设计方式中,控制模块的功率小于等于预设阈值,负载电路的功率大于等于预设阈值。
可以理解的是,第二方面及其任一种的可能的技术方案的有益效果的描述均可以参考上述第一方面或其相应的可能的设计提供的技术方案,此处不再赘述。
第三方面,本申请实施例提供了一种电源合路电路的诊断装置,该诊断装置应用于电源合路电路系统中的电源合路电路中。
在一种可能的设计中,该诊断装置用于执行上述第二方面及第二方面中任意一种可能的设计所提供的任一种方法。本申请可以根据上述第二方面提供的任一种方法,对该诊断装置进行功能模块的划分。例如,可以对应各个功能划分各个功能模块,也 可以将两个或两个以上的功能集成在一个处理模块中。示例性的,本申请可以按照功能将该诊断装置划分为获取单元、诊断单元以及控制单元等。上述划分的各个功能模块执行的可能的技术方案和有益效果的描述均可以参考上述第二方面或其相应的可能的设计提供的技术方案,此处不再赘述。
在另一种可能的设计中,该诊断装置包括:存储器和一个或多个处理器,存储器和处理器耦合。存储器用于存储计算机指令,处理器用于调用该计算机指令,以执行如第二方面及其任一种可能的设计方式提供的任一种方法。
第四方面,本申请提供了一种电源合路电路系统,所述电源合路电路系统包括负载电路和如第一方面及其任一种可能的设计方式提供的电源合路电路,其中,该电源合路电路用于为负载电路供电。
第五方面,本申请提供了一种计算机可读存储介质,如计算机非瞬态的可读存储介质。其上储存有计算机程序(或指令),当该计算机程序(或指令)在电源合路电路的诊断装置上运行时,使得该诊断装置执行上述第二面中任一种可能的实现方式提供的任一种方法。
第六方面,提供了一种计算机程序产品,当其在电源合路电路的诊断装置上运行时,使得第二方面中的任一种可能的实现方式提供的任一种方法被执行。
第七方面,提供了一种芯片系统,包括:处理器,处理器用于从存储器中调用并运行该存储器中存储的计算机程序,执行第二方面中的实现方式提供的任一种方法。
可以理解的是,上述提供的任一种方法、装置、计算机存储介质、计算机程序产品或芯片系统等均可以应用于上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
本申请在上述各方面提供的实现方式的基础上,还可以进行进一步组合以提供更多实现方式。
附图说明
图1为本申请实施例提供的一种电源合路电路的示意图;
图2为本申请实施例提供的另一种电源合路电路的示意图;
图3为本申请实施例提供的一种电源合路电路系统的示意图;
图4为本申请实施例提供的另一种电源合路电路系统的示意图;
图5为本申请实施例提供的一种合路电路模块的示意图;
图6为本申请实施例提供的另一种合路电路模块的示意图;
图7为本申请实施例提供的一种控制模块的结构示意图;
图8为本申请实施例提供的另一种电源合路电路系统的示意图;
图9为本申请实施例提供的一种电源合路电路的诊断方法的流程示意图;
图10为本申请实施例提供的一种电源合路电路的诊断装置的结构示意图。
具体实施方式
本申请实施例提供了一种电源合路电路和系统,解决了为具有较高功率的负载电路提供至少两路电源供电时,电源合路电路热损耗高的问题。同时,本申请还提供了一种电源合路电路诊断方法和装置,该方法应用于电源合路电路系统。该方法可以在电源合路电路系统上电时,对电源合路电路中的失效器件进行诊断,并在诊断结果为 异常时,向用户报警。
其中,负载电路可以是具有任意功能的电路系统,例如可以是实现多种功能的ECU,如电动汽车控制系统中的整车控制器(vehicle controller unit,VCU)、车身动态稳定系统(electronic stability program,ESP)以及高级驾驶辅助系统(advanced driving assistant system,ADAS)等。这里,VCU和ESP是具有较低功率(例如功率低于100W)的ECU,具有较高自动驾驶等级(例如L3(level 3)或L4(level 4)以上等级)的ADAS是具有较高功率(例如功率高于100W)的ECU。
在下文描述中,本申请实施例以电源合路电路为负载电路提供双路电源供电为例进行说明。
参考图1,图1示出了本申请实施例提供的一种电源合路电路10。电源合路电路10用于将两路电源(例如电源1和电源2)合为一路电源(即合路电源),以向负载电路14供电。电源合路电路10包括合路电路模块11、控制模块12以及采样模块13。
其中,合路电路模块11,用于提供两路电源的合路电路。控制模块12,用于在电源合路电路系统上电时对合路电路模块11进行诊断,以及在诊断结果为正常时,控制合路电路模块11为负载电路提供双路电源供电。控制模块12可以通过微控制单元(micro controller unit,MCU)实现其功能,也可以通过具有某种功能的ECU实现其功能,对此不作限定。采样模块13用于采集合路电路模块11输入侧的电压以及负载电路的输入电压,以使控制模块12可以根据采集到的电压对合路电路模块11进行诊断。
需要说明的是,采样模块13和控制模块12可以独立存在,也可以集成在一起,对此不作限定。为简单描述,本申请实施例以控制模块12和采样模块13集成在一起为例进行说明。可以理解的是,下文中所描述的控制模块12包括采样模块13。
需要说明的是,控制模块12需要单独供电,以保证其正常工作。为了提高供电的可靠性,通常可以采用如图2所示的二极管(例如D1和D2)控制的双路合路电源15为控制模块12供电。如图2所示,电源1连接二极管D1,电源2连接二极管D2,D1和D2同时连接控制模块12的电源输入端,从而是实现为控制模块12提供双路合路电源供电。
其中,图2中所示出的电源1和电源2分别是图1中的合路电路模块11所接入的电源1和电源2。由于二极管自身存在的固有压降,使得二极管控制的双路合路电源15无法负担较高功率(例如功率高于100W(瓦特))的低压(例如低于48V(伏特))负载电路。也就是说,实现控制模块12的功能的MCU或ECU,通常是功率较低的MCU或ECU。例如,该ECU可以是上述的VCU。而图1中所示出的本申请实施例提供的电源合路电路10,可以为较高功率的低压负载电路提供双路电源供电,具体参考下文描述,这里不予赘述。
本申请实施例还提供一种电源合路电路系统,上述的电源合路电路10可以应用于该电源合路电路系统中。该电源合路电路系统还包括负载电路14。其中,电源合路电路10用于为该负载电路提供双路电源供电。
在一种可能的实现方式,参考图1,电源合路电路10可以作为独立的电子单元,为任意一个负载电路14提供双路电源供电。例如,该负载电路14可以是上述电动汽 车中的具有任一种功能的ECU。这种情况下,电源合路电路10中的控制模块12可以是独立的MCU。
在另一种可能的实现方式,电源合路电路10中的合路电路模块11和控制模块12可以分别集成在不同的电路系统中,并为集成合路电路模块11的电路系统提供双路电源供电。例如,该不同的电路系统可以是不同的ECU。如图3所示,合路电路模块11可以集成于ECU 1中,控制模块12可以集成于ECU 2中。通过ECU 2中的控制模块12控制ECU 1中的合路电路模块11,从而实现为ECU 1负载电路(对应上述的负载电路14)提供双路电源供电。其中,ECU 1可以是上述的ADAS,ECU 2可以是上述的VCU,对此不作限定。
在又一种可能的实现方式,电源合路电路10中的合路电路模块11和控制模块12还可以集成在同一个电路系统中,并为该电路系统提供双路电源供电。例如,该电路系统可以是ECU。如图4所示,合路电路模块11和控制模块12均可以集成在ECU 3中,并作为ECU 3负载电路(对应上述的负载电路14)的电源电路,为其提供双路电源供电。这种情况下,控制模块12可以通过集成于ECU 3中的MCU来实现其功能。
下面对图1所示出电源合路电路10中的合路电路模块11和控制模块12进行详细说明。
参考图5,图5示出了本申请实施例提供的一种合路电路模块11。合路电路模块11包括场效应管Q1、合路控制器U1、场效应管Q2以及合路控制器U2。其中,Q1和Q2均是N沟道的场效应管。并且,Q1对应合路控制器U1,Q2对应合路控制器U2。
其中,Q1包括导通和截止两种状态。当Q1处于导通状态时,Q1的内阻很小(例如是毫欧级)。这样的话,即使经过Q1的电流较大,Q1也不会产生过多的热量。这样的话,Q1所连接的负载电路可以是高功率的低压负载电路。当Q1处于截止状态时,Q1不导通电流。同理,Q2也包括导通和截止两种状态,Q2的相关描述可以参考Q1的描述,不再赘述。
需要说明的是,电源合路电路10中的Q1和Q2也可以均是P沟道的场效应管,或者,Q1和Q2中,一个是N沟道的场效应管,另一个是P沟道的场效应管,本申请实施例对此不作限定。在图5中,仅以Q1和Q2均是N沟道的场效应管作为示例予以说明。
如图5所示,Q1的第一端Q11(对应于本申请实施例中第一场效应管的激励端)可以和合路控制器U1的激励端口U11连接。当合路控制器U1的使能端U14被激活时,合路控制器U1为工作状态。这时,合路控制器U1可以通过激励端口U11向Q1的第一端Q11输入第一激励电压,以激励Q1处于导通状态。当合路控制器U1的使能端U14被关闭时,合路控制器U1为非工作状态,这时,Q1处于截止状态。这里,Q1的第一端Q11可以是栅极,第一激励电压的电压值需大于或等于使Q1处于导通状态的临界电压值。其中,合路控制器U1的使能端U14的激活或关闭,可以通过控制模块12发送的控制信号控制,详细描述可以参考下文控制模块12的描述,这里不予赘述。
类似的,Q2的第一端Q21对应于本申请实施例中第二场效应管的激励端)可以 和合路控制器U2的激励端口U21连接。当合路控制器U2的使能端U24被激活时,合路控制器U2为工作状态。这时,合路控制器U2可以通过激励端口U21向Q2的第一端Q21输入第二激励电压,以激励Q2处于导通状态。当合路控制器U2的使能端U24被关闭时,合路控制器U2为非工作状态,这时,Q2处于截止状态。其中,Q2的第一端Q21可以是栅极,第二激励电压的电压值需大于或等于使Q2处于导通状态的临界电压值。其中,合路控制器U2的使能端U24的激活或关闭,可以通过控制模块12发送的控制信号控制,详细描述可以参考下文控制模块12的描述,这里不予赘述。
参考图5,Q1的第二端Q12(对应于本申请实施例中第一场效应管的输入端)可以和电源1连接,Q1的第二端Q12可以是源极。可以理解的是,在Q1的第二端Q12和电源1之间,还可以包括稳压器件或保险丝等器件(图5中未示出)。
类似的,Q2的第二端Q22(对应于本申请实施例中第二场效应管的输入端)可以和电源2连接,Q2的第二端Q22可以是源极。可以理解的是,在Q2的第二端Q22和电源2之间,还可以包括稳压器件或保险丝等器件(图5中未示出)。
需要说明的是,若Q1和Q2均是P沟道的场效应管,则Q1的第二端Q12和Q2的第二端Q22均可以是漏极。这时,Q1的漏极与电源1连接,Q2的漏极与电源2连接。
如图5所示,Q1的第二端Q12还可以和合路控制器U1的端口U12连接。也就是说,电源1和合路控制器U1的端口U12连接。这样的话,电源1可以作为合路控制器U1的电源,从而使合路控制器U1处于上电备用状态。当合路控制器U1的使能端U14被激活时,合路控制器U1还可以通过端口U12采集Q1的第二端Q12的第一输入电压,该第一输入电压是Q1的输入侧电压。
如图5所示,Q1的第三端Q13(对应于本申请实施例中第一场效应管的输出端)可以和合路控制器U1的端口U13连接。当合路控制器U1的使能端U14被激活时,合路控制器U1可以通过端口U13采集Q1的第三端Q13的第一输出电压,该第一输出电压是Q1的输出侧的电压。在Q1导通时,若合路控制器U1采集到的第一输入电压低于第一输出电压,则合路控制器U1控制激励端口U11输出的电压低于第一激励电压,或者,合路控制器U1控制激励端口U11停止输出电压,从而使Q1处于截止状态。这样,即可防止电流向电源1倒灌。
类似的,如图5所示,Q2的第二端Q22还可以和合路控制器U2的端口U22连接。也就是说,电源2和合路控制器U2的端口U22连接。这样的话,电源2可以作为合路控制器U2的电源,从而使合路控制器U2处于上电备用状态。当合路控制器U2的使能端U24被激活时,合路控制器U2还可以通过端口U22的采集Q2的第二端Q22的第二输入电压,该第二输入电压是Q2的输入侧电压。
Q2的第三端Q23(对应于本申请实施例中第二场效应管的输出端)可以和合路控制器U2的端口U23连接。当合路控制器U2的使能端U24被激活时,合路控制器U2可以通过端口U23采集Q2的第三端Q23的第二输出电压,该第二输出电压是Q2的输出侧的电压。在Q2导通时,若合路控制器U2采集到的第二输入电压低于第二输出电压,则合路控制器U2控制激励端口U21输出的电压低于第二激励电压,或者,合 路控制器U2控制激励端口U21停止输出电压,从而使Q2处于截止状态。这样,即可防止电流向电源2倒灌。
如图5所示,Q1的第三端Q13还可以和Q2的第三端Q23均可以与负载电路(图5中未画出)连接,以作为合路电源为负载电路供电。其中,Q1的第三端Q13和Q2的第三端Q23均是漏极。
可以理解的是,当Q1和Q2均为P沟道的场效应管,则Q1的第三端Q13和Q2的第三端Q23可以均是源极,即Q1的源极和Q2的源极分别与负载电路连接,以作为合路电源为负载电路供电。
当Q1是N沟道的场效应管,则Q1的第三端Q13是漏极。当Q2是P沟道的场效应管,则Q2的第三端Q23是源极。这样的话,则Q1的漏极和Q2的源极分别与负载电路连接,以作为合路电源为负载电路供电。
当Q1是P沟道的场效应管,则Q1的第三端Q13是源极。当Q2是N沟道的场效应管,则Q2的第三端Q23是漏极。这样的话,则Q1的源极和Q2的漏极分别与负载电路连接,以作为合路电源为负载电路供电。
可以看出,场效应管(例如Q1或Q2)在电源合路电路中,需保证场效应管内部体二极管的(如图5所示的D)的正极与电源连接。即保证当场效应管导通时,场效应管内的电流的流向为内部体二极管D的正极到负极。
可选地,参考图6,图6示出了本申请实施例提供的另一种合路电路模块11,与图5所示的合路电路模块的区别在于图6仅设置一个合路控制器。其中,合路电路模块11中的Q1和Q2均是N沟道的场效应管。并且,Q1和Q2共用一个合路控制器U1。
其中Q1、电源1以及合路控制器U1之间的互联可以参考上述图5中的合路电路模块11中Q1、电源1以及合路控制器U1之间互联的描述,Q2、电源2以及合路控制器U1之间的互联可以参考上述图5中的合路电路模块11中Q2、电源2以及合路控制器U2之间互联的描述,这里不予赘述。
需要说明的,合路控制器U1中与Q1连接的激励端口U11、端口U12、端口U13以及使能端U14,作为第一端口组,用于控制Q1的导通或截止。合路控制器U1中与Q2连接的激励端口U15、端口U16、端口U17以及使能端U18,作为第二端口组,用于控制Q2的导通或截止。
参考图7,图7示出了本申请实施例提供的一种控制模块12的结构示意图。本申请实施例以控制模块12包括采样模块13为例进行说明。控制模块12用于控制合路电路模块11向负载电路提供双路电源供电。控制模块12可以是MCU或ECU,对此不作限定。
控制模块12可以包括处理器71、模拟-数字转换器(analog-to-digital converter,ADC)72(对应本申请实施例中的采样模块)以及输入输出接口73。可选的,控制模块12还可以存储器74。其中,ADC 72(相当于本申请实施例中的采样模块)、输入输出接口73以及存储器74可以分别和处理器71之间连接通信。
处理器71是控制模块12的控制中心,可以是一个通用中央处理单元(central processing unit,CPU),也可以是其他通用处理器、数字信号处理器(digital signal  processing,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者是任何常规的处理器等。
作为示例,处理器71可以包括一个或多个CPU,例如图7中所示的CPU 0和CPU 1。
ADC 72,用于采集合路电路模块11中Q1的第一输入电压,Q2的第二输入电压,以及负载电路的第三输入电压。ADC 72还将所采集到的第一输入电压、第二输入电压以及第三输入电压发送至处理器71进行诊断分析。其中,第一输入电压是Q1的输入侧电压,第二输入电压是Q2的输入侧电压,第三输入电压是负载电路的输入电压,即负载电路的电源输入端的电压。
ADC 72的数量与合路电路模块11需要合路的电源数量有关。若合路电路模块11需要合路的电源数量为m,则ADC 72的数量为m+1。其中,m是大于或等于1的整数。
示例性的,如图8所示,在图8所示的电源合路电路系统中,合路电路模块11包括两路需要合路的电源(电源1和电源2),因此,控制模块12可以包括3个ADC 72(ADC 72_1、ADC 72_2、ADC 72_3)。具体的,ADC 72_1可以通过端口121连接Q1的第二端Q12,并采集Q1的第二端Q12的第一输入电压VA。ADC 72_2可以通过端口122连接Q2的第二端Q22,并采集Q2的第二端Q22的第二输入电压VB。ADC 72_3可以通过端口123连接负载电路14的电源输入端141,并采集负载电路14的电源输入端141的第三输入电压VC。
输入输出接口73,可以是通用输入输出接口(general-purpose input/output,GPIO)。输入输出接口73用于向合路电路模块11发送控制信号,以激活或关闭合路电路模块11中的合路控制器的使能端。进而,当合路电路模块11中的合路控制器的使能端被激活时,合路控制器处于工作状态,这样,合路控制器可以通过激励端口向场效应管输入激励电压,以使场效应管处于导通状态;或者,当合路电路模块11中的合路控制器的使能端被关闭时,合路控制器处于非工作状态,这样,场效应管不能接收到合路控制器通过激励端口输入的激励电压,即处于截止状态。
其中,控制信号可以是电平信号,控制信号可以包括高电平信号或低电平信号中至少一种电平信号。示例性的,输入输出接口73可以向合路控制器的使能端发送高电平信号,以激活合路控制器,输入输出接口73可以向合路控制器的使能端发送低电平信号,以关闭合路控制器。或者,输入输出接口73可以向合路控制器的使能端发送低电平信号,以激活合路控制器,输入输出接口73可以向合路控制器的使能端发送高电平信号,以关闭合路控制器。本申请实施例对此不作限定。
输入输出接口73接口的数量与合路电路模块11需要合路的电源数量相同。若合路电路模块11需要合路的电源数量为m,则输入输出接口73的数量为m。
示例性的,如图8所示,合路电路模块11包括两路需要合路的电源(电源1和电源2),因此,控制模块12可以包括2个输入输出接口73(端口124和端口125)。其中,控制模块12的端口124与合路控制器U1的使能端U14连接,并可以根据处理 器71的指示,向合路控制器U1的使能端U14发送控制信号。该控制信号可以用于激活合路控制器U1,进而使Q1处于导通状态。或者,该控制信号可以用于关闭合路控制器U1,进而使Q1处于截止状态。这里,该控制信号可以包括高电平或低电平中的至少一种,对此不作限定。
类似的,控制模块12的端口125与合路控制器U2的使能端U24连接,并可以根据处理器71的指示,向合路控制器U2的使能端U24发送控制信号。该控制信号可以用于激活合路控制器U2,进而使Q2处于导通状态。或者,该控制信号可以用于关闭合路控制器U2,进而使Q2处于截止状态。
需要说明的是,ADC 72、输入输出接口73可以和处理器71集成在一起。这种情况下,集成ADC 72、输入输出接口73以及处理器71的器件可以称为MCU。
存储器74可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
一种可能的实现方式中,存储器74可以独立于处理器71存在。存储器74可以通过总线与处理器71相连接,用于存储数据、指令或者程序代码。处理器71调用并执行存储器74中存储的指令或程序代码时,能够实现本申请实施例提供的电源合路电路的诊断方法。
另一种可能的实现方式中,存储器74也可以和处理器71集成在一起。
需要指出的是,图7中示出的结构并不构成对控制模块12的限定,除图7所示部件之外,控制模块12可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
至此,通过上述描述的电源合路电路10中的控制模块12控制合路电路模块11中场效应管的导通,从而实现将电源1和电源2合为一路电源,并向负载电路供电。
在上述电源合路电路10为负载电路供电之前,本申请实施例还提供一种电源合路电路诊断方法。该诊断方法用于对电源合路电路10中的失效器件进行诊断,并在诊断出故障后向用户报警。
下面结合附图对本发明实施例提供的电源合路电路的诊断方法进行描述。
参考图9,图9示出了本申请实施例提供的电源合路电路诊断方法的流程示意图。该方法应用于图8所示的电源合路电路系统中,该方法可以包括以下步骤:
S101、控制模块12向合路电路模块11发送控制信号,以控制得到合路电路模块11中场效应管的状态组合。
具体的,控制模块12可以在图8所示的电源合路电路系统上电后,通过输入输出接口,向合路电路模块11发送第一组控制信号、第二组控制信号、第三组控制信号以及第四组控制信号。这里,第一组控制信号、第二组控制信号、第三组控制信号以及第四组控制信号分别是控制模块12在不同时刻向合路电路模块11发送的四组控制信号。并且,第一组控制信号、第二组控制信号、第三组控制信号以及第四组控制信号 中的每组控制信号均包括第一信号和第二信号。其中,第一信号用于控制合路电路模块11中的合路控制器U1的使能端,第二信号用于控制合路电路模块11中的合路控制器U2的使能端。
具体的,第一组控制信号中的第一信号可以用于激活合路电路模块11中的合路控制器U1的使能端,以使合路控制器U1处于工作状态。第一组控制信号中的第二信号可以用于激活合路控制器U2的使能端,以使合路控制器U2均处于工作状态。这样的话,合路控制器U1可以控制Q1为导通状态,合路控制器U2可以控制Q2为导通状态。
第二组控制信号中的第一信号可以用于激活合路电路模块11中的合路控制器U1的使能端,以使合路控制器U1处于工作状态。第二组控制信号中的第二信号可以用于关闭合路电路模块11中的合路控制器U2的使能端,以使合路控制器U2处于非工作状态。这样的话,合路控制器U1可以控制Q1为导通状态,合路控制器U2可以控制Q2为截止状态。
第三组控制信号中的第一信号可以用于激活合路电路模块11中的合路控制器U2的使能端,以使合路控制器U2处于工作状态。这时,第三组控制信号中的第二信号可以用于关闭合路电路模块11中的合路控制器U1的使能端,以使合路控制器U1处于非工作状态。这样的话,合路控制器U2可以控制Q2为导通状态,合路控制器U1可以控制Q1为截止状态。
第四组控制信号中的第一信号可以用于关闭合路电路模块11中的合路控制器U1的使能端,以使合路控制器U1处于非工作状态。第四组控制信号中的第二信号可以用于关闭合路电路模块11中的合路控制器U2的使能端,以使合路控制器U2处于非工作状态。这样的话,合路控制器U1可以控制Q1为截止状态,合路控制器U2可以控制Q2为截止状态。
也就是说,第一组控制信号可以控制得到合路电路模块11中场效应管的第一状态组合:即Q1、Q2均为导通状态。第二组控制信号可以控制得到合路电路模块11中场效应管的第二状态组合:即Q1为导通状态,Q2为截止状态。第三组控制信号可以控制得到合路电路模块11中场效应管的第三状态组合:即Q1为截止状态,Q2为导通状态。第四组控制信号可以控制得到合路电路模块11中场效应管的第四状态组合:即Q1、Q2均为截止状态。
需要说明的是,本申请实施例对控制模块12向合路电路模块11发送第一组控制信号、第二组控制信号、第三组控制信号以及第四组控制信号的时序不作限定。例如,控制模块12可以依次向合路电路模块11发送第一组控制信号、第二组控制信号、第三组控制信号以及第四组控制信号。或者,控制模块12可以先发送第二组控制信号,然后依次发送第一组控制信号、第三组控制信号以及第四组控制信号等。
可以理解,本申请实施例对控制模块12控制得到合路电路模块11中场效应管的状态组合的时序不作限定。例如控制模块12可以依次控制得到合路电路模块11中场效应管的第一状态组合、第二状态组合、第三状态组合以及第四状态组合,当然,控制模块12也可以先控制得到合路电路模块11中场效应管的第二状态组合,然后依次是第三状态组合、第一状态组合以及第四状态组合等,对此不作限定。
响应于控制模块12的操作,合路电路模块11中场效应管的状态可以分别处于第一状态组合、第二状态组合、第三状态组合以及第四状态组合。
S102、控制模块12获取合路电路模块11中场效应管在不同状态组合下的第一输入电压、第二输入电压以及第三输入电压。
具体的,控制模块12可以通过采样模块采集合路电路模块11中场效应管在不同状态组合下的第一输入电压、第二输入电压以及第三输入电压,以获取到合路电路模块11中场效应管在不同状态组合下的第一输入电压、第二输入电压以及第三输入电压。
当然,若控制模块12不包括采用模块,则采样模块采集合路电路模块11中场效应管在不同状态组合下的第一输入电压、第二输入电压以及第三输入电压,并将所采集到的电压发给控制模块12,以使控制模块12获取到合路电路模块11中场效应管在不同状态组合下的第一输入电压、第二输入电压以及第三输入电压。
参考图8,第一输入电压可以是Q1的输入侧电压VA,第二输入电压可以是Q2的输入侧电压VB,第三输入电压可以是负载电路的输入电压VC。
具体的,控制模块12可以通过ADC分别采集合路电路模块11中场效应管的状态组合为第一状态组合时的第一输入电压VA1、第二输入电压VB1以及第三输入电压VC1。
控制控制模块12可以通过ADC分别采集合路电路模块11中场效应管的状态组合为第二状态组合时的第一输入电压VA2、第二输入电压VB2以及第三输入电压VC2。
控制控制模块12可以通过ADC分别采集合路电路模块11中场效应管的状态组合为第三状态组合时的第一输入电压VA3、第二输入电压VB3以及第三输入电压VC3。
控制控制模块12可以通过ADC分别采集合路电路模块11中场效应管的状态组合为第四状态组合时的第一输入电压VA4、第二输入电压VB4以及第三输入电压VC4。
S103、控制模块12基于合路电路模块11中场效应管在不同状态组合下的第一输入电压、第二输入电压、第三输入电压以及预设参数,对合路电路模块11进行诊断。
其中,预设参数可以包括:Q1的内部体二极管的正向压降最小值(VQ1_D_min)、Q1的内部体二极管的正向压降最大值(VQ1_D_max)、Q2的内部体二极管的正向压降最小值(VQ2_D_min)、Q2的内部体二极管的正向压降最大值(VQ2_D_max)、基于负载电路最大电流和Q1的最大导通直流内阻计算的经过Q1的最大压差值(VQ1_max)、以及基于负载电路最大电流和Q2的最大导通直流内阻计算的Q2的最大压差值(VQ2_max)。
具体的,控制模块可以根据表1所示的诊断标准,对合路电路模块11进行诊断,并得到相应的诊断结果。
表1
Figure PCTCN2021079318-appb-000001
Figure PCTCN2021079318-appb-000002
下面对表1中的内容予以说明。
当合路电路模块11中场效应管的状态组合为第一状态组合时,即Q1和Q2均为导通状态。这种情况下,由于VC1须同时满足:大于等于(VA1-VQ1_max),以及,大于等于(VB1-VQ2_max)。也就是说,当VC1大于等于(VA1-VQ1_max)和(VB1-VQ2_max)中较大的一个时,表示合路电路模块11是正常的。否则,表示合路电路模块11有异常。
当合路电路模块11中场效应管的状态组合为第二状态组合时,即Q1为导通状态,Q2为截止状态。这种情况下,由于导通内阻很小,因此,由Q1内阻所产生的电压差远低于Q2内部的体二极管的产生的压降。因此,当VA2小于(VB2-VQ2_D_max)时,若VC2处于(VB2-VQ2_D_max)和(VB2-VQ2_D_min)之间,表示合路电路模块11正常;若VC2小于(VB2-VQ2_D_max),则表示Q2有异常,例如VQ2_D_max过大。当VA2大于等于((VB2-VQ2_D_min)+VQ1_max)时,若VC2大于等于(VA2-VQ1_max),则表示合路电路模块11正常;否则,表示Q1异常或U1异常,例如Q1的导通阻抗过大,或者U1的激励端所输出的激励电压低于第一激励电压。
当合路电路模块11中场效应管的状态组合为第三状态组合时,即Q1为截止状态,Q2为导通状态。这种情况下,由于Q2导通内阻很小,因此,由Q2内阻所产生的电 压差远低于Q1内部的体二极管的产生的压降。因此,当VB3小于(VA3-VQ1_D_max)时,若VC3处于(VA3-VQ1_D_max)和(VA3-VQ1_D_min)之间,表示合路电路模块11正常;若VC3小于(VA3-VQ1_D_max),则表示Q1有异常,例如VQ1_D_max过大。当VB3大于等于((VA3-VQ1_D_min)+VQ2_max)时,若VC大于等于(VB3-VQ2_max),则表示合路电路模块11正常;否则,表示Q2异常或U2异常,例如Q2的导通阻抗过大,或者U2的激励端所输出的激励电压低于第二激励电压。
当合路电路模块11中场效应管的状态组合为第四状态组合时,即Q1和Q2均为截止状态。这种情况下,VC4应处于Q1、Q2内部的体二极管正常压降范围内。因此当VC4处于(VA4-VQ1_D_max)和(VA4-VQ1_D_min)之间时,或者,VC4处于(VB4-VQ2_D_max)和(VB4-VQ2_D_min)之间时,表示合路电路模块11正常。否则,表示合路电路模块11有异常。
为方便下文描述,本申请实施例将“合路电路模块11中场效应管的四种状态组合”简称为“四种状态组合”。
可以看出,控制模块12基于四种状态组合下所采集到的第一输入电压、第二输入电压以及第三输入电压,并根据上述诊断标准,对合路电路模块11进行诊断后的诊断结果均为正常,则表示合路电路模块11正常。这时,控制模块12可以持续控制Q1和Q2均为导通状态,以实现为负载电路正常供电。当四种状态组合中的至少一种状态组合的诊断结果为异常,则控制模块12可以控制Q1和Q2均为截止状态,并向用户交互模块发送报警信息,以提醒用户电源合路电路系统有异常。
控制模块12基于四种状态组合下所采集到的第一输入电压、第二输入电压以及第三输入电压,对合路电路模块11进行诊断时,可以采用下述任意一种方式实现。
第一种可能的实现方式,由于上述的四种状态组合是合路电路模块11中场效应管在不同时刻的状态组合,因此,控制模块12可以在控制得到合路电路模块11中场效应管的一种状态组合时,即根据该状态组合下所采集到的第一输入电压、第二输入电压以及第三输入电压,对合路电路模块11进行一次诊断,并得到一个诊断结果。这样,控制模块可以基于每次采集到的第一输入电压、第二输入电压以及第三输入电压,进行四次诊断,得到四个诊断结果。然后,控制模块12基于四个诊断结果,确定合路电路模块11是否正常。
可选的,控制模块12可以在首次得到诊断结果为“异常”时,即停止对合路电路模块11的诊断,并控制Q1和Q2均为截止状态,并向用户交互模块发送报警信息,以提醒用户电源合路电路系统有异常。这样的话,若该提示“异常”的诊断结果不是第四次诊断的诊断结果,则减少了控制模块12采集合路电路模块11的第一输入电压、第二输入电压以及第三输入电压的次数,以及减少了对合路电路模块11诊断的次数,从而提高了本申请实施例提供的电源合路电路诊断方法的效率。
第二种可能的实现方式,控制模块12也可以先采集到四种状态组合下的第一输入电压、第二输入电压以及第三输入电压后,再根据上述表1中的标准,对合路电路模块11进行诊断,确定合路电路模块11是否正常。
控制模块12通过在第一电源对应的Q1和第二电源对应的Q2在不同状态组合下,检测第一输入电压、第二输入电压以及第三输入电压,并通过确定在每种状态组合下, 该第一输入电压、第二输入电压以及第三输入电压的值是否处于理论范围内,进而对合路电路模块11中的器件失效做出诊断。
综上,本申请实施例提供了一种电源合路电路诊断方法,可以在电源合路电路为负载电路供电前,对电源合路电路进行诊断。当诊断出电源合路电路中的器件存在异常时,可以终止为负载电路供电,以确保负载电路不会在供电过程中由于电源合路电路的异常而出现故障,从而提高了负载电路的安全性。此外,本申请实施例还提供了一种电源合路电路及系统,该电源合路电路以场效应管作为关键器件。由于场效应管在导通时的压降极小(毫伏级),因此,即使流经场效应管的电流较大,场效应管也不会产生过多的热损耗。这样的话,本申请实施例提供电源合路电路即可以为较高功率的低压负载电路提供双路或多路电源供电。
上述主要从方法的角度对本申请实施例提供的方案进行了介绍。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对电源合路电路的诊断装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
如图10所示,图10示出了本申请实施例提供的电源合路电路的诊断装置100的结构示意图。该诊断装置100应用于电源合路电路系统中的电源合路电路,该电源合路电路还包括合路电路模块。该合路电路模块包括第一电源、第一场效应管、第二电源以及第二场效应管。其中,第一电源与第一场效应管的输入端连接,第二电源与第二场效应管的输入端连接,第一场效应管的输出端、第二场效应管的输出端均与负载电路的电源端口连接。诊断装置100用于控制合路电路模块为负载电路供电。
该诊断装置100用于对电源合路电路进行诊断。以及用于执行上述的电源合路电路的诊断方法,例如用于执行图9所示的方法。其中,诊断装置100可以包括获取单元101和诊断单元102。
获取单元101,用于获取第一输入电压、第二输入电压和第三输入电压。其中,第一输入电压是第一场效应管的输入侧电压,第二输入电压是第二场效应管的输入侧电压,第三输入电压是负载电路的电源端的电压。诊断单元102,用于基于所获取的电压,诊断合路电路模块是否异常。
作为示例,结合图9,获取单元101可以用于执行S102,诊断单元102可以用于执行S103。
可选的,诊断单元102,具体用于基于所获取的电压和预设参数,诊断合路电路模块是否异常。其中,预设参数包括以下至少一种:第一场效应管的内部体二极管的 正向压降最小值、第一场效应管的内部体二极管的正向压降最大值、第二场效应管的内部体二极管的正向压降最小值、第二场效应管的内部体二极管的正向压降最大值、基于负载电路最大电流计算的第一场效应管的最大压差值,或基于负载电路最大电流计算的第二场效应管的最大压差值。
作为示例,结合图9,诊断单元102可以用于执行S103。
可选的,上述电源合路电路还包括采样模块。该采样模块分别与第一场效应管的输入端、第二场效应管的输入端以及负载电路的电源输入端连接,该采样模块用于采集第一输入电压、第二输入电压和第三输入电压。获取单元101,具体用于获取采样模块采集的第一输入电压、第二输入电压和第三输入电压。
作为示例,结合图9,获取单元101可以用于执行S102。
可选的,上述诊断装置100还包括:控制单元103,用于控制第一场效应管和第二场效应管的状态,状态包括导通状态和截止状态。获取单元101,具体用于获取上述采样模块采集的第一场效应管和第二场效应管在目标状态组合下的第一输入电压、第二输入电压和第三输入电压;其中,目标状态组合包括以下任一种:第一场效应管和第二场效应管均为导通状态;第一场效应管和第二场效应管均为截止状态;第一场效应管为导通状态,第二场效应管为截止状态;第一场效应管为截止状态,第二场效应管为导通状态。
作为示例,结合图9,控制单元103可以用于执行S101,获取单元101可以用于执行S102。
可选的,上述合路电路模块还包括第一合路控制器和第二合路控制器。其中,第一合路控制器与第一场效应管的激励端连接,第二合路控制器与第二场效应管的激励端连接。控制单元103,具体用于控制第一合路控制器输出第一激励电压,该第一激励电压用于控制第一场效应管处于导通状态。控制单元103,还用于控制第二合路控制器输出第二激励电压,该第二激励电压用于控制第二场效应管处于导通状态。
作为示例,结合图9,控制单元103可以用于执行S101。
可选的,控制单元103,还用于若合路电路模块的诊断结果为正常,则控制第一场效应管和第二场效应管均为导通状态,以控制合路电路模块为负载电路供电。
上述诊断装置100还包括:输出单元104,用于若合路电路模块的诊断结果为异常,则输出报警信号。
可选的,诊断装置100的功率小于等于预设阈值,负载电路的功率大于等于预设阈值。
关于上述可选方式的具体描述可以参见前述的方法实施例,此处不再赘述。此外,上述提供的任一种诊断装置100的解释以及有益效果的描述均可参考上述对应的方法实施例,不再赘述。
作为示例,结合图7,诊断装置100中的获取单元101、诊断单元102以及控制单元103实现的功能可以通过图7中的处理器71执行存储器74中的程序指令实现。输出单元104实现的功能可以通过图7中的输入输出接口73实现。
本申请另一实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在电源合路电路的诊断装置上运行时,该电源合路电路的诊断装置 执行上述方法实施例所示的方法流程中该电源合路电路的诊断装置执行的各个步骤。
在一些实施例中,所公开的方法可以实施为以机器可读格式被编码在计算机可读存储介质上的或者被编码在其它非瞬时性介质或者制品上的计算机程序指令。
本申请实施例还提供一种电源合理电路系统,该系统包括如图1或图2所示的电源合路电路,该电源合路用于实现上述电源合路的诊断装置的诊断方法,为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机执行指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种电源合路电路,其特征在于,所述电源合路电路应用于电源合路电路系统中,所述电源合路电路包括:
    合路电路模块;所述合路电路模块包括第一电源、第一场效应管、第二电源以及第二场效应管;所述第一电源与所述第一场效应管的输入端连接,所述第二电源与所述第二场效应管的输入端连接,所述第一场效应管的输出端、所述第二场效应管的输出端均与负载电路的电源输入端连接;
    控制模块;所述控制模块用于控制所述合路电路模块为所述负载电路供电,并获取第一输入电压、第二输入电压和第三输入电压,以及,基于所获取的电压,诊断所述合路电路模块是否异常;其中,所述第一输入电压是所述第一场效应管的输入侧电压,所述第二输入电压是所述第二场效应管的输入侧电压,所述第三输入电压是所述负载电路的电源输入端的电压。
  2. 根据权利要求1所述的电路,其特征在于,
    所述控制模块,还用于基于所获取的电压和预设参数,诊断所述合路电路模块是否异常;
    其中,所述预设参数包括以下至少一种:所述第一场效应管的内部体二极管的正向压降最小值、所述第一场效应管的内部体二极管的正向压降最大值、所述第二场效应管的内部体二极管的正向压降最小值、所述第二场效应管的内部体二极管的正向压降最大值、基于所述负载电路最大电流计算的所述第一场效应管的最大压差值,或基于所述负载电路最大电流计算的所述第二场效应管的最大压差值。
  3. 根据权利要求1或2所述的电路,其特征在于,所述电源合路电路还包括:
    采样模块;所述采样模块分别与所述第一场效应管的输入端、所述第二场效应管的输入端以及所述负载电路的电源输入端连接;
    所述采样模块,用于采集所述第一输入电压、所述第二输入电压和所述第三输入电压;
    所述控制模块,还用于获取所述采样模块采集的所述第一输入电压、所述第二输入电压和所述第三输入电压。
  4. 根据权利要求3所述的电路,其特征在于,
    所述控制模块,还用于控制所述第一场效应管和所述第二场效应管的状态;所述状态包括导通状态和截止状态;以及,用于获取所述采样模块采集的所述第一场效应管和所述第二场效应在目标状态组合下的所述第一输入电压、所述第二输入电压和所述第三输入电压;
    其中,所述目标状态组合包括以下任一种:所述第一场效应管和所述第二场效应管均为导通状态;所述第一场效应管和所述第二场效应管均为截止状态;所述第一场效应管为导通状态,所述第二场效应管为截止状态;所述第一场效应管为截止状态,所述第二场效应管为导通状态。
  5. 根据权利要求4所述的电路,其特征在于,所述合路电路模块还包括:第一合路控制器和第二合路控制器;所述第一合路控制器与所述第一场效应管的激励端连接,所述第二合路控制器与所述第二场效应管的激励端连接;
    所述控制模块,还用于控制所述第一合路控制器输出第一激励电压,所述第一激励电压用于控制所述第一场效应管处于导通状态;以及,控制所述第二合路控制器输出第二激励电压,所述第二激励电压用于控制所述第二场效应管处于导通状态。
  6. 根据权利要求4或5所述的电路,其特征在于,所述控制模块还用于:
    若所述合路电路模块的诊断结果为正常,则控制所述第一场效应管和所述第二场效应管均为导通状态,以控制所述合路电路模块为所述负载电路供电;
    若所述合路电路模块的诊断结果为异常,则输出报警信号。
  7. 根据权利要求1至6中任一项所述的电路,其特征在于,所述控制模块的功率小于等于预设阈值,所述负载电路的功率大于等于所述预设阈值。
  8. 一种电源合路电路的诊断方法,其特征在于,所述方法应用于电源合路电路系统,所述电源合路电路系统包括所述电源合路电路;所述电源合路电路包括合路电路模块和控制模块;所述合路电路模块包括第一电源、第一场效应管、第二电源以及第二场效应管;所述第一电源与所述第一场效应管的输入端连接,所述第二电源与所述第二场效应管的输入端连接,所述第一场效应管的输出端、所述第二场效应管的输出端均与负载电路的电源端口连接;所述控制模块用于控制所述合路电路模块为所述负载电路供电,所述方法由所述控制模块执行,所述方法包括:
    获取第一输入电压、第二输入电压和第三输入电压,其中,所述第一输入电压是所述第一场效应管的输入侧电压,所述第二输入电压是所述第二场效应管的输入侧电压,所述第三输入电压是所述负载电路的电源端的电压;
    基于所获取的电压,诊断所述合路电路模块是否异常。
  9. 根据权利要求8所述的方法,其特征在于,所述基于所获取的电压,诊断所述合路电路模块是否异常,包括:
    基于所获取的电压和预设参数,诊断所述合路电路模块是否异常;
    其中,所述预设参数包括以下至少一种:所述第一场效应管的内部体二极管的正向压降最小值、所述第一场效应管的内部体二极管的正向压降最大值、所述第二场效应管的内部体二极管的正向压降最小值、所述第二场效应管的内部体二极管的正向压降最大值、基于所述负载电路最大电流计算的所述第一场效应管的最大压差值,或基于所述负载电路最大电流计算的所述第二场效应管的最大压差值。
  10. 根据权利要求8或9所述的方法,其特征在于,所述电源合路电路还包括采样模块;所述采样模块分别与所述第一场效应管的输入端、所述第二场效应管的输入端以及所述负载电路的电源输入端连接;所述采样模块用于采集所述第一输入电压、所述第二输入电压和所述第三输入电压;
    所述获取第一输入电压、第二输入电压和第三输入电压,包括:
    获取所述采样模块采集的所述第一输入电压、所述第二输入电压和所述第三输入电压。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    控制所述第一场效应管和所述第二场效应管的状态,所述状态包括导通状态和截止状态;
    所述获取所述采样模块采集的所述第一输入电压、所述第二输入电压和所述第三 输入电压,包括:
    获取所述采样模块采集的所述第一场效应管和所述第二场效应管在目标状态组合下的所述第一输入电压、所述第二输入电压和所述第三输入电压;
    其中,所述目标状态组合包括以下任一种:所述第一场效应管和所述第二场效应管均为导通状态;所述第一场效应管和所述第二场效应管均为截止状态;所述第一场效应管为导通状态,所述第二场效应管为截止状态;所述第一场效应管为截止状态,所述第二场效应管为导通状态。
  12. 根据权利要求11所述的方法,其特征在于,所述合路电路模块还包括第一合路控制器和第二合路控制器,所述第一合路控制器与所述第一场效应管的激励端连接,所述第二合路控制器与所述第二场效应管的激励端连接;
    所述控制所述第一场效应管和所述第二场效应的状态,包括:
    控制所述第一合路控制器输出第一激励电压,所述第一激励电压用于控制所述第一场效应管处于导通状态;
    控制所述第二合路控制器输出第二激励电压,所述第二激励电压用于控制所述第二场效应管处于导通状态。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    若所述合路电路模块的诊断结果为正常,则控制所述第一场效应管和所述第二场效应管均为导通状态,以控制所述合路电路模块为所述负载电路供电;
    若所述合路电路模块的诊断结果为异常,则输出报警信号。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,所述控制模块的功率小于等于预设阈值,所述负载电路的功率大于等于所述预设阈值。
  15. 一种电源合路电路系统,其特征在于,所述电源合路电路系统包括如权利要求1至7中任一项所述的电源合路电路,所述电源合路电路用于为负载电路供电。
PCT/CN2021/079318 2020-03-20 2021-03-05 电源合路电路、诊断方法、装置及系统 WO2021185099A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21772345.1A EP4113784A4 (en) 2020-03-20 2021-03-05 POWER SOURCE COMBINATION CIRCUIT, DIAGNOSTIC METHOD AND APPARATUS, AND SYSTEM
US17/948,341 US20230015317A1 (en) 2020-03-20 2022-09-20 Power Source Combination Circuit, Diagnosis Method and Apparatus, and System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010203132.XA CN113497486B (zh) 2020-03-20 2020-03-20 电源合路电路、诊断方法、装置及系统
CN202010203132.X 2020-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/948,341 Continuation US20230015317A1 (en) 2020-03-20 2022-09-20 Power Source Combination Circuit, Diagnosis Method and Apparatus, and System

Publications (1)

Publication Number Publication Date
WO2021185099A1 true WO2021185099A1 (zh) 2021-09-23

Family

ID=77768336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079318 WO2021185099A1 (zh) 2020-03-20 2021-03-05 电源合路电路、诊断方法、装置及系统

Country Status (4)

Country Link
US (1) US20230015317A1 (zh)
EP (1) EP4113784A4 (zh)
CN (1) CN113497486B (zh)
WO (1) WO2021185099A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220123547A1 (en) * 2020-10-20 2022-04-21 Lear Corporation Electrical system including a power distribution circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189126A (ja) * 2008-02-05 2009-08-20 Nec Corp 電源システムおよび素子故障検出方法
CN101728866A (zh) * 2008-10-21 2010-06-09 中兴通讯股份有限公司 一种实现电源倒换的装置与方法
CN101958576A (zh) * 2010-05-20 2011-01-26 福建星网锐捷网络有限公司 电源冗余并联电路和工作方法
CN102375128A (zh) * 2010-08-02 2012-03-14 康舒科技股份有限公司 服务器电源供应系统的异常检测方法及装置
CN109660364A (zh) * 2019-01-31 2019-04-19 普联技术有限公司 一种供电系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256605B2 (en) * 2005-11-14 2007-08-14 Semiconductor Components Industries, L.L.C. Diagnostic circuit and method therefor
CN101226414B (zh) * 2008-01-30 2012-01-11 北京中星微电子有限公司 一种动态补偿基准电压的方法以及带隙基准电压源
CN103219790B (zh) * 2012-01-20 2015-05-13 登丰微电子股份有限公司 双电源供应系统及双电源控制器
US9766299B2 (en) * 2015-03-19 2017-09-19 Hamilton Sundstrand Corporation Method for electronically testing integrity of ideal diode components used in OR'd voltage bus
CN106848998B (zh) * 2017-02-28 2019-05-24 浙江大华技术股份有限公司 一种电源输出保护电路及装置
CN109787348A (zh) * 2019-02-18 2019-05-21 北京星际荣耀空间科技有限公司 电源合路电路及电器设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189126A (ja) * 2008-02-05 2009-08-20 Nec Corp 電源システムおよび素子故障検出方法
CN101728866A (zh) * 2008-10-21 2010-06-09 中兴通讯股份有限公司 一种实现电源倒换的装置与方法
CN101958576A (zh) * 2010-05-20 2011-01-26 福建星网锐捷网络有限公司 电源冗余并联电路和工作方法
CN102375128A (zh) * 2010-08-02 2012-03-14 康舒科技股份有限公司 服务器电源供应系统的异常检测方法及装置
CN109660364A (zh) * 2019-01-31 2019-04-19 普联技术有限公司 一种供电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4113784A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220123547A1 (en) * 2020-10-20 2022-04-21 Lear Corporation Electrical system including a power distribution circuit
US11322930B1 (en) * 2020-10-20 2022-05-03 Lear Corporation Electrical system including a power distribution circuit

Also Published As

Publication number Publication date
EP4113784A4 (en) 2023-08-23
US20230015317A1 (en) 2023-01-19
CN113497486B (zh) 2024-01-30
EP4113784A1 (en) 2023-01-04
CN113497486A (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
US20220229479A1 (en) Power supply unit (psu)-based power supply system
CN104283583B (zh) 用于检测差分总线上的故障的方法、装置和电路装置
WO2021185099A1 (zh) 电源合路电路、诊断方法、装置及系统
US20150357864A1 (en) Power source switching apparatus and methods for dual-powered electronic devices
TW201027344A (en) Vertical bus circuits, battery management systems, and methods for enabling signal transmission
JP6460049B2 (ja) リンギング抑制回路
US20230305980A1 (en) Flexibly configured multi-computing-node server mainboard structure and program
JPH0894695A (ja) 半導体パワースイッチシステム
KR20200031647A (ko) 전기적 결함을 진단하기 위한 시스템 및 방법
US20230006437A1 (en) Motor control system and vehicle
US10489990B2 (en) Vehicle diagnostic device and data transmission device
US20100199012A1 (en) System for connecting an external device to a serial flexray data bus
WO2024027420A1 (zh) 用于车载激光器的泵浦系统、车载激光装置和车辆
CN111279570A (zh) 反极性保护装置、反极性保护装置的运行方法和相应用途
CN206060277U (zh) 一种带保护功能的电池管理系统
US20220374062A1 (en) System management bus link, method and apparatus for determining pull-up resistance thereof, and device
CN109572436B (zh) 用于负载电路的诊断系统及电动车
CN108601138B (zh) 异常保护电路、pse、供电系统及异常隔离方法
RU2345480C1 (ru) Коммутатор напряжения
CN220511126U (zh) Lin总线自动寻址系统及其具有防接反保护的从设备
JP2008107224A (ja) アナログ出力装置
US20230304597A1 (en) Valve with configurable default position
CN218783570U (zh) 继电装置
WO2023082108A1 (zh) 电气系统及用电装置
US20230069259A1 (en) Microcontroller with traction inverter protection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021772345

Country of ref document: EP

Effective date: 20220927

NENP Non-entry into the national phase

Ref country code: DE