WO2021184957A1 - 一种上肢康复训练系统及执行运动意图的方法 - Google Patents

一种上肢康复训练系统及执行运动意图的方法 Download PDF

Info

Publication number
WO2021184957A1
WO2021184957A1 PCT/CN2021/073316 CN2021073316W WO2021184957A1 WO 2021184957 A1 WO2021184957 A1 WO 2021184957A1 CN 2021073316 W CN2021073316 W CN 2021073316W WO 2021184957 A1 WO2021184957 A1 WO 2021184957A1
Authority
WO
WIPO (PCT)
Prior art keywords
training
upper limb
human
sensor
workstation
Prior art date
Application number
PCT/CN2021/073316
Other languages
English (en)
French (fr)
Inventor
鲁守银
谭荣斌
高诺
彭伟
赵世晶
Original Assignee
山东建筑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东建筑大学 filed Critical 山东建筑大学
Publication of WO2021184957A1 publication Critical patent/WO2021184957A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0274Stretching or bending or torsioning apparatus for exercising for the upper limbs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/00178Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices for active exercising, the apparatus being also usable for passive exercising
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/06Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
    • A63B22/0605Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing a circular movement, e.g. ergometers
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/06Arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/08Other bio-electrical signals
    • A61H2230/085Other bio-electrical signals used as a control parameter for the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/08Other bio-electrical signals
    • A61H2230/10Electroencephalographic signals
    • A61H2230/105Electroencephalographic signals used as a control parameter for the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/20Blood composition characteristics
    • A61H2230/201Blood composition characteristics used as a control parameter for the apparatus

Definitions

  • the invention relates to the field of medical care products, in particular to an upper limb rehabilitation training system and a method for executing exercise intentions.
  • Rehabilitation is usually considered to be a process of gradual improvement of the affected area after injury through means such as voluntary exercise and physical intervention.
  • an incident such as a stroke occurs, it is usually necessary to help the patient to restore an independent life and work state as much as possible through rehabilitation.
  • the main symptom of patients with hemiplegia, stroke, and traumatic brain injury is paralysis of the limbs, which requires active rehabilitation to restore their functions.
  • the functional recovery of paralyzed upper limbs and hands is far more difficult than that of lower limbs. Only in about 10% of cases, paralyzed upper limbs and hands can be restored to the level of practical functions. However, the functions of the upper limbs and hands account for 60% of the body functions.
  • the rehabilitation of the upper limbs and hand functions determines to a certain extent whether the patient can return to the state of life before the injury. Therefore, exploring different rehabilitation technologies and equipment to improve the treatment effect of paralyzed patients at different stages after the patient's injury has become an important research direction to help patients recover their health.
  • the rehabilitation bicycle includes an ordinary two-wheeled bicycle, a base, a friction wheel and a hand crank that can adjust the rotation resistance, and can realize the adjustment of the rotation resistance during the rehabilitation training process.
  • this invention proposes the idea of passive training, but it does not propose a specific implementation method for passive training.
  • the purpose of the present invention is to provide an upper limb rehabilitation training system and a method for performing exercise intentions, which can predict the movement trajectory of the rehabilitation patient, better perform passive training, and can solve the current rehabilitation devices facing problem.
  • an embodiment of the present invention provides an upper limb rehabilitation training system, including a workstation, a motor control unit, a training device, an EEG cap, an EEG analysis unit, a sensor unit, and a human-computer interaction interface; wherein, the workstation Receive the output signals of the EEG analysis unit and the sensor unit, the output terminal of which is connected to the input terminal of the motor controller; the input terminal of the training device is connected to the output terminal of the motor control unit; the input terminal of the sensor unit receives feedback from the training device
  • the output end of the EEG cap is connected to the input end of the workstation; the input end of the EEG cap measures the brain wave signal of the patient, and the output end is connected to the input end of the EEG analysis unit; the human-computer interaction interface outputs sensory signals to patient.
  • the sensor unit includes a photoelectric encoder and a force sensor.
  • the photoelectric sensor is used to obtain the position and angular velocity of the motor of the training device
  • the force sensor is used to obtain the amount of force received by the handle of the training device.
  • the sensor unit also includes a blood oxygen detection device and an ECG detection device, both of which are connected to the workstation; the blood oxygen detection device and the ECG detection device are also connected to a human-computer interaction interface ,
  • the human-computer interaction interface can display the output values of the blood oxygen detection device and the electrocardiogram detection device.
  • the embodiment of the present invention also provides a method for executing exercise intention, using the upper limb rehabilitation training system as described in the first aspect, including the following steps:
  • the human-computer interaction interface emits stroboscopic
  • EEG cap collects brain waves
  • the brain electricity analysis unit analyzes the movement intention according to the brain wave
  • the upper computer converts the motion intent into a number sequence A1, and transmits the number sequence A1 to the motor control unit to achieve corresponding actions;
  • T2 execute the operation steps in T1. If no new movement intention is found, continue to execute the A1 sequence; if a new movement intention is found, perform the following steps:
  • T3, T4,..., Tn, continue to perform the operation steps of T2.
  • a control system with self-feedback control is also adopted.
  • a small amount of medical staff can cooperate to complete the training; in addition, due to the use of With a workstation and a motor control unit, it can accurately control the equipment, ensure the initiative, objectivity, accuracy and consistency of the rehabilitation training, and improve the efficiency of rehabilitation.
  • the brain-computer assisted program is adopted as a training mode of passive training, which can better obtain the patient's information in the early stage of training.
  • subjective intention, brain-computer-assisted training is completed through the cooperation of the display screen, EEG signal acquisition and processing device, upper computer and stepper motor.
  • the movement intention represented by the brain waves is recognized, and the motor control signal corresponding to the movement intention is transmitted to the motor.
  • this operation sequence corresponds to the exercise habit of the human body.
  • Figure 1 is a schematic structural diagram of a training device according to one or more embodiments of the present invention.
  • Fig. 2 is a system structure diagram of the present invention according to one or more embodiments
  • Fig. 3 is a flowchart of an upper computer operation according to one or more embodiments of the present invention.
  • FIG. 4 is a comprehensive interface diagram of the present invention according to one or more embodiments.
  • Fig. 5 is a time node diagram of brain-computer assisted passive training according to one or more embodiments of the present invention.
  • Fig. 6 is a flowchart of a brain-computer assisted passive training scheme according to one or more embodiments of the present invention.
  • the existing rehabilitation devices in the art have 1have certain requirements on the physical strength of the attendants; 2it is difficult to ensure the initiative, objectivity, accuracy and consistency of the rehabilitation training, which limits the efficiency of rehabilitation; 3 Most intelligent upper limb rehabilitation devices that can be used at home are relatively complicated, expensive to manufacture, and unaffordable.
  • the present invention proposes an upper limb rehabilitation training system and a method for executing exercise intentions.
  • an upper limb rehabilitation training system includes a workstation, a motor control unit, a training device, an EEG cap 91, an EEG analysis unit, a sensor unit, and human-computer interaction Interface 10; where the workstation receives the output signals of the EEG analysis unit and the sensor unit, and its output terminal is connected to the input terminal of the motor controller; the input terminal of the training device is connected to the output terminal of the motor control unit; the input terminal of the sensor unit receives the training device The output terminal is connected to the input terminal of the workstation; the input terminal of the EEG cap 91 measures the brain wave signal of the patient, and the output terminal is connected to the input terminal of the EEG analysis unit; the human-computer interaction interface 10 outputs sensory signals to patient.
  • the sensor unit includes a photoelectric encoder 92 and a force sensor.
  • the photoelectric encoder 92 and the force sensor are installed on the training device.
  • the photoelectric encoder 92 is installed beside the stepping motor 5.
  • the photoelectric sensor is used to obtain the position and position of the motor of the training device.
  • the angular velocity, force sensor is used to obtain the value of the force received by the handle 6 of the training device.
  • a photoelectric sensor is a sensor that uses a photoelectric element as a detection element. It first converts the measured change into a change in an optical signal, and then uses the photoelectric element to further convert the optical signal into an electrical signal.
  • a light spot is set at the output end of the motor, and the light spot is detected by a photoelectric sensor, so that the position and angular velocity of the output end of the motor of the training device can be obtained.
  • the workstation is a virtual system that can simulate the real environment and state.
  • the server usually includes a processor, such as a central processing unit (CPU), a communication bus, a user interface, and a network. Interface, memory.
  • the communication bus is used to realize the connection and communication between these components.
  • the user interface may include a display screen (Display) and an input module such as a keyboard (Keyboard), and the optional user interface may also include a standard wired interface and a wireless interface.
  • the network interface may optionally include a standard wired interface and a wireless interface (such as a wireless fidelity (Wi-Fi) interface).
  • the memory can be a high-speed random access memory (RAM) memory, or a stable non-volatile memory (NVM), such as a disk memory.
  • the memory may also be a storage device independent of the foregoing processor.
  • the sensor unit also includes a blood oxygen detection device and an ECG detection device, and both the blood oxygen detection device and the ECG detection device are connected to the workstation.
  • the blood oxygen detection device can use an existing blood oxygen detector, and the blood oxygen detector 94 is connected to the workstation; The instrument 95 is connected to the workstation.
  • the human-computer interaction interface 10 includes a display terminal, and the display terminal includes a communication component for communicating with the sensor unit to obtain data measured by at least one sensor on the training device; it is understandable that the communication component can use the currently commonly used communication bus ;
  • the display terminal also includes a display component, which is connected to the upper computer 7 for displaying the current measurement data obtained through the communication component and the display data sent by the upper computer 7.
  • the upper computer 7 includes a human-computer interaction interface 10 and a data processing and operation module 11, a data processing and operation module 11 and the workstation, and the human-computer interaction interface 10 is used
  • the data processing and operation module 11 obtains the data of the pressure sensor 93 of the handle 6 in real time to analyze the patient’s spasticity.
  • the data processing and operation module 11 also The instructions issued by the host computer 7 are issued to the motion controller 12 in real time.
  • the training device includes a bracket, a seat 1, a backrest, a pedal 2, and an upper limb training mechanism.
  • the bracket includes a first side, a bottom, and a second side that are sequentially connected.
  • the base is fixedly connected to the bottom of the bracket, and the backrest is fixedly connected to the first side of the bracket.
  • the upper limb training mechanism and the foot pedal are fixedly connected to the second side of the bracket.
  • the bottom of the bracket and the length of the second side can be changed; the upper limb training mechanism includes two stepping motors 5 and two handles 6, each Each stepping motor 5 is connected to a handle 6.
  • the base includes a first base and a second base.
  • the first base and the second base are respectively fixedly connected to the first end and the second end of the bottom of the bracket.
  • the first base and the second base raise the bracket so that the bottom of the bracket is suspended. .
  • the two stepping motors 5 are the first motor and the second motor.
  • the handle 6 includes a first handle 6 and a second handle 6.
  • the upper limb training mechanism also includes a first reducer and a second reducer.
  • the first motor is connected to the first Reducer, the first reducer is connected to the first crank, the first crank is connected to the first handle 6; the second motor is connected to the second reducer, the second reducer is connected to the second crank, and the second crank is connected to the second handle 6.
  • the first motor and the second motor are misaligned and installed relative to each other.
  • the pedal 2 includes a first pedal 2 and a second pedal 2, and the first pedal 2 and the second pedal 2 are respectively installed on the first side and the second side of the bracket.
  • a first adjustment mechanism is installed on the bottom of the bracket, and a second adjustment mechanism is installed on the second side of the bracket.
  • the first adjustment mechanism includes a round rod, a rod barrel and a lifting adjustment handle 6.
  • the round rod is inserted into the rod barrel, and the lifting adjustment handle 6 is inserted into the circle.
  • the second adjustment mechanism includes a fixed rod, an adjustment rod and a telescopic adjustment handle 6, the fixed rod is inserted into the adjustment rod, and the telescopic adjustment handle 6 is inserted into the fixed rod and the adjustment rod.
  • Both the round rod and the rod barrel are provided with a plurality of radially penetrating holes with the same diameter for the lifting adjustment handle 6 to pass through, and the fixed rod and the adjusting rod have a plurality of radially penetrating holes for the lifting adjustment handle 6 to pass through with the same diameter. .
  • the power source of the upper limb adjustment mechanism is installed on the fixed plate.
  • the power source includes a first power source and a second power source.
  • the fixed plate includes a first fixed plate, a second fixed plate, and a third fixed plate.
  • the fourth fixing plate, a plurality of fixing plates are all connected to the bearing platform; wherein, the first fixing plate and the second fixing plate are installed on both sides of the first power source, the first power source is connected to the first reducer, and the first power source
  • the first fixing plate and the second fixing plate are fixedly connected; the third fixing plate and the fourth fixing plate are installed on both sides of the second power source, the second power source is connected to the second reducer, and the second power source is fixedly connected to the third fixing ⁇ and the fourth fixed plate.
  • Each fixing plate is provided with a plurality of holes for installing the motor, and there is a gap between the second fixing plate and the third fixing plate.
  • a sleeve is arranged under the seat 1, the sleeve is sleeved on the bracket, and the seat 1 adjustment handle 6 is arranged at the bottom of the sleeve;
  • two stepping motors 5 are used to respectively drive the handle 6 to rotate at the same angle and angular velocity, which can drive the healthy limb and the affected limb in a state of mirror motion in the passive training of unilateral hemiplegia.
  • the mirror motion enables the patient to compare at all times.
  • the sensation of healthy and affected limbs accelerates the remodeling of the central nervous system and the active rehabilitation of the affected limb.
  • the driving handle 6 is controlled to rotate synchronously with a 180° difference, which can drive the two upper limbs to perform rehabilitation training at different angles with a 180° angle difference in the passive training of bilateral hemiplegia;
  • the stepping motor 5 is used to set different rotation speeds and steering to make the handles Six different speed gears can realize speed regulation and direction change in rehabilitation training and meet the requirements of different rehabilitation periods.
  • a control module is installed on the training device, which specifically includes a motion controller 12 and a stepper motor driver 81, where the motion controller 12 communicates with the stepper motor driver 81 through a serial port and senses
  • the module 9 communicates, and the motion controller 12 also realizes communication with the upper computer 7 through the network, uploads the data required by the upper computer 7 in real time and obtains control instructions.
  • the stepper motor driver 81 is matched with the stepper motor 5, and obtains controller control instructions in real time and controls the stepper motor 5.
  • the EEG cap 91, the photoelectric encoder 92, the pressure sensor 93, the blood oxygen detector and the ECG monitor together constitute the sensing module 9, wherein the pressure sensor 93 is located at the handle of the handle 6, and is in contact with the palm of the patient , The value of the force between the hand and the handle is obtained in real time and uploaded to the upper computer 7 via the controller; the photoelectric encoder 92 is set on the motor output shaft 4, and the position and angular velocity of the handle 6 are obtained at all times and uploaded to the upper computer 7 via the controller.
  • the photoelectric encoder 92 is also used for the reset operation of the controller, by obtaining the angular displacement of the handle 6 to control the stepping motor 5 to rotate to the origin set by the system;
  • the Matlab software obtains the patient's motion intention in real time and drives the corresponding motor to rotate; both the blood oxygen detector and the ECG monitor are used to measure the patient's physiological indicators.
  • the modules that need to be controlled in this embodiment include an output control module, a decision analysis module, an EEG signal processing module, and a brain-computer signal acquisition module.
  • the output control module includes a multi-axis The motion controller 12, the decision analysis module is the upper computer 7, and the multi-axis motion controller 12 is connected to the decision analysis module via Ethernet.
  • Ethernet, the upper computer 7 and the motion controller 12 can form EtherCAT
  • the EtherCAT system is an industrial communication system known in the art.
  • the multi-axis motion control system built using the EtherCAT system is well known to those in the art.
  • the multi-axis motion controller 12 in this embodiment is The two-axis motion controller 12 is actually a control module of the stepper motor 5.
  • the EEG signal processing module in this embodiment includes an EEG signal filter and a signal feature extractor that are connected. Both the EEG signal filter and the signal feature extractor are a software module stored in a storage medium, which is a technology in the art.
  • the signal feature extractor is connected to the host computer 7 through Wi-Fi wirelessly for communication;
  • the brain-computer signal acquisition module includes the connected EEG amplifier and the EEG amplifier control terminal, the EEG amplifier uses the EEG cap 91 to collect brain waves , EEG amplifier control terminal is connected to EEG signal filter via Wi-Fi.
  • the host computer 7 is connected to a display, which can display strobes.
  • the display constitutes a strobe stimulation module, including four images clockwise with left hand, counterclockwise with left hand, clockwise with right hand, and counterclockwise with right hand, and the four images flicker in sequence.
  • a control method of a control system of an upper limb rehabilitation training device includes the following two solutions:
  • the active and passive plan is adopted.
  • the patient has the ability to move independently on the affected limb.
  • the patient can use his own strength to turn the handle 6 for rehabilitation training.
  • the stepper motor 5 is equipped with a photoelectric encoder 92 to collect at all times. The rotation status of the handle 6.
  • the system obtains the data of the pressure sensor 93 at the grip of the handle 6, and confirms the patient's force state through the data to confirm whether there is spasm or whether the force cannot reach the rotation of the handle 6 ,
  • the system thinks that the patient has the intention of continuing to turn the handle 6 and the strength is insufficient, and then sends the corresponding control signal, so that the handle 6 slowly rotates and the driving force is quickly attenuated, returning to the active training effect.
  • the system collects several main physiological indicators of the patient at all times.
  • the main victory indicators include blood oxygen and ECG indicators. Once abnormal indicators are found, immediately stop the operation of the device;
  • the active program is adopted. At this time, the patient's affected limb has recovered its function and needs to be trained to reach a normal life level.
  • the system will set the damping effect for the handle 6 and collect the patient's physiological indicators. After the active training, it will be considered Completed rehabilitation training.
  • the damping effect refers to increasing the resistance when the handle 6 is rotated by the stepping motor 5.
  • this embodiment also has a brain-computer assistance program.
  • the brain-computer assistance program in this embodiment can be changed in the early stage of training.
  • the brain-computer assisted training is completed through the cooperation of the display screen, the EEG cap 91, the upper computer 7 and the stepping motor 5;
  • the first step in Figure 3 is registration.
  • This step requires user registration.
  • the upper computer 7 will allocate the user storage space according to the user's registration information to store the user's related training information;
  • the user logs in to the system after registration, and the system records and verifies the login information.
  • the verification can be performed by verifying whether the password is correct; then the display enters the main interface, and the lower-level interfaces of the main interface include the information management interface and the rehabilitation interface
  • the three lower-level interfaces and the main interface can be switched by buttons.
  • the rehabilitation interface is selected, the next level of operation interface is entered.
  • the sensing module 9 detects the human body index and displays it on the display;
  • the automatic control interface displays the current exercise parameters.
  • the current exercise parameters include the pressure sensor 93 data and the handle 6 speed. , Blood oxygen, ECG indicators, while the host computer 7 automatically controls the machine parameters, the machine parameters are various parameters of the motor, including DIR, PUL; after entering the manual mode, the manual control interface displays the current exercise parameters, the current exercise parameters include Pressure sensor 93 data, handle 6 speed, blood oxygen, ECG indicators, and display machine parameters at the same time, patients can use buttons or other trigger methods; machine parameters are various parameters of the motor, including DIR, PUL; enter the brain-computer auxiliary control interface In the future, the brain-computer auxiliary control interface displays the current exercise parameters.
  • the current exercise parameters include pressure sensor 93 data, handle 6 speed, blood oxygen, and ECG indicators, as well as machine parameters;
  • the active and passive operation interface displays the current exercise parameters.
  • the current exercise parameters include pressure sensor 93 data, handle 6 speed, blood oxygen, ECG indicators, and display machine parameters at the same time; at the same time, the host computer 7 Receive the current motion parameters and machine parameters, and select the algorithm to control the current motion parameters and machine parameters.
  • the upper limb rehabilitation training device after entering the brain-computer assisted training mode, the upper limb rehabilitation training device periodically changes the training state according to the subjective intention of the patient.
  • the training state is set by the physician, with the left hand clockwise, the left hand counterclockwise, and the right hand clockwise. , The four single counterclockwise movements of the right hand are the standard.
  • the time of the brain-computer assisted training starts.
  • the host computer 7 After the training starts, the host computer 7 will give a bell reminder seconds before each cycle, and the patient will watch after hearing the reminder.
  • the movement intention obtained by the n+1 cycle analysis is the clockwise movement of the right hand.
  • the system After running, the system automatically enters brain-computer assisted training, starts timing, and uses four categories to identify movement intentions, namely: left hand clockwise rotation, left hand rotation counterclockwise, right hand clockwise rotation, and right hand counterclockwise rotation, set every system Collect the patient’s EEG signal for analysis in a certain period of time, and drive the corresponding handle 6 to complete the specified cycle of rotation after obtaining the patient’s movement intention;
  • a method for performing exercise intentions, using the upper limb rehabilitation training system as in Example 1, includes the following steps:
  • the human-computer interaction interface 10 flashes
  • the EEG cap 91 collects brain waves
  • the brain electricity analysis unit analyzes the movement intention according to the brain wave
  • the upper computer 7 converts the movement intention into a sequence A, and transmits the sequence A to the motor control unit to realize the corresponding action;
  • T2 execute the operation steps in T1. If no new movement intention is found, continue to execute the A sequence; if a new movement intention is found, perform the following steps:
  • T1, T2,..., Tn continue to perform the operation steps of T.
  • Movement intentions include clockwise rotation of the left hand, counterclockwise rotation of the left hand, clockwise rotation of the right hand, and counterclockwise rotation of the right hand.
  • the number sequence A includes the values of DIR and PUL of the motor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Optics & Photonics (AREA)
  • Cardiology (AREA)
  • Epidemiology (AREA)
  • Psychology (AREA)
  • Psychiatry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Primary Health Care (AREA)
  • Pain & Pain Management (AREA)
  • Rehabilitation Therapy (AREA)
  • Vascular Medicine (AREA)
  • Rehabilitation Tools (AREA)

Abstract

一种上肢康复训练系统,包括工作站、电机控制单元、训练装置、脑电帽(91)、脑电分析单元、传感器单元和人机交互界面(10);其中,工作站接收脑电分析单元和传感器单元的输出信号,其输出端连接电机控制器的输入端;训练装置的输入端连接电机控制单元的输出端;传感器单元的输入端接收训练装置的反馈信号,其输出端与工作站的输入端连接;脑电帽(91)的输入端测取患者的脑电波信号,其输出端连接脑电分析单元的输入端;人机交互界面(10)输出感官信号给患者。该系统能够预测并执行康复病人的运动轨迹,更好的进行被动训练,可以解决目前康复装置所面临的问题。还同时公开了相应的执行运动意图的方法。

Description

一种上肢康复训练系统及执行运动意图的方法 技术领域
本发明涉及医疗护理用品领域,具体的,涉及一种上肢康复训练系统及执行运动意图的方法。
背景技术
这里的陈述仅提供与本发明相关的背景技术,而不必然地构成现有技术。
康复通常被认为通过自主运动、物理干预等手段使得受伤后患部逐渐转好的过程。在医学领域中,脑卒中等事件发生后,通常需要通过康复帮助病人尽可能地恢复独立的生活和工作状态。偏瘫、中风、脑外伤患者的主要症状是肢体瘫痪,需要积极的康复治疗才能恢复其功能。瘫痪上肢和手的功能恢复远比下肢困难的多,只有10%左右病例的瘫痪上肢和手才能恢复到具有实用功能的水平。但是,上肢及手功能占全身功能的60%,因此,上肢和手功能的康复一定程度上就决定了患者能否恢复到受伤前的生活状态。所以,在患者伤后不同阶段探索不同的改善瘫痪患者治疗效果的康复技术和设备,已经成为了帮助患者恢复健康重要的研究方向。
由于目前的康复设备多为纯机械设备,在患者康复全程需要数个医护人员配合完成,因此其具有以下缺点:①对陪护人员体力有一定的要求;②很难保证康复训练的主动性、客观性、精准性和一致性,限制了康复效率。较完善的设备多位于医院康复中心,体型庞大,但随着近几年需要康复的人员不断增多,并且伤情已经有好转的患者,可以选择在家里进行有效地康复训练,而大部分可家用的智能化的上肢康复装置较为复杂,造价高昂,一般家庭难以负担。
现有文献中,公开了一种康复智能自行车,该康复自行车包括普通两轮自行车、底座和可调节转动阻力大小的摩擦轮和手摇柄,在康复训练过程中能够实现转动阻力的调节,起到康复训练作用,该发明提出被动训练的设想,却没有提出被动训练的具体实现方法。
发明内容
针对现有技术存在的不足,本发明的目的是提供一种上肢康复训练系统及执行运动意图的方法,能够预测康复病人的运动轨迹,更好的进行被动训练,可以 解决目前康复装置所面临的问题。
为了实现上述目的,本发明是通过如下的技术方案来实现:
第一方面,本发明的实施例提供了一种上肢康复训练系统,包括工作站、电机控制单元、训练装置、脑电帽、脑电分析单元、传感器单元和人机交互界面;其中,所述工作站接收脑电分析单元和传感器单元的输出信号,其输出端连接电机控制器的输入端;所述训练装置的输入端连接电机控制单元的输出端;所述传感器单元的输入端接收训练装置的反馈信号,其输出端与工作站的输入端连接;所述脑电帽的输入端测取患者的脑电波信号,其输出端连接脑电分析单元的输入端;所述人机交互界面输出感官信号给患者。
作为进一步的技术方案,所述传感器单元包括光电编码器和力传感器,光电传感器用于获取训练装置的电机的位置和角速度,力传感器用于获取训练装置的手柄所受到的力的量。
作为进一步的技术方案,所述传感器单元还包括血氧检测装置和心电检测装置,血氧检测装置和心电检测装置均连接工作站;血氧检测装置和心电检测装置还连接人机交互界面,所述人机交互界面能够显示血氧检测装置和心电检测装置的输出的数值。
第二方面,本发明实施例还提供了一种执行运动意图的方法,使用如第一方面所述的上肢康复训练系统,包括以下步骤:
设定测量频率ω,根据测量频率计算得测量周期T=1/ω;
在T1内,执行以下步骤:
使用扬声器发出提示信息以提示使用者观看频闪;
人机交互界面发出频闪;
脑电帽采集脑电波;
脑电分析单元根据脑电波分析运动意图;
上位机将运动意图转化为数列A1,将数列A1传送到电机控制单元实现相应动作;
在T2内,执行T1内的操作步骤,若无发现新的运动意图,继续执行A1数列;若发现新的运动意图,则执行以下步骤:
在发现新的运动意图后,对电机控制单元发出停转信号,然后执行新的运动 意图;
在T3,T4,…,Tn中,继续执行T2的操作步骤。
上述本发明的实施例的有益效果如下:
1、本发明所公开的技术方案中,在机械锻炼器械的基础上,还采用了具有自反馈控制的控制系统,在患者康复过程中,少量的医护人员配合即可完成训练;此外,由于采用了工作站、电机控制单元,其可以对器械进行精准的控制,能保证康复训练的主动性、客观性、精准性和一致性,提高康复效率。
2、本发明提供的方案中,针对现有的脑卒中患者中70%患有失语症状的现状,采用脑机辅助方案作为被动训练的一种训练模式,能够在训练初期更好的获取患者的主观意图,脑机辅助训练通过显示屏、脑电信号采集与处理装置、上位机以及步进电机配合完成。
3、本发明提供的技术方案中,在通过上位机分析的脑电波的类型之后,将脑电波代表的运动意图进行是识别,并将运动意图所对应的电机控制信号传递给电机,当发现新的意图时,先使电机停转,在停转后再执行新的意图的电机控制信号,这种操作顺序对应于人体的运动习惯。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本发明根据一个或多个实施方式的训练装置结构示意图,
图2是本发明根据一个或多个实施方式的系统结构图,
图3是本发明根据一个或多个实施方式的上位机操作流程图,
图4是本发明根据一个或多个实施方式的综合接口图,
图5是本发明根据一个或多个实施方式的脑机辅助被动训练时间节点图,
图6是本发明根据一个或多个实施方式的脑机辅助被动训练方案流程图。
图中,1、座椅,2、踏板,3、可调支架,4、输出轴,5、步进电机,6、手柄,7、上位机,8、控制模块,9、感知模块,10、人机交互界面,11、数据处理与操作模块,12、多轴运动控制器,81、步进电机驱动器,91、脑电帽,92、光电编码器,93、压力传感器,94,血氧检测器,95、心电检测仪。
图中:为显示各部位位置而夸大了互相间间距或尺寸,示意图仅作示意使用。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非本发明另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合;
为了方便叙述,本发明中如果出现“上”、“下”、“左”、“右”字样,仅表示与附图本身的上、下、左、右方向一致,并不对结构起限定作用,仅仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。
术语解释部分:本发明中的术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或为一体;可以是机械连接,也可以是电连接,可以是直接连接,也可以是通过中间媒介间接相连,可以是两个元件内部连接,或者两个元件的相互作用关系,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明的具体含义。
正如背景技术所介绍的,现有技术中的康复装置存在①对陪护人员体力有一定的要求;②很难保证康复训练的主动性、客观性、精准性和一致性,限制了康复效率;③大部分可家用的智能化的上肢康复装置较为复杂,造价高昂,难以负担的不足,为了解决如上的技术问题,本发明提出了一种上肢康复训练系统及执行运动意图的方法。
实施例1
本发明的一种典型的实施方式中,如图1所示,一种上肢康复训练系统,包括工作站、电机控制单元、训练装置、脑电帽91、脑电分析单元、传感器单元和人机交互界面10;其中,工作站接收脑电分析单元和传感器单元的输出信号,其输出端连接电机控制器的输入端;训练装置的输入端连接电机控制单元的输出端;传感器单元的输入端接收训练装置的反馈信号,其输出端与工作站的输入端连接; 脑电帽91的输入端测取患者的脑电波信号,其输出端连接脑电分析单元的输入端;人机交互界面10输出感官信号给患者。
传感器单元包括光电编码器92和力传感器,光电编码器92和力传感器安装在训练装置,其中,光电编码器92安装于步进电机5旁侧,光电传感器用于获取训练装置的电机的位置和角速度,力传感器用于获取训练装置的手柄6所受到的力的数值。本领域技术人员可以理解的是,光电传感器是采用光电元件作为检测元件的传感器,它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号,在本实施例中,在电机的输出端设置光点,通过光电传感器来检测光点,即可获取训练装置的电机的输出端的位置和角速度。
工作站是能够模拟现实环境及状态的虚拟系统。本领域技术人员可以理解的是,工作站可以采用能够模拟现实环境及状态的服务器,服务器作为一种虚拟系统,其通常包括:处理器,例如中央处理器(CPU),通信总线、用户接口,网络接口,存储器。其中,通信总线用于实现这些组件之间的连接通信。用户接口可以包括显示屏(Display)、输入模块比如键盘(Keyboard),可选用户接口还可以包括标准的有线接口、无线接口。网络接口可选的可以包括标准的有线接口、无线接口(如无线保真(Wi-Fi)接口)。存储器可以是高速的随机存取存储器(RAM)存储器,也可以是稳定的非易失性存储器(NVM),例如磁盘存储器。存储器可选的还可以是独立于前述处理器的存储装置。
传感器单元还包括血氧检测装置和心电检测装置,血氧检测装置和心电检测装置均连接工作站。本领域技术人员可以理解的是,血氧检测装置可以采用现有的血氧检测仪,并且血氧检测器94连接工作站;心电检测装置采用现有的心电检测仪95,并且心电检测仪95连接工作站。
人机交互界面10包括显示终端,显示终端包括通信组件,用于与传感器单元通信,以获得训练装置上的至少一个传感器测得的数据;可以理解的是,通信组件可以采用目前常用的通讯总线;
显示终端还包括显示组件,其连接于上位机7,用于显示通过通信组件获得的当前测量数据以及上位机7发出的显示数据。
具体到本实施例中,请参考图2,本实施例中上位机7包括人机交互界面10以及数据处理与操作模块11,数据处理与操作模块11及所述工作站,人机交互界面 10用于实时显示患者的主要生理指标、两个手柄6的状态以及接收医护人员的指令,数据处理与操作模块11实时获取手柄6压力传感器93的数据,分析患者痉挛情况,数据处理与操作模块11还实时下发上位机7下发的指令到运动控制器12。
训练装置包括支架、座椅1、靠背、踏板2和上肢训练机构,支架包括顺序连接的第一侧部、底部和第二侧部,底座固定连接支架的底部,靠背固定连接支架的第一侧部,上肢训练机构和脚踏固定连接支架的第二侧部,支架的底部和第二侧部的长度能够改变;其中,上肢训练机构包括两个步进电机5和两个手柄6,每个步进电机5均连接一个手柄6。
底座包括第一底座和第二底座,第一底座和第二底座分别固定连接于支架底部的第一端部和第二端部,第一底座和第二底座垫高支架使支架的底部悬空。
两个步进电机5分别为第一电机和第二电机,手柄6包括第一手柄6和第二手柄6,上肢训练机构还包括第一减速机和第二减速机,第一电机连接第一减速机,第一减速机连接第一摇柄,第一摇柄连接第一手柄6;第二电机连接第二减速机,第二减速机连接第二摇柄,第二摇柄连接第二手柄6。
第一电机和第二电机错位且相对安装。
踏板2包括第一踏板2和第二踏板2,第一踏板2和第二踏板2分别安装于支架的第一侧和第二侧。
支架的底部安装第一调节机构,支架的第二侧安装第二调节机构,第一调节机构包括圆杆、杆筒和升降调节手柄6,圆杆插接于杆筒,升降调节手柄6插入圆杆和杆筒;第二调节机构包括固定杆、调节杆和伸缩调节手柄6,固定杆插接于调节杆,伸缩调节手柄6插入固定杆和调节杆。
圆杆和杆筒均开设径向贯穿的多个直径相同的供升降调节手柄6穿过的孔,固定杆和调节杆开设径向贯穿的多个直径相同的供升降调节手柄6穿过的孔。
上肢调节机构的动力源安装于固定板,当动力源具有两个时,动力源包括第一动力源和第二动力源,固定板包括第一固定板、第二固定板、第三固定板和第四固定板,多个固定板均连接于承载平台;其中,第一固定板和第二固定板安装于第一动力源的两侧,第一动力源连接第一减速机,第一动力源固定连接第一固定板和第二固定板;第三固定板和第四固定板安装于第二动力源的两侧,第二动力源连接第二减速机,第二动力源固定连接第三固定板和第四固定板。
每块固定板上均开有多个孔用来安装电机,第二固定板与第三固定板之间具有间隙。
座椅1下方设置有套筒,套筒套装于支架,套筒底部设置有座椅1调节手柄6;
本实施例中,采用两个步进电机5分别驱动手柄6同一角度、角速度转动,能够在单侧偏瘫被动训练中带动健肢与患肢处于镜像运动的状态,通过镜像动作能够使患者时刻比较健肢与患肢的感觉,加快中枢神经系统的重塑与患肢的能动康复。
同时分别控制驱动手柄6相差180°同步转动,能够在双侧偏瘫被动训练中带动两上肢以180°角度差进行同时不同角度的康复训练;采用步进电机5设置不同的转速与转向从而使手柄6分不同的转速档,能够实现康复训练中的调速与变向,满足不同的康复时期要求。
结合训练装置的具体结构,本实施例中,在训练装置上安装控制模块,其具体包括运动控制器12与步进电机驱动器81,其中,运动控制器12通过串口与步进电机驱动器81和感知模块9通讯,运动控制器12还通过网络实现与上位机7的通讯,实时上传上位机7所需数据与获取控制指令。步进电机驱动器81与步进电机5匹配,实时获取控制器控制指令并对步进电机5进行控制。
本实施例中的脑电帽91、光电编码器92、压力传感器93、血氧检测仪与心电监测仪共同构成感知模块9,其中,压力传感器93设于手柄6把手处,与患者手掌接触,实时获取人手与把手之间的力的数值并经控制器上传到上位机7中;光电编码器92设于电机输出轴4,时刻获取手柄6位置及角速度并经控制器上传到上位机7中,光电编码器92还用于控制器复位操作,通过获取手柄6角位移控制步进电机5转动到系统设定的原点;脑电帽91由语言障碍型患者佩戴,通过采集脑电信号经由Matlab软件实时获得患者运动意图并驱动相应电机转动;血氧检测仪与心电监测仪均用于测量患者生理指标。
请参考图4,从模块控制的角度来看,本实施例中的需要控制的模块供包括输出控制模块、决策分析模块、脑电信号处理模块和脑机信号采集模块,输出控制模块包括多轴运动控制器12,决策分析模块为上位机7,多轴运动控制器12通过以太网连接决策分析模块,本领域技术人员可以理解的是,以太网、上位机7和运动控制器12可以构成EtherCAT系统,EtherCAT系统为本领域内所公知的工业通 讯系统,使用EtherCAT系统搭建的多轴运动控制系统为本领域人员所熟知,还可以理解的是,本实施例中的多轴运动控制器12为二轴运动控制器12,其实体为步进电机5的控制模块。本实施例中的脑电信号处理模块包括相连接的EEG信号滤波器和信号特征提取器,EEG信号滤波器和信号特征提取器均为一种存储于存储介质中的软件模块,为本领域技术人员所熟知;信号特征提取器通过Wi-Fi无线连接上位机7进行通信;脑机信号采集模块包括相连的EEG放大器和EEG放大器控制端,EEG放大器采用脑电帽91的形式进行脑电波的采集,EEG放大器控制端通过Wi-Fi连接EEG信号滤波器。上位机7连接显示器,显示器能够显示频闪,显示器构成频闪刺激模块,共包括左手顺时针、左手逆时针、右手顺时针、右手逆时针四个图像,四个图像依次闪烁。
实施例2
本发明的一种典型的实施方式中,如图3所示,一种上肢康复训练装置控制系统的控制方法,包括以下两个方案:
1、在康复训练软瘫期,采用被动方案,由训练装置完全带动患者患肢的运动,患者借助手柄6的缓慢转动逐渐恢复上肢的能动;
2、在痉挛期,采用主被动方案,此时患者已初步具备患肢的自主动作能力,患者可以用自己的力量转动手柄6进行康复训练,步进电机5安装有光电编码器92,时刻采集手柄6的转动状况,在此模式下采集到手柄6停转后,系统获取手柄6握把处压力传感器93数据,通过数据确认患者用力状态从而确认是否发生痉挛或是否用力达不到手柄6转动,系统认为患者有继续转动手柄6意图而力量不足后发送相应的控制信号,使得手柄6缓慢转动并使得驱动力迅速衰减,回复到主动训练效果,同时系统时刻采集患者几个主要生理指标,所述几个主要胜利指标包括血氧、心电指标,一旦发现指标异常立刻停止装置运作;
3、在康复期,采用主动方案,此时患者患肢已恢复功能,需要通过训练达到正常生活的水平,系统将为手柄6设置阻尼效果,同时采集患者的生理指标,通过主动训练后即认为完成了康复训练。本领域技术人员可以理解的是,所述阻尼效果指的是通过步进电机5增大手柄6旋转时的阻力。
4、考虑到脑卒中患者中70%患有失语症状,因此本实施例中还具有脑机辅助方案,本实施例中的脑机辅助方案作为被动训练的一种训练模式,能够在训练 初期更好的获取患者的主观意图,脑机辅助训练通过显示屏、脑电帽91、上位机7以及步进电机5配合完成;
可与理解的是,结合图3,图3中的第一步为注册,此步骤需要用户注册身份,上位机7会根据用户的注册信息分配给用户存储空间,以存储用户的相关训练信息;用户在注册后登录系统,系统对登录信息进行记录并验证,此处的验证可以通过验证密码是否正确进行;之后显示屏进入主界面,在主界面的下层级界面中包括信息管理界面、康复界面和方案管理界面三个下层级界面,三个下层级界面与主界面之间可以通过按钮进行切换,当选择康复界面以后,进入下一层级的操作界面,在操作界面的下一层级中具有三个模式选择界面,分别为主动操作界面、被动操作界面和主被动操作界面。
其中,选择进入主动操作界面后,感知模块9检测人体指标并通过显示器显示;
其中,选择进入被动操作界面后,可以进一步选择自动模式、手动模式或者脑机辅助模式,进入自动模式后,自动控制界面显示当前的运动参数,当前的运动参数包括压力传感器93数据、手柄6转速、血氧、心电指标,同时上位机7自动控制机器参数,机器参数为电机的各种参数,包括DIR、PUL;进入手动模式以后,手动控制界面显示当前的运动参数,当前的运动参数包括压力传感器93数据、手柄6转速、血氧、心电指标,同时显示机器参数,患者可以通过按钮或者其他触发方式;机器参数为电机的各种参数,包括DIR、PUL;进入脑机辅助控制界面以后,脑机辅助控制界面显示当前的运动参数,当前的运动参数包括压力传感器93数据、手柄6转速、血氧、心电指标,同时显示机器参数;
其中,选择进入主被动操作界面后,主被动操作界面显示当前的运动参数,当前的运动参数包括压力传感器93数据、手柄6转速、血氧、心电指标,同时显示机器参数;同时,上位机7接收当前的运动参数和机器参数,并选择算法进对当前的运动参数和机器参数进行控制。
结合图4以及图5,进入脑机辅助训练模式后,上肢康复训练装置周期性的随着患者主观意图改变训练状态,其中训练状态由医师设置,采取左手顺时针、左手逆时针、右手顺时针、右手逆时针四个单一动作为标准,在脑机辅助训练开始后开始计时脑机辅助训练的时间,训练开始后在每个周期前秒由上位机7发出 铃声提示,患者听到提示后观看屏幕上的频闪,由脑电帽91采集患者运动意图产生的脑电信号,经滤波提取后通过无线Wi-Fi传送到上位机7中,分析得出患者的运动意图,分析得到的运动意图通过一组数列传送到多轴运动控制器12实现相应动作,在下个周期到来之前保持上一次分析得出的动作序列,如第n个周期分析得到患者的运动意图为左手顺时针旋转,而第n+1个周期分析得到的运动意图为右手顺时针运动,则在患者观看频闪1s后上肢康复训练装置左侧手柄6动作在0.1s内迅速衰减到零,静止0.1s后右手手柄6在0.1s内速度平缓上升到设定值并开始执行并保持右手顺时针的运动,在下个周期到来之前保持该状态不变,若在第n+2个周期分析得到的运动意图依旧为右手顺时针,则第n+1周期的运动状态保持到n+2个周期结束,等待第n+3个周期的指令,如此循环直到计时结束或医师手动关闭脑机辅助训练。
请结参考图4,图4示出了本实施例所涉及的模块,
结合图6以双侧偏瘫失语病例的脑机辅助条件下一次被动训练为例,介绍主要步骤如下:
1)通电,打开人机交互界面10,输入账号密码进入用户模式,打开被动训练界面;
2)佩戴脑电帽91,选择脑机辅助被动训练方案及脑机辅助转速档位,点击开始,系统进入复位状态,电机控制手柄6回到零点位置;
3)回到零点位置后经几个周期的延迟,按照选择的训练方案进行周期性的动作;
4)运转完毕系统自动进入脑机辅助训练,开启计时,采用四分类识别运动意图,分别为:左手顺时针转动、左手逆时针转动、右手顺时针转动以及右手逆时针转动,每隔系统设定的一段时间采集一次患者脑电信号进行分析,获取患者运动意图后驱动相应手柄6完成规定周期的旋转;
5)在训练整个过程中时刻采集患者主要生理指标,一旦发现异常立刻停止训练并发出报警;其中,在脑机辅助过程中随时可通过人机交互界面10按钮改变转速档位以及加减速操作;
6)经系统设定的训练总时长后自动停止训练,完成脑机辅助的被动训练。
实施例3
一种执行运动意图的方法,使用如实施例1的上肢康复训练系统,包括以下步骤:
设定测量频率ω,根据测量频率计算得测量周期T=/ω;
在T1内,执行以下步骤:
发出提示信息以提示使用者观看频闪;
人机交互界面10发出频闪;
脑电帽91采集脑电波;
脑电分析单元根据脑电波分析运动意图;
上位机7将运动意图转化为数列A,将数列A传送到电机控制单元实现相应动作;
在T2内,执行T1内的操作步骤,若无发现新的运动意图,继续执行A数列;若发现新的运动意图,则执行以下步骤:
在发现新的运动意图后,对电机控制单元发出停转信号,然后执行新的运动意图;
在T1,T2,…,Tn中,继续执行T的操作步骤。
运动意图包括左手顺时针转动、左手逆时针转动、右手顺时针转动以及右手逆时针转动。
数列A包括电机的DIR、PUL的值。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种上肢康复训练系统,其特征在于,包括工作站、电机控制单元、训练装置、脑电帽、脑电分析单元、传感器单元和人机交互界面;其中,所述工作站接收脑电分析单元和传感器单元的输出信号,其输出端连接电机控制器的输入端;所述训练装置的输入端连接电机控制单元的输出端;所述传感器单元的输入端接收训练装置的反馈信号,其输出端与工作站的输入端连接;所述脑电帽的输入端测取患者的脑电波信号,其输出端连接脑电分析单元的输入端;所述人机交互界面输出感官信号给患者。
  2. 如权利要求1所述的上肢康复训练系统,其特征在于,所述传感器单元包括光电编码器和力传感器,光电传感器用于获取训练装置的电机的位置和角速度,力传感器用于获取训练装置的手柄所受到的力的量。
  3. 根据权利要求1所述的上肢康复训练系统,其特征在于,所述人机交互界面包括显示终端,显示终端连接所述上位机;所述感官信号为通过显示终端展示的图像信号、文字信号和视频信号。
  4. 根据权利要求3所述的上肢康复训练系统,其特征在于,所述显示终端包括:
    通信组件,用于与传感器单元通信,以获得所述传感器单元的至少一个传感器对当前测量范围内进行测量而测得的数据;
    显示组件,其连接于上位机,用于显示所述当前测量数据以及上位机发出的显示数据。
  5. 根据权利要求1所述的上肢康复训练系统,其特征在于,所述训练装置包括支架、座椅、靠背、脚蹬和上肢训练机构,支架包括顺序连接的第一侧部、底部和第二侧部,底座固定连接支架的底部,靠背固定连接支架的第一侧部,上肢训练机构和脚踏固定连接支架的第二侧部,支架的底部和第二侧部的长度能够改变;其中,上肢训练机构包括多个动力源和多个手柄,每个动力源均连接一个手柄。
  6. 根据权利要求5所述的上肢康复训练系统,其特征在于,所述多个手柄均连接所述力传感器;所述力传感器还连接人机交互界面,所述人机交互界面能够显示力传感器的输出的数值。
  7. 根据权利要求1所述的上肢康复训练系统,其特征在于,所述传感器单元还包括血氧检测装置和心电检测装置,血氧检测装置和心电检测装置均连接工作站;血氧检测装置和心电检测装置还连接人机交互界面,所述人机交互界面能够显示血氧检测装置和心电检测装置的输出的数值。
  8. 一种执行运动意图的方法,使用如权利要求1~7任意一项所述的上肢康复训练系统,其特征在于,包括以下步骤:
    设定测量频率ω,根据测量频率计算得测量周期T=1/ω;
    在T1内,执行以下步骤:
    使用扬声器发出提示信息以提示使用者观看频闪;
    人机交互界面发出频闪;
    脑电帽采集脑电波;
    脑电分析单元根据脑电波分析运动意图;
    上位机将运动意图转化为数列A1,将数列A1传送到电机控制单元实现相应动作;
    在T2内,执行T1内的操作步骤,若无发现新的运动意图,继续执行A1数列;若发现新的运动意图,则执行以下步骤:
    在发现新的运动意图后,对电机控制单元发出停转信号,然后执行新的运动意图;
    在T3,T4,…,Tn中,继续执行T2内的操作步骤。
  9. 根据权利要求8所述的执行运动意图的方法,其特征在于,所述频闪包括表示左手顺时针转动的图像、表示左手逆时针转动的图像、表示右手顺时针转动的图像以及表示右手逆时针转动的图像;所述运动意图包括左手顺时针转动、左手逆时针转动、右手顺时针转动以及右手逆时针转动。
  10. 根据权利要求8所述的执行运动意图的方法,其特征在于,所述数列A1包括电机的DIR、PUL的值。
PCT/CN2021/073316 2020-03-18 2021-01-22 一种上肢康复训练系统及执行运动意图的方法 WO2021184957A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010190809.0 2020-03-18
CN202010190809.0A CN111281752A (zh) 2020-03-18 2020-03-18 一种上肢康复训练系统及执行运动意图的方法

Publications (1)

Publication Number Publication Date
WO2021184957A1 true WO2021184957A1 (zh) 2021-09-23

Family

ID=71027052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073316 WO2021184957A1 (zh) 2020-03-18 2021-01-22 一种上肢康复训练系统及执行运动意图的方法

Country Status (2)

Country Link
CN (1) CN111281752A (zh)
WO (1) WO2021184957A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115153479A (zh) * 2022-09-05 2022-10-11 杭州中芯微电子有限公司 一种适用于医疗机构患者腕部的智能腕带

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111281752A (zh) * 2020-03-18 2020-06-16 山东建筑大学 一种上肢康复训练系统及执行运动意图的方法
CN112546569B (zh) * 2021-01-06 2022-01-11 曲本彩 一种手臂肌群和手腕肌群屈伸功能受损的康复装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080071386A1 (en) * 2006-09-19 2008-03-20 Myomo, Inc. Powered Orthotic Device and Method of Using Same
CN102138860A (zh) * 2011-01-10 2011-08-03 西安交通大学 一种智能化脑损伤患者手功能康复训练设备
CN103750975A (zh) * 2013-12-27 2014-04-30 天津理工大学 基于脑电控制的外骨骼手指康复机器人系统及工作方法
US20180110669A1 (en) * 2015-04-15 2018-04-26 Instituto Tecnlógico Y De Estudios Superiores De Monterrey Non-invasive mechatronic device providing joint mobility
CN109646242A (zh) * 2017-10-12 2019-04-19 上海师范大学 一种桌面式上肢康复机器人及其使用方法
CN110051978A (zh) * 2019-05-29 2019-07-26 苏州轰天炮光电科技有限公司 四肢联动康复医疗器械、控制方法及交互方法
CN110179626A (zh) * 2019-05-28 2019-08-30 山东建筑大学 一种上肢康复训练装置及方法
CN209575195U (zh) * 2018-08-08 2019-11-05 广州龙之杰科技有限公司 一种儿童型上下肢主被动康复训练器
CN110974605A (zh) * 2019-12-06 2020-04-10 江苏理工学院 手指康复训练装置及基于脑电控制的手指康复训练系统
CN111084705A (zh) * 2019-12-05 2020-05-01 山东建筑大学 一种主动式上肢康复训练机器人
CN111281752A (zh) * 2020-03-18 2020-06-16 山东建筑大学 一种上肢康复训练系统及执行运动意图的方法
CN111773027A (zh) * 2020-07-03 2020-10-16 上海师范大学 一种柔性驱动的手功能康复机器人控制系统及控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107813307A (zh) * 2017-09-12 2018-03-20 上海谱康电子科技有限公司 基于运动想象脑电信号的机械手臂控制系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080071386A1 (en) * 2006-09-19 2008-03-20 Myomo, Inc. Powered Orthotic Device and Method of Using Same
CN102138860A (zh) * 2011-01-10 2011-08-03 西安交通大学 一种智能化脑损伤患者手功能康复训练设备
CN103750975A (zh) * 2013-12-27 2014-04-30 天津理工大学 基于脑电控制的外骨骼手指康复机器人系统及工作方法
US20180110669A1 (en) * 2015-04-15 2018-04-26 Instituto Tecnlógico Y De Estudios Superiores De Monterrey Non-invasive mechatronic device providing joint mobility
CN109646242A (zh) * 2017-10-12 2019-04-19 上海师范大学 一种桌面式上肢康复机器人及其使用方法
CN209575195U (zh) * 2018-08-08 2019-11-05 广州龙之杰科技有限公司 一种儿童型上下肢主被动康复训练器
CN110179626A (zh) * 2019-05-28 2019-08-30 山东建筑大学 一种上肢康复训练装置及方法
CN110051978A (zh) * 2019-05-29 2019-07-26 苏州轰天炮光电科技有限公司 四肢联动康复医疗器械、控制方法及交互方法
CN111084705A (zh) * 2019-12-05 2020-05-01 山东建筑大学 一种主动式上肢康复训练机器人
CN110974605A (zh) * 2019-12-06 2020-04-10 江苏理工学院 手指康复训练装置及基于脑电控制的手指康复训练系统
CN111281752A (zh) * 2020-03-18 2020-06-16 山东建筑大学 一种上肢康复训练系统及执行运动意图的方法
CN111773027A (zh) * 2020-07-03 2020-10-16 上海师范大学 一种柔性驱动的手功能康复机器人控制系统及控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115153479A (zh) * 2022-09-05 2022-10-11 杭州中芯微电子有限公司 一种适用于医疗机构患者腕部的智能腕带
CN115153479B (zh) * 2022-09-05 2024-02-06 杭州中芯微电子有限公司 一种适用于医疗机构患者腕部的智能腕带

Also Published As

Publication number Publication date
CN111281752A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2021184957A1 (zh) 一种上肢康复训练系统及执行运动意图的方法
WO2021243918A1 (zh) 上肢功能评估装置与方法及上肢康复训练系统与方法
US20220126169A1 (en) Systems and methods for using machine learning to control a rehabilitation and exercise electromechanical device
CN109308940A (zh) 心肺运动评估和运动训练一体化系统
US20190021929A1 (en) Methods and apparatus for rehabilitation and training
US8177732B2 (en) Methods and apparatuses for rehabilitation and training
CN105031908B (zh) 一种平衡矫正式训练装置
WO2018205722A1 (zh) 康复机器人、康复系统、康复方法、康复装置
WO2015041618A2 (en) Upper limb therapeutic exercise robot
EP1850824B1 (en) Methods and apparatuses for rehabilitation and training
US20210093240A1 (en) Systems and methods for reaction measurement
CN110742775A (zh) 基于力反馈技术的上肢主被动康复训练机器人系统
KR20080024695A (ko) 보행훈련제어시스템
CN105455976A (zh) 一种智能康复轮椅
CN111067543A (zh) 一种卧式踏步式康复训练机器人的人机交互系统
CN107753242A (zh) 一种缓解腕关节痉挛的镜像装置
CN104622429A (zh) 医生端、患者端辅助诊疗设备以及远程诊疗系统和方法
Casas et al. Human-robot interaction for rehabilitation scenarios
US11612786B2 (en) System and method for targeted neurological therapy using brainwave entrainment with passive treatment
Li et al. Architectural design of a cloud robotic system for upper-limb rehabilitation with multimodal interaction
Finkelstein et al. Feasibility of interactive biking exercise system for telemanagement in elderly
JP2005185557A (ja) 運動能力評価システム
CN113827920B (zh) 颞下颌关节训练装置及电子设备
Lin et al. QM-FOrMS: A portable and cost-effective upper extremity rehabilitation system
US20240001193A1 (en) System and method for targeted neurological therapy using brainwave entrainment with passive treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771791

Country of ref document: EP

Kind code of ref document: A1