WO2021184507A1 - 盾构施工过程地层变形的控制方法、控制装置和非易失存储介质 - Google Patents

盾构施工过程地层变形的控制方法、控制装置和非易失存储介质 Download PDF

Info

Publication number
WO2021184507A1
WO2021184507A1 PCT/CN2020/088938 CN2020088938W WO2021184507A1 WO 2021184507 A1 WO2021184507 A1 WO 2021184507A1 CN 2020088938 W CN2020088938 W CN 2020088938W WO 2021184507 A1 WO2021184507 A1 WO 2021184507A1
Authority
WO
WIPO (PCT)
Prior art keywords
settlement
stage
ratio
deformation
predetermined range
Prior art date
Application number
PCT/CN2020/088938
Other languages
English (en)
French (fr)
Inventor
陈健
肖明清
王承震
苏秀婷
李树忱
薛峰
李秀东
吴言坤
孙文昊
Original Assignee
中铁十四局集团有限公司
中铁第四勘察设计院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁十四局集团有限公司, 中铁第四勘察设计院集团有限公司 filed Critical 中铁十四局集团有限公司
Priority to US17/431,725 priority Critical patent/US11927098B2/en
Publication of WO2021184507A1 publication Critical patent/WO2021184507A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/0607Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining the shield being provided with devices for lining the tunnel, e.g. shuttering
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/08Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining with additional boring or cutting means other than the conventional cutting edge of the shield
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/093Control of the driving shield, e.g. of the hydraulic advancing cylinders

Definitions

  • the present disclosure relates to the technical field of shield tunnel engineering, and in particular to a method, a control device, a storage medium, and a processor for controlling ground deformation during shield construction.
  • shield technology has the advantages of high mechanization, fast construction speed, environmental friendliness, and construction safety, it is widely used in urban tunnel construction.
  • construction conditions of shield tunnels are complicated, and stratum disturbance will inevitably occur during the construction process, which will lead to soil deformation, surface uplift or settlement, and affect the safety of the surface and the surrounding environment.
  • the embodiments of the present disclosure provide a method, a control device, a non-volatile storage medium, and a processor for controlling formation deformation during a shield construction process, so as to at least solve the technical problem of difficult control of formation deformation and settlement in the prior art.
  • a method for controlling formation deformation during shield construction includes: monitoring the settlement characteristic parameters of the shield construction process; predicting the settlement ratio according to the settlement characteristic parameters, The settlement ratio is the ratio of the predicted settlement value to the corresponding settlement threshold; the construction parameters in the shield construction process are determined according to the settlement ratio.
  • determining the construction parameters in the shield construction process according to the settlement ratio includes: determining the construction parameters corresponding to the settlement stage according to the settlement ratio of each settlement stage.
  • predicting the settlement ratio according to the settlement characteristic parameters includes: using a plurality of training data sets for machine training to obtain a settlement prediction model, and each training data set includes: training settlement characteristic parameters corresponding to each training settlement stage and Training the settlement proportion; using the settlement prediction model to analyze the settlement characteristic parameters corresponding to each settlement stage, and predict the settlement proportion corresponding to each settlement stage.
  • the settlement characteristic parameters corresponding to the advance deformation stage include tunnel buried depth, section size, underground pore water pressure and supporting force
  • the settlement characteristic parameters corresponding to the excavation surface deformation stage include tunnel buried depth, section size, Groundwater pressure and supporting force
  • the settlement characteristic parameters corresponding to the deformation stage of the passing stage include tunnel buried depth, section size, underground pore water pressure and the filling amount of inert filling materials
  • the parameters include tunnel depth, section size, groundwater pressure, post-synchronous grouting liquid elastic modulus, and grouting pressure
  • the settlement characteristic parameters corresponding to the later deformation stage include tunnel depth, section size, groundwater pressure and mechanical parameters of formation parameters.
  • determining the construction parameters corresponding to the settlement stage according to the settlement proportion of each settlement stage includes: determining whether the settlement proportion of each settlement stage is within a corresponding predetermined range; when the settlement proportion is not corresponding Under the condition that it is within the predetermined range, the construction parameters corresponding to the settlement stage are adjusted.
  • the construction parameters corresponding to the advance deformation stage and the excavation surface deformation stage include muddy water pressure
  • the settlement ratio corresponding to the advance deformation stage is a first settlement ratio
  • the excavation surface deformation stage The corresponding settlement ratio is the second settlement ratio
  • the predetermined range corresponding to the advance deformation stage and the excavation surface deformation stage is a first predetermined range
  • the minimum value of the first predetermined range is a first threshold
  • the maximum value of the first predetermined range is the second threshold
  • adjusting the construction parameters corresponding to the settlement stage includes: When the sedimentation ratio and/or the second sedimentation ratio is less than the first threshold, the muddy water pressure is reduced; when the first sedimentation ratio and/or the second sedimentation ratio is greater than the second threshold In the case of increasing the muddy water pressure.
  • the muddy water pressure has a value range of Pw ⁇ Pw+20kpa, where Pw is the hydrostatic pressure at the location in the advance deformation stage or the excavation surface deformation stage.
  • the construction parameters corresponding to the deformation stage of the passing stage include at least one of the fluctuation value of the cutting water pressure, the tunneling speed, the torque of the cutter head, the rotation speed of the cutter head, and the filling material injection rate, and the deformation stage of the passing stage corresponds to
  • the settlement ratio is the third settlement ratio
  • the predetermined range corresponding to the deformation stage of the passing stage is the second predetermined range
  • the minimum value of the second predetermined range is the third threshold
  • the second predetermined range is The maximum value is the fourth threshold.
  • adjusting the construction parameters corresponding to the settlement stage includes: when the third settlement ratio is less than the third threshold In the case of increasing at least one of the fluctuation value of the cutting water pressure, the tunneling speed, the cutter head torque and the cutter head rotation speed and/or reducing the filling material injection rate; In the case where the third settlement ratio is greater than the fourth threshold, reduce and/or increase at least one of the fluctuation value of the cut water pressure, the tunneling speed, the cutter head torque, and the cutter head speed The filling material injection rate.
  • the value range of the fluctuation value of the cut water pressure is 0-10kpa
  • the value range of the tunneling speed is 15-30mm/min
  • the value range of the cutter head torque is 6-9MNm.
  • the rotation speed of the cutter head ranges from 0.8 rpm to 1.2 rpm
  • the filling material injection rate ranges from 120% to 130%.
  • the construction parameters corresponding to the deformation stage behind the shield tail include grouting pressure and/or grouting amount
  • the settlement ratio corresponding to the deformation stage behind the shield tail is a fourth settlement ratio
  • the shield tail The predetermined range corresponding to the rear deformation stage is the third predetermined range
  • the minimum value of the third predetermined range is the fifth threshold
  • the maximum value of the third predetermined range is the sixth threshold.
  • adjusting the construction parameters corresponding to the settlement stage includes: reducing the grouting pressure and/or when the fourth settlement ratio is less than the fifth threshold The grouting amount; in the case where the fourth settlement ratio is greater than the sixth threshold, increase the grouting pressure and/or the grouting amount.
  • the range of the grouting pressure is Ps+0.85Ff ⁇ Ps+1.25Ff, the grouting amount is greater than or equal to 1.3Vs, where Ps is the predetermined grouting pressure, Ff is the pipeline friction, Vs For the predetermined amount of grouting.
  • the construction parameters corresponding to the later deformation stage include secondary grouting pressure
  • the settlement ratio corresponding to the later deformation stage is a fifth settlement ratio
  • the predetermined range corresponding to the later deformation stage is The fourth predetermined range
  • the minimum value of the fourth predetermined range is the seventh threshold
  • the maximum value of the predetermined range is the eighth threshold
  • adjust the The construction parameters corresponding to the settlement stage include: when the fifth settlement ratio is less than the seventh threshold, reducing the secondary grouting pressure; when the fifth settlement ratio is greater than the eighth threshold In the case of a threshold value, increase the secondary grouting pressure.
  • the value range of the secondary grouting pressure is 400-600 kpa.
  • a device for controlling formation deformation during shield construction includes: a monitoring unit for monitoring the settlement characteristic parameters of formation deformation during shield construction; and a prediction unit,
  • the settlement ratio is used to predict the settlement ratio according to the settlement characteristic parameter, the settlement ratio being the ratio of the predicted settlement value to the corresponding settlement threshold;
  • the determining unit is used to determine the construction parameters during the shield construction process according to the settlement ratio.
  • a non-volatile storage medium includes a stored program, wherein the device where the non-volatile storage medium is located is controlled while the program is running Perform any of the control methods described above.
  • a processor configured to run a program, wherein the program executes any one of the control methods when the program is running.
  • the settlement characteristic parameters of the shield construction process are monitored first, and then the settlement ratio is predicted according to the settlement characteristic parameters, that is, the ratio of the predicted settlement value to the corresponding settlement threshold, where the settlement value is the shield
  • the distance between the ground deformation and settlement during the construction process, and the settlement threshold is the maximum settlement value to ensure the stability of the soil.
  • the construction parameters during the shield construction process are determined according to the settlement ratio.
  • This method predicts the settlement ratio based on the settlement characteristic parameters monitored during the shield construction process, and then determines the appropriate construction parameters according to the settlement ratio, so as to realize real-time correction of the construction parameters during the shield construction process and ensure the safety of the shield construction stratum deformation control It is reliable and scientific, and solves the problem that the formation deformation and settlement in the shield construction process in the prior art are difficult to control.
  • Fig. 1 is a flowchart of a method for controlling ground deformation during shield construction according to an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of the whole process curve of stratum subsidence at a certain moment of a characteristic section according to an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of the whole process curve of stratum subsidence at a certain moment of a characteristic section of Hankou section a according to an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of the whole process curve of stratum subsidence at a certain moment of the characteristic section b of the largest soil covering in the middle of the river according to an embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of the whole process curve of stratum subsidence at a certain moment of the characteristic section of the smallest covering soil c in the middle of the river according to an embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of the whole process curve of stratum subsidence at a certain moment in the characteristic section d of Wuchang section according to an embodiment of the present disclosure
  • Fig. 7 is a schematic diagram of the whole process curve of stratum subsidence at a certain moment of the e characteristic section of Wuchang section according to an embodiment of the present disclosure
  • Fig. 8 is a schematic diagram of the whole process curve of stratum subsidence at a certain moment of the characteristic section f of Wuchang section according to an embodiment of the present disclosure
  • Fig. 9 is a schematic diagram of a shield machine in operation according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic diagram of a control device for formation deformation during a shield construction process according to an embodiment of the present disclosure.
  • a method for controlling stratum deformation during shield construction is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions. And, although a logical sequence is shown in the flowchart, in some cases, the steps shown or described may be performed in a different order than here.
  • Fig. 1 is a flowchart of a method for controlling ground deformation during shield construction according to an embodiment of the present disclosure. As shown in Fig. 1, the method includes the following steps:
  • Step S101 monitoring the settlement characteristic parameters of the shield construction process
  • Step S102 Predict the settlement ratio according to the above-mentioned settlement characteristic parameters, where the above-mentioned settlement ratio is the ratio of the predicted settlement value to the corresponding settlement threshold;
  • step S103 the construction parameters in the shield construction process are determined according to the settlement ratio.
  • the settlement characteristic parameters of the shield construction process are monitored first, and then the settlement ratio is predicted based on the settlement characteristic parameters, that is, the ratio of the predicted settlement value to the corresponding settlement threshold, where the settlement value is the distance between the formation deformation and settlement during the shield construction process ,
  • the settlement threshold is the maximum settlement value to ensure the stability of the soil, and finally the construction parameters in the shield construction process are determined according to the settlement ratio.
  • This method predicts the settlement ratio based on the settlement characteristic parameters monitored during the shield construction process, and then determines the appropriate construction parameters according to the settlement ratio, so as to realize real-time correction of the construction parameters during the shield construction process and ensure the safety of the shield construction stratum deformation control It is reliable and scientific, and solves the problem that the formation deformation and settlement in the shield construction process in the prior art are difficult to control.
  • the above-mentioned formation deformation process in the above-mentioned shield construction process is divided into five settlement phases, namely, the advance deformation phase, the excavation surface deformation phase, and the passing phase deformation.
  • the construction parameters of the shield construction process are determined according to the above-mentioned settlement ratio at the stage, the rear deformation stage of the shield tail and the later stage of deformation, including: determining the above-mentioned construction parameters corresponding to the above-mentioned settlement stage according to the settlement ratio of each above-mentioned settlement stage. Specifically, the I stage, II stage, III stage, IV stage, and V stage of the settlement curve in Fig.
  • Stage 2 correspond to the first deformation stage, the excavation surface deformation stage, the passing stage deformation stage, the rear deformation stage of the shield tail, and the later deformation stage.
  • Stage, and the advance deformation appears in the area 3-12m in front of the cutter head
  • the deformation of the excavation surface appears in the area between the cutter head 3m and the cutter head
  • through the stage deformation appears in the area between the cutter head and the shield tail.
  • the tail deformation appears behind the shield tail
  • the later settlement deformation appears after the shield tail passes for about 100 hours.
  • the front and rear are relative to the tunneling direction of the shield machine.
  • stage I and stage II are mainly affected by the pore water pressure and supporting force of the formation in front of the excavation. Mud film formation quality and the rationality of supporting force, so it is necessary to analyze the influence of the latter two on the surface settlement of stage I and II; the surface settlement of stage III is mainly affected by the shield over-excavation and the shield taper space gap, although This gap is small, but for shallow buried stratum, it will also cause large surface settlement. It is necessary to pay attention to the gap change and the filling effect of inert filling materials; the surface settlement of stage IV is mainly affected by the simultaneous grouting and filling of the shield tail gap.
  • Grouting is injected into the gap of the shield tail at the shield tail to fill the gap between the lining segment and the soil, and play a role of filling and reinforcement; Phase V is mainly affected by the re-consolidation of the ground.
  • the tunnel gradually passes through the shield. Tend to be stable, and the disturbed stratum gradually reaches a new level of stability. For sections with abundant groundwater, due to the high groundwater pressure, there may be slab floating phenomenon, and even the surface subsidence may decrease.
  • predicting the settlement ratio based on the above-mentioned settlement characteristic parameters includes: using a plurality of training data sets for machine training to obtain a settlement prediction model, and each of the above-mentioned training data sets includes: training corresponding to each training settlement stage Settlement characteristic parameters and training settlement ratio; using the above-mentioned settlement prediction model to analyze the above-mentioned settlement characteristic parameters corresponding to each above-mentioned settlement stage, and predict the above-mentioned settlement ratio corresponding to each above-mentioned settlement stage.
  • the settlement characteristic parameters corresponding to different settlement stages are different, and the corresponding settlement proportions are also different.
  • the settlement prediction model is used to analyze the settlement characteristic parameters corresponding to each settlement stage to obtain the predicted settlement proportions corresponding to each settlement stage, which is convenient for predicting settlement. Proportion guides shield construction.
  • each settlement stage forms the influencing factors of the formation deformation and settlement. Therefore, the settlement characteristic parameters corresponding to each settlement stage are different.
  • the settlement characteristic parameters corresponding to the preceding deformation stage are Including tunnel depth, section size, underground pore water pressure and supporting force.
  • the settlement characteristic parameters corresponding to the above-mentioned excavation surface deformation stage include tunnel burying depth, section size, groundwater pressure and supporting force.
  • Settlement characteristic parameters include tunnel buried depth, section size, underground pore water pressure and filling amount of inert filling materials.
  • the settlement characteristic parameters corresponding to the deformation stage behind the shield tail include tunnel depth, section size, groundwater pressure, and post-synchronous grouting.
  • the grout elastic modulus, grouting pressure, and the settlement characteristic parameters corresponding to the above-mentioned later deformation stage include tunnel depth, section size, groundwater pressure and mechanical parameters of formation parameters.
  • the characteristic section a of Hankou section and characteristic section d of Wuchang section are both sections with larger buried depth, and their settlement phase changes are similar.
  • the surface settlement at the shield tail gap is the largest, accounting for about 30% of the total settlement. -40%, which is also in line with the settlement law of general shield tunnels, and the shield tail needs to be supported by synchronous grouting in time.
  • tunnel excavation is more sensitive to ground disturbance than deep-buried tunnels, and the ground is more sensitive. Therefore, shallow-buried tunnels need to always pay attention to surface settlement or uplift, adjust construction parameters in time according to actual conditions, and strengthen shield gap filling and shield tail gap filling.
  • the characteristic section b of the largest covering soil in the river and the section c of the smallest covering soil in the river are both sections with high groundwater pressure, with the maximum water pressure reaching 6.74 bar.
  • the characteristic section c has a shallow buried depth and high water pressure, and the final settlement amounted to 12mm.
  • the segment due to the high water pressure around the tunnel with a shallower depth, after the shield tail gap sinks, the segment will move upward due to buoyancy, and even the stratum above the tunnel will move upward.
  • the shield machine 10 includes a shield body 11, a cutter head 12, and a shield tail sealing structure 13.
  • the shield body 11 has a radial grouting hole 111, and the shield tail sealing structure 13 is formed of grease, which can prevent the slurry in the shield machine 10 from leaking.
  • the cutter head 12 of the shield machine 10 runs forward to control the supporting pressure in front of the cutter head to prevent underpressure.
  • the shield machine 10 passes through the radial grouting hole 111 on the shield body 11
  • the filling material 01 with lubricating effect is injected synchronously into the grouting hole, and then synchronously grouting into the shield body gap and the shield tail gap 02, and then install the pipes on the newly injected grout 03, and the newly injected grout 03 will be strengthened to form a strengthened grout 04 ,
  • the segments form a lining 05 to ensure the stability of the soil layer.
  • determining the construction parameters corresponding to the settlement stages according to the settlement proportions of the settlement stages includes: determining whether the settlement proportions of the settlement stages are within a corresponding predetermined range; when the settlement proportions are not Corresponding to the above-mentioned predetermined range, adjust the above-mentioned construction parameters corresponding to the above-mentioned settlement stage.
  • a person skilled in the art can select a suitable predetermined range for the settlement ratio of each settlement stage according to the actual situation, so that the sum of the settlement ratio of each settlement stage is less than or equal to 100%, that is, the sum of the settlement value of each settlement stage is guaranteed.
  • the construction parameters corresponding to the preceding deformation stage and the excavation surface deformation stage include muddy water pressure, the settlement ratio corresponding to the preceding deformation stage is the first settlement ratio, and the excavation surface deformation stage
  • the corresponding settlement ratio is the second settlement ratio
  • the predetermined range corresponding to the preceding deformation stage and the excavation surface deformation stage is the first predetermined range
  • the minimum value of the first predetermined range is the first threshold
  • the first predetermined The maximum value of the range is the second threshold.
  • adjusting the construction parameters corresponding to the settlement stage includes: when the first settlement ratio and/or the second settlement ratio are less than In the case of the first threshold value, the muddy water pressure is reduced; when the first sedimentation ratio and/or the second sedimentation ratio is greater than the second threshold value, the muddy water pressure is increased.
  • the advance deformation stage and the excavation face deformation stage are the first and second main settlement stages, and the muddy water pressure needs to be strictly controlled to prevent underpressure.
  • the predicted settlement value in the advanced deformation stage and/or the excavation face deformation stage is higher, and the muddy water pressure can be increased to alleviate the formation deformation settlement in the advance deformation stage and/or the excavation face deformation stage.
  • the actual cement pressure is slightly larger than the calculated value.
  • the value range of the muddy water pressure is Pw ⁇ Pw+20kpa, where Pw is the hydrostatic pressure at the location in the preceding deformation stage or the excavation surface deformation stage.
  • Pw is the hydrostatic pressure at the location in the preceding deformation stage or the excavation surface deformation stage.
  • setting the muddy water pressure within the above range can prevent underpressure and effectively alleviate the deformation and settlement of the formation during the advance deformation stage and/or the excavation surface deformation stage.
  • the value range of the muddy water pressure is not limited to this. Those skilled in the art can select an appropriate value range according to actual conditions.
  • the above-mentioned construction parameters corresponding to the above-mentioned passing stage deformation stage include at least one of the fluctuation value of the cutting water pressure, the tunneling speed, the cutter head torque, the cutter head speed, and the filling material injection rate.
  • the settlement ratio corresponding to the deformation stage is the third settlement ratio
  • the predetermined range corresponding to the deformation stage of the passing stage is the second predetermined range
  • the minimum value of the second predetermined range is the third threshold
  • the maximum value of the second predetermined range Is the fourth threshold.
  • adjusting the construction parameters corresponding to the settlement stage includes: when the third settlement ratio is less than the third threshold, increasing the incision At least one of the water pressure fluctuation value, the above-mentioned tunneling speed, the above-mentioned cutter head torque, and the above-mentioned cutter head rotation speed and/or reduce the filling material injection rate; in the case where the third settlement ratio is greater than the fourth threshold, reduce At least one of the fluctuation value of the cutting water pressure, the tunneling speed, the cutter head torque, and the cutter head rotation speed is reduced and/or the filling material injection rate is increased.
  • the deformation stage is the third major settlement stage. It is necessary to always pay attention to the surface settlement or uplift, adjust the construction parameters in time according to the actual situation, prevent the shield machine from disturbing the soil too much, and strictly control the shield attitude to prevent The amount of over-excavation is too large, especially the radial grouting hole in the middle of the shield machine is used to simultaneously inject inert grout with lubricating effect to fill the gap between the shield and the soil in time to control the settlement and deformation of the passing area.
  • the fluctuation value, the tunneling speed, the cutter head torque, the cutter head speed and the filling material injection rate make the third settlement ratio fall within the second predetermined range, thereby further ensuring the safety and scientificity of the shield construction stratum deformation control.
  • the fluctuation value of the incision water pressure ranges from 0 to 10 kpa
  • the tunneling speed ranges from 15 to 30 mm/min
  • the cutter head torque ranges from 6 to 10 kpa.
  • 9MNm the rotation speed of the cutter head is in the range of 0.8 rpm to 1.2 rpm
  • the filling material injection rate is in the range of 120% to 130%.
  • the greater the cut water pressure fluctuates the greater the disturbance of the front soil, resulting in more front soil loss.
  • Setting the tunneling speed within the above range can further alleviate the soil deformation and settlement caused by the construction process.
  • Setting the cutter head torque within the above range can alleviate tool wear and ensure construction safety.
  • Setting the cutter head speed within the above range can avoid large disturbances to the soft soil layer and further alleviate the deformation and settlement of the soil layer caused by the construction process.
  • the cutter head speed can be appropriately increased, but generally not more than 1.2rpm.
  • the shield machine injects filling materials into the shield body, for example, mud Setting the filling material injection rate within the above range can effectively fill the gap between the excavation diameter and the shield body of the shield machine in time, and further alleviate the deformation and settlement of the soil layer caused by the construction process.
  • the above-mentioned cut water pressure fluctuation The value range of the value, the tunneling speed, the cutter head torque, the cutter head speed and the filling material injection rate are not limited to this, and those skilled in the art can select a suitable value range according to the actual situation.
  • the excavation speed ranges from 10 to 20 mm/min to prevent soil collapse.
  • the construction parameters corresponding to the deformation stage behind the shield tail include grouting pressure and/or grouting amount, and the settlement ratio corresponding to the deformation stage behind the shield tail is the fourth settlement ratio.
  • the predetermined range corresponding to the deformation stage behind the tail is the third predetermined range, the minimum value of the third predetermined range is the fifth threshold, and the maximum value of the third predetermined range is the sixth threshold.
  • adjusting the above-mentioned construction parameters corresponding to the above-mentioned settlement stage includes: when the above-mentioned fourth settlement ratio is less than the above-mentioned fifth threshold, reducing the above-mentioned grouting pressure and/or the above-mentioned grouting amount; When the settlement ratio is greater than the sixth threshold, increase the grouting pressure and/or the grouting amount.
  • the aforementioned deformation stage behind the shield tail is the fourth main settlement stage, and the shield tail needs to be supported by timely synchronous grouting.
  • the fourth settlement ratio falls within the third predetermined range.
  • the grouting materials include cement, fly ash, bentonite, sand water reducing agent and water.
  • those skilled in the art can also choose other Suitable grouting material.
  • the grouting pressure ranges from Ps+0.85Ff to Ps+1.25Ff, and the grouting amount is greater than or equal to 1.3Vs, where Ps is the predetermined grouting pressure, and Ff is the pipeline Friction, Vs is the predetermined grouting amount.
  • Ps is the predetermined grouting pressure
  • Ff is the pipeline Friction
  • Vs is the predetermined grouting amount.
  • the above-mentioned grouting pressure and the above-mentioned grouting amount are respectively set within the above-mentioned ranges to ensure the follow-up speed of synchronous grouting and further alleviate the deformation and settlement of the soil layer caused by the construction process.
  • the above-mentioned grouting pressure and the above-mentioned grouting The value range of the quantity is not limited to this, and those skilled in the art can select an appropriate value range according to the actual situation.
  • the construction parameters corresponding to the later deformation stage include secondary grouting pressure, the settlement ratio corresponding to the later deformation stage is the fifth settlement ratio, and the predetermined range corresponding to the later deformation stage is The fourth predetermined range, the minimum value of the fourth predetermined range is the seventh threshold, and the maximum value of the predetermined range is the eighth threshold.
  • the construction parameters include: when the fifth settlement ratio is less than the seventh threshold, reducing the secondary grouting pressure; when the fifth settlement ratio is greater than the eighth threshold, increasing the secondary grouting pressure Pulp pressure.
  • the above-mentioned post-deformation stage is the fifth major settlement stage, and requires on-site monitoring data and radar scanning, that is, monitoring tunnel depth, section size, groundwater pressure, and mechanical parameters of formation parameters, etc., and timely secondary follow-up grouting , So that the fifth settlement ratio falls within the fourth predetermined range, thereby further ensuring the safety and scientificity of the formation deformation control of the shield construction.
  • the settlement ratio is too large, the amount of secondary grouting can be increased.
  • two The secondary grouting material can be water glass + cement mortar double liquid slurry, and those skilled in the art can also choose other suitable grouting materials.
  • the value range of the above-mentioned secondary grouting pressure is 400-600 kpa.
  • the secondary grouting pressure is set within the above range to ensure the consolidation effect of the secondary grouting and further alleviate the deformation and settlement of the soil layer caused by the construction process.
  • the value range of the above-mentioned secondary grouting pressure is not limited to this, and those skilled in the art can select an appropriate value range according to actual conditions.
  • the embodiments of the present disclosure also provide a device for controlling stratum deformation during shield construction. It should be noted that the device for controlling stratum deformation during shield construction of the embodiments of the present disclosure can be used to implement the shield provided by the embodiments of the present disclosure. Method for controlling stratum deformation during construction of structure. The following introduces the device for controlling ground deformation during shield construction provided by the embodiments of the present disclosure.
  • Fig. 10 is a schematic diagram of a device for controlling formation deformation during a shield construction process according to an embodiment of the present disclosure.
  • the foregoing device includes:
  • the monitoring unit 100 is used to monitor the settlement characteristic parameters of the ground deformation during the shield construction process
  • the prediction unit 200 is configured to predict the settlement ratio according to the above-mentioned settlement characteristic parameters, where the above-mentioned settlement ratio is the ratio of the predicted settlement value to the corresponding settlement threshold;
  • the determining unit 300 is used to determine the construction parameters in the shield construction process according to the settlement ratio.
  • the monitoring unit monitors the settlement characteristic parameters of the shield construction process, and the prediction unit predicts the settlement ratio based on the settlement characteristic parameters, that is, the ratio of the predicted settlement value to the corresponding settlement threshold, where the settlement value is the formation deformation settlement during the shield construction process
  • the settlement threshold is the maximum settlement value to ensure the stability of the soil.
  • the determination unit determines the construction parameters during the shield construction process according to the settlement ratio.
  • the device predicts the settlement ratio based on the settlement characteristic parameters monitored during the shield construction process, and then determines the appropriate construction parameters according to the settlement ratio, so as to realize real-time correction of the construction parameters during the shield construction process and ensure the safety of the shield construction stratum deformation control It is reliable and scientific, and solves the problem that the formation deformation and settlement in the shield construction process in the prior art are difficult to control.
  • the above-mentioned formation deformation process in the above-mentioned shield construction process is divided into five settlement phases, namely, the advance deformation phase, the excavation surface deformation phase, and the passing phase deformation.
  • the construction parameters of the shield construction process are determined according to the above-mentioned settlement ratio at the stage, the rear deformation stage of the shield tail and the later stage of deformation, including: determining the above-mentioned construction parameters corresponding to the above-mentioned settlement stage according to the settlement ratio of each above-mentioned settlement stage. Specifically, the I stage, II stage, III stage, IV stage, and V stage of the settlement curve in Fig.
  • Stage 2 correspond to the first deformation stage, the excavation surface deformation stage, the passing stage deformation stage, the rear deformation stage of the shield tail, and the later deformation stage.
  • Stage, and the advance deformation appears in the area 3-12m in front of the cutter head
  • the deformation of the excavation surface appears in the area between the cutter head 3m and the cutter head
  • through the stage deformation appears in the area between the cutter head and the shield tail.
  • the tail deformation appears behind the shield tail
  • the later settlement deformation appears after the shield tail passes for about 100 hours.
  • the front and rear are relative to the tunneling direction of the shield machine.
  • stage I and stage II are mainly affected by the pore water pressure and supporting force of the formation in front of the excavation. Mud film formation quality and the rationality of supporting force, so it is necessary to analyze the influence of the latter two on the surface settlement of stage I and II; the surface settlement of stage III is mainly affected by the shield over-excavation and the shield taper space gap, although This gap is small, but for shallow buried stratum, it will also cause large surface settlement. It is necessary to pay attention to the gap change and the filling effect of inert filling materials; the surface settlement of stage IV is mainly affected by the simultaneous grouting and filling of the shield tail gap.
  • Grouting is injected into the gap of the shield tail at the shield tail to fill the gap between the lining segment and the soil, and play a role of filling and reinforcement; Phase V is mainly affected by the re-consolidation of the ground.
  • the tunnel gradually passes through the shield. Tend to be stable, and the disturbed stratum gradually reaches a new level of stability. For sections with abundant groundwater, due to the high groundwater pressure, there may be slab floating phenomenon, and even the surface subsidence may decrease.
  • the prediction unit includes a training module and a prediction module, wherein the above-mentioned training module is used for machine training using multiple training data sets to obtain a settlement prediction model, and each of the above-mentioned training data sets includes: The training settlement characteristic parameters and training settlement proportions corresponding to the settlement stages; the above prediction module is used to use the settlement prediction model to analyze the settlement characteristic parameters corresponding to the settlement stages, and predict the settlement proportions corresponding to the settlement stages. Specifically, the settlement characteristic parameters corresponding to different settlement stages are different, and the corresponding settlement proportions are also different.
  • the settlement prediction model is used to analyze the settlement characteristic parameters corresponding to each settlement stage to obtain the predicted settlement proportions corresponding to each settlement stage, which is convenient for predicting settlement. Proportion guides shield construction.
  • each settlement stage forms the influencing factors of the formation deformation and settlement. Therefore, the settlement characteristic parameters corresponding to each settlement stage are different.
  • the settlement characteristic parameters corresponding to the preceding deformation stage are Including tunnel depth, section size, underground pore water pressure and supporting force.
  • the settlement characteristic parameters corresponding to the above-mentioned excavation surface deformation stage include tunnel burying depth, section size, groundwater pressure and supporting force.
  • Settlement characteristic parameters include tunnel buried depth, section size, underground pore water pressure and filling amount of inert filling materials.
  • the settlement characteristic parameters corresponding to the deformation stage behind the shield tail include tunnel depth, section size, groundwater pressure, and post-synchronous grouting.
  • the grout elastic modulus, grouting pressure, and the settlement characteristic parameters corresponding to the above-mentioned later deformation stage include tunnel depth, section size, groundwater pressure and mechanical parameters of formation parameters.
  • the characteristic section a of Hankou section and characteristic section d of Wuchang section are both sections with larger buried depth, and their settlement phase changes are similar.
  • the surface settlement at the shield tail gap is the largest, accounting for about 30% of the total settlement. -40%, which is also in line with the settlement law of general shield tunnels, and the shield tail needs to be supported by synchronous grouting in time.
  • tunnel excavation is more sensitive to ground disturbance than deep-buried tunnels, and the ground is more sensitive. Therefore, shallow-buried tunnels need to always pay attention to surface settlement or uplift, adjust construction parameters in time according to actual conditions, and strengthen shield gap filling and shield tail gap filling.
  • the characteristic section b of the largest covering soil in the river and the section c of the smallest covering soil in the river are both sections with high groundwater pressure, with the maximum water pressure reaching 6.74 bar.
  • the characteristic section c has a shallow buried depth and high water pressure, and the final settlement amounted to 12mm.
  • the segment due to the high water pressure around the tunnel with a shallower depth, after the shield tail gap sinks, the segment will move upward due to buoyancy, and even the stratum above the tunnel will move upward.
  • the shield machine 10 includes a shield body 11, a cutter head 12, and a shield tail sealing structure 13.
  • the shield body 11 has a radial grouting hole 111, and the shield tail sealing structure 13 is formed of grease, which can prevent the slurry in the shield machine 10 from leaking.
  • the cutter head 12 of the shield machine 10 runs forward to control the supporting pressure in front of the cutter head to prevent underpressure.
  • the shield machine 10 passes through the radial grouting hole 111 on the shield body 11
  • the filling material 01 with lubricating effect is injected synchronously into the grouting hole, and then synchronously grouting into the shield body gap and the shield tail gap 02, and then install the pipes on the newly injected grout 03, and the newly injected grout 03 will be strengthened to form a strengthened grout 04 ,
  • the segments form a lining 05 to ensure the stability of the soil layer.
  • the above-mentioned determination unit includes a determination module and an adjustment module, wherein the above-mentioned determination module is used to determine whether the settlement ratio of each of the above-mentioned settlement stages is within a corresponding predetermined range; the above-mentioned adjustment module is used for If the ratio is not within the above-mentioned predetermined range, adjust the above-mentioned construction parameters corresponding to the above-mentioned settlement stage.
  • a person skilled in the art can select a suitable predetermined range for the settlement ratio of each settlement stage according to the actual situation, so that the sum of the settlement ratio of each settlement stage is less than or equal to 100%, that is, the sum of the settlement value of each settlement stage is guaranteed.
  • the construction parameters corresponding to the preceding deformation stage and the excavation surface deformation stage include muddy water pressure, the settlement ratio corresponding to the preceding deformation stage is the first settlement ratio, and the excavation surface deformation stage
  • the corresponding settlement ratio is the second settlement ratio
  • the predetermined range corresponding to the preceding deformation stage and the excavation surface deformation stage is the first predetermined range
  • the minimum value of the first predetermined range is the first threshold
  • the first predetermined The maximum value of the range is a second threshold.
  • the adjustment module includes a first adjustment sub-module and a second adjustment sub-module, wherein the first adjustment sub-module is used when the first settlement ratio and/or the second settlement ratio In the case of the first threshold, the muddy water pressure is reduced; the second adjustment sub-module is used to increase the muddy water pressure when the first settlement ratio and/or the second settlement ratio are greater than the second threshold .
  • the advance deformation stage and the excavation face deformation stage are the first and second main settlement stages, and the muddy water pressure needs to be strictly controlled to prevent underpressure.
  • the predicted settlement value in the advanced deformation stage and/or the excavation face deformation stage is higher, and the muddy water pressure can be increased to alleviate the formation deformation settlement in the advance deformation stage and/or the excavation face deformation stage.
  • the actual cement pressure is slightly larger than the calculated value.
  • the value range of the muddy water pressure is Pw ⁇ Pw+20kpa, where Pw is the hydrostatic pressure at the location in the preceding deformation stage or the excavation surface deformation stage.
  • Pw is the hydrostatic pressure at the location in the preceding deformation stage or the excavation surface deformation stage.
  • setting the muddy water pressure within the above range can prevent underpressure and effectively alleviate the deformation and settlement of the formation during the advance deformation stage and/or the excavation surface deformation stage.
  • the value range of the muddy water pressure is not limited to this. Those skilled in the art can select an appropriate value range according to actual conditions.
  • the above-mentioned construction parameters corresponding to the above-mentioned passing stage deformation stage include at least one of the fluctuation value of the cutting water pressure, the tunneling speed, the cutter head torque, the cutter head speed, and the filling material injection rate.
  • the settlement ratio corresponding to the deformation stage is the third settlement ratio
  • the predetermined range corresponding to the deformation stage of the passing stage is the second predetermined range
  • the minimum value of the second predetermined range is the third threshold
  • the adjustment module includes a third adjustment sub-module and a fourth adjustment sub-module, wherein the third adjustment sub-module is used to increase the cutout when the third settlement ratio is less than the third threshold.
  • the deformation stage is the third major settlement stage. It is necessary to always pay attention to the surface settlement or uplift, adjust the construction parameters in time according to the actual situation, prevent the shield machine from disturbing the soil too much, and strictly control the shield attitude to prevent The amount of over-excavation is too large, especially the radial grouting hole in the middle of the shield machine is used to simultaneously inject inert grout with lubricating effect to fill the gap between the shield and the soil in time to control the settlement and deformation of the passing area.
  • the fluctuation value, the tunneling speed, the cutter head torque, the cutter head speed and the filling material injection rate make the third settlement ratio fall within the second predetermined range, thereby further ensuring the safety and scientificity of the shield construction stratum deformation control.
  • the fluctuation value of the incision water pressure ranges from 0 to 10 kpa
  • the tunneling speed ranges from 15 to 30 mm/min
  • the cutter head torque ranges from 6 to 10 kpa.
  • 9MNm the rotation speed of the cutter head is in the range of 0.8 rpm to 1.2 rpm
  • the filling material injection rate is in the range of 120% to 130%.
  • the greater the cut water pressure fluctuates the greater the disturbance of the front soil mass, resulting in more front soil loss.
  • Setting the excavation speed within the above range can further alleviate the soil deformation and settlement caused by the construction process.
  • Setting the cutter head torque within the above range can alleviate tool wear and ensure construction safety.
  • Setting the cutter head speed within the above range can avoid large disturbances to the soft soil layer and further alleviate the deformation and settlement of the soil layer caused by the construction process.
  • the cutter head speed can be appropriately increased, but generally not more than 1.2rpm.
  • the shield machine injects filling materials into the shield body, such as mud Setting the filling material injection rate within the above range can effectively fill the gap between the excavation diameter and the shield body of the shield machine in time, and further alleviate the soil deformation and settlement caused by the construction process.
  • the above-mentioned cut water pressure fluctuation The range of values, tunneling speed, cutter head torque, cutter head speed, and filling material injection rate are not limited to this, and those skilled in the art can select a suitable value range according to actual conditions.
  • the excavation speed ranges from 10 to 20 mm/min to prevent soil collapse.
  • the construction parameters corresponding to the deformation stage behind the shield tail include grouting pressure and/or grouting amount
  • the settlement ratio corresponding to the deformation stage behind the shield tail is the fourth settlement ratio.
  • the aforementioned predetermined range corresponding to the deformation stage behind the tail is the third predetermined range
  • the minimum value of the third predetermined range is the fifth threshold
  • the maximum value of the third predetermined range is the sixth threshold
  • the adjustment module includes a fifth adjustment submodule And a sixth adjustment submodule, wherein the fifth adjustment submodule is used to reduce the grouting pressure and/or the grouting amount when the fourth settlement ratio is less than the fifth threshold; the sixth adjustment The sub-module is used to increase the grouting pressure and/or the grouting amount when the fourth settlement ratio is greater than the sixth threshold.
  • the aforementioned deformation stage behind the shield tail is the fourth main settlement stage, and the shield tail needs to be supported by timely synchronous grouting.
  • the fourth settlement ratio falls within the third predetermined range.
  • the grouting materials include cement, fly ash, bentonite, sand water reducing agent and water.
  • those skilled in the art can also choose other Suitable grouting material.
  • the grouting pressure ranges from Ps+0.85Ff to Ps+1.25Ff, and the grouting amount is greater than or equal to 1.3Vs, where Ps is the predetermined grouting pressure, and Ff is the pipeline Friction, Vs is the predetermined grouting amount.
  • Ps is the predetermined grouting pressure
  • Ff is the pipeline Friction
  • Vs is the predetermined grouting amount.
  • the above-mentioned grouting pressure and the above-mentioned grouting amount are respectively set within the above-mentioned ranges to ensure the follow-up speed of synchronous grouting and further alleviate the deformation and settlement of the soil layer caused by the construction process.
  • the above-mentioned grouting pressure and the above-mentioned grouting The value range of the quantity is not limited to this, and those skilled in the art can select an appropriate value range according to the actual situation.
  • the construction parameters corresponding to the later deformation stage include secondary grouting pressure
  • the settlement ratio corresponding to the later deformation stage is the fifth settlement ratio
  • the predetermined range corresponding to the later deformation stage is The fourth predetermined range
  • the minimum value of the fourth predetermined range is the seventh threshold
  • the maximum value of the predetermined range is the eighth threshold
  • the adjustment module includes a seventh adjustment sub-module and an eighth adjustment sub-module, wherein the seventh The adjustment submodule is used to reduce the secondary grouting pressure when the fifth settlement ratio is less than the seventh threshold; the eighth adjustment submodule is used to reduce the secondary grouting pressure when the fifth settlement ratio is greater than the eighth threshold Next, increase the above-mentioned secondary grouting pressure.
  • the above-mentioned post-deformation stage is the fifth major settlement stage, and requires on-site monitoring data and radar scanning, that is, monitoring tunnel depth, section size, groundwater pressure, and mechanical parameters of formation parameters, etc., and timely secondary follow-up grouting , So that the fifth settlement ratio falls within the fourth predetermined range, thereby further ensuring the safety and scientificity of the formation deformation control of the shield construction.
  • the settlement ratio is too large, the amount of secondary grouting can be increased.
  • two The secondary grouting material can be water glass + cement mortar double liquid slurry, and those skilled in the art can also choose other suitable grouting materials.
  • the value range of the above-mentioned secondary grouting pressure is 400-600 kpa.
  • the secondary grouting pressure is set within the above range to ensure the consolidation effect of the secondary grouting and further alleviate the deformation and settlement of the soil layer caused by the construction process.
  • the value range of the above-mentioned secondary grouting pressure is not limited to this, and those skilled in the art can select an appropriate value range according to actual conditions.
  • the operation and maintenance device includes a processor and a memory.
  • the monitoring unit, the predictive positioning and determination unit, etc. are all stored in the memory as a program unit, and the processor executes the program unit stored in the memory to implement corresponding functions.
  • the processor contains the kernel, and the kernel calls the corresponding program unit from the memory.
  • One or more cores can be set, and the problem of difficult control of formation deformation and settlement in the prior art can be solved by adjusting the parameters of the cores.
  • the memory may include non-permanent memory in computer-readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM), and the memory includes at least one Memory chip.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash random access memory
  • the embodiment of the present disclosure provides a non-volatile storage medium on which a program is stored, and when the program is executed by a processor, the foregoing control method is implemented.
  • the embodiments of the present disclosure provide a processor, and the above-mentioned processor is used for running a program, wherein the above-mentioned control method is executed when the above-mentioned program is running.
  • the embodiments of the present disclosure provide a device that includes a processor, a memory, and a program stored on the memory and capable of running on the processor, and the processor implements at least the following steps when the program is executed:
  • Step S101 monitoring the settlement characteristic parameters of the shield construction process
  • Step S102 Predict the settlement ratio according to the above-mentioned settlement characteristic parameters, where the above-mentioned settlement ratio is the ratio of the predicted settlement value to the corresponding settlement threshold;
  • step S103 the construction parameters in the shield construction process are determined according to the settlement ratio.
  • the devices in this article can be servers, PCs, PADs, mobile phones, etc.
  • the present disclosure also provides a computer program product, which when executed on a data processing device, is suitable for executing a program that initializes at least the following method steps:
  • Step S101 monitoring the settlement characteristic parameters of the shield construction process
  • Step S102 Predict the settlement ratio according to the above-mentioned settlement characteristic parameters, where the above-mentioned settlement ratio is the ratio of the predicted settlement value to the corresponding settlement threshold;
  • step S103 the construction parameters in the shield construction process are determined according to the settlement ratio.
  • the embodiments of the present disclosure can be provided as a method, a system, or a computer program product. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable non-volatile storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes. .
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • the computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-permanent memory in a computer-readable medium, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM).
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer non-volatile storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), Read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other Optical storage, magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
  • the settlement characteristic parameters of the shield construction process are monitored first, and then the settlement ratio is predicted according to the settlement characteristic parameters, that is, the ratio of the predicted settlement value to the corresponding settlement threshold, where the settlement value is the shield construction process
  • the distance of stratum deformation and settlement, and the settlement threshold is the maximum settlement value to ensure the stability of the soil.
  • the construction parameters during the shield construction process are determined according to the settlement ratio.
  • This method predicts the settlement ratio based on the settlement characteristic parameters monitored during the shield construction process, and then determines the appropriate construction parameters according to the settlement ratio, so as to realize real-time correction of the construction parameters during the shield construction process and ensure the safety of the shield construction stratum deformation control It is reliable and scientific, and solves the problem that the formation deformation and settlement in the shield construction process in the prior art are difficult to control.
  • the monitoring unit monitors the settlement characteristic parameters of the shield construction process, and the prediction unit predicts the settlement ratio based on the settlement characteristic parameters, that is, the ratio of the predicted settlement value to the corresponding settlement threshold, where the settlement value is the shield
  • the distance between the ground deformation and settlement during the construction process, and the settlement threshold is the maximum settlement value to ensure the stability of the soil.
  • the determination unit determines the construction parameters during the shield construction process according to the settlement ratio.
  • the device predicts the settlement ratio based on the settlement characteristic parameters monitored during the shield construction process, and then determines the appropriate construction parameters according to the settlement ratio, so as to realize real-time correction of the construction parameters during the shield construction process and ensure the safety of the shield construction stratum deformation control It is reliable and scientific, and solves the problem that the formation deformation and settlement in the shield construction process in the prior art are difficult to control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

本公开公开了一种盾构施工过程地层变形的控制方法、控制装置、非易失存储介质和处理器,该方法包括:监测盾构施工过程的沉降特征参数;根据沉降特征参数预测沉降比例,沉降比例为预测沉降值与对应的沉降阈值的比值;根据沉降比例确定盾构施工过程中的施工参数。该方法通过盾构施工过程中监测的沉降特征参数预测沉降比例,然后根据沉降比例确定合适的施工参数,从而实现实时校正盾构施工过程中的施工参数,保证了盾构施工地层变形控制的安全性和科学性。

Description

盾构施工过程地层变形的控制方法、控制装置和非易失存储介质
本公开以2020年3月20日递交的、申请号为202010203051.X且名称为“盾构施工过程地层变形的控制方法、控制装置和存储介质”的专利文件为优先权文件,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及盾构隧道工程技术领域,具体而言,涉及一种盾构施工过程地层变形的控制方法、控制装置、存储介质和处理器。
背景技术
由于盾构技术具有机械化程度高、施工速度快、环境友好、施工安全等优势,因此广泛应用于城市隧道建设中。但是盾构隧道施工条件复杂,施工过程中难免会产生地层扰动,从而导致土体变形、地表隆起或沉降,影响地表及周边环境安全。
针对这一问题,国内外学者进行了大量的研究。有学者利用三维数值模拟的方式确定同步注浆量、设定适宜的泥水压力值、控制推进速度来控制地层沉降,也有学者从地下水损失、土仓压力、同步注浆、浆液性能和围岩自稳性五个方面提出地表沉降控制措施,还有根据不同阶段沉降发展特征制定相应沉降控制值的发明专利。这些研究和发明在一定程度上有效地缓解了盾构施工导致的地表沉降问题,但是由于地层沉降发展特征不同,影响沉降的主要因素也不同,需要针对不同的沉降过程做出相应的控制措施。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本公开实施例提供了一种盾构施工过程地层变形的控制方法、控制装置、非易失存储介质和处理器,以至少解决现有技术中地层变形沉降难以控制的技术问题。
根据本公开实施例的一个方面,提供了一种盾构施工过程地层变形的控制方法,所述方法包括:监测盾构施工过程的沉降特征参数;根据所述沉降特征参数预测沉降比例,所述沉降比例为预测沉降值与对应的沉降阈值的比值;根据所述沉降比例确定所述盾构施工过程中的施工参数。
进一步地,将所述盾构施工过程中的所述地层变形的过程分为5个沉降阶段,分别为先行变形阶段、开挖面变形阶段、通过阶段变形阶段、盾尾后方变形阶段和后期变形阶段,根据所述沉降比例确定盾构施工过程中的施工参数,包括:根据各所述沉降阶段的沉降比例确定对应所述沉降阶段的所述施工参数。
进一步地,根据所述沉降特征参数预测沉降比例,包括:利用多个训练数据组进行机器训练,得到沉降预测模型,各所述训练数据组均包括:各训练沉降阶段对应的训练沉降特征参数和训练 沉降比例;采用所述沉降预测模型对各所述沉降阶段对应所述沉降特征参数进行分析,预测各所述沉降阶段对应的所述沉降比例。
进一步地,所述先行变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下孔隙水压力和支护力,所述开挖面变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下水压力和支护力,所述通过阶段变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下孔隙水水压力和惰性填充材料的填充量,所述盾尾后方变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下水压力、同步后注浆浆液弹模、注浆压力,所述后期变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下水压力和地层参数力学参数。
进一步地,根据各所述沉降阶段的沉降比例确定对应所述沉降阶段的所述施工参数,包括:确定各所述沉降阶段的沉降比例是否在对应的预定范围内;在所述沉降比例不在对应所述预定范围内的情况下,调整所述沉降阶段对应的所述施工参数。
进一步地,所述先行变形阶段和所述开挖面变形阶段对应的所述施工参数包括泥水压力,所述先行变形阶段对应的所述沉降比例为第一沉降比例,所述开挖面变形阶段对应的所述沉降比例为第二沉降比例,所述先行变形阶段和所述开挖面变形阶段对应的所述预定范围为第一预定范围,所述第一预定范围的最小值为第一阈值,所述第一预定范围的最大值为第二阈值,在所述沉降比例不在对应所述预定范围内的情况下,调整所述沉降阶段对应的所述施工参数,包括:在所述第一沉降比例和/或所述第二沉降比例小于所述第一阈值的情况下,减小所述泥水压力;在所述第一沉降比例和/或所述第二沉降比例大于所述第二阈值的情况下,增大所述泥水压力。
进一步地,所述泥水压力的取值范围为Pw~Pw+20kpa,其中,Pw为所述先行变形阶段或者所述开挖面变形阶段的所处位置的静水压力。
进一步地,所述通过阶段变形阶段对应的所述施工参数包括切口水压的波动值、掘进速度、刀盘扭矩、刀盘转速和填充材料注入率中的至少一个,所述通过阶段变形阶段对应的所述沉降比例为第三沉降比例,所述通过阶段变形阶段对应的所述预定范围为第二预定范围,所述第二预定范围的最小值为第三阈值,所述第二预定范围的最大值为第四阈值,在所述沉降比例不在对应所述预定范围内的情况下,调整所述沉降阶段对应的所述施工参数,包括:在所述第三沉降比例小于所述第三阈值的情况下,增大所述切口水压的波动值、所述掘进速度、所述刀盘扭矩和所述刀盘转速中的至少一个和/或减小所述填充材料注入率;在所述第三沉降比例大于所述第四阈值的情况下,减小所述切口水压的波动值、所述掘进速度、所述刀盘扭矩和所述刀盘转速中的至少一个和/或增大所述填充材料注入率。
进一步地,所述切口水压的波动值的取值范围为0~10kpa,所述掘进速度的取值范围为15~30mm/min,所述刀盘扭矩的取值范围为6~9MNm,所述刀盘转速的取值范围为0.8rpm~1.2rpm,所述填充材料注入率的取值范围为120%~130%。
进一步地,所述盾尾后方变形阶段对应的所述施工参数包括注浆压力和/或注浆量,所述盾尾后方变形阶段对应的所述沉降比例为第四沉降比例,所述盾尾后方变形阶段对应的所述预定范围为第三预定范围,所述第三预定范围的最小值为第五阈值,所述第三预定范围的最大值为第六阈值,在所述沉降比例不在对应所述预定范围内的情况下,调整所述沉降阶段对应的所述施工参数,包括:在所述第四沉降比例小于所述第五阈值的情况下,减小所述注浆压力和/或所述注浆量;在 所述第四沉降比例大于所述第六阈值的情况下,增大所述注浆压力和/或所述注浆量。
进一步地,所述注浆压力的取值范围为Ps+0.85Ff~Ps+1.25Ff,所述注浆量大于或者等于1.3Vs,其中,Ps为预定注浆压力,Ff为管道摩擦力,Vs为预定注浆量。
进一步地,所述后期变形阶段对应的所述施工参数包括二次注浆压力,所述后期变形阶段对应的所述沉降比例为第五沉降比例,所述后期变形阶段对应的所述预定范围为第四预定范围,所述第四预定范围的最小值为第七阈值,所述预定范围的最大值为第八阈值,在所述沉降比例不在对应所述预定范围内的情况下,调整所述沉降阶段对应的所述施工参数,包括:在所述第五沉降比例小于所述第七阈值的情况下,减小所述二次注浆压力;在所述第五沉降比例大于所述第八阈值的情况下,增大所述二次注浆压力。
进一步地,所述二次注浆压力的取值范围为400~600kpa。
根据本公开实施例的另一个方面,提供了一种盾构施工过程地层变形的控制装置,所述装置包括:监测单元,用于监测盾构施工过程的地层变形的沉降特征参数;预测单元,用于根据所述沉降特征参数预测沉降比例,所述沉降比例为预测沉降值与对应的沉降阈值的比值;确定单元,用于根据所述沉降比例确定所述盾构施工过程中的施工参数。
根据本公开实施例的再一个方面,提供了一种非易失存储介质,所述非易失存储介质包括存储的程序,其中,在所述程序运行时控制所述非易失存储介质所在设备执行任意一种所述的控制方法。
根据本公开实施例的又一个方面,提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行任意一种所述的控制方法。
在本公开实施例中,上述方法中,首先监测盾构施工过程的沉降特征参数,然后根据沉降特征参数预测沉降比例,即预测沉降值与对应的沉降阈值的比值,其中,沉降值为盾构施工过程地层变形沉降的距离,沉降阈值为保证土体稳定的最大沉降值,最后根据沉降比例确定盾构施工过程中的施工参数。该方法通过盾构施工过程中监测的沉降特征参数预测沉降比例,然后根据沉降比例确定合适的施工参数,从而实现实时校正盾构施工过程中的施工参数,保证了盾构施工地层变形控制的安全性和科学性,解决了现有技术中的盾构施工过程的地层变形沉降难以控制的问题。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开的一种实施例的盾构施工过程地层变形的控制方法的流程图;
图2是根据本公开的一种实施例的特征断面某一时刻的地层沉降全过程曲线的示意图;
图3是根据本公开的一种实施例的汉口段a特征断面某一时刻的地层沉降全过程曲线的示意图;
图4是根据本公开的一种实施例的江中最大覆土b特征断面某一时刻的地层沉降全过程曲线 的示意图;
图5是根据本公开的一种实施例的江中最小覆土c特征断面某一时刻的地层沉降全过程曲线的示意图;
图6是根据本公开的一种实施例的武昌段d特征断面某一时刻的地层沉降全过程曲线的示意图;
图7是根据本公开的一种实施例的武昌段e特征断面某一时刻的地层沉降全过程曲线的示意图;
图8是根据本公开的一种实施例的武昌段f特征断面某一时刻的地层沉降全过程曲线的示意图;
图9是根据本公开的一种实施例的盾构机在工作时的示意图;以及
图10是根据本公开的一种实施例的盾构施工过程地层变形的控制装置的示意图。
其中,上述附图包括以下附图标记:
01、填充材料;02、盾尾间隙;03、新注入浆液;04、强化后浆液;05、衬砌;10、盾构机;11、盾体;111、径向注浆孔;12、刀盘;13、盾尾密封结构。
具体实施方式
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
根据本公开实施例,提供了一种盾构施工过程地层变形的控制方法,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1是根据本公开实施例的一种盾构施工过程地层变形的控制方法的流程图,如图1所示,该方法包括如下步骤:
步骤S101,监测盾构施工过程的沉降特征参数;
步骤S102,根据上述沉降特征参数预测沉降比例,上述沉降比例为预测沉降值与对应的沉降 阈值的比值;
步骤S103,根据上述沉降比例确定上述盾构施工过程中的施工参数。
上述方法中,首先监测盾构施工过程的沉降特征参数,然后根据沉降特征参数预测沉降比例,即预测沉降值与对应的沉降阈值的比值,其中,沉降值为盾构施工过程地层变形沉降的距离,沉降阈值为保证土体稳定的最大沉降值,最后根据沉降比例确定盾构施工过程中的施工参数。该方法通过盾构施工过程中监测的沉降特征参数预测沉降比例,然后根据沉降比例确定合适的施工参数,从而实现实时校正盾构施工过程中的施工参数,保证了盾构施工地层变形控制的安全性和科学性,解决了现有技术中的盾构施工过程的地层变形沉降难以控制的问题。
本公开的一种实施例中,如图2所示,将上述盾构施工过程中的上述地层变形的过程分为5个沉降阶段,分别为先行变形阶段、开挖面变形阶段、通过阶段变形阶段、盾尾后方变形阶段和后期变形阶段,根据上述沉降比例确定盾构施工过程中的施工参数,包括:根据各上述沉降阶段的沉降比例确定对应上述沉降阶段的上述施工参数。具体地,图2的沉降曲线的I阶段、II阶段、III阶段、IV阶段和第V阶段,依次对应先行变形阶段、开挖面变形阶段、通过阶段变形阶段、盾尾后方变形阶段和后期变形阶段,并且先行变形出现在刀盘前方3~12m的区域,开挖面变形出现在刀盘前3m到刀盘之间的区域,通过阶段变形出现在刀盘到盾尾之间的区域,盾尾变形出现在盾尾后方,后期沉降变形出现在盾尾通过约100h以后,其中,前方和后方是相对于盾构机的掘进方向而言的。
需要说明的是,I、II阶段地层沉降主要受开挖面前方地层孔隙水压力及支护力影响,对于泥水盾构而言,前方地层孔隙水压力及开挖面的有效支护压力主要受到泥浆成膜质量及支护力合理性的影响,因此需要分析后两者对于I、II阶段地表沉降的影响规律;III阶段地表沉降主要受盾构超挖和盾体锥度空间间隙的影响,虽然此间隙较小,但对于浅埋地层也会导致地表较大沉降,需要关注此处的间隙变化和惰性填充材料的填充作用;IV阶段地表沉降主要受盾尾间隙同步注浆填充的影响,同步注浆在盾尾处注入到盾尾间隙,填充衬砌管片与土体之间的间隙,起充填加固作用;V阶段主要受地层重新固结土体重塑的影响,盾构通过后隧道逐步趋于稳定,扰动的地层逐步达到新的稳定,对于地下水丰富的地段,由于地下水压力较大可能会有管片上浮现象,甚至出现地表沉降减小的情况。
本公开的一种实施例中,根据上述沉降特征参数预测沉降比例,包括:利用多个训练数据组进行机器训练,得到沉降预测模型,各上述训练数据组均包括:各训练沉降阶段对应的训练沉降特征参数和训练沉降比例;采用上述沉降预测模型对各上述沉降阶段对应上述沉降特征参数进行分析,预测各上述沉降阶段对应的上述沉降比例。具体地,不同的沉降阶段对应的沉降特征参数不同,对应的沉降比例也不同,采用沉降预测模型对各沉降阶段对应沉降特征参数进行分析,得到各沉降阶段对应的预测沉降比例,便于根据预测沉降比例指导盾构施工。
在实际的盾构施工过程中,各沉降阶段形成地层变形沉降的影响因素,因此,各沉降阶段对应的沉降特征参数不同,本公开的一种实施例中,上述先行变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下孔隙水压力和支护力,上述开挖面变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下水压力和支护力,上述通过阶段变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下孔隙水水压力和惰性填充材料的填充量,上述盾尾后方变形阶段对应的沉 降特征参数包括隧道埋深、断面尺寸、地下水压力、同步后注浆浆液弹模、注浆压力,上述后期变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下水压力和地层参数力学参数。
需要说明的是,在实际的工程中,如图3至图8所示,根据沉降特征参数分析,得到各特征断面某一时刻沿隧道轴线方向地层沉降全过程曲线,由于开挖地层和各段隧道埋深不同,武昌段、江中段和汉口段的各特征断面的最终下沉量和每个阶段的下沉量都不尽相同,盾构沉降的五个阶段所占总沉降量的比重也不相同。
另外,以下针对隧道埋深和地下水压力两个沉降特征参数阐述其对地层变形沉降的影响。
隧道埋深影响:汉口段a特征断面与武昌段d特征断面都属于埋深较大的断面,其沉降阶段变化比较类似,其中盾尾间隙处地表沉降量最大,约占总沉降量的30%-40%,也符合一般盾构隧道沉降规律,盾尾需要及时施作同步注浆进行支护。通过分析武昌段两个浅埋特征断面的地表沉降,其中埋深最浅的f特征断面现行位移出现了地表隆起现象,且盾构通过阶段地表沉降所占比重最大,这是由于埋深较浅时隧道开挖对地表扰动要强于深埋隧道,地层较为敏感,所以浅埋隧道需要时刻关注地表沉降或隆起量,根据实际情况及时调整施工参数,加强盾体间隙填充和盾尾间隙填充。
地下水压力影响:江中最大覆土b特征断面和江中最小覆土c断面都属于地下水压力较大的断面,最大水压达6.74bar。其中c特征断面埋深浅水压大,最终沉降量达12mm。另外由于埋深较浅隧道周围水压较大,在盾尾间隙下沉之后,管片由于收到浮力作用会产生向上位移,甚至隧道上方地层也会发生向上的位移。针对隧道越江段,除加强间隙填充和支护外,还要密切关注管片的动态,防止管片受浮力作用发生错台导致漏水事故,加强各阶段的监控量测。
本公开的一种实施例中,如图9所示,盾构机10包括盾体11、刀盘12和盾尾密封结构13,盾体11上具有径向注浆孔111,盾尾密封结构13由油脂形成,可以防止盾构机10中的浆液泄露。在具体的施工过程中,盾构机10的刀盘12运行向前掘进,控制刀盘前方的支护压力,防止欠压,盾构机10通过盾体11上的径向注浆孔111向注浆孔同步注入的具有润滑作用的填充材料01,然后向盾体间隙和盾尾间隙02同步注浆,之后在新注入浆液03上安装管片,新注入浆液03强化后形成强化后浆液04,管片形成衬砌05,从而保证土层的稳定。
本公开的一种实施例中,根据各上述沉降阶段的沉降比例确定对应上述沉降阶段的上述施工参数,包括:确定各上述沉降阶段的沉降比例是否在对应的预定范围内;在上述沉降比例不在对应上述预定范围内的情况下,调整上述沉降阶段对应的上述施工参数。具体地,本领域技术人员可以根据实际情况为各沉降阶段的沉降比例选择合适的预定范围,以使得各沉降阶段的沉降比例之和小于或者等于100%,即保证各沉降阶段的沉降值之和小于沉降阈值,并且在沉降比例不在对应预定范围内的情况下,通过调整沉降阶段对应的施工参数,使得各沉降阶段对应的沉降比例落在对应预定范围内,从而进一步保证了盾构施工地层变形控制的安全性和科学性。
本公开的一种实施例中,上述先行变形阶段和上述开挖面变形阶段对应的上述施工参数包括泥水压力,上述先行变形阶段对应的上述沉降比例为第一沉降比例,上述开挖面变形阶段对应的上述沉降比例为第二沉降比例,上述先行变形阶段和上述开挖面变形阶段对应的上述预定范围为第一预定范围,上述第一预定范围的最小值为第一阈值,上述第一预定范围的最大值为第二阈值,在上述沉降比例不在对应上述预定范围内的情况下,调整上述沉降阶段对应的上述施工参数,包 括:在上述第一沉降比例和/或上述第二沉降比例小于上述第一阈值的情况下,减小上述泥水压力;在上述第一沉降比例和/或上述第二沉降比例大于上述第二阈值的情况下,增大上述泥水压力。具体地,先行变形阶段和开挖面变形阶段作为第一和第二主要沉降阶段,需要严格控制泥水压力,防止欠压,在第一沉降比例和/或第二沉降比例小第一阈值的情况下,即预测的先行变形阶段和/或开挖面变形阶段的沉降值较低,可以减小泥水压力,节省施工材料,在第一沉降比例和/或第二沉降比例大于第二阈值的情况下,即预测的先行变形阶段和/或开挖面变形阶段的沉降值较高,可以增大泥水压力,以缓解先行变形阶段和/或开挖面变形阶段的地层变形沉降,另外,在实际的施工过程中,实际的水泥压力略大于计算值,通过信息化施工及时调整和修正参数,使泥水压力处于第一预定范围之内,从而进一步保证了盾构施工地层变形控制的安全性和科学性。
本公开的一种实施例中,上述泥水压力的取值范围为Pw~Pw+20kpa,其中,Pw为上述先行变形阶段或者上述开挖面变形阶段的所处位置的静水压力。具体地,将泥水压力设置在上述范围内,可以防止欠压,且有效缓解先行变形阶段和/或开挖面变形阶段的地层变形沉降,另外,上述泥水压力的取值范围不限于此,本领域技术人员可以根据实际情况选择合适的取值范围。
本公开的一种实施例中,上述通过阶段变形阶段对应的上述施工参数包括切口水压的波动值、掘进速度、刀盘扭矩、刀盘转速和填充材料注入率中的至少一个,上述通过阶段变形阶段对应的上述沉降比例为第三沉降比例,上述通过阶段变形阶段对应的上述预定范围为第二预定范围,上述第二预定范围的最小值为第三阈值,上述第二预定范围的最大值为第四阈值,在上述沉降比例不在对应上述预定范围内的情况下,调整上述沉降阶段对应的上述施工参数,包括:在上述第三沉降比例小于上述第三阈值的情况下,增大上述切口水压的波动值、上述掘进速度、上述刀盘扭矩和上述刀盘转速中的至少一个和/或减小上述填充材料注入率;在上述第三沉降比例大于上述第四阈值的情况下,减小上述切口水压的波动值、上述掘进速度、上述刀盘扭矩和上述刀盘转速中的至少一个和/或增大上述填充材料注入率。
具体地,通过阶段变形阶段作为第三主要沉降阶段,需要时刻关注地表沉降或隆起量,根据实际情况及时调整施工参数,防止盾构机对土体的扰动过大,严格控制盾构姿态,防止超挖量过大,尤其采用盾构机中部径向注浆孔同步注入具有润滑作用惰性浆液,及时对盾体与土体间隙进行填充,以控制通过区域地层沉降变形,通过调整切口水压的波动值、掘进速度、刀盘扭矩、刀盘转速和填充材料注入率,使得第三沉降比例落入第二预定范围内,从而进一步保证了盾构施工地层变形控制的安全性和科学性。
本公开的一种实施例中,上述切口水压的波动值的取值范围为0~10kpa,上述掘进速度的取值范围为15~30mm/min,上述刀盘扭矩的取值范围为6~9MNm,上述刀盘转速的取值范围为0.8rpm~1.2rpm,上述填充材料注入率的取值范围为120%~130%。具体地,切口水压波动越大,正面土体的扰动越大,导致正面土体流失越多,将切口水压的波动值设置在上述范围内,进一步保证施工过程土层的稳定,掘进速度越快对同步注浆的跟进速度的影响越大,容易造成管片壁后的空洞,引起后期沉降,将掘进速度设置在上述范围内,可以进一步缓解施工过程导致的土层变形沉降,将刀盘扭矩设置在上述范围内,可以缓解刀具磨损,保证施工安全,将刀盘转速设置在上述范围内,可以避免对软土层造成较大的扰动,进一步缓解施工过程导致的土层变形沉降,在推进速度增加时,锥入度超过50的情况下,可适当增大刀盘转速,但一般不超过1.2rpm,盾构施工过程中,盾构机向盾体外注入填充材料,例如,克泥效,将填充材料注入率设置上述范围内,可 以及时有效填充开挖直径和盾构机的盾体之间的空隙,进一步缓解施工过程导致的土层变形沉降,另外,上述切口水压的波动值、掘进速度、刀盘扭矩、刀盘转速和填充材料注入率的取值范围不限于此,本领域技术人员可以根据实际情况选择合适的取值范围。
需要说明的是,在软弱地层施工时,例如,沙层和淤泥质粘土层,掘进速度的取值范围为10~20mm/min,以防止土层塌陷,在同一地质锥入度越大,扭矩越大,如果在锥入度、掘进速度等参数不变时,扭矩逐步明显增大时,要考虑到刀具是否磨损严重,刀具的磨损会直接造成扭矩明显增大,需停机检查刀具。
本公开的一种实施例中,上述盾尾后方变形阶段对应的上述施工参数包括注浆压力和/或注浆量,上述盾尾后方变形阶段对应的上述沉降比例为第四沉降比例,上述盾尾后方变形阶段对应的上述预定范围为第三预定范围,上述第三预定范围的最小值为第五阈值,上述第三预定范围的最大值为第六阈值,在上述沉降比例不在对应上述预定范围内的情况下,调整上述沉降阶段对应的上述施工参数,包括:在上述第四沉降比例小于上述第五阈值的情况下,减小上述注浆压力和/或上述注浆量;在上述第四沉降比例大于上述第六阈值的情况下,增大上述注浆压力和/或上述注浆量。具体地,上述盾尾后方变形阶段作为第四主要沉降阶段,需要盾尾及时同步注浆进行支护,通过控制注浆压力和/或注浆量,使得第四沉降比例落入第三预定范围内,从而进一步保证了盾构施工地层变形控制的安全性和科学性,另外,注浆材料包括水泥、粉煤灰、膨润土、砂减水剂和水,当然,本领域技术人员还可以选择其他合适的注浆材料。
本公开的一种实施例中,上述注浆压力的取值范围为Ps+0.85Ff~Ps+1.25Ff,上述注浆量大于或者等于1.3Vs,其中,Ps为预定注浆压力,Ff为管道摩擦力,Vs为预定注浆量。具体地,将上述注浆压力和上述注浆量分别设置在上述范围内,保证同步注浆的跟进速度,进一步缓解施工过程导致的土层变形沉降,另外,上述注浆压力和上述注浆量的取值范围不限于此,本领域技术人员可以根据实际情况选择合适的取值范围。
本公开的一种实施例中,上述后期变形阶段对应的上述施工参数包括二次注浆压力,上述后期变形阶段对应的上述沉降比例为第五沉降比例,上述后期变形阶段对应的上述预定范围为第四预定范围,上述第四预定范围的最小值为第七阈值,上述预定范围的最大值为第八阈值,在上述沉降比例不在对应上述预定范围内的情况下,调整上述沉降阶段对应的上述施工参数,包括:在上述第五沉降比例小于上述第七阈值的情况下,减小上述二次注浆压力;在上述第五沉降比例大于上述第八阈值的情况下,增大上述二次注浆压力。具体地,上述后期变形阶作为第五主要沉降阶段,需要通过现场监测数据和雷达扫描情况,即监测隧道埋深、断面尺寸、地下水压力和地层参数力学参数等,及时进行二次跟进注浆,使得第五沉降比例落入第四预定范围内,从而进一步保证了盾构施工地层变形控制的安全性和科学性,另外,如果沉降比例过大,可以增加二次注浆量,另外,二次注浆材料可以为水玻璃+水泥砂浆双液浆,本领域技术人员还可以选择其他合适的注浆材料。
本公开的一种实施例中,上述二次注浆压力的取值范围为400~600kpa。具体地,将二次注浆压力设置在上述范围内,保证二次注浆的巩固效果,进一步缓解施工过程导致的土层变形沉降。另外,上述二次注浆压力的取值范围不限于此,本领域技术人员可以根据实际情况选择合适的取值范围。
本公开实施例还提供了一种盾构施工过程地层变形的控制装置,需要说明的是,本公开实施例的盾构施工过程地层变形的控制装置可以用于执行本公开实施例所提供的盾构施工过程地层变形的控制方法。以下对本公开实施例提供的盾构施工过程地层变形的控制装置进行介绍。
图10是根据本公开实施例的盾构施工过程地层变形的控制装置的示意图,上述装置包括:
监测单元100,用于监测盾构施工过程的地层变形的沉降特征参数;
预测单元200,用于根据上述沉降特征参数预测沉降比例,上述沉降比例为预测沉降值与对应的沉降阈值的比值;
确定单元300,用于根据上述沉降比例确定上述盾构施工过程中的施工参数。
上述装置中,监测单元监测盾构施工过程的沉降特征参数,预测单元根据沉降特征参数预测沉降比例,即预测沉降值与对应的沉降阈值的比值,其中,沉降值为盾构施工过程地层变形沉降的距离,沉降阈值为保证土体稳定的最大沉降值,确定单元根据沉降比例确定盾构施工过程中的施工参数。该装置通过盾构施工过程中监测的沉降特征参数预测沉降比例,然后根据沉降比例确定合适的施工参数,从而实现实时校正盾构施工过程中的施工参数,保证了盾构施工地层变形控制的安全性和科学性,解决了现有技术中的盾构施工过程的地层变形沉降难以控制的问题。
本公开的一种实施例中,如图2所示,将上述盾构施工过程中的上述地层变形的过程分为5个沉降阶段,分别为先行变形阶段、开挖面变形阶段、通过阶段变形阶段、盾尾后方变形阶段和后期变形阶段,根据上述沉降比例确定盾构施工过程中的施工参数,包括:根据各上述沉降阶段的沉降比例确定对应上述沉降阶段的上述施工参数。具体地,图2的沉降曲线的I阶段、II阶段、III阶段、IV阶段和第V阶段,依次对应先行变形阶段、开挖面变形阶段、通过阶段变形阶段、盾尾后方变形阶段和后期变形阶段,并且先行变形出现在刀盘前方3~12m的区域,开挖面变形出现在刀盘前3m到刀盘之间的区域,通过阶段变形出现在刀盘到盾尾之间的区域,盾尾变形出现在盾尾后方,后期沉降变形出现在盾尾通过约100h以后,其中,前方和后方是相对于盾构机的掘进方向而言的。
需要说明的是,I、II阶段地层沉降主要受开挖面前方地层孔隙水压力及支护力影响,对于泥水盾构而言,前方地层孔隙水压力及开挖面的有效支护压力主要受到泥浆成膜质量及支护力合理性的影响,因此需要分析后两者对于I、II阶段地表沉降的影响规律;III阶段地表沉降主要受盾构超挖和盾体锥度空间间隙的影响,虽然此间隙较小,但对于浅埋地层也会导致地表较大沉降,需要关注此处的间隙变化和惰性填充材料的填充作用;IV阶段地表沉降主要受盾尾间隙同步注浆填充的影响,同步注浆在盾尾处注入到盾尾间隙,填充衬砌管片与土体之间的间隙,起充填加固作用;V阶段主要受地层重新固结土体重塑的影响,盾构通过后隧道逐步趋于稳定,扰动的地层逐步达到新的稳定,对于地下水丰富的地段,由于地下水压力较大可能会有管片上浮现象,甚至出现地表沉降减小的情况。
本公开的一种实施例中,预测单元包括训练模块和预测模块,其中,上述训练模块用于利用多个训练数据组进行机器训练,得到沉降预测模型,各上述训练数据组均包括:各训练沉降阶段对应的训练沉降特征参数和训练沉降比例;上述预测模块用于采用上述沉降预测模型对各上述沉降阶段对应上述沉降特征参数进行分析,预测各上述沉降阶段对应的上述沉降比例。具体地,不 同的沉降阶段对应的沉降特征参数不同,对应的沉降比例也不同,采用沉降预测模型对各沉降阶段对应沉降特征参数进行分析,得到各沉降阶段对应的预测沉降比例,便于根据预测沉降比例指导盾构施工。
在实际的盾构施工过程中,各沉降阶段形成地层变形沉降的影响因素,因此,各沉降阶段对应的沉降特征参数不同,本公开的一种实施例中,上述先行变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下孔隙水压力和支护力,上述开挖面变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下水压力和支护力,上述通过阶段变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下孔隙水水压力和惰性填充材料的填充量,上述盾尾后方变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下水压力、同步后注浆浆液弹模、注浆压力,上述后期变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下水压力和地层参数力学参数。
需要说明的是,在实际的工程中,如图3至图8所示,根据沉降特征参数分析,得到各特征断面某一时刻沿隧道轴线方向地层沉降全过程曲线,由于开挖地层和各段隧道埋深不同,武昌段、江中段和汉口段的各特征断面的最终下沉量和每个阶段的下沉量都不尽相同,盾构沉降的五个阶段所占总沉降量的比重也不相同。
另外,以下针对隧道埋深和地下水压力两个沉降特征参数阐述其对地层变形沉降的影响。
隧道埋深影响:汉口段a特征断面与武昌段d特征断面都属于埋深较大的断面,其沉降阶段变化比较类似,其中盾尾间隙处地表沉降量最大,约占总沉降量的30%-40%,也符合一般盾构隧道沉降规律,盾尾需要及时施作同步注浆进行支护。通过分析武昌段两个浅埋特征断面的地表沉降,其中埋深最浅的f特征断面现行位移出现了地表隆起现象,且盾构通过阶段地表沉降所占比重最大,这是由于埋深较浅时隧道开挖对地表扰动要强于深埋隧道,地层较为敏感,所以浅埋隧道需要时刻关注地表沉降或隆起量,根据实际情况及时调整施工参数,加强盾体间隙填充和盾尾间隙填充。
地下水压力影响:江中最大覆土b特征断面和江中最小覆土c断面都属于地下水压力较大的断面,最大水压达6.74bar。其中c特征断面埋深浅水压大,最终沉降量达12mm。另外由于埋深较浅隧道周围水压较大,在盾尾间隙下沉之后,管片由于收到浮力作用会产生向上位移,甚至隧道上方地层也会发生向上的位移。针对隧道越江段,除加强间隙填充和支护外,还要密切关注管片的动态,防止管片受浮力作用发生错台导致漏水事故,加强各阶段的监控量测。
本公开的一种实施例中,如图9所示,盾构机10包括盾体11、刀盘12和盾尾密封结构13,盾体11上具有径向注浆孔111,盾尾密封结构13由油脂形成,可以防止盾构机10中的浆液泄露。在具体的施工过程中,盾构机10的刀盘12运行向前掘进,控制刀盘前方的支护压力,防止欠压,盾构机10通过盾体11上的径向注浆孔111向注浆孔同步注入的具有润滑作用的填充材料01,然后向盾体间隙和盾尾间隙02同步注浆,之后在新注入浆液03上安装管片,新注入浆液03强化后形成强化后浆液04,管片形成衬砌05,从而保证土层的稳定。
本公开的一种实施例中,上述确定单元包括确定模块和调整模块,其中,上述确定模块用于确定各上述沉降阶段的沉降比例是否在对应的预定范围内;上述调整模块用于在上述沉降比例不在对应上述预定范围内的情况下,调整上述沉降阶段对应的上述施工参数。具体地,本领域技术人员可以根据实际情况为各沉降阶段的沉降比例选择合适的预定范围,以使得各沉降阶段的沉降 比例之和小于或者等于100%,即保证各沉降阶段的沉降值之和小于沉降阈值,并且在沉降比例不在对应预定范围内的情况下,通过调整沉降阶段对应的施工参数,使得各沉降阶段对应的沉降比例落在对应预定范围内,从而进一步保证了盾构施工地层变形控制的安全性和科学性。
本公开的一种实施例中,上述先行变形阶段和上述开挖面变形阶段对应的上述施工参数包括泥水压力,上述先行变形阶段对应的上述沉降比例为第一沉降比例,上述开挖面变形阶段对应的上述沉降比例为第二沉降比例,上述先行变形阶段和上述开挖面变形阶段对应的上述预定范围为第一预定范围,上述第一预定范围的最小值为第一阈值,上述第一预定范围的最大值为第二阈值,上述调整模块包括第一调整子模块和第二调整子模块,其中,上述第一调整子模块用于在上述第一沉降比例和/或上述第二沉降比例小于上述第一阈值的情况下,减小上述泥水压力;上述第二调整子模块用于在上述第一沉降比例和/或上述第二沉降比例大于上述第二阈值的情况下,增大上述泥水压力。具体地,先行变形阶段和开挖面变形阶段作为第一和第二主要沉降阶段,需要严格控制泥水压力,防止欠压,在第一沉降比例和/或第二沉降比例小第一阈值的情况下,即预测的先行变形阶段和/或开挖面变形阶段的沉降值较低,可以减小泥水压力,节省施工材料,在第一沉降比例和/或第二沉降比例大于第二阈值的情况下,即预测的先行变形阶段和/或开挖面变形阶段的沉降值较高,可以增大泥水压力,以缓解先行变形阶段和/或开挖面变形阶段的地层变形沉降,另外,在实际的施工过程中,实际的水泥压力略大于计算值,通过信息化施工及时调整和修正参数,使泥水压力处于第一预定范围之内,从而进一步保证了盾构施工地层变形控制的安全性和科学性。
本公开的一种实施例中,上述泥水压力的取值范围为Pw~Pw+20kpa,其中,Pw为上述先行变形阶段或者上述开挖面变形阶段的所处位置的静水压力。具体地,将泥水压力设置在上述范围内,可以防止欠压,且有效缓解先行变形阶段和/或开挖面变形阶段的地层变形沉降,另外,上述泥水压力的取值范围不限于此,本领域技术人员可以根据实际情况选择合适的取值范围。
本公开的一种实施例中,上述通过阶段变形阶段对应的上述施工参数包括切口水压的波动值、掘进速度、刀盘扭矩、刀盘转速和填充材料注入率中的至少一个,上述通过阶段变形阶段对应的上述沉降比例为第三沉降比例,上述通过阶段变形阶段对应的上述预定范围为第二预定范围,上述第二预定范围的最小值为第三阈值,上述第二预定范围的最大值为第四阈值,上述调整模块包括第三调整子模块和第四调整子模块,其中,上述第三调整子模块用于在上述第三沉降比例小于上述第三阈值的情况下,增大上述切口水压的波动值、上述掘进速度、上述刀盘扭矩和上述刀盘转速中的至少一个和/或减小上述填充材料注入率;上述第四调整子模块用于在上述第三沉降比例大于上述第四阈值的情况下,减小上述切口水压的波动值、上述掘进速度、上述刀盘扭矩和上述刀盘转速中的至少一个和/或增大上述填充材料注入率。
具体地,通过阶段变形阶段作为第三主要沉降阶段,需要时刻关注地表沉降或隆起量,根据实际情况及时调整施工参数,防止盾构机对土体的扰动过大,严格控制盾构姿态,防止超挖量过大,尤其采用盾构机中部径向注浆孔同步注入具有润滑作用惰性浆液,及时对盾体与土体间隙进行填充,以控制通过区域地层沉降变形,通过调整切口水压的波动值、掘进速度、刀盘扭矩、刀盘转速和填充材料注入率,使得第三沉降比例落入第二预定范围内,从而进一步保证了盾构施工地层变形控制的安全性和科学性。
本公开的一种实施例中,上述切口水压的波动值的取值范围为0~10kpa,上述掘进速度的取值范围为15~30mm/min,上述刀盘扭矩的取值范围为6~9MNm,上述刀盘转速的取值范围为 0.8rpm~1.2rpm,上述填充材料注入率的取值范围为120%~130%。具体地,切口水压波动越大,正面土体的扰动越大,导致正面土体流失越多,将切口水压的波动值设置在上述范围内,进一步保证施工过程土层的稳定,掘进速度越快对同步注浆的跟进速度的影响越大,容易造成管片壁后的空洞,引起后期沉降,将掘进速度设置在上述范围内,可以进一步缓解施工过程导致的土层变形沉降,将刀盘扭矩设置在上述范围内,可以缓解刀具磨损,保证施工安全,将刀盘转速设置在上述范围内,可以避免对软土层造成较大的扰动,进一步缓解施工过程导致的土层变形沉降,在推进速度增加时,锥入度超过50的情况下,可适当增大刀盘转速,但一般不超过1.2rpm,盾构施工过程中,盾构机向盾体外注入填充材料,例如,克泥效,将填充材料注入率设置上述范围内,可以及时有效填充开挖直径和盾构机的盾体之间的空隙,进一步缓解施工过程导致的土层变形沉降,另外,上述切口水压的波动值、掘进速度、刀盘扭矩、刀盘转速和填充材料注入率的取值范围不限于此,本领域技术人员可以根据实际情况选择合适的取值范围。
需要说明的是,在软弱地层施工时,例如,沙层和淤泥质粘土层,掘进速度的取值范围为10~20mm/min,以防止土层塌陷,在同一地质锥入度越大,扭矩越大,如果在锥入度、掘进速度等参数不变时,扭矩逐步明显增大时,要考虑到刀具是否磨损严重,刀具的磨损会直接造成扭矩明显增大,需停机检查刀具。
本公开的一种实施例中,上述盾尾后方变形阶段对应的上述施工参数包括注浆压力和/或注浆量,上述盾尾后方变形阶段对应的上述沉降比例为第四沉降比例,上述盾尾后方变形阶段对应的上述预定范围为第三预定范围,上述第三预定范围的最小值为第五阈值,上述第三预定范围的最大值为第六阈值,上述调整模块包括第五调整子模块和第六调整子模块,其中,上述第五调整子模块用于在上述第四沉降比例小于上述第五阈值的情况下,减小上述注浆压力和/或上述注浆量;上述第六调整子模块用于在上述第四沉降比例大于上述第六阈值的情况下,增大上述注浆压力和/或上述注浆量。具体地,上述盾尾后方变形阶段作为第四主要沉降阶段,需要盾尾及时同步注浆进行支护,通过控制注浆压力和/或注浆量,使得第四沉降比例落入第三预定范围内,从而进一步保证了盾构施工地层变形控制的安全性和科学性,另外,注浆材料包括水泥、粉煤灰、膨润土、砂减水剂和水,当然,本领域技术人员还可以选择其他合适的注浆材料。
本公开的一种实施例中,上述注浆压力的取值范围为Ps+0.85Ff~Ps+1.25Ff,上述注浆量大于或者等于1.3Vs,其中,Ps为预定注浆压力,Ff为管道摩擦力,Vs为预定注浆量。具体地,将上述注浆压力和上述注浆量分别设置在上述范围内,保证同步注浆的跟进速度,进一步缓解施工过程导致的土层变形沉降,另外,上述注浆压力和上述注浆量的取值范围不限于此,本领域技术人员可以根据实际情况选择合适的取值范围。
本公开的一种实施例中,上述后期变形阶段对应的上述施工参数包括二次注浆压力,上述后期变形阶段对应的上述沉降比例为第五沉降比例,上述后期变形阶段对应的上述预定范围为第四预定范围,上述第四预定范围的最小值为第七阈值,上述预定范围的最大值为第八阈值,上述调整模块包括第七调整子模块和第八调整子模块,其中,上述第七调整子模块用于在上述第五沉降比例小于上述第七阈值的情况下,减小上述二次注浆压力;上述第八调整子模块用于在上述第五沉降比例大于上述第八阈值的情况下,增大上述二次注浆压力。具体地,上述后期变形阶作为第五主要沉降阶段,需要通过现场监测数据和雷达扫描情况,即监测隧道埋深、断面尺寸、地下水压力和地层参数力学参数等,及时进行二次跟进注浆,使得第五沉降比例落入第四预定范围内, 从而进一步保证了盾构施工地层变形控制的安全性和科学性,另外,如果沉降比例过大,可以增加二次注浆量,另外,二次注浆材料可以为水玻璃+水泥砂浆双液浆,本领域技术人员还可以选择其他合适的注浆材料。
本公开的一种实施例中,上述二次注浆压力的取值范围为400~600kpa。具体地,将二次注浆压力设置在上述范围内,保证二次注浆的巩固效果,进一步缓解施工过程导致的土层变形沉降。另外,上述二次注浆压力的取值范围不限于此,本领域技术人员可以根据实际情况选择合适的取值范围。
上述运维装置包括处理器和存储器,上述监测单元、预测定位和确定单元等均作为程序单元存储在存储器中,由处理器执行存储在存储器中的上述程序单元来实现相应的功能。
处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来解决现有技术中地层变形沉降难以控制的问题。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
本公开实施例提供了一种非易失存储介质,其上存储有程序,该程序被处理器执行时实现上述控制方法。
本公开实施例提供了一种处理器,上述处理器用于运行程序,其中,上述程序运行时执行上述控制方法。
本公开实施例提供了一种设备,设备包括处理器、存储器及存储在存储器上并可在处理器上运行的程序,处理器执行程序时实现至少以下步骤:
步骤S101,监测盾构施工过程的沉降特征参数;
步骤S102,根据上述沉降特征参数预测沉降比例,上述沉降比例为预测沉降值与对应的沉降阈值的比值;
步骤S103,根据上述沉降比例确定上述盾构施工过程中的施工参数。
本文中的设备可以是服务器、PC、PAD、手机等。
本公开还提供了一种计算机程序产品,当在数据处理设备上执行时,适于执行初始化有至少如下方法步骤的程序:
步骤S101,监测盾构施工过程的沉降特征参数;
步骤S102,根据上述沉降特征参数预测沉降比例,上述沉降比例为预测沉降值与对应的沉降阈值的比值;
步骤S103,根据上述沉降比例确定上述盾构施工过程中的施工参数。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。 而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非易失存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的非易失存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
从以上的描述中,可以看出,本公开上述的实施例实现了如下技术效果:
1)、本公开的方法中,首先监测盾构施工过程的沉降特征参数,然后根据沉降特征参数预测沉降比例,即预测沉降值与对应的沉降阈值的比值,其中,沉降值为盾构施工过程地层变形沉降的距离,沉降阈值为保证土体稳定的最大沉降值,最后根据沉降比例确定盾构施工过程中的施工 参数。该方法通过盾构施工过程中监测的沉降特征参数预测沉降比例,然后根据沉降比例确定合适的施工参数,从而实现实时校正盾构施工过程中的施工参数,保证了盾构施工地层变形控制的安全性和科学性,解决了现有技术中的盾构施工过程的地层变形沉降难以控制的问题。
2)、本公开的装置中,监测单元监测盾构施工过程的沉降特征参数,预测单元根据沉降特征参数预测沉降比例,即预测沉降值与对应的沉降阈值的比值,其中,沉降值为盾构施工过程地层变形沉降的距离,沉降阈值为保证土体稳定的最大沉降值,确定单元根据沉降比例确定盾构施工过程中的施工参数。该装置通过盾构施工过程中监测的沉降特征参数预测沉降比例,然后根据沉降比例确定合适的施工参数,从而实现实时校正盾构施工过程中的施工参数,保证了盾构施工地层变形控制的安全性和科学性,解决了现有技术中的盾构施工过程的地层变形沉降难以控制的问题。
以上所述仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (16)

  1. 一种盾构施工过程地层变形的控制方法,其特征在于,所述方法包括:
    监测盾构施工过程的沉降特征参数;
    根据所述沉降特征参数预测沉降比例,所述沉降比例为预测沉降值与对应的沉降阈值的比值;
    根据所述沉降比例确定所述盾构施工过程中的施工参数。
  2. 根据权利要求1所述的方法,其特征在于,将所述盾构施工过程中的所述地层变形的过程分为5个沉降阶段,分别为先行变形阶段、开挖面变形阶段、通过阶段变形阶段、盾尾后方变形阶段和后期变形阶段,
    根据所述沉降比例确定盾构施工过程中的施工参数,包括:根据各所述沉降阶段的沉降比例确定对应所述沉降阶段的所述施工参数。
  3. 根据权利要求2所述的方法,其特征在于,根据所述沉降特征参数预测沉降比例,包括:
    利用多个训练数据组进行机器训练,得到沉降预测模型,各所述训练数据组均包括:各训练沉降阶段对应的训练沉降特征参数和训练沉降比例;
    采用所述沉降预测模型对各所述沉降阶段对应所述沉降特征参数进行分析,预测各所述沉降阶段对应的所述沉降比例。
  4. 根据权利要求2所述的方法,其特征在于,所述先行变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下孔隙水压力和支护力,所述开挖面变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下水压力和支护力,所述通过阶段变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下孔隙水水压力和惰性填充材料的填充量,所述盾尾后方变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下水压力、同步后注浆浆液弹模、注浆压力,所述后期变形阶段对应的沉降特征参数包括隧道埋深、断面尺寸、地下水压力和地层参数力学参数。
  5. 根据权利要求2所述的方法,其特征在于,根据各所述沉降阶段的沉降比例确定对应所述沉降阶段的所述施工参数,包括:
    确定各所述沉降阶段的沉降比例是否在对应的预定范围内;
    在所述沉降比例不在对应所述预定范围内的情况下,调整所述沉降阶段对应的所述施工参数。
  6. 根据权利要求5所述的方法,其特征在于,所述先行变形阶段和所述开挖面变形阶段对应的所述施工参数包括泥水压力,所述先行变形阶段对应的所述沉降比例为第一沉降比例,所述开挖面变形阶段对应的所述沉降比例为第二沉降比例,所述先行变形阶段和所述开挖面变形阶段对应的所述预定范围为第一预定范围,所述第一预定范围的最小值为第一阈值,所述第一预定范围的最大值为第二阈值,
    在所述沉降比例不在对应所述预定范围内的情况下,调整所述沉降阶段对应的所述施工参数, 包括:
    在所述第一沉降比例和/或所述第二沉降比例小于所述第一阈值的情况下,减小所述泥水压力;
    在所述第一沉降比例和/或所述第二沉降比例大于所述第二阈值的情况下,增大所述泥水压力。
  7. 根据权利要求6所述的方法,其特征在于,所述泥水压力的取值范围为P w~P w+20kpa,其中,P w为所述先行变形阶段或者所述开挖面变形阶段的所处位置的静水压力。
  8. 根据权利要求5所述的方法,其特征在于,所述通过阶段变形阶段对应的所述施工参数包括切口水压的波动值、掘进速度、刀盘扭矩、刀盘转速和填充材料注入率中的至少一个,所述通过阶段变形阶段对应的所述沉降比例为第三沉降比例,所述通过阶段变形阶段对应的所述预定范围为第二预定范围,所述第二预定范围的最小值为第三阈值,所述第二预定范围的最大值为第四阈值,
    在所述沉降比例不在对应所述预定范围内的情况下,调整所述沉降阶段对应的所述施工参数,包括:
    在所述第三沉降比例小于所述第三阈值的情况下,增大所述切口水压的波动值、所述掘进速度、所述刀盘扭矩和所述刀盘转速中的至少一个和/或减小所述填充材料注入率;
    在所述第三沉降比例大于所述第四阈值的情况下,减小所述切口水压的波动值、所述掘进速度、所述刀盘扭矩和所述刀盘转速中的至少一个和/或增大所述填充材料注入率。
  9. 根据权利要求8所述的方法,其特征在于,所述切口水压的波动值的取值范围为0~10kpa,所述掘进速度的取值范围为15~30mm/min,所述刀盘扭矩的取值范围为6~9MNm,所述刀盘转速的取值范围为0.8rpm~1.2rpm,所述填充材料注入率的取值范围为120%~130%。
  10. 根据权利要求5所述的方法,其特征在于,所述盾尾后方变形阶段对应的所述施工参数包括注浆压力和/或注浆量,所述盾尾后方变形阶段对应的所述沉降比例为第四沉降比例,所述盾尾后方变形阶段对应的所述预定范围为第三预定范围,所述第三预定范围的最小值为第五阈值,所述第三预定范围的最大值为第六阈值,
    在所述沉降比例不在对应所述预定范围内的情况下,调整所述沉降阶段对应的所述施工参数,包括:
    在所述第四沉降比例小于所述第五阈值的情况下,减小所述注浆压力和/或所述注浆量;
    在所述第四沉降比例大于所述第六阈值的情况下,增大所述注浆压力和/或所述注浆量。
  11. 根据权利要求10所述的方法,其特征在于,所述注浆压力的取值范围为P s+0.85F f~P s+1.25F f,所述注浆量大于或者等于1.3V s,其中,P s为预定注浆压力,F f为管道摩擦力,V s为预定注浆量。
  12. 根据权利要求5所述的方法,其特征在于,所述后期变形阶段对应的所述施工参数包括二次 注浆压力,所述后期变形阶段对应的所述沉降比例为第五沉降比例,所述后期变形阶段对应的所述预定范围为第四预定范围,所述第四预定范围的最小值为第七阈值,所述预定范围的最大值为第八阈值,
    在所述沉降比例不在对应所述预定范围内的情况下,调整所述沉降阶段对应的所述施工参数,包括:
    在所述第五沉降比例小于所述第七阈值的情况下,减小所述二次注浆压力;
    在所述第五沉降比例大于所述第八阈值的情况下,增大所述二次注浆压力。
  13. 根据权利要求12所述的方法,其特征在于,所述二次注浆压力的取值范围为400~600kpa。
  14. 一种盾构施工过程地层变形的控制装置,其特征在于,所述装置包括:
    监测单元,用于监测盾构施工过程的地层变形的沉降特征参数;
    预测单元,用于根据所述沉降特征参数预测沉降比例,所述沉降比例为预测沉降值与对应的沉降阈值的比值;
    确定单元,用于根据所述沉降比例确定所述盾构施工过程中的施工参数。
  15. 一种非易失存储介质,其特征在于,所述非易失存储介质包括存储的程序,其中,在所述程序运行时控制所述非易失存储介质所在设备执行权利要求1至13中任一项所述的控制方法。
  16. 一种处理器,其特征在于,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至13中任一项所述的控制方法。
PCT/CN2020/088938 2019-03-20 2020-05-07 盾构施工过程地层变形的控制方法、控制装置和非易失存储介质 WO2021184507A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/431,725 US11927098B2 (en) 2019-03-20 2020-05-07 Method and apparatus for controlling stratum deformation in shield construction process, and non-volatile storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010203051.X 2019-03-20
CN202010203051.XA CN111335907B (zh) 2020-03-20 2020-03-20 盾构施工过程地层变形的控制方法、控制装置和存储介质

Publications (1)

Publication Number Publication Date
WO2021184507A1 true WO2021184507A1 (zh) 2021-09-23

Family

ID=71186640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088938 WO2021184507A1 (zh) 2019-03-20 2020-05-07 盾构施工过程地层变形的控制方法、控制装置和非易失存储介质

Country Status (3)

Country Link
US (1) US11927098B2 (zh)
CN (1) CN111335907B (zh)
WO (1) WO2021184507A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113982598A (zh) * 2021-10-09 2022-01-28 中铁七局集团有限公司 富水砂卵石地层盾构联络通道无降水注浆加固施工方法
CN114611243A (zh) * 2022-03-14 2022-06-10 华中科技大学 盾构通用型管片点位选取模型构建方法及点位选取方法
CN115438415A (zh) * 2022-09-19 2022-12-06 中交三航局第三工程有限公司 一种盾构上跨高压输油管线施工方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111594194B (zh) * 2020-06-28 2022-07-12 中铁十四局集团大盾构工程有限公司 一种盾构机作业状态监控系统
CN114075978B (zh) * 2021-03-25 2024-01-26 上海大学 地表沉降控制方法及系统
CN113239439B (zh) * 2021-05-21 2022-04-05 上海大学 盾构施工地表沉降预测系统及方法
CN114295807B (zh) * 2021-12-29 2024-05-28 中铁十四局集团大盾构工程有限公司 一种泥水盾构开挖溶洞位置确定的实验方法
CN117235874B (zh) * 2023-11-14 2024-02-20 中电建铁路建设投资集团有限公司 一种基于盾构隧道掘进的轨道变形预测方法及系统
CN117552806B (zh) * 2024-01-11 2024-04-09 中国建筑一局(集团)有限公司 服役期盾构隧道注浆加固装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284903A (ja) * 2006-04-13 2007-11-01 Toda Constr Co Ltd シールド工事における地盤沈下量抑制方法
CN103195435A (zh) * 2013-03-22 2013-07-10 同济大学 一种控制盾构穿越建筑密集区诱发地面沉降的方法
CN105804761A (zh) * 2016-03-14 2016-07-27 上海隧道工程有限公司 适用于液化砂土地层盾构近距离穿越建筑物的施工方法
CN107489424A (zh) * 2017-07-28 2017-12-19 西安理工大学 一种盾构地铁施工诱发地层变形及对古建筑影响的预估方法
CN107515976A (zh) * 2017-08-15 2017-12-26 上海隧道工程有限公司 基于泥水盾构施工主控参数的地面沉降预测方法
CN109763828A (zh) * 2018-12-30 2019-05-17 中铁十四局集团有限公司 顶管机掘进施工方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028493A (ja) 2005-07-21 2007-02-01 Casio Comput Co Ltd 電波受信装置、電波受信回路及び電波時計
CN102071944B (zh) * 2010-12-17 2012-12-05 中铁十四局集团有限公司 盾构隧道施工地表沉降仿真检测系统
CN102493424B (zh) * 2011-11-24 2014-07-30 广州市地下铁道总公司 城市轨道交通盾构工程预警预测方法
CN108590683B (zh) * 2018-04-04 2020-04-17 中铁二十五局集团第五工程有限公司 一种富水流塑地层盾构隧道下穿铁路框架桥施工方法
CN110185463B (zh) * 2019-07-01 2020-10-09 西安电子科技大学 一种盾构掘进姿态的控制方法
CN113123361B (zh) * 2020-01-16 2022-10-18 中铁第六勘察设计院集团有限公司 盾构隧道安全下穿市政桥梁桩基托换系统的施工方法
CN112523767A (zh) * 2020-11-24 2021-03-19 中铁隧道局集团有限公司 一种膨胀土地层盾构磨桩的施工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284903A (ja) * 2006-04-13 2007-11-01 Toda Constr Co Ltd シールド工事における地盤沈下量抑制方法
CN103195435A (zh) * 2013-03-22 2013-07-10 同济大学 一种控制盾构穿越建筑密集区诱发地面沉降的方法
CN105804761A (zh) * 2016-03-14 2016-07-27 上海隧道工程有限公司 适用于液化砂土地层盾构近距离穿越建筑物的施工方法
CN107489424A (zh) * 2017-07-28 2017-12-19 西安理工大学 一种盾构地铁施工诱发地层变形及对古建筑影响的预估方法
CN107515976A (zh) * 2017-08-15 2017-12-26 上海隧道工程有限公司 基于泥水盾构施工主控参数的地面沉降预测方法
CN109763828A (zh) * 2018-12-30 2019-05-17 中铁十四局集团有限公司 顶管机掘进施工方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113982598A (zh) * 2021-10-09 2022-01-28 中铁七局集团有限公司 富水砂卵石地层盾构联络通道无降水注浆加固施工方法
CN114611243A (zh) * 2022-03-14 2022-06-10 华中科技大学 盾构通用型管片点位选取模型构建方法及点位选取方法
CN114611243B (zh) * 2022-03-14 2023-09-08 华中科技大学 盾构通用型管片点位选取模型构建方法及点位选取方法
CN115438415A (zh) * 2022-09-19 2022-12-06 中交三航局第三工程有限公司 一种盾构上跨高压输油管线施工方法
CN115438415B (zh) * 2022-09-19 2023-09-08 中交三航局第三工程有限公司 一种盾构上跨高压输油管线施工方法

Also Published As

Publication number Publication date
CN111335907B (zh) 2021-11-19
US20220397036A1 (en) 2022-12-15
US11927098B2 (en) 2024-03-12
CN111335907A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2021184507A1 (zh) 盾构施工过程地层变形的控制方法、控制装置和非易失存储介质
US10280749B2 (en) Method for deformation control of large-span tunnel in chlorite schist stratum
CN106285710A (zh) 一种基于地表变形的土压平衡盾构掘进参数控制方法
CN105134219B (zh) 软岩地层冻结井筒井壁施工工艺
Liu et al. A case study on key techniques for long-distance sea-crossing shield tunneling
Song et al. Treatment design of geological defects in dam foundation of Jinping I hydropower station
AU2021101945A4 (en) A Construction Control Method for Shield Tunneling Through Existing Operating Lines
Hu et al. Research on the reasonable width of the waterproof coal pillar during the mining of a shallow coal seam located close to a reservoir
Cui et al. Performance of slurry shield tunnelling in mixed strata based on field measurement and numerical simulation
CN104389613B (zh) 泥水平衡盾构穿越危险地下管线的施工方法
Sun et al. Technologies for large cross-section subsea tunnel construction using drilling and blasting method
CN103277109A (zh) 用于在粘性较大的土层中的盾构掘进施工方法
CN113653496B (zh) 一种泥水盾构隧道掘进全过程稳定方法
Meng et al. Influence of constant total hydraulic head on pore pressure and water inflow of grouted tunnel calculated by complex variable method
CN108222954A (zh) 盾构穿越砂石料回填区的施工方法
Dickmann et al. Look-ahead seismic investigations during tunneling with shield tunnel boring machines
Lu et al. Research on key techniques of shield construction in mixed ground
CN109610465A (zh) 超大面积深基坑开挖施工方法
CN107460867A (zh) 循环泥浆性能快速调节方法
Knutsson et al. The use of numerical modeling in alert level set-up for instrumentation in tailings dams
Rangang et al. Process simulation and construction parameters optimization of shield side crossing bridge pile foundation in soft soil stratum
Chen et al. Construction technology of shield tunnel crossing the middle channel section of yangtze river
CN114753851A (zh) 一种盾构近距离穿越敏感建筑群的沉降控制方法及系统
Zhang Study on Ground Deformation during Shield Tunnel Construction
Wen et al. Comparative research on the pipe-soil frictional resistances of circular and rectangular pipe sections during trenchless pipe jacking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926291

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20926291

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.04.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20926291

Country of ref document: EP

Kind code of ref document: A1