WO2021184294A1 - 触控传感器和显示装置 - Google Patents

触控传感器和显示装置 Download PDF

Info

Publication number
WO2021184294A1
WO2021184294A1 PCT/CN2020/080190 CN2020080190W WO2021184294A1 WO 2021184294 A1 WO2021184294 A1 WO 2021184294A1 CN 2020080190 W CN2020080190 W CN 2020080190W WO 2021184294 A1 WO2021184294 A1 WO 2021184294A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
touch
sub
area
electrode
Prior art date
Application number
PCT/CN2020/080190
Other languages
English (en)
French (fr)
Inventor
牛文骁
梁恒镇
龚庆
穆世恒
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/427,423 priority Critical patent/US11907467B2/en
Priority to EP20925076.0A priority patent/EP4123428A4/en
Priority to CN202080000316.4A priority patent/CN113853573A/zh
Priority to PCT/CN2020/080190 priority patent/WO2021184294A1/zh
Publication of WO2021184294A1 publication Critical patent/WO2021184294A1/zh
Priority to US18/406,625 priority patent/US20240143105A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality

Definitions

  • the embodiment of the present disclosure relates to a touch sensor and a display device.
  • Organic Light Emitting Diode (OLED) display devices have the characteristics of wide viewing angle, high contrast, fast response speed, wide color gamut, high screen-to-body ratio, self-luminous, thin and light.
  • organic light-emitting diode display devices have advantages such as higher light-emitting brightness and lower driving voltage. Due to the above-mentioned characteristics and advantages, organic light-emitting diode (OLED) display devices have gradually received widespread attention and can be applied to mobile phones, monitors, notebook computers, smart watches, digital cameras, instrumentation, flexible wearable devices, etc. with display functions Device. With the further development of display technology, display devices with full screens have become the development trend of display technology in the future.
  • At least one embodiment of the present disclosure provides a touch sensor including: a first opening area, a plurality of first touch electrodes, and a plurality of second touch electrodes.
  • the center of the first opening area does not coincide with the center of the touch sensor; the plurality of first touch electrodes respectively extend in a first direction, and at least one of the plurality of first touch electrodes is included in A plurality of first touch sub-electrodes arranged side by side in the first direction and electrically connected to each other; the plurality of second touch electrodes respectively extend in a second direction crossing the first direction, and the plurality of At least one of the second touch electrodes includes a plurality of second touch sub-electrodes arranged in parallel in the second direction and electrically connected to each other; the plurality of first touch electrodes are arranged in parallel in the second direction, The plurality of second touch control electrodes are arranged side by side along the first direction; the plurality of first touch control sub-electrodes and the plurality of second touch control sub-electrod
  • At least one embodiment of the present disclosure provides another touch sensor including: a first opening area, a plurality of first touch electrodes, and a plurality of second touch electrodes.
  • the center of the first opening area does not coincide with the center of the touch sensor; the plurality of first touch electrodes respectively extend in a first direction, and at least one of the plurality of first touch electrodes is included in A plurality of first touch sub-electrodes arranged side by side in the first direction and electrically connected to each other; the plurality of second touch electrodes respectively extend in a second direction crossing the first direction, and the plurality of At least one of the second touch electrodes includes a plurality of second touch sub-electrodes arranged in parallel in the second direction and electrically connected to each other; the plurality of first touch electrodes are arranged in parallel in the second direction, The plurality of second touch control electrodes are arranged side by side along the first direction; the plurality of first touch control sub-electrodes and the plurality of second touch control sub-electrode
  • At least one embodiment of the present disclosure provides yet another touch sensor, which includes: a first opening area, a plurality of first touch electrodes, a plurality of second touch electrodes, and a plurality of first connecting sub-electrodes.
  • the center of the first opening area does not coincide with the center of the touch sensor; the plurality of first touch electrodes respectively extend in a first direction, and at least one of the plurality of first touch electrodes is included in A plurality of first touch sub-electrodes arranged side by side in the first direction and electrically connected to each other; the plurality of second touch electrodes respectively extend in a second direction crossing the first direction, and the plurality of At least one of the second touch electrodes includes a plurality of second touch sub-electrodes arranged in parallel in the second direction and electrically connected to each other; the plurality of first touch electrodes are arranged in parallel in the second direction, The plurality of second touch control electrodes are arranged side by side along the first direction; the plurality of first touch control sub-e
  • At least one embodiment of the present disclosure further provides a display device, which includes any touch sensor provided in at least one embodiment of the present disclosure.
  • FIG. 1A shows a display device adopting a technical solution of punching holes in the display screen
  • FIG. 1B shows a schematic diagram of the touch sensor part of the touch sensor included in the display device shown in FIG. 1A surrounding the switching touch electrode of the opening area;
  • FIG. 2 is a schematic plan view of a display device provided by at least one embodiment of the present disclosure
  • FIG. 3A is a schematic cross-sectional view of the display device shown in FIG. 2;
  • 3B-3E show the process flow of the display device described in FIG. 3A;
  • FIG. 4 is another schematic plan view of a display device provided by at least one embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a partial area of a touch sensor included in the display device shown in FIG. 4;
  • 6A is a schematic diagram of a partial area included in the touch sensor of the display device shown in FIG. 4;
  • 6B is a schematic plan view of the touch sensor 01 provided by at least one embodiment of the present disclosure.
  • Fig. 6C is a schematic cross-sectional view taken along the line HH' shown in Fig. 6B;
  • Fig. 6D is a schematic cross-sectional view taken along line II' shown in Fig. 6B;
  • FIG. 7A is another schematic diagram of a partial area included in the touch sensor of the display device shown in FIG. 4;
  • FIG. 7B is still another schematic plan view of a display device provided by at least one embodiment of the present disclosure.
  • FIG. 8 is another schematic diagram of a partial area included in the touch sensor of the display device shown in FIG. 4;
  • FIG. 9 is still another schematic diagram of a partial area included in the touch sensor of the display device shown in FIG. 4;
  • 10A is a schematic diagram of a partial area included in the touch sensor shown in FIG. 8;
  • 10B is a schematic diagram of a partial area included in the touch sensor shown in FIG. 5;
  • FIG. 11 shows a schematic plan view of the virtual electrode located in the upper left corner of FIG. 10B;
  • Fig. 12A is a schematic cross-sectional view taken along line BB' shown in Fig. 10A;
  • 12B is another schematic diagram of a partial area included in the touch sensor shown in FIG. 5;
  • Fig. 12C is a schematic cross-sectional view taken along the line CC' shown in Fig. 12B;
  • Fig. 12D is a schematic cross-sectional view taken along line DD' shown in Fig. 12B;
  • FIG. 13 is a schematic diagram of a laminated structure of a touch sensor included in the display device shown in FIG. 2;
  • 14A is still another schematic diagram of a partial area included in the touch sensor of the display device shown in FIG. 4;
  • 14B is a schematic diagram for showing that two electrode parts of the first touch electrode separated by an opening area are electrically connected via jumper wires according to at least one embodiment of the present disclosure
  • FIG. 15 is a schematic plan view of a partial area of the touch sensor shown in FIG. 14A;
  • FIG. 16 is a schematic plan view of a partial area of the touch sensor shown in FIG. 15;
  • FIG. 17 is a schematic plan view of a partial area of the touch sensor shown in FIG. 14A;
  • FIG. 18 is a schematic plan view of a partial area of the touch sensor shown in FIG. 17;
  • FIG. 19 is a schematic plan view of a partial area of the touch sensor shown in FIG. 17;
  • 20A is a schematic plan view of a partial area of the touch sensor shown in FIG. 14A;
  • Fig. 20B is a schematic cross-sectional view taken along line FF' of Fig. 20A;
  • Fig. 20C is another schematic cross-sectional view taken along line FF' of Fig. 20A
  • FIG. 21 is a schematic plan view of a partial area of the touch sensor shown in FIG. 8;
  • FIG. 22A shows an enlarged figure of the transfer touch electrode of the touch sensor shown in FIG. 21;
  • FIG. 22B shows another enlarged figure of the transfer touch electrode of the touch sensor shown in FIG. 21;
  • FIG. 23 is a schematic plan view of a partial area of the touch sensor shown in FIG. 9;
  • FIG. 24 is still another schematic diagram of a partial area included in the touch sensor of the display device shown in FIG. 4;
  • FIG. 25 is a schematic plan view of the switching touch electrode shown in FIG. 24;
  • FIG. 26A is a schematic plan view of a partial area shown in FIG. 24; FIG.
  • Fig. 26B is a schematic cross-sectional view taken along the line GG' shown in Fig. 26A;
  • Fig. 27 is a schematic plan view of a partial area shown in Fig. 24;
  • FIG. 28 is a schematic plan view of a partial area of the touch sensor shown in FIG. 24;
  • FIG. 29A is a schematic plan view of a partial area of the touch sensor shown in FIG. 28; FIG.
  • Fig. 29B is a schematic cross-sectional view taken along line EE' shown in Fig. 29A;
  • FIG. 30 is still another schematic diagram of a partial area included in the touch sensor of the display device shown in FIG. 4;
  • FIG. 31A is a schematic plan view of a partial area of the touch sensor shown in FIG. 30;
  • FIG. 31B is an enlarged graph of the partial area REG_R shown in FIG. 30;
  • FIG. 32 is another schematic plan view of a partial area of the touch sensor shown in FIG. 30;
  • FIG. 33 is a schematic plan view of a part of a crack stop ring 27 provided by at least one embodiment of the present disclosure.
  • FIG. 34 is a schematic plan view of a partial area of the touch sensor shown in FIG. 30;
  • FIG. 35 is another schematic plan view of a partial area of the touch sensor shown in FIG. 30.
  • FIG. 36 is a schematic plan view of a partial area of the touch sensor shown in FIG. 35.
  • the inventor of the present disclosure has noticed in research that in the early stages of the development of full-screen technology, in order to achieve full-screen, R&D and designers placed the under-screen camera and various sensors (photosensitive elements) on the display device (for example, the display of a mobile phone).
  • This type of display screen is called "Liu Haiping".
  • "Liu Haiping” is not a true full screen, because the Liu Hai area still occupies a larger display area of the display screen, which affects the user experience.
  • the inventors of the present disclosure also noticed in their research that with the development of full-screen technology, in order to solve the problem of the placement of the image sensor (for example, front camera) and many sensors (for example, infrared sensors) of the display device, it can also be used in A technical solution for punching holes in the display screen of the display device.
  • the image sensor for example, a front camera
  • many sensors can be arranged at positions corresponding to the holes in the display screen. Since the hole in the display screen is located in the display area of the display screen, the hole in the display screen is also referred to as a hole in the display area (AA Hole) or an opening area of the display area (hereinafter referred to as an opening area).
  • Fig. 1A shows a display device adopting the technical solution of perforating in the display screen.
  • the display screen of the display device has a display area 910, and the display area 910 includes an invalid display area 914 and an effective display area surrounding the invalid display area 914.
  • the invalid display area 914 is not used to form a display image.
  • the opening area (not shown in FIG. 1A, see FIG. 1B) is located in the invalid display area 914.
  • the image sensor of the display device for example, the front camera
  • the invalid display area 914 at least partially overlap in the direction perpendicular to the display surface of the display device (or the normal direction of the display surface of the display device).
  • the position of the invalid display area 914 (open area) is located near the upper edge of the display area 910 of the display area 910, and the invalid display area 914 (open area) divides the display area 910 into The first area 911, the second area 912, and the third area 913 are arranged side by side in the column direction of the device; the invalid display area 914 (open area) is located in the second area 912, and the invalid display area 914 (open area) covers the first area 911 and the third area 913 are spaced apart from each other.
  • the size of the first area 911 in the column direction of the display device is smaller (eg, much smaller) than the size of the third area 913 in the column direction of the display device.
  • the inventors of the present disclosure have noticed in their research that in applications where the display device needs to be operated on the horizontal screen (for example, mobile phone games), the user’s touch performance of the first area 911 (for example, the lower left corner of the display screen) is affected. The requirements are higher. Therefore, the first area 911 not only needs to have a display function, but also needs to have a touch function.
  • the inventor of the present disclosure has noticed in research that since the size of the first area 911 in the column direction of the display device is small, the signal provided by the portion of the touch sensor of the display device located in the first area 911 The amount is small, thereby limiting the touch performance of the first area 911.
  • the touch sensor included in the display device shown in FIG. 1A includes a plurality of first touch electrodes arranged side by side in the column direction of the display device and a plurality of second touch electrodes arranged side by side in the row direction of the display device. Electrodes; each of the plurality of first touch electrodes includes a plurality of first touch sub-electrodes arranged sequentially in the row direction of the display device and electrically connected to each other, each of the plurality of second touch electrodes is included in the display device A plurality of second touch sub-electrodes arranged in sequence in the column direction and electrically connected to each other.
  • the display panel of the display device further includes data lines and gate lines, the data lines extend along the column direction of the display device, and the gate lines extend along the row direction of the display device.
  • the inventors of the present disclosure have also noticed in research that at least one of the plurality of first touch electrodes is separated into two parts by an opening area, and at least one of the plurality of second touch electrodes is an invalid display area 914 (open area)
  • the interval is two parts.
  • the touch drive signal and the touch sensing signal cannot be normally transmitted on the first touch electrode and the second touch electrode that are separated into two parts, which leads to the touch
  • the area where part of the first touch electrode and part of the second touch electrode of the sensor are located has poor touch, which affects the user experience.
  • the inventor of the present disclosure has also noticed in research that there may be multiple opening areas in the display screen, and the distance between adjacent opening areas is relatively small. Therefore, the area between adjacent opening areas is usually not provided.
  • the touch pattern makes the area between the touch sensor included in the display device corresponding to the adjacent opening area a touch blind area, thereby affecting the user experience.
  • the inventors of the present disclosure have also noticed in their research that, because the distance between adjacent opening areas is relatively small, even if the touch pattern is set in the area between the adjacent opening areas, it is located between the adjacent opening areas.
  • the signal-to-noise ratio of the touch sensing signal provided by the inter-touch pattern is usually small. In this case, the touch performance of the part of the touch sensor corresponding to the area between the adjacent opening areas is poor.
  • the touch sensor of the display device includes a touch pattern that at least partially surrounds the opening area.
  • the impedance e.g., resistance
  • the narrower area of the touch pattern at least partially surrounding the opening area is caused by electrostatic discharge (e.g., , Electrostatic breakdown) caused by the risk of poor touch.
  • the touch pattern at least partially surrounding the opening area also has a reliability risk (for example, a risk of disconnection). An exemplary description will be given below in conjunction with FIG. 1B.
  • FIG. 1B shows a schematic diagram of the touch sensor included in the display device shown in FIG. 1A including the transfer touch electrode 920 partially surrounding the opening area 925.
  • the opening area 925 has an arc-shaped edge portion adjacent to the switching touch electrode 920, and the side of the switching touch electrode 920 close to the opening has an arc parallel to the arc-shaped edge portion of the opening area 925. ⁇ Shaped edge part.
  • the switching touch electrode 920 includes the switching touch sub-electrodes 921 (that is, the sub-electrodes marked 1) and the switching touch sub-electrodes 922 (also That is, use the sub-electrodes indicated by 2).
  • the size of the transfer touch electrode 920 in the row direction of the display device is relatively small, especially in the area 924 where the transfer touch electrode 920 overlaps the connecting sub-electrode 923.
  • the width of the region 924 overlapping the connecting sub-electrode 923 of the switching touch electrode 920 is narrow in the row direction of the display device, the channel of the region 924 overlapping the connecting sub-electrode 923 of the switching touch electrode 920 is relatively narrow.
  • the impedance for example, resistance
  • the impedance is large, and the charge conductivity is poor; in this case, it is more difficult for the electrical signal to pass through the area 924 of the switching touch electrode 920 that overlaps the connecting sub-electrode 923, and the switching touch electrode 920
  • the area 924 that overlaps with the connector electrode 923 is at risk of poor touch due to electrostatic discharge (for example, electrostatic breakdown); in addition, there is also an area 924 that overlaps the connector electrode 923 of the transfer touch electrode 920 Reliability risk (for example, disconnection risk).
  • the inventors of the present disclosure have noticed in research that a laser cutting method can be used to form an open area in the ineffective display area 914.
  • the inventor of the present disclosure has also noticed in research that since the material used to form the touch electrode is relatively brittle, cracks may be formed when the opening area is formed in the invalid display area 914 by means of laser cutting; and, in the follow-up The bonding process may cause further crack propagation. For example, when the crack expands into the effective touch area of the touch sensor (or the touch function area of the touch sensor), the crack may cause poor touch.
  • cracks may also provide a channel for the conduction of electrostatic charges, allowing electrostatic charges to enter the effective touch area of the touch sensor (for example, the effective touch area located around the opening area) And it accumulates in the effective touch area of the touch sensor, and the accumulated static charge may cause electrostatic breakdown in the effective touch area around the opening area, which may result in poor touch function.
  • the inventors of the present disclosure have also noticed in their research that the light emitted by the display panel included in the display device needs to pass through multiple film layers before being emitted from the light-emitting side of the display device; the interface between adjacent film layers connects the display panel Part of the emitted light is reflected into the opening area.
  • the light-collecting surface of the image sensor of the display device overlaps with the aperture area at least partially, the light reflected in the aperture area is incident on the light-collecting surface of the image sensor, and therefore the signal-to-noise ratio of the image output by the image sensor is reduced.
  • At least one embodiment of the present disclosure provides a touch structure, a touch sensor, and a display device.
  • the following is a non-limiting description of the touch structure, touch sensor, and display device provided in the embodiments of the present disclosure through several examples or embodiments. As described below, these specific examples or Different features in the embodiments can be combined with each other to obtain new examples or embodiments, and these new examples or embodiments also fall within the protection scope of the present disclosure.
  • FIG. 2 is a schematic plan view of a display device provided by at least one embodiment of the present disclosure. As shown in FIG. 2, the display device 03 includes any touch sensor 01 provided by at least one embodiment of the present disclosure.
  • FIG. 3A is a schematic cross-sectional view of the display device 03 shown in FIG. 2, and the schematic cross-sectional view shown in FIG. 3A corresponds to the line AA' shown in FIG. 2.
  • the display device 03 further includes an imaging sensor 511 and a display panel 512.
  • the imaging sensor 511 may be an image sensor, and may be used to collect an image of the external environment facing the light-collecting surface of the imaging sensor 511.
  • the imaging sensor 511 may be a CMOS image sensor or a CCD image sensor.
  • the display device 03 is a mobile terminal such as a mobile phone or a notebook
  • the imaging sensor 511 can be used to implement a camera of a mobile terminal such as a mobile phone or a notebook; and the display device 03 may further include, for example, a lens, Optical devices such as mirrors or optical waveguides to modulate the relevant optical path.
  • the imaging sensor 511 may include photosensitive pixels arranged in an array.
  • each photosensitive pixel may include a photosensitive detector (for example, a photodiode, a phototransistor) and a switching transistor (for example, a switching transistor).
  • a photosensitive detector for example, a photodiode, a phototransistor
  • a switching transistor for example, a switching transistor
  • the photodiode can convert the light signal irradiated on it into an electrical signal
  • the switching transistor can be electrically connected with the photodiode to control whether the photodiode is in the state of collecting the light signal and the time for collecting the light signal.
  • the display panel 512 includes a display side and a non-display side opposite to each other, and the display panel 512 is configured to perform a display operation on the display side of the display panel 512, that is, the display side of the display panel 512 is the light emitting side of the display panel 512 , Towards the user.
  • the display side and the non-display side face each other in the normal direction of the display surface of the display panel 512.
  • the display panel 512 may be an organic light emitting diode (OLED) display panel, a quantum dot light emitting diode (QLED) display panel, or other applicable display panels.
  • OLED organic light emitting diode
  • QLED quantum dot light emitting diode
  • the specific types of display panels are not limited in the embodiments of the present disclosure.
  • the touch sensor 01, the display panel 512, and the imaging sensor 511 are sequentially arranged in the normal direction of the display surface of the display device 03 (for example, in the direction perpendicular to the display panel 512), and the imaging The sensor 511 is located on the non-display side of the display panel 512.
  • the touch sensor 01 has an opening area 518
  • the display panel 512 has an opening area 519
  • the imaging sensor 511 is configured to receive and process through the opening area 518 of the touch sensor 01 and the opening of the display panel 512.
  • Light signal in area 519 may be visible light, infrared light, or the like.
  • the opening area 518 of the touch sensor 01 and the opening area 519 of the display panel 512 at least partially overlap (for example, completely overlap) in the normal direction of the display surface of the display device 03.
  • the display device 03 also includes optical devices such as lenses, mirrors, or optical waveguides for modulating the relevant optical path, the opening area 518 of the touch sensor 01 and the opening area 519 of the display panel 512
  • the display device 03 may not overlap in the normal direction of the display surface.
  • the touch sensor 01 and the display panel 512 may each have multiple opening areas (that is, the display device 03 has multiple opening areas), and the display device 03 may also include other suitable sensors (for example, infrared sensors). , Distance sensor, etc.); the imaging sensor 511 receives signals through the first of the multiple opening areas of the display device 03, and other sensors receive related signals through other opening areas of the multiple opening areas of the display device 03 respectively.
  • the display device 03 may also include other suitable sensors (for example, infrared sensors). , Distance sensor, etc.); the imaging sensor 511 receives signals through the first of the multiple opening areas of the display device 03, and other sensors receive related signals through other opening areas of the multiple opening areas of the display device 03 respectively.
  • the display device 03 may further include a polarizer 513.
  • the polarizer 513 is disposed on the side of the touch sensor 01 away from the display panel 512.
  • the polarizer 513 (for example, a circular polarizer) can alleviate the problems of poor contrast and reduced display quality caused by reflected light (due to the reflection of ambient light by the display panel 512).
  • the polarizer 513 and the touch sensor 01 may be in direct contact.
  • the display device 03 may further include a heat dissipation layer 516.
  • the heat dissipation layer 516 is disposed on the side of the display panel 512 away from the touch sensor 01.
  • the display device 03 may further include a protective layer 517 (for example, a cover plate).
  • the protective layer 517 is located on the side of the polarizer 513 away from the touch sensor 01.
  • the protective layer 517 can be used to protect the relevant film layer of the display device from being scratched.
  • the protective layer 517 is a transparent substrate.
  • the transparent substrate may be a glass substrate, a quartz substrate, a plastic substrate (such as a polyethylene terephthalate (PET) substrate), or a substrate made of other suitable materials.
  • PET polyethylene terephthalate
  • the display device 03 may further include a first adhesive layer 514 and a second adhesive layer 515.
  • the first adhesive layer 514 is disposed between the display panel 512 and the touch sensor 01, and is used for bonding the display panel 512 and the touch sensor 01.
  • the second adhesive layer 515 is disposed between the protective layer 517 and the polarizer 513 and is used to adhere the protective layer 517 and the polarizer 513.
  • the first adhesive layer 514 and the second adhesive layer 515 may be optical glue.
  • the polarizer 513, the heat dissipation layer 516, the first adhesive layer 514, and the second adhesive layer 515 respectively have opening areas; the opening area 518 of the touch sensor 01, the opening area 519 of the display panel 512, and the polarizer
  • the opening area of the sheet 513, the opening area of the heat dissipation layer 516, the opening area of the first adhesive layer 514, and the opening area of the second adhesive layer 515 at least partially overlap (completely overlap) in the normal direction of the display surface of the display device 03.
  • the touch sensor 01, the display panel 512, the polarizer 513, the heat dissipation layer 516, the first adhesive layer 514, and the second adhesive layer 515 of the display device 03 shown in FIG. The embodiment is not limited to this.
  • parts of the touch sensor 01, the display panel 512, the polarizer 513, the heat dissipation layer 516, the first adhesive layer 514, and the second adhesive layer 515 of the display device 03 for example, the touch sensor 01, the first adhesive layer
  • At least one of the one adhesive layer 514 and the second adhesive layer 515 may not be provided with an open area.
  • the opening area 518 of the touch sensor 01 of the display device 03 shown in FIG. 3A is holes, but the embodiment of the present disclosure is not limited thereto.
  • the opening area 518 of the touch sensor 01, the opening area 519 of the display panel 512, the opening area of the polarizer 513, the opening area of the heat dissipation layer 516, the opening area of the first adhesive layer 514, and the second adhesive At least part of the opening area of the layer 515 may not be a hole, but a light-transmitting area.
  • Applicable components can be used for other components of the display device 03 (for example, thin film transistors, control devices, image data encoding/decoding devices, row scan drivers, column scan drivers, clock circuits, etc.), all of which are the present invention.
  • the display device 03 for example, thin film transistors, control devices, image data encoding/decoding devices, row scan drivers, column scan drivers, clock circuits, etc.
  • the manufacturing method of the display device 03 shown in FIG. 3A may include the following steps S101 to S107.
  • Step S101 forming a laminated structure of the touch sensor 01 and the polarizer 513.
  • the touch sensor 01 may be directly formed on the polarizer 513, but the embodiment of the present disclosure is not limited thereto.
  • Step S102 bonding the first adhesive layer 514 on the surface of the touch sensor 01 away from the polarizer 513 (see FIG. 3B).
  • Step S103 attach the display panel 512 to the surface of the first adhesive layer 514 away from the touch sensor 01 (see FIG. 3C).
  • Step S104 stick the second adhesive layer 515 on the surface of the polarizer 513 away from the touch sensor 01 (see FIG. 3D).
  • Step S105 Drill holes in the area corresponding to the opening area of the display device 03 of the laminated structure of the second adhesive layer 515, the polarizer 513, the touch sensor 01, the first adhesive layer 514, and the display panel 512 to form a display The opening area 521 of the device 03 (see Figure 3E).
  • the opening area 518 of the touch sensor 01 and the opening area 519 of the display panel 512 correspond to the opening area 521 of the display device 03.
  • the laser 520 may be used to perforate the area of the above-mentioned stacked structure corresponding to the opening area of the display device 03 to form the opening area 521 of the display device 03.
  • Step S106 forming the protective layer 517 on the side of the second adhesive layer 515 away from the polarizer 513.
  • Step S107 Make the light collection surface of the imaging sensor 511 and the opening area 521 of the display device 03 at least partially overlap in the normal direction of the display surface of the display device 03.
  • the manufacturing method of the display device 03 shown in FIG. 3A further includes the following step S108.
  • Step S108 forming a heat dissipation layer 516 on the surface of the display panel 512 away from the first adhesive layer 514.
  • step S108 may be performed after step S103 is performed and before step S105 is performed.
  • step S105 includes: applying the second adhesive layer 515, the polarizer 513, the touch sensor 01, the first adhesive layer 514, the display panel 512, and the heat dissipation layer 516 The area of the laminated structure corresponding to the opening area of the display device 03 is punched to form the opening area 521 of the display device 03.
  • the touch sensor 01 included in the display device has a first area 411, a second area 412, and a third area 413 that are sequentially arranged in the second direction D2.
  • the size of the third area 413 in the second direction D2 is larger (eg, much larger) than the size of the first area 411 in the second direction D2.
  • the two sides of the first area 411 in the second direction D2 coincide with the upper boundary of the touch sensor 01 and the upper boundary of the second area 412 respectively; the third area 413 is in the second direction D2.
  • the upper two edges coincide with the lower boundary of the second area 412 and the lower boundary of the touch sensor 01 respectively.
  • the opening area of the touch sensor 01 is located in the second area 412, that is, the opening area of the touch sensor 01 separates the partial area of the touch sensor 01 into the first spaced side by side in the second direction D2.
  • the display panel 512 of the display device 03 further includes data lines and gate lines, the data lines extend in a second direction D2, and the gate lines extend in a first direction D1 crossing (for example, perpendicular to) the second direction D2.
  • FIG. 4 is another schematic plan view of a display device provided by at least one embodiment of the present disclosure.
  • the touch sensor 01 included in the display device 03 includes an area REG1 and an area REG2.
  • FIG. 5 is a schematic diagram of a partial area REG2 of the touch sensor 01 included in the display device 03 shown in FIG. 4.
  • the structure of the touch sensor 01 except for the area REG1 and the area juxtaposed with the area REG1 in the first direction D1 is the same as or similar to the structure shown in the partial area REG2.
  • the touch sensor 01 includes a plurality of first touch electrodes 11 and a plurality of second touch electrodes 12.
  • the first touch electrode 11 may be a touch sensing electrode Rx
  • the second touch electrode 12 may be a touch driving electrode Tx, but the embodiment of the present disclosure is not limited thereto.
  • the first touch electrode 11 may be a touch driving electrode Tx
  • the second touch electrode 12 may be a touch sensing electrode Rx.
  • the display device also includes a touch circuit (for example, a touch chip) and a plurality of touch signal lines.
  • the touch circuit is electrically connected to a plurality of touch driving electrodes Tx and a touch sensing electrode Rx via a plurality of touch signal lines, and is configured to provide touches to the plurality of touch driving electrodes Tx via a plurality of touch signal lines.
  • a plurality of first touch electrodes 11 respectively extend along a first direction D1; a plurality of second touch electrodes 12 respectively extend along a second direction D2 crossing the first direction D1;
  • One touch electrode 11 is arranged in parallel along the second direction D2, and a plurality of second touch electrodes 12 are arranged in parallel along the first direction D1.
  • FIG. 5 a plurality of first touch electrodes 11 respectively extend along a first direction D1; a plurality of second touch electrodes 12 respectively extend along a second direction D2 crossing the first direction D1;
  • One touch electrode 11 is arranged in parallel along the second direction D2, and a plurality of second touch electrodes 12 are arranged in parallel along the first direction D1.
  • At least one (for example, each) of the plurality of first touch electrodes 11 includes a plurality of first touch sub-electrodes 111 arranged in parallel along the first direction D1 and electrically connected to each other;
  • At least one (for example, each) of the second touch electrodes 12 includes a plurality of second touch sub-electrodes 121 sequentially arranged along the second direction D2 and electrically connected to each other.
  • the touch sensor 01 is a capacitive touch sensor.
  • the touch sensor 01 can detect the touch position based on at least one of the mutual capacitance principle and the self-capacitance principle.
  • FIG. 6A is a schematic diagram of a partial area REG1 included in the touch sensor 01 of the display device 03 shown in FIG. 4.
  • the touch sensor 01 includes a plurality of first touch electrodes 11 and a plurality of second touch electrodes 12; Extend in the direction D1; the plurality of second touch electrodes 12 respectively extend in the second direction D2; the plurality of first touch electrodes 11 are arranged in parallel along the second direction D2, and the plurality of second touch electrodes 12 are arranged in the first direction D1 Arranged side by side; each of the plurality of first touch electrodes 11 includes a plurality of first touch sub-electrodes 111 arranged side by side along the first direction D1 and electrically connected to each other; each of the plurality of second touch electrodes 12 includes A plurality of second touch sub-electrodes 121 arranged sequentially along the second direction D2 and electrically connected to each other.
  • the touch sensor 01 includes the first touch sub-electrode 111 and the second touch electrode 12 located at the edge of the touch sensor 01 have a parallelogram (for example, a rhombus) The overall outline. It should be noted that the overall contours of the first touch sub-electrode 111 and the second touch electrode 12 located at the edge of the touch sensor 01 (for example, the lower edge of the touch sensor 01) are at least part of a parallelogram (for example, Half of a parallelogram) or quadrilateral.
  • a parallelogram for example, a rhombus
  • FIG. 6B is a schematic plan view of the touch sensor 01 provided by at least one embodiment of the present disclosure.
  • the touch sensor 01 further includes a middle area 171, a peripheral area 172 at least partially surrounding the middle area 171, a plurality of first touch signal lines 173 and a plurality of second touch signal lines 174,
  • FIG. 6B also shows the touch circuit 175.
  • the plurality of first touch electrodes 11 and the plurality of second touch electrodes 12 are all located in the middle area 171.
  • the plurality of first touch signal lines 173 (for example, the first ends of the plurality of first touch signal lines) are connected to the plurality of first touch electrodes 11 (for example, located in the plurality of first touch electrodes).
  • the first touch sub-electrode 111) at the most edge in the first direction D1 of a touch electrode 11 is electrically connected, and extends from the edge of the middle area 171 in the first direction D1 to the peripheral area 172.
  • the plurality of second touch signal lines 174 (for example, the first ends of the plurality of second touch signal lines 174) are connected to the plurality of second touch electrodes 12 (for example, located in the plurality of The second touch sub-electrode 121) at the extreme edge of the second touch electrode 12 in the second direction D2 is electrically connected, and extends from the edge of the middle area 171 in the second direction D2 to the peripheral area 172.
  • the plurality of first touch signal lines 173 (for example, the second ends of the plurality of first touch signal lines) are respectively electrically connected to the touch circuit 175, and the plurality of second touch signal lines 174 (for example, the first ends of the plurality of second touch signal lines 174) are respectively electrically connected to the touch circuit 175, so that the touch sensor 01 receives the touch drive signal from the touch circuit 175 and provides the touch circuit 175 Touch sensing signal.
  • FIG. 6B is used to illustrate the connection manner of the first touch signal line 173 and the first touch electrode 11 and the connection manner of the second touch signal line 174 and the plurality of second touch electrodes 12;
  • FIG. 6B The number and structure of the first touch electrodes 11 and the second touch electrodes 12 and the shapes of the middle area 171 and the peripheral area 172 shown are only examples; and, for clarity, FIG. 6B does not show the location in the first area 411
  • the structure of the first touch electrode 11 and the second touch sub-electrode 121 in the second area 412, and the first touch electrode 11 and the second touch sub-electrode 121 in the first area 411 and the second area 412 can be found in For example, Figure 6A.
  • Fig. 6C is a schematic cross-sectional view taken along the line HH' shown in Fig. 6B
  • Fig. 6D is a schematic cross-sectional view taken along the line II' shown in Fig. 6B.
  • the touch sensor 01 further includes a substrate 36 and a protective layer 176; the plurality of first touch electrodes 11 and the plurality of second touch electrodes 12 are in a direction perpendicular to the touch sensor 01 The upper part is located between the substrate 36 and the protective layer 176; the multiple first touch signal lines 173 and the multiple second touch signal lines 174 are located on the side of the protective layer 176 away from the substrate 36; the multiple first touch signals
  • the wires 173 are respectively electrically connected to the plurality of first touch electrodes 11 (for example, the first touch sub-electrodes 111 included in the plurality of first touch electrodes 11) through corresponding vias located in the protective layer 176;
  • the two touch signal lines 174 are respectively electrically connected to the plurality of second touch
  • the plurality of first touch signal lines 173 and the plurality of second touch signal lines 174 may be made of metal materials, but the embodiments of the present disclosure are not limited thereto.
  • the protective layer 176 may be made of a transparent insulating material.
  • each of the plurality of first touch electrodes 11 and the plurality of second touch electrodes 12 may include a plurality of film layers, and the plurality of first touch electrodes 11
  • the structure of the plurality of second touch electrodes 12 in the direction perpendicular to the touch sensor 01 can be seen in the following FIG. 12A, FIG. 12C, and FIG. 12D, which will not be repeated here.
  • FIG. 7A is another schematic diagram of a partial area REG1 included in the touch sensor 01 of the display device 03 shown in FIG. 4. It should be noted that the partial area REG1 of the touch sensor 01 of the display device 03 shown in FIG. 7A and the following FIGS. 8-9, 14A, 24, and 30 and the touch of the display device 03 shown in FIG. 6A
  • the partial area REG1 of the control sensor 01 has the same structure, and different drawings are used to more clearly illustrate the structure of different components of the touch sensor 01.
  • the touch sensor 01 has a first area 411, a second area 412, and a third area 413 sequentially arranged in the second direction D2.
  • the second area 412 includes an open area 422 and an open area 421.
  • the opening area 422 and the opening area 421 are arranged at intervals.
  • the opening area 422 and the opening area 421 are arranged side by side in the first direction D1.
  • the opening area 422 and the opening area 421 are also located in the aforementioned middle area 171.
  • FIG. 7B is another schematic plan view of a display device provided by at least one embodiment of the present disclosure.
  • the center 012 of the opening area 421 and the center 011 of the touch sensor 01 do not overlap (for example, are spaced apart from each other).
  • the center 013 of the opening area 422 and the center 011 of the touch sensor 01 do not overlap (for example, are spaced apart from each other).
  • the center 011 of the touch sensor 01 refers to the center of the overall outline of the touch sensor 01 (for example, the outer outline of the surface of the touch sensor 01 parallel to the first direction D1 and the second direction D2).
  • the overall outline of the touch sensor 01 is a centrally symmetric structure (for example, a rectangle with four rounded corners).
  • the center of the touch sensor 01 and the center of the overall outline of the touch sensor 01 are the centrally symmetric structure ( For example, the center of symmetry of a rectangle with four rounded corners).
  • the open area 421 is a centrally symmetric structure (for example, a circle), and correspondingly, the center 012 of the open area 421 is the center of symmetry (for example, the center of the circle) of the centrally symmetric structure (for example, a circle).
  • the opening area 422 is a centrally symmetric structure (for example, a racetrack type), and correspondingly, the center 013 of the opening area 422 is the symmetry center of the centrally symmetric structure (for example, a racetrack type).
  • At least one of the overall contour, the opening area 421, and the opening area 422 of the touch sensor 01 is a non-centrosymmetric structure; in this case, the size of the non-centrosymmetric structure surrounding the non-centrosymmetric structure is the smallest Circle center.
  • the plurality of first touch sub-electrodes 111 and the plurality of second touch sub-electrodes 121 at least partially surround (for example, completely surround) the opening area 421 as a whole;
  • the control sub-electrode 111 and the plurality of second touch sub-electrodes 121 at least partially surround (for example, completely surround) the opening area 422 as a whole.
  • the plurality of first touch sub-electrodes 111 and the plurality of second touch sub-electrodes 121 at least partially surround (for example, completely surround) the opening area 421 as a whole refers to the plurality of first touch sub-electrodes 111 and the plurality of second touch sub-electrodes 111.
  • Surrounding the opening area 422 refers to the combination structure of the plurality of first touch sub-electrodes 111 and the plurality of second touch sub-electrodes 121 at least partially surrounding (for example, completely surrounding) the opening area 422.
  • FIG. 8 is another schematic diagram of a partial area REG1 included in the touch sensor 01 of the display device 03 shown in FIG. 4;
  • FIG. 9 is another schematic diagram of a partial area REG1 included in the touch sensor 01 of the display device 03 shown in FIG. 4 .
  • the touch sensor 01 further includes a jumper wire 21, a jumper wire 22, a switch touch electrode 14, a switch touch electrode 15, and a switch touch electrode 16.
  • the jumper wire 21, the jumper wire 22, the transfer touch electrode 15 and the transfer touch electrode 16 are all located in the second area 412.
  • at least part (for example, all) of the transfer touch electrode 14 is located in the second area 412.
  • At least one of the plurality of first touch electrodes 11 is separated by an opening area 422 and an opening area 421 into an electrode portion 112 and an electrode portion 113; each of the electrode portion 112 and the electrode portion 113 includes at least one The first touch sub-electrode 111; the electrode portion 112 and the electrode portion 113 are located on both sides of the opening area 421 in the first direction D1; the switching touch electrode 15 is located between the electrode portion 112 and the electrode portion 113, and the above-mentioned electrode portion 112
  • the electrode portion 113 is electrically connected to the transfer touch electrode 15 at least via the jumper wire 21; correspondingly, at least one of the plurality of first touch electrodes 11 further includes the transfer touch electrode 15.
  • At least one of the plurality of second touch electrodes 12 is separated into two electrode parts by the second area 412, and the two parts of at least one of the plurality of second touch electrodes 12 are bridged
  • the wire is electrically connected to at least one of the transfer touch electrodes.
  • a set of second touch electrodes 12 of the plurality of second touch electrodes 12 includes at least one second touch electrode 12.
  • the touch electrode 12 is separated by a second area 412 (for example, an opening area 422 located in the second area 412) into an electrode part 126 and an electrode part 127, and each of the electrode part 126 and the electrode part 127 includes at least one second contact.
  • Control sub-electrode 121; the above-mentioned electrode portion 126 and electrode portion 127 are electrically connected to each other via at least one jumper wire 22.
  • a set of second touch electrodes 12 of the plurality of second touch electrodes 12 (for example, a set of second touch electrodes 12 of the plurality of second touch electrodes 12 includes at least one second touch electrode 12).
  • the touch electrode 12) is separated by a second area 412 (for example, an opening area 421 located in the second area 412) into an electrode part 124 and an electrode part 125; each of the electrode part 124 and the electrode part 125 includes at least one second contact
  • the control sub-electrode 121; the switching touch electrode 16 is located between the electrode portion 124 and the electrode portion 125 in the second direction D2, and the electrode portion 124 and the electrode portion 125 are electrically connected to each other via the switching touch electrode 16; correspondingly, the above
  • Each of a group of second touch electrodes 12 of the plurality of second touch electrodes 12 further includes a switching touch electrode 16.
  • a set of second touch electrodes 12 of the plurality of second touch electrodes 12 (for example, a set of second touch electrodes 12 of the plurality of second touch electrodes 12 includes at least one second touch electrode 12).
  • the touch electrode 12) is separated by the second area 412 into an electrode part 122 and an electrode part 123; each of the electrode part 122 and the electrode part 123 includes at least one second touch sub-electrode 121; the electrode part 122 and the electrode part 123 are in the first In the second direction D2, it is located on both sides of the second area 412 (for example, the opening area 421 in the second area 412); the transfer touch electrode 14 is located between the electrode portion 122 and the electrode portion 123 in the second direction D2, and The electrode portion 122 and the electrode portion 123 are electrically connected to each other via the transfer touch electrode 14; correspondingly, each of the group of second touch electrodes 12 of the plurality of second touch electrodes 12 further includes the transfer touch electrode 14.
  • the specific connection mode of the electrode part 113, the specific connection mode of the electrode part 126 and the electrode part 127, the specific connection mode of the electrode part 124 and the electrode part 125, and the specific connection mode of the electrode part 122 and the electrode part 123 will be described in the first touch
  • the specific structures of the sub-electrodes 111 and the second touch electrodes 12, the connection manner of the two adjacent first touch sub-electrodes 111 and the connection manner of the two adjacent second touch electrodes 12 will be described in detail later.
  • connection mode of the two adjacent first touch sub-electrodes 111 and the two adjacent second touch The connection mode of the control electrode 12 is exemplified.
  • FIG. 10A is a schematic diagram of a partial area REG3 (located in the first area 411) included in the touch sensor 01 shown in FIG. 8;
  • FIG. 10B is a partial area REG4 (located in the third area 413) included in the touch sensor 01 shown in FIG. ) Is a schematic diagram.
  • the area of the first touch sub-electrode 111 located in the first area 411 is smaller than the area of the first touch sub-electrode 111 located in the third area 413.
  • the area of the second touch sub-electrode 121 located in the first area 411 is smaller than the area of the second touch sub-electrode 121 located in the third area 413.
  • the distance d1 (see FIG. 10A) between adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121 located in the first area 411 is smaller than that located in the third area.
  • the distance between adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121 refers to the distance between two adjacent sides of adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121 Spacing d2.
  • the distance between adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121 will be exemplified in the examples shown in FIGS. 10A and 10B, and will not be repeated here.
  • first touch sub-electrodes 111 and second touch sub-electrodes 121 located in the first area 411 are made smaller than that of adjacent first touch sub-electrodes 111 and second touch sub-electrodes 111 located in the third area 413
  • the spacing of the touch sub-electrodes 121 can increase the amount of touch signals in the first area 411 of the touch sensor 01.
  • the capacitance C of a parallel plate capacitor is proportional to the expression ⁇ S/d, where ⁇ is a constant, S is the area facing the two capacitor plates of the parallel plate capacitor, and d is the two capacitor electrodes of the parallel plate capacitor.
  • is a constant
  • S is the area facing the two capacitor plates of the parallel plate capacitor
  • d is the two capacitor electrodes of the parallel plate capacitor.
  • the capacitance C is proportional to the area S and inversely proportional to the spacing d. Therefore, in the case of reducing the distance between adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121 located in the first region 411, the adjacent first touch sub-electrodes 111 and second touch sub-electrodes can be increased.
  • the first touch sub-electrode 111 and the second touch sub-electrode 121 located in the first area 411 may not be increased.
  • the signal-to-noise ratio of the touch signal provided by the portion of the touch sensor 01 located in the first area 411 can be improved without reducing the touch resolution of the portion of the touch sensor 01 located in the first area 411.
  • At least one of the plurality of second touch electrodes 12 is separated by the second area 412 into two electrode parts.
  • at least one of the plurality of second touch electrodes 12 is separated by the second area 412 into an electrode part 124 and an electrode part 125; for another example, as shown in FIGS. 7A and 9, more At least one of the second touch electrodes 12 is separated by the second area 412 into an electrode part 126 and an electrode part 127.
  • the electrode part 124 and the electrode part 126 are located in the first region 411; the electrode part 125 and the electrode part 127 are located in the third region 413.
  • the size of the electrode portion 124 in the second direction D2 is smaller than the size of the electrode portion 125 in the second direction D2; the size of the electrode portion 126 in the second direction D2 is smaller than the size of the electrode portion 127 The size in the second direction D2.
  • the electrode part 124 includes all the second touch sub-electrodes 121 located in the first area 411 of the second touch electrode 12 having the above-mentioned electrode part 124; the electrode part 125 includes the second touch electrode 12 having the electrode part 125 All the second touch sub-electrodes 121 located in the third area 413.
  • the electrode portion 126 includes all the second touch sub-electrodes 121 located in the first area 411 of the second touch electrode 12 having the electrode portion 126, and the lower edge of the first area 411 corresponds to the electrode portion 126 located in the most extreme area.
  • the electrode portion 127 includes all the second touch sub-electrodes 121 of the second touch electrode 12 with the electrode portion 127 located in the third area 413, and the third area 413
  • the upper edge corresponds to the upper edge of the uppermost second touch sub-electrode 121 included in the electrode part 127.
  • the size (e.g., length) of the electrode portion 124 and the electrode portion 126 in the second direction D2 is smaller than the second touch sub-electrode 121 with the largest size located in the third area 413 (that is, the overall outline is the parallelogram-shaped first
  • the size (for example, length) of the second touch sub-electrode 121) in the second direction D2 in this case, the area (for example, parallel to the first direction D1) of the first touch sub-electrode 111 located in the first region 411 And the area of the surface in the second direction D2) is smaller than the area of most of the first touch sub-electrodes 111 located in the third area 413; the area of the second touch sub-electrode 121 located in the first area 411 is smaller than that of the third area 413
  • the area of most of the second touch sub-electrodes 121 (for example, the area of the second touch sub-electrode 121 with the largest area).
  • the touch sensor 01 further includes a plurality of dummy electrodes 132; each of the plurality of dummy electrodes 132 is disposed at a first adjacent to each of the plurality of dummy electrodes 132. Between the touch sub-electrode 111 and the second touch sub-electrode 121.
  • first touch sub-electrode 111 and the second touch sub-electrode 121 adjacent to the virtual electrode 132 represent the first touch sub-electrode 111 and the second touch sub-electrode that are closest to the virtual electrode 132. 121.
  • the dummy electrode 132 and the nearest first touch sub-electrode 111 are not provided with other first touch sub-electrodes 111 or other second touch sub-electrodes 121, and the dummy electrode 132 and the nearest neighbor
  • the second touch sub-electrode 121 is not provided with other first touch sub-electrodes 111 or other second touch sub-electrodes 121, however, between the dummy electrode 132 and the nearest first touch sub-electrode 111 or the dummy electrode 132 and the nearest second touch sub-electrode 121 may be provided with other dummy electrodes 132.
  • the dummy electrode 132 between the adjacent first touch sub-electrode 111 and the second touch sub-electrode 121, it is possible to avoid the difference between the adjacent first touch sub-electrode 111 and the second touch sub-electrode 121
  • the spacing between the two adjacent first touch sub-electrodes 111 and the second touch sub-electrode 121 is too small, so that the touch sensor 01 can provide the required Signal-to-noise ratio.
  • the ratio of the capacitance change caused by the touch operation to the basic capacitance is too small, thus As a result, the signal-to-noise ratio of the touch signal caused by the touch is low.
  • adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121 indicate that no other first touch sub-electrodes 111 and second touch sub-electrodes 121 are provided between the above-mentioned adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121.
  • One touch sub-electrode 111 or other second touch sub-electrodes 121, but adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121 may be provided with dummy electrodes 132.
  • the number of dummy electrodes 132 located between adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121 in the first region 411 is less than that in the third region 413.
  • the width of the dummy electrode 132 located between the adjacent first touch sub-electrode 111 and the second touch sub-electrode 121 of the first region 411 is less than or equal to (for example, equal to)
  • the width of the dummy electrode 132 between the adjacent first touch sub-electrode 111 and the second touch sub-electrode 121 located in the third area 413; in this case, the adjacent one located in the first area 411 can be reduced
  • the number of dummy electrodes 132 between the first touch sub-electrode 111 and the second touch sub-electrode 121 is reduced to reduce the number of adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121 located in the first area 411.
  • the embodiments of the present disclosure are not limited to reducing the number of dummy electrodes 132 located between adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121 in the first region 411.
  • the distance between adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121 in the first area 411 can also be reduced by reducing the adjacent first touch sub-electrodes 111 and 121 in the first area 411.
  • the width of the dummy electrode 132 between the sub-electrode 111 and the second touch sub-electrode 121 reduces the distance between the adjacent first touch sub-electrode 111 and the second touch sub-electrode 121 located in the first area 411.
  • the number of dummy electrodes 132 between adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121 located in the first area 411 is one
  • the number of adjacent first touch sub-electrodes located in the third area 413 is one.
  • the number of dummy electrodes 132 between the sub-electrode 111 and the second touch sub-electrode 121 is two, but the embodiment of the present disclosure is not limited thereto.
  • the dummy electrode 132 includes a plurality of electrode strips that are sequentially connected.
  • the widths of the dummy electrode 132 including a plurality of electrode strips that are sequentially connected are equal to each other, that is, the dummy electrode 132 has a uniform width.
  • FIG. 11 shows a schematic plan view of the dummy electrode 132 located in the upper left corner of FIG. 10B.
  • the width of the dummy electrode 132 refers to the width of the electrode strips included in the dummy electrode 132 perpendicular to the extending direction of the electrode strips.
  • the width of the dummy electrode 132 refers to the average value of the widths of the plurality of electrode bars.
  • the adjacent sides of the adjacent first touch sub-electrode 111 and second touch sub-electrode 121 have the same (for example, the same) extension direction at any position.
  • the distance between adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121 refers to the adjacent first touch sub-electrodes 111 and second touch sub-electrodes. The distance between adjacent sides of 121 in a direction perpendicular to the above-mentioned uniform extension direction.
  • the distance between adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121 located in the first area 411 is d1; as shown in FIG.
  • the distance between adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121 is d2; as shown in FIGS. 10A and 10B, d1 is smaller than d2, that is, adjacent first touch
  • the distance d1 between the control sub-electrode 111 and the second touch sub-electrode 121 is smaller than the distance d2 between the adjacent first touch sub-electrode 111 and the second touch sub-electrode 121 located in the third area 413.
  • the distance d1 between the first touch sub-electrode 111 and the second touch sub-electrode 121 located in the first area 411 it is possible to alleviate the problems caused by the first touch sub-electrode 111 and the second touch sub-electrode 121 located in the first area 411.
  • the decrease in the area of the two touch sub-electrodes 121 causes the problem of a decrease in the capacitance value and the amount of touch signal.
  • the touch sensor 01 further includes a plurality of ring-shaped sub-electrodes (for example, it may also be referred to as a conduction ring) 134 and a plurality of intermediate sub-electrodes ( For example, it may also be referred to as a bridge island) 133, a plurality of connecting sub-electrodes 31, and a plurality of connecting sub-electrodes 32.
  • a plurality of ring-shaped sub-electrodes for example, it may also be referred to as a conduction ring
  • a plurality of intermediate sub-electrodes for example, it may also be referred to as a bridge island
  • the plurality of ring-shaped sub-electrodes 134 and the plurality of intermediate sub-electrodes 133 are located in (for example, only located in) the second region 412 and the third region 413.
  • a plurality of connecting sub-electrodes 31 are located in the second area 412 and the third area 413.
  • a plurality of connecting sub-electrodes 32 are located in the first region 411 and the third region 413.
  • two adjacent first touch sub-electrodes 111 included in at least one first touch electrode 11 located in the first area 411 are integrated and directly electrically connected.
  • two adjacent first touch sub-electrodes 111 included in at least one first touch electrode 11 located in the first area 411 are formed by using the same material in the same patterning process, and are located in the first area 411. There is no interface between two adjacent first touch sub-electrodes 111 included in the at least one first touch electrode 11.
  • Fig. 12A is a schematic cross-sectional view taken along line BB' shown in Fig. 10A.
  • both ends of each connecting sub-electrode 32 located in the first area 411 are electrically connected to two adjacent second touch sub-electrodes 121, that is, located Two adjacent second touch sub-electrodes 121 in the first area 411 are electrically connected to each other via the corresponding connecting sub-electrodes 32.
  • the two adjacent second touch sub-electrodes 121 indicate that no other first touch sub-electrodes 111 or other second touches are provided between the above-mentioned two adjacent second touch sub-electrodes 121. ⁇ electrode 121.
  • the second touch sub-electrode 121 and the connecting sub-electrode 32 are located on different layers in a direction perpendicular to the touch sensor 01 and partially overlap; In the direction, there is an insulating layer 35 between the second touch control sub-electrode 121 and the connection sub-electrode 32, and the connection sub-electrode 32 is electrically connected to the second touch control sub-electrode 121 through the via hole in the insulating layer 35, that is, touch control
  • the sensor 01 is a sensor with a conductive bridge structure.
  • the plurality of ring-shaped sub-electrodes 134 and the plurality of intermediate sub-electrodes 133 correspond one-to-one.
  • the plurality of middle sub-electrodes 133 are arranged in the space surrounded by the plurality of ring-shaped sub-electrodes 134 in a one-to-one correspondence, that is, each of the plurality of ring-shaped sub-electrodes 134 surrounds a corresponding middle sub-electrode 133.
  • each of the plurality of ring-shaped sub-electrodes 134 is located between two adjacent first touch sub-electrodes 111, and correspondingly, the plurality of intermediate Each of the sub-electrodes 133 is located between two adjacent first touch sub-electrodes 111; in the second direction D2, each of the plurality of ring-shaped sub-electrodes 134 is located between two adjacent second touch sub-electrodes. Between the electrodes 121, correspondingly, each of the plurality of middle sub-electrodes 133 is located between two adjacent second touch sub-electrodes 121.
  • first touch sub-electrodes 111 indicate that no other first touch sub-electrodes 111 or other second touches are arranged between the two adjacent first touch sub-electrodes 111. ⁇ electrode 112.
  • FIG. 12B is another schematic diagram of the partial area REG4 included in the touch sensor 01 shown in FIG. 5;
  • FIG. 12C is a schematic cross-sectional view taken along the CC' line shown in FIG. 12B;
  • FIG. 12D is along the DD' line shown in FIG. 12B Schematic diagram of the cross-section.
  • the structure of the partial area REG4 included in the touch sensor 01 shown in FIG. 12B is the same as the structure of the partial area REG4 included in the touch sensor 01 shown in FIG. The position of the'line and DD' line.
  • each connecting sub-electrode 32 located in the third area 413 respectively correspond to a second touch sub-electrode 121 and a corresponding middle sub-electrode.
  • the electrode 133 is electrically connected; correspondingly, the two adjacent second touch sub-electrodes 121 located in the third area 413 pass through the middle sub-electrode 133 (for example, one middle sub-electrode 133) and the connecting sub-electrode 32 (for example, at least two The two connecting sub-electrodes 32) are electrically connected to each other.
  • each connecting sub-electrode 32 (for example, the first end of the connecting sub-electrode 32) and the corresponding middle sub-electrode 133 located in the third area 413 are perpendicular to the touch sensor 01.
  • the direction is located in different electrode layers and partially overlaps; the connecting sub-electrode 32 (for example, connecting the second end of the sub-electrode 32) and the corresponding second touch sub-electrode 121 are located in different directions perpendicular to the touch sensor 01 In the direction perpendicular to the touch sensor 01, there is an insulating layer 35 between the connecting sub-electrode 32 and the electrode layer where the middle sub-electrode 133 and the second touch sub-electrode 121 are located, connecting the sub-electrodes 32 (for example, connecting the first end of the sub-electrode 32) is electrically connected to the corresponding intermediate sub-electrode 133 via a via hole in the insulating layer 35, and the connecting sub-electrode 32 (for example, connecting the second end of the sub-electrode 32) is electrically connected via the insulating layer
  • the via hole in 35 is electrically connected to the corresponding middle sub-electrode 133.
  • each connecting sub-electrode 31 located in the third area 413 is electrically connected to a corresponding first touch sub-electrode 111 and a corresponding ring-shaped sub-electrode 134.
  • each of the plurality of first touch electrodes 11 located in the third area 413 two adjacent first touch sub-electrodes 111 pass through two adjacent first touch sub-electrodes 111
  • the ring-shaped sub-electrodes 134 for example, one ring-shaped sub-electrode 134) and the corresponding connecting sub-electrodes 31 (for example, at least two connecting sub-electrodes 31) are electrically connected to each other.
  • each connecting sub-electrode 31 (for example, the first end of the connecting sub-electrode 31) and the corresponding middle sub-electrode 133 located in the third area 413 are perpendicular to the touch sensor 01.
  • the via hole in is electrically connected to the corresponding middle sub-electrode 133.
  • each connecting sub-electrode 31 located in the third area 413 (for example, the second end of the connecting sub-electrode 31) and the corresponding first touch sub-electrode 111 are perpendicular to the touch
  • the sensor 01 is located on different electrode layers in the direction, and, in the direction perpendicular to the touch sensor 01, there is an insulating layer 35 between the connecting sub-electrode 31 and the corresponding first touch sub-electrode 111, and the connecting sub-electrode 31 passes through The via hole in the insulating layer 35 is electrically connected to the corresponding first touch sub-electrode 111.
  • two adjacent second touch sub-electrodes 121 located in the first area 411 are directly electrically connected to each other through the corresponding connecting sub-electrodes 32.
  • the ring-shaped sub-electrode 134 and the middle sub-electrode 133 may not be disposed between the two adjacent second touch sub-electrodes 121 in the first area 411, so that the two adjacent sub-electrodes located in the first area 411 can be reduced.
  • the distance between the second touch sub-electrodes 121 in the second direction D2 (compared to the distance between two adjacent second touch sub-electrodes 121 located in the third area 413).
  • the distance between two adjacent second touch sub-electrodes 121 in the first area 411 in the second direction D2 is smaller than that in the third area 413.
  • the distance between two adjacent second touch sub-electrodes 121 in the second direction D2 refers to: a virtual straight line parallel to the second direction D2 and two adjacent second touch sub-electrodes 121 in the second direction
  • the distance between two adjacent second touch sub-electrodes 121 located in the first area 411 in the second direction D2 is d3; as shown in FIG.
  • the distance between two adjacent second touch sub-electrodes 121 in the second direction D2 is d4, and d3 is smaller than d4.
  • the second touch sub-electrode 121 and the second touch sub-electrode 121 and the second touch sub-electrode 121 can be improved without reducing the touch resolution of the part of the touch sensor 01 located in the first area 411.
  • the area of a touch sub-electrode 111 (for example, the effective electrode area) can further improve the signal-to-noise ratio of the touch signal provided by the portion of the touch sensor 01 located in the first area 411.
  • two adjacent second touch sub-electrodes 121 located in the first area 411 are electrically connected via a corresponding first number of connecting sub-electrodes 32;
  • Two adjacent second touch sub-electrodes 121 in the third area 413 are electrically connected via a corresponding second number of connecting sub-electrodes 32.
  • the first number is smaller than the second number.
  • two adjacent first touch sub-electrodes 111 located in the third area 413 are electrically connected via a corresponding third number of connecting sub-electrodes 31.
  • the second number is equal to the third number, but the embodiment of the present disclosure is not limited thereto.
  • the first number is two, and the second and third numbers are four (that is, the first area 411 adopts a two-bridge touch bridge solution, The third area 413 adopts an eight-bridge touch bridge solution), so that the reliability of the touch sensor 01 can be improved.
  • the first number is not limited to two, and the second number is not limited to four. According to actual application requirements, the first number and the second number can also be set to one and two respectively or other applicable numbers. This will not be repeated here.
  • two adjacent second touch sub-electrodes 121 located in the first area 411 are arranged in parallel (for example, parallel to each other) in the first direction D1 via corresponding two connecting sub-electrodes. 32 is electrically connected, but the embodiment of the present disclosure is not limited thereto.
  • two adjacent first touch sub-electrodes 111 pass through two adjacent first touch sub-electrodes 111.
  • the ring-shaped sub-electrodes 134 and the corresponding third number of connecting sub-electrodes 31 are electrically connected to each other; the third number is equal to four; the corresponding third number of connecting sub-electrodes 31 are arranged in two rows and two columns;
  • the two connecting sub-electrodes 32 in the same column of the three numbers of connecting sub-electrodes 31 are used to electrically connect a corresponding first touch sub-electrode 111 and a corresponding ring-shaped sub-electrode 134; the corresponding third number of connecting sub-electrodes
  • the extension directions of the two connecting sub-electrodes 32 located in the same column of the electrodes 31 cross each other; the extension directions of the two connecting sub-electrodes 32 located
  • two adjacent second touch sub-electrodes 121 located in the third area 413 are electrically connected via the corresponding four connecting sub-electrodes 32; the corresponding four connecting sub-electrodes 32 are arranged in two.
  • the extension directions of the two connecting sub-electrodes 32 located in the same column of the electrodes 32 cross each other; the extension directions of the two connecting sub-electrodes 32 located in the same row of the corresponding four connecting sub-electrodes 32 cross each other.
  • the area of each connecting sub-electrode 32 located in the first region 411 is larger than the area of each connecting sub-electrode 32 located in the third region 413.
  • the length of each connecting sub-electrode 32 located in the first area 411 is greater than the length of each connecting sub-electrode 32 located in the third area 413.
  • the width of each connecting sub-electrode 32 located in the first area 411 is greater than or equal to the width of each connecting sub-electrode 32 located in the third area 413.
  • each of the plurality of second touch electrodes 12 includes a suitable number of connecting sub-electrodes 32.
  • FIG. 13 is a schematic diagram of the laminated structure of the touch sensor 01 included in the display device 03 shown in FIG. 2.
  • the touch sensor 01 includes a first electrode layer 10, an insulating layer 35, and connection layers that are sequentially arranged in a direction perpendicular to the touch sensor 01 (for example, the normal direction of the display surface of the display device). ⁇ 20 ⁇ Electrode layer 20.
  • a plurality of first touch sub-electrodes 111, a plurality of second touch sub-electrodes 121, a plurality of ring-shaped sub-electrodes 134, and a plurality of intermediate sub-electrodes 133 are all located on the same electrode layer (for example, the first electrode layer 10), and are in contact with the same film layer (for example, the insulating layer 35); a plurality of connecting sub-electrodes 31 and a plurality of connecting sub-electrodes 32 are all located on the same electrode layer (for example, , The electrode layer 20) is connected, and is in contact with the same film layer (for example, the insulating layer 35).
  • the first electrode layer 10 is made of a transparent conductive material.
  • the transparent conductive material may be selected from transparent metal oxides such as indium tin oxide (ITO) and indium zinc oxide (IZO).
  • the connection electrode layer 20 is made of a transparent conductive material or a metal material.
  • the metal material may be selected from silver (Ag), aluminum (Al), molybdenum (Mo), titanium (Ti), aluminum alloy or other suitable materials.
  • the insulating layer 35 may include an inorganic insulating material or an organic insulating material.
  • the inorganic insulating material can be one or any combination of silicon oxide, silicon nitride, and silicon oxynitride;
  • the organic insulating material can be polyimide, polyphthalimide, polyphthalamide, acrylic resin, and benzocyclobutyl.
  • olefin or phenolic resin can be one or any combination of olefin or phenolic resin.
  • the touch sensor 01 may further include a second electrode layer 30.
  • the second electrode layer 30 includes the jumper wire 21 and the jumper wire 22 described above (see FIG. 20B below).
  • the second electrode layer 30 is provided between the first electrode layer 10 and the insulating layer 35, for example.
  • the second electrode layer 30 (for example, the surface of the second electrode layer 30) and the first electrode layer 10 (for example, the surface of the first electrode layer 10) are in direct contact, thereby simplifying the manufacturing process of the touch sensor 01.
  • the second electrode layer 30 is made of a metal material.
  • the touch sensor 01 may also include a transparent substrate 36.
  • the transparent substrate 36 is disposed on the side of the first electrode layer 10 away from the connection electrode layer 20.
  • the transparent substrate 36 may be made of Cyclo Olefin Polymer (COP) or other suitable materials.
  • the touch sensor 01 shown in FIG. 13 may further include the protective layer 176 shown in FIGS. 6C and 6D (not shown in FIG. 13), and the protective layer 176 is located on the connection electrode layer 20 away from the transparent substrate 36. (For example, on the surface of the connecting electrode layer 20 away from the transparent substrate 36).
  • the plurality of first touch sub-electrodes 111, the plurality of second touch sub-electrodes 121, the plurality of ring-shaped sub-electrodes 134, and the plurality of intermediate sub-electrodes 133 are all located on the plurality of electrode layers. , I won’t repeat it here.
  • the edges of the adjacent first touch sub-electrode 111 and second touch sub-electrode 121 respectively have corresponding bending structures 131; located in the first area
  • the adjacent first touch sub-electrodes 111 and the second touch sub-electrodes 121 of 411 cross each other and have a first cross depth; the adjacent first touch sub-electrodes 111 and the second touch sub-electrodes 111 and the second touch sub-electrodes located in the third area 413
  • the sub-electrodes 121 cross each other and have a second cross depth; the first cross depth is greater than the second cross depth.
  • the edge of the first touch sub-electrode 111 and The second touch sub-electrode 121 and the edge of the first touch sub-electrode 111 have the same extension direction (at any position).
  • FIGS. 5, 8, 10A, and 10B in two adjacent first touch sub-electrodes 111 and second touch sub-electrodes 121, the edge of the first touch sub-electrode 111 and The second touch sub-electrode 121 and the edge of the first touch sub-electrode 111 have the same extension direction (at any position).
  • the edge of the first touch sub-electrode 111 includes A plurality of first line segments L1 (for example, straight line segments) that are sequentially connected, and the edge of the second touch sub-electrode 121 and the first touch sub-electrode 111 includes a plurality of second line segments L2 that are sequentially connected ( For example, a straight line segment); multiple first line segments L1 and multiple second line segments L2 have a one-to-one correspondence and are opposite to each other; each of the multiple first line segments L1 and the corresponding second line segment L2 have the same extension direction ; Two adjacent (for example, any two adjacent) first line segments L1 intersect each other, and two adjacent (for example, any two adjacent) second line segments L2 intersect each other; adjacent (for example, any Two adjacent) first line segment L1 and second line segment L2 are parallel to each other.
  • first line segments L1 for example, straight line segments
  • the crossing depth of the first touch sub-electrode 111 and the second touch sub-electrode 121 refers to: in two adjacent first line segments, two first line segments The virtual connection between the intersection of the first line segment and the end point of the first line segment that does not contact the second line segment and the end point of the second first line segment that does not contact the first line segment
  • the first crossing depth cd1 refers to the maximum value of the crossing depth of the adjacent first touch sub-electrode 111 and the second touch sub-electrode 121 in the first area 411
  • the second crossing depth cd2 refers to The maximum value of the crossing depth of the adjacent first touch sub-electrode 111 and the second touch sub-electrode 121 in the third area 413; as shown in FIGS. 10A and 10B, cd1 is smaller than cd2.
  • the crossing area of the adjacent first touch sub-electrode 111 and the second touch sub-electrode 121 located in the first area 411 can be increased, and thus can be increased The amount of touch signal in the first area 411.
  • touch sub-electrodes 111 and the touch sub-electrodes 121 of the touch sensor 01 of the display device 03 shown in FIGS. 6A-11, 12A-12D and other related drawings are all made of transparent conductive materials Manufactured, but the embodiments of the present disclosure are not limited to this.
  • at least one of the touch sub-electrodes 111 and the touch sub-electrodes 121 of the touch sensor 01 of the display device 03 shown in FIGS. 6A-11, 12A-12D and other related drawings It can also be made of Metal Mesh.
  • the first area 411 of the touch sensor 01 of the display device 03 shown in FIGS. 6A-11, 12A-12D and other related drawings simultaneously uses the following three designs to enhance the first area 411
  • the amount of touch signal a two-bridge design to increase the crossing depth of adjacent touch sub-electrodes 111 and touch sub-electrodes 121, and reduce the distance between adjacent touch sub-electrodes 111 and touch sub-electrodes 121 ( For example, the number of dummy electrodes between adjacent touch sub-electrodes 111 and touch sub-electrodes 121 is reduced), but the embodiments of the present disclosure are not limited thereto.
  • the first area 411 of the touch sensor 01 of the display device 03 shown in FIGS. 6A-11, 12A-12D and other related drawings may also adopt any of the above three designs. Or any two.
  • the amount of touch signal in the first area 411 can be increased only by adopting a two-bridge design.
  • the touch sensor includes an opening area 421, a plurality of first touch electrodes 11, a plurality of second touch electrodes 12, and a plurality of connecting sub-electrodes 32.
  • the center of the opening area 421 does not coincide with the center of the touch sensor; the plurality of first touch electrodes 11 respectively extend along the first direction D1, and at least one of the plurality of first touch electrodes 11 is arranged side by side in the first direction D1 And electrically connected to each other a plurality of first touch sub-electrodes 111; a plurality of second touch electrodes 12 respectively extend along a second direction D2 crossing the first direction D1, and at least one of the plurality of second touch electrodes 12 It includes a plurality of second touch sub-electrodes 121 arranged in parallel in the second direction D2 and electrically connected to each other; the plurality of first touch electrodes 11 are arranged in parallel in the second direction D2, and the plurality of second touch electrodes 12 are arranged in parallel along the second direction D2.
  • a plurality of first touch sub-electrodes 111 and a plurality of second touch sub-electrodes 121 at least partially surround the opening area 421 as a whole;
  • the touch sensor 01 has a sequence arranged in a second direction D2
  • the opening area 421 is located in the second area 412;
  • the adjacent second touch sub-electrodes 121 located in the first area 411 are connected by a corresponding first number
  • the sub-electrodes 32 are electrically connected; adjacent second touch sub-electrodes 121 located in the third area 413 are electrically connected via a corresponding second number of connecting sub-electrodes 32, the second number being greater than the first number.
  • the distance between adjacent touch sub-electrodes 111 and touch sub-electrodes 121 can be reduced (for example, the virtual distance between adjacent touch sub-electrodes 111 and touch sub-electrodes 121 is reduced).
  • the number of electrodes is used to increase the amount of touch signal in the first area 411.
  • the touch sensor includes an opening area 421, a plurality of first touch electrodes 11 and a plurality of second touch electrodes 12.
  • the center of the opening area 421 does not coincide with the center of the touch sensor; the plurality of first touch electrodes 11 respectively extend along the first direction D1, and at least one of the plurality of first touch electrodes 11 is arranged side by side in the first direction D1 And electrically connected to each other a plurality of first touch sub-electrodes 111; a plurality of second touch electrodes 12 respectively extend along a second direction D2 crossing the first direction D1, and at least one of the plurality of second touch electrodes 12 It includes a plurality of second touch sub-electrodes 121 arranged in parallel in the second direction D2 and electrically connected to each other; the plurality of first touch electrodes 11 are arranged in parallel in the second direction D2, and the plurality of second touch electrodes 12 are arranged in parallel along the second direction D2.
  • the touch sensor 01 has a sequence arranged in a second direction D2
  • the touch sensor 01 provided by at least one embodiment of the present disclosure may not adopt the technical solution of increasing the touch signal amount of the first area 411, but only make the first area located on both sides of the opening area 421
  • Both the 411 and the third area 413 include the first touch sub-electrode 111 and the second touch sub-electrode 121.
  • the touch sensor includes an opening area 421, a plurality of first touch electrodes 11 and a plurality of second touch electrodes 12.
  • the center 012 of the opening area 421 does not coincide with the center 011 of the touch sensor; the plurality of first touch electrodes 11 respectively extend along the first direction D1, and at least one of the plurality of first touch electrodes 11 is included in the first direction D1
  • a plurality of first touch sub-electrodes 111 arranged side by side and electrically connected to each other; a plurality of second touch electrodes 12 respectively extend along a second direction D2 crossing the first direction D1, and the plurality of second touch electrodes 12
  • At least one includes a plurality of second touch sub-electrodes 121 arranged side by side in the second direction D2 and electrically connected to each other; a plurality of first touch electrodes 11 are arranged side by side in the second direction D2, and a plurality of second touch electrodes 12 Are arranged side by side along the first direction D1; the plurality of first touch sub-electrodes 111 and the plurality of second touch sub-electrodes 121 at least partially surround the opening area 421
  • the area of the touch sub-electrode 111 or the area of the second touch sub-electrode 121 located in the first area 411 is smaller than the area of the second touch sub-electrode 121 located in the third area 413.
  • the effective touch area of the touch sensor can be increased. This can improve the user experience.
  • the touch sensor 01 includes an opening area 422, a plurality of first touch electrodes 11, a plurality of second touch electrodes 12, at least one jumper wire 21 and at least one first conductive electrode 211.
  • the center of the opening area 422 does not coincide with the center of the touch sensor 01; the plurality of first touch electrodes 11 respectively extend along the first direction D1, and at least one of the plurality of first touch electrodes 11 includes parallel in the first direction D1
  • a plurality of first touch sub-electrodes 111 arranged and electrically connected to each other;
  • a plurality of second touch electrodes 12 respectively extend along a second direction D2 crossing the first direction D1, and at least one of the plurality of second touch electrodes 12
  • One includes a plurality of second touch sub-electrodes 121 arranged in parallel in the second direction D2 and electrically connected to each other; the plurality of first touch electrodes 11 are arranged in parallel in the second direction D2, and the plurality of second touch electrodes 12 are arranged in parallel along the The first
  • the two parts of the first touch electrode 11 separated by the opening area can be electrically connected to each other, thereby avoiding part of the first touch electrode caused by the opening area.
  • the touch in the area where 11 is located is bad.
  • the electrode portion 112 and the jumper wire 21 can be electrically connected better.
  • the touch sensor 01 further includes at least one first jumper wire 22.
  • the two parts of the second touch electrode 12 separated by the opening area can be electrically connected to each other, thereby avoiding part of the second touch electrode caused by the opening area. Poor touch in the area where 12 is located.
  • connection mode of the second touch electrode 12 separated by the opening area 422 into two parts will be exemplarily described below with reference to FIGS. 14A-19;
  • the connection mode of the first touch electrode 11 in which the area 422 is divided into two parts is exemplarily described.
  • FIG. 14A is another schematic diagram of a partial area REG1 included in the touch sensor 01 of the display device 03 shown in FIG. 4; A schematic diagram of two electrode parts separated by the opening area 422 are electrically connected via jumper wires.
  • 15 is a schematic plan view of a partial area REGL1 of the touch sensor 01 shown in FIG. 14A;
  • FIG. 16 is a schematic plan view of a partial area REGL3 of the touch sensor 01 shown in FIG. 15;
  • FIG. 18 is a schematic plan view of a partial area REGL4 of the touch sensor 01 shown in FIG. 17; and
  • FIG. 19 is a schematic plan view of a partial area REGL5 of the touch sensor 01 shown in FIG.
  • one of the plurality of second touch electrodes 12 is separated by an opening area 422 into an electrode portion 126_1 and an electrode portion 127_1, and the other of the plurality of second touch electrodes 12 is divided into an electrode portion 126_1 and an electrode portion 127_1.
  • the interval is the electrode portion 126_2 and the electrode portion 127_2; at least one jumper wire 22 includes a plurality of jumper wires 22 (for example, the jumper wire 22_1 and the jumper wire 22_2) arranged in parallel; the electrode portion 126_1 and the electrode portion 127_1 pass through the jumper
  • the wire 22_1 is electrically connected to each other; the multi-electrode portion 126_2 and the electrode portion 127_2 are electrically connected to each other via the wire 22_2.
  • both ends of the jumper wire 22_1 are connected to the electrode part 126_1 (for example, at least one second touch sub-electrode 121 included in the electrode part 126_1) and the electrode part 127_1 (for example, the electrode part
  • the at least one second touch sub-electrode 121 included in 127_1 is in direct contact, so the signal on the electrode part 126_1 can be transmitted to the electrode part 127_1 via the jumper wire 22_1.
  • both ends of the jumper wire 22_2 are connected to the electrode part 126_2 (for example, at least one second touch sub-electrode 121 included in the electrode part 126_2) and the electrode part 127_2 (for example, the electrode part At least one second touch sub-electrode 121) included in 127_2 is in direct contact, so the signal on the electrode portion 126_2 can be transmitted to the electrode portion 127_2 via the jumper wire 22_2.
  • the electrode part 126_2 for example, at least one second touch sub-electrode 121 included in the electrode part 126_2
  • the electrode part 127_2 for example, the electrode part At least one second touch sub-electrode 121 included in 127_2 is in direct contact, so the signal on the electrode portion 126_2 can be transmitted to the electrode portion 127_2 via the jumper wire 22_2.
  • the electrode portion 126 includes at least one second touch sub-electrode 121 and a corresponding jumper wire 22 located on different electrode layers in a direction perpendicular to the touch sensor 01, and correspondingly
  • the end of the jumper wire 22 near the electrode portion 126 directly contacts the surface of the at least one second touch sub-electrode 121 included in the electrode portion 126; the at least one second touch sub-electrode 121 included in the electrode portion 127 and the corresponding jumper
  • the connecting wires 22 are located on different electrode layers in a direction perpendicular to the touch sensor 01, and the corresponding connecting wires 22 are close to the end of the electrode portion 127 and the surface of the at least one second touch sub-electrode 121 included in the electrode portion 127 direct contact.
  • At least one jumper wire 22 may be made of a metal material.
  • the channel impedance between the electrode part 126 and the electrode part 127 for example, , Resistance
  • the length (for example, physical length) of the jumper wire 22_2 is greater than the length of the jumper wire 22_1.
  • a part of the jumper wire 22_2 and the jumper wire 22_1 overlap each other in the second direction D2; compared to the jumper wire 22_1, the jumper wire 22_2 and the jumper wire 22_1
  • the overlapping portions in the second direction D2 are closer to the center of the opening area 422 in the second direction D2, that is, the length of the jumper wire 22 and the center of the jumper wire 22 and the opening area 422 in the second direction D2
  • the distance in the second direction D2 is negatively correlated; the length of the jumper wire 22 is negatively correlated with the distance between the jumper wire 22 and the center of the opening area 422 in the first direction D1 in the first direction D1.
  • FIG. 14B exaggerates part of the structure (for example, the jumper wires are exaggerated). 14B is only used to show the arrangement of the jumper wires 22 and the multiple jumper wires 22 that electrically connect the two electrode parts of the first touch electrode 11 separated by the opening area 422. It is not used as a restriction on the shape of the jumper wire 22, the shape of the second touch sub-electrode 121, and so on.
  • the electrode portion 126 includes two adjacent first touch sub-electrodes 111 and the electrode portion 127 includes two adjacent first touch sub-electrodes 111, respectively. They are electrically connected to each other via at least the corresponding connecting sub-electrodes 32.
  • connection mode of the first touch electrode 11 separated by the opening area 422 into two electrode portions (for example, the electrode portion 112 and the electrode portion 113) will be exemplarily described below with reference to FIGS. 14A, 20A, and 20B.
  • FIG. 20A is a schematic plan view of a partial region REGL6 of the touch sensor 01 shown in FIG. 14A;
  • FIG. 20B is a schematic cross-sectional view along the FF' line of FIG. 20A;
  • FIG. 20C is another schematic cross-sectional view along the FF' line of FIG. 20A .
  • At least one of the plurality of first touch electrodes 11 is separated by the opening area 422 into two electrode parts (for example, the electrode part 112 and the electrode part 113); the touch sensor 01 also includes At least one jumper wire 21, at least one jumper wire 21 at least partially surrounds (for example, partially surrounds) the opening area 422; the electrode portion 112 and the electrode portion 113 are connected to each other via the at least one jumper wire 21 and the switching touch electrode 15 Electric connection.
  • the two electrode portions of the first touch electrode 11 separated by the opening area can be electrically connected to each other, thereby avoiding the occurrence of the opening area.
  • Part of the area where the first touch electrode 11 is located has poor touch control.
  • the transfer touch electrode 15 is located between the opening area 422 and the opening area 421, and includes transfer touch sub-electrodes arranged side by side in the first direction D1 and electrically connected to each other. 151 and the transfer touch sub-electrode 152.
  • the switching touch electrode 15 further includes a connecting sub-electrode 31 for electrically connecting the switching touch sub-electrode 151 and the switching touch sub-electrode 152.
  • the switching touch sub-electrode 151 at least partially surrounds the opening area 422, and the switching touch sub-electrode 152 at least partially surrounds (for example, completely surrounding) the opening area 421.
  • the switching touch sub-electrode 151 is disposed on the side of the center of the opening area 422 close to the opening area 421 and partially surrounds the opening area 422.
  • the electrode portion 112 and the transfer touch sub-electrode 151 are electrically connected to each other via at least one jumper wire 21 and the corresponding connecting sub-electrode 31; the transfer touch sub-electrode 151 and the transfer contact
  • the control sub-electrodes 152 are electrically connected to each other via the corresponding connecting sub-electrodes 31; the switching touch sub-electrodes 152 and the electrode portion 113 are electrically connected to each other via the corresponding connecting sub-electrodes 31.
  • the touch sensor 01 shown in FIG. 20A may further include a crack stop ring 29 and a crack stop ring 292 (not shown in FIG. 20A) as shown in FIG.
  • the cross-sectional schematic diagram of the'line is shown in Figure 20B, and will not be repeated here.
  • the electrical connection of the electrode portion 112 and the switching touch sub-electrode 151 will be exemplarily described below with reference to FIGS. 14A, 20A, and 20B.
  • the touch sensor further includes a first conductive electrode 211, and the first conductive electrode 211 is directly connected to the end of the jumper wire 21 close to the electrode portion 112.
  • the first conductive electrode 211 for example, a conductive block
  • the jumper wire 21 are made of the same material, are located on the same electrode layer (for example, the second electrode layer 30), and are on the same film layer (for example, the insulating layer 35).
  • Contact; for example, the first conductive electrode 211 and the jumper wire 21 are an integral structure.
  • the first conductive electrode 211 and the jumper wire 21 are integrally formed, that is, the first conductive electrode 211 and the jumper wire 21 are formed in the same patterning process, and there is no interface between the two.
  • one of the two opposite sides of the first conductive electrode 211 in the second direction D2 (that is, the side close to the jumper wire 21) is connected to the first conductive electrode 211
  • the end of the jumper wire 21 (that is, the end close to the first conductive electrode 211) is directly connected.
  • the ratio of the side length of the two opposite sides of the first conductive electrode 211 in the first direction D1 to the line width of the jumper wire 21 connected to the first conductive electrode 211 is 16-400.
  • the electrode portion 112 and the first conductive electrode 211 are electrically connected to each other via the corresponding connecting sub-electrode 31 and the ring-shaped sub-electrode 134.
  • the ring-shaped sub-electrode 134 may also be used as a part of the electrode portion 112.
  • the ring-shaped sub-electrode 134 and the electrode portion 112 are described as two components, but the embodiment of the present disclosure is not limited thereto.
  • the ring-shaped sub-electrode 134 and the at least one first touch sub-electrode 111 included in the electrode portion 112 pass through the at least one first touch sub-electrode 111 and the ring-shaped sub-electrode 111 included in the electrode portion 112.
  • the connecting sub-electrode 31 corresponding to the sub-electrode 134 is electrically connected; the ring-shaped sub-electrode 134 and the corresponding first conductive electrode 211 are connected via the corresponding connecting sub-electrode 31 (that is, with the ring-shaped sub-electrode 134 and the corresponding first conductive electrode 211
  • the corresponding connector electrode 31 is electrically connected.
  • the first conductive electrode 211 and the corresponding connecting sub-electrode 31 are located on different electrode layers and partially overlap; in the direction perpendicular to the touch sensor 01, the first conductive electrode 211 and There is an insulating layer 35 between the corresponding connecting sub-electrodes 31, and the first conductive electrode 211 and the first end of the corresponding connecting sub-electrode 31 are electrically connected to each other via a via hole in the insulating layer 35.
  • the first conductive electrode 211 is electrically connected to two connecting sub-electrodes 31 arranged side by side in the second direction D2.
  • the second end of the corresponding connecting sub-electrode 31 and the corresponding ring-shaped sub-electrode 134 are electrically connected to each other via a via hole in the insulating layer 35.
  • the ring-shaped sub-electrode 134 electrically connected to the first conductive electrode 211 and the electrode portion 112 pass through corresponding The connection sub-electrode 31 and the via hole in the insulating layer 35 are electrically connected to each other.
  • the signal on the electrode portion 112 may sequentially pass through the connecting sub-electrode 31 and the ring-shaped sub-electrode.
  • the electrode 134, the connecting sub-electrode 31, the first conductive electrode 211, and the jumper wire 21 are transferred to the switching touch sub-electrode 151.
  • the connecting sub-electrode 31 corresponding to the ring-shaped sub-electrode 134 and the corresponding first conductive electrode 211 (that is, for electrically connecting the ring-shaped sub-electrode 134 and the corresponding first conductive electrode 211)
  • the number of the connecting sub-electrodes 31) of the electrode 211 is greater than or equal to 2; the connecting sub-electrodes 31 corresponding to the ring-shaped sub-electrodes 134 and the corresponding first conductive electrode 211 are arranged side by side in the second direction D2; and the ring-shaped sub-electrodes 134 and
  • the distance between the two connecting sub-electrodes 31 located on the outermost side of the connecting sub-electrodes 31 corresponding to the corresponding first conductive electrode 211, which are away from each other in the second direction D2, is smaller than that of the corresponding first conductive electrode 211.
  • the distance between two opposite sides of at least one of the ring-shaped sub-electrodes 134 and the corresponding first conductive electrode 211 in the second direction D2 (that is, the connecting sub-electrode 31 is in the second direction D2).
  • the width in the two directions D2) is 20 micrometers to 200 micrometers.
  • the distance between the adjacent sides of the two adjacent connection sub-electrodes 31 in the second direction D2 is 5 ⁇ m-100 ⁇ m .
  • the distance between the two opposite sides of the at least one first conductive electrode 211 in the first direction D1 is 0.08 mm-2.0 mm; the two opposite sides of the at least one first conductive electrode 211 in the second direction D2 The distance between the sides is 0.08 mm-2.0 mm.
  • the jumper wire 22 is connected to the ring-shaped sub-electrode 134 and the corresponding first conductive electrode 211 corresponding to the connecting sub-electrode 31 (that is, for electrically connecting the ring-shaped sub-electrode 134 and the corresponding The connecting sub-electrodes 31) of the first conductive electrode 211 partially overlap in the direction perpendicular to the touch sensor 01.
  • the first electrode layer 10 of the touch sensor further includes a plurality of dummy electrodes 137 spaced apart from each other.
  • the end of the jumper wire 21 away from the electrode portion 112 is directly connected to the transfer touch sub-electrode 151.
  • the end of the jumper wire 21 away from the electrode portion 112 is in direct contact with the transfer touch sub-electrode 151.
  • the end of the jumper wire 21 away from the electrode portion 112 and the first transfer touch sub-electrode 151 are located on different electrode layers in the direction perpendicular to the touch sensor 01; the end of the jumper wire 21 away from the electrode portion 112 is located on a different electrode layer The part is in direct contact with the surface of the first transfer touch sub-electrode 151.
  • the jumper wire 22 is farther away from the edge of the opening area 422.
  • the jumper wire 21 and the jumper wire 22 can be located on the same electrode layer. , And contact with the same film layer (for example, the insulating layer 35) without causing the first touch electrode 11 and the second touch electrode 12 to be short-circuited, thereby simplifying the structure and manufacturing process of the touch sensor 01.
  • the at least one jumper wire 21 can be made of a metal material.
  • the impedance (for example, resistance) of the channel between the electrode portion 112 and the switching touch sub-electrode 151 can be reduced, thereby making the electrical signal
  • the at least one jumper wire 21 can be passed more easily, and thus the touch performance can be improved.
  • the jumper wire 21, the jumper wire 22, and the first conductive electrode 211 are located on the same electrode layer, which can simplify the structure and manufacturing process of the touch sensor 01, but the implementation of the present disclosure The example is not limited to this.
  • the jumper wire 21, the jumper wire 22, and the first conductive electrode 211 may also be located on multiple electrode layers, respectively.
  • the electrical connection manner of the transfer touch sub-electrode 151 and the transfer touch sub-electrode 152 will be exemplarily described below with reference to FIGS. 14A, 29A, and 29B.
  • the switching touch sub-electrode 151 and the switching touch sub-electrode 152 are electrically connected via the corresponding connecting sub-electrodes 31; the switching touch sub-electrode 151 and the corresponding connecting sub-electrodes 31 are electrically connected.
  • connection sub-electrode 151 Located in different electrode layers and partially overlapping; in the direction perpendicular to the touch sensor 01, there is an insulating layer 35 between the transfer touch sub-electrode 151 and the corresponding connection sub-electrode 31, and the transfer touch sub-electrode 151 and the corresponding The first ends of the connection sub-electrodes 31 are electrically connected to each other via via holes in the insulating layer 35. For example, as shown in FIGS.
  • the switching touch sub-electrodes 152 and the corresponding connecting sub-electrodes 31 are located on different electrode layers and partially overlap; in the direction perpendicular to the touch sensor 01, the touch There is an insulating layer 35 between the control sub-electrode 152 and the corresponding connecting sub-electrode 31, and the second end of the switching touch sub-electrode 152 and the corresponding connecting sub-electrode 31 are electrically connected to each other through a via in the insulating layer 35.
  • the transfer touch sub-electrode 151 and the transfer touch sub-electrode 152 are located on the same electrode layer and are in contact with the same film layer (for example, the insulating layer 35), thereby simplifying the structure of the touch sensor 01 And the manufacturing process, but the embodiment of the present disclosure is not limited to this, and the transfer touch sub-electrode 151 and the transfer touch sub-electrode 152 may also be located on different electrode layers, respectively.
  • the transfer touch sub-electrode 151 and the transfer touch sub-electrode 152 are both located on the first electrode layer 10.
  • the transfer touch sub-electrodes 151 and the transfer touch sub-electrodes 152, a plurality of first touch sub-electrodes 111, a plurality of second touch sub-electrodes 121, a plurality of ring-shaped sub-electrodes 134, and a plurality of intermediate sub-electrodes 133 They are all located on the same electrode layer.
  • the signal on the transfer touch sub-electrode 151 can be transmitted to the transfer touch sub-electrode 152 via the connection sub-electrode 31.
  • a dummy electrode 135 is provided between the transfer touch sub-electrode 151 and the transfer touch electrode 16, and a dummy electrode 135 is provided between the transfer touch sub-electrode 152 and the transfer touch electrode 16.
  • the dummy electrode 136 that is, the touch sensor further includes a dummy electrode 135 and a dummy electrode 136.
  • the distance between the switching touch sub-electrode 151 and the switching touch electrode 16 and the distance between the switching touch sub-electrode 152 and the switching touch electrode 16 can be better controlled. Therefore, the signal-to-noise ratio of the touch sensing signals provided by the switching touch electrodes 15 and the switching touch electrodes 16 can be better controlled.
  • the dummy electrode 135 includes a plurality of bending structures 1351, and a plurality of first protrusions 161 are disposed in the corresponding bending structures 1351; the dummy electrode 136 includes a plurality of bending structures 1361, and The second protrusion 162 is disposed in the corresponding bending structure 1361.
  • the switching touch sub-electrode 152 completely surrounds the opening area 421.
  • the switching touch sub-electrode 152 and the electrode portion can be made without providing additional jumper wires between the switching touch sub-electrode 152 and the electrode portion 113. 113 are electrically connected to each other.
  • the electrode portion 113 for example, the first touch sub-electrode 111 that is closest to the electrode portion 112 included in the electrode portion 113 and the switching touch sub-electrode 152 are connected through corresponding
  • the sub-electrodes 31 for example, two connecting sub-electrodes 31 arranged in parallel in the second direction D2 are electrically connected to each other.
  • the switching touch sub-electrodes 152 and the corresponding connecting sub-electrodes 31 are located on different electrode layers and partially overlap; in the direction perpendicular to the touch sensor 01, the touch There is an insulating layer 35 between the control sub-electrode 152 and the corresponding connecting sub-electrode 31, and the first end of the switching touch sub-electrode 152 and the corresponding connecting sub-electrode 31 are electrically connected to each other through a via hole in the insulating layer 35.
  • FIGS. 14A, 26A, and 26B the switching touch sub-electrodes 152 and the corresponding connecting sub-electrodes 31 are located on different electrode layers and partially overlap; in the direction perpendicular to the touch sensor 01, the touch There is an insulating layer 35 between the control sub-electrode 152 and the corresponding connecting sub-electrode 31, and the first end of the switching touch sub-electrode 152 and the corresponding connecting sub-electrode 31 are electrical
  • the electrode portion 113 for example, the first touch sub-electrode 111 closest to the electrode portion 112 included in the electrode portion 113 and the above-mentioned corresponding connecting sub-electrode 31 are located in different locations.
  • the electrode layer is partially overlapped; in the direction perpendicular to the touch sensor 01, the electrode portion 113 (for example, the electrode portion 113 includes the first touch sub-electrode 111 closest to the electrode portion 112) and the corresponding connecting sub-electrode There is an insulating layer 35 between 31, and the electrode portion 113 (for example, the first touch sub-electrode 111 that is closest to the electrode portion 112 included in the electrode portion 113) and the second end of the corresponding connecting sub-electrode 31 pass through the insulating layer 35.
  • the vias are electrically connected to each other.
  • the signal on the switching touch sub-electrode 152 may be transmitted to the electrode part 113 via the connecting sub-electrode 31.
  • the signal on the) can sequentially pass through the connecting sub-electrode 31, the ring-shaped sub-electrode 134, the connecting sub-electrode 31, the first conductive electrode 211, the jumper wire 21, the switching touch sub-electrode 151, the connecting sub-electrode 31, and the switching touch.
  • the sub-electrode 152 and the connecting sub-electrode 31 are transferred to the electrode part 113 (for example, the first touch sub-electrode 111 included in the electrode part 113 closest to the electrode part 112).
  • the electrode portion 112 and the electrode portion 113 are not limited to be electrically connected to each other via the jumper wire 21, the transfer touch electrode 15 and the corresponding connecting sub-electrode 31.
  • the touch sensor only includes the opening area 422). Excluding the opening area 421 or not providing the switching touch electrode 15) between the opening area 422 and the opening area 421, the electrode portion 112 and the electrode portion 113 may be electrically connected to each other via the jumper wire 21 and the corresponding connecting sub-electrode 31, Without switching the touch electrode 15.
  • the sub-electrode 31 and the ring-shaped sub-electrode 133 are electrically connected to each other via the corresponding connection.
  • the touch sensor 01 of the display device 03 shown in FIGS. 14A-19, 20A, 20B and other related drawings is provided with a jumper wire 21 and a jumper wire 22 at the same time
  • the embodiments of the present disclosure are not limited to this .
  • the touch sensor 01 of the display device 03 shown in FIGS. 14A-19, 20A, 20B and other related drawings may also only be provided with any one of the jumper wire 21 and the jumper wire 22.
  • the two parts of the first touch electrode 11 that are disconnected by the opening area may be electrically connected or the two parts of the second touch electrode 12 that are disconnected by the opening area may be electrically connected.
  • the touch sensor includes an opening area 422, an opening area 421, a plurality of first touch electrodes 11 and a plurality of second touch electrodes 12.
  • the opening area 422 and the opening area 421 are spaced apart; the center 013 of the opening area 422 does not overlap with the center 011 of the touch sensor, and the center 012 of the opening area 421 does not overlap with the center 011 of the touch sensor;
  • a plurality of first touch electrodes 11 Respectively extend along the first direction D1, and at least one of the plurality of first touch electrodes 11 includes a plurality of first touch sub-electrodes 111 arranged side by side in the first direction D1 and electrically connected to each other;
  • a plurality of second touch electrodes 12 respectively extend along a second direction D2 crossing the first direction D1, and at least one of the plurality of second touch electrodes 12 includes a plurality of second touch sub-electrodes 121 arranged in parallel in the second direction D2 and electrically connected to each other
  • the touch sensor 01 can recognize that the touch sensor 01 is located between the opening area 422 and the opening area 421 The touch operation performed in the area, thus improving the user experience.
  • the structure of the transfer touch electrode 15 and the transfer touch electrode 16 will be exemplified below with reference to FIGS. 21-23.
  • FIG. 21 is a schematic plan view of a partial area REG5 of the touch sensor 01 shown in FIG. 8.
  • the first edge of the opening area 422 facing the opening area 421 has a first shape, and the entire edge of the transfer touch sub-electrode 151 facing the first edge also has the first shape; the opening area 421 faces the opening area.
  • the second edge of 422 has a second shape, and the entire edge of the transfer touch sub-electrode 152 facing the second edge also has a second shape.
  • the first shape is different from the second shape, but the embodiments of the present disclosure are not limited thereto, and in some examples, the first shape is the same as the second shape.
  • the shape of the opening area 422 is a racetrack shape
  • the shape of the opening area 421 is a circle
  • the first shape is a racetrack-shaped portion
  • the second shape is a circular portion.
  • the shape of the opening area 422 and the shape of the opening area 421 are not limited to being racetrack-shaped and circular, respectively. According to actual application requirements, the shape of the opening area 422 and the shape of the opening area 421 may both be racetrack-shaped or circular. Or other suitable shapes.
  • the edge of the transfer touch electrode 16 close to the transfer touch sub-electrode 151 includes a plurality of first protrusions 161 protruding toward the transfer touch sub-electrode 151;
  • the edge of the transfer touch sub-electrode 152 includes a plurality of second protrusions 162 protruding toward the transfer touch sub-electrode 152;
  • the edge of the transfer touch sub-electrode 151 close to the transfer touch electrode 16 includes a plurality of first recesses 1511;
  • the edge of the transfer touch sub-electrode 152 close to the transfer touch electrode 16 includes a plurality of second recesses 1521;
  • the plurality of first protrusions 161 are arranged in the plurality of first recesses 1511 in a one-to-one correspondence;
  • more The second protrusions 162 are arranged in the plurality of second recesses 1521 in a one-to-one correspondence; in this case, the plurality of first protrusions
  • the shape of the opening area 422 and the area between the opening area 421 can be used more effectively, and the rotational contact can be increased.
  • the mutual capacitance between the control electrode 16 and the transfer touch sub-electrode 151 can be more effectively used by making the plurality of second protrusions 162 disposed in the plurality of second recesses 1521 in a one-to-one correspondence.
  • the area between the shape and the opening area 421 can also increase the mutual capacitance between the transfer touch electrode 16 and the transfer touch sub-electrode 151; in this case, the location of the touch sensor 01 in the opening area 422 and the opening area 421 can be improved.
  • the signal-to-noise ratio of the touch sensing signal provided by the portion in between and the touch performance of the portion of the touch sensor 01 located between the opening area 422 and the opening area 421 can be improved.
  • the plurality of first protrusions 161 are sequentially arranged in the second direction D2; the plurality of second protrusions 162 are sequentially arranged in the second direction D2;
  • the edge close to the transfer touch sub-electrode 151 further includes a plurality of third recesses 163; the edge close to the transfer touch sub-electrode 152 of the transfer touch electrode 16 further includes a plurality of fourth recesses 164.
  • the plurality of third recessed portions 163 and the plurality of fourth recessed portions 164 correspond one-to-one.
  • the bottom of each of the plurality of third recessed portions 163 and the bottom of the fourth recessed portion 164 corresponding to each of the three third recessed portions 163 overlap in the first direction D1.
  • the distance between the bottom of the third concave portion 163 and the bottom of the fourth concave portion 164 in the first direction D1 is smaller than that of the plurality of first convex portions 161 and the plurality of second convex portions 162.
  • the size of any one in the first direction D1; in this case, the first convex portion 161 and the second convex portion 162 can be increased when the area between the opening area 422 and the opening area 421 is fixed
  • the size in the first direction D1 can increase the mutual capacitance between the transfer touch electrode 16 and the transfer touch sub-electrode 151 and the mutual capacitance between the transfer touch electrode 16 and the transfer touch sub-electrode 152, and Further improve the signal-to-noise ratio of the touch sensing signal provided by the part of the touch sensor 01 located between the opening area 422 and the opening area 421 and the part of the touch sensor 01 located between the opening area 422 and the opening area 421 Touch performance (for example, touch sensitivity).
  • the plurality of first protrusions 161 and the plurality of second protrusions 162 correspond one-to-one; the apex of each of the plurality of first protrusions 161 and the apex of the corresponding second protrusion 162 are in the first
  • the distance between the direction D1 is smaller than the minimum distance between the edge of the opening area 422 and the edge of the opening area 421 in the first direction D1.
  • the minimum distance between the edge of the opening area 422 and the edge of the opening area 421 in the first direction D1 refers to the point of the edge of the opening area 422 that is closest to the opening area 421 and the edge of the opening area 421 that is closest to the opening area 422. The distance of the point in the first direction D1.
  • the distance between two points in the first direction D1 refers to the distance of a virtual straight line perpendicular to the first direction D1 passing through the two points.
  • the distance between the apex of each of the plurality of first protrusions 161 and the apex of the corresponding second protrusion 162 in the first direction D1 means passing through each of the plurality of first protrusions 161
  • the distance between the apex of each of the plurality of first protrusions 161 and the apex of the corresponding second protrusion 162 in the first direction D1 is smaller than that of at least one of the plurality of first touch sub-electrodes 111 in the first direction.
  • the distance between the two points furthest apart in the first direction D1 in one direction D1 or the two points furthest apart in the first direction D1 of at least one of the plurality of second touch sub-electrodes 121 are in the first direction Spacing on D1.
  • the size of any one of the plurality of first protrusions 161 and the plurality of second protrusions 162 in the first direction D1 is larger than the bottom of the corresponding third recessed portion 163 and the bottom of the fourth recessed portion 164 in the first direction D1. Three times the spacing in one direction D1.
  • FIG. 22A shows an enlarged pattern of the transfer touch electrode 16 of the touch sensor 01 shown in FIG. 21.
  • the bottoms of the plurality of third recessed portions 163 are all located on the first virtual straight line 1631 parallel to the second direction D1
  • the bottoms of the multiple fourth recessed portions 164 are all located on the first virtual straight line 1631 parallel to the second direction D1.
  • the first virtual straight line 1631 is parallel to the second virtual straight line 1641; in this case, the distance d_c between the bottom of the third concave portion 163 and the bottom of the fourth concave portion 164 in the first direction D1 refers to The distance between the first virtual straight line 1631 and the second virtual straight line 1641 in the first direction D1; the size s1 of the first protrusion 161 in the first direction D1 refers to the top of the first protrusion 161 and the first virtual straight line 1631 (or the bottom of the first protrusion 161) in the first direction D1; the size s2 of the second protrusion 162 in the first direction D1 refers to the top of the second protrusion 162 and the second virtual The distance between the straight line 1641 (or the bottom of the second protrusion 162) in the first direction D1.
  • the size of the plurality of first protrusions 161 is the same, and the size of the plurality of second protrusions 162 is the same.
  • the size of the plurality of first protrusions 161 and the size of the plurality of second protrusions 162 are the same (for example, both are the first size).
  • the first size is 3-12 (for example, 5, 8, 10) times the distance d_c between the bottom of the third recessed portion 163 and the bottom of the fourth recessed portion 164 in the first direction D1.
  • the switching touch sub-electrode 151 and the switching touch sub-electrode 152 are electrically connected to each other via the corresponding connecting sub-electrodes 31 (see FIG. 29B below).
  • the connecting sub-electrode 31 for electrically connecting the transfer touch sub-electrode 151 and the transfer touch sub-electrode 152 and the bottom of the corresponding third recessed portion 163 and the corresponding fourth recessed portion The bottom of the 164 overlaps.
  • the size of the connecting sub-electrode 31 in the first direction D1 can be shortened, thereby reducing the influence of the connecting sub-electrode 31 on the display quality of the display device 03.
  • the transfer touch sub-electrode 151 and the transfer touch sub-electrode 152 are electrically connected to each other via a plurality of connecting sub-electrodes 31 arranged in parallel in the second direction D2.
  • the transfer touch electrode 16 includes a plurality of transfer touch sub-electrodes 165 arranged side by side in the second direction D2 and electrically connected to each other.
  • a plurality of transfer touch sub-electrodes 165 are integrated, that is, a plurality of transfer touch sub-electrodes 165 are formed of the same material in the same patterning process, and there is no interface between adjacent transfer touch sub-electrodes 165 .
  • a switching touch sub-electrode 165 is provided on both sides of each of the plurality of connecting sub-electrodes 31 for electrically connecting the switching touch sub-electrode 151 and the switching touch sub-electrode 152.
  • each of the plurality of transfer touch sub-electrodes 165 includes at least one first protrusion 161 and at least one second protrusion 162; at least one first protrusion 161 and at least one first protrusion 161 The two protrusions 162 correspond one-to-one; any two adjacent transfer touch sub-electrodes 165 are directly connected.
  • the transfer touch sub-electrode 151 and the transfer touch sub-electrode 152 are not limited to being electrically connected to each other via the three connecting sub-electrodes 31; for example, they are used to electrically connect the transfer touch sub-electrode 151 and the transfer touch sub-electrode.
  • the number of the connecting sub-electrodes 31 of the electrode 152 is greater than or equal to 1 and less than or equal to the number of the plurality of fourth recesses 164; for example, according to actual application requirements, the transfer touch sub-electrode 151 and the transfer touch sub-electrode 152 may pass through one , Five or other suitable number of connecting sub-electrodes 31 are electrically connected to each other.
  • the distance is greater than the bottom of the third recessed portion 163 and the corresponding fourth recessed portion 164
  • the bottom is three times the spacing in the first direction D1.
  • the bottom of the first convex portion 161 refers to a virtual line (for example, a first virtual straight line 1631) between the bottoms of the two third concave portions 163 located on both sides of the first convex portion 161 in the second direction D2 .
  • the bottom of the second convex portion 162 refers to a virtual line (for example, the second virtual straight line 1641) between the bottoms of the two fourth concave portions 164 located on both sides of the second convex portion 162 in the second direction D2 .
  • the distance between the vertex of at least one of the plurality of first protrusions 161 and the bottom of at least one of the plurality of first protrusions 161 is 0.5 mm to 1.0 mm
  • the distance between at least one of the plurality of second protrusions 162 The distance from the apex of one to the bottom of at least one of the plurality of second protrusions 162 is 0.5 mm-1.0 mm.
  • the distance between the edge of the transfer touch sub-electrode 151 close to the transfer touch electrode 16 and the edge of the transfer touch electrode 16 close to the transfer touch sub-electrode 151 is 40 micrometers to 90 micrometers.
  • the number of the plurality of first protrusions 161 is 3-12, and the number of the plurality of second protrusions 162 is 3-12.
  • FIG. 22B shows another enlarged pattern of the transfer touch electrode of the touch sensor shown in FIG. 21.
  • the inclination angle ⁇ 1 of the sides (or side surfaces) of the plurality of first protrusions 161 with respect to the second direction D2 is 30°-85°
  • the sides of the plurality of second protrusions 162 The inclination angle ⁇ 2 of the edge (or side surface) with respect to the second direction D2 is 30°-85°.
  • the side surfaces of the plurality of first protrusions 161 and the plurality of second protrusions 162 include conical surfaces, but the embodiment of the present disclosure is not limited thereto.
  • the second touch control sub-electrode 121 with the largest area of the control sub-electrodes 121) has a ratio of the distance between the two points furthest apart in the first direction D1 in the first direction D1 of 2-3.
  • FIG. 23 is a schematic plan view of a partial area REG5 of the touch sensor 01 shown in FIG. 9.
  • the switching touch sub-electrode 152 completely surrounds the opening area 421; the switching touch sub-electrode 152 has an inner edge 1522 and an outer edge 1523; the inner edge 1522 of the switching touch sub-electrode 152 completely surrounds the opening area 421 .
  • the shape of the inner edge 1522 of the switching touch sub-electrode 152 is the same as the shape of the opening area 421.
  • the shape of the inner edge 1522 of the transfer touch sub-electrode 152 and the shape of the opening area 421 are both circular.
  • the transfer touch sub-electrode 152 by making the transfer touch sub-electrode 152 completely surround the opening area 421, the area of the transfer touch sub-electrode 152 (for example, the effective electrode area) can be increased, thereby improving the signal volume and the touch performance of the touch sensor 01.
  • the transfer touch sub-electrode 151, the transfer touch sub-electrode 152, and the transfer touch electrode 16 may be located on the same electrode layer (for example, the first electrode layer 10) and be in contact with the same film layer (for example, the insulating layer 35). Therefore, the structure and manufacturing process of the touch sensor 01 can be simplified, but the embodiments of the present disclosure are not limited to this.
  • the switching touch sub-electrodes 151, the switching touch sub-electrodes 152, and the switching touch electrodes 16 may also be located in two Above the electrode layer.
  • the electrodes 134 and the plurality of intermediate sub-electrodes 133 are made of transparent conductive materials; in this case, the switching touch sub-electrodes 151, the switching touch sub-electrodes 152, the switching touch electrodes 16, and the plurality of first touch sub-electrodes 111.
  • the plurality of second touch sub-electrodes 121, the plurality of ring-shaped sub-electrodes 134, and the plurality of intermediate sub-electrodes 133 can be made in the same process (for example, a patterning process), and are in contact with the same surface of the same film layer ( For example, both are in contact with the surface of the substrate 36 close to the first electrode layer 10).
  • the area where the transfer touch sub-electrode 151, the transfer touch sub-electrode 152, and the transfer touch electrode 16 are located is the area between the shape of the opening area 422 and the opening area 421, and the display device corresponds to The shape of the opening area 422 and the area between the opening area 421 are not used for display.
  • the transfer touch sub-electrode 151, the transfer touch sub-electrode 152, and the transfer touch electrode 16 may be made of metal materials;
  • One touch sub-electrode 111, a plurality of second touch sub-electrodes 121, a plurality of ring-shaped sub-electrodes 134, and a plurality of intermediate sub-electrodes 133 are made of transparent conductive material; in this case, the transfer touch sub-electrode 151 is formed ,
  • the patterning process of the transfer touch sub-electrodes 152 and the transfer touch electrodes 16 and the formation of a plurality of first touch sub-electrodes 111, a plurality of second touch sub-electrodes 121, a plurality of ring-shaped sub-electrodes 134 and a plurality of intermediate The patterning process of the sub-electrodes 133 is completed at different times.
  • the electrode layers where the sub-electrodes 134 and the plurality of middle sub-electrodes 133 are located are stacked in a direction perpendicular to the touch sensor 01.
  • the electrode layer where the transfer touch sub-electrodes 151, the transfer touch sub-electrodes 152, and the transfer touch electrodes 16 are located are connected to the plurality of first touch sub-electrodes 111, the plurality of second touch sub-electrodes 121, and the plurality of rings.
  • the electrode layer where the shaped sub-electrodes 134 and the plurality of intermediate sub-electrodes 133 are located is the same electrode layer, that is, the transfer touch sub-electrode 151, the transfer touch sub-electrode 152, the transfer touch electrode 16, the plurality of first touch sub-electrodes
  • the electrode 111, the plurality of second touch sub-electrodes 121, the plurality of ring-shaped sub-electrodes 134, and the plurality of intermediate sub-electrodes 133 are in contact with the same surface of the same film layer (for example, all are in contact with the substrate 36 near the first electrode layer 10).
  • the materials used to manufacture the transfer touch sub-electrodes 151, the transfer touch sub-electrodes 152 and the transfer touch electrodes 16 and the manufacture of a plurality of first touch sub-electrodes 111 and a plurality of second touch sub-electrodes 121 The materials of the plurality of ring-shaped sub-electrodes 134 and the plurality of intermediate sub-electrodes 133 are different.
  • the touch sensor 01 includes an opening area 421, a plurality of first touch electrodes 11, a plurality of second touch electrodes 12 and a conductive structure 23.
  • the center of the opening area 421 does not coincide with the center of the touch sensor 01;
  • the plurality of first touch electrodes 11 respectively extend along the first direction D1, and at least one of the plurality of first touch electrodes 11 includes parallel in the first direction D1
  • a plurality of first touch sub-electrodes 111 arranged and electrically connected to each other;
  • a plurality of second touch electrodes 12 respectively extend along a second direction D2 crossing the first direction D1, and at least one of the plurality of second touch electrodes 12
  • One includes a plurality of second touch sub-electrodes 121 arranged in parallel in the second direction D2 and electrically connected to each other;
  • the plurality of first touch electrodes 11 are arranged in parallel in the second direction D2, and the plurality of second touch electrodes 12 are arranged in parallel along the Are arranged side by side in the
  • the transfer contact can be reduced.
  • Controlling the channel impedance of the area where the electrode 14 is located improves the reliability of the area where the switching touch electrode 14 is located (for example, reducing the possibility of disconnection).
  • the charge conductivity of the switching touch electrode 14 can be improved, so that electrical signals (charges) can pass through the switching touch electrode 14 more easily, thereby improving the touch sensor 01
  • ESD electrostatic discharge
  • FIGS. 24-28, 29A, and 29B An exemplary description will be given below with reference to FIGS. 24-28, 29A, and 29B.
  • FIG. 24 is another schematic diagram of a partial area REG1 included in the touch sensor 01 of the display device 03 shown in FIG. 4;
  • FIG. 25 is a schematic plan view of the switching touch electrode 14 shown in FIG. 24;
  • Fig. 26B is a schematic cross-sectional view taken along the line GG' shown in Fig. 26A.
  • Fig. 27 is a schematic plan view of a partial region REGE3 shown in Fig. 24.
  • the touch sensor 01 (for example, at least one of the plurality of second touch electrodes 12 included in the touch sensor 01) includes a transfer touch electrode 14 that at least partially surrounds the opening
  • the edge of the area 421 partially surrounds the opening area 421 along the second direction D2.
  • the transition touch electrode 14 and the edge of the opening area 421 partially overlap in the second direction D2.
  • the switching touch electrode 14 extends in the second direction D2.
  • the extension of the transfer touch electrode 14 in the second direction D2 does not mean that the transfer touch electrode 14 is parallel to the second direction D2, but it means that the transfer touch electrode 14 has a longer length in the second direction D2 than the transfer touch electrode 14 14 Width in the first direction D1.
  • a virtual straight line 1451 passing through the center of the opening area 421 and extending along the first direction D1 intersects the two opposite sides of the transfer touch electrode 14 in the first direction D1 respectively at the first direction D1.
  • a position 1452 and a second position 1453, and the distance between the first position 1452 and the second position 1453 is smaller than at least one of the plurality of second touch sub-electrodes 121 (for example, in the plurality of second touch sub-electrodes 121 Each of) the maximum width in the first direction D1.
  • the maximum width of at least one of the plurality of second touch sub-electrodes 121 in the first direction D1 refers to the two most distant ones of at least one of the plurality of second touch sub-electrodes 121 in the first direction D1.
  • the touch sensor Since the distance between the first position 1452 and the second position 1453 is small, the width of the switching touch electrode 14 in the first direction D1 is small. Therefore, in the case where the conductive structure 23 is not provided, the touch sensor The channel impedance of the portion of 01 corresponding to the transition touch electrode 14 is larger (compared to the channel impedance of the second touch sub-electrode 121).
  • the resistance of the switching touch electrode 14 is greater than the resistance of at least one of the plurality of second touch sub-electrodes 121 (for example, each of the plurality of second touch sub-electrodes 121).
  • the maximum length of the transfer touch electrode 14 in the second direction D2 is greater than that of at least one of the plurality of second touch sub-electrodes 121 (for example, each of the plurality of second touch sub-electrodes 121) in the second direction.
  • the maximum length on D2 thus further increases the resistance of the switching touch electrode 14.
  • the maximum length of the transfer touch electrode 14 in the second direction D2 refers to the two points (for example, point 1461 and point 1462) that are farthest apart from each other in the second direction D2. ) The distance in the second direction D2.
  • the distance between two points (for example, point 1461 and point 1462) in the second direction D2 refers to a virtual distance perpendicular to the second direction D2 passing through two points (for example, point 1461 and point 1462).
  • the distance of the straight line (for example, the virtual straight line 1463 and the virtual straight line 1464).
  • the maximum length of at least one of the plurality of second touch sub-electrodes 121 in the second direction D2 refers to the two points that are farthest from at least one of the plurality of second touch sub-electrodes 121 in the second direction D2.
  • the transfer touch electrode 14 includes the transfer touch sub-electrode 141 and the transfer touch sub-electrode 142.
  • the transfer touch sub-electrode 141 and the transfer touch sub-electrode 142 are arranged side by side in the second direction D2.
  • the transfer touch sub-electrode 141 and the transfer touch sub-electrode 142 are directly connected.
  • the transfer touch sub-electrode 141 and the transfer touch sub-electrode 142 are an integrated structure, that is, the transfer touch sub-electrode 141 and the transfer touch sub-electrode 142 are formed of the same material in the same patterning process, and the transfer contact There is no interface between the control sub-electrode 141 and the switching touch sub-electrode 142.
  • the opening area 421 includes an arc-shaped edge portion adjacent to the transfer touch electrode 14;
  • the arc-shaped edge portion is parallel to the arc-shaped edge portion.
  • the overall contour of the side of the transfer touch electrode 14 close to the opening area 421 is an arc-shaped edge portion parallel to the arc edge portion of the opening area 421 refers to: the side of the transfer touch electrode 14 close to the opening area 421
  • the overall outline (for example, the smoothed outline) of the arc is an arc, and the arc has the same shape and the same extending tendency as the arc-shaped edge portion of the opening area 421.
  • the first conductive structure 23 is disposed on the surface of the switching touch electrode 14.
  • the first conductive structure 23 and the transit touch electrode 14 are in direct contact, that is, the first conductive structure 23 and the transit touch electrode 14 are electrically connected to each other.
  • the first conductive structure 23 is electrically connected to the switching touch electrode 14 (for example, in parallel in the second direction D2).
  • the transfer contact can be reduced.
  • the channel impedance of the area where the electrode 14 is located is controlled (for example, the resistance of the area where the transfer touch electrode 14 is reduced) and the charge conductivity of the area where the transfer touch electrode 14 is located is improved.
  • the channel impedance of the distal end (that is, the end far away from the touch circuit or the touch chip) of the second touch electrode 12 including the transfer touch electrode 14 is relatively low.
  • the square resistance of the first conductive structure 23 is smaller than the square resistance of the switching touch electrode 14, thereby further reducing the channel impedance of the area where the switching touch electrode 14 is located (for example, reducing the resistance of the area where the switching touch electrode 14 is located) .
  • the first conductive structure 23 extends along the second direction D2. In this case, the first conductive structure 23 can make the charge uniformly distributed on the switching touch electrodes in the second direction D2. 14, so that the first conductive structure 23 can assist the charge (electric signal) to pass through the switching touch electrode 14.
  • the first conductive structure 23 and the connecting sub-electrodes 31 partially overlap in the direction perpendicular to the touch sensor 01, and the first The two ends of the conductive structure 23 in the second direction D2 are respectively located on both sides of the connecting sub-electrodes 31 (for example, the two connecting sub-electrodes 31) in the second direction D2; in this case, the first conductive structure 23 assists in the transfer of electric charges through the area where the touch electrode 14 and the connecting sub-electrode 31 overlap in the direction perpendicular to the touch sensor 01, thereby reducing the transfer of the touch electrode 14 and the connecting sub-electrode 31 perpendicular to the touch sensor. There is a possibility of poor touch in the area overlapping in the direction of 01.
  • the first conductive structure 23 can reduce the possibility of poor touch caused by electrostatic discharge (for example, electrostatic breakdown).
  • the first conductive structure 23 may be made of a metal material
  • the switching touch electrode 14 may be made of a transparent conductive material, so that the square resistance of the first conductive structure 23 can be smaller than the square resistance of the switching touch electrode 14.
  • the transfer touch electrode 14 is disposed between the opening area 421 and the second portion 113; the transfer touch electrode 14 has a distance away from the second portion 113 in the first direction D1.
  • the first side 143 and the second side 144 close to the second part 113; the first conductive structure 23 is disposed on the edge of the transfer touch electrode 14 located on the first side 143.
  • the first conductive structure 23 can be In the case of being made of a metal material, the shielding of the light emitted by the effective display area of the display device by the first conductive structure 23 is reduced, thereby improving the display effect.
  • the touch sensor 01 further includes a second conductive structure 24, and the second conductive structure 24 is disposed at least between the opening area 421 of the transfer touch electrode 15 and the transfer touch electrode 14.
  • the second conductive structure 24 is in direct contact with the portion of the transfer touch electrode 15 at least located between the opening area 421 and the transfer touch electrode 14, that is, the second conductive structure 24 and the transfer touch electrode 15 are at least located in the opening
  • the portion between the area 421 and the transfer touch electrode 14 is electrically connected to each other.
  • the second conductive structure 24 is electrically connected (for example, in parallel) to at least a portion of the transfer touch electrode 15 between the opening area 421 and the transfer touch electrode 14, thereby reducing The channel impedance (for example, resistance) of the area where the transfer touch electrode 15 is located at least between the opening area 421 and the transfer touch electrode 14.
  • the second conductive structure 24 is disposed on the surface of the transfer touch sub-electrode 152, at least partially surrounds the opening area 421, and is electrically connected to the transfer touch sub-electrode 152 (for example, , In parallel), so that the second conductive structure 24 can reduce the channel impedance (for example, resistance) of the region where the transfer touch sub-electrode 152 is located, and improve the charge conductivity of the region where the transfer touch sub-electrode 152 is located.
  • the channel impedance for example, resistance
  • the square resistance of the second conductive structure 24 is smaller than the square resistance of the switching sub-electrode 152, so that the channel impedance (for example, resistance) of the area where the touch sub-electrode 152 is located can be further switched.
  • the second conductive structure 24 may be made of a metal material
  • the switching touch sub-electrode 152 may be made of a transparent conductive material, so that the square resistance of the second conductive structure 24 can be smaller than that of the switching touch sub-electrode 152. .
  • the second conductive structure 24 completely surrounds the opening area 421.
  • the transfer touch sub-electrode 152 includes an inner edge 1522 and an outer edge 1523; compared to the inner edge 1522 of the transfer touch sub-electrode 152, the second conductive structure 24 is closer to the transfer touch
  • the outer edge 1523 of the sub-electrode 152 extends along the outer edge 1523 of the transfer touch sub-electrode 152.
  • the second conductive structure 24 overlaps the connecting sub-electrodes 31 (for example, two connecting sub-electrodes 31) in a direction perpendicular to the touch sensor 01, and the second conductive structure
  • the two ends of the structure 24 are respectively located on both sides of the connecting sub-electrodes 31 (for example, the two connecting sub-electrodes 31) in the second direction D2; in this case, the second conductive structure 24 assists in the transfer of electric charges through the touch control sub-electrodes.
  • the overlapping area of the electrode 152 and the second conductive structure 24 in the direction perpendicular to the touch sensor 01 can reduce the transfer between the touch sub-electrode 152 and the second conductive structure 24 in the direction perpendicular to the touch sensor 01.
  • the second conductive structure 24 can reduce the possibility of poor touch caused by electrostatic discharge (for example, electrostatic breakdown).
  • the second conductive structure 24 is not limited to completely surrounding the opening area 421. In some examples, the second conductive structure 24 may partially surround the opening area 421.
  • the portions adjacent to the first conductive structure 23 of the first conductive structure 23 and the second conductive structure 24 respectively have a corresponding bending structure 231.
  • the portion of the second conductive structure 24 close to the first conductive structure 23 has the same extending direction as the first conductive structure 23.
  • the first conductive structure 23 includes a plurality of first conductive line segments (for example, straight line segments) that are sequentially connected
  • the second conductive structure 24 includes a plurality of second conductive line segments that are sequentially connected.
  • Conductive line segments for example, straight line segments; a plurality of first conductive line segments and a plurality of second conductive line segments are in one-to-one correspondence and opposite to each other; each of the plurality of first conductive line segments has the same extension as the corresponding second conductive line segment direction.
  • two adjacent (for example, any two adjacent) first conductive line segments intersect each other, and two adjacent (for example, any two adjacent) second conductive line segments Intersect each other; adjacent (for example, any two adjacent) first conductive line segments and second conductive line segments are parallel to each other.
  • a plurality of first conductive line segments that are sequentially connected form part of the second conductive structure 24, and are located in the center of the opening area 421 in the first direction D1 away from the opening.
  • FIG. 28 is a schematic plan view of a partial area REGE2 of the touch sensor shown in FIG. 24.
  • the touch sensor 01 further includes a third conductive structure 25, and the third conductive structure 25 is disposed on the surface of the switching sub-electrode 151.
  • the third conductive structure 25 is in direct contact with the switching touch sub-electrode 151.
  • FIG. 28 is a schematic plan view of a partial area REGE2 of the touch sensor shown in FIG. 24.
  • the touch sensor 01 further includes a third conductive structure 25, and the third conductive structure 25 is disposed on the surface of the switching sub-electrode 151.
  • the third conductive structure 25 is in direct contact with the switching touch sub-electrode 151.
  • the third conductive structure 25 is electrically connected (for example, in parallel) to the switching touch sub-electrode 151, thereby reducing the channel impedance (for example, resistance) of the region where the switching touch sub-electrode 151 is located, and improving The charge conductivity of the area where the touch sub-electrode 151 is located is switched.
  • the square resistance of the third conductive structure 25 is smaller than the square resistance of the switching touch sub-electrode 151, which can further reduce the channel impedance (for example, resistance) of the area where the touch control sub-electrode 151 is located.
  • the second conductive structure 25 may be made of a metal material, and the contact control sub-electrode 151 may be made of a transparent conductive material, so that the square resistance of the second conductive structure 25 can be smaller than that of the contact control sub-electrode 151.
  • the transfer touch sub-electrode 151 is disposed on the side of the center of the opening area 422 close to the opening area 421, and partially surrounds the opening area 422; Three sides 1512 and a fourth side 1513 away from the opening area 422; the third conductive structure 25 extends at least along the edge of the transfer touch sub-electrode 151 located on the third side 1512.
  • the switching touch sub-electrode 151 and the first portion 112 are electrically connected via the jumper wire 21.
  • the third conductive structure 25 and the jumper wire 21 are located on the same electrode layer (for example, the second electrode layer 30) and are made of the same material; for example, the third conductive structure 25 and the jumper wire 21 are in the same patterning process In this way, the structure and manufacturing process of the touch sensor 01 can be simplified.
  • the third conductive structure 25 and the jumper wire 21 are directly connected.
  • the third conductive structure 25 and the jumper wire 21 are an integrated structure, that is, the third conductive structure 25 and the jumper wire 21 are formed of the same material in the same patterning process. For example, there is no interface between the third conductive structure 25 and the jumper wire 21.
  • the third conductive structure 25 is not limited to extending only along the edge of the transfer touch sub-electrode 151 located on the third side 1512. In some examples, the third conductive structure 25 may also extend along the fourth side of the transfer touch sub-electrode 151. The edge of the side 1513 extends.
  • Fig. 29A is a schematic plan view of a partial region REGE4 of the touch sensor shown in Fig. 28;
  • Fig. 29B is a schematic cross-sectional view taken along the line EE' shown in Fig. 29A.
  • the touch sensor 01 further includes a fourth conductive structure 26, and the fourth conductive structure 26 is disposed on the surface of the switching touch electrode 16.
  • the fourth conductive structure 26 is in direct contact with the transfer touch electrode 16.
  • the fourth conductive structure 26 is electrically connected (for example, in parallel) to the transfer touch electrode 16, and is arranged along two pairs of the transfer touch electrode 16 in the first direction D1. At least one of the locating edges extends.
  • the fourth conductive structure 26 by disposing the fourth conductive structure 26 on the surface of the switching touch electrode 16, and making the fourth conductive structure 26 and the switching touch electrode 16 electrically connected (for example, in parallel), the area where the switching touch electrode 16 is located can be reduced.
  • the channel impedance (for example, resistance) of ⁇ enhances the charge conductivity of the area where the transfer touch electrode 16 is located.
  • the square resistance of the fourth conductive structure 26 is smaller than the square resistance of the switching touch electrode 16, which can further reduce the channel impedance (for example, resistance) of the area where the switching touch electrode 16 is located.
  • the fourth conductive structure 26 may be made of a metal material, and the switching touch electrode 16 may be made of a transparent conductive material, so that the square resistance of the fourth conductive structure 26 can be smaller than the square resistance of the switching touch electrode 16.
  • the transfer touch electrode 16 includes a fifth side 166 close to the transfer touch sub-electrode 151 and a sixth side far away from the transfer touch sub-electrode 151 in the first direction D1.
  • the edge of the transfer touch electrode 16 located on the fifth side 166 includes a plurality of first protrusions 161 protruding toward the transfer touch sub-electrode 151; the edge of the transfer touch electrode 16 located on the sixth side 167 includes a direction A plurality of second protrusions 162 protruding from the transfer touch sub-electrode 152; the edge of the transfer touch sub-electrode 151 located on the fourth side 1513 (that is, the edge close to the transfer touch electrode 16) includes a plurality of first Concavity 1511; the edge of the transfer touch sub-electrode 152 close to the transfer touch electrode 16 includes a plurality of second concave portions 1521; the plurality of first convex portions 161 are arranged in the plurality of first concave portions 1511 in a one-to-one correspondence , The plurality of second protrusions 162 are arranged in the plurality of second recesses 1521 in a one-to-one correspondence.
  • the fourth conductive structure 26 includes a first conductive substructure 261 and a second conductive substructure 262;
  • the edge of the side 166 extends and includes a plurality of second bending structures 2611;
  • the second conductive substructure 262 extends along the edge of the transfer touch electrode 16 on the sixth side 167 and includes a plurality of third bending structures 2621;
  • the plurality of second bending structures 2611 are arranged in the plurality of first recesses 1511 in a one-to-one correspondence, and the plurality of third bending structures 2621 are arranged in the plurality of second recesses 1521 in a one-to-one correspondence.
  • the first conductive substructure 261 and the second conductive substructure 262 are connected to the connecting sub-electrodes 31 (for example, two connecting sub-electrodes 31) perpendicular to the touch sensor 01.
  • the two ends of the first conductive sub-structure 261) in the second direction D2 are respectively located on both sides of the connecting sub-electrodes 31 (for example, the two connecting sub-electrodes 31) in the second direction D2.
  • the two ends of the second conductive substructure 262 in the second direction D2 are respectively located on both sides of the connecting sub-electrodes 31 (for example, the two connecting sub-electrodes 31) in the second direction D2; in this case ,
  • the first conductive substructure 261 and the second conductive substructure 262 assist the charge to pass through the area of the touch electrode 16 that overlaps the first conductive substructure 261 and the second conductive substructure 262 in the direction perpendicular to the touch sensor 01 Therefore, it is possible to reduce the possibility of poor touch in the area of the transfer touch electrode 16 overlapping the first conductive substructure 261 and the second conductive substructure 262 in the direction perpendicular to the touch sensor 01.
  • the first conductive substructure 261 and the second conductive substructure 262 can reduce the possibility of poor touch caused by electrostatic discharge (for example, electrostatic breakdown).
  • the first conductive structure 23, the second conductive structure 24, the third conductive structure 25, and the fourth conductive structure 26 are made of the same material (for example, a metal material) and are formed in the same patterning process, which can simplify The structure and manufacturing process of the touch sensor 01.
  • the first conductive structure 23, the second conductive structure 24, the third conductive structure 25, and the fourth conductive structure 26 are located on the same electrode layer and directly contact the same film layer.
  • the jumper wire 21, the jumper wire 22, the first conductive structure 23, the second conductive structure 24, the third conductive structure 25, and the fourth conductive structure 26 are made of the same material (for example, a metal material) and are in the same It is formed in a patterning process, thereby further simplifying the structure and manufacturing process of the touch sensor 01, and avoiding an increase in the manufacturing cost of the touch sensor 01.
  • the jumper wire 21, the jumper wire 22, the first conductive structure 23, the second conductive structure 24, the third conductive structure 25, and the fourth conductive structure 26 are all located in the second electrode layer 30 shown in FIG. 13.
  • the jumper wire 21, the jumper wire 22, the first conductive structure 23, the second conductive structure 24, the third conductive structure 25, and the fourth conductive structure 26 are all in contact with the same film layer (for example, they are all in contact with the same film as shown in FIG.
  • the jumper wire 21, the jumper wire 22, the first conductive structure 23, the second conductive structure 24, the third conductive structure 25, and the fourth conductive structure 26 are all implemented as wires, but The embodiments of the present disclosure are not limited to this.
  • the line width of the above-mentioned wire is between 3 micrometers and 8 micrometers (for example, 5 micrometers).
  • At least one (for example, all) of the first conductive structure 23, the second conductive structure 24, the third conductive structure 25, and the fourth conductive structure 26 may be implemented as a sheet metal electrode structure.
  • the average width of the sheet metal electrode structure is greater than 30 micrometers (for example, 50 micrometers, 100 micrometers, or 200 micrometers).
  • the first conductive structure 23, the first conductive structure 23 and the second conductive structure can be further reduced and improved.
  • At least one of the second conductive structure 24, the third conductive structure 25, and the fourth conductive structure 26 corresponds to the channel impedance of the region where the touch electrode is located, thereby further improving the first conductive structure 23, the second conductive structure 24, and the third conductive structure 25 At least one corresponding to the fourth conductive structure 26 transfers the charge conductivity of the area where the touch electrode is located, thereby further reducing the first conductive structure 23, the second conductive structure 24, the third conductive structure 25, and the fourth conductive structure 26 There is a possibility of poor touch due to electrostatic discharge (for example, electrostatic breakdown) in the area where at least one corresponding transfer touch electrode is located, and the first conductive structure 23, the second conductive structure 24, the third conductive structure 25, and the At least one of the fourth conductive structure 26 corresponds to the reliability of the region where the touch electrode is transferred.
  • electrostatic discharge for example, electrostatic breakdown
  • the second conductive structure 24 may be disposed on the entire surface of the transfer touch sub-electrode 152 and have the same or similar shape as the transfer touch sub-electrode 152; the third conductive structure 25 may be disposed on the transfer touch sub-electrode 152. On the entire surface of the sub-electrode 151 and has the same or similar shape as the transfer touch sub-electrode 151; the fourth conductive structure 26 may be provided on the entire surface of the transfer touch electrode 16 and has the same shape as the transfer touch electrode 16 Or similar shapes.
  • the first conductive structure 23 may be disposed on the entire surface of the transfer touch electrode 14 and have the same or similar shape as the transfer touch electrode 14.
  • the switching touch electrode 14 includes a first portion corresponding to the effective display area of the display device 03 and a second portion corresponding to the ineffective display area 414 of the display device 03 (see FIG. 24); the first conductive structure 23 may be disposed at Switch on the entire surface of the second part of the touch electrode 14.
  • the effective display area of the display device 03 surrounds (for example, completely surrounds) the ineffective display area of the display device 03.
  • FIG. 24 the effective display area of the display device 03 surrounds (for example, completely surrounds) the ineffective display area of the display device 03.
  • the invalid display area of the display device 03 corresponds to the opening area 421, the opening area 422, the area between the opening area 421 and the opening area 422, the transition area surrounding the opening area 421 and the opening area 422, and the In the area where the jumper wires 21 and 22 and the first conductive structure 23 are arranged.
  • the invalid display area of the display device 03 is not used to form a display image.
  • the touch sensor 01 of the display device 03 shown in FIGS. 24-28, 29A and 29B and other figures is provided with the first conductive structure 23, the second conductive structure 24, and the third conductive structure at the same time.
  • the structure 25 and the fourth conductive structure 26 but the embodiments of the present disclosure are not limited thereto.
  • the touch sensor 01 of the display device 03 shown in FIGS. 24-28, 29A and 29B and other drawings may also be provided with a first conductive structure 23, a second conductive structure 24, and a third conductive structure. Any one, any two, or any three of the conductive structure 25 and the fourth conductive structure 26.
  • the distance between the first position 1452 and the second position 1453 is not limited to be smaller than at least one of the plurality of second touch sub-electrodes 121 The maximum width in the first direction D1.
  • the touch sensor 01 includes an opening area 421, a plurality of first touch electrodes 11, a plurality of second touch electrodes 12 and a conductive structure 23.
  • the center 012 of the opening area 421 and the center 011 of the touch sensor 01 do not overlap; the plurality of first touch electrodes 11 respectively extend along the first direction D1, and at least one of the plurality of first touch electrodes 11 is included in the first direction D1:
  • a plurality of first touch sub-electrodes 111 arranged in parallel and electrically connected to each other;
  • a plurality of second touch electrodes 12 respectively extend along a second direction D2 crossing the first direction D1, and a plurality of second touch electrodes 12
  • At least one of includes a plurality of second touch sub-electrodes 121 arranged side by side in the second direction D2 and electrically connected to each other; a plurality of first touch electrodes 11 are arranged side by side in the second direction D2, and a plurality of second touch electrodes 12 are arranged side by side along the
  • the area of the first touch sub-electrode 111 located in the first area 411 is smaller than the area of the first touch sub-electrode 111 located in the third area 413 or the area of the second touch sub-electrode 121 located in the first area 411 is smaller than The area of the second touch sub-electrode 121 located in the third area 413.
  • the resistance of the switching touch electrode 14 is greater than the resistance of the second touch sub-electrode 121 in the third area 413.
  • the touch sensor 01 includes a plurality of first touch electrodes 11, a plurality of second touch electrodes 12 and a crack stop ring 2.
  • the plurality of first touch electrodes 11 respectively extend along the first direction D1, and at least one of the plurality of first touch electrodes 11 includes a plurality of first touch sub-electrodes arranged in parallel in the first direction D1 and electrically connected to each other 111;
  • the plurality of second touch electrodes 12 respectively extend along a second direction D2 that crosses the first direction D1, and at least one of the plurality of second touch electrodes 12 includes being arranged side by side in the second direction D2 and electrically connected to each other
  • the touch sensor has an opening The area 421 and the transition area 424 and the touch function area 423 sequentially arranged outward from the center
  • the possibility that the crack formed by perforating the display device extends to the touch function area of the touch sensor 01 can be reduced, thereby reducing the possibility of the touch sensor 01. 01There is a possibility of defects due to cracks. An exemplary description will be given below with reference to FIGS. 30-36, FIG. 26A, and FIG. 26B.
  • FIG. 30 is another schematic diagram of a partial area REG1 included in the touch sensor 01 of the display device 03 shown in FIG. 4;
  • FIG. 31A is a schematic plan view of a partial area REGR1 of the touch sensor 01 shown in FIG. 30;
  • FIG. 32 FIG. 30 is another schematic plan view of a partial region RGR1 of the touch sensor 01 shown in FIG. 30;
  • FIG. 33 is a schematic plan view of a part of the crack stop ring 27 provided by at least one embodiment of the present disclosure.
  • the touch sensor 01 has an opening area 421, an opening area 422, a transition area 424, a transition area 425, and a touch function area 423.
  • the transition area 424 and the touch function area 423 are sequentially arranged outward from the center of the opening area 421; the touch function area 423 surrounds the transition area 424; the transition area 424 surrounds the opening area 421.
  • the touch function area 423 and the transition area 424 are spaced apart from each other.
  • the touch function area 423 and the transition area 424 are separated by an etching groove (not shown in FIG. 30, see FIG. 26B) between the touch function area 423 and the transition area 424.
  • the touch function area 423 is an area for setting touch electrodes and jumper wires.
  • the wire 22 is located in the touch function area 423.
  • the touch sensor 01 is also provided with the first conductive structure 23, the second conductive structure 24, the third conductive structure 25, and the fourth conductive structure 26, the first conductive structure 23, the second conductive structure 24, The third conductive structure 25 and the fourth conductive structure 26 are respectively disposed on the corresponding transfer touch electrodes. Therefore, as shown in FIG. 30, FIG. 31A, FIG. 26B, and FIG. 29B, the first conductive structure 23 and the second conductive structure 24 , The third conductive structure 25 and the fourth conductive structure 26 are also disposed in the touch function area 423.
  • the crack stop ring 27 is located in the transition area 424 and at least partially surrounds (for example, completely surrounds or partially surrounds) the opening region 421.
  • the crack stop ring 27 at least partially surrounding the (opening area 421) in the transition area 424, it is possible to prevent cracks caused by the formation (laser cutting) of the opening area 421 from entering the touch function area 423, thereby preventing cracks from causing cracks. Poor touch.
  • the crack stop ring 27 is a metal ring.
  • metal has good thermal conductivity properties
  • by making the crack stop ring 27 a metal ring when performing laser drilling (laser cutting) on the display device 03, the thermal stress caused by the laser can be reduced, thereby reducing the impact on the display device.
  • 03 When performing laser drilling (laser cutting), it is possible to form cracks around the opening area 421 area, thereby improving the crack suppression effect of the crack stop ring 27.
  • metal has good ductility characteristics
  • by making the crack stop ring 27 a metal ring the possibility of further crack propagation in the subsequent bonding process can be reduced, thereby improving the crack suppression effect of the crack stop ring 27 .
  • the crack stop ring 27 shown in FIG. 30 is used to show the approximate position of the crack stop ring 27 and is not used to limit the specific position or specific structure of the crack stop ring 27.
  • examples of the specific position and specific structure of the crack stop ring 27 can be seen in FIGS. 31A-33.
  • the inner edge 272 of the crack stop ring 27 surrounds the edge 4211 of the opening area 421, but the embodiment of the present disclosure is not limited thereto.
  • the crack stop ring 27 coincides with the edge 4211 of the opening area 421.
  • the cutting line that is, the edge 4211 corresponding to the opening area 421 surrounds the inner portion of the ring for forming the crack stop ring 27.
  • Edge after forming the opening area 421 (that is, after punching), the part of the ring used to form the crack stop ring 27 within the cutting line is cut off, in this case, the crack stop ring 27 and the opening area
  • the edges 4211 of 421 coincide.
  • the crack stop ring 27 is a conductive ring, and the crack stop ring 27 has at least one break 271, each of the at least one break 271 has a tip; in this case, it is located in the area of the touch sensor 01 corresponding to the crack stop ring 27
  • the electrostatic charge of the at least one opening 271 can be discharged through each included tip, thereby reducing the possibility of poor touch function due to electrostatic breakdown in the effective touch area around the opening area 421.
  • at least one of the fractures 271 is in the shape of lightning, so that the electrostatic charge in the area of the touch sensor 01 corresponding to the crack stop ring 27 can be better released.
  • the conductivity of the crack stop ring 27 is better than that of the material forming the first touch sub-electrode 111 and the second touch sub-electrode 121. In this case, the corresponding position on the touch sensor 01 can be better released.
  • the crack stop ring 27 has light-shielding or light-absorbing properties.
  • the crack stop ring 27 can also reduce the light emitted by the display panel and leaked into the opening area 421; for example, a sensor (e.g., In the case of an image sensor), the light incident on the light collecting surface of the sensor (for example, the image sensor) can be reduced, thereby improving the signal-to-noise ratio of the output signal (for example, the image) of the sensor (for example, the image sensor).
  • the crack stop ring 27 is a metal ring.
  • metal has good electrical conductivity, by making the crack stop ring 27 a metal ring, the electrostatic charge in the area of the touch sensor 01 corresponding to the crack stop ring 27 can be better released; therefore, the metal has light shielding properties, By making the crack stop ring 27 a metal ring, the signal-to-noise ratio of the image output by the image sensor can also be improved.
  • the ring width of the crack stop ring 27 is greater than 2 times (for example, 6 times, 10 times, 20 times, 30 times) the line width of the wires (for example, jumper wires 21 and 21) included in the touch sensor 01 ).
  • the ring width of the crack stop ring 27 is equal to 30 micrometers, 50 micrometers, 100 micrometers, or 150 micrometers, but the embodiment of the present disclosure is not limited thereto.
  • the ability of the crack blocking ring 27 to block cracks can be improved.
  • the ring width of the crack stop ring 27 is 0.004 mm-0.9 mm.
  • the crack stop ring 27 has at least two breaks 271; the at least two breaks 271 separate the crack stop ring 27 into at least two stop ring sub-parts 273 in the circumferential direction of the crack stop ring 27.
  • FIG. 31B is an enlarged graph of the partial area REG_R shown in FIG. 30. It should be noted that, for the sake of clarity, FIG. 31B performs rotation processing on the partial region REG_R shown in FIG. 30.
  • the distance Rd of the edges of the at least two blocking ring sub-parts 273 close to each other in the circumferential direction of the crack blocking ring 27 is 0.008 mm-0.030 mm.
  • each of the at least two blocking ring sub-parts 273 has a stepped structure 2731 at an end in the circumferential direction of the crack blocking ring 27.
  • the dimension of the step surface 2732 of the step structure 2731 in the circumferential direction of the crack stop ring 27 is 0.004 mm-0.015 mm.
  • the touch sensor 01 further includes a crack stop ring 28 at least partially surrounding the crack stop ring 27 and spaced apart from the crack stop ring 27, and the crack stop ring 28 is located in the transition area 424.
  • the touch sensor 01 further include a crack stop ring 28 that surrounds the crack stop ring 27 and is spaced from the crack stop ring 27, it is possible to further reduce the cracks formed when the display device is punched and extend to the touch sensor 01.
  • the possibility of touching the functional area can further reduce the possibility of defects caused by cracks in the touch sensor 01.
  • the crack stop ring 28 has at least one fracture 281, and the at least one fracture 281 includes a tip.
  • the crack stop ring 28 is a conductive ring (e.g., a metal ring).
  • the electrostatic charge accumulated in the area of the touch sensor 01 corresponding to the crack stop ring 28 can pass through the tip included in the break 281.
  • the release can further reduce the possibility of poor touch function due to electrostatic breakdown in the effective touch area around the opening area 421.
  • the at least one fracture 281 is shaped like a lightning bolt, so that the electrostatic charge in the area of the touch sensor 01 corresponding to the crack stop ring 28 can be better released.
  • the conductivity of the crack stop ring 28 is better than the conductivity of the material forming the first touch sub-electrode 111 and the second touch sub-electrode 121. In this case, the corresponding position on the touch sensor 01 can be better released. The electrostatic charge in the area of the crack stop ring 28.
  • the fracture 271 and the fracture 281 are staggered with each other; in this case, the possibility of the crack extending to the touch function area of the touch sensor 01 through the fracture 271 and the fracture 281 can be avoided, thereby The possibility of defects caused by cracks in the touch sensor 01 can be further reduced.
  • the ring width of the crack stop ring 28 is equal to the ring width of the crack stop ring 27, but the embodiment of the present disclosure is not limited thereto.
  • the ring width of the crack stop ring 28 is smaller than the ring width of the crack stop ring 27.
  • the ring width of the crack stop ring 28 is 0.004 mm-0.9 mm.
  • the distance between the inner edge of the crack stop ring 28 and the outer edge of the crack stop ring 27 in the radial direction of the crack stop ring 27 is 0.004 mm to 0.1 mm.
  • the crack stop ring 28 has at least two breaks 281; the at least two breaks 281 separate the crack stop ring 28 into at least two stop ring sub-parts 283 in the circumferential direction of the crack stop ring 28.
  • each of the at least two blocking ring sub-parts 283 has a stepped structure at an end in the circumferential direction of the crack blocking ring 28.
  • the edge 4211 of the opening area 421 is circular, and the crack stop ring 27 and the crack stop ring 28 are annular as a whole, but the embodiment of the present disclosure is not limited to this; for example, according to practical applications As required, the edge 4211 of the opening area 421 has a racetrack shape or other suitable shapes, and the crack stop ring 27 and the crack stop ring 28 can also be racetrack loops or other suitable shapes as a whole.
  • transition area 424 is not limited to one or two crack stop rings. According to actual application requirements, the transition area 424 can also be provided with three or other suitable number of crack stop rings.
  • FIG. 34 is a schematic plan view of a partial area RGR2 of the touch sensor 01 shown in FIG. 30;
  • FIG. 35 is another schematic plan view of a partial area RGR2 of the touch sensor 01 shown in FIG. 30;
  • FIG. 36 is shown in FIG. 35 A schematic plan view of a partial region RGR3 of the touch sensor 01 in the above.
  • the transition area 425 and the touch function area 423 are sequentially arranged outward from the center of the opening area 422.
  • the touch sensor 01 further includes a crack stop ring 29 located in the transition area 425.
  • the edge of the opening area 422 is racetrack-shaped; the crack stop ring 29 is at least part of a racetrack-shaped ring, but the embodiment of the present disclosure is not limited to this; for example, according to practical applications As required, the edge of the opening area 422 is round or other suitable shapes, and the crack stop ring 29 can also be an overall circular ring or other suitable shapes.
  • the crack stop ring 29 is a conductive ring (for example, a metal ring); as shown in FIGS. 30, 34, and 35, the crack stop ring 29 includes at least one fracture 291, and at least one fracture 291 has a pointed end; in this case , The electrostatic charge in the area of the touch sensor 01 corresponding to the crack stop ring 29 can be released through the tip included in the fracture 291, which can further reduce the effective touch area around the opening area 421 that is caused by electrostatic breakdown. Possibility of poor control function.
  • at least one of the fractures 291 is shaped like a lightning bolt, so that the electrostatic charge in the area of the touch sensor 01 corresponding to the crack stop ring 29 can be better released.
  • the conductivity of the crack stop ring 29 is better than the conductivity of the material forming the first touch sub-electrode 111 and the second touch sub-electrode 121. In this case, the corresponding position on the touch sensor 01 can be better released.
  • the crack blocking ring 29 may have blocking or light blocking performance.
  • the crack blocking ring 29 may also reduce the light emitted by the display panel and leaking into the opening area 422; for example, a sensor (
  • a sensor for example, in the case of an image sensor, the light incident on the light-collecting surface of the sensor (for example, image sensor) can be reduced, thereby improving the signal-to-noise ratio of the output signal (for example, image) of the sensor (for example, image sensor).
  • the crack stop ring 29 partially surrounds the opening area 422, and is arranged side by side with the transfer touch sub-electrode 151 in the first direction D1.
  • the crack stop ring 29 and the transfer touch sub-electrode 151 do not overlap in the second direction D2.
  • a portion of the crack stop ring 29 is disposed between the opening area 422 and the transfer touch sub-electrode 151, and the crack stop ring 29 and the transfer touch sub-electrode 151 are in the second direction D2. The above overlaps at least partially.
  • the touch sensor 01 further includes a crack stop ring 292 located in the transition area 425 and at least partially surrounding the crack stop ring 29.
  • the overall shape of the crack stop ring 292 is a racetrack ring.
  • the crack stop ring 292 has a fracture 293, and the fracture 293 and the fracture 291 correspond to each other.
  • the crack stop ring 292 is a conductive ring (for example, a metal ring).
  • the ring width of the crack stop ring 29 and the crack stop ring 292 is 0.004 mm to 0.9 mm.
  • the distance between the inner edge of the crack stop ring 292 and the outer edge of the crack stop ring 29 is 0.004 mm-0.1 mm.
  • At least one jumper wire 21 is located between the jumper wire 22 and the crack stop ring 29.
  • at least one jumper wire 21 is located between the jumper wire 22 and the crack stop ring 292.
  • the crack stop ring (for example, at least one of the crack stop ring 27, the crack stop ring 28, the crack stop ring 29, and the crack stop ring 292) and the jumper wire (for example, at least one of the jumper wire 21 and the jumper wire 22)
  • the root is located on the same electrode layer (for example, the second electrode layer 30) and is in direct contact with the same film layer.
  • the crack stop ring (for example, at least one of the crack stop ring 27, the crack stop ring 28, the crack stop ring 29, and the crack stop ring 292) and the jumper wire (for example, at least one of the jumper wire 21 and the jumper wire 22)
  • the root is made of the same material (for example, a metal material) and formed in the same patterning process, thereby further simplifying the structure and manufacturing process of the touch sensor 01 and avoiding an increase in the manufacturing cost of the touch sensor 01.
  • the transition area 425 is not limited to one or two crack stop rings. According to actual application requirements, the transition area 425 can also be provided with three or other suitable number of crack stop rings.
  • transition area 424 and the transition area 425 of the touch sensor shown in FIG. 30 are provided with crack stop rings, the embodiments of the present disclosure are not limited thereto. According to actual application requirements, at least one of the transition area 424 and the transition area 425 may not be provided with a crack stop ring.
  • transition area 424 of the touch sensor 01 of the display device 03 shown in FIGS. 6A-9, 14A, and 24 does not show a crack stop ring.
  • the transition area 424 of the touch sensor 01 of the display device 03 shown in 6A-9, FIG. 14A, and FIG. 24 can be provided with a suitable number and suitable shape of crack stop rings according to actual application requirements.
  • the touch sensor 01 can only optimize the first area of the touch sensor 01 without setting jumper wires, switching touch electrodes, conductive structures, and crack stop rings; for example, according to actual application requirements
  • the touch sensor 01 may not optimize the first area of the touch sensor 01, but at least part (for example, one to four) of the jumper wire, the transfer touch electrode, the conductive structure, and the crack stop ring are provided.
  • the touch control structure includes: switching touch electrodes 15 and switching touch electrodes 16.
  • the transfer touch electrode 15 includes the transfer touch sub-electrode 151 and the transfer touch sub-electrode 152 arranged side by side in the first direction D1 and are electrically connected to each other; at least part of the transfer touch electrode 16 is located in the transfer touch sub-electrode 151 and the transfer Between the contact control sub-electrodes 152; the edge of the transfer touch electrode 16 close to the transfer touch sub-electrode 151 includes a plurality of first protrusions 161 protruding toward the transfer touch sub-electrode 151; the proximity of the transfer touch electrode 16 The edge of the transfer touch sub-electrode 152 includes a plurality of second protrusions 162 protruding toward the transfer touch sub-electrode 152; the edge of the transfer touch sub-electrode 151 close
  • the opening area 422 has a first shape facing the first edge of the opening area 421; the opening area 421 has a second shape facing the second edge of the opening area 422; the switching touch sub-electrode 151 faces The edge of the first edge has a first shape as a whole; the edge of the transfer touch sub-electrode 152 facing the second edge has a second shape as a whole; that is, the shape of the opening area 422 facing the first edge of the opening area 421 is the same as that of the transfer touch sub-electrode.
  • the shape of the edge of the electrode 151 facing the first edge is the same (for example, the size is different); the shape of the second edge of the opening area 421 facing the opening area 422 is the same as the shape of the edge of the transfer touch sub-electrode 152 facing the second edge (for example, Different sizes).
  • a plurality of first protrusions 161 are arranged side by side in the second direction D2; a plurality of second protrusions 162 are arranged side by side in the second direction D2;
  • the edge of the electrode 16 near the transfer touch sub-electrode 151 further includes a plurality of third recesses 163;
  • the edge of the transfer touch electrode 16 near the transfer touch sub-electrode 152 further includes a plurality of fourth recesses 164; adjacent There is a third recessed portion 163 between the two first raised portions 161, and a fourth recessed portion 164 is provided between the two adjacent second raised portions 162; the bottom of the third recessed portion 163 and the fourth recessed portion
  • the bottoms of the parts 164 correspond to each other; the distance between the bottom of the third recessed part 163 and the bottom of the fourth recessed part 164 in the first direction D1 is smaller than any of the plurality of first protrusions 161 and the plurality of second protrusions
  • the opening area 421 or 422 is an example of the first opening area of at least one embodiment of the present disclosure
  • the electrode part 124 (or 126) is an example of the first electrode part of at least one embodiment of the present disclosure
  • the electrode part 125 (or 127) is an example of the second electrode part of at least one embodiment of the present disclosure
  • the connecting sub-electrode 32 is an example of the first connecting sub-electrode of at least one embodiment of the present disclosure
  • the connecting sub-electrode 31 is the present An example of the second connecting sub-electrode of at least one embodiment disclosed
  • the dummy electrode 132 is an example of the dummy electrode of at least one embodiment of the present disclosure
  • the bending structure 131 is the bending structure of at least one embodiment of the present disclosure An example of.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控传感器(01)和显示装置(03)。该触控传感器包括第一开口区域(421)、多个第一触控电极(11)和多个第二触控电极(12)。第一开口区域(421)的中心(012)和触控传感器的中心(011)不重合;多个第一触控电极(11)分别沿第一方向(D1)延伸,且多个第一触控电极(11)的至少一个包括在第一方向(D1)并列布置且彼此电连接的多个第一触控子电极(111);多个第二触控电极(12)分别沿与第一方向(D1)交叉的第二方向(D2)延伸,且多个第二触控电极(12)的至少一个包括在第二方向(D2)并列布置且彼此电连接的多个第二触控子电极(121);多个第一触控电极(11)沿第二方向(D2)并列排布,多个第二触控电极(12)沿第一方向(D1)并列排布;多个第一触控子电极(111)和多个第二触控子电极(121)整体上至少部分围绕第一开口区域(421);触控传感器(01)具有在第二方向(D2)上顺次布置的第一区域(411)、第二区域(412)和第三区域(413);第一开口区域(421)位于第二区域(412);位于第一区域(411)的第一触控子电极(111)的面积小于位于第三区域(413)的第一触控子电极(111)的面积或者位于第一区域(411)的第二触控子电极(121)的面积小于位于第三区域(413)的第二触控子电极(121)的面积。

Description

触控传感器和显示装置 技术领域
本公开的实施例涉及一种触控传感器和显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)显示器件具有视角宽、对比度高、响应速度快、色域广、屏占比高、自发光、轻薄等特点。并且,相比于无机发光显示器件,有机发光二极管显示器件具有更高的发光亮度、更低的驱动电压等优势。由于具有上述特点和优势,有机发光二极管(OLED)显示器件逐渐受到人们的广泛关注并且可以适用于手机、显示器、笔记本电脑、智能手表、数码相机、仪器仪表、柔性可穿戴装置等具有显示功能的装置。随着显示技术的进一步发展,具有全面屏的显示装置成为未来显示技术的发展趋势。
发明内容
本公开的至少一个实施例提供了一种触控传感器,其包括:第一开口区域、多个第一触控电极和多个第二触控电极。所述第一开口区域的中心和所述触控传感器的中心不重合;所述多个第一触控电极分别沿第一方向延伸,且所述多个第一触控电极的至少一个包括在所述第一方向并列布置且彼此电连接的多个第一触控子电极;所述多个第二触控电极分别沿与所述第一方向交叉的第二方向延伸,且所述多个第二触控电极的至少一个包括在所述第二方向并列布置且彼此电连接的多个第二触控子电极;所述多个第一触控电极沿所述第二方向并列排布,所述多个第二触控电极沿所述第一方向并列排布;所述多个第一触控子电极和所述多个第二触控子电极整体上至少部分围绕所述第一开口区域;所述触控传感器具有在所述第二方向上顺次布置的第一区域、第二区域和第三区域;所述第一开口区域位于所述第二区域以及位于所述第一区域的第一触控子电极的面积小于位于所述第三区域的第一触控子电极的面积或者位于所述第一区域的第二触控子电极的面积小于位于所述第三区域的第二触控子电极的面积。
本公开的至少一个实施例提供了另一种触控传感器,其包括:第一开口区域、多个第一触控电极和多个第二触控电极。所述第一开口区域的中心和所述触控传感器的中心不重合;所述多个第一触控电极分别沿第一方向延伸,且所述多个第一触控电极的至少一个包括在所述第一方向并列布置且彼此电连接的多个第一触控子电极;所述多个第二触控电极分别沿与所述第一方向交叉的第二方向延伸,且所述多个第二触控电极的至少一个包括在所述第二方向并列布置且彼此电连接的多个第二触控子电极;所述多个第一触控电极沿所述第二方向并列排布,所述多个第二触控电极沿所述第一方向并列排布;所述多个第一触控子电极和所述多个第二触控子电极整体上至少部分围绕所述第一开口区域;所述触控传 感器具有在所述第二方向上顺次布置的第一区域、第二区域和第三区域;所述第一开口区域位于所述第二区域以及位于所述第一区域的相邻的第一触控子电极和第二触控子电极的间距小于位于所述第三区域的相邻的第一触控子电极和第二触控子电极的间距。
本公开的至少一个实施例提供了再一种触控传感器,其包括:第一开口区域、多个第一触控电极,多个第二触控电极和多个第一连接子电极。所述第一开口区域的中心和所述触控传感器的中心不重合;所述多个第一触控电极分别沿第一方向延伸,且所述多个第一触控电极的至少一个包括在所述第一方向并列布置且彼此电连接的多个第一触控子电极;所述多个第二触控电极分别沿与所述第一方向交叉的第二方向延伸,且所述多个第二触控电极的至少一个包括在所述第二方向并列布置且彼此电连接的多个第二触控子电极;所述多个第一触控电极沿所述第二方向并列排布,所述多个第二触控电极沿所述第一方向并列排布;所述多个第一触控子电极和所述多个第二触控子电极整体上至少部分围绕所述第一开口区域;所述触控传感器具有在所述第二方向上顺次布置的第一区域、第二区域和第三区域;所述第一开口区域位于所述第二区域;位于所述第一区域的相邻的所述第二触控子电极之间经由对应的第一数目的第一连接子电极电连接;以及位于所述第三区域的相邻的所述第二触控子电极之间经由对应的第二数目的第一连接子电极电连接,所述第二数目大于所述第一数目。
本公开的至少一个实施例还提供了一种显示装置,其包括本公开的至少一个实施例提供的任一触控传感器。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A示出了一种采用在显示屏内打孔的技术方案的显示装置;
图1B示出了图1A所示的显示装置包括的触控传感器的部分围绕开口区域的转接触控电极的示意图;
图2是本公开的至少一个实施例提供的一种显示装置的一个平面示意图;
图3A是图2所示的显示装置的截面示意图;
图3B-图3E示出了图3A所述的显示装置工艺流程;
图4是本公开的至少一个实施例提供的一种显示装置的另一个平面示意图;
图5是图4所示显示装置包括的触控传感器的部分区域的示意图;
图6A是图4所示显示装置的触控传感器包括的部分区域的一个示意图;
图6B是本公开的至少一个实施例提供的触控传感器01的平面示意图;
图6C是沿图6B所示HH’线的截面示意图;
图6D是沿图6B所示II’线的截面示意图;
图7A是图4所示显示装置的触控传感器包括的部分区域的另一个示意图;
图7B是本公开的至少一个实施例提供的一种显示装置的再一个平面示意图;
图8是图4所示显示装置的触控传感器包括的部分区域的再一个示意图;
图9是图4所示显示装置的触控传感器包括的部分区域的又再一个示意图;
图10A是图8所示的触控传感器包括的部分区域的示意图;
图10B是图5所示的触控传感器包括的部分区域的示意图;
图11示出了位于图10B左上角的虚拟电极的平面示意图;
图12A是沿图10A所示的BB’线的截面示意图;
图12B是图5所示的触控传感器包括的部分区域的另一个示意图;
图12C是沿图12B所示的CC’线的截面示意图;
图12D是沿图12B所示的DD’线的截面示意图;
图13是图2所示的显示装置包括的触控传感器的叠层结构示意图;
图14A是图4所示的显示装置的触控传感器包括的部分区域的又再一个示意图;
图14B是用于示出本公开的至少一个实施例提供的第一触控电极被开口区域间隔的两个电极部分经由跨接导线电连接的示意图;
图15是图14A所示的触控传感器的部分区域的平面示意图;
图16是图15所示的触控传感器的部分区域的平面示意图;
图17是图14A所示的触控传感器的部分区域的平面示意图;
图18是图17所示的触控传感器的部分区域的平面示意图;
图19是图17所示的触控传感器的部分区域的平面示意图;
图20A是图14A所示的触控传感器的部分区域的平面示意图;
图20B是沿图20A的FF’线的截面示意图;
图20C是沿图20A的FF’线的另一种截面示意图
图21是图8所示的触控传感器的部分区域的平面示意图;
图22A示出了图21所示的触控传感器的转接触控电极的放大后的图形;
图22B示出了图21所示的触控传感器的转接触控电极的另一个放大后的图形;
图23是图9所示的触控传感器的部分区域的平面示意图;
图24是图4所示的显示装置的触控传感器包括的部分区域的又再一个示意图;
图25是图24所示的转接触控电极的平面示意图;
图26A是图24所示的部分区域的平面示意图;
图26B是沿图26A所示的GG’线的截面示意图;
图27是图24所示的部分区域的平面示意图;
图28是图24所示触控传感器的部分区域的平面示意图;
图29A是图28所示触控传感器的部分区域的平面示意图;
图29B是沿图29A所示的EE’线的截面示意图;
图30是图4所示的显示装置的触控传感器包括的部分区域的又再一个示意图;
图31A是图30所示的触控传感器的部分区域的一个平面示意图;
图31B是图30所示的部分区域REG_R的放大后的图形;
图32是图30所示的触控传感器的部分区域的另一个平面示意图;
图33是本公开的至少一个实施例提供的裂纹阻挡环27的部分的平面示意图;
图34是图30所示的触控传感器的部分区域的一个平面示意图;
图35是图30所示的触控传感器的部分区域的另一个平面示意图;以及
图36是图35所示的触控传感器的部分区域的平面示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开的发明人在研究中注意到,在全面屏技术发展的早期,为了实现全面屏,研发和设计人员将屏下摄像头及各种传感器(感光元件)放置在显示装置(例如,手机的显示屏)的刘海区(Notch区),此种显示屏被称为“刘海屏”。然而,“刘海屏”并不是真正的全面屏,这是因为刘海区依然占据了显示屏的较大的显示面积,由此影响了用户的使用体验。
本公开的发明人在研究中还注意到,随着全面屏技术发展,为了解决显示装置的图像传感器(例如,前置摄像头)及诸多传感器(例如,红外传感器)放置的问题,还可以采用在显示装置的显示屏内打孔的技术方案,此种情况下,可以将图像传感器(例如,前置摄像头)及诸多传感器设置在对应于显示屏内的孔的位置处。由于上述显示屏内的孔位于显示屏的显示区域,因此,上述显示屏内的孔也被称为位于显示区域的孔(AA Hole)或显示区域的开口区域(此后称之为开口区域)。
图1A示出了一种采用了显示屏内打孔技术方案的显示装置。例如,如图1A所示,该显示装置的显示屏具有显示区域910,显示区域910包括无效显示区域914和围绕无效显示区域914的有效显示区域。例如,无效显示区域914不用于形成显示图像。
例如,如图1A所示,开口区域(图1A未示出,参见图1B)位于无效显示区域914中。例如,显示装置的图像传感器(例如,前置摄像头)与无效显示区域914在垂直于显示装置的显示面的方向(或者显示装置的显示面的法线方向)上至少部分重叠。
例如,如图1A所示,无效显示区域914(开口区域)的位置位于显示区域910的靠近显示区域910的上边缘的位置,并且无效显示区域914(开口区域)将显示区域910划分为在显示装置的列方向上并列布置的第一区域911、第二区域912和第三区域913;无效显示区域914(开口区域)位于第二区域912,且无效显示区域914(开口区域)将第一区域911和第三区域913彼此间隔。例如,如图1A所示,第一区域911在显示装置的列方向上的尺寸小于(例如,远小于)第三区域913在显示装置的列方向上的尺寸。
本公开的发明人在研究中注意到,在需要对显示装置进行横屏操作的应用场合(例如,手机游戏),用户对第一区域911(例如,显示屏的左下角)的触控性能的要求较高。因此,第一区域911不仅需要具有显示功能,还需要具有触控功能。然而,本公开的发明人在研究中又注意到,由于第一区域911在显示装置的列方向上的尺寸较小,因此,显示装置的触控传感器的位于第一区域911的部分提供的信号量较小,由此限制了第一区域911的触控性能。
例如,图1A所示的显示装置包括的触控传感器包括多个在显示装置的列方向上并列布置的第一触控电极以及多个在显示装置的行方向上并列布置的多个第二触控电极;多个第一触控电极的每个包括在显示装置的行方向上顺次布置且彼此电连接的多个第一触控子电极,多个第二触控电极的每个包括在显示装置的列方向上顺次布置且彼此电连接的多个第二触控子电极。例如,显示装置的显示面板还包括数据线和栅线,数据线沿显示装置的列方向延伸,栅线沿显示装置的行方向延伸。
本公开的发明人在研究中又注意到,多个第一触控电极的至少一个被开口区域间隔为两个部分,多个第二触控电极的至少一个被无效显示区域914(开口区域)间隔为两个部分,此种情况下,触控驱动信号和触控感应信号无法在被间隔为两个部分的第一触控电极和第二触控电极上正常传输,由此导致了触控传感器的部分第一触控电极和部分第二触控电极所在的区域存在触控不良,并影响了用户的使用体验。
本公开的发明人在研究中又注意到,显示屏内可以具有多个开口区域,相邻的开口区域之间的间距相对较小,因此,在相邻的开口区域之间的区域通常不设置触控图案,由此使得显示装置包括的触控传感器的对应于相邻的开口区域之间的区域为触控盲区,由此影响了用户的使用体验。本公开的发明人在研究中又注意到,由于相邻的开口区域之间的间距相对较小,即使在相邻的开口区域之间的区域设置了触控图案,位于相邻的开口区域之间的触控图案提供的触控感应信号的信噪比通常较小,此种情况下,触控传感器的对应于相邻的开口区域之间的区域的部分的触控性能较差。
本公开的发明人在研究中又注意到,显示装置的触控传感器包括的至少部分围绕开口区域的触控图案的宽度较窄(也即,在显示装置的行方向上的尺寸较小),通道阻抗(例如,电阻)较大,由此增加了电信号通过上述至少部分围绕开口区域的触控图案的难度以及上述至少部分围绕开口区域的触控图案的尺寸较窄区域存在因静电释放(例如,静电击穿)导致的触控不良的风险。此外,至少部分围绕开口区域的触控图案还存在信赖性风险(例如,断路风险)。下面结合图1B进行示例性说明。
图1B示出了图1A所示的显示装置包括的触控传感器包括的部分围绕开口区域925的转接触控电极920的示意图。例如,如图1B所示,开口区域925具有与转接触控电极920相邻的弧形边缘部分,转接触控电极920的靠近开口的一侧具有与开口区域925的弧形边缘部分平行的弧形边缘部分。例如,如图1B所示,转接触控电极920包括在显示装置的列方向上并列布置的转接触控子电极921(也即,使用标示①的子电极)和转接触控子电极922(也即,使用②标示的子电极)。例如,如图1B所示,转接触控电极920在显示装置的行方向上的尺寸较小,尤其是在转接触控电极920的与连接子电极923交叠的区域924。例如,由于转接触控电极920的与连接子电极923交叠的区域924在显示装置的行方向上的宽度较窄,因此,转接触控电极920的与连接子电极923交叠的区域924的通道阻抗(例如,电阻)较大,电荷导通性较差;此种情况下,电信号通过转接触控电极920的与连接子电极923交叠的区域924的难度较大,转接触控电极920的与连接子电极923交叠的区域924存在因静电释放(例如,静电击穿)导致的触控不良的风险;此外,转接触控电极920的与连接子电极923交叠的区域924还存在信赖性风险(例如,断路风险)。
本公开的发明人在研究中注意到,可以使用激光切割的方式在无效显示区域914形成开口区域。然而,本公开的发明人在研究中又注意到,由于用于形成触控电极的材料比较脆,在使用激光切割的方式在无效显示区域914形成开口区域时,可能会形成裂纹;并且,后续的贴合工序可能会造成裂纹的进一步扩展。例如,在裂纹扩展进入触控传感器的有效触控区域(或者触控传感器的触控功能区)的情况下,裂纹可能导致触控不良。此外,本公开的发明人在研究中又注意到,裂纹还可能为静电荷传导提供了通道,使得静电荷进入触控传感器的有效触控区域(例如,位于开口区域周围的有效触控区域)并在触控传感器的有效触控区域累积,累积的静电荷可能在开口区域周围的有效触控区域引起静电击穿,进而导致触控功能不良。本公开的发明人在研究中又注意到,显示装置包括的显示面板发射的光线在从显示装置的出光侧出射之前,需经过多个膜层;相邻的膜层之间的界面将显示面板发射的光线的部分光线反射至开口区域中。例如,在显示装置的图像传感器的集光面与开口区域至少部分重叠的情况下,反射至开口区域中的光线入射至图像传感器的集光面,并因此导致图像传感器输出图像的信噪比降低。
本公开的至少一个实施例提供了一种触控结构、触控传感器和显示装置。下面通过几个示例或实施例对根据本公开实施例提供的触控结构、触控传感器和显示装置进行非限制性的说明,如下面所描述的,在不相互抵触的情况下这些具体示例或实施例中不同特征可以相互组合,从而得到新的示例或实施例,这些新的示例或实施例也都属于本公开保护的范围。
图2是本公开的至少一个实施例提供的一种显示装置的一个平面示意图。如图2所示,该显示装置03包括本公开的至少一个实施例提供的任一触控传感器01。
图3A是图2所示的显示装置03的截面示意图,图3A所示的截面示意图对应于图2所示的AA’线。例如,如图3A所示,该显示装置03还包括成像传感器511和显示面板512。
例如,成像传感器511可以是图像传感器,并可以用于采集成像传感器511的集光面 面对的外部环境的图像,例如,成像传感器511可以为CMOS图像传感器或CCD图像传感器。例如,在该显示装置03为诸如手机、笔记本的移动终端的情况下,该成像传感器511可用于实现诸如手机、笔记本的移动终端的摄像头;并且,该显示装置03根据需要还可以包括例如透镜、反射镜或光波导等光学器件,以对相关光路进行调制。例如,该成像传感器511可以包括阵列排布感光像素。例如,每个感光像素可以包括光敏探测器(例如,光电二极管、光电晶体管)和开关晶体管(例如,开关晶体管)。例如,光电二极管可以将照射到其上的光信号转换为电信号,开关晶体管可以与光电二极管电连接,以控制光电二极管是否处于采集光信号的状态以及采集光信号的时间。
例如,该显示面板512包括彼此相反的显示侧和非显示侧,显示面板512被配置为在显示面板512的显示侧执行显示操作,也即,显示面板512的显示侧为显示面板512的出光侧,朝向用户。显示侧和非显示侧在显示面板512的显示面的法线方向上对置。例如,该显示面板512可以为有机发光二极管(OLED)显示面板、量子点发光二极管(QLED)显示面板或其它适用的显示面板,本公开的实施例对显示面板的具体种类不做限定。
例如,如图3A所示,触控传感器01、显示面板512和成像传感器511在显示装置03的显示面的法线方向上(例如,垂直于显示面板512的方向上)顺次设置,且成像传感器511位于显示面板512的非显示侧。
例如,如图3A所示,触控传感器01具有开口区域518,显示面板512具有开口区域519;成像传感器511被配置为接收并处理穿过触控传感器01的开口区域518和显示面板512的开口区域519的光信号。例如,该光信号可以为可见光、红外光等。
例如,如图3A所示,触控传感器01的开口区域518和显示面板512的开口区域519在显示装置03的显示面的法线方向上至少部分重叠(例如,完全重叠)。需要说明的是,在显示装置03还包括诸如透镜、反射镜或光波导等用于对相关光路进行调制的光学器件的情况下,触控传感器01的开口区域518和显示面板512的开口区域519在显示装置03的显示面的法线方向上可以不重叠。
在一些示例中,触控传感器01和显示面板512可以分别具有多个开口区域(也即,显示装置03具有多个开口区域),且显示装置03还可以包括其它适用的传感器(例如,红外传感器、距离传感器等);成像传感器511经由显示装置03的多个开口区域的第一个接收信号,其它的传感器分别经由显示装置03的多个开口区域的其它开口区域接收相关信号。
例如,如图3A所示,该显示装置03还可以包括偏光片513。例如,如图3A所示,该偏光片513设置在触控传感器01的远离显示面板512的一侧。例如,该偏光片513(例如,圆偏光片)可以缓解反射光(源于显示面板512对环境光线的反射)引起的对比度变差、显示质量降低的问题。例如,偏光片513和触控传感器01可以直接接触。
例如,如图3A所示,该显示装置03还可以包括散热层516。例如,如图3A所示,该散热层516设置在显示面板512的远离触控传感器01的一侧。
例如,如图3A所示,该显示装置03还可以包括防护层517(例如,盖板)。例如, 如图3A所示,该防护层517位于偏光片513的远离触控传感器01的一侧。例如,该防护层517可用于防护该显示装置的相关膜层不被划伤。例如,防护层517为透明基板。例如,透明基板可以是玻璃基板、石英基板、塑料基板(例如聚对苯二甲酸乙二醇酯(PET)基板)或者由其它适用的材料制成的基板。
例如,如图3A所示,该显示装置03还可以包括第一黏合层514和第二黏合层515。例如,如图3A所示,第一黏合层514设置在显示面板512和触控传感器01之间,且用于黏合显示面板512和触控传感器01。例如,第二黏合层515设置在防护层517和偏光片513之间且用于黏合防护层517和偏光片513。例如,第一黏合层514和第二黏合层515可以为光学胶。
例如,如图3A所示,偏光片513、散热层516、第一黏合层514和第二黏合层515分别具有开口区域;触控传感器01的开口区域518、显示面板512的开口区域519、偏光片513的开口区域、散热层516的开口区域、第一黏合层514的开口区域和第二黏合层515的开口区域在显示装置03的显示面的法线方向上至少部分重叠(完全重叠)。
有以下几点需要说明。
(1)尽管图3A所示的显示装置03的触控传感器01、显示面板512、偏光片513、散热层516、第一黏合层514和第二黏合层515均具有开口区域,但本公开的实施例不限于此。例如,根据实际应用需求,显示装置03的触控传感器01、显示面板512、偏光片513、散热层516、第一黏合层514和第二黏合层515的部分(例如,触控传感器01、第一黏合层514和第二黏合层515的至少一个)可以不设置开口区域。
(2)尽管图3A所示的显示装置03的触控传感器01的开口区域518、显示面板512的开口区域519、偏光片513的开口区域、散热层516的开口区域、第一黏合层514的开口区域和第二黏合层515的开口区域均为孔,但本公开的实施例不限于此。例如,根据实际应用需求,触控传感器01的开口区域518、显示面板512的开口区域519、偏光片513的开口区域、散热层516的开口区域、第一黏合层514的开口区域和第二黏合层515的开口区域的至少部分可以不是孔,而是透光区域。
(3)对于该显示装置03的其它组成部分(例如,薄膜晶体管、控制装置、图像数据编码/解码装置、行扫描驱动器、列扫描驱动器、时钟电路等)可以采用适用的部件,这些均是本领域的普通技术人员所应该理解的,在此不做赘述,也不应作为对本公开的限制。
例如,图3A所示的显示装置03的制作方法可以包括如下的步骤S101-步骤S107。
步骤S101:形成触控传感器01和偏光片513的叠层结构。例如,可以将触控传感器01直接形成在偏光片513上,但本公开的实施例不限于此。
步骤S102:将第一黏合层514贴合在触控传感器01的远离偏光片513的表面上(参见图3B)。
步骤S103:将显示面板512贴合在第一黏合层514的远离触控传感器01的表面上(参见图3C)。
步骤S104:将第二黏合层515贴合在偏光片513的远离触控传感器01的表面上(参 见图3D)。
步骤S105:在第二黏合层515、偏光片513、触控传感器01、第一黏合层514和显示面板512的叠层结构的对应于显示装置03的开口区域的区域进行打孔,以形成显示装置03的开口区域521(参见图3E)。
例如,触控传感器01的开口区域518和显示面板512的开口区域519对应于显示装置03的开口区域521。例如,在步骤S105中,可以使用激光器520对上述叠层结构的对应于显示装置03的开口区域的区域进行打孔,以形成显示装置03的开口区域521。
步骤S106:将防护层517形成在第二黏合层515的远离偏光片513的一侧。
步骤S107:使得成像传感器511的集光面与显示装置03的开口区域521在显示装置03的显示面的法线方向上至少部分重合。
在一些示例中,图3A所示的显示装置03的制作方法还包括如下的步骤S108。
步骤S108:在显示面板512的远离第一黏合层514的表面形成散热层516。例如,步骤S108可以在执行步骤S103之后、执行步骤S105之前执行。例如,在显示装置03的制作方法还包括步骤S108的情况下,步骤S105包括:在第二黏合层515、偏光片513、触控传感器01、第一黏合层514、显示面板512和散热层516的叠层结构的对应于显示装置03的开口区域的区域进行打孔,以形成显示装置03的开口区域521。
例如,如图2所示,该显示装置包括的触控传感器01具有在第二方向D2上顺次布置的第一区域411、第二区域412和第三区域413。例如,第三区域413在第二方向D2上的尺寸大于(例如,远大于)第一区域411的在第二方向D2上的尺寸。例如,如图2所示,第一区域411在第二方向D2上的两个边分别与触控传感器01的上边界以及第二区域412的上边界重合;第三区域413在第二方向D2上的两个边分别与第二区域412的下边界和触控传感器01的下边界重合。
例如,触控传感器01的开口区域位于第二区域412中,也即,触控传感器01的开口区域将触控传感器01的部分区域间隔为在在第二方向D2上并列布置且彼此间隔的第一区域411和第三区域413。
例如,显示装置03的显示面板512还包括数据线和栅线,数据线沿第二方向D2延伸,栅线沿与第二方向D2交叉(例如,垂直)的第一方向D1延伸。
图4是本公开的至少一个实施例提供的一种显示装置的另一个平面示意图。如图4所示,该显示装置03包括的触控传感器01包括区域REG1和区域REG2。
图5是图4所示显示装置03包括的触控传感器01的部分区域REG2的示意图。例如,触控传感器01的除区域REG1以及与区域REG1在第一方向D1并列的区域之外的区域的结构与部分区域REG2示出的结构相同或相似。
例如,如图5所示,在部分区域REG2中,该触控传感器01包括多个第一触控电极11和多个第二触控电极12。例如,第一触控电极11可以为触控感应电极Rx,第二触控电极12可以为触控驱动电极Tx,但本公开的实施例不限于此。例如,第一触控电极11可以为触控驱动电极Tx,第二触控电极12可以为触控感应电极Rx。例如,该显示装置还包括 触控电路(例如,触控芯片)和多条触控信号线。例如,该触控电路经由多条触控信号线与多个触控驱动电极Tx和触控感应电极Rx电连接,并且配置为经由多条触控信号线向多个触控驱动电极Tx提供触控驱动信号,并从多个触控感应电极Rx接收触控感应信号。
例如,如图5所示,多个第一触控电极11分别沿第一方向D1延伸;多个第二触控电极12分别沿与第一方向D1交叉的第二方向D2延伸;多个第一触控电极11沿第二方向D2并列排布,多个第二触控电极12沿第一方向D1并列排布。例如,如图5所示,多个第一触控电极11的至少一个(例如,每个)包括沿第一方向D1并列布置且彼此电连接的多个第一触控子电极111;多个第二触控电极12的至少一个(例如,每个)包括沿第二方向D2顺次布置且彼此电连接的多个第二触控子电极121。例如,该触控传感器01为电容式触控传感器。例如,该触控传感器01可以基于互电容原理和自电容原理的至少一种对触控位置进行检测。
图6A是图4所示显示装置03的触控传感器01包括的部分区域REG1的一个示意图。例如,如图6A所示,在部分区域REG1中,该触控传感器01包括多个第一触控电极11和多个第二触控电极12;多个第一触控电极11分别沿第一方向D1延伸;多个第二触控电极12分别沿第二方向D2延伸;多个第一触控电极11沿第二方向D2并列排布,多个第二触控电极12沿第一方向D1并列排布;多个第一触控电极11的每个包括沿第一方向D1并列布置且彼此电连接的多个第一触控子电极111;多个第二触控电极12的每个包括沿第二方向D2顺次布置且彼此电连接的多个第二触控子电极121。
例如,如图5和图6A所示,触控传感器01包括的、除位于触控传感器01的边缘处的第一触控子电极111和第二触控电极12具有平行四边形(例如,菱形)的整体轮廓。需要说明的是,位于触控传感器01的边缘(例如,触控传感器01的下边缘)的第一触控子电极111和第二触控电极12的整体轮廓为平行四边形的至少部分(例如,平行四边形的一半)或者四边形。
图6B是本公开的至少一个实施例提供的触控传感器01的平面示意图。例如,如图6B所示,该触控传感器01还包括中间区域171,至少部分围绕中间区域171的周边区域172,多根第一触控信号线173和多根第二触控信号线174,为方便描述,图6B还示出了触控电路175。
例如,如图6B所示,多个第一触控电极11和多个第二触控电极12均位于中间区域171中。
例如,如图6B所示,多根第一触控信号线173(例如,多根第一触控信号线的第一端)分别与多个第一触控电极11(例如,位于多个第一触控电极11的在第一方向D1上最边缘的第一触控子电极111)电连接,且从中间区域171的在第一方向D1上的边缘延伸至周边区域172中。
例如,如图6B所示,多根第二触控信号线174(例如,多根第二触控信号线174的第一端)分别与多个第二触控电极12(例如,位于多个第二触控电极12的在第二方向D2上最边缘的第二触控子电极121)电连接,且从中间区域171的在第二方向D2上的边缘延 伸至周边区域172中。
例如,如图6B所示,多根第一触控信号线173(例如,多根第一触控信号线的第二端)分别与触控电路175电连接,多根第二触控信号线174(例如,多根第二触控信号线174的第一端)分别与触控电路175电连接,经使得触控传感器01从触控电路175接收触控驱动信号,向触控电路175提供触控感应信号。
需要说明的是,图6B用于说明第一触控信号线173与第一触控电极11的连接方式以及第二触控信号线174与多个第二触控电极12的连接方式;图6B所示的第一触控电极11和第二触控电极12的数目和结构以及中间区域171和周边区域172的形状仅为示例;并且,为清楚起见图6B并未示出位于第一区域411和第二区域412的第一触控电极11和第二触控子电极121,位于第一区域411和第二区域412的第一触控电极11和第二触控子电极121的结构可以参见例如图6A。
图6C是沿图6B所示HH’线的截面示意图;图6D是沿图6B所示II’线的截面示意图。如图6C和图6D所示,该触控传感器01还包括基材36和防护层176;多个第一触控电极11和多个第二触控电极12在垂直于触控传感器01的方向上位于基材36和防护层176之间;多根第一触控信号线173和多根第二触控信号线174位于防护层176远离基材36的一侧;多根第一触控信号线173经由位于防护层176中的对应的过孔分别与多个第一触控电极11(例如,多个第一触控电极11包括的第一触控子电极111)电连接;多根第二触控信号线174经由位于防护层176中的对应的过孔分别与多个第二触控电极12(例如,多个第一触控电极12包括的第二触控子电极121)电连接。例如,多根第一触控信号线173和多根第二触控信号线174可以由金属材料制成,但本公开的实施例不限于此。例如,防护层176可以由透明绝缘材料制成。
需要说明的是,在垂直于触控传感器01方向上,多个第一触控电极11和多个第二触控电极12的每个可以包括多个膜层,多个第一触控电极11和多个第二触控电极12在垂直于触控传感器01方向上的结构可见参见下面的图12A、图12C和图12D等,在此不再赘述。
图7A是图4所示显示装置03的触控传感器01包括的部分区域REG1的另一个示意图。需要说明的是,图7A以及下面的图8-图9、图14A、图24和图30所示的显示装置03的触控传感器01的部分区域REG1与图6A所示的显示装置03的触控传感器01的部分区域REG1具有相同的结构,不同的附图用于更清楚的说明触控传感器01不同部件的结构。
例如,如图7A所示,该触控传感器01具有在第二方向D2上顺次布置的第一区域411、第二区域412和第三区域413。例如,如图7A所示,第二区域412包括开口区域422和开口区域421。例如,如图7A所示,开口区域422和开口区域421间隔布置。例如,如图7A所示,开口区域422和开口区域421在第一方向D1上并列布置。例如,开口区域422和开口区域421也位于前述的中间区域171中。
图7B是本公开的至少一个实施例提供的一种显示装置的再一个平面示意图。例如,如图7B所示,开口区域421的中心012和触控传感器01的中心011不重合(例如,彼此 间隔)。例如,如图7B所示,开口区域422的中心013和触控传感器01的中心011不重合(例如,彼此间隔)。
例如,触控传感器01的中心011是指触控传感器01的整体轮廓(例如,触控传感器01的平行于第一方向D1和第二方向D2的表面的外轮廓)的中心。例如,触控传感器01的整体轮廓是中心对称结构(例如,具有四个圆角的矩形),对应地,触控传感器01的中心和触控传感器01的整体轮廓的中心是该中心对称结构(例如,具有四个圆角的矩形)的对称中心。
例如,开口区域421为中心对称结构(例如,圆形),对应地,开口区域421的中心012是该中心对称结构(例如,圆形)的对称中心(例如,圆心)。
例如,开口区域422为中心对称结构(例如,跑道型),对应地,开口区域422的中心013是该中心对称结构(例如,跑道型)的对称中心。
在一些示例中,触控传感器01的整体轮廓、开口区域421和开口区域422中的至少一个为非中心对称结构;此种情况下,非中心对称结构的中心包围该非中心对称结构的尺寸最小的圆形的圆心。
例如,如图6A和图7A所示,多个第一触控子电极111和多个第二触控子电极121整体上至少部分围绕(例如,完全围绕)开口区域421;多个第一触控子电极111和多个第二触控子电极121整体上至少部分围绕(例如,完全围绕)开口区域422。
例如,多个第一触控子电极111和多个第二触控子电极121整体上至少部分围绕(例如,完全围绕)开口区域421是指多个第一触控子电极111和多个第二触控子电极121的组合结构至少部分围绕(例如,完全围绕)开口区域421;多个第一触控子电极111和多个第二触控子电极121整体上至少部分围绕(例如,完全围绕)开口区域422是指多个第一触控子电极111和多个第二触控子电极121的组合结构至少部分围绕(例如,完全围绕)开口区域422。
图8是图4所示显示装置03的触控传感器01包括的部分区域REG1的再一个示意图;图9是图4所示显示装置03的触控传感器01包括的部分区域REG1的又再一个示意图。
例如,如图8和图9所示,该触控传感器01还包括跨接导线21、跨接导线22、转接触控电极14、转接触控电极15和转接触控电极16。例如,如图7A和图8所示,跨接导线21、跨接导线22、转接触控电极15和转接触控电极16均位于第二区域412。例如,转接触控电极14的至少部分(例如,全部)位于第二区域412。
例如,如图8所示,多个第一触控电极11的至少一个被开口区域422和开口区域421间隔为电极部分112和电极部分113;电极部分112和电极部分113的每个包括至少一个第一触控子电极111;电极部分112和电极部分113在第一方向D1上位于开口区域421的两侧;转接触控电极15位于电极部分112和电极部分113之间,且上述电极部分112和电极部分113至少经由跨接导线21和转接触控电极15电连接;对应地,上述多个第一触控电极11中的至少一个还包括转接触控电极15。
例如,如图9所示,多个第二触控电极12的至少一个被第二区域412间隔为两个电极 部分,上述多个第二触控电极12的至少一个的两个部分经由跨接导线和转接触控电极的至少一个电连接。
例如,如图9所示,多个第二触控电极12的一组第二触控电极12(例如,多个第二触控电极12的一组第二触控电极12包括至少一个第二触控电极12)被第二区域412(例如,位于第二区域412中的开口区域422)间隔为电极部分126和电极部分127,电极部分126和电极部分127的每个包括至少一个第二触控子电极121;上述电极部分126和电极部分127经由至少一根跨接导线22彼此电连接。
例如,如图9所示,多个第二触控电极12的一组第二触控电极12(例如,多个第二触控电极12的一组第二触控电极12包括至少一个第二触控电极12)被第二区域412(例如,位于第二区域412中的开口区域421)间隔为电极部分124和电极部分125;电极部分124和电极部分125的每个包括至少一个第二触控子电极121;转接触控电极16在第二方向D2上位于电极部分124和电极部分125之间,且上述电极部分124和电极部分125经由转接触控电极16彼此电连接;对应地,上述多个第二触控电极12的一组第二触控电极12的每个还包括转接触控电极16。
例如,如图9所示,多个第二触控电极12的一组第二触控电极12(例如,多个第二触控电极12的一组第二触控电极12包括至少一个第二触控电极12)被第二区域412间隔为电极部分122和电极部分123;电极部分122和电极部分123的每个包括至少一个第二触控子电极121;电极部分122和电极部分123在第二方向D2上位于第二区域412(例如,位于第二区域412中的开口区域421)的两侧;转接触控电极14在第二方向D2上位于电极部分122和电极部分123之间,且上述电极部分122和电极部分123经由转接触控电极14彼此电连接;对应地,上述多个第二触控电极12的一组第二触控电极12的每个还包括转接触控电极14。
为清楚起见,开口区域422和开口区域421的具体结构,跨接导线21、跨接导线22、转接触控电极14、转接触控电极15和转接触控电极16的具体结构,电极部分112和电极部分113的具体连接方式,电极部分126和电极部分127的具体连接方式,电极部分124和电极部分125的具体连接方式以及电极部分122和电极部分123的具体连接方式将在阐述第一触控子电极111和第二触控电极12的具体结构,相邻的两个第一触控子电极111的连接方式以及相邻的两个第二触控电极12的连接方式之后再详细阐述。
下面结合图6A-图10B对第一触控子电极111和第二触控电极12的具体结构,相邻的两个第一触控子电极111的连接方式以及相邻的两个第二触控电极12的连接方式进行示例性说明。
图10A是图8所示的触控传感器01包括的部分区域REG3(位于第一区域411)的示意图;图10B是图5所示的触控传感器01包括的部分区域REG4(位于第三区域413)的一个示意图。
例如,如图6A、图10A和图10B所示,位于第一区域411的第一触控子电极111的面积小于位于第三区域413的第一触控子电极111的面积。例如,如图6A、图10A和图 10B所示,位于第一区域411的第二触控子电极121的面积小于位于第三区域413的第二触控子电极121的面积。
例如,如图6A、图10A和图10B所示,位于第一区域411的相邻的第一触控子电极111和第二触控子电极121的间距d1(参见图10A)小于位于第三区域413的相邻的第一触控子电极111和第二触控子电极121的间距(参见图10B)。例如,相邻的第一触控子电极111和第二触控子电极121的间距是指相邻的第一触控子电极111和第二触控子电极121的相邻的两个边的间距d2。例如,相邻的第一触控子电极111和第二触控子电极121的间距将在图10A和图10B所示的示例进行示例性说明,在此不再赘述。
例如,通过使得位于第一区域411的相邻的第一触控子电极111和第二触控子电极121的间距小于位于第三区域413的相邻的第一触控子电极111和第二触控子电极121的间距,可以提升触控传感器01的第一区域411的触控信号量。
例如,平行板电容器的电容C与表达式εS/d成正比,此处,ε是常数,S为平行板电容器的两个电容极板的正对面积,d为平行板电容器的两个电容极板的距离。例如,由上述表达式可知,电容C与面积S成正比,与间距d成反比。因此,在降低位于第一区域411的相邻的第一触控子电极111和第二触控子电极121的间距的情况下,可以提升相邻的第一触控子电极111和第二触控子电极121之间的电容,并对应地可以提升位于第一区域411的第一触控电极11的触控信号量以及提升第二触控电极12的位于第一区域411的电极部分的触控信号量。
例如,通过降低位于第一区域411的相邻的第一触控子电极111和第二触控子电极121的间距,可以在没有增加位于第一区域411的第一触控子电极111和第二触控子电极121的面积的情况下提升位于第一区域411的第一触控电极11的触控信号量以及提升第二触控电极12的位于第一区域411的电极部分的触控信号量,由此可以在不降低触控传感器01的位于第一区域411的部分的触控分辨率的情况下提升触控传感器01的位于第一区域411的部分提供的触控信号的信噪比。
例如,如图7A和图9所示,多个第二触控电极12的至少一个被第二区域412间隔为两个电极部分。例如,如图7A和图9所示,多个第二触控电极12的至少一个被第二区域412间隔为电极部分124和电极部分125;又例如,如图7A和图9所示,多个第二触控电极12的至少一个被第二区域412间隔为电极部分126和电极部分127。
例如,如图7A和图9所示,电极部分124和电极部分126位于第一区域411;电极部分125和电极部分127位于第三区域413。例如,如图7A和图9所示,电极部分124在第二方向D2上的尺寸小于电极部分125在第二方向D2上的尺寸;电极部分126在第二方向D2上的尺寸小于电极部分127在第二方向D2上的尺寸。
例如,电极部分124包括具有上述电极部分124的第二触控电极12的位于第一区域411的所有第二触控子电极121;电极部分125包括具有电极部分125的第二触控电极12的位于第三区域413的所有第二触控子电极121。
例如,电极部分126包括具有电极部分126的第二触控电极12的位于第一区域411 的所有第二触控子电极121,且第一区域411的下边缘对应于电极部分126包括的位于最下方的第二触控子电极121的下边缘;电极部分127包括具有电极部分127的第二触控电极12的位于第三区域413的所有第二触控子电极121,且第三区域413的上边缘对应于电极部分127包括的位于最上方的第二触控子电极121的上边缘。
例如,电极部分124和电极部分126在第二方向D2上的尺寸(例如,长度)小于位于第三区域413的尺寸最大的第二触控子电极121(也即,整体轮廓为平行四边形的第二触控子电极121)在第二方向D2上的尺寸(例如,长度);此种情况下,位于第一区域411的第一触控子电极111的面积(例如,平行于第一方向D1和第二方向D2的表面的面积)小于位于第三区域413的大多数第一触控子电极111的面积;位于第一区域411的第二触控子电极121的面积小于位于第三区域413的大多数第二触控子电极121的面积(例如,面积最大的第二触控子电极121的面积)。
例如,如图10A和图10B所示,触控传感器01还包括多个虚拟(dummy)电极132;多个虚拟电极132的每个设置在与多个虚拟电极132的每个相邻的第一触控子电极111和第二触控子电极121之间。
需要说明的是,与虚拟电极132相邻的第一触控子电极111和第二触控子电极121表示与上述虚拟电极132最邻近的第一触控子电极111和第二触控子电极121,此种情况下,虚拟电极132和最邻近的第一触控子电极111没有设置其它的第一触控子电极111或其它的第二触控子电极121,虚拟电极132和最邻近的第二触控子电极121没有设置其它的第一触控子电极111或其它的第二触控子电极121,然而,虚拟电极132和最邻近的第一触控子电极111之间或者虚拟电极132和最邻近的第二触控子电极121可能设置其它的虚拟电极132。
例如,通过在相邻的第一触控子电极111和第二触控子电极121之间设置虚拟电极132,可以避免相邻的第一触控子电极111和第二触控子电极121之间的间距过小以及相邻的第一触控子电极111和第二触控子电极121之间的电容(例如,基础电容)过大,由此可以使得触控传感器01能够提供所需的信噪比。例如,在相邻的第一触控子电极111和第二触控子电极121之间的电容过大的情况下,因触控操作引起的电容变化量与基础电容的比值过小,由此导致因触控引起的触控信号的信噪比较低。
需要说明的是,相邻的第一触控子电极111和第二触控子电极121表示上述相邻的第一触控子电极111和第二触控子电极121之间没有设置其它的第一触控子电极111或其它的第二触控子电极121,但相邻的第一触控子电极111和第二触控子电极121可以设置虚拟电极132。
例如,如图10A和图10B所示,位于第一区域411的相邻的第一触控子电极111和第二触控子电极121之间的虚拟电极132的数目小于位于第三区域413的相邻的第一触控子电极111和第二触控子电极121之间的虚拟电极132的数目。
例如,如图10A和图10B所示,位于第一区域411的相邻的第一触控子电极111和第二触控子电极121之间的虚拟电极132的宽度小于等于(例如,等于)位于第三区域413 的相邻的第一触控子电极111和第二触控子电极121之间的虚拟电极132的宽度;此种情况下,可以通过减小位于第一区域411的相邻的第一触控子电极111和第二触控子电极121之间的虚拟电极132的数目来降低位于第一区域411的相邻的第一触控子电极111和第二触控子电极121之间的间距。
需要说明的是,本公开的实施例不限于通过减小位于第一区域411的相邻的第一触控子电极111和第二触控子电极121之间的虚拟电极132的数目来降低位于第一区域411的相邻的第一触控子电极111和第二触控子电极121之间的间距,在一些示例中,还可以通过降低位于第一区域411的相邻的第一触控子电极111和第二触控子电极121之间的虚拟电极132的宽度来降低位于第一区域411的相邻的第一触控子电极111和第二触控子电极121之间的间距。
例如,位于第一区域411的相邻的第一触控子电极111和第二触控子电极121之间的虚拟电极132的数目为一,位于第三区域413的相邻的第一触控子电极111和第二触控子电极121之间的虚拟电极132的数目为二,但本公开的实施例不限于此。
例如,虚拟电极132包括顺次相接的多个的电极条。例如,虚拟电极132包括顺次相接的多个的电极条的宽度彼此相等,也即,虚拟电极132具有均匀的宽度。下面结合图11进行示例性说明。
图11示出了位于图10B左上角的虚拟电极132的平面示意图。如图11所示,该虚拟电极132包括顺次相接的四个的电极条;上述四个的电极条的宽度(例如,在垂直基于电极条延伸方向上的宽度)分别为W1、W2、W3和W4。例如,W1=W2=W3=W4。
例如,虚拟电极132的宽度是指虚拟电极132包括的电极条在垂直该电极条延伸方向上的宽度。例如,在虚拟电极132包括的多个的电极条的宽度不完全相等的情况下,虚拟电极132的宽度是指多个的电极条的宽度平均值。
例如,如图10A和图10B所示,相邻的第一触控子电极111和第二触控子电极121的相邻的边在任一位置具有一致(例如,相同)的延伸方向。例如,如图10A和图10B所示,相邻的第一触控子电极111和第二触控子电极121的间距是指相邻的第一触控子电极111和第二触控子电极121的相邻的边在垂直于上述一致的延伸方向的方向上的间距。
例如,如图10A所示,位于第一区域411的相邻的第一触控子电极111和第二触控子电极121的间距为d1;如图10B所示,位于第三区域413的相邻的第一触控子电极111和第二触控子电极121的间距为d2;如图10A和图10B所示,d1小于d2,也即,位于第一区域411的相邻的第一触控子电极111和第二触控子电极121的间距d1小于位于第三区域413的相邻的第一触控子电极111和第二触控子电极121的间距d2。例如,通过降低位于第一区域411的相邻的第一触控子电极111和第二触控子电极121的间距d1,可以缓解因位于第一区域411的第一触控子电极111和第二触控子电极121的面积降低导致的电容值和触控信号量降低的问题。
例如,如图5、图8、图10A和图10B所示,该触控传感器01还包括多个环状子电极(例如,也可以被称为导通环)134、多个中间子电极(例如,也可以被称为桥接岛)133、 多个连接子电极31和多个连接子电极32。
例如,如图5、图8、图10A和图10B所示,多个环状子电极134和多个中间子电极133位于(例如,仅位于)第二区域412和第三区域413。例如,如图5、图8、图10A和图10B所示,多个连接子电极31位于第二区域412和第三区域413。例如,如图5、图8、图10A和图10B所示,多个连接子电极32位于第一区域411和第三区域413。
例如,如图8和图10A所示,位于第一区域411的至少一个第一触控电极11包括的相邻的两个第一触控子电极111为一体结构且直接电性连接。例如,位于第一区域411的至少一个第一触控电极11包括的相邻的两个第一触控子电极111在同一个图案化工艺中使用相同的材料形成,且位于第一区域411的至少一个第一触控电极11包括的相邻的两个第一触控子电极111之间没有界面。
图12A是沿图10A所示的BB’线的截面示意图。例如,如图8和图10A和图12A所示,位于第一区域411的每个连接子电极32的两端分别与相邻的两个第二触控子电极121电连接,也即,位于第一区域411的相邻的两个第二触控子电极121经由对应的连接子电极32彼此电连接。需要说明的是,相邻的两个第二触控子电极121表示上述相邻的两个第二触控子电极121之间没有设置其它的第一触控子电极111或其它的第二触控子电极121。
例如,如图10A和图12A所示,第二触控子电极121和连接子电极32在垂直于触控传感器01的方向上位于不同的层且部分交叠;在垂直于触控传感器01的方向上,第二触控子电极121和连接子电极32之间具有绝缘层35,连接子电极32经由绝缘层35中的过孔与第二触控子电极121电连接,也即,触控传感器01为具有导电桥结构的传感器。
例如,如图5和图10B所示,多个环状子电极134和多个中间子电极133一一对应。例如,多个中间子电极133一一对应地设置在多个环状子电极134所围绕的空间中,也即,多个环状子电极134的每个环绕对应的一个中间子电极133。
例如,如图5和图10B所示,在第一方向D1上,多个环状子电极134的每个位于相邻的两个第一触控子电极111之间,对应地,多个中间子电极133的每个位于相邻的两个第一触控子电极111之间;在第二方向D2上,多个环状子电极134的每个位于相邻的两个第二触控子电极121之间,对应地,多个中间子电极133的每个位于相邻的两个第二触控子电极121之间。需要说明的是,相邻的两个第一触控子电极111表示上述相邻的两个第一触控子电极111之间没有设置其它的第一触控子电极111或其它的第二触控子电极112。
图12B是图5所示的触控传感器01包括的部分区域REG4的另一个示意图;图12C是沿图12B所示的CC’线的截面示意图;图12D是沿图12B所示的DD’线的截面示意图。需要说明的是,图12B所示的触控传感器01包括的部分区域REG4的结构与图10B所示的触控传感器01包括的部分区域REG4的结构相同,图12B用于更清楚的示出CC’线和DD’线的位置。
例如,如图5、图10B、图12B和图12C所示,位于第三区域413的每个连接子电极32的两端分别与对应的一个第二触控子电极121和对应的一个中间子电极133电连接;对 应地,位于第三区域413的相邻的两个第二触控子电极121经由中间子电极133(例如,一个中间子电极133)和连接子电极32(例如,至少两个连接子电极32)彼此电连接。
例如,如图12B和图12C所示,位于第三区域413的每个连接子电极32(例如,连接子电极32的第一端)与对应的中间子电极133在垂直于触控传感器01的方向上位于不同的电极层且部分交叠;连接子电极32(例如,连接子电极32的第二端)与对应的第二触控子电极121在垂直于触控传感器01的方向上位于不同的电极层且部分交叠;在垂直于触控传感器01的方向上,连接子电极32与中间子电极133和第二触控子电极121所在的电极层之间具有绝缘层35,连接子电极32(例如,连接子电极32的第一端)经由绝缘层35中的过孔与对应的中间子电极133电连接,连接子电极32(例如,连接子电极32的第二端)经由绝缘层35中的过孔与对应的中间子电极133电连接。
例如,如图5、图10B、图12B和图12D所示,位于第三区域413的每个连接子电极31与对应的一个第一触控子电极111和对应的一个环状子电极134电连接;对应地,位于第三区域413的多个第一触控电极11的每个中,相邻的两个第一触控子电极111经由位于相邻的两个第一触控子电极111之间的环状子电极134(例如,一个环状子电极134)和对应的连接子电极31(例如,至少两个连接子电极31)彼此电连接。
例如,如图12B和图12D所示,位于第三区域413的每个连接子电极31(例如,连接子电极31的第一端)与对应的中间子电极133在垂直于触控传感器01的方向上位于不同的电极层,且部分交叠;在垂直于触控传感器01的方向上,连接子电极31与对应的中间子电极133之间具有绝缘层35,连接子电极31经由绝缘层35中的过孔与对应的中间子电极133电连接。例如,如图12B和图12D所示,位于第三区域413的每个连接子电极31(例如,连接子电极31的第二端)与对应的第一触控子电极111在垂直于触控传感器01的方向上位于不同的电极层,并且,在垂直于触控传感器01的方向上,连接子电极31与对应的第一触控子电极111之间具有绝缘层35,连接子电极31经由绝缘层35中的过孔与对应的第一触控子电极111电连接。
例如,如图5、图8、图10A和图10B所示,通过使得位于第一区域411的相邻的两个第二触控子电极121之间直接经由对应的连接子电极32彼此电连接,位于第一区域411的相邻的两个第二触控子电极121之间可以不设置环状子电极134和中间子电极133,由此可以降低位于第一区域411的相邻的两个第二触控子电极121在第二方向D2上的间距(相比于位于第三区域413的相邻的两个第二触控子电极121之间的间距)。
例如,如图5、图8、图10A和图10B所示,位于第一区域411的相邻的两个第二触控子电极121在第二方向D2上的间距小于位于第三区域413的相邻的两个第二触控子电极121在第二方向D2上的间距。例如,相邻的两个第二触控子电极121在第二方向D2上的间距是指:平行于第二方向D2的虚拟直线与相邻的两个第二触控子电极121在第二方向D2上相邻的两条边的两个交点的虚拟连线之间的间距。例如,如图10A所示,位于第一区域411的相邻的两个第二触控子电极121在第二方向D2上的间距为d3;如图10B所示,位于第三区域413的相邻的两个第二触控子电极121在第二方向D2上的间距为d4, 并且d3小于d4。
例如,通过减小位于第一区域411的相邻的两个第二触控子电极121在第二方向D2上的间距,可以使得第一区域411的更多空间用于设置第二触控子电极121和第一触控子电极111,此种情况下,可以在不降低触控传感器01的位于第一区域411的部分的触控分辨率的情况下提升第二触控子电极121和第一触控子电极111的面积(例如,有效电极面积),由此可以进一步的提升触控传感器01的位于第一区域411的部分提供的触控信号的信噪比。
例如,如图5、图8、图10A和图10B所示,位于第一区域411的相邻的两个第二触控子电极121经由对应的第一数目的连接子电极32电连接;位于第三区域413的相邻的两个第二触控子电极121经由对应的第二数目的连接子电极32电连接。例如,如图5、图8、图10A和图10B所示,第一数目小于第二数目。例如,位于第三区域413的相邻的两个第一触控子电极111经由对应的第三数目的连接子电极31电连接。例如,第二数目等于第三数目,但本公开的实施例不限于此。
例如,如图5、图8、图10A和图10B所示,第一数目为二,第二数目和第三数目为四(也即,第一区域411采用了两桥式触控桥方案,第三区域413采用了八桥式触控桥方案),由此可以提升触控传感器01的可靠性。需要说明的是,第一数目不限于为二,第二数目不限于为四,根据实际应用需求,第一数目和第二数目还可以分别设置为一和二或者设置为其它适用的数目,在此不再赘述。
例如,如图10A所示,位于第一区域411的相邻的两个第二触控子电极121经由对应的两个、在第一方向D1上并列布置(例如,彼此平行)的连接子电极32电连接,但本公开的实施例不限于此。
例如,如图10B所示,位于第三区域413的多个第一触控电极11中,相邻的两个第一触控子电极111经由位于相邻的两个第一触控子电极111之间的环状子电极134和对应的第三数目的连接子电极31彼此电连接;第三数目等于四;对应的第三数目的连接子电极31排布为两行两列;对应的第三数目的连接子电极31中位于同一列的两个连接子电极32用于电连接对应的一个第一触控子电极111和对应的一个环状子电极134;对应的第三数目的连接子电极31中位于同一列的两个连接子电极32的延伸方向彼此交叉;对应的第三数目的连接子电极31中位于同一行的两个连接子电极32的延伸方向彼此交叉。例如,如图9和图10B所示,多个第一触控电极11的每个包括适用数目的连接子电极31。
例如,如图10B所示,位于第三区域413的相邻的两个第二触控子电极121经由对应的四个连接子电极32电连接;对应的四个连接子电极32排布为两行两列;对应的四个连接子电极32中位于同一行的两个连接子电极32电连接对应的一个第二触控子电极121和对应的一个中间子电极133;对应的四个连接子电极32中位于同一列的两个连接子电极32的延伸方向彼此交叉;对应的四个连接子电极32中位于同一行的两个连接子电极32的延伸方向彼此交叉。
例如,如图10A和图10B所示,位于第一区域411的每个连接子电极32的面积大于 位于第三区域413的每个连接子电极32的面积。例如,如图10A和图10B所示,位于第一区域411的每个连接子电极32的长度大于位于第三区域413的每个连接子电极32的长度。例如,如图10A和图10B所示,位于第一区域411的每个连接子电极32的宽度大于等于位于第三区域413的每个连接子电极32的宽度。
例如,如图9、图10A和图10B所示,多个第二触控电极12的每个包括适用数目的连接子电极32。
图13是图2所示的显示装置03包括的触控传感器01的叠层结构示意图。如图13所示,该触控传感器01包括在垂直于触控传感器01的方向上(例如,显示装置的显示面的法线方向)顺次设置的第一电极层10、绝缘层35和连接电极层20。
例如,如图12A、图12C、图12D和图13所示,多个第一触控子电极111、多个第二触控子电极121、多个环状子电极134和多个中间子电极133均位于同一电极层(例如,第一电极层10),且与同一膜层(例如,绝缘层35)接触;多个连接子电极31和多个连接子电极32均位于同一电极层(例如,连接电极层20),且与同一膜层(例如,绝缘层35)接触。
例如,第一电极层10由透明导电材料制成。例如,透明导电材料可以选自氧化铟锡(ITO)、氧化铟锌(IZO)等透明金属氧化物。例如,连接电极层20由透明导电材料或金属材料制成。例如,金属材料可以选自银(Ag)、铝(Al)、钼(Mo)、钛(Ti)、铝合金或者其它适合的材料。例如,绝缘层35可以包括无机绝缘材料或者有机绝缘材料。例如,无机绝缘材料可以为氧化硅、氮化硅、氮氧化硅的一种或任意组合;有机绝缘材料可以为聚酰亚胺、聚酞亚胺、聚酞胺、丙烯酸树脂、苯并环丁烯或酚醛树脂的一种或任意组合。
例如,如图13所示,触控传感器01还可以包括第二电极层30。例如,第二电极层30包括上述的跨接导线21和跨接导线22(参见下面的图20B)。例如,如图13所示,第二电极层30例如设置在第一电极层10和绝缘层35之间。例如,第二电极层30(例如,第二电极层30的表面)和第一电极层10(例如,第一电极层10的表面)直接接触,由此可以简化触控传感器01的制造工艺。例如,第二电极层30由金属材料制成。
例如,如图13所示,触控传感器01还可以包括透明基材36。例如,该透明基材36设置在第一电极层10的远离连接电极层20的一侧。例如,透明基材36可以由环烯烃聚合物(Cyclo Olefin Polymer,COP)或其它适用的材料制成。
在一些示例中,图13所示的触控传感器01还可以包括图6C和图6D所示的防护层176(图13未示出),防护层176位于连接电极层20的远离透明基材36的一侧(例如,连接电极层20的远离透明基材36的表面上)。
需要说明的是,在一些示例中,多个第一触控子电极111、多个第二触控子电极121、多个环状子电极134和多个中间子电极133均位于多个电极层,在此不做赘述。
例如,如图5、图8、图10A和图10B所示,相邻的第一触控子电极111和第二触控子电极121的边缘分别具有对应的弯折结构131;位于第一区域411的相邻的第一触控子 电极111和第二触控子电极121彼此交叉且具有第一交叉深度;位于第三区域413的相邻的第一触控子电极111和第二触控子电极121彼此交叉且具有第二交叉深度;第一交叉深度大于第二交叉深度。
例如,如图5、图8、图10A和图10B所示,在相邻的两个第一触控子电极111和第二触控子电极121中,第一触控子电极111的边缘与第二触控子电极121的与第一触控子电极111的边缘具有相同的延伸方向(在任意位置处)。例如,如图5、图8、图10A和图10B所示,在相邻的两个第一触控子电极111和第二触控子电极121中,第一触控子电极111的边缘包括多个顺次相接的第一线段L1(例如,直线线段),第二触控子电极121的与第一触控子电极111的边缘包括多个顺次相接的第二线段L2(例如,直线线段);多条第一线段L1和多条第二线段L2一一对应且彼此对置;多条第一线段L1的每个与对应的第二线段L2具有相同的延伸方向;两个相邻(例如,任意两个相邻)的第一线段L1彼此相交,两个相邻(例如,任意两个相邻)的第二线段L2彼此相交;相邻(例如,任意两个相邻)的第一线段L1和第二线段L2彼此平行。
例如,如图10A和图10B所示,第一触控子电极111和第二触控子电极121的交叉深度是指:在相邻的两条第一线段中,两条第一线段的交点到第一条第一线段的不与第二条第一线段接触的端点与第二条第一线段的不与第一条第一线段接触的端点之间的虚拟连线之间的距离;第一交叉深度cd1是指位于第一区域411的相邻的第一触控子电极111和第二触控子电极121的交叉深度的最大值;第二交叉深度cd2是指位于第三区域413的相邻的第一触控子电极111和第二触控子电极121的交叉深度的最大值;如图10A和图10B所示,cd1小于cd2。
例如,通过使得第一交叉深度cd1大于第二交叉深度cd2,可以提升位于第一区域411的相邻的第一触控子电极111和第二触控子电极121的交叉面积,并因此可以提升第一区域411的触控信号量。
需要说明的是,尽管图6A-图11、图12A-图12D以及其它相关附图所示的显示装置03的触控传感器01的触控子电极111和触控子电极121均采用透明导电材料制成,但本公开的实施例不限于此。例如,根据实际应用需求,尽管图6A-图11、图12A-图12D以及其它相关附图所示的显示装置03的触控传感器01的触控子电极111和触控子电极121的至少一个还可以由金属网格线(Metal Mesh)制成。
需要说明的是,尽管图6A-图11、图12A-图12D以及其它相关附图所示的显示装置03的触控传感器01的第一区域411同时采用以下三种设计来提升第一区域411的触控信号量:两桥设计,增加相邻的触控子电极111和触控子电极121的交叉深度,以及降低相邻的触控子电极111和触控子电极121之间的间距(例如,降低相邻的触控子电极111和触控子电极121之间的虚拟电极数目),但本公开的实施例不限于此。例如,根据实际应用需求,图6A-图11、图12A-图12D以及其它相关附图所示的显示装置03的触控传感器01的第一区域411还可以采用上述三种设计的任意一种或者任意两种。
在一个示例中,可以仅通过采用两桥设计来提升第一区域411的触控信号量。在上述 示例中,触控传感器包括开口区域421、多个第一触控电极11,多个第二触控电极12和多个连接子电极32。开口区域421的中心和触控传感器的中心不重合;多个第一触控电极11分别沿第一方向D1延伸,且多个第一触控电极11的至少一个包括在第一方向D1并列布置且彼此电连接的多个第一触控子电极111;多个第二触控电极12分别沿与第一方向D1交叉的第二方向D2延伸,且多个第二触控电极12的至少一个包括在第二方向D2并列布置且彼此电连接的多个第二触控子电极121;多个第一触控电极11沿第二方向D2并列排布,多个第二触控电极12沿第一方向D1并列排布;多个第一触控子电极111和多个第二触控子电极121整体上至少部分围绕开口区域421;触控传感器01具有在第二方向D2上顺次布置的第一区域411、第二区域412和第三区域413;开口区域421位于第二区域412;位于第一区域411的相邻的第二触控子电极121之间经由对应的第一数目的连接子电极32电连接;位于第三区域413的相邻的第二触控子电极121之间经由对应的第二数目的连接子电极32电连接,第二数目大于第一数目。
在另一个示例中,可以仅通过降低相邻的触控子电极111和触控子电极121之间的间距(例如,降低相邻的触控子电极111和触控子电极121之间的虚拟电极数目)来提升第一区域411的触控信号量。在上述另一个示例中,该触控传感器包括开口区域421、多个第一触控电极11和多个第二触控电极12。开口区域421的中心和触控传感器的中心不重合;多个第一触控电极11分别沿第一方向D1延伸,且多个第一触控电极11的至少一个包括在第一方向D1并列布置且彼此电连接的多个第一触控子电极111;多个第二触控电极12分别沿与第一方向D1交叉的第二方向D2延伸,且多个第二触控电极12的至少一个包括在第二方向D2并列布置且彼此电连接的多个第二触控子电极121;多个第一触控电极11沿第二方向D2并列排布,多个第二触控电极12沿第一方向D1并列排布;多个第一触控子电极111和多个第二触控子电极121整体上至少部分围绕开口区域421;触控传感器01具有在第二方向D2上顺次布置的第一区域411、第二区域412和第三区域413;开口区域421位于第二区域412;位于第一区域411的相邻的第一触控子电极111和第二触控子电极121的间距小于位于第三区域413的相邻的第一触控子电极111和第二触控子电极121的间距。
在再一个示例中,本公开的至少一个实施例提供的触控传感器01还可以不采用提升第一区域411的触控信号量的技术方案,而仅使得位于开口区域421两侧的第一区域411和第三区域413均包括第一触控子电极111和第二触控子电极121。在上述再一个示例中,该触控传感器包括开口区域421、多个第一触控电极11和多个第二触控电极12。开口区域421的中心012和触控传感器的中心011不重合;多个第一触控电极11分别沿第一方向D1延伸,且多个第一触控电极11的至少一个包括在第一方向D1并列布置且彼此电连接的多个第一触控子电极111;多个第二触控电极12分别沿与第一方向D1交叉的第二方向D2延伸,且多个第二触控电极12的至少一个包括在第二方向D2并列布置且彼此电连接的多个第二触控子电极121;多个第一触控电极11沿第二方向D2并列排布,多个第二触控电极12沿第一方向D1并列排布;多个第一触控子电极111和多个第二触控子电极121 整体上至少部分围绕开口区域421;触控传感器01具有在第二方向D2上顺次布置的第一区域411、第二区域412和第三区域413;开口区域421位于第二区域412;位于第一区域411的第一触控子电极111的面积小于位于第三区域413的第一触控子电极111的面积或者位于第一区域411的第二触控子电极121的面积小于位于第三区域413的第二触控子电极121的面积。例如,通过使得位于开口区域421两侧的第一区域411和第三区域413均包括第一触控子电极111和第二触控子电极121,可以提升触控传感器的有效触控面积,由此可以提升用户的使用体验。
在一些示例中,该触控传感器01包括开口区域422、多个第一触控电极11、多个第二触控电极12、至少一根跨接导线21和至少一个第一导电电极211。开口区域422的中心和触控传感器01的中心不重合;多个第一触控电极11分别沿第一方向D1延伸,且多个第一触控电极11的至少一个包括在第一方向D1并列布置且彼此电连接的多个第一触控子电极111;多个第二触控电极12分别沿与第一方向D1交叉的第二方向D2延伸,且多个第二触控电极12的至少一个包括在第二方向D2并列布置且彼此电连接的多个第二触控子电极121;多个第一触控电极11沿第二方向D2并列排布,多个第二触控电极12沿第一方向D1并列排布;多个第一触控子电极111和多个第二触控子电极121整体上至少部分围绕开口区域422;多个第一触控电极11的至少一个被开口区域422间隔为电极部分112和电极部分113;电极部分112和电极部分113的每个包括至少一个第一触控子电极111;电极部分112和电极部分113在第一方向D1上位于开口区域422的两侧;至少一根跨接导线21至少部分围绕开口区域422;至少一个第一导电电极211分别与至少一根跨接导线21的靠近电极部分112的端部直接相连;至少一根跨接导线21的至少一根的线宽小于与至少一根跨接导线21的至少一根相连的第一导电电极211的与至少一根跨接导线21的至少一根相连的边的边长;以及电极部分112和电极部分113至少经由对应的连接子电极31、对应的第一导电电极211和对应的跨接导线21彼此电连接。
例如,通过设置至少一根第一跨接导线21,可以使得第一触控电极11的被开口区域间隔的两个部分彼此电连接,由此可以避免因开口区域导致的部分第一触控电极11所在的区域的触控不良。
例如,通过设置第一导电电极211,并使得第一导电电极211的尺寸(边长)大于比跨接导线21的线宽,可以使得电极部分112和跨接导线21更好的电连接。
在一些示例中,触控传感器01还包括至少一根第一跨接导线22。例如,通过设置至少一根第一跨接导线22,可以使得第二触控电极12的被开口区域间隔的两个部分彼此电连接,由此可以避免因开口区域导致的部分第二触控电极12所在的区域的触控不良。
下面结合图14A-图19对被开口区域422间隔为两个部分(例如,电极部分126和电极部分127)的第二触控电极12连接方式进行示例性说明;在此之后,将对被开口区域422间隔为两个部分(例如,电极部分112和电极部分113)的第一触控电极11连接方式进行示例性说明。
图14A是图4所示的显示装置03的触控传感器01包括的部分区域REG1的又再一个 示意图;图14B是用于示出本公开的至少一个实施例提供的第一触控电极11的被开口区域422间隔的两个电极部分经由跨接导线电连接的示意图。图15是图14A所示的触控传感器01的部分区域REGL1的平面示意图;图16是图15所示的触控传感器01的部分区域REGL3的平面示意图;图17是图14A所示的触控传感器01的部分区域REGL2的平面示意图;图18是图17所示的触控传感器01的部分区域REGL4的平面示意图;图19是图17所示的触控传感器01的部分区域REGL5的平面示意图。
例如,如图14A-图19所示,多个第二触控电极12的一个被开口区域422间隔为电极部分126_1和电极部分127_1,多个第二触控电极12的另一个被开口区域422间隔为电极部分126_2和电极部分127_2;至少一根跨接导线22包括并列布置的多根跨接导线22(例如,跨接导线22_1和跨接导线22_2);电极部分126_1和电极部分127_1经由跨接导线22_1彼此电连接;多电极部分126_2和电极部分127_2经由跨接导线22_2彼此电连接。
例如,如图14A-图19所示,跨接导线22_1的两端分别与电极部分126_1(例如,电极部分126_1包括的至少一个第二触控子电极121)和电极部分127_1(例如,电极部分127_1包括的至少一个第二触控子电极121)直接接触,由此电极部分126_1上的信号可以经由跨接导线22_1传递到电极部分127_1上。
例如,如图14A-图19所示,跨接导线22_2的两端分别与电极部分126_2(例如,电极部分126_2包括的至少一个第二触控子电极121)和电极部分127_2(例如,电极部分127_2包括的至少一个第二触控子电极121)直接接触,由此电极部分126_2上的信号可以经由跨接导线22_2传递到电极部分127_2上。
例如,如图14A-图19所示,电极部分126包括的至少一个第二触控子电极121和对应的跨接导线22在垂直于触控传感器01的方向上位于不同的电极层,且对应的跨接导线22靠近电极部分126的端部与电极部分126包括的至少一个第二触控子电极121的表面直接接触;电极部分127包括的至少一个第二触控子电极121和对应的跨接导线22在垂直于触控传感器01的方向上位于不同的电极层,且对应的跨接导线22靠近电极部分127的端部与电极部分127包括的至少一个第二触控子电极121的表面直接接触。
例如,至少一根跨接导线22(例如,跨接导线22_1和跨接导线22_2)可以由金属材料制成,此种情况下,可以降低电极部分126和电极部分127之间的通道阻抗(例如,电阻),由此可以使得电信号可以更容易的通过上述至少一根跨接导线22,并因此可以提升触控性能。
例如,如图14A-图19所示,跨接导线22_2的长度(例如,物理长度)大于跨接导线22_1的长度。例如,如图14A-图16所示,跨接导线22_2的部分区域与跨接导线22_1在第二方向D2上彼此重合;相比于跨接导线22_1,跨接导线22_2的与跨接导线22_1在第二方向D2上彼此重合的部分在第二方向D2上更靠近开口区域422的中心,也即,跨接导线22的长度与跨接导线22与开口区域422在第二方向D2上的中心在第二方向D2上的距离负相关;跨接导线22的长度与跨接导线22与开口区域422在第一方向D1上的中心在第一方向D1上的距离负相关。
需要说明的是,为了清楚的示出用于电连接第一触控电极11的被开口区域422间隔的两个电极部分的跨接导线,图14B夸大了部分结构(例如,夸大了跨接导线的线宽),因此,图14B仅用于示出电连接第一触控电极11的被开口区域422间隔的两个电极部分的跨接导线22以及多根跨接导线22的排布方式,而不作为对于跨接导线22的形状,第二触控子电极121的形状等的限制。
例如,如图14A、图10A和图10B所示,电极部分126包括的相邻的两个第一触控子电极111和电极部分127包括的相邻两个的第一触控子电极111分别至少经由对应的连接子电极32彼此电连接。
下面结合图14A、图20A和图20B对被开口区域422间隔为两个电极部分(例如,电极部分112和电极部分113)的第一触控电极11的连接方式做示例性说明。
图20A是图14A所示的触控传感器01的部分区域REGL6的平面示意图;图20B是沿图20A的FF’线的截面示意图;图20C是沿图20A的FF’线的另一种截面示意图。例如,如图14A和图20A所示,多个第一触控电极11的至少一个被开口区域422间隔为两个电极部分(例如,电极部分112和电极部分113);触控传感器01还包括至少一根跨接导线21,至少一根跨接导线21至少部分围绕(例如,部分围绕)开口区域422;电极部分112和电极部分113经由至少一根跨接导线21和转接触控电极15彼此电连接。
例如,通过设置至少一根第一跨接导线21和转接触控电极15,可以使得第一触控电极11的被开口区域间隔的两个电极部分彼此电连接,由此可以避免因开口区域导致的部分第一触控电极11所在的区域的触控不良。
例如,如图14A和图20A所示,转接触控电极15的至少部分位于开口区域422和开口区域421之间,且包括在第一方向D1上并列布置且彼此电连接的转接触控子电极151和转接触控子电极152。例如,转接触控电极15还包括用于电连接转接触控子电极151和转接触控子电极152的连接子电极31。
例如,如图14A和图20A所示,转接触控子电极151至少部分围绕开口区域422,转接触控子电极152至少部分围绕(例如,完全围绕)开口区域421。例如,如图14A所示,转接触控子电极151设置在开口区域422的中心的靠近开口区域421的一侧,且部分围绕开口区域422。
例如,如图14A和图20A所示,电极部分112和转接触控子电极151至少经由至少一根跨接导线21和对应的连接子电极31彼此电连接;转接触控子电极151和转接触控子电极152之间经由对应的连接子电极31彼此电连接;转接触控子电极152和电极部分113经由对应的连接子电极31彼此电连接。
在一些示例中,图20A所示的触控传感器01还可以包括如图36所示的裂纹阻挡环29和裂纹阻挡环292(图20A未示出),此种情况下,沿图20A的FF’线的截面示意图如图20B所示,在此不再赘述。
下面结合图14A、图20A和图20B对电极部分112和转接触控子电极151的电连接方式做示例性说明。
例如,如图20A和图20B所示,触控传感器还包括第一导电电极211,第一导电电极211与跨接导线21的靠近电极部分112的端部直接相连。例如,第一导电电极211(例如,导电块)与跨接导线21由相同材料制成且位于同一电极层(例如,第二电极层30),且与同一膜层(例如,绝缘层35)接触;例如,第一导电电极211与跨接导线21为一体结构。例如,第一导电电极211与跨接导线21一体成型,也即,第一导电电极211和跨接导线21在同一图案化工艺中形成,且两者之间不存在界面。
例如,如图20A所示,第一导电电极211在第二方向D2上的对置的两个边中的一个边(也即,靠近跨接导线21的边)和与第一导电电极211相连的跨接导线21的端部(也即,靠近第一导电电极211的端部)与直接相连。
例如,第一导电电极211在第一方向D1上的对置的两个边的边长和与第一导电电极211相连的跨接导线21的线宽的比值为16-400。
例如,如图20A和图20B所示,电极部分112和第一导电电极211经由对应的连接子电极31和环状子电极134彼此电连接。需要说明的是,在一些示例中,还可以将环状子电极134作为电极部分112的一部分。此处,为了更清楚的描述信号的传递过程,将环状子电极134和电极部分112作为两个部件进行描述,但本公开的实施例不限于此。
例如,如图20A和图20B所示,环状子电极134与电极部分112包括的至少一个第一触控子电极111经由与电极部分112包括的至少一个第一触控子电极111和环状子电极134对应的连接子电极31电连接;环状子电极134与对应的第一导电电极211经由对应的连接子电极31(也即,与环状子电极134和对应的第一导电电极211对应的连接子电极31)电连接。
例如,如图20A和图20B所示,第一导电电极211和对应的连接子电极31位于不同的电极层且部分交叠;在垂直于触控传感器01的方向上,第一导电电极211和对应的连接子电极31之间具有绝缘层35,第一导电电极211和对应的连接子电极31的第一端经由绝缘层35中的过孔彼此电连接。例如,如图20A所示,第一导电电极211和两个在第二方向D2上并列布置的连接子电极31电连接。
例如,如图20A和图20B所示,上述对应的连接子电极31的第二端与对应的环状子电极134经由绝缘层35中的过孔彼此电连接。例如,如图20A和图20B所示,与第一导电电极211电连接的环状子电极134与电极部分112(例如,电极部分112包括的至少一个第一触控子电极111)经由对应的连接子电极31和绝缘层35中的过孔彼此电连接。
例如,如图14A、图20A和图20B所示,电极部分112(例如,电极部分112包括的至少一个第一触控子电极111)上的信号可以顺次经由连接子电极31、环状子电极134、连接子电极31、第一导电电极211、跨接导线21传递到转接触控子电极151上。
例如,如图20A和图20B所示,与环状子电极134和对应的第一导电电极211对应的连接子电极31(也即,用于电连接环状子电极134和对应的第一导电电极211的连接子电极31)的数目大于等于2;与环状子电极134和对应的第一导电电极211对应的连接子电极31在第二方向D2上并列布置;与环状子电极134和对应的第一导电电极211对应的连 接子电极31中位于最外侧的两个连接子电极31的在第二方向D2上彼此远离的两个边之间的间距小于对应的第一导电电极211在第二方向D2上的对置的两个边的间距。
例如,与环状子电极134和对应的第一导电电极211对应的连接子电极31的至少一个在第二方向D2上的对置的两个边的间距(也即,连接子电极31在第二方向D2上的宽度)为20微米-200微米。例如,与环状子电极134和对应的第一导电电极211对应的连接子电极31中相邻的两个连接子电极31在第二方向D2上相邻的边的间距为5微米-100微米。例如,至少一个第一导电电极211在第一方向D1上的对置的两个边的间距为0.08毫米-2.0毫米;至少一个第一导电电极211在第二方向D2上的对置的两个边的间距为0.08毫米-2.0毫米。
例如,如图20A和图20B所示,跨接导线22与环状子电极134和对应的第一导电电极211对应的连接子电极31(也即,用于电连接环状子电极134和对应的第一导电电极211的连接子电极31)在垂直于触控传感器01的方向上部分重叠。
例如,如图20B所示,触控传感器的第一电极层10还包括彼此间隔的多个虚拟电极137。
例如,如图14A和图20A所示,跨接导线21的远离电极部分112的端部与转接触控子电极151直接相连。例如,跨接导线21的远离电极部分112的端部与转接触控子电极151直接接触。例如,跨接导线21的远离电极部分112的端部与第一转接触控子电极151在垂直于触控传感器01的方向上位于不同的电极层;跨接导线21的远离电极部分112的端部与第一转接触控子电极151的表面直接接触。
例如,如图14A和图20A所示,相比于跨接导线21,跨接导线22更远离开口区域422的边缘,此种情况下,跨接导线21和跨接导线22可以位于同一电极层,且与同一膜层(例如,绝缘层35)接触,而不会导致第一触控电极11和第二触控电极12短接,由此可以简化触控传感器01的结构和制造工艺。
例如,至少一根跨接导线21可以由金属材料制成,此种情况下,可以降低电极部分112和转接触控子电极151之间的通道阻抗(例如,电阻),由此可以使得电信号可以更容易的通过上述至少一根跨接导线21,并因此可以提升触控性能。
在一个示例中,如图20B所示,跨接导线21、跨接导线22和第一导电电极211位于同一电极层,由此可以简化触控传感器01的结构和制造工艺,但本公开的实施例不限于此,在另一个示例中,跨接导线21、跨接导线22和第一导电电极211还可以分别位于多个电极层。
下面结合图14A、图29A和图29B对转接触控子电极151和转接触控子电极152的电连接方式做示例性说明。
例如,如图14A、图29A和图29B所示,转接触控子电极151和转接触控子电极152经由对应的连接子电极31电连接;转接触控子电极151和对应的连接子电极31位于不同的电极层且部分交叠;在垂直于触控传感器01的方向上,转接触控子电极151和对应的连接子电极31之间具有绝缘层35,转接触控子电极151和对应的连接子电极31的第一端经 由绝缘层35中的过孔彼此电连接。例如,如图14A、图29A和图29B所示,转接触控子电极152和对应的连接子电极31位于不同的电极层且部分交叠;在垂直于触控传感器01的方向上,转接触控子电极152和对应的连接子电极31之间具有绝缘层35,转接触控子电极152和对应的连接子电极31的第二端经由绝缘层35中的过孔彼此电连接。
例如,如图29B所示,转接触控子电极151和转接触控子电极152位于同一电极层,且与同一膜层(例如,绝缘层35)接触,由此可以简化触控传感器01的结构和制造工艺,但本公开的实施例不限于此,转接触控子电极151和转接触控子电极152还可以分别位于不同的电极层。例如,转接触控子电极151和转接触控子电极152均位于第一电极层10。例如,转接触控子电极151和转接触控子电极152、多个第一触控子电极111、多个第二触控子电极121、多个环状子电极134、多个中间子电极133均位于同一电极层。
例如,如图14A、图29A和图29B所示,转接触控子电极151上的信号可以经由连接子电极31传递到转接触控子电极152上。
例如,如图14A、图29A和图29B所示,转接触控子电极151和转接触控电极16之间设置了虚拟电极135,转接触控子电极152和转接触控电极16之间设置了虚拟电极136,也即,触控传感器还包括虚拟电极135和虚拟电极136。例如,通过设置虚拟电极135和虚拟电极136,可以更好的控制转接触控子电极151和转接触控电极16之间的间距以及转接触控子电极152和转接触控电极16之间的间距,由此可以更好的控制转接触控电极15和转接触控电极16提供的触控感应信号的信噪比。
例如,如图29所示,虚拟电极135包括多个弯折结构1351,多个第一凸起部161设置在对应的弯折结构1351中;虚拟电极136包括多个弯折结构1361,多个第二凸起部162设置在对应的弯折结构1361中。
下面结合图14A、图26A和图26B对转接触控子电极152和电极部分113的电连接方式做示例性说明。
例如,如图14A所示,转接触控子电极152完全围绕开口区域421。例如,通过使得转接触控子电极152完全围绕开口区域421,可以在转接触控子电极152和电极部分113之间没有设置额外的跨接导线的情况下使得转接触控子电极152和电极部分113彼此电连接。
例如,如图14A、图26A和图26B所示,电极部分113(例如,电极部分113包括的最靠近电极部分112的第一触控子电极111)与转接触控子电极152经由对应的连接子电极31(例如,两个在第二方向D2上并列布置的连接子电极31)彼此电连接。
例如,如图14A、图26A和图26B所示,转接触控子电极152和对应的连接子电极31位于不同的电极层且部分交叠;在垂直于触控传感器01的方向上,转接触控子电极152和上述对应的连接子电极31之间具有绝缘层35,转接触控子电极152和上述对应的连接子电极31的第一端经由绝缘层35中的过孔彼此电连接。例如,如图14A、图26A和图26B所示,电极部分113(例如,电极部分113包括的最靠近电极部分112的第一触控子电极111)和上述对应的连接子电极31位于不同的电极层且部分交叠;在垂直于触控传感器01 的方向上,电极部分113(例如,电极部分113包括的最靠近电极部分112的第一触控子电极111)和上述对应的连接子电极31之间具有绝缘层35,电极部分113(例如,电极部分113包括的最靠近电极部分112的第一触控子电极111)和上述对应的连接子电极31的第二端经由绝缘层35中的过孔彼此电连接。
例如,如图14A、图26A和图26B所示,转接触控子电极152上的信号可以经由连接子电极31传递到电极部分113上。
例如,如图14A、图20A、图20B、图26A、图26B、图29A和图29B所示,电极部分112(例如,电极部分112包括的最靠近电极部分113的第一触控子电极111)上的信号可以顺次经由连接子电极31、环状子电极134、连接子电极31、第一导电电极211、跨接导线21、转接触控子电极151、连接子电极31、转接触控子电极152和连接子电极31传递到电极部分113(例如,电极部分113包括的最靠近电极部分112的第一触控子电极111)上。
需要说明的是,电极部分112和电极部分113不限于经由跨接导线21、转接触控电极15和对应的连接子电极31彼此电连接,在一些示例(例如,触控传感器仅包括开口区域422而不包括开口区域421或者开口区域422和开口区域421之间未设置转接触控电极15)中,电极部分112和电极部分113可以经由跨接导线21和对应的连接子电极31彼此电连接,而不经由转接触控电极15。
例如,如图14A、图10A和图10B所示,电极部分112包括的相邻的两个第一触控子电极111和电极部分113包括的相邻的两个第一触控子电极111分别经由对应的连接子电极31和环状子电极133彼此电连接。
尽管图14A-图19、图20A、图20B以及其它相关附图所示的显示装置03的触控传感器01同时设置了跨接导线21和跨接导线22,但本公开的实施例不限于此。例如,根据实际应用需求,图14A-图19、图20A、图20B以及其它相关附图所示的显示装置03的触控传感器01还可以仅设置跨接导线21和跨接导线22的任意一种;此种情况下,可以将被开口区域断开的第一触控电极11的两个部分电连接或者将被开口区域断开的第二触控电极12的两个部分电连接。
在一些示例中,如图8和图9所示,触控传感器包括开口区域422、开口区域421、多个第一触控电极11和多个第二触控电极12。开口区域422和开口区域421间隔设置;开口区域422的中心013与触控传感器的中心011不重合,开口区域421的中心012与触控传感器的中心011不重合;多个第一触控电极11分别沿第一方向D1延伸,且多个第一触控电极11的至少一个包括在第一方向D1并列布置且彼此电连接的多个第一触控子电极111;多个第二触控电极12分别沿与第一方向D1交叉的第二方向D2延伸,且多个第二触控电极12的至少一个包括在第二方向D2并列布置且彼此电连接的多个第二触控子电极121;多个第一触控电极11沿第二方向D2并列排布,多个第二触控电极12沿第一方向D1并列排布;多个第一触控子电极111和多个第二触控子电极121整体上至少部分围绕开口区域421和开口区域421;多个第一触控电极11的至少一个包括转接触控电极15;多个第二触 控电极12的一组第二触控电极12的每个包括转接触控电极16;转接触控电极15的至少部分位于开口区域422和开口区域421之间,且包括在第一方向D1上并列布置且彼此电连接的转接触控子电极151和转接触控子电极152;转接触控子电极151至少部分围绕开口区域422,转接触控子电极152至少部分围绕开口区域421;转接触控电极16的至少部分位于转接触控子电极151和转接触控子电极152之间,且沿第二方向D2延伸。
例如,通过在开口区域422和开口区域421之间设置转接触控电极15和转接触控电极16,使得触控传感器01可以识别出在触控传感器01的位于开口区域422和开口区域421之间的区域执行的触控操作,由此提升了用户的使用体验。下面结合图21-图23对转接触控电极15和转接触控电极16的结构做示示例性说明。
图21是图8所示的触控传感器01的部分区域REG5的平面示意图。例如,如图21所示,开口区域422朝向开口区域421的第一边缘具有第一形状,并且转接触控子电极151朝向第一边缘的边缘整体也具有第一形状;开口区域421朝向开口区域422的第二边缘具有第二形状,并且转接触控子电极152朝向第二边缘的边缘整体也具有第二形状。例如,如图21所示,第一形状不同于第二形状,但本公开的实施例不限于此,在一些示例中,第一形状与第二形状相同。
例如,如图21所示,开口区域422的形状为跑道形,开口区域421的形状为圆形;对应地,第一形状为跑道形的部分,第二形状为圆形的部分。需要说明的是,开口区域422的形状和开口区域421的形状不限于分别为跑道形和圆形,根据实际应用需求,开口区域422的形状和开口区域421的形状可以均为跑道形、圆形或者其它适用的形状。
例如,如图21所示,转接触控电极16的靠近转接触控子电极151的边缘包括朝向转接触控子电极151凸出的多个第一凸起部161;转接触控电极16的靠近转接触控子电极152的边缘包括朝向转接触控子电极152凸出的多个第二凸起部162;转接触控子电极151的靠近转接触控电极16的边缘包括多个第一凹陷部1511;转接触控子电极152的靠近转接触控电极16的边缘包括多个第二凹陷部1521;多个第一凸起部161一一对应地设置在多个第一凹陷部1511中;多个第二凸起部162一一对应地设置在多个第二凹陷部1521中;此种情况下,转接触控电极16的靠近转接触控子电极151的边缘包括的多个第一凸起部161被转接触控子电极151包围,转接触控电极16的靠近转接触控子电极152的边缘包括的多个第二凸起部162被转接触控子电极152包围。
例如,通过使得多个第一凸起部161一一对应地设置在多个第一凹陷部1511中,可以更有效的利用开口区域422的形状和开口区域421之间的区域并可以增加转接触控电极16和转接触控子电极151之间的互电容,通过使得多个第二凸起部162一一对应地设置在多个第二凹陷部1521中,可以更有效的利用开口区域422的形状和开口区域421之间的区域并可以增加转接触控电极16和转接触控子电极151之间的互电容;此种情况下,可以提升触控传感器01的位于开口区域422和开口区域421之间的部分提供的触控感应信号的信噪比以及可以提升触控传感器01的位于开口区域422和开口区域421之间的部分的触控性能。
例如,如图21所示,多个第一凸起部161在第二方向D2上顺次布置;多个第二凸起部162在第二方向D2上顺次布置;转接触控电极16的靠近转接触控子电极151的边缘还包括多个第三凹陷部163;转接触控电极16的靠近转接触控子电极152的边缘还包括多个第四凹陷部164。例如,如图21所示,多个第三凹陷部163和多个第四凹陷部164一一对应。例如,如图21所示,多个第三凹陷部163的每个的底部和与个第三凹陷部163的每个对应的第四凹陷部164的底部在第一方向D1上重叠。
例如,如图21所示,相邻的两个(例如,任意相邻的两个)第一凸起部161之间具有一个第三凹陷部163,相邻的两个(例如,任意相邻的两个)第二凸起部162之间具有一个第四凹陷部164。
例如,如图21所示,第三凹陷部163的底部和第四凹陷部164的底部在第一方向D1上的间距小于多个第一凸起部161和多个第二凸起部162中任一个在第一方向D1上的尺寸;此种情况下,可以在开口区域422和开口区域421之间的区域的面积固定的情况下增加第一凸起部161和第二凸起部162在第一方向D1上的尺寸,由此可以增加转接触控电极16和转接触控子电极151之间的互电容以及转接触控电极16和转接触控子电极152之间的互电容,并可以进一步地提升触控传感器01的位于开口区域422和开口区域421之间的部分提供的触控感应信号的信噪比以及可以提升触控传感器01的位于开口区域422和开口区域421之间的部分的触控性能(例如,触控灵敏度)。
例如,多个第一凸起部161和多个第二凸起部162一一对应;多个第一凸起部161的每个的顶点与对应的第二凸起部162的顶点在第一方向D1上之间的距离小于开口区域422的边缘和开口区域421的边缘在第一方向D1上的最小距离。
例如,开口区域422的边缘和开口区域421的边缘在第一方向D1上的最小距离是指开口区域422的边缘的最接近开口区域421的点与开口区域421的边缘的最接近开口区域422的点在第一方向D1上的距离。
需要说明的是,两个点在第一方向D1上的距离是指分别过两个点的垂直于第一方向D1的虚拟直线的距离。
例如,多个第一凸起部161的每个的顶点与对应的第二凸起部162的顶点在第一方向D1上之间的距离是指经过多个第一凸起部161的每个的顶点的垂直于第一方向D1的虚拟直线以及经过对应的第二凸起部162的顶点的垂直于第一方向D1的虚拟直线之间的间距。
例如,多个第一凸起部161的每个的顶点与对应的第二凸起部162的顶点在第一方向D1上的距离小于多个第一触控子电极111的至少一个的在第一方向D1上相距最远的两个点在第一方向D1上的间距或多个第二触控子电极121的至少一个的在第一方向D1上相距最远的两个点在第一方向D1上的间距。
例如,多个第一凸起部161和多个第二凸起部162中任一个在第一方向D1上的尺寸大于对应的第三凹陷部163的底部和第四凹陷部164的底部在第一方向D1上的间距的三倍。
例如,图22A示出了图21所示的触控传感器01的转接触控电极16的放大后的图形。 如图22A所示,多个第三凹陷部163的底部均位于平行于第二方向D1的第一虚拟直线1631上,多个第四凹陷部164的底部均位于平行于第二方向D1的第二虚拟直线1641上,第一虚拟直线1631平行于第二虚拟直线1641;此种情况下,第三凹陷部163的底部和第四凹陷部164的底部在第一方向D1上的间距d_c是指第一虚拟直线1631和第二虚拟直线1641在第一方向D1上的间距;第一凸起部161在第一方向D1上的尺寸s1是指第一凸起部161的顶部与第一虚拟直线1631(或者第一凸起部161的底部)在第一方向D1上的间距;第二凸起部162在第一方向D1上的尺寸s2是指第二凸起部162的顶部与第二虚拟直线1641(或者第二凸起部162的底部)在第一方向D1上的间距。
例如,多个第一凸起部161的尺寸相同,多个第二凸起部162的尺寸相同。例如,多个第一凸起部161的尺寸和多个第二凸起部162的尺寸相同(例如,均为第一尺寸)。例如,第一尺寸为第三凹陷部163的底部和第四凹陷部164的底部在第一方向D1上的间距d_c的3-12(例如,5、8、10)倍。
例如,如图21和图22A所示,转接触控子电极151和转接触控子电极152之间经由对应的连接子电极31彼此电连接(参见下面的图29B)。例如,如图21和图22A所示,用于电连接转接触控子电极151和转接触控子电极152的连接子电极31与对应的第三凹陷部163的底部和对应的第四凹陷部164的底部交叠,此种情况下,可以缩短连接子电极31在第一方向D1上的尺寸,由此可以降低连接子电极31对显示装置03显示质量的影响。
例如,如图21所示,转接触控子电极151和转接触控子电极152之间经由多个在第二方向D2上并列布置的连接子电极31彼此电连接。例如,如图21所示,转接触控电极16包括在第二方向D2并列布置且彼此电连接多个转接触控子电极165。例如,多个转接触控子电极165为一体结构,也即,多个转接触控子电极165在同一图案化工艺中由相同材料形成,且相邻的转接触控子电极165之间没有界面。
例如,如图21所示,用于电连接转接触控子电极151和转接触控子电极152的多个连接子电极31的每个的两侧分别设置一个转接触控子电极165。例如,如图21所示,多个转接触控子电极165的每个包括至少一个第一凸起部161和至少一个第二凸起部162;至少一个第一凸起部161和至少一个第二凸起部162一一对应;任意两个相邻的转接触控子电极165直接相连。
需要说明的是,转接触控子电极151和转接触控子电极152之间不限于经由三个连接子电极31彼此电连接;例如,用于电连接转接触控子电极151和转接触控子电极152的连接子电极31的数目大于等于1小于等于多个第四凹陷部164的数目;又例如,根据实际应用需求,转接触控子电极151和转接触控子电极152之间可以经由一个、五个或其它适用数目的连接子电极31彼此电连接。
例如,多个第一凸起部161和多个第二凸起部162中任一个的顶点到多个第一凸起部161和多个第二凸起部162中任一个的底部之间的距离(也即,多个第一凸起部161和多个第二凸起部162中任一个在第一方向D1上的尺寸)大于第三凹陷部163的底部和对应的第四凹陷部164的底部在第一方向D1上的间距的三倍。
例如,第一凸起部161的底部是指在第二方向D2上位于该第一凸起部161两侧的两个第三凹陷部163底部的虚拟连线(例如,第一虚拟直线1631)。例如,第二凸起部162的底部是指在第二方向D2上位于该第二凸起部162两侧的两个第四凹陷部164底部的虚拟连线(例如,第二虚拟直线1641)。
例如,多个第一凸起部161的至少一个的顶点到多个第一凸起部161的至少一个的底部之间的距离为0.5毫米-1.0毫米,多个第二凸起部162的至少一个的顶点到多个第二凸起部162的至少一个的底部之间的距离为0.5毫米-1.0毫米。
例如,转接触控子电极151靠近转接触控电极16的边缘与转接触控电极16靠近转接触控子电极151的边缘之间的间距(垂直于转接触控子电极151的边缘的延伸方向的间距)为40微米-90微米。
例如,多个第一凸起部161的数目为3个-12个,多个第二凸起部162的数目为3个-12个。
图22B示出了图21所示的触控传感器的转接触控电极的另一个放大后的图形。例如,如图22B所示,多个第一凸起部161的侧边(或侧表面)相对于第二方向D2的倾角α1为30°-85°,多个第二凸起部162的侧边(或侧表面)相对于第二方向D2的倾角α2为30°-85°。例如,多个第一凸起部161和多个第二凸起部162的侧表面包括圆锥面,但本公开的实施例不限于此。
例如,开口区域422的中心013和开口区域421的中心012在第一方向D1的间距与多个第一触控子电极111中面积最大的第一触控子电极111(或者多个第二触控子电极121中面积最大的第二触控子电极121)在第一方向D1上相距最远的两个点在第一方向D1上的间距的比值为2-3。
图23是图9所示的触控传感器01的部分区域REG5的平面示意图。例如,如图23所示,转接触控子电极152完全围绕开口区域421;转接触控子电极152具有内边缘1522和外边缘1523;转接触控子电极152的内边缘1522完全围绕开口区域421。
例如,如图23所示,转接触控子电极152的内边缘1522的形状与开口区域421的形状相同。例如,转接触控子电极152的内边缘1522的形状与开口区域421的形状均为圆形。
例如,通过使得转接触控子电极152完全围绕开口区域421,可以增加转接触控子电极152的面积(例如,有效电极面积),由此可以提升信号量和触控传感器01的触控性能。
例如,转接触控子电极151、转接触控子电极152和转接触控电极16可以位于同一电极层(例如,第一电极层10),且与同一膜层(例如,绝缘层35)接触,由此可以简化触控传感器01的结构和制造工艺,但本公开的实施例不限于此,例如,转接触控子电极151、转接触控子电极152和转接触控电极16还可以位于两个以上的电极层。
在一个示例中,转接触控子电极151、转接触控子电极152、转接触控电极16、多个第一触控子电极111、多个第二触控子电极121、多个环状子电极134和多个中间子电极133均由透明导电材料制成;此种情况下,转接触控子电极151、转接触控子电极152、转接触控电极16、多个第一触控子电极111、多个第二触控子电极121、多个环状子电极134 和多个中间子电极133可以在同一工艺(例如,图案化工艺)制成,且与同一膜层的同一表面接触(例如,均与基材36的靠近第一电极层10的表面接触)。
在另一个示例中,由于转接触控子电极151、转接触控子电极152和转接触控电极16所在区域为开口区域422的形状和开口区域421之间的区域,并且,显示装置的对应于开口区域422的形状和开口区域421之间的区域的区域不用于显示,因此,转接触控子电极151、转接触控子电极152、转接触控电极16可以由金属材料制成;多个第一触控子电极111、多个第二触控子电极121、多个环状子电极134和多个中间子电极133由透明导电材料制成;此种情况下,形成转接触控子电极151、转接触控子电极152和转接触控电极16的图案化工艺与形成多个第一触控子电极111、多个第二触控子电极121、多个环状子电极134和多个中间子电极133的图案化工艺在不同的时刻完成。
例如,转接触控子电极151、转接触控子电极152和转接触控电极16所在的电极层与多个第一触控子电极111、多个第二触控子电极121、多个环状子电极134和多个中间子电极133所在的电极层在垂直于触控传感器01的方向上叠置。又例如,转接触控子电极151、转接触控子电极152和转接触控电极16所在的电极层与多个第一触控子电极111、多个第二触控子电极121、多个环状子电极134和多个中间子电极133所在的电极层为同一电极层,也即,转接触控子电极151、转接触控子电极152、转接触控电极16、多个第一触控子电极111、多个第二触控子电极121、多个环状子电极134和多个中间子电极133与同一膜层的同一表面接触(例如,均与基材36的靠近第一电极层10的表面接触),但是,制造转接触控子电极151、转接触控子电极152和转接触控电极16的材料和制造多个第一触控子电极111、多个第二触控子电极121、多个环状子电极134和多个中间子电极133的材料不同。
在一些示例中,该触控传感器01包括开口区域421、多个第一触控电极11、多个第二触控电极12和导电结构23。开口区域421的中心和触控传感器01的中心不重合;多个第一触控电极11分别沿第一方向D1延伸,且多个第一触控电极11的至少一个包括在第一方向D1并列布置且彼此电连接的多个第一触控子电极111;多个第二触控电极12分别沿与第一方向D1交叉的第二方向D2延伸,且多个第二触控电极12的至少一个包括在第二方向D2并列布置且彼此电连接的多个第二触控子电极121;多个第一触控电极11沿第二方向D2并列排布,多个第二触控电极12沿第一方向D1并列排布;多个第一触控子电极111和多个第二触控子电极121整体上至少部分围绕开口区域421;多个第二触控电极12中的一组第二触控电极12的每个还包括转接触控电极14;转接触控电极14在第二方向D2上延伸,且沿第二方向D2部分围绕开口区域421;经过开口区域421的中心的且沿第一方向D1延伸的虚拟直线1451与转接触控电极14在第一方向D1对置的两个边分别相交于第一位置1452和第二位置1453,且第一位置1452和第二位置1453之间的距离小于多个第二触控子电极121中的至少一个在第一方向D1上的最大宽度;导电结构23位于转接触控电极14的表面上,且至少部分围绕所述开口区域421的边缘,与转接触控电极14电连接。
例如,通过在转接触控电极14的表面上设置第一导电结构23,并使得第一导电结构23与转接触控电极14电连接(例如,在第二方向D2上并联),可以降低转接触控电极14所在区域的通道阻抗(例如,降低转接触控电极14所在区域的电阻),提升转接触控电极14的所在区域的可靠性(例如,降低断路的可能性)。例如,通过降低转接触控电极14的通道阻抗,可以提升转接触控电极14的电荷导通性,使得电信号(电荷)更容易的通过转接触控电极14,由此可以提升触控传感器01的对应于转接触控电极14的区域的触控性能以及降低转接触控电极14所在区域存在因静电释放(ESD)静电击穿导致的触控不良的可能性。
下面结合图24-图28、图29A和图29B进行示例性说明。
图24是图4所示的显示装置03的触控传感器01包括的部分区域REG1的又再一个示意图;图25是图24所示的转接触控电极14的平面示意图;图26A是图24所示的部分区域REGE1的平面示意图;图26B是沿图26A所示的GG’线的截面示意图。图27是图24所示的部分区域REGE3的平面示意图。
例如,如图24-图26A所示,触控传感器01(例如,触控传感器01包括的多个第二触控电极12中的至少一个)包括转接触控电极14,至少部分围绕所述开口区域421的边缘,且沿第二方向D2部分围绕开口区域421。例如,转接触控电极14和开口区域421的边缘在第二方向D2部分重叠。
例如,转接触控电极14在第二方向D2上延伸。例如,转接触控电极14在第二方向D2上延伸并不表示转接触控电极14平行于第二方向D2,而是指转接触控电极14在第二方向D2上的长度大于转接触控电极14在第一方向D1上的宽度。
例如,如图24-图26A所示,经过开口区域421的中心的且沿第一方向D1延伸的虚拟直线1451与转接触控电极14在第一方向D1对置的两个边分别相交于第一位置1452和第二位置1453,且第一位置1452和第二位置1453之间的距离小于多个第二触控子电极121中的至少一个(例如,多个第二触控子电极121中的每个)在第一方向D1上的最大宽度。
例如,多个第二触控子电极121中的至少一个在第一方向D1上的最大宽度是指多个第二触控子电极121中的至少一个在第一方向D1上相距最远的两个点在第一方向D1上的距离。需要说明的是,两个点在第一方向D1上的距离是指分别过两个点的垂直于第一方向D1的虚拟直线的距离。
例如,由于第一位置1452和第二位置1453之间的距离较小,转接触控电极14在第一方向D1上的宽度较小,因此,在不设置导电结构23的情况下,触控传感器01的对应于转接触控电极14的部分的通道阻抗较大(相比于第二触控子电极121的通道阻抗)。
例如,转接触控电极14的电阻大于多个第二触控子电极121中的至少一个(例如,多个第二触控子电极121中的每个)的电阻。
例如,转接触控电极14在第二方向D2上的最大长度大于多个第二触控子电极121的至少一个(例如,多个第二触控子电极121中的每个)在第二方向D2上的最大长度,由此进一步地增加了转接触控电极14的电阻。
例如,如图25所示,转接触控电极14在第二方向D2上的最大长度是指转接触控电极14在第二方向D2上相距最远的两个点(例如,点1461和点1462)在第二方向D2上的距离。
需要说明的是,两个点(例如,点1461和点1462)在第二方向D2上的距离是指分别过两个点(例如,点1461和点1462)的垂直于第二方向D2的虚拟直线(例如,虚拟直线1463和虚拟直线1464)的距离。
例如,多个第二触控子电极121的至少一个在第二方向D2上的最大长度是指多个第二触控子电极121的至少一个在第二方向D2上相距最远的两个点)在第二方向D2上的距离。
例如,如图24-图26A所示,转接触控电极14包括转接触控子电极141和转接触控子电极142。例如,如图24-图26A所示,转接触控子电极141和转接触控子电极142在第二方向D2上并列布置。例如,如图24-图26A所示,转接触控子电极141和转接触控子电极142直接相连。例如,转接触控子电极141和转接触控子电极142为一体结构,也即,转接触控子电极141和转接触控子电极142在同一图案化工艺中由相同的材料形成,且转接触控子电极141和转接触控子电极142之间不存在界面。
例如,如图24-图26A所示,开口区域421包括与转接触控电极14相邻的弧形边缘部分;转接触控电极14的靠近开口区域421的一侧的整体轮廓为与开口区域421的弧形边缘部分平行的弧形边缘部分。例如,转接触控电极14的靠近开口区域421的一侧的整体轮廓为与开口区域421的弧形边缘部分平行的弧形边缘部分是指:转接触控电极14的靠近开口区域421的一侧的整体轮廓(例如,平滑后的轮廓)为弧形,该弧形与开口区域421的弧形边缘部分具有相同的形状和相同的延伸趋势。
例如,如图24、图26A和图26B所示,第一导电结构23设置在转接触控电极14的表面上。例如,如图26B所示,第一导电结构23和转接触控电极14直接接触,也即,第一导电结构23和转接触控电极14彼此电连接。例如,如图24、图26A和图26B所示,第一导电结构23与转接触控电极14电连接(例如,在第二方向D2上并联)。
例如,通过在转接触控电极14的表面上设置第一导电结构23,并使得第一导电结构23与转接触控电极14电连接(例如,在第二方向D2上并联),可以降低转接触控电极14所在区域的通道阻抗(例如,降低转接触控电极14所在区域的电阻)以及提升转接触控电极14所在区域的电荷导通性。此种情况下,包括转接触控电极14的第二触控电极12的远端(也即,远离触控电路或触控芯片的一端)的通道阻抗较低。
例如,第一导电结构23的方阻小于转接触控电极14的方阻,由此可以进一步地降低转接触控电极14所在区域的通道阻抗(例如,降低转接触控电极14所在区域的电阻)。此外,如图24和图26A所示,第一导电结构23沿第二方向D2延伸,此种情况下,第一导电结构23可以使得电荷在第二方向D2上均匀地分布在转接触控电极14上,由此第一导电结构23可以协助电荷(电信号)通过转接触控电极14。
例如,如图24、图26A和图26B所示,第一导电结构23与连接子电极31(例如,两 个连接子电极31)在垂直于触控传感器01的方向上部分重叠,并且第一导电结构23的在第二方向D2上的两个端部分别位于连接子电极31(例如,两个连接子电极31)在第二方向D2上的两侧;此种情况下,第一导电结构23协助电荷通过转接触控电极14的与连接子电极31在垂直于触控传感器01的方向上重叠的区域,由此可以降低转接触控电极14的与连接子电极31在垂直于触控传感器01的方向上重叠的区域存在触控不良的可能性。
例如,第一导电结构23可以降低因静电释放(例如,静电击穿)导致的触控不良的可能性。
例如,第一导电结构23可以由金属材料制成,转接触控电极14可以由透明导电材料制成,由此可以使得第一导电结构23的方阻小于转接触控电极14的方阻。
例如,如图24-图27所示,转接触控电极14的至少部分设置在开口区域421和第二部分113之间;转接触控电极14在第一方向D1上具有远离第二部分113的第一侧143和靠近第二部分113的第二侧144;第一导电结构23设置在转接触控电极14的位于第一侧143的边缘。例如,通过使得第一导电结构23设置在转接触控电极14的位于第一侧143的边缘(也即,转接触控电极14的远离第二部分113的边缘),可以在第一导电结构23由金属材料制成的情况下降低第一导电结构23对显示装置的有效显示区域发出光线的遮挡,由此可以提升显示效果。
例如,如图26A和图26B所示,触控传感器01还包括第二导电结构24,第二导电结构24至少设置在转接触控电极15的至少位于开口区域421和转接触控电极14之间的部分的表面上。例如,第二导电结构24与转接触控电极15的至少位于开口区域421和转接触控电极14之间的部分直接接触,也即,第二导电结构24与转接触控电极15的至少位于开口区域421和转接触控电极14之间的部分彼此电连接。例如,如图24和图26A所示,第二导电结构24与转接触控电极15的至少位于开口区域421和转接触控电极14之间的部分电连接(例如,并联),由此可以降低转接触控电极15的至少位于开口区域421和转接触控电极14之间的部分所在区域的通道阻抗(例如,电阻)。
例如,如图24、图26A和图26B所示,第二导电结构24设置在转接触控子电极152的表面上,至少部分围绕开口区域421,且与转接触控子电极152电连接(例如,并联),由此第二导电结构24可以降低转接触控子电极152所在区域的通道阻抗(例如,电阻),提升转接触控子电极152所在区域的电荷导通性。
例如,第二导电结构24的方阻小于转接触控子电极152的方阻,由此可以进一步地转接触控子电极152所在区域的通道阻抗(例如,电阻)。例如,第二导电结构24可以由金属材料制成,转接触控子电极152可以由透明导电材料制成,由此可以使得第二导电结构24的方阻小于转接触控子电极152的方阻。
例如,如图24所示,第二导电结构24完全围绕开口区域421。例如,如图24-图27所示,转接触控子电极152包括内边缘1522和外边缘1523;相比于转接触控子电极152的内边缘1522,第二导电结构24更靠近转接触控子电极152的外边缘1523,且沿转接触控子电极152的外边缘1523延伸。
例如,如图24、图26A和图26B所示,第二导电结构24与连接子电极31(例如,两个连接子电极31)在垂直于触控传感器01的方向上重叠,并且第二导电结构24的两个端部分别位于连接子电极31(例如,两个连接子电极31)在第二方向D2上的两侧;此种情况下,第二导电结构24协助电荷通过转接触控子电极152的与第二导电结构24在垂直于触控传感器01的方向上重叠的区域,由此可以降低转接触控子电极152的与第二导电结构24在垂直于触控传感器01的方向上重叠的区域存在触控不良的可能性。例如,第二导电结构24可以降低因静电释放(例如,静电击穿)导致的触控不良的可能性。
需要说明的是,第二导电结构24不限于完全围绕开口区域421,在一些示例中,第二导电结构24可以部分围绕开口区域421。
例如,如图26A和图27所示,第一导电结构23和第二导电结构24的与第一导电结构23相邻的部分分别具有对应的弯折结构231。例如,如图26A和图27所示,第二导电结构24的靠近第一导电结构23的部分与第一导电结构23具有相同的延伸方向。例如,如图26A和图27所示,第一导电结构23包括顺次相接的多条第一导电线段(例如,直线线段),第二导电结构24包括顺次相接的多条第二导电线段(例如,直线线段);多条第一导电线段和多条第二导电线段一一对应且彼此对置;多条第一导电线段的每个与对应的第二导电线段具有相同的延伸方向。例如,如图26A和图27所示,两个相邻(例如,任意两个相邻)的第一导电线段彼此相交,两个相邻(例如,任意两个相邻)的第二导电线段彼此相交;相邻(例如,任意两个相邻)的第一导电线段和第二导电线段彼此平行。
例如,如图24、图26A和图27所示,顺次相接的多条第一导电线段构成第二导电结构24的部分,且在第一方向D1上位于开口区域421的中心的远离开口区域422的中心的一侧。
图28是图24所示触控传感器的部分区域REGE2的平面示意图。例如,如图28所示,触控传感器01还包括第三导电结构25,第三导电结构25设置在转接触控子电极151的表面上。例如,第三导电结构25和转接触控子电极151直接接触。例如,如图28所示,第三导电结构25与转接触控子电极151电连接(例如,并联),由此可以降低转接触控子电极151所在区域的通道阻抗(例如,电阻),提升转接触控子电极151所在区域的电荷导通性。
例如,第三导电结构25的方阻小于转接触控子电极151的方阻,由此可以进一步地降接触控子电极151所在区域的通道阻抗(例如,电阻)。例如,第二导电结构25可以由金属材料制成,接触控子电极151可以由透明导电材料制成,由此可以使得第二导电结构25的方阻小于接触控子电极151的方阻。
例如,如图28所示,转接触控子电极151设置在开口区域422的中心的靠近开口区域421的一侧,且部分围绕开口区域422;转接触控子电极151包括靠近开口区域422的第三侧1512和远离开口区域422的第四侧1513;第三导电结构25至少沿转接触控子电极151的位于第三侧1512的边缘延伸。
例如,如图24和图28所示,转接触控子电极151和第一部分112经由跨接导线21 电连接。例如,第三导电结构25和跨接导线21位于同一电极层(例如,第二电极层30)且由相同的材料制成;例如,第三导电结构25和跨接导线21在同一图案化工艺中形成,由此可以简化触控传感器01的结构和制造工艺。例如,第三导电结构25和跨接导线21直接相连。例如,第三导电结构25和跨接导线21为一体化结构,也即,第三导电结构25和跨接导线21在同一图案化工艺中由相同材料形成。例如,第三导电结构25和跨接导线21之间不存在界面。
例如,第三导电结构25不限于仅沿转接触控子电极151的位于第三侧1512的边缘延伸,在一些示例中,第三导电结构25还可以沿转接触控子电极151的位于第四侧1513的边缘延伸。
图29A是图28所示触控传感器的部分区域REGE4的平面示意图;图29B是沿图29A所示的EE’线的截面示意图。
例如,如图28、图29A和图29B所示,触控传感器01还包括第四导电结构26,第四导电结构26设置在转接触控电极16的表面上。例如,第四导电结构26和转接触控电极16直接接触。
例如,如图28、图29A和图29B所示,第四导电结构26与转接触控电极16电连接(例如,并联),且沿转接触控电极16在第一方向D1上的两个对置的边缘的至少一个延伸。例如,通过将第四导电结构26设置在转接触控电极16的表面上,并使得第四导电结构26与转接触控电极16电连接(例如,并联),可以降低转接触控电极16所在区域的通道阻抗(例如,电阻),提升转接触控电极16所在区域的电荷导通性。
例如,第四导电结构26的方阻小于转接触控电极16的方阻,由此可以进一步地降低转接触控电极16所在区域的通道阻抗(例如,电阻)。例如,第四导电结构26可以由金属材料制成,转接触控电极16可以由透明导电材料制成,由此可以使得第四导电结构26的方阻小于转接触控电极16的方阻。
例如,如图28、图29A和图29B所示,转接触控电极16在第一方向D1上包括靠近转接触控子电极151的第五侧166和远离转接触控子电极151的第六侧167;转接触控电极16的位于第五侧166的边缘包括朝向转接触控子电极151凸出的多个第一凸起部161;转接触控电极16的位于第六侧167的边缘包括朝向转接触控子电极152凸出的多个第二凸起部162;转接触控子电极151的位于第四侧1513的边缘(也即,靠近转接触控电极16的边缘)包括多个第一凹陷部1511;转接触控子电极152的靠近转接触控电极16的边缘包括多个第二凹陷部1521;多个第一凸起部161一一对应地设置在多个第一凹陷部1511中,多个第二凸起部162一一对应地设置在多个第二凹陷部1521中。
例如,如图28、图29A和图29B所示,第四导电结构26包括第一导电子结构261和第二导电子结构262;第一导电子结构261沿转接触控电极16的位于第五侧166的边缘延伸,且包括多个第二弯折结构2611;第二导电子结构262沿转接触控电极16的位于第六侧167的边缘延伸,且包括多个第三弯折结构2621;多个第二弯折结构2611一一对应地设置在多个第一凹陷部1511中,多个第三弯折结构2621一一对应地设置在多个第二凹陷 部1521中。
例如,如图28、图29A和图29B所示,第一导电子结构261和第二导电子结构262分别与连接子电极31(例如,两个连接子电极31)在垂直于触控传感器01的方向上部分重叠,第一导电子结构261的)在第二方向D2上的两个端部分别位于连接子电极31(例如,两个连接子电极31)在第二方向D2上的两侧,第二导电子结构262的)在第二方向D2上的两个端部分别位于连接子电极31(例如,两个连接子电极31)在第二方向D2上的两侧;此种情况下,第一导电子结构261和第二导电子结构262协助电荷通过转接触控电极16的与第一导电子结构261和第二导电子结构262在垂直于触控传感器01的方向上重叠的区域,由此可以降低转接触控电极16的与第一导电子结构261和第二导电子结构262在垂直于触控传感器01的方向上重叠的区域存在触控不良的可能性。例如,第一导电子结构261和第二导电子结构262可以降低因静电释放(例如,静电击穿)导致的触控不良的可能性。
例如,第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26由相同的材料(例如,金属材料)制成且在同一图案化工艺中形成,由此可以简化触控传感器01的结构和制造工艺。例如,第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26位于同一电极层,且与相同的膜层直接接触。
例如,跨接导线21、跨接导线22、第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26由相同的材料(例如,金属材料)制成且在同一图案化工艺中形成,由此可以进一步地简化触控传感器01的结构和制造工艺,避免触控传感器01的制造成本增加。例如,跨接导线21、跨接导线22、第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26均位于图13所示的第二电极层30中。例如,跨接导线21、跨接导线22、第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26均与同一膜层接触(例如,均与图13所示的绝缘层35接触)。
例如,如图24-图29A所示,跨接导线21、跨接导线22、第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26均实现为导线,但本公开的实施例不限于此。例如,上述导线的线宽位于3微米-8微米(例如,5微米)。
例如,第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26至少一个(例如,全部)可以实现为片状金属电极结构。例如,片状金属电极结构的平均宽度大于30微米(例如,50微米,100微米或200微米)。例如,通过第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26至少一个实现为片状金属电极结构,可以进一步地降低进一步地提升第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26至少一个对应的转接触控电极所在区域的通道阻抗,进一步地提升第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26至少一个对应的转接触控电极所在区域的电荷导通性,由此可以进一步地降低第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26至少一个对应的转接触控电极所在区域存在因静电释放(例如,静电击穿)导致的触控不良的可能性,提升第一导电结构23、第二导电结构24、 第三导电结构25和第四导电结构26至少一个对应的转接触控电极所在区域的可靠性。
在一个示例中,第二导电结构24可以设置在转接触控子电极152的整个表面上,且与转接触控子电极152具有相同或相似的形状;第三导电结构25可以设置在转接触控子电极151的整个表面上,且与转接触控子电极151具有相同或相似的形状;第四导电结构26可以设置在转接触控电极16的整个表面上,且与转接触控电极16具有相同或相似的形状。
例如,第一导电结构23可以设置在转接触控电极14的整个表面上,且与转接触控电极14具有相同或相似的形状。又例如,转接触控电极14包括对应于显示装置03的有效显示区域的第一部分以及对应于显示装置03的无效显示区域414(参见图24)的第二部分;第一导电结构23可以设置在转接触控电极14的第二部分的整个表面上。例如,如图24所示,显示装置03的有效显示区域围绕(例如,完全围绕)显示装置03的无效显示区域。例如,如图24所示,显示装置03的无效显示区域对应于开口区域421,开口区域422,开口区域421和开口区域422之间的区域,围绕开口区域421和开口区域422的过渡区域以及用于设置跨接导线21和22和第一导电结构23的区域。例如,显示装置03的无效显示区域不用于形成显示图像。
需要说明的是,尽管图24-图28、图29A和图29B以及其它附图所示的显示装置03的触控传感器01同时设置了第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26,但本公开的实施例不限于此。例如,根据实际应用需求,图24-图28、图29A和图29B以及其它附图所示的显示装置03的触控传感器01还可以设置第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26的任意一个、任意两个或任意三个。
需要说明的是,在本公开的至少一个实施例提供的触控传感器01中,第一位置1452和第二位置1453之间的距离不限于小于多个第二触控子电极121中的至少一个在第一方向D1上的最大宽度。
在一些示例中,触控传感器01包括开口区域421、多个第一触控电极11、多个第二触控电极12和导电结构23。开口区域421的中心012和触控传感器01的中心011不重合;多个第一触控电极11分别沿第一方向D1延伸,且多个第一触控电极11的至少一个包括在第一方向D1并列布置且彼此电连接的多个第一触控子电极111;多个第二触控电极12分别沿与第一方向D1交叉的第二方向D2延伸,且多个第二触控电极12的至少一个包括在第二方向D2并列布置且彼此电连接的多个第二触控子电极121;多个第一触控电极11沿第二方向D2并列排布,多个第二触控电极12沿第一方向D1并列排布;多个第一触控子电极111和多个第二触控子电极121整体上至少部分围绕开口区域421;多个第二触控电极12中的一组第二触控电极12的每个还包括转接触控电极14;转接触控电极14在第二方向D2上延伸,且沿第二方向D2部分围绕开口区域421;触控传感器01包括沿第二方向D2顺次布置的第一区域411、第二区域412和第三区域413;转接触控电极14的至少部分和开口区域421位于第二区域中;转接触控电极14的电阻大于第一区域411中第二触控子电极121的电阻;以及导电结构23位于转接触控电极14的表面上,且至少部分围绕所述开口区域421的边缘,与转接触控电极14电连接。
例如,位于第一区域411的第一触控子电极111的面积小于位于第三区域413的第一触控子电极111的面积或者位于第一区域411的第二触控子电极121的面积小于位于第三区域413的第二触控子电极121的面积。
例如,转接触控电极14的电阻大于第三区域413中第二触控子电极121的电阻。
在一些示例中,该触控传感器01包括多个第一触控电极11、多个第二触控电极12和裂纹阻挡环2。多个第一触控电极11的分别沿第一方向D1延伸,且多个第一触控电极11的至少一个包括在第一方向D1并列布置且彼此电连接的多个第一触控子电极111;多个第二触控电极12的分别沿与第一方向D1交叉的第二方向D2延伸,且多个第二触控电极12的至少一个包括在第二方向D2并列布置且彼此电连接的多个第二触控子电极121;多个第一触控电极11沿第二方向D2并列排布,多个第二触控电极12沿第一方向D1并列排布;触控传感器具有开口区域421以及从开口区域421的中心向外依次布置的过渡区域424和触控功能区域423;开口区域421的中心和触控传感器的中心不重合;触控功能区域423围绕过渡区域424;多个第一触控电极11和多个第二触控电极12位于触控功能区域423;多个第一触控子电极111和多个第二触控子电极121整体上至少部分围绕开口区域421;裂纹阻挡环27位于过渡区域424且至少部分围绕开口区域421。例如,通过在触控传感器01的过渡区域424设置裂纹阻挡环27,可以降低对显示装置打孔形成的裂纹延伸至触控传感器01的触控功能区的可能性,由此可以降低触控传感器01存在因裂纹导致的不良的可能性。下面结合图30-图36、图26A和图26B进行示例性说明。
图30是图4所示的显示装置03的触控传感器01包括的部分区域REG1的又再一个示意图;图31A是图30所示的触控传感器01的部分区域REGR1的一个平面示意图;图32是图30所示的触控传感器01的部分区域REGR1的另一个平面示意图;图33是本公开的至少一个实施例提供的裂纹阻挡环27的部分的平面示意图。
例如,如图30所示,触控传感器01具有开口区域421、开口区域422、过渡区域424、过渡区域425和触控功能区域423。例如,如图30所示,过渡区域424和触控功能区域423从开口区域421的中心向外依次布置;触控功能区域423围绕过渡区域424;过渡区域424围绕开口区域421。例如,触控功能区域423和过渡区域424彼此间隔。例如,触控功能区域423和过渡区域424被位于触控功能区域423和过渡区域424之间的刻蚀槽(图30未示出,参见图26B)间隔。
例如,触控功能区域423是用于设置触控电极以及跨接导线的区域。例如,如图30所示,多个第一触控电极11、多个第二触控电极12、转接触控电极14、转接触控电极15、转接触控电极16、跨接导线21和跨接导线22位于触控功能区域423。例如,在触控传感器01还设置了第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26的情况下,由于第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26分别设置在对应的转接触控电极上,因此,如图30、图31A、图26B和图29B所示,第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26也设置在于触控功能区域423。
例如,如图26B和图30-图33所示,裂纹阻挡环27位于过渡区域424且至少部分围绕(例如,完全围绕或部分围绕)开口区域421。例如,通过在过渡区域424设置至少部分围绕(开口区域421的裂纹阻挡环27,可以抑制因形成(激光切割)开口区域421导致的裂纹进入触控功能区域423,由此可以抑制因裂纹导致的触控不良。
例如,裂纹阻挡环27为金属环。例如,由于金属具有良好的导热特性,通过使得裂纹阻挡环27为金属环,在对显示装置03进行激光打孔(激光切割)时,可以降低激光导致的热应力,因此可以降低在对显示装置03进行激光打孔(激光切割)时在开口区域421区域周围形成裂纹的可能性,由此可以提升裂纹阻挡环27对裂纹的抑制效果。例如,由于金属具有良好的延展性特性,通过使得裂纹阻挡环27为金属环,可以降低裂纹在后续的贴合工序中进一步扩展的可能性,由此可以提升裂纹阻挡环27对裂纹的抑制效果。
需要说明的是,图30示出的裂纹阻挡环27用于示出裂纹阻挡环27的大致位置而不用于限定裂纹阻挡环27的具体位置或具体结构。例如,裂纹阻挡环27的具体位置和具体结构的示例可以参见图31A-图33。
例如,如图31A所示,裂纹阻挡环27的内边缘272围绕开口区域421的边缘4211,但本公开的实施例不限于此。在一些示例中,如图32所示,裂纹阻挡环27与开口区域421的边缘4211重合。
例如,如图32所示,在形成开口区域421之前(也即,打孔之前),切割线(也即,对应于开口区域421的边缘4211)围绕用于形成裂纹阻挡环27的环的内边缘;在形成开口区域421之后(也即,打孔之后),用于形成裂纹阻挡环27的环的位于切割线之内的部分被切割掉,此种情况下,裂纹阻挡环27与开口区域421的边缘4211重合。
例如,裂纹阻挡环27为导电环,且裂纹阻挡环27具有至少一个断口271,至少一个断口271的每个具有尖端;此种情况下,位于触控传感器01的对应于裂纹阻挡环27的区域的静电荷可以经由至少一个断口271的每个包括的尖端释放,由此可以降低开口区域421周围的有效触控区域存在因静电击穿导致的触控功能不良的可能性。例如,至少一个断口271呈闪电状,由此可以更好的释放位于触控传感器01的对应于裂纹阻挡环27的区域的静电荷。例如,裂纹阻挡环27的导电性能优于形成第一触控子电极111和第二触控子电极121的材料的导电性能,此种情况下,可以更好的释放位于触控传感器01的对应于裂纹阻挡环27的区域的静电荷。
例如,裂纹阻挡环27具有遮光或吸光性能,此种情况下,裂纹阻挡环27还可以减少显示面板发射的且泄露至开口区域421中的光线;例如,在开口区域421设置了传感器(例如,图像传感器)的情况下,可以降低入射至传感器(例如,图像传感器)的集光面上的光线,由此可以提升传感器(例如,图像传感器)输出信号(例如,图像)的信噪比。
例如,裂纹阻挡环27为金属环。例如,由于金属具有良好的导电性能,通过使得裂纹阻挡环27为金属环,可以更好的释放位于触控传感器01的对应于裂纹阻挡环27的区域的静电荷;由此金属具有遮光性能,通过使得裂纹阻挡环27为金属环,还可以提升图像传感器输出图像的信噪比。
例如,裂纹阻挡环27的环宽大于触控传感器01包括的导线(例如,跨接导线21和跨接导线21)的线宽的2倍(例如,6倍、10倍、20倍、30倍)。例如,裂纹阻挡环27的环宽等于30微米、50微米、100微米或150微米,但本公开的实施例不限于此。例如,通过使得裂纹阻挡环27的环宽大于触控传感器01包括的导线(例如,跨接导线21和跨接导线21)的线宽的6倍,可以提升裂纹阻挡环27阻挡裂纹的能力。
例如,裂纹阻挡环27的环宽为0.004毫米-0.9毫米。例如,如图31A所示,裂纹阻挡环27具有至少两个断口271;至少两个断口271将裂纹阻挡环27在裂纹阻挡环27的周向方向分隔成至少两个阻挡环子部273。
图31B是图30所示的部分区域REG_R的放大后的图形。需要说明的是,为清楚起见,图31B对图30所示的部分区域REG_R进行了旋转处理。例如,如图31B所示,至少两个阻挡环子部273的彼此靠近的端部彼此靠近的边缘在裂纹阻挡环27的周向方向上的间距Rd为0.008毫米-0.030毫米。例如,如图31B所示,至少两个阻挡环子部273的每个在裂纹阻挡环27的周向方向上的端部具有台阶结构2731。例如,台阶结构2731的台阶面2732在裂纹阻挡环27的周向方向的尺寸为0.004毫米-0.015毫米。
例如,如图31A和图32所示,触控传感器01还包括至少部分围绕述裂纹阻挡环27且与裂纹阻挡环27间隔的裂纹阻挡环28,且裂纹阻挡环28位于过渡区域424。例如,通过使得触控传感器01还包括围绕述裂纹阻挡环27且与裂纹阻挡环27间隔的裂纹阻挡环28,可以进一步降低在对显示装置进行打孔时形成的裂纹延伸至触控传感器01的触控功能区的可能性,由此可以进一步地降低触控传感器01存在因裂纹导致的不良的可能性。
例如,如图31A和图32所示,裂纹阻挡环28具有至少一个断口281,且至少一个断口281包括尖端。例如,裂纹阻挡环28为导电环(例如,金属环)。例如,通过使得裂纹阻挡环28为导电环且使得裂纹阻挡环28具有至少一个断口281,可以使得累积在触控传感器01的对应于裂纹阻挡环28的区域的静电荷可以经由断口281包括的尖端释放,由此可以进一步地降低开口区域421周围的有效触控区域存在因静电击穿导致的触控功能不良的可能性。
例如,至少一个断口281呈闪电状,由此可以更好的释放位于触控传感器01的对应于裂纹阻挡环28的区域的静电荷。例如,裂纹阻挡环28的导电性能优于形成第一触控子电极111和第二触控子电极121的材料的导电性能,此种情况下,可以更好的释放位于触控传感器01的对应于裂纹阻挡环28的区域的静电荷。
例如,如图31A和图32所示,断口271和断口281彼此错开;此种情况下,可以避免裂纹经由断口271和断口281延伸至触控传感器01的触控功能区的可能性,由此可以进一步地降低触控传感器01存在因裂纹导致的不良的可能性。
例如,如图31A所示,裂纹阻挡环28的环宽等于裂纹阻挡环27的环宽,但本公开的实施例不限于此。又例如,如图32所示,裂纹阻挡环28的环宽小于裂纹阻挡环27的环宽。
例如,裂纹阻挡环28的环宽为0.004毫米-0.9毫米。例如,裂纹阻挡环28的内边缘与裂纹阻挡环27的外边缘在裂纹阻挡环27的径向方向上的间距为0.004毫米-0.1毫米。 例如,如图31A所示,裂纹阻挡环28具有至少两个断口281;至少两个断口281将裂纹阻挡环28在裂纹阻挡环28的周向方向分隔成至少两个阻挡环子部283。例如,如图31A所示,至少两个阻挡环子部283的每个在裂纹阻挡环28的周向方向上的端部具有台阶结构。
例如,如图31A-图33所示开口区域421的边缘4211为圆形,裂纹阻挡环27和裂纹阻挡环28整体呈圆环状,但本公开的实施例不限于此;例如,根据实际应用需求,开口区域421的边缘4211为跑道形或其它适用的形状,裂纹阻挡环27和裂纹阻挡环28还可以整体呈跑道环状或其它适用的形状。
需要说明的是,过渡区域424不限于设置一个或两个裂纹阻挡环,根据实际应用需求,过渡区域424还可以设置三个或者其它适用数目的裂纹阻挡环。
图34是图30所示的触控传感器01的部分区域REGR2的一个平面示意图;图35是图30所示的触控传感器01的部分区域REGR2的另一个平面示意图;图36是图35所示的触控传感器01的部分区域REGR3的平面示意图。
例如,如图30、图34和图35所示,过渡区域425和触控功能区域423从开口区域422的中心向外依次布置。例如,如图30、图34和图35所示,触控传感器01还包括位于过渡区域425的裂纹阻挡环29。例如,如图30、图34和图35所示,开口区域422的边缘为跑道状;裂纹阻挡环29为跑道状环的至少部分,但本公开的实施例不限于此;例如,根据实际应用需求,开口区域422的边缘为圆形或其它适用的形状,裂纹阻挡环29还可以整体圆环状或其它适用的形状。
例如,裂纹阻挡环29为导电环(例如,金属环);如图30、图34和图35所示,裂纹阻挡环29包括至少一个断口291,且至少一个断口291具有尖端;此种情况下,位于触控传感器01的对应于裂纹阻挡环29的区域的静电荷可以经由断口291包括的尖端释放,由此可以进一步地降低开口区域421周围的有效触控区域存在因静电击穿导致的触控功能不良的可能性。例如,至少一个断口291呈闪电状,由此可以更好的释放位于触控传感器01的对应于裂纹阻挡环29的区域的静电荷。例如,裂纹阻挡环29的导电性能优于形成第一触控子电极111和第二触控子电极121的材料的导电性能,此种情况下,可以更好的释放位于触控传感器01的对应于裂纹阻挡环29的区域的静电荷。例如,裂纹阻挡环29可以具有遮挡或者挡光性能,此种情况下,裂纹阻挡环29还可以减少显示面板发射的且泄露至开口区域422中的光线;例如,在开口区域422设置了传感器(例如,图像传感器)的情况下,可以降低入射至传感器(例如,图像传感器)的集光面上的光线,由此可以提升传感器(例如,图像传感器)输出信号(例如,图像)的信噪比。
例如,如图30、图34和图35所示,裂纹阻挡环29部分围绕开口区域422,且与转接触控子电极151在第一方向D1上并列布置。
在一个示例中,如图34所示,裂纹阻挡环29和转接触控子电极151在第二方向D2上不重叠。在另一个示例中,如图35所示,裂纹阻挡环29的部分设置在开口区域422和转接触控子电极151之间,且裂纹阻挡环29和转接触控子电极151在第二方向D2上至少部分重叠。
例如,如图30和图34-图36所示,触控传感器01还包括位于过渡区域425的且至少部分围绕裂纹阻挡环29的裂纹阻挡环292。例如,如图30、图34和图35所示,裂纹阻挡环292的整体形状为跑道状环。例如,如图30、图34和图35所示,裂纹阻挡环292具有断口293,且断口293和断口291彼此对应。例如,裂纹阻挡环292为导电环(例如,金属环)。例如,裂纹阻挡环29和裂纹阻挡环292的环宽为0.004毫米-0.9毫米。例如,裂纹阻挡环292的内边缘与裂纹阻挡环29的外边缘的间距为0.004毫米-0.1毫米。
例如,如图30、图34-图36所示,在开口区域422的径向方向上,至少一根跨接导线21位于跨接导线22和裂纹阻挡环29之间。例如,如图30、图34-图36所示,在开口区域422的径向方向上,至少一根跨接导线21位于跨接导线22和裂纹阻挡环292之间。
例如,裂纹阻挡环(例如,裂纹阻挡环27、裂纹阻挡环28、裂纹阻挡环29和裂纹阻挡环292的至少一个)和跨接导线(例如,跨接导线21和跨接导线22的至少一根)位于同一电极层(例如,第二电极层30),且与相同的膜层直接接触。
例如,裂纹阻挡环(例如,裂纹阻挡环27、裂纹阻挡环28、裂纹阻挡环29和裂纹阻挡环292的至少一个)和跨接导线(例如,跨接导线21和跨接导线22的至少一根)由相同的材料(例如,金属材料)制成且在同一图案化工艺中形成,由此可以进一步地简化触控传感器01的结构和制造工艺,避免触控传感器01的制造成本增加。
有以下几点需要说明。
(1)过渡区域425不限于设置一个或两个裂纹阻挡环,根据实际应用需求,过渡区域425还可以设置三个或者其它适用数目的裂纹阻挡环。
(2)尽管图30所示的触控传感器的过渡区域424和过渡区域425均设置的裂纹阻挡环,但本公开的实施例不限于此。根据实际应用需求,过渡区域424和过渡区域425的至少一个还可以不设置的裂纹阻挡环。
(3)为清楚起见,图6A-图9、图14A和图24所示的显示装置03的触控传感器01的过渡区域424未示出裂纹阻挡环,然而,本领域技术人员可以理解,图6A-图9、图14A和图24所示的显示装置03的触控传感器01的过渡区域424可以根据实际应用需求设置适用数目和适用形状的裂纹阻挡环。
(4)尽管图30所示的显示装置03的触控传感器01包括的部分区域REG1同时设置了跨接导线(跨接导线21和22)、转接触控电极(转接触控电极15和16)、导电结构(第一导电结构23、第二导电结构24、第三导电结构25和第四导电结构26)和裂纹阻挡环(裂纹阻挡环27、28和29),并对触控传感器01的第一区域(两桥设计,增加交叉深度、降低虚拟电极数目)进行了优化,但是本公开的实施例不限于此。例如,根据实际应用需求,触控传感器01可以仅对触控传感器01的第一区域进行优化但不设置跨接导线、转接触控电极、导电结构和裂纹阻挡环;又例如,根据实际应用需求,触控传感器01可以不对触控传感器01的第一区域进行优化,但设置跨接导线、转接触控电极、导电结构和裂纹阻挡环的至少部分(例如,一种至四种)。
例如,本公开的至少一个实施例还提供了一种触控结构,如图21和图22A所示,该 触控结构包括:转接触控电极15和转接触控电极16。转接触控电极15包括在第一方向D1上并列布置且彼此电连接的转接触控子电极151和转接触控子电极152;转接触控电极16的至少部分位于转接触控子电极151和转接触控子电极152之间;转接触控电极16的靠近转接触控子电极151的边缘包括朝向转接触控子电极151凸出的多个第一凸起部161;转接触控电极16的靠近转接触控子电极152的边缘包括朝向转接触控子电极152凸出的多个第二凸起部162;转接触控子电极151的靠近转接触控电极16的边缘包括多个第一凹陷部1511;转接触控子电极152的靠近转接触控电极16的边缘包括多个第二凹陷部1521;多个第一凸起部161一一对应地设置在多个第一凹陷部1511中;多个第二凸起部162一一对应地设置在多个第二凹陷部1521中。
例如,如图21和图22A所示,开口区域422朝向开口区域421的第一边缘具有第一形状;开口区域421朝向开口区域422的第二边缘具有第二形状;转接触控子电极151朝向第一边缘的边缘整体具有第一形状;转接触控子电极152朝向第二边缘的边缘整体具有第二形状;也即,开口区域422朝向开口区域421的第一边缘的形状与转接触控子电极151朝向第一边缘的边缘的形状相同(例如,尺寸不同);开口区域421朝向开口区域422的第二边缘的形状与转接触控子电极152朝向第二边缘的边缘的形状相同(例如,尺寸不同)。
例如,如图21和图22A所示,其中,多个第一凸起部161在第二方向D2上并列布置;多个第二凸起部162在第二方向D2上并列布置;转接触控电极16的靠近转接触控子电极151的边缘还包括多个第三凹陷部163;转接触控电极16的靠近转接触控子电极152的边缘还包括多个第四凹陷部164;相邻的两个第一凸起部161之间具有一个第三凹陷部163,相邻的两个第二凸起部162之间具有一个第四凹陷部164;第三凹陷部163的底部和第四凹陷部164的底部彼此对应;第三凹陷部163的底部和第四凹陷部164的底部在第一方向D1上的间距小于多个第一凸起部161和多个第二凸起部162中任一个在第一方向D1上的尺寸。需要说明的是,本公开的至少一个实施例提供的触控结构的具体实现方式和技术效果可以参见图21和图22A所示的示例,在此不再赘述。
例如,开口区域421或422是本公开的至少一个实施例的第一开口区域的一个示例;电极部分124(或者126)是本公开的至少一个实施例的第一电极部分的一个示例;电极部分125(或者127)是本公开的至少一个实施例的第二电极部分的一个示例;连接子电极32是本公开的至少一个实施例的第一连接子电极的一个示例;连接子电极31是本公开的至少一个实施例的第二连接子电极的一个示例;虚拟电极132是本公开的至少一个实施例的虚拟电极的一个示例;弯折结构131是本公开的至少一个实施例的弯折结构的一个示例。
虽然上文中已经用一般性说明及具体实施方式,对本公开作了详尽的描述,但在本公开实施例基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本公开精神的基础上所做的这些修改或改进,均属于本公开要求保护的范围。以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (68)

  1. 一种触控传感器,包括:第一开口区域、多个第一触控电极和多个第二触控电极,
    其中,所述第一开口区域的中心和所述触控传感器的中心不重合;
    所述多个第一触控电极分别沿第一方向延伸,且所述多个第一触控电极的至少一个包括在所述第一方向并列布置且彼此电连接的多个第一触控子电极;
    所述多个第二触控电极分别沿与所述第一方向交叉的第二方向延伸,且所述多个第二触控电极的至少一个包括在所述第二方向并列布置且彼此电连接的多个第二触控子电极;
    所述多个第一触控电极沿所述第二方向并列排布,所述多个第二触控电极沿所述第一方向并列排布;
    所述多个第一触控子电极和所述多个第二触控子电极整体上至少部分围绕所述第一开口区域;
    所述触控传感器具有在所述第二方向上顺次布置的第一区域、第二区域和第三区域;
    所述第一开口区域位于所述第二区域;以及
    位于所述第一区域的第一触控子电极的面积小于位于所述第三区域的第一触控子电极的面积或者位于所述第一区域的第二触控子电极的面积小于位于所述第三区域的第二触控子电极的面积。
  2. 根据权利要求1所述的触控传感器,其中,位于所述第一区域的相邻的第一触控子电极和第二触控子电极的间距小于位于所述第三区域的相邻的第一触控子电极和第二触控子电极的间距。
  3. 根据权利要求1或2所述的触控传感器,其中,所述多个第二触控电极的至少一个被所述第二区域间隔为第一电极部分和第二电极部分;
    所述第一电极部分位于所述第一区域,所述第二电极部分位于所述第三区域;以及
    所述第一电极部分在所述第二方向上的尺寸小于所述第二电极部分在所述第二方向上的尺寸。
  4. 根据权利要求3所述的触控传感器,其中,所述第一电极部分在所述第二方向上的尺寸小于位于所述第三区域的尺寸最大的第二触控子电极在所述第二方向上的尺寸。
  5. 根据权利要求1-4任一项所述的触控传感器,还包括多个虚拟电极,
    其中,所述多个虚拟电极的至少一个设置在相邻的第一触控子电极和第二触控子电极之间;以及
    位于所述第一区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的数目小于位于所述第三区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的数目。
  6. 根据权利要求5所述的触控传感器,其中,位于所述第一区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的宽度小于等于位于所述第三区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的宽度。
  7. 根据权利要求5或6所述的触控传感器,其中,位于所述第一区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的数目为一,位于所述第三区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的数目为二。
  8. 根据权利要求1-7任一项所述的触控传感器,其中,位于所述第一区域的相邻的两个第二触控子电极在所述第二方向上的间距小于位于所述第三区域的相邻的两个第二触控子电极在所述第二方向上的间距。
  9. 根据权利要求1-8任一项所述的触控传感器,还包括第一电极层和连接电极层,
    其中,所述第一电极层与所述连接电极层不同;
    所述第一电极层包括所述多个第一触控电极、所述多个第二触控电极以及多个中间子电极;
    所述连接电极层包括多个第一连接子电极;
    所述多个中间子电极的至少一个位于所述第三区域,且设置在位于所述第三区域的相邻的两个第二触控子电极之间;
    位于所述第三区域的每个所述第一连接子电极的两端分别与对应的一个第二触控子电极和对应的一个中间子电极电连接;以及
    位于所述第一区域的每个所述第一连接子电极的两端分别与相邻的两个第二触控子电极电连接。
  10. 根据权利要求9所述的触控传感器,其中,位于所述第一区域的相邻的两个第二触控子电极经由对应的第一数目的第一连接子电极电连接;
    位于所述第三区域的相邻的两个第二触控子电极经由对应的第二数目的第一连接子电极和对应的中间子电极电连接;以及
    所述第一数目小于所述第二数目。
  11. 根据权利要求10所述的触控传感器,其中,所述第一数目为二,所述第二数目为四。
  12. 根据权利要求10所述的触控传感器,其中,位于所述第一区域的相邻的两个第二触控子电极经由对应的两个、在所述第一方向上并列布置的第一连接子电极电连接;
    位于所述第三区域的相邻的两个第二触控子电极经由对应的四个第一连接子电极电连接;
    所述对应的四个第一连接子电极排布为两行两列;
    所述对应的四个第一连接子电极中位于同一行的两个第一连接子电极电连接对应的一个第二触控子电极和对应的一个中间子电极;
    所述对应的四个第一连接子电极中位于同一列的两个第一连接子电极的延伸方向彼此交叉;以及
    所述对应的四个第一连接子电极中位于同一行的两个第一连接子电极的延伸方向彼此交叉。
  13. 根据权利要求9-12任一项所述的触控传感器,其中,位于所述第一区域的每个所 述第一连接子电极的面积大于位于所述第三区域的每个所述第一连接子电极的面积。
  14. 根据权利要求9-13任一项所述的触控传感器,其中,位于所述第一区域的每个所述第一连接子电极的长度大于位于所述第三区域的每个所述第一连接子电极的长度。
  15. 根据权利要求14所述的触控传感器,其中,位于所述第一区域的每个所述第一连接子电极的宽度大于等于位于所述第三区域的每个所述第一连接子电极的宽度。
  16. 根据权利要求9-15任一项所述的触控传感器,其中,所述多个第二触控电极包括所述多个第一连接子电极。
  17. 根据权利要求9-16任一项所述的触控传感器,其中,所述第一电极层还包括多个环状子电极;
    所述多个环状子电极的至少一个位于所述第三区域;
    所述多个环状子电极的至少一个位于相邻的两个第一触控子电极之间,且环绕位于所述相邻的两个第一触控子电极之间的中间子电极;
    所述连接电极层还包括多个第二连接子电极;
    位于所述第三区域的所述多个第一触控电极中,相邻的两个第一触控子电极经由位于所述相邻的两个第一触控子电极之间的环状子电极和对应的第三数目的第二连接子电极彼此电连接;以及
    位于所述第一区域的至少一个所述第一触控电极包括的相邻的两个第一触控子电极为一体结构且直接电性连接。
  18. 根据权利要求17所述的触控传感器,其中,所述第三数目等于四。
  19. 根据权利要求18所述的触控传感器,其中,所述对应的第三数目的第二连接子电极排布为两行两列;
    所述对应的第三数目的第二连接子电极中位于同一列的两个第一连接子电极用于电连接对应的一个第一触控子电极和对应的一个环状子电极;
    所述对应的第三数目的第二连接子电极中位于同一列的两个第一连接子电极的延伸方向彼此交叉;以及
    所述对应的第三数目的第二连接子电极中位于同一行的两个第一连接子电极的延伸方向彼此交叉。
  20. 根据权利要求17-19任一项所述的触控传感器,其中,所述多个第一触控电极包括所述多个第二连接子电极的至少部分。
  21. 根据权利要求9-20任一项所述的触控传感器,其中,所述第一电极层由透明导电材料制成,所述连接电极层由金属材料制成。
  22. 根据权利要求1-21任一项所述的触控传感器,其中,相邻的第一触控子电极和第二触控子电极的边缘分别具有对应的弯折结构;
    位于所述第一区域的相邻的所述第一触控子电极和所述第二触控子电极彼此交叉且具有第一交叉深度;
    位于所述第三区域的相邻的所述第一触控子电极和所述第二触控子电极彼此交叉且具 有第二交叉深度;以及
    所述第一交叉深度大于所述第二交叉深度。
  23. 一种触控传感器,包括:第一开口区域、多个第一触控电极和多个第二触控电极,
    其中,所述第一开口区域的中心和所述触控传感器的中心不重合;
    所述多个第一触控电极分别沿第一方向延伸,且所述多个第一触控电极的至少一个包括在所述第一方向并列布置且彼此电连接的多个第一触控子电极;
    所述多个第二触控电极分别沿与所述第一方向交叉的第二方向延伸,且所述多个第二触控电极的至少一个包括在所述第二方向并列布置且彼此电连接的多个第二触控子电极;
    所述多个第一触控电极沿所述第二方向并列排布,所述多个第二触控电极沿所述第一方向并列排布;
    所述多个第一触控子电极和所述多个第二触控子电极整体上至少部分围绕所述第一开口区域;
    所述触控传感器具有在所述第二方向上顺次布置的第一区域、第二区域和第三区域;
    所述第一开口区域位于所述第二区域;以及
    位于所述第一区域的相邻的第一触控子电极和第二触控子电极的间距小于位于所述第三区域的相邻的第一触控子电极和第二触控子电极的间距。
  24. 根据权利要求23所述的触控传感器,其中,位于所述第一区域的第一触控子电极的面积小于位于所述第三区域的第一触控子电极的面积或者位于所述第一区域的第二触控子电极的面积小于位于所述第三区域的第二触控子电极的面积。
  25. 根据权利要求23或24所述的触控传感器,其中,所述多个第二触控电极的至少一个被所述第二区域间隔为第一电极部分和第二电极部分;
    所述第一电极部分位于所述第一区域,所述第二电极部分位于所述第三区域;以及
    所述第一电极部分在所述第二方向上的尺寸小于所述第二电极部分在所述第二方向上的尺寸。
  26. 根据权利要求25所述的触控传感器,其中,所述第一电极部分在所述第二方向上的尺寸小于位于所述第三区域的尺寸最大的第二触控子电极在所述第二方向上的尺寸。
  27. 根据权利要求23-26任一项所述的触控传感器,还包括多个虚拟电极,
    其中,所述多个虚拟电极的至少一个设置在相邻的第一触控子电极和第二触控子电极之间;以及
    位于所述第一区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的数目小于位于所述第三区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的数目。
  28. 根据权利要求27所述的触控传感器,其中,位于所述第一区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的宽度小于等于位于所述第三区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的宽度。
  29. 根据权利要求27或28所述的触控传感器,其中,位于所述第一区域的相邻的第 一触控子电极和第二触控子电极之间的虚拟电极的数目为一,位于所述第三区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的数目为二。
  30. 根据权利要求23-29任一项所述的触控传感器,其中,位于所述第一区域的相邻的两个第二触控子电极在所述第二方向上的间距小于位于所述第三区域的相邻的两个第二触控子电极在所述第二方向上的间距。
  31. 根据权利要求23-30任一项所述的触控传感器,还包括第一电极层和连接电极层,
    其中,所述第一电极层与所述连接电极层不同;
    所述第一电极层包括所述多个第一触控电极、所述多个第二触控电极以及多个中间子电极;
    所述连接电极层包括多个第一连接子电极;
    所述多个中间子电极的至少一个位于所述第三区域,且设置在位于所述第三区域的相邻的两个第二触控子电极之间;
    位于所述第三区域的每个所述第一连接子电极的两端分别与对应的一个第二触控子电极和对应的一个中间子电极电连接;以及
    位于所述第一区域的每个所述第一连接子电极的两端分别与相邻的两个第二触控子电极电连接。
  32. 根据权利要求31所述的触控传感器,其中,位于所述第一区域的相邻的两个第二触控子电极经由对应的第一数目的第一连接子电极电连接;
    位于所述第三区域的相邻的两个第二触控子电极经由对应的第二数目的第一连接子电极和对应的中间子电极电连接;以及
    所述第一数目小于所述第二数目。
  33. 根据权利要求32所述的触控传感器,其中,所述第一数目为二,所述第二数目为四。
  34. 根据权利要求32所述的触控传感器,其中,位于所述第一区域的相邻的两个第二触控子电极经由对应的两个、在所述第一方向上并列布置的第一连接子电极电连接;
    位于所述第三区域的相邻的两个第二触控子电极经由对应的四个第一连接子电极电连接;
    所述对应的四个第一连接子电极排布为两行两列;
    所述对应的四个第一连接子电极中位于同一行的两个第一连接子电极电连接对应的一个第二触控子电极和对应的一个中间子电极;
    所述对应的四个第一连接子电极中位于同一列的两个第一连接子电极的延伸方向彼此交叉;以及
    所述对应的四个第一连接子电极中位于同一行的两个第一连接子电极的延伸方向彼此交叉。
  35. 根据权利要求31-34任一项所述的触控传感器,其中,位于所述第一区域的每个所述第一连接子电极的面积大于位于所述第三区域的每个所述第一连接子电极的面积。
  36. 根据权利要求31-35任一项所述的触控传感器,其中,位于所述第一区域的每个所述第一连接子电极的长度大于位于所述第三区域的每个所述第一连接子电极的长度。
  37. 根据权利要求36所述的触控传感器,其中,位于所述第一区域的每个所述第一连接子电极的宽度大于等于位于所述第三区域的每个所述第一连接子电极的宽度。
  38. 根据权利要求31-37任一项所述的触控传感器,其中,所述多个第二触控电极包括所述多个第一连接子电极。
  39. 根据权利要求31-38任一项所述的触控传感器,其中,所述第一电极层还包括多个环状子电极;
    所述多个环状子电极的至少一个位于所述第三区域;
    所述多个环状子电极的至少一个位于相邻的两个第一触控子电极之间,且环绕位于所述相邻的两个第一触控子电极之间的中间子电极;
    所述连接电极层还包括多个第二连接子电极;
    位于所述第三区域的所述多个第一触控电极中,相邻的两个第一触控子电极经由位于所述相邻的两个第一触控子电极之间的环状子电极和对应的第三数目的第二连接子电极彼此电连接;以及
    位于所述第一区域的至少一个所述第一触控电极包括的相邻的两个第一触控子电极为一体结构且直接电性连接。
  40. 根据权利要求39所述的触控传感器,其中,所述第三数目等于四。
  41. 根据权利要求40所述的触控传感器,其中,所述对应的第三数目的第二连接子电极排布为两行两列;
    所述对应的第三数目的第二连接子电极中位于同一列的两个第一连接子电极用于电连接对应的一个第一触控子电极和对应的一个环状子电极;
    所述对应的第三数目的第二连接子电极中位于同一列的两个第一连接子电极的延伸方向彼此交叉;以及
    所述对应的第三数目的第二连接子电极中位于同一行的两个第一连接子电极的延伸方向彼此交叉。
  42. 根据权利要求39-41任一项所述的触控传感器,其中,所述多个第一触控电极包括所述多个第二连接子电极的至少部分。
  43. 根据权利要求31-42任一项所述的触控传感器,其中,所述第一电极层由透明导电材料制成,所述连接电极层由金属材料制成。
  44. 根据权利要求23-43任一项所述的触控传感器,其中,相邻的第一触控子电极和第二触控子电极的边缘分别具有对应的弯折结构;
    位于所述第一区域的相邻的所述第一触控子电极和所述第二触控子电极彼此交叉且具有第一交叉深度;
    位于所述第三区域的相邻的所述第一触控子电极和所述第二触控子电极彼此交叉且具有第二交叉深度;以及
    所述第一交叉深度大于所述第二交叉深度。
  45. 一种触控传感器,包括:第一开口区域、多个第一触控电极,多个第二触控电极和多个第一连接子电极,
    其中,所述第一开口区域的中心和所述触控传感器的中心不重合;
    所述多个第一触控电极分别沿第一方向延伸,且所述多个第一触控电极的至少一个包括在所述第一方向并列布置且彼此电连接的多个第一触控子电极;
    所述多个第二触控电极分别沿与所述第一方向交叉的第二方向延伸,且所述多个第二触控电极的至少一个包括在所述第二方向并列布置且彼此电连接的多个第二触控子电极;
    所述多个第一触控电极沿所述第二方向并列排布,所述多个第二触控电极沿所述第一方向并列排布;
    所述多个第一触控子电极和所述多个第二触控子电极整体上至少部分围绕所述第一开口区域;
    所述触控传感器具有在所述第二方向上顺次布置的第一区域、第二区域和第三区域;
    所述第一开口区域位于所述第二区域;
    位于所述第一区域的相邻的所述第二触控子电极之间经由对应的第一数目的第一连接子电极电连接;以及
    位于所述第三区域的相邻的所述第二触控子电极之间经由对应的第二数目的第一连接子电极电连接,所述第二数目大于所述第一数目。
  46. 根据权利要求45所述的触控传感器,还包括第一电极层和连接电极层,
    其中,所述第一电极层与所述连接电极层不同;
    所述第一电极层包括所述多个第一触控电极、所述多个第二触控电极以及多个中间子电极;
    所述连接电极层包括所述多个第一连接子电极;
    所述多个中间子电极的至少一个位于所述第三区域,且设置在位于所述第三区域的相邻的两个第二触控子电极之间;
    位于所述第三区域的每个所述第一连接子电极的两端分别与对应的一个第二触控子电极和对应的一个中间子电极电连接;以及
    位于所述第一区域的每个所述第一连接子电极的两端分别与相邻的两个第二触控子电极电连接。
  47. 根据权利要求45或46所述的触控传感器,其中,所述第一数目为二,所述第二数目为四。
  48. 根据权利要求45-47任一项所述的触控传感器,其中,位于所述第一区域的相邻的两个第二触控子电极经由对应的两个、在所述第一方向上并列布置的第一连接子电极电连接;
    位于所述第三区域的相邻的两个第二触控子电极经由对应的四个第一连接子电极电连接;
    所述对应的四个第一连接子电极排布为两行两列;
    所述对应的四个第一连接子电极中位于同一行的两个第一连接子电极电连接对应的一个第二触控子电极和对应的一个中间子电极;
    所述对应的四个第一连接子电极中位于同一列的两个第一连接子电极的延伸方向彼此交叉;以及
    所述对应的四个第一连接子电极中位于同一行的两个第一连接子电极的延伸方向彼此交叉。
  49. 根据权利要求45-48任一项所述的触控传感器,其中,位于所述第一区域的每个所述第一连接子电极的面积大于位于所述第三区域的每个所述第一连接子电极的面积。
  50. 根据权利要求45-49任一项所述的触控传感器,其中,位于所述第一区域的每个所述第一连接子电极的长度大于位于所述第三区域的每个所述第一连接子电极的长度。
  51. 根据权利要求50所述的触控传感器,其中,位于所述第一区域的每个所述第一连接子电极的宽度大于等于位于所述第三区域的每个所述第一连接子电极的宽度。
  52. 根据权利要求45-51任一项所述的触控传感器,其中,所述多个第二触控电极包括所述多个第一连接子电极。
  53. 根据权利要求45-52任一项所述的触控传感器,还包括多个第二连接子电极和多个环状子电极;
    所述多个环状子电极的至少一个位于所述第三区域;
    所述多个环状子电极的至少一个位于相邻的两个第一触控子电极之间,且环绕位于所述相邻的两个第一触控子电极之间的中间子电极;
    位于所述第三区域的所述多个第一触控电极中,相邻的两个第一触控子电极经由位于所述相邻的两个第一触控子电极之间的环状子电极和对应的第三数目的第二连接子电极彼此电连接;以及
    位于所述第一区域的至少一个所述第一触控电极包括的相邻的两个第一触控子电极为一体结构且直接电性连接。
  54. 根据权利要求53所述的触控传感器,其中,所述第三数目等于四。
  55. 根据权利要求54所述的触控传感器,其中,所述对应的第三数目的第二连接子电极排布为两行两列;
    所述对应的第三数目的第二连接子电极中位于同一列的两个第一连接子电极用于电连接对应的一个第一触控子电极和对应的一个环状子电极;
    所述对应的第三数目的第二连接子电极中位于同一列的两个第一连接子电极的延伸方向彼此交叉;以及
    所述对应的第三数目的第二连接子电极中位于同一行的两个第一连接子电极的延伸方向彼此交叉。
  56. 根据权利要求53-55任一项所述的触控传感器,其中,所述多个第一触控电极包括所述多个第二连接子电极的至少部分。
  57. 根据权利要求45-56任一项所述的触控传感器,其中,所述多个第一触控电极和所述多个第二触控电极与由透明导电材料制成,所述多个第一连接子电极由金属材料制成。
  58. 根据权利要求45-57任一项所述的触控传感器,其中,位于所述第一区域的相邻的两个第二触控子电极在所述第二方向上的间距小于位于所述第三区域的相邻的两个第二触控子电极在所述第二方向上的间距。
  59. 根据权利要求45-58任一项所述的触控传感器,其中,位于所述第一区域的第一触控子电极的面积小于位于所述第三区域的第一触控子电极的面积或者位于所述第一区域的第二触控子电极的面积小于位于所述第三区域的第二触控子电极的面积。
  60. 根据权利要求45-59任一项所述的触控传感器,其中,所述多个第二触控电极的至少一个被所述第二区域间隔为第一电极部分和第二电极部分;
    所述第一电极部分位于所述第一区域,所述第二电极部分位于所述第三区域;以及
    所述第一电极部分在所述第二方向上的尺寸小于所述第二电极部分在所述第二方向上的尺寸。
  61. 根据权利要求60所述的触控传感器,其中,所述第一电极部分在所述第二方向上的尺寸小于位于所述第三区域的尺寸最大的第二触控子电极在所述第二方向上的尺寸。
  62. 根据权利要求45-61任一项所述的触控传感器,其中,位于所述第一区域的相邻的第一触控子电极和第二触控子电极的间距小于位于所述第三区域的相邻的第一触控子电极和第二触控子电极的间距。
  63. 根据权利要求62所述的触控传感器,还包括多个虚拟电极,
    其中,所述多个虚拟电极的至少一个设置在相邻的第一触控子电极和第二触控子电极之间;以及
    位于所述第一区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的数目小于位于所述第三区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的数目。
  64. 根据权利要求63所述的触控传感器,其中,位于所述第一区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的宽度小于等于位于所述第三区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的宽度。
  65. 根据权利要求63或64所述的触控传感器,其中,位于所述第一区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的数目为一,位于所述第三区域的相邻的第一触控子电极和第二触控子电极之间的虚拟电极的数目为二。
  66. 根据权利要求45-65任一项所述的触控传感器,其中,相邻的第一触控子电极和第二触控子电极的边缘分别具有对应的弯折结构;
    位于所述第一区域的相邻的所述第一触控子电极和所述第二触控子电极彼此交叉且具有第一交叉深度;
    位于所述第三区域的相邻的所述第一触控子电极和所述第二触控子电极彼此交叉且具有第二交叉深度;以及
    所述第一交叉深度大于所述第二交叉深度。
  67. 一种显示装置,包括如权利要求1-66任一项所述的触控传感器。
  68. 根据权利要求67所述的显示装置,还包括成像传感器和显示面板,
    其中,所述触控传感器、所述显示面板和所述成像传感器在所述显示装置的显示面的法线方向上顺次设置,且所述成像传感器位于所述显示面板的非显示侧;
    所述触控传感器和所述显示面板分别具有开口区域;以及
    所述成像传感器被配置为接收并处理穿过所述触控传感器的开口区域和所述显示面板的开口区域的光信号。
PCT/CN2020/080190 2020-03-19 2020-03-19 触控传感器和显示装置 WO2021184294A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/427,423 US11907467B2 (en) 2020-03-19 2020-03-19 Touch sensor and display apparatus
EP20925076.0A EP4123428A4 (en) 2020-03-19 2020-03-19 TOUCH SENSOR AND DISPLAY DEVICE
CN202080000316.4A CN113853573A (zh) 2020-03-19 2020-03-19 触控传感器和显示装置
PCT/CN2020/080190 WO2021184294A1 (zh) 2020-03-19 2020-03-19 触控传感器和显示装置
US18/406,625 US20240143105A1 (en) 2020-03-19 2024-01-08 Touch sensor and display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080190 WO2021184294A1 (zh) 2020-03-19 2020-03-19 触控传感器和显示装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/427,423 A-371-Of-International US11907467B2 (en) 2020-03-19 2020-03-19 Touch sensor and display apparatus
US18/406,625 Continuation US20240143105A1 (en) 2020-03-19 2024-01-08 Touch sensor and display apparatus

Publications (1)

Publication Number Publication Date
WO2021184294A1 true WO2021184294A1 (zh) 2021-09-23

Family

ID=77768369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080190 WO2021184294A1 (zh) 2020-03-19 2020-03-19 触控传感器和显示装置

Country Status (4)

Country Link
US (2) US11907467B2 (zh)
EP (1) EP4123428A4 (zh)
CN (1) CN113853573A (zh)
WO (1) WO2021184294A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941925A (zh) * 2013-01-17 2014-07-23 联咏科技股份有限公司 触控面板
US20150220179A1 (en) * 2014-02-06 2015-08-06 Japan Display Inc. Capacitive touch screen and display device equipped therewith
CN108008855A (zh) * 2017-11-28 2018-05-08 武汉天马微电子有限公司 一种显示面板和显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5113773B2 (ja) 2009-01-20 2013-01-09 株式会社ジャパンディスプレイイースト 表示装置
KR101944503B1 (ko) 2012-06-21 2019-04-18 삼성디스플레이 주식회사 센서 기판 및 이를 포함하는 센싱 표시 패널
US9952691B2 (en) * 2014-05-09 2018-04-24 Lg Innotek Co., Ltd. Touch panel and image display device having the same
CN105446549B (zh) * 2016-01-29 2018-06-26 厦门天马微电子有限公司 阵列基板、触控显示面板和显示装置
CN206209663U (zh) 2016-11-07 2017-05-31 厦门天马微电子有限公司 一种触控显示装置
CN107359185B (zh) 2017-07-27 2021-05-14 京东方科技集团股份有限公司 一种显示面板及显示装置
CN107390939B (zh) * 2017-08-02 2022-07-29 京东方科技集团股份有限公司 触控基板及其制作方法、触控显示装置
CN109388294B (zh) * 2017-08-11 2021-01-22 京东方科技集团股份有限公司 触控面板及其制作方法、触控显示装置
CN107885389B (zh) 2017-11-29 2021-06-04 武汉天马微电子有限公司 一种显示面板和显示装置
CN108089760B (zh) * 2018-01-02 2022-03-04 武汉天马微电子有限公司 一种触控显示面板及触控显示装置
KR102598230B1 (ko) * 2018-08-13 2023-11-03 삼성디스플레이 주식회사 표시 장치
CN109885200B (zh) 2019-01-29 2022-12-23 广州国显科技有限公司 触控显示面板及触控显示器
CN110007804B (zh) 2019-04-16 2022-02-22 京东方科技集团股份有限公司 一种触控模组及显示装置
CN110286797B (zh) 2019-06-27 2020-09-11 昆山工研院新型平板显示技术中心有限公司 一种显示面板、显示装置及显示面板的制备方法
KR20210037299A (ko) * 2019-09-27 2021-04-06 엘지디스플레이 주식회사 터치 디스플레이 장치
CN111796723B (zh) * 2019-10-11 2023-06-02 武汉华星光电半导体显示技术有限公司 触控感应装置及触控显示面板
CN110780500A (zh) * 2019-11-15 2020-02-11 京东方科技集团股份有限公司 阵列基板、控光面板和显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941925A (zh) * 2013-01-17 2014-07-23 联咏科技股份有限公司 触控面板
US20150220179A1 (en) * 2014-02-06 2015-08-06 Japan Display Inc. Capacitive touch screen and display device equipped therewith
CN108008855A (zh) * 2017-11-28 2018-05-08 武汉天马微电子有限公司 一种显示面板和显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4123428A4 *

Also Published As

Publication number Publication date
US20220317850A1 (en) 2022-10-06
EP4123428A4 (en) 2023-04-05
CN113853573A (zh) 2021-12-28
US11907467B2 (en) 2024-02-20
US20240143105A1 (en) 2024-05-02
EP4123428A1 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
EP4095922A1 (en) Touch display panel and electronic apparatus
EP4130945A1 (en) Touch structure, touch display panel and electronic device
EP4130944A1 (en) Touch-control structure, touch-control display panel, and electronic apparatus
CN113224117A (zh) 显示装置
WO2021184293A1 (zh) 触控传感器和显示装置
WO2021184292A1 (zh) 触控传感器和显示装置
KR102309172B1 (ko) 터치 패널 및 터치 패널 일체형 유기 발광 표시 장치
WO2021184294A1 (zh) 触控传感器和显示装置
WO2021184308A1 (zh) 触控传感器和显示装置
WO2021184309A1 (zh) 触控传感器和显示装置
EP4131399A1 (en) Touch structure, touch display panel, and electronic device
CN217334096U (zh) 显示装置
CN114497136A (zh) 显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020925076

Country of ref document: EP

Effective date: 20221019