WO2021182610A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2021182610A1
WO2021182610A1 PCT/JP2021/010055 JP2021010055W WO2021182610A1 WO 2021182610 A1 WO2021182610 A1 WO 2021182610A1 JP 2021010055 W JP2021010055 W JP 2021010055W WO 2021182610 A1 WO2021182610 A1 WO 2021182610A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
refrigerant
pipe
plate
tank plate
Prior art date
Application number
PCT/JP2021/010055
Other languages
French (fr)
Japanese (ja)
Inventor
剛史 細野
小原 公和
裕文 弐又
鳥越 栄一
功 畔柳
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020198663A external-priority patent/JP2021148419A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021182610A1 publication Critical patent/WO2021182610A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant

Definitions

  • This disclosure relates to refrigeration cycle equipment.
  • an accumulator that separates the gas-liquid two-phase refrigerant flowing from the evaporator into the gas-phase refrigerant and the liquid-phase refrigerant and discharges the gas-phase refrigerant has been proposed (see, for example, Patent Document 1).
  • This accumulator is configured by stacking a plurality of plates. Two adjacent plates out of a plurality of plates form a container unit that separates and stores a gas phase refrigerant and a liquid phase refrigerant. As a result, a plurality of container units are formed by the plurality of plates.
  • two adjacent container units among the plurality of container units are formed with communication ports that communicate with each other. Therefore, the gas phase refrigerant stored in each of the plurality of container units is discharged to the compressor from the refrigerant outlet through the communication port.
  • a plurality of container units for separately storing the gas phase refrigerant and the liquid phase refrigerant are composed of a plurality of plates. The number of parts when manufacturing an accumulator increases.
  • the refrigeration cycle equipment constituting the refrigeration cycle is formed so as to face the first tank plate formed in a plate shape and the plate shape and facing the first tank plate.
  • the second tank plate, the first tank plate, and the first tank plate which are arranged in the above and form a tank for separating and storing the gas-liquid two-phase refrigerant flowing from the tank inlet into the gas-phase refrigerant and the liquid-phase refrigerant together with the first tank plate. It is provided between the second tank plate and has a pipe inlet for entering the gas phase refrigerant in the tank and a pipe outlet arranged on the outside of the tank. It is provided with a refrigerant pipe that discharges to the outside.
  • the refrigeration cycle equipment can be composed of three parts such as a first tank plate, a second tank plate, and a refrigerant pipe. Therefore, the number of parts can be reduced in the refrigeration cycle equipment that separates the liquid phase refrigerant and the gas phase refrigerant to store the liquid phase refrigerant and discharge the vapor phase refrigerant.
  • the refrigeration cycle equipment is composed of two tank plates such as the first tank plate and the second tank plate. Therefore, the volume of the tank can be increased with respect to the volume as compared with the case where three or more tank plates are laminated to form a refrigeration cycle device.
  • FIG. 2 It is a block diagram which shows the whole structure of the steam compression refrigeration cycle in 1st Embodiment. It is a perspective view which shows the whole of the accumulator in 1st Embodiment. It is an exploded view which shows the state which disassembled the accumulator of FIG. 2 into two tank plates and a refrigerant pipe. It is sectional drawing which cut the accumulator parallel to the thickness direction in order to show the bonding state of two contacting ribs of the accumulator of FIG. It is a figure which shows the arrangement relation of the oil return hole and the filter in the lower pipe part of the refrigerant pipe of FIG. 2, and is the cross section which includes the axis of the lower pipe part of a refrigerant pipe.
  • FIG. 1 It is a figure which shows the liquid level of the liquid phase refrigerant in the accumulator by removing the tank plate of one of the accumulator of FIG.
  • the first modification of the first embodiment it is a cross-sectional view of the accumulator cut in parallel in the thickness direction in order to show the joint state of two contacting ribs of the accumulator, and is a cross-sectional view corresponding to FIG. ..
  • the second modification of the first embodiment it is a cross-sectional view of the accumulator cut in parallel in the thickness direction in order to show the joint state of two contacting ribs of the accumulator, and is a cross-sectional view corresponding to FIG. ..
  • the third modification of the first embodiment it is a cross-sectional view of the accumulator cut in parallel in the thickness direction in order to show the joint state of two contacting ribs of the accumulator, and is a cross-sectional view corresponding to FIG. ..
  • it is a cross-sectional view of the accumulator cut in parallel in the thickness direction in order to show the joint state of two contacting ribs of the accumulator, and is a cross-sectional view corresponding to FIG. ..
  • FIG. . It is a block diagram which shows the whole structure of the steam compression refrigeration cycle in 2nd Embodiment. It is a perspective view which shows the whole of the accumulator in 2nd Embodiment. It is an exploded view which shows the state which disassembled the accumulator of FIG. 13 into two tank plates, a refrigerant pipe, and a header pipe part. It is a figure which shows the arrangement relation of the accumulator, the condenser, and the evaporator of FIG.
  • FIG. 33A is a top view of the refrigerant adjusting unit alone in FIG. 33A as viewed from one side in the thickness direction.
  • FIG. 33C is a side view of the refrigerant adjusting unit alone in FIG. 33C as viewed from the lower side of the drawing.
  • FIG. 5 is a cross-sectional view of the refrigerant pipe of the accumulator of the refrigeration cycle equipment of the ninth embodiment, in which the lower pipe portion and the filter are cut along a plane orthogonal to the axis line.
  • FIG. 5 is a cross-sectional view of the refrigerant pipe of the accumulator of the refrigeration cycle apparatus of the ninth embodiment, in which the lower pipe portion and the filter are cut along a plane parallel to the axis.
  • the accumulator 10 of the present embodiment constitutes a refrigeration cycle device, and together with a compressor 2, a condenser 3, a pressure reducing valve 4, and an evaporator 5, constitutes a vapor compression refrigeration cycle 1 for an in-vehicle air conditioner.
  • Examples of the in-vehicle air conditioning equipment of the present embodiment include air conditioning equipment for drivers of forklifts, air conditioning equipment for drivers of agricultural machinery such as tractors, air conditioning equipment for nap rooms of trucks, air conditioning equipment for automobiles such as microcars, and the like. Can be mentioned.
  • the refrigerant is circulated in the order of the compressor 2, the condenser 3, the pressure reducing valve 4, the accumulator 10, the evaporator 5, and the compressor 2, and the heat is absorbed by the evaporator 5 and dissipated from the condenser 3.
  • the accumulator 10 separates the gas-liquid two-phase refrigerant flowing out of the evaporator 5 into a gas-phase refrigerant and a liquid-phase refrigerant, stores the liquid-phase refrigerant, and discharges the gas-phase refrigerant to the compressor 2.
  • the accumulator 10 includes tank plates 20, 30 and a refrigerant pipe 40, as shown in FIGS. 2 and 3.
  • the tank plates 20 and 30 are arranged so as to face each other to form a tank 13 which is a rectangular and flat refrigerant container.
  • the tank plate 20 is a first tank plate including a front wall portion 21, side portions 22, 23, 24, 25, and flange portions 26a, 26b, 26c, 26d.
  • the front wall portion 21 is arranged so as to face the rear wall portion 31 of the tank plate 30.
  • the front wall portion 21 is formed in a planar shape that expands in the vertical direction and also expands in the width direction.
  • the top-bottom direction means the top-bottom direction in a state where the accumulator 10 is mounted on the housing of the air conditioner.
  • the direction in which the tank plates 20 and 30 are lined up is called the thickness direction.
  • the width direction is a direction orthogonal to the top-bottom direction and orthogonal to the thickness direction.
  • the tank plate 20 side is one side in the thickness direction with respect to the tank plate 30 in the thickness direction
  • the tank plate 30 side is the other side in the thickness direction with respect to the tank plate 20 in the thickness direction. Be on the side.
  • Ribs 28a, 28b, 28c, 28d are provided on the front wall portion 21.
  • the ribs 28a, 28b, 28c, and 28d are formed so that one side of the front wall portion 21 in the thickness direction is recessed in the thickness direction and the other side of the front wall portion 21 in the thickness direction is convex in the thickness direction. ing.
  • the ribs 28a, 28b, 28c, and 28d are formed so as to extend in the vertical direction, respectively.
  • the ribs 28a, 28b, 28c, and 28d are arranged in the width direction at intervals.
  • the ribs 28a and 28b are arranged on one side in the width direction with respect to the ribs 28c and 28d.
  • the ribs 28a and 28b have larger dimensions in the vertical direction than the ribs 28c and 28d.
  • the ribs 28a and 28b have the same dimensions in the vertical direction.
  • the ribs 28c and 28d have the same dimensions in the vertical direction.
  • the ribs 28a, 28b, 28c, and 28d are arranged at the same position in the top-bottom direction at their respective top-bottom improvement ends.
  • the lower ends of the ribs 28a and 28b in the vertical direction are arranged at the same positions in the vertical direction.
  • the lower ends of the ribs 28c and 28d in the vertical direction are arranged at the same positions in the vertical direction.
  • the side portion 22 is arranged on the lower side in the vertical direction with respect to the front wall portion 21.
  • the side portion 23 is arranged on the other side in the width direction with respect to the front wall portion 21.
  • the side portion 24 is arranged on the heavenly region improvement side with respect to the front wall portion 21.
  • the side portion 25 is arranged on one side in the width direction with respect to the front wall portion 21.
  • the flange portion 26a is formed so as to extend from the curved portion 27a to the outside of the tank 13.
  • the curved portion 27a is formed in a curved shape by connecting the side portions 22 and 23.
  • the flange portion 26b is formed so as to extend from the curved portion 27b to the outside of the tank 13.
  • the curved portion 27b is formed in a curved shape by connecting the side portions 23 and 24.
  • the flange portion 26c is formed so as to extend from the curved portion 27c to the outside of the tank 13.
  • the curved portion 27c is formed in a curved shape by connecting the side portions 24 and 25.
  • the flange portion 26d is formed so as to extend from the curved portion 27d to the outside of the tank 13.
  • the curved portion 27d is formed in a curved shape by connecting the side portions 25 and 22.
  • the tank plate 30 is a second tank plate including a rear wall portion 31, side portions 32, 33, 34, 35, and flange portions 36a, 36b, 36c, 36d.
  • the rear wall portion 31 is arranged so as to face the front wall portion 21 of the tank plate 30.
  • the rear wall portion 31 is formed in a planar shape that expands in the vertical direction and also expands in the width direction.
  • Ribs 38a, 38b, 38c, 38d are provided on the rear wall portion 31.
  • the ribs 38a, 38b, 38c, and 38d are formed so that the other side of the rear wall portion 31 in the thickness direction is recessed in the thickness direction and one side of the rear wall portion 31 in the thickness direction is convex in the thickness direction. Has been done.
  • the ribs 38a, 38b, 38c, and 38d are formed so as to extend in the vertical direction, respectively.
  • the ribs 38a, 38b, 38c, and 38d are arranged in the width direction at intervals.
  • the ribs 38a and 38b are arranged on one side in the width direction with respect to the ribs 38c and 38d.
  • the ribs 38a and 38b have larger dimensions in the vertical direction than the ribs 38c and 38d.
  • the ribs 38a and 38b have the same dimensions in the vertical direction.
  • the ribs 38c and 38d have the same dimensions in the vertical direction.
  • the ribs 38a, 38b, 38c, and 38d are arranged at the same position in the top-bottom direction at their respective top-bottom improvement ends.
  • the lower ends of the ribs 38a and 38b in the vertical direction are arranged at the same positions in the vertical direction.
  • the lower ends of the ribs 38c and 38d in the vertical direction are arranged at the same positions in the vertical direction.
  • the ribs 28a and 38a are joined in a state of facing each other and in contact with each other to form a partition portion.
  • the ribs 28b and 38b are joined in a state of facing each other and in contact with each other to form a partition portion.
  • the ribs 28c and 38c are joined in a state of facing each other and in contact with each other to form a partition portion.
  • the ribs 28d and 38d are joined in a state of facing each other and in contact with each other to form a partition portion.
  • the side portion 32 is arranged on the lower side in the vertical direction with respect to the rear wall portion 31.
  • the side portion 33 is arranged on the opposite side in the width direction with respect to the rear wall portion 31.
  • the side portion 34 is arranged on the heavenly region improvement side with respect to the rear wall portion 31.
  • the side portion 35 is arranged on one side in the width direction with respect to the rear wall portion 31.
  • the side portions 22 and 32 are joined so as to face each other.
  • the side portions 23 and 33 are joined so as to face each other.
  • the side portions 24 and 34 are joined so as to face each other.
  • the side portions 25 and 35 are joined so as to face each other.
  • the flange portion 36a is formed so as to extend from the curved portion 37a to the outside of the tank 13.
  • the curved portion 37a is formed in a curved shape by connecting the side portions 32 and 33.
  • the flange portion 36b is formed so as to extend from the curved portion 37b to the outside of the tank 13.
  • the curved portion 37b is formed in a curved shape by connecting the side portions 33 and 34.
  • the flange portion 36c is formed so as to extend from the curved portion 37c to the outside of the tank 13.
  • the curved portion 37c is formed in a curved shape by connecting the side portions 34 and 35.
  • the flange portion 36d is formed so as to extend from the curved portion 37d to the outside of the tank 13.
  • the curved portion 37d is formed in a curved shape by connecting the side portions 35 and 32.
  • the flange portions 26a and 36a are joined so as to face each other.
  • the flange portions 26b and 36b are joined so as to face each other.
  • the flange portions 26c and 36c are joined so as to face each other.
  • the flange portions 26d and 36d are joined so as to face each other.
  • the rear wall portion 31 of the tank plate 30 is formed with an inlet 11 which is a tank inlet which is opened from the inside of the tank 13 to the other side in the thickness direction.
  • the entrance 11 is arranged on the other side of the rear wall portion 31 in the width direction and on the heavenly region improvement side. As will be described later, the gas-liquid two-phase refrigerant from the refrigerant outlet of the evaporator 5 flows into the inlet 11.
  • a through hole 120 is formed in the side portion 23 of the tank plate 20 and the side portion 33 of the tank plate 30 to allow the refrigerant pipe 40, which will be described later, to penetrate.
  • the side portion 23 of the tank plate 20 is formed with a recess 120a forming a through hole 120.
  • a recess 120b forming a through hole 120 is formed in the side portion 33 of the tank plate 30.
  • the through hole 120 is formed as an opening from the inside of the tank 13 to the other side in the width direction by combining the recesses 120a and 120b.
  • the refrigerant pipe 40 is arranged between the front wall portion 21 of the tank plate 20 and the rear wall portion 31 of the tank plate 30.
  • the refrigerant pipe 40 is formed in an L shape by the upper pipe portion 42 and the lower pipe portion 41.
  • the upper piping portion 42 is formed so that the refrigerant flow path extends in the vertical direction.
  • the upper piping portion 42 is arranged between the ribs 28b and 28c.
  • the upper piping portion 42 is arranged between the ribs 38b and 38c.
  • a pipe inlet 40a for entering a vapor phase refrigerant from inside the tank 13 is provided on the upper pipe portion 42 on the improvement side of the top region.
  • the pipe inlet 40a is arranged at the same position in the vertical direction with respect to the respective vertical improvement ends of the ribs 28a, 28b, 28b, and 28c.
  • the pipe inlet 40a is arranged at the same position in the vertical direction with respect to the respective vertical improved ends of the ribs 38a, 38b, 38b, and 38c.
  • the upper piping portion 42 is joined to the ribs 28b and 28c, and is joined to the ribs 38b and 38c.
  • the upper piping portion 42 is joined to the front wall portion 21 and is joined to the rear wall portion 31.
  • the lower piping portion 41 is formed so as to extend from the lower side in the top-bottom direction to the other side in the width direction of the upper piping portion 42.
  • the lower pipe portion 41 is formed with a refrigerant flow path for guiding the refrigerant that has passed through the upper pipe portion 42 to the pipe outlet 40b.
  • the lower piping portion 41 penetrates between the inside and the outside of the tank 13 through the through hole 120.
  • the piping outlet 40b is arranged outside the tank 13.
  • the pipe outlet 40b is formed on the other side of the lower pipe portion 41 in the width direction.
  • the lower piping portion 41 of the present embodiment is arranged between the side portion 22 and the ribs 28c and 28d, and is arranged between the side portion 32 and the ribs 38c and 38d.
  • a space is provided between the lower piping portion 41 and the side portions 22 and 32.
  • the lower piping portion 41 is joined to the ribs 28c and 28d, and is joined to the ribs 38c and 38d.
  • the lower piping portion 41 is joined to the front wall portion 21 and is joined to the rear wall portion 31. In this way, the refrigerant pipe 40 is joined to the inside (that is, the tank 13 side) of the tank plates 20 and 30.
  • the lower piping portion 41 has an oil return hole 40c opened downward.
  • the oil return hole 40c is a hole for allowing the lubricating oil contained in the liquid phase refrigerant in the tank 13 to flow into the refrigerant flow path in the lower piping portion 41.
  • the oil return hole 40c of the present embodiment is provided between the ribs 41a and 41b of the lower piping portion 41.
  • the ribs 41a and 41b are protrusions that are annularly projected outward in the radial direction about the axis CL from the lower piping portion 41.
  • the ribs 41a and 41b are arranged at intervals in the axial direction.
  • the axis direction is the direction in which the axis CL extends.
  • the axis CL is the axis of the lower piping portion 41.
  • a filter 43 formed in a tubular shape is provided on the outer side in the radial direction about the axis CL with respect to the ribs 41a and 41b. As a result, the filter 43 is arranged so as to cover the oil return hole 40c. The filter 43 filters the lubricating oil flowing into the oil return hole 40c to remove impurities.
  • a tank 13 is formed between the tank plates 20 and 30 configured in this way to separate and store the gas-liquid two-phase refrigerant flowing in through the inlet 11 into the liquid-phase refrigerant and the gas-phase refrigerant. ..
  • the tank 13 is divided into divided tank areas 13a, 13b, 13c, 13d, 13e, 13f, 13g by ribs 28a, 28b, 28c, 28d, 38a, 38b, 38c, 38d.
  • the divided tank area 13a is formed between the side portion 35 and the ribs 38a and 28a.
  • the split tank region 13b is formed between the ribs 38a and 28a and the ribs 38b and 28b.
  • the split tank region 13c is formed between the ribs 38b and 28b and the ribs 38c and 28c.
  • the divided tank region 13d is formed between the ribs 38c and 28c and the ribs 38d and 28d.
  • the split tank region 13e is formed between the ribs 38d and 28d and the side portion 33.
  • the divided tank region 13f is formed between the ribs 28a, 28b, 28c, 28d, 38a, 38b, 38c, 38d and the side portion 34.
  • the split tank region 13g is formed between the ribs 28a, 28b, 28c, 28d, 38a, 38b, 38c, 38d and the side portion 32.
  • the divided tank regions 13a, 13b, 13c, 13d, and 13e are arranged in the width direction (that is, the horizontal direction).
  • the divided tank regions 13a, 13b, 13c, 13d, and 13e are each formed so as to extend in the vertical direction.
  • the divided tank regions 13a, 13b, 13c, 13d, and 13e configured in this way are a plurality of divided tank regions for suppressing fluctuations in the liquid level 14 of the liquid phase refrigerant in the tank 13.
  • the tank plates 30, 30 and the refrigerant pipe 40 of this embodiment are made of an aluminum alloy material containing aluminum.
  • a method for joining the tank plates 30, 30 and the refrigerant pipe 40 for example, brazing joining is used.
  • the accumulator 10 of the present embodiment may be integrally molded by brazing or the like together with the condenser 3, the pressure reducing valve 4, the evaporator 5, and the like. However, for convenience of explanation, a method for manufacturing the accumulator 10 alone will be described below in this embodiment.
  • the tank plates 20 and 30 and the refrigerant pipe 40 are prepared separately.
  • a lat material having a brazing material layer provided on the front surface or the back surface of a plate material made of an aluminum alloy material is used as the tank plates 20, 30 and the refrigerant pipe 40.
  • the brazing filler metal layer is a layer made of brazing filler metal.
  • the refrigerant pipe 40 is sandwiched between the tank plates 20 and 30, and the tank plates 20 and 30 are aligned in a state of facing each other.
  • the upper piping portion 42 of the refrigerant pipe 40 is arranged between the ribs 28b and 38b and the ribs 28c and 38c.
  • the lower pipe portion 41 of the refrigerant pipe 40 is arranged below the ribs 28c, 38c, 28d, and 38d.
  • the pipe outlet 40b is located outside the tank 13.
  • the tank plates 20 and 30 and the refrigerant pipe 40 are brazed and joined by heating in a high temperature furnace to melt the brazing material layer. do.
  • the refrigerant pipe 40 is brazed to the front wall portion 21 of the tank plate 20 and the rear wall portion 31 of the tank plate 30.
  • the upper pipe portion 42 of the refrigerant pipe 40 is brazed to the ribs 28b, 38b, 28c, 38c.
  • the lower piping portion 41 of the refrigerant pipe 40 is brazed to the ribs 28c, 38c, 28d, 38d, the recess 120a of the side portion 23, and the recess 120b of the side portion 33.
  • tank plates 20 and 30 and the refrigerant pipe 40 are integrated by brazing joint to form an integrally molded product.
  • the compressor 2 sucks the vapor phase refrigerant from the accumulator 10, compresses it, and discharges it as a high-pressure refrigerant.
  • the capacitor 3 dissipates heat from the high-pressure refrigerant discharged from the compressor 2.
  • the pressure reducing valve 4 decompresses the high-pressure refrigerant flowing out of the condenser 3.
  • the evaporator 5 evaporates the low-pressure refrigerant that has passed through the pressure reducing valve 4 by endothermic reaction.
  • the accumulator 10 separates the gas-liquid two-phase refrigerant that has passed through the evaporator 5 into a gas-phase refrigerant and a liquid-phase refrigerant, stores the liquid-phase refrigerant, and discharges the gas-phase refrigerant.
  • the gas-liquid two-phase refrigerant that has passed through the evaporator 5 enters the tank 13 through the inlet 11.
  • the gas-liquid two-phase refrigerant is separated into a gas-phase refrigerant and a liquid-phase refrigerant
  • the vapor-phase refrigerant is stored in the upper side of the tank 13
  • the liquid-phase refrigerant is stored in the lower side of the tank 13.
  • the gas phase refrigerant and the liquid phase refrigerant are stored in each of the divided tank regions 13a, 13b, 13c, 13d, and 13e in a separated state.
  • the vapor phase refrigerant is stored in the divided tank region 13f.
  • the liquid phase refrigerant is stored in the divided tank area 13 g.
  • the vapor-phase refrigerant in the tank 13 flows from the pipe outlet 40b to the refrigerant inlet of the compressor 2 through the pipe inlet 40a and the refrigerant flow path of the refrigerant pipe 40.
  • the lubricating oil contained in the liquid phase refrigerant in the tank 13 flows into the refrigerant flow path of the refrigerant pipe 40 through the filter 43 and the oil return hole 40c.
  • the lubricating oil flowing through the refrigerant flow path flows from the pipe outlet 40b to the refrigerant inlet of the compressor 2, that is, to the outside of the tank 13. That is, the lubricating oil flowing in the refrigerant flow path flows from the pipe outlet 40b to the outside of the tank 13.
  • the lubricating oil is used for lubricating the compression mechanism and the like constituting the compressor 2.
  • the filter 43 removes impurities from the lubricating oil flowing from the inside of the tank 13 to the refrigerant flow path of the refrigerant pipe 40 through the oil return hole 40c. This prevents the oil return hole 40c from being clogged with impurities.
  • tank 13 is divided into divided tank areas 13a, 13b, 13c, 13d, 13e by ribs 28a, 28b, 28c, 28d, 38a, 38b, 38c, 38d.
  • the accumulator 10 constitutes a vapor compression refrigeration cycle in which a refrigerant is circulated.
  • the tank plates 20 and 30 are formed in a plate shape and are arranged so as to face each other, and a tank 13 for separating and storing the gas-liquid two-phase refrigerant flowing in from the inlet 11 into a gas-phase refrigerant and a liquid-phase refrigerant Form.
  • the accumulator 10 includes a pipe inlet 40a for entering the gas phase refrigerant and a pipe outlet 40b arranged outside the tank 13 for discharging the vapor phase refrigerant, and the gas phase refrigerant in the tank 13 is supplied to the pipe inlet 40a and the pipe outlet 40b. It is provided with a refrigerant pipe 40 which is discharged to the outside of the tank 13 through the pipe.
  • the accumulator 10 that separates the gas-liquid two-phase refrigerant into the liquid-phase refrigerant and the gas-phase refrigerant and discharges the gas-phase refrigerant while storing the liquid-phase refrigerant is provided with three components such as the tank plates 20, 30 and the refrigerant pipe 40. Can be configured by.
  • the accumulator 10 as a refrigeration cycle device can be configured with a smaller number of parts than the accumulator described in Patent Document 1. Along with this, the manufacturing cost of the accumulator 10 can be reduced as compared with the accumulator described in Patent Document 1.
  • the refrigerant pipe 40 is brazed to the tank plate 30 side in the thickness direction (that is, the alignment direction) of the tank plate 20.
  • the refrigerant pipe 40 is brazed to the tank plate 20 side in the thickness direction (that is, the arrangement direction) of the tank plate 30.
  • the strength of the accumulator 10 can be increased. Along with this, the pressure resistance to the refrigerant pressure in the tank 13 can be increased.
  • the ribs 28a, 28b, 28c, 28d, 38a, 38b, 38c, 38d partition the tank 13 into divided tank areas 13a, 13b, 13c, 13d, 13e.
  • the liquid level 14 of the liquid phase refrigerant in the tank 13 Vibrates. Therefore, the liquid phase refrigerant in the tank 13 may enter the pipe inlet 40a of the refrigerant pipe 40.
  • the tank 13 is partitioned by ribs 28a, 28b, 28c, 28d, 38a, 38b, 38c, 38d to form divided tank regions 13a, 13b, 13c, 13d, 13e. .. Therefore, the vibration of the liquid level 14 of the liquid phase refrigerant in the tank 13 is suppressed. It is possible to prevent the liquid phase refrigerant in the tank 13 from entering the pipe inlet 40a of the refrigerant pipe 40.
  • the divided tank regions 13a, 13b, 13c, 13d, and 13e are formed so as to extend in the vertical direction and are arranged in the width direction (that is, in the horizontal direction). Therefore, it is possible to further suppress the vibration of the liquid level 14 of the liquid phase refrigerant in the tank 13.
  • the ribs 28a, 28b, 28c, 28d, 38a, 38b, 38c, 38d of the tank plates 20 and 30 are used to form the divided tank regions 13a, 13b, 13c, 13d, 13e.
  • the number of parts can be reduced as compared with the case where the divided tank regions 13a, 13b, 13c, 13d, and 13e are formed by using parts other than the tank plates 20 and 30.
  • the manufacturing cost of the accumulator 10 can be reduced as compared with the accumulator described in Patent Document 1.
  • the refrigerant pipe 40 is formed with an oil return hole 40c in which the lubricating oil contained in the gas-liquid two-phase refrigerant in the tank 13 enters. Therefore, the lubricating oil in the tank 13 can be discharged to the outside of the tank 13 through the oil return hole 40c of the refrigerant pipe 40, the refrigerant flow path, and the pipe outlet 40b and supplied to the inlet of the compressor 2.
  • the lubricating oil in the tank 13 can be appropriately returned to the compressor 2. Therefore, the compression mechanism constituting the compressor 2 is lubricated by the lubricating oil.
  • the filter 43 is provided in the vicinity of the oil return hole 40c. As a result, it is possible to prevent the oil return hole 40c from being clogged with impurities.
  • the accumulator 10 is composed of the tank plates 20 and 30 and the refrigerant pipe 40. Therefore, the number of joints can be reduced as compared with the accumulator described in Patent Document 1. Therefore, the reliability of the accumulator 10 can be ensured.
  • the accumulator described in Patent Document 1 constitutes a plurality of tanks by laminating a plurality of plates. Therefore, the ratio of the volume of the entire tank to the volume of the accumulator is low.
  • the tank 13 is composed of the tank plates 20 and 30. Therefore, the ratio of the volume of the entire tank to the volume of the accumulator 10 can be increased. Along with this, the volume of the tank 13 can be secured by the accumulator 10 having a small volume.
  • the rib 28a of the tank plate 20 and the flat surface portion 39 of the tank plate 30 may be joined to form a partition portion.
  • the tank plate 30 is formed with a flat surface portion 39 instead of the rib 38a.
  • the flat surface portion 39 has no ribs and is formed in a flat shape extending in the vertical direction and the width direction.
  • the rib 38a of the tank plate 30 and the flat surface portion of the tank plate 20 may be joined to form a partition portion.
  • the tank plate 20 is formed with a flat surface portion instead of the rib 28a.
  • the flat surface portion has no ribs and is formed in a flat shape extending in the vertical direction and the width direction.
  • a rib is provided on one of the tank plates 20 and 30, a flat surface portion is provided on the other tank plate, and the flat surface portion is joined to the rib to form a partition portion. You may.
  • one of the tank plates 20 and 30 is provided with a rib
  • the other tank plate is provided with a flat surface portion
  • the rib is flat. The portions may be joined to form a partition portion.
  • a through hole 50 that penetrates the ribs 28b and 38b in the thickness direction may be provided.
  • a through hole 50 that penetrates the ribs 28c and 38c in the thickness direction may be provided.
  • a through hole 50 that penetrates the ribs 28d and 38d in the thickness direction may be provided.
  • a through hole 50 may be provided that penetrates the rib 28b and the flat surface portion 39 in the thickness direction.
  • a through hole 50 may be provided that penetrates the rib 28b and the flat surface portion 39 in the thickness direction.
  • a through hole 50 may be provided that penetrates the rib 28c and the flat surface portion 39 in the thickness direction.
  • a through hole 50 may be provided that penetrates the rib 28d and the flat surface portion 39 in the thickness direction.
  • the through hole 51 may be provided only in the rib 28b among the ribs 28b and 38b.
  • the ribs 28c and 38c only the rib 28c may be provided with a through hole.
  • the ribs 28d and 38d only the rib 28c may be provided with a through hole.
  • a through hole may be provided only in the rib 38a among the ribs 28a and 38a.
  • ribs 28b and 38b only the rib 38b may be provided with a through hole.
  • ribs 28c and 38c only the rib 38c may be provided with a through hole.
  • ribs 28d and 38d only the rib 38d may be provided with a through hole.
  • the through hole 51 may be provided only in the rib 28a of the rib 28a and the flat surface portion 39 of the first modification.
  • a through hole may be provided only in the flat surface portion 39 of the rib 28a and the flat surface portion 39.
  • the through hole 51 may be provided only in the rib 28b.
  • the through hole 51 may be provided only in the flat surface portion 39.
  • the through hole 51 may be provided only in the flat surface portion 39.
  • the through hole 51 may be provided only in the flat surface portion 39.
  • the through hole 51 may be provided only in the flat surface portion 39.
  • the refrigerating cycle device 10A of the second embodiment is a combination of the accumulator 10 of the first embodiment and the inlet pipe 3a for a capacitor. Therefore, the description of the accumulator 10 will be simplified, and the capacitor inlet pipe 3a will be mainly described.
  • the condenser inlet pipe 3a is a heat exchanger pipe arranged between the outlet of the compressor 2 and the inlet of the condenser 3.
  • the condenser inlet pipe 3a is a refrigerant pipe for guiding the high-pressure refrigerant discharged from the outlet of the compressor 2 to the inlet of the condenser 3.
  • the condenser inlet pipe 3a is arranged on the lower side in the vertical direction with respect to the accumulator 10. That is, the capacitor inlet pipe 3a is arranged on the lower side in the vertical direction with respect to the tank 13. In other words, the capacitor inlet pipe 3a is arranged in a predetermined direction orthogonal to the thickness direction with respect to the tank 13.
  • the capacitor inlet pipe 3a includes a plate pipe portion 60 and a header pipe portion 61.
  • the plate piping portion 60 is configured by combining the half-tube portion 62a of the tank plate 20 and the half-tube portion 62b of the tank plate 30.
  • the half-tube portion 62a is configured such that one side of the tank plate 20 in the thickness direction is convex to one side in the thickness direction, and the other side of the tank plate 20 in the thickness direction is recessed to one side in the thickness direction.
  • the half-tube portion 62b is configured such that one side of the tank plate 30 in the thickness direction is recessed to the other side in the thickness direction, and the other side of the tank plate 30 in the thickness direction is convex to the other side in the thickness direction.
  • the outlet 63 is opened on one side of the half-tube portion 62b in the width direction on the other side in the thickness direction.
  • the outlet 63 is connected to the inlet of the capacitor 3.
  • the header piping unit 61 is connected to the inlet 64 of the plate piping unit 60.
  • the inlet 64 of the plate piping portion 60 is arranged on the other side of the header piping portion 61 in the width direction.
  • the inlet 64 of the plate piping portion 60 is configured by combining the recess 64a of the tank plate 20 and the recess 64b of the tank plate 30.
  • the recess 64a of the tank plate 20 is configured such that one side of the tank plate 20 in the thickness direction is convex to one side in the thickness direction, and the other side of the tank plate 20 in the thickness direction is recessed to one side in the thickness direction.
  • the recess 64b of the tank plate 30 is configured such that one side of the tank plate 30 in the thickness direction is recessed to the other side in the thickness direction, and the other side of the tank plate 30 in the thickness direction is convex to the other side in the thickness direction.
  • the header piping unit 61 connects between the inlet 64 of the plate piping unit 60 and the outlet of the compressor 2.
  • the condenser inlet pipe 3a is composed of the header pipe portion 61 and the plate pipe portion 60, and guides the high-pressure refrigerant discharged from the compressor 2 to the inlet of the capacitor 3.
  • the header piping portion 61 is brazed and joined in a state of being assembled together with the tank plates 20 and 30 and the refrigerant piping 40. Therefore, the accumulator 10 and the header piping 61 form an integrally molded product by the header piping 61, the refrigerant piping 40, and the tank plates 20 and 30.
  • the accumulator 10 and the header piping portion 61 form an integrally molded product together with the condenser 3 and the evaporator 5 as shown in FIG.
  • the tank plates 20 and 30 form a condenser inlet pipe 3a which is arranged on the lower side in the vertical direction with respect to the tank 13 and is connected to the condenser 3. do.
  • the tank plates 20 and 30 are accumulators 10 that separate the gas-liquid two-phase refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant in the tank 13, store the liquid-phase refrigerant, and discharge the gas-phase refrigerant from the tank 13 through a refrigerant pipe.
  • the accumulator 10 and the capacitor inlet pipe 3a constitute an integrally molded product.
  • the number of devices constituting the steam compression refrigeration cycle 1 can be reduced as compared with the case where the accumulator 10 and the condenser inlet pipe 3a are independently configured.
  • FIGS. 17, 18, 19, 19 and the like for a third embodiment in which the refrigerating cycle device 10B is configured by using the inner fins 600 arranged between the tank plates 200 and 300. explain.
  • the refrigeration cycle device 10B of the present embodiment is a combination of the accumulator 100 and the condenser inlet pipe 3b.
  • the refrigeration cycle device 10B includes inner fins 600 arranged in a wavy shape between the tank plates 200 and 300, the refrigerant pipes 400 and 500, and the tank plates 200 and 300.
  • the tank plates 200 and 300 are arranged so as to face each other to form a rectangular and flat tank 13.
  • the tank 13 is formed so as to expand in the width direction and the top-bottom direction.
  • the tank plate 200 is a first tank plate provided in place of the tank plate 20 of the first and second embodiments. As shown in FIGS. 18, 19, 20, 22, and 23, the tank plate 200 includes a front wall portion 21, side portions 22, 23, 24, 25, and a flange portion 201. The wall portion 21 is arranged so as to face the rear wall portion 31 of the tank plate 300. The front wall portion 21 is formed in a planar shape that expands in the vertical direction and also expands in the width direction.
  • the top-bottom direction means the top-bottom direction in a state where the accumulator 100 is mounted on the housing of the air conditioner.
  • the direction in which the tank plates 20 and 30 are lined up is called the thickness direction.
  • the width direction is a horizontal direction, orthogonal to the top-bottom direction, and orthogonal to the thickness direction.
  • the tank plate 200 side is one side in the thickness direction with respect to the tank plate 300 in the thickness direction
  • the tank plate 300 side is the thickness direction with respect to the tank plate 200 in the thickness direction. The other side.
  • the front wall portion 21 is provided with ribs 28a, 28b, 28c, 28d, 28e, 29a, 29b, 29c, 29d, and a flange portion 201.
  • the ribs 28a, 28b, 28c, 28d, and 28e are such that one side of the front wall portion 21 in the thickness direction is recessed in the other side in the thickness direction, and the other side of the front wall portion 21 in the thickness direction is convex in the other direction in the thickness direction. It is formed.
  • the ribs 28a, 28b, 28c, 28d, and 28e are each formed in the first direction.
  • the first direction in the ribs 28a, 28b, 28c, 28d, 28e is referred to as a longitudinal direction.
  • the longitudinal direction of the ribs 28a, 28b, 28c, 28d, 28e of the present embodiment is the top-bottom direction.
  • the ribs 28a, 28b, 28c, 28d, and 28e are arranged in the width direction at intervals.
  • the ribs 28a, 28b, 28c, 28d, 28e are arranged in the width direction.
  • the rib 28a is arranged at a distance from the side portion 25.
  • the end of the rib 28a on the improved side is connected to the side 24.
  • the lower end of the rib 28a in the vertical direction is connected to the side 22.
  • the rib 28b is arranged on the opposite side in the width direction with respect to the rib 28a.
  • the ribs 28b are arranged at intervals from the ribs 28a.
  • the end of the rib 28b on the improved side is connected to the side 24.
  • the lower end of the rib 28b in the vertical direction is connected to the side 22.
  • the rib 28c is arranged on the opposite side in the width direction with respect to the rib 28b.
  • the ribs 28c are arranged at intervals from the ribs 28b.
  • the end of the rib 28c on the improved side is connected to the side 24.
  • the lower end of the rib 28c in the vertical direction is connected to the side 22.
  • the rib 28d is arranged on the opposite side in the width direction with respect to the rib 28c.
  • the rib 28d is arranged at a distance from the rib 28c.
  • the end of the rib 28d on the improved side is connected to the side 24.
  • the lower end of the rib 28d in the vertical direction is connected to the side 22.
  • the rib 28e is arranged on the opposite side in the width direction with respect to the rib 28d.
  • the rib 28e is arranged at one end in the width direction with respect to the side portion 23.
  • the rib 28e is arranged at a distance from the rib 28d.
  • the end of the rib 28e on the improvement side of the sky region is connected to the rib 29c.
  • the lower side of the rib 28e in the vertical direction is connected to the side portion 22.
  • such ribs 28a, 28b, 28c, 28d, 28e divide the inside of the tank 13 between the inner fin 600 and the tank plate 200, and the tank regions 122a, 122b, 122c, 122d, 122e , 122f.
  • the divided tank area 122a is formed between the rib 28a and the side portion 25 of the tank 13.
  • the divided tank region 122b is formed between the ribs 28a and 28b of the tank 13.
  • the divided tank region 122c is formed between the ribs 28b and 28c of the tank 13.
  • the divided tank area 122d is formed between the ribs 28c and 28d of the tank 13.
  • the divided tank region 122e is formed between the ribs 28d and 28e of the tank 13.
  • the split tank region 122f is formed between the rib 28e and the side portion 23 of the tank 13.
  • the side portion 22 is arranged on the lower side in the vertical direction with respect to the front wall portion 21 as in the first embodiment.
  • the side portion 23 is arranged on the other side in the width direction with respect to the front wall portion 21.
  • the side portion 24 is arranged on the heavenly region improvement side with respect to the front wall portion 21.
  • the side portion 25 is arranged on one side in the width direction with respect to the front wall portion 21.
  • the rib 29a is arranged on the heavenly region improvement side of the rib 28e.
  • the rib 29a is connected to the side portion 24.
  • the rib 29a is formed so as to be convex from the rib 28a to the other side in the thickness direction.
  • the rib 29b is arranged on the heavenly region improvement side of the rib 28c.
  • the rib 29b is connected to the side portion 24.
  • the rib 29b is formed so as to be convex from the rib 28c to the other side in the thickness direction.
  • the ribs 29a and 29b each play a role of suppressing the liquid-phase refrigerant flowing from the inlet 11 into the tank 13 from flowing to the pipe inlet 40a of the refrigerant pipe 40, as will be described later.
  • the ribs 29a and 29b are formed so as to project from the inner wall 21a forming the tank 13 of the tank plate 300 toward the tank plate 200, respectively.
  • the tip portions of the ribs 29a and 29b in the thickness direction are arranged on the other side in the thickness direction as compared with the tip portions of the ribs 28a, 28b, 28c and 28d in the thickness direction.
  • the ribs 29c and 29d are arranged between the rib 28a and the side portion 25, respectively.
  • the ribs 29c and 29d are formed so that one side of the front wall portion 21 in the thickness direction is recessed to the other side in the thickness direction, and the other side of the front wall portion 21 in the thickness direction is convex to one side in the thickness direction. ..
  • the ribs 29c and 29d are arranged at intervals in the vertical direction.
  • the ribs 29c and 29d each play a role of supporting the refrigerant pipe 400 from one side in the thickness direction, as will be described later.
  • the rib 29e is arranged on the lower side of the rib 29a in the vertical direction.
  • the rib 28e is formed so as to be convex from the rib 29a to the other side in the thickness direction.
  • the rib 28e is connected to the side portion 22.
  • the rib 29e plays a role of supporting the refrigerant pipe 400 from one side in the thickness direction, as will be described later.
  • the tank plate 200 is formed with a recess 120a.
  • the recess 120a together with the recess 120b of the tank plate 300, constitutes a through hole 120.
  • the flange portion 201 is formed so as to surround the side portions 22, 23, 24, 25 from the top-bottom direction and the width direction.
  • the ribs 28a, 28b, 28c, 28d, and 28e are formed so as to extend in the vertical direction, respectively. Therefore, when the accumulator 100 moves in the vertical direction, the refrigerant in the divided tank regions 122a, 122b, 122c, 122d, 122e, and 122f is suppressed from moving in the width direction.
  • the tank plate 300 is a second tank plate provided in place of the tank plate 30 of the first and second embodiments. As shown in FIGS. 17, 19, 20, 20, 24, 25, 26, and 27, the tank plate 300 includes a rear wall portion 31, side portions 32, 33, 34, 35, and a flange portion 301. To be equipped.
  • the rear wall portion 31 is arranged so as to face the front wall portion 21 of the tank plate 300.
  • the rear wall portion 31 is formed in a planar shape that expands in the vertical direction and also expands in the width direction.
  • Ribs 38a, 38b, 38c, 38d, 38e are provided on the rear wall portion 31.
  • the ribs 38a, 38b, 38c, 38d, and 38e are respectively recessed in the thickness direction on the other side of the rear wall portion 31, and convex on one side in the thickness direction of the rear wall portion 31. Is formed in.
  • the ribs 38a, 38b, 38c, 38d, and 38e are formed so as to extend in the first direction, respectively.
  • the first direction of the ribs 38a, 38b, 38c, 38d, 38e is referred to as a longitudinal direction.
  • the longitudinal direction of the ribs 38a, 38b, 38c, 38d, 38e of the present embodiment is the top-bottom direction.
  • the ribs 38a, 38b, 38c, 38d, and 38e are arranged in the width direction at intervals.
  • the rib 38a is arranged at a distance from the side portion 35.
  • the end of the rib 38a on the improved side is connected to the side 34.
  • the lower end of the rib 38a in the vertical direction is connected to the side portion 32.
  • the rib 38b is arranged on the opposite side in the width direction with respect to the rib 38a.
  • the ribs 38b are arranged at intervals from the ribs 38a.
  • the end of the rib 38b on the improved side is connected to the side 34.
  • the lower end of the rib 38b in the vertical direction is connected to the side portion 32.
  • the rib 38c is arranged on the opposite side in the width direction with respect to the rib 38b.
  • the ribs 38c are arranged at intervals from the ribs 38b.
  • the end of the rib 38c on the improved side is connected to the side 34.
  • the lower end of the rib 38c in the vertical direction is connected to the side portion 32.
  • the rib 38d is arranged on the opposite side in the width direction with respect to the rib 38c.
  • the rib 38d is arranged at a distance from the rib 38c.
  • the end of the rib 38d on the improvement side of the heavens is connected to the side 34.
  • the lower end of the rib 38d in the vertical direction is connected to the side portion 32.
  • the rib 38e is arranged on the opposite side in the width direction with respect to the rib 38d.
  • the rib 38e is arranged at a distance from the side portion 33.
  • the rib 38e is arranged at a distance from the rib 38d.
  • the end of the rib 38e on the improvement side of the sky region is connected to the rib 39d.
  • the lower side of the rib 38e in the vertical direction is connected to the side portion 32.
  • such ribs 38a, 38b, 38c, 38d, 38e divide the inside of the tank 13 between the inner fin 600 and the tank plate 300, and the tank regions 132a, 132b, 132c, 132d, 132e , 132f.
  • the divided tank area 132a is formed between the rib 38a and the side portion 35 of the tank 13.
  • the divided tank region 132b is formed between the ribs 38a and 38b of the tank 13.
  • the divided tank region 132c is formed between the ribs 38b and 38c of the tank 13.
  • the divided tank area 132d is formed between the ribs 38c and 38d of the tank 13.
  • the divided tank region 132e is formed between the ribs 38d and 38e of the tank 13.
  • the divided tank region 132f is formed between the rib 38e and the side portion 33 of the tank 13.
  • the side portion 32 is arranged on the lower side in the vertical direction with respect to the rear wall portion 31 as in the first embodiment.
  • the side portion 33 is arranged on the opposite side in the width direction with respect to the rear wall portion 31.
  • the side portion 34 is arranged on the heavenly region improvement side with respect to the rear wall portion 31.
  • the side portion 35 is arranged on one side in the width direction with respect to the rear wall portion 31.
  • the rib 39a is arranged between the side portion 35 and the rib 38a.
  • the rib 39a is arranged on the center side of the tank 13 in the vertical direction.
  • the rib 39a is formed so that the other side of the rear wall portion 31 in the thickness direction is recessed on one side in the thickness direction, and one side of the rear wall portion 31 in the thickness direction is convex on the other side in the thickness direction.
  • the rib 39b is arranged on the heavenly region improvement side of the rib 38d.
  • the rib 39b is connected to the side portion 34.
  • the rib 39b is formed so as to be convex on one side in the thickness direction from the rib 38d.
  • the rib 39b is formed so as to protrude from the tank plate 200 side from the inner wall 31a forming the tank 13 of the tank plate 300.
  • the tip portion of the rib 39b in the thickness direction is located on one side in the thickness direction with respect to the tip portion in the thickness direction of each of the ribs 38a, 38b, 38c, and 38d.
  • the ribs 39b and the ribs 29a and 29b each have a refrigerant flow path 180 for flowing the liquid phase refrigerant from the inlet 11 to the pipe inlet 40a between the tank plates 200 and 300 as shown in FIG. It constitutes an inflow suppression unit to be squeezed.
  • the ribs 39b, 29a, and 29b play a role of suppressing the flow of the liquid phase refrigerant from the inlet 11 through the refrigerant flow path 180 to the pipe inlet 40a as shown by the arrow RE in FIG.
  • the refrigerant flow path 180 is formed in a region surrounded by the tank plates 200, 300, and the inner fin 600.
  • a virtual surface 800 extending in the width direction and the top-bottom direction is set on one side in the thickness direction with respect to the inlet 11, the rib 39b, the ribs 29a, 29b, and the pipe inlet 40a.
  • the points are 801 and 802, 803, 804 and 805.
  • the projection points 801, 802, 803, 804, and 805 are arranged in the width direction.
  • the rib 39c in FIG. 24 is arranged on the lower side of the rib 38a in the vertical direction.
  • the rib 39c is connected to the side portion 32.
  • the rib 39c is formed so as to be convex from the rib 38a on one side in the thickness direction.
  • the rib 39c supports the refrigerant pipe 400 from the other side in the thickness direction.
  • the rib 39d is formed so as to intersect in the vertical direction and extend in the width direction.
  • the rib 39d is formed so as to go downward in the vertical direction from one side in the width direction to the other side in the width direction.
  • One side of the rib 39d in the width direction is connected to the side portion 34 and the rib 38d.
  • the other side of the rib 39d in the width direction is connected to the side portion 33.
  • the ribs 38a, 38b, 38c, 38d, 38e divide the inside of the tank 13 between the inner fin 600 and the tank plate 300, as shown in FIG. , 132f.
  • the divided tank area 132a is formed between the rib 38a and the side portion 35 of the tank 13.
  • the divided tank region 132b is formed between the ribs 38a and 38b of the tank 13.
  • the divided tank region 132c is formed between the ribs 38b and 38c of the tank 13.
  • the divided tank area 132d is formed between the ribs 38c and 38d of the tank 13.
  • the divided tank region 132e is formed between the ribs 38d and 38e of the tank 13.
  • the divided tank region 132f is formed between the rib 38e and the side portion 33 of the tank 13.
  • the tank plate 300 is formed with an inlet 11, a recess 120b, and a flange portion 301.
  • the inlet 11 penetrates the rear wall portion 31 of the tank plate 300 in the thickness direction.
  • the entrance 11 is arranged on the heavenly region improvement side and the other side in the width direction of the rear wall portion 31. As will be described later, the gas-liquid two-phase refrigerant from the refrigerant outlet of the evaporator 5 flows into the inlet 11.
  • the recess 120b constitutes a through hole 120 together with the recess 120a of the tank plate 200. Further, the flange portion 301 is formed so as to surround the side portions 22, 23, 24, 25 from the top-bottom direction and the width direction.
  • the side portion 32 is arranged on the lower side in the vertical direction with respect to the rear wall portion 31 as in the first embodiment.
  • the side portion 33 is arranged on the opposite side in the width direction with respect to the rear wall portion 31.
  • the side portion 34 is arranged on the heavenly region improvement side with respect to the rear wall portion 31.
  • the side portion 35 is arranged on one side in the width direction with respect to the rear wall portion 31.
  • the flange portion 301 is formed so as to surround the side portions 32, 33, 34, 35 from the top-bottom direction and the width direction.
  • the ribs 38a, 38b, 38c, 38d, and 38e are formed so as to extend in the vertical direction, respectively. Therefore, when the accumulator 100 moves in the vertical direction, the refrigerant in the divided tank regions 132a, 132b, 132c, 132d, 132e, 132f is suppressed from moving in the width direction.
  • the refrigerant pipe 400 is arranged between the tank plates 200 and 300 as shown in FIGS. 19 and 20.
  • the refrigerant pipe 400 is arranged so as to be offset from the inner fin 600 of the tank 13.
  • the refrigerant pipe 400 is formed in a J shape.
  • the refrigerant pipe 400 includes an upper pipe portion 401, an intermediate pipe portion 402, and a lower pipe portion 403.
  • the upper piping portion 401 is formed so as to extend from the top region improvement side end portion of the intermediate piping portion 402 to the other side in the width direction along the side portions 24 and 34. On the other side of the upper piping portion 401 in the width direction, a piping inlet 40a for entering the vapor phase refrigerant from inside the tank 13 is provided.
  • the pipe inlet 40a is arranged above the center line Td in the vertical direction of the tank 13.
  • the center line Td is a virtual line extending in the horizontal direction through the center point in the vertical direction of the tank 13.
  • the pipe inlet 40a is arranged on the central side of the tank 13 in the width direction.
  • the width direction center side means two regions 701 and 702 on the width direction center side of the regions 700, 701, 702, and 703. That is, the pipe inlet 40a is arranged in two regions 701 and 702 on the central side in the width direction of the regions 700, 701, 702, and 703 in the tank 13.
  • An interval 413 is provided between the inlet side end portion 411 of the outer wall 410 of the upper piping portion 401 and the tank plate 300.
  • the intermediate piping portion 402 is formed so as to extend downward from one side end in the width direction along the side portions 25 and 35 of the upper piping portion 401 in the vertical direction.
  • the intermediate piping portion 402 is supported by ribs 29c and 29d from one side in the thickness direction.
  • the intermediate piping portion 402 is supported by the rib 39a from the other side in the thickness direction.
  • the lower piping portion 403 is formed so as to extend from the lower end portion in the vertical direction of the intermediate piping portion 402 to the other side in the width direction along the side portions 22 and 32.
  • the lower piping portion 403 is supported from one side in the thickness direction by the rib 29e and the recess 120a.
  • the lower piping portion 403 is supported from the other side in the thickness direction by the rib 39c and the recess 120b.
  • the other end of the lower piping portion 403 in the width direction protrudes to the outside of the tank 13 through the through hole 120.
  • a pipe outlet 40b for discharging the refrigerant that has passed through the lower pipe portion 403 is provided at the other end of the lower pipe portion 403 in the width direction.
  • a piping plug 404 forming a joint connected to the refrigerant inlet side of the compressor 2 is provided at the other end of the lower piping portion 403 in the width direction.
  • An oil return hole 40c is opened downward on the center side of the lower piping portion 403 in the width direction. Specifically, the oil return hole 40c is arranged below the center line Td in the vertical direction of the tank 13. The oil return hole 40c is arranged on the center side of the tank 13 in the width direction.
  • the center side in the width direction means the two regions 701 and 702 on the center side in the width direction of the regions 700, 701, 702, and 703 as described above.
  • the oil return hole 40c is a hole for allowing the lubricating oil contained in the liquid phase refrigerant in the tank 13 to flow into the refrigerant flow path in the lower piping portion 41.
  • the oil return hole 40c of the present embodiment is provided between the ribs 41a and 41b of the lower piping portion 41.
  • the ribs 41a and 41b are protrusions that are annularly projected outward in the radial direction about the axis CL of the lower piping portion 403 from the lower piping portion 41.
  • the ribs 41a and 41b are arranged at intervals in the axial direction.
  • the axis direction is the direction in which the axis CL extends.
  • a filter 43 formed in a tubular shape is provided on the outer side in the radial direction about the axis CL with respect to the ribs 41a and 41b.
  • the filter 43 will be arranged so as to cover the oil return hole 40c.
  • the filter 43 filters the lubricating oil flowing into the oil return hole 40c to remove impurities.
  • the filter 43 is arranged with an interval 44 in the radial direction centered on the axis CL with respect to the oil return hole 40c.
  • the interval 44 forms a refrigerant flow path through which the lubricating oil that has passed through the filter 43 flows toward the oil return hole 40c.
  • the inner fin 600 is arranged between the tank plates 200 and 300 as shown in FIGS. 18, 20, 25, and 27.
  • the inner fins 600 are arranged so as to be offset from the refrigerant pipe 400 in the width direction and the top-bottom direction.
  • a metal plate material is formed in a wavy shape.
  • the inner fin 600 has tops 601, 602, 603, 604, 605, 606, 607, 608, 609, and side 610, 611, 612, 613, 614, 615, 616, 617, 618, 619 is provided.
  • the tops 601 and 602, 603, 604, 605, 606, 607, 608, and 609 are formed so as to extend in the vertical direction and the width direction, respectively.
  • the width direction of each of the tops 601 and 602, 603, 604, 605, 606, 607, 608, and 609 is larger than the dimension in the top-bottom direction.
  • the tops 601 and 602, 603, 604, 605, 606, 607, 608, and 609 are arranged at intervals in the vertical direction, respectively.
  • the tops 601, 603, 605, 607, and 609 are formed so that one side in the thickness direction is convex to the other side in the thickness direction and the other side in the thickness direction is convex to the other side in the thickness direction.
  • the tops 601 and 603, 605, 607, and 609 each form ribs that are provided over the second direction and are convex toward the tank plate 300.
  • the second direction of the tops 601, 603, 605, 607, 609 is referred to as a longitudinal direction.
  • the longitudinal direction of the tops 601, 603, 605, 607, 609 of this embodiment is the width direction.
  • the tops 602, 604, 606, and 608 are each formed so that one side in the thickness direction is convex to one side in the thickness direction and the other side in the thickness direction is convex to one side in the thickness direction.
  • the top portions 602, 604, 606, and 608 each form ribs that are provided in the second direction and are convex toward the tank plate 200 side.
  • the second direction of the tops 602, 604, 606, 608 is called the longitudinal direction.
  • the longitudinal direction of the tops 602, 604, 606, 608 of the present embodiment is the width direction.
  • the side portions 610, 611, 612, 613, 614, 615, 616, 617, 618, and 619 are formed so as to expand in the thickness direction and the width direction, respectively.
  • the side portions 610, 611, 612, 613, 614, 615, 616, 617, 618, and 619 are each larger in the width direction than in the thickness direction.
  • the side portion 610 is arranged on the heavenly region improvement side with respect to the top portion 601.
  • the side portion 611 is arranged between the top portions 601 and 602.
  • the side portion 612 is arranged between the top portions 602 and 603.
  • the side portion 613 is arranged between the top portions 603 and 604.
  • the side portion 614 is arranged between the top portions 604 and 605.
  • the side portion 615 is arranged between the top portions 605 and 606.
  • the side portion 616 is arranged between the top portions 606 and 607.
  • the side portion 617 is arranged between the top portions 607 and 608.
  • the side portion 618 is arranged between the top portions 608 and 609.
  • the side portion 619 is arranged on the lower side in the vertical direction with respect to the top portion 609.
  • tops 602, 604, 606, and 608 of the inner fins 600 are brazed to the ribs 28a, 28b, 28c, 28d, and 28e of the front wall portion 21 of the tank plate 200.
  • the inner fin 600 is joined to the tank plate 200 so that the longitudinal direction of the tops 602, 604, 606, 608 and the longitudinal direction of the ribs 28a, 28b, 28c, 28d, 28e are not parallel to each other. ..
  • the longitudinal direction of the tops 602, 604, 606, 608 corresponds to the second direction
  • the longitudinal direction of the ribs 28a, 28b, 28c, 28d, 28e corresponds to the first direction.
  • the inner fin 600 is joined to the tank plate 200 so that the longitudinal direction of the tops 602, 604, 606, 608 and the longitudinal direction of the ribs 28a, 28b, 28c, 28d, 28e are in a twisted positional relationship. ing.
  • the twisted positional relationship is a relationship in which the longitudinal directions of the tops 602, 604, 606, 608 and the longitudinal directions of the ribs 28a, 28b, 28c, 28d, 28e do not intersect and are not parallel.
  • tops 601, 603, 605, 607, and 609 of the inner fins 600 are brazed to the ribs 38a, 38b, 38c, 38d, and 38e of the rear wall portion 31 of the tank plate 300.
  • the inner fin 600 is joined to the tank plate 300 so that the longitudinal direction of the tops 601, 603, 605, 607, 609 and the longitudinal direction of the ribs 38a, 38b, 38c, 38d, 38e are not parallel to each other.
  • the longitudinal direction of the tops 601, 603, 605, 607, 609 corresponds to the second direction
  • the longitudinal direction of the ribs 38a, 38b, 38c, 38d, 38e corresponds to the first direction.
  • the inner fin 600 is joined to the tank plate 300 so that the longitudinal direction of the tops 601, 603, 605, 607, 609 and the longitudinal direction of the ribs 38a, 38b, 38c, 38d, 38e are in a twisted positional relationship.
  • the twisted positional relationship is a relationship in which the longitudinal directions of the tops 601, 603, 605, 607, and 609 do not intersect and the longitudinal directions of the ribs 38a, 38b, 38c, 38d, and 38e do not intersect and are not parallel.
  • the tops 601, 602, 603, 604, 605, 606, 607, 608, 609 of the inner fin 600 are joined to the tank plate 200 or the tank plate 300.
  • the inner fin 600 includes side portions 610, 611, 612, 613, 614, 615, 616, 617, 618, 619 extending in the width direction. Therefore, the inner fin 600 can prevent the refrigerant in the tank 13 from moving in the vertical direction when the accumulator 100 moves in the vertical direction. Further, the inner fin 600 can prevent the liquid level from vibrating due to the refrigerant flowing into the tank 13.
  • a tank 13 is formed between the tank plates 200 and 300 configured in this way to separate and store the gas-liquid two-phase refrigerant flowing in through the inlet 11 into the liquid-phase refrigerant and the gas-phase refrigerant. ..
  • the tank plates 200 and 300, the refrigerant pipes 400 and 500, and the inner fin 600 of this embodiment are made of an aluminum alloy material containing aluminum.
  • the capacitor inlet pipe 3b of the present embodiment is arranged between the outlet of the compressor 2 and the inlet of the capacitor 3.
  • the condenser inlet pipe 3b is a refrigerant pipe for guiding the high-pressure refrigerant discharged from the outlet of the compressor 2 to the inlet of the condenser 3.
  • the capacitor inlet pipe 3b and the accumulator 100 constitute an integrally molded product.
  • the condenser inlet pipe 3b is arranged on the lower side in the vertical direction with respect to the accumulator 100. That is, the capacitor inlet pipe 3b is arranged on the lower side in the vertical direction (that is, in the direction orthogonal to the thickness direction) with respect to the tank 13.
  • the condenser inlet pipe 3b includes a plate pipe portion 60A and a refrigerant pipe 500.
  • the plate piping portion 60A is configured by combining the half-tube portion 63a of the tank plate 200 and the half-tube portion 63b of the tank plate 300.
  • the half-tube portion 63a is configured such that one side of the tank plate 200 in the thickness direction is convex to one side in the thickness direction and the other side of the tank plate 200 in the thickness direction is recessed to one side in the thickness direction. ing.
  • the half-tube portion 63b is configured such that one side of the tank plate 300 in the thickness direction is recessed to the other side in the thickness direction and the other side of the tank plate 300 in the thickness direction is convex to the other side in the thickness direction. Has been done.
  • the outlet 63 is opened on one side of the half-tube portion 63b in the width direction on the other side in the thickness direction.
  • the outlet 63 is connected to the inlet of the capacitor 3.
  • the refrigerant pipe 500 is connected to the inlet 64 of the plate pipe portion 60.
  • the inlet 64 of the plate piping portion 60A is arranged on the other side of the header piping portion 61 in the width direction.
  • the inlet 64 of the plate piping portion 60A is configured by combining a recess 64a of the tank plate 200 and a recess 64b of the tank plate 300.
  • the recess 64a of the tank plate 200 is configured such that one side of the tank plate 200 in the thickness direction is convex to one side in the thickness direction, and the other side of the tank plate 200 in the thickness direction is recessed to one side in the thickness direction.
  • the recess 64b of the tank plate 300 is configured such that one side of the tank plate 300 in the thickness direction is recessed in the other side in the thickness direction and the other side of the tank plate 300 in the thickness direction is convex in the other side in the thickness direction.
  • the tank plate 300 of the present embodiment is provided with a plurality of claw portions 310 that engage with the outer peripheral portion of the tank plate 200.
  • the refrigerant pipe 500 connects between the inlet 64 of the plate pipe portion 60A and the outlet of the compressor 2.
  • One end of the refrigerant pipe 500 in the width direction constitutes the refrigerant outlet 501 and is joined to the inlet 64 of the plate pipe portion 60A.
  • a pipe plug 504 forming a joint connected to the refrigerant outlet side of the compressor 2 is provided at the other end of the refrigerant pipe 500 in the width direction.
  • the piping plug 504 is configured with a refrigerant inlet 502 discharged from the refrigerant outlet of the compressor 2.
  • the condenser inlet pipe 3b is composed of the refrigerant pipe 500 and the plate piping portion 60A, and guides the high-pressure refrigerant discharged from the compressor 2 to the inlet of the condenser 3.
  • a plurality of through holes 70a and a plurality of through holes 71a are provided between the refrigerant pipes 400 and 500 in the tank plate 300.
  • the plurality of through holes 70a and the plurality of through holes 71a each penetrate the tank plate 300 in the thickness direction.
  • the plurality of through holes 70a are arranged in the width direction, respectively.
  • the plurality of through holes 71a are arranged in the width direction, respectively.
  • the plurality of through holes 70a are arranged on the heavenly region improvement side with respect to the plurality of through holes 71a.
  • a plurality of through holes 70b and a plurality of through holes 71b are provided between the refrigerant pipes 400 and 500 in the tank plate 200.
  • the plurality of through holes 70a and the plurality of through holes 71b each penetrate the tank plate 300 in the thickness direction.
  • the plurality of through holes 70b are arranged in the width direction, respectively.
  • the plurality of through holes 71b are arranged in the width direction, respectively.
  • Each of the plurality of through holes 70a communicates with the corresponding through hole 70b among the plurality of through holes 70b.
  • Each of the plurality of through holes 71b communicates with the corresponding through holes 70b among the plurality of through holes 71b.
  • the plurality of through holes 70b are arranged on the heavenly region improvement side with respect to the plurality of through holes 71b.
  • the plurality of through holes 70a and 70b and the plurality of through holes 71a and 71b play a role of enhancing the heat insulating property between the accumulator 100 and the capacitor inlet pipe 3b.
  • brazing joining As a method for joining the tank plates 200, 300, the refrigerant pipes 400, 500, and the inner fin 600 of the present embodiment, for example, brazing joining is used.
  • the accumulator 100 of the present embodiment may be integrally molded by brazing or the like together with the condenser 3, the pressure reducing valve 4, the evaporator 5, and the like. However, for convenience of explanation, a method for manufacturing the accumulator 100 alone will be described below in this embodiment.
  • the tank plates 200 and 300, the inner fins 600, and the refrigerant pipes 400 and 500 are prepared separately.
  • a lat material having a brazing material layer provided on the front surface or the back surface of a plate material made of an aluminum alloy material is used as the tank plates 200 and 300, the inner fins 600, and the refrigerant pipes 400 and 500.
  • the brazing filler metal layer is a layer made of brazing filler metal.
  • the inner fins 600 and the refrigerant pipes 400 and 500 are sandwiched between the tank plates 200 and 300, and the tank plates 200 and 300 are aligned so as to face each other.
  • a plurality of claws 310 of the tank plate 300 are engaged with the outer peripheral portion of the tank plate 200.
  • the brazing material layer is melted by heating in a high temperature furnace to melt the tank plates 200 and 300 and the refrigerant pipes 400 and 500. Are brazed and joined.
  • the half-tube portion 63a of the flange portion 201 of the tank plate 200 and the half-tube portion 63b of the flange portion 301 of the tank plate 300 are brazed and joined.
  • the ribs 28a, 28b, 28c, 28d, 28e of the tank plate 200 and the tops 602, 604, 606, 608 of the inner fin 600 are brazed and joined.
  • the ribs 38a, 38b, 38c, 38d, 38e of the tank plate 300 and the tops 601, 603, 605, 607, 609 of the inner fin 600 are brazed and joined.
  • the ribs 28c, 29d, 29e, and the recess 120a of the tank plate 200 and the refrigerant pipe 400 are brazed and joined.
  • the ribs 39a and 39c and the recess 120b of the tank plate 300 and the refrigerant pipe 400 are brazed and joined.
  • tank plates 200 and 300 and the refrigerant pipes 400 and 500 are integrated by brazing to form an integrally molded product.
  • the compressor 2 sucks the vapor phase refrigerant from the accumulator 100, compresses it, and discharges it as a high-pressure refrigerant.
  • the capacitor 3 dissipates heat from the high-pressure refrigerant discharged from the compressor 2.
  • the pressure reducing valve 4 reduces the pressure of the high-pressure refrigerant flowing out of the condenser 3.
  • the evaporator 5 evaporates the low-pressure refrigerant that has passed through the pressure reducing valve 4 by endothermic reaction.
  • the accumulator 100 separates the gas-liquid two-phase refrigerant that has passed through the evaporator 5 into a gas-phase refrigerant and a liquid-phase refrigerant, stores the liquid-phase refrigerant, and discharges the gas-phase refrigerant.
  • the high-pressure refrigerant discharged from the refrigerant outlet of the compressor 2 flows into the refrigerant pipe 500 through the refrigerant inlet 502.
  • the inflowing high-pressure refrigerant flows to the refrigerant inlet of the condenser 3 through the refrigerant outlet of the refrigerant pipe 500 and the outlet 63 of the plate piping portion 60A.
  • the gas-liquid two-phase refrigerant that has passed through the evaporator 5 enters the tank 13 through the inlet 11.
  • the gas-liquid two-phase refrigerant is separated into a gas-phase refrigerant and a liquid-phase refrigerant
  • the vapor-phase refrigerant is stored in the upper side of the tank 13
  • the liquid-phase refrigerant is stored in the lower side of the tank 13.
  • the gas phase refrigerant and the liquid phase refrigerant are stored in a separated state.
  • the vapor-phase refrigerant in the tank 13 flows from the pipe outlet 40b to the refrigerant inlet of the compressor 2 through the pipe inlet 40a and the refrigerant flow path of the refrigerant pipe 40.
  • the lubricating oil contained in the liquid phase refrigerant in the tank 13 flows into the refrigerant flow path of the refrigerant pipe 40 through the filter 43, the interval 44, and the oil return hole 40c.
  • the lubricating oil flowing through the refrigerant flow path flows from the pipe outlet 40b to the refrigerant inlet of the compressor 2.
  • the lubricating oil is used for lubricating the compression mechanism and the like constituting the compressor 2.
  • the filter 43 removes impurities from the lubricating oil flowing from the inside of the tank 13 to the refrigerant flow path of the refrigerant pipe 40 through the oil return hole 40c. This prevents the oil return hole 40c from being clogged with impurities.
  • the tank 13 is divided into divided tank areas 132a, 132b, 132c, 132d, 132e, 132f by ribs 38a, 38b, 38c, 38d, 38e.
  • the tank 13 is divided into divided tank areas 122a, 122b, 122c, 122d, 122e, 122f by ribs 28a, 28b, 28c, 28d, 28e.
  • the liquid phase refrigerant in the tank 13 is suppressed from moving in the width direction, and the liquid phase refrigerant in the tank 13 is the pipe of the refrigerant pipe 40. It is possible to prevent entering the entrance 40a.
  • the side portions 610, 611, 612, 613, 614, 615, 616, 617, 618, and 619 of the inner fin 600 are formed so as to extend in the width direction, respectively.
  • the liquid phase refrigerant between the tank plate 200 and the inner fin 600 is suppressed from moving in the vertical direction.
  • the accumulator 100 constitutes a vapor compression refrigeration cycle in which a refrigerant is circulated.
  • the tank plates 200 and 300 are formed in a plate shape, respectively.
  • the tank plates 200 and 300 are arranged so as to face each other with the inner fin 600 and the refrigerant pipe 400 interposed therebetween, and separate the gas-liquid two-phase refrigerant flowing from the inlet 11 into the gas-phase refrigerant and the liquid-phase refrigerant.
  • a tank 13 for storing the phase refrigerant is formed. The tank 13 is formed so as to expand in the width direction and the top-bottom direction.
  • the accumulator 100 includes a pipe inlet 40a for entering the gas phase refrigerant and a pipe outlet 40b arranged outside the tank 13 for discharging the vapor phase refrigerant, and the gas phase refrigerant in the tank 13 is supplied to the pipe inlet 40a and the pipe outlet 40b. It is provided with a refrigerant pipe 400 that is discharged to the outside of the tank 13 through the pipe.
  • the accumulator 100 that separates the gas-liquid two-phase refrigerant into the liquid-phase refrigerant and the gas-phase refrigerant and discharges the gas-phase refrigerant while storing the liquid-phase refrigerant is provided in the tank plates 200, 300, the inner fin 600, and the refrigerant pipe 40. It can be composed of four parts such as.
  • the accumulator 10 as a refrigeration cycle device can be configured with a smaller number of parts than the accumulator described in Patent Document 1.
  • an inner fin 600 formed in a plate shape extending in the top-bottom direction and the width direction is provided between the tank plates 200 and 300.
  • the direction in which the tank plates 200 and 300 are lined up is the thickness direction.
  • the width direction is the first orthogonal direction that is orthogonal to the thickness direction and parallel to the horizontal direction.
  • the second orthogonal direction that is orthogonal to the thickness direction and intersects the width direction is defined as the top-bottom direction.
  • the tank plate 300 is provided with ribs 38a, 38b, 38c, 38d, 38e, which are first ribs that are convex in the tank 13 toward one side in the thickness direction in the vertical direction.
  • the tank plate 200 is provided with ribs 28a, 28b, 28c, 28d, 28e, which are first ribs that are convex in the tank 13 toward the other side in the thickness direction in the vertical direction.
  • the inner fin 600 is provided with top portions 601, 603, 605, 607, and 609, which are second ribs that are convex in the tank 13 toward the other side in the thickness direction in the vertical direction.
  • the inner fin 600 is provided with top portions 602, 604, 606, and 608, which are second ribs that are convex in the tank 13 toward one side in the thickness direction in the vertical direction.
  • the inner fin 600 can suppress the movement of the liquid phase refrigerant in the tank 13 in the vertical direction. In addition to this, it is possible to prevent the liquid level from vibrating due to the refrigerant flowing into the tank 13.
  • the accumulator 100 vibrates with the vibration of the vehicle. Then, the liquid level 14 of the liquid phase refrigerant in the tank 13 vibrates. Therefore, the liquid phase refrigerant in the tank 13 may enter the pipe inlet 40a of the refrigerant pipe 40.
  • ribs 28a to 28e and 38a to 38e are formed on the tank plates 200 and 300, and inner fins 600 are provided. Therefore, the vibration of the liquid level 14 of the liquid phase refrigerant in the tank 13 is suppressed. It is possible to prevent the liquid phase refrigerant in the tank 13 from entering the pipe inlet 40a of the refrigerant pipe 40.
  • the pipe inlet 40a of the upper pipe portion 42 of the refrigerant pipe 40 is arranged above the center line Td in the tank 13. Therefore, it is possible to prevent the liquid phase refrigerant in the tank 13 from entering the pipe inlet 40a of the upper pipe portion 42 of the refrigerant pipe 40.
  • the pipe inlet 40a of the upper pipe portion 42 of the refrigerant pipe 40 is arranged on the center side of the tank 13 in the width direction. Therefore, even if the accumulator 100 is tilted and one side of the tank 13 in the width direction and the other side in the width direction are different in the top-bottom direction, the liquid-phase refrigerant in the tank 13 is still in the upper piping portion 42 of the refrigerant pipe 40. It is possible to make it difficult to enter the pipe inlet 40a.
  • a gap 412 is formed between the inlet side end 411 formed on the pipe inlet 40a side of the outer wall 410 of the refrigerant pipe 400 and the tank plate 200. Therefore, it is possible to prevent the liquid phase refrigerant from entering the pipe inlet 40a of the refrigerant pipe 400 along the inner wall 21a of the tank plate 200 forming the tank 13.
  • An interval 413 is formed between the inlet side end portion 411 of the refrigerant pipe 400 and the tank plate 300. Therefore, it is possible to prevent the liquid phase refrigerant from entering the pipe inlet 40a of the refrigerant pipe 400 along the inner wall 31a of the tank plate 300 forming the tank 13.
  • the ribs 39b and the ribs 29a and 29b are configured to narrow the refrigerant flow path for flowing the liquid phase refrigerant from the inlet 11 to the pipe inlet 40a between the tank plates 200 and 300, respectively. .. Therefore, it is possible to prevent the liquid phase refrigerant from entering the pipe inlet 40a of the refrigerant pipe 400 from the inlet 11.
  • the refrigerant pipe 40 is formed with an oil return hole 40c in which the lubricating oil contained in the gas-liquid two-phase refrigerant in the tank 13 enters. Therefore, the lubricating oil in the tank 13 can be discharged to the outside of the tank 13 through the oil return hole 40c of the refrigerant pipe 40, the refrigerant flow path, and the pipe outlet 40b and supplied to the inlet of the compressor 2.
  • the lubricating oil in the tank 13 can be appropriately returned to the compressor 2. Therefore, the compression mechanism constituting the compressor 2 is lubricated by the lubricating oil.
  • a filter 43 is provided in the vicinity of the oil return hole 40c. As a result, it is possible to prevent the oil return hole 40c from being clogged with impurities.
  • an interval 44 is provided between the oil return hole 40c and the filter 43 to form a flow path through which the lubricating oil flows. Therefore, even when the filter 43 is covered with impurities, it is possible to prevent the oil return holes 40c from being clogged with impurities.
  • the oil return hole 40c is arranged in the tank 13 below the center line Td in the top-bottom direction and on the center side in the width direction of the tank 13. Therefore, even if the accumulator 100 is tilted and one side and the other side of the tank 13 in the width direction are different in the top-bottom direction, the oil return hole 40c tends to be lower than the liquid level 14. This makes it easier to guide the lubricating oil in the tank 13 into the oil return hole 40c.
  • FIG. 28 for a fourth embodiment in which the intermediate pipe portion 402 of the refrigerant pipe 400 is arranged at a position away from the side portions 25 and 35 of the tank plate 200.300. explain.
  • the pipe inlet 40a is arranged on the top region improvement side and the center side in the width direction of the tank 13.
  • the pipe inlet 40a is opened on the other side in the width direction.
  • the refrigerating cycle device 10B of the present embodiment and the refrigerating cycle device 10B of the third embodiment differ only in the refrigerant pipe 400 of the accumulator 100, and the other configurations are the same. Omit.
  • the intermediate pipe portion 402 of the refrigerant pipe 400 is arranged at a position away from the side portions 25 and 35 of the tank plate 200.300, and the upper pipe portion 401 is formed in an L shape.
  • the fifth embodiment will be described with reference to FIG. 29.
  • the pipe inlet 40a of the upper pipe portion 401 is arranged on the top region improvement side and the center side in the width direction of the tank 13.
  • the pipe inlet 40a is opened on the improvement side of the heaven region.
  • the refrigerating cycle device 10B of the present embodiment and the refrigerating cycle device 10B of the fourth embodiment differ only in the refrigerant pipe 400 of the accumulator 100, and the other configurations are the same. Omit.
  • the refrigeration cycle device 10B of the present embodiment is configured by arranging inner fins 600 between the tank plates 200 and 300, substantially similar to the third embodiment.
  • the differences between the refrigeration cycle equipment 10B of the present embodiment and the refrigeration cycle equipment 10B of the third embodiment will be described.
  • the protrusion 11a of the present embodiment is provided on the rear wall portion 31 of the tank plate 300 in place of the ribs 39b and 39d of FIG. 24.
  • the protrusion 11a is provided on the lower side of the tank plate 300 in the vertical direction with respect to the inlet 11.
  • the protrusion 11a is formed so as to protrude in one direction from the tank plate 300.
  • the protrusion 11a is formed by burring the tank plate 300.
  • the protrusion 11a is formed so as to proceed downward in the vertical direction from one side in the width direction toward the other side.
  • the protrusion 11a of the present embodiment plays a role of suppressing the liquid phase refrigerant that has flowed into the tank 13 through the inlet 11 from the refrigerant outlet of the evaporator 5 from flowing to the pipe inlet 40a of the refrigerant pipe 40.
  • the rib 29b of the present embodiment is provided on the rib 28d instead of the rib 28c in the tank plate 200.
  • the ribs 29c and 29d are provided in the divided tank area 122a of the tank plate 200.
  • the ribs 29c and 29d are formed so that one side of the front wall portion 21 of the tank plate 200 in the thickness direction is recessed in the other side in the thickness direction and the other side in the thickness direction is convex in the other side in the thickness direction.
  • the rib 29f is formed so as to project from the rib 28e to the other side in the thickness direction.
  • the rib 29h is formed so as to project from the rib 28b to the other side in the thickness direction.
  • the ribs 29c, 29d, 29e, 29f, and 29h play a role of supporting the refrigerant pipe 400 from one side in the thickness direction.
  • a rib 29e is provided in the divided tank area 122f of the tank plate 200 of the present embodiment.
  • the rib 29e is formed so that one side of the front wall portion 21 in the thickness direction is convex to the other side in the thickness direction and the other side in the thickness direction is convex to the other side in the thickness direction.
  • an inner fin 600 formed in a plate shape extending in the top-bottom direction and the width direction is provided between the tank plates 200 and 300.
  • the ribs 28a, 28b, 28c, 28d, 28e of the tank plate 200 and the ribs 38a, 38b, 38c, 38d, 38e of the tank plate 300 move the liquid phase refrigerant in the tank 13 in the vertical direction along the wall surface. This disperses and suppresses fluctuations in the liquid phase refrigerant.
  • the tops 602, 604, 606, and 608 of the inner fin 600 suppress the liquid phase refrigerant in the tank 13 from moving in the vertical direction.
  • a protrusion is formed on the rear wall portion 31 of the tank plate 300 in order to prevent the liquid phase refrigerant flowing into the tank 13 from the evaporator 5 through the inlet 11 from entering the pipe inlet 40a of the refrigerant pipe 40.
  • 11a is provided has been described.
  • a refrigerant adjusting unit 110 is provided at the inlet 11.
  • a seventh embodiment will be described with reference to FIGS. 33A-33D.
  • the refrigerant adjusting unit 110 of the present embodiment is fitted into the burring 111 provided at the inlet 11 of the tank plate 300.
  • the main body of the refrigerant adjusting unit 110 has a hollow cylindrical shape, and a part of the side surface thereof is an opening 112.
  • the opening 112 is installed so as to be opened in a direction different from the direction of the refrigerant pipe inlet 40a.
  • the refrigerant flows into the refrigerant adjusting unit 110 from the inlet 11, and is discharged into the tank 13 through the opening 112 of the refrigerant adjusting unit 110.
  • the refrigerant adjusting unit 110 can prevent the liquid phase refrigerant that has flowed into the tank 13 through the inlet 11 from the refrigerant outlet of the evaporator 5 from entering the pipe inlet 40a of the refrigerant pipe 40.
  • the reduced diameter portion 403a of the lower piping portion 41 of the refrigerant pipe 40 is smaller than the radial dimension centered on the axis EL than the other piping portions other than the reduced diameter portion 403a of the lower piping portion 41.
  • the axis EL is the axis of the lower piping portion 41.
  • the oil return hole 40c is provided in the reduced diameter portion 403a.
  • the filter 43 is formed in a cylindrical shape so as to cover the reduced diameter portion 403a. As a result, an interval 44 is provided between the filter 43 and the oil return hole 40c.
  • the interval 44 constitutes a lubricating oil flow path for guiding the lubricating oil that has passed through the filter 43 to the oil return hole 40c.
  • the clip 420 of the ninth embodiment is made of a metal plate and is formed so as to cover from the lower side in the vertical direction.
  • the clip 420 holds the filters 425 and 427 with respect to the lower piping portion 41 by elastic force.
  • the clip 420 is formed with a window portion 421 that is open to the lower side.
  • the filter 425 is formed so as to cover the oil return hole 40c of the lower piping portion 41.
  • the filter 425 is composed of fibers constituting a plurality of refrigerant flow paths that allow the lubricating oil that has passed through the filter 427 to flow through the oil return holes 40c.
  • the filter 427 is arranged on the outer side in the radial direction about the axis EL with respect to the filter 425.
  • the filter 427 removes impurities from the lubricating oil that has passed through the window portion 421 of the clip 420.
  • the filter 427 is arranged radially outside the axis EL with respect to the oil return hole 40c of the lower piping portion 41. Therefore, the filter 427 can remove impurities from the lubricating oil that has passed through the window portion 421 of the clip 420.
  • the filter 425 is arranged between the oil return hole 40c of the lower piping portion 41 and the filter 427.
  • the filter 425 is composed of fibers constituting a plurality of lubricating oil flow paths that allow the lubricating oil that has passed through the filter 427 to flow through the oil return holes 40c.
  • the clip 420 of the present embodiment is made of a metal plate and is formed so as to cover from the lower side in the vertical direction.
  • the clip 420 is held in the lower piping portion 41 by an elastic force.
  • the window portion 421 of the clip 420 is arranged so as to communicate with the oil return hole 40c of the lower piping portion 41.
  • the filter 427 is arranged radially outside the clip 420 about the axis EL.
  • the filter 427 is arranged so as to cover the window portion 421 of the clip 420.
  • the filter 427 is supported by the clip 420.
  • the filter 427 is arranged radially outside the axis EL with respect to the oil return hole 40c of the lower piping portion 41. Therefore, the filter 427 can remove impurities from the lubricating oil that has passed through the window portion 421 of the clip 420.
  • the window portion 421 of the clip 420 is arranged between the oil return hole 40c of the lower piping portion 41 and the filter 427.
  • the window portion 421 of the clip 420 constitutes a lubricating oil flow path that allows the lubricating oil that has passed through the filter 427 to flow through the oil return hole 40c.
  • the pipe extending straight in the vertical direction may be the refrigerant pipe 40.
  • the pipe inlet 40a into which the vapor phase refrigerant enters is opened on the upper side
  • the pipe outlet 40b on which the vapor phase refrigerant is discharged is opened on the upper side.
  • the refrigerant pipe 40 may be a pipe having a shape other than the straight extending pipe or the U-shaped pipe.
  • the divided tank region 13b formed by the ribs 28b, 28c, 38b, 38c constitutes the upper piping portion.
  • the lower piping portion 41 is connected to the divided tank region 13b.
  • the ribs 28b and 28c are connected on the lower side in the vertical direction.
  • the ribs 38b and 38c are connected on the lower side in the vertical direction.
  • the ribs 28a to 28d and 38a to 38d are described by omitting the ribs 28a, 28b, 28c and 28d and the ribs 38a, 38b, 38c and 38d.
  • Ribs 28a to 28d and 38a to 38d extending in the vertical direction may be used.
  • Ribs 28a to 28d and 38a to 38d formed in a V shape may be used.
  • Ribs 28a to 28d and 38a to 38d that intersect in the vertical direction and extend in the horizontal intersecting direction may be used.
  • the evaporator inlet pipe as the heat exchanger pipe may be configured by the tank plates 20 and 30.
  • the evaporator inlet pipe is an inlet pipe for guiding the low-pressure refrigerant flowing from the pressure reducing valve 4 to the inlet of the evaporator 5.
  • the evaporator inlet pipe is connected between the outlet of the pressure reducing valve 4 and the inlet of the evaporator 5.
  • ribs 39b, ribs 28a, and 28b for narrowing the refrigerant flow path for flowing the liquid phase refrigerant from the inlet 11 to the pipe inlet 40a are provided between the tank plates 200 and 300.
  • the provided example has been described.
  • Ribs 39b, ribs 28a, and 28b for narrowing the flow path may be provided.
  • the accumulator 100 in which the inner fins 600 are arranged between the tank plates 200 and 300 has been described.
  • the inner fins 600 may be arranged between the tank plates 20 and 30 in the accumulator 10. good.
  • the ribs 29a, 29b, and 38b are provided in order to prevent the liquid phase refrigerant from flowing from the inlet 11 to the pipe inlet 40a.
  • the protrusion 11a is provided on the lower side in the vertical direction with respect to the inlet 11 by burring.
  • ribs 29a, 29b, 38b are used. Both with the protrusion 11a.
  • ribs 29a, 29b, 38b are used. Both with the protrusion 11a.
  • the other vapor compression refrigeration cycle is a vapor compression refrigeration cycle that constitutes various refrigeration equipment such as air conditioners for mobile objects other than automobiles, household air conditioners, building air conditioners, and refrigerators.
  • the longitudinal direction of the ribs 28a, 28b, 28c, 28d, 28e of the tank plate 200 is the top-bottom direction.
  • the longitudinal direction of the ribs 28a, 28b, 28c, 28d, 28e may be a direction other than the top-bottom direction as long as it is an intersecting direction (for example, an orthogonal direction) with respect to the thickness direction.
  • the longitudinal direction of the ribs 38a, 38b, 38c, 38d, 38e of the tank plate 200 may be a direction other than the top-bottom direction as long as it is an intersecting direction (for example, an orthogonal direction) with respect to the thickness direction.
  • the longitudinal direction of the tops 601, 602, 603, 604, 605, 606, 607, 608, 609 of the inner fin 600 is the width direction.
  • the longitudinal direction of the tops 601, 602, 603, 604, 605, 606, 607, 608, 609 of the inner fin 600 is an intersecting direction (for example, an orthogonal direction) with respect to the thickness direction. If so, it may be in a direction other than the width direction.
  • the present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. Further, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible.
  • the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle. stomach.
  • numerical values such as the number, numerical values, quantities, and ranges of the constituent elements of the embodiments are mentioned, when it is clearly stated that they are particularly essential, and in principle, the number is clearly limited to a specific number. It is not limited to the specific number except when it is done.
  • shape, positional relationship, etc. of a component or the like when referring to the shape, positional relationship, etc. of a component or the like, the shape, unless otherwise specified or limited in principle to a specific shape, positional relationship, etc. It is not limited to the positional relationship.
  • the refrigerating cycle device is a refrigerating cycle device constituting the refrigerating cycle.
  • a first tank plate formed in a plate shape is provided.
  • the refrigeration cycle equipment is formed in a plate shape and is arranged so as to face the first tank plate, and together with the first tank plate, the gas-liquid two-phase refrigerant flowing in from the tank inlet is the gas-liquid refrigerant and the liquid.
  • a second tank plate is provided to form a tank that is separated and stored in the phase refrigerant.
  • the refrigeration cycle equipment is arranged between the first tank plate and the second tank plate, and includes a refrigerant pipe having a pipe inlet for entering the vapor phase refrigerant in the tank and a pipe outlet arranged outside the tank.
  • the refrigerant pipe discharges the vapor phase refrigerant in the tank to the outside of the tank through the pipe inlet and the pipe outlet.
  • the refrigerant pipes are joined to the second tank plate side in the line-up direction of the first tank plate. There is. Further, the refrigerant pipe is joined to the first tank plate side in the alignment direction of the second tank plate.
  • the strength between the first tank plate and the second tank plate that is, the strength of the refrigeration cycle equipment can be ensured.
  • the refrigerant pipe is formed in an L shape.
  • a partition portion for partitioning the inside of the tank into a plurality of divided tank areas is provided.
  • Each of the plurality of split tank areas stores a liquid phase refrigerant.
  • the first tank plate and the second tank plate are formed in a plate shape extending in the vertical direction and the horizontal direction.
  • the plurality of divided tank areas are formed so as to be arranged in the horizontal direction by the partition portion.
  • each of the plurality of divided tank areas is formed so as to extend in the vertical direction by the partition portion.
  • one of the first tank plate and the second tank plate is provided with a rib protruding toward the other tank plate.
  • the ribs contact the other tank plate to form a partition together with the other tank plate. Therefore, since the partition portion can be composed of the first tank plate and the second tank plate, it is possible to suppress an increase in the number of parts.
  • the rib formed on one tank plate is joined to the other tank plate.
  • the refrigeration cycle equipment includes an inner fin arranged between the first tank plate or the second tank plate.
  • the inner fin has a wavy shape, and its top is joined to the first plate and the second plate, respectively.
  • the first tank plate (200) and the second tank plate (300) have ribs (38a to 38e, 28a to 28e) that are convex toward the inner fin side in the first direction. It is provided over.
  • the inner fin is provided with a top portion extending in the second direction. The rib and the top are joined so that the first direction of the rib and the second direction of the top are not parallel.
  • the tank is formed so as to expand in the vertical direction and the horizontal direction.
  • the pipe inlet is located above the center line in the vertical direction of the tank and on the center side in the horizontal direction of the tank.
  • a gap is formed between the inlet side end formed on the pipe inlet side and the first tank plate in the outer wall of the refrigerant pipe, and the inlet side end and the second tank plate are formed. There is an interval between them.
  • one of the first tank plate and the second tank plate projects toward the other tank plate, and the liquid-phase refrigerant is applied from the tank inlet to the pipe inlet of the refrigerant pipe. It is provided with an inflow suppression unit that suppresses the flow.
  • a refrigerant flow path for flowing a vapor phase refrigerant is provided between the pipe inlet and the pipe outlet in the refrigerant pipe.
  • the refrigerant pipe is formed with an oil return hole through which the lubricating oil contained in the liquid phase refrigerant in the tank enters the refrigerant flow path. Lubricating oil in the tank is discharged to the outside of the tank through the oil return hole of the refrigerant pipe, the refrigerant flow path, and the pipe outlet.
  • the lubricating oil can be satisfactorily discharged to the outside through the refrigerant pipe.
  • the oil return hole is arranged below the center line in the vertical direction of the tank and on the central side in the horizontal direction of the tank.
  • a filter which is arranged in the tank and removes impurities from the lubricating oil flowing through the oil return holes in order to prevent the oil return holes from being clogged with impurities contained in the lubricating oil.
  • the filter is formed so as to cover the oil return hole.
  • the filters are arranged at intervals from the oil return holes.
  • the first tank plate and the second tank plate provide an accumulator that separates and stores the gas-phase refrigerant and the liquid-phase refrigerant in the tank and discharges the gas-phase refrigerant from the tank through the refrigerant pipe.
  • first tank plate and the second tank plate form a heat exchanger pipe connected to the heat exchanger.
  • the accumulator and heat exchanger piping constitute an integrally molded product.
  • the heat exchanger pipes are arranged in a predetermined direction with respect to the tank when the direction orthogonal to the direction in which the first tank plate and the second tank plate are lined up is set as a predetermined direction.
  • the heat exchanger is a capacitor that constitutes a refrigeration cycle and cools the refrigerant by heat exchange.
  • the heat exchanger piping is a piping for guiding the high-pressure refrigerant discharged from the compressor to the inlet of the condenser.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

This refrigeration cycle device constituting a refrigeration cycle is provided with: a first tank plate (20, 200) that is formed into a plate shape; a second tank plate (30, 300) that is formed into a plate shape, that is disposed oppositely to the first tank plate, and that forms, together with the first tank plate, a tank (13) which stores a gas-liquid two-phase refrigerant that flows in through a tank inlet (11) so as to be separated into a gas phase refrigerant and a liquid phase refrigerant; and a refrigerant pipe (40, 40) that is disposed between the first tank plate and the second tank plate, and that is provided with a pipe inlet (40a) through which the gas phase refrigerant in the tank enters and a pipe outlet (40b) disposed outside the tank, so as to discharge the gas phase refrigerant in the tank to the outside of the tank through the pipe inlet and the pipe output.

Description

冷凍サイクル機器Refrigeration cycle equipment 関連出願への相互参照Cross-reference to related applications
 本出願は、2020年3月13日に出願された日本特許出願番号特願2020-044248号と、2020年11月30日に出願された日本特許出願番号2020-198663号とに基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2020-044248 filed on March 13, 2020 and Japanese Patent Application No. 2020-198663 filed on November 30, 2020. The description is incorporated herein by reference.
 本開示は、冷凍サイクル機器に関するものである。 This disclosure relates to refrigeration cycle equipment.
 従来、エバポレータから流入される気液二相冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を排出するアキュムレータが提案されている(例えば、特許文献1参照)。このアキュムレータは、複数枚のプレートが積層されて構成されている。複数枚のプレートのうち隣り合う2枚のプレートが気相冷媒と液相冷媒とに分離して貯める容器ユニットを構成する。このことにより、複数枚のプレートによって複数の容器ユニットが形成されることになる。 Conventionally, an accumulator that separates the gas-liquid two-phase refrigerant flowing from the evaporator into the gas-phase refrigerant and the liquid-phase refrigerant and discharges the gas-phase refrigerant has been proposed (see, for example, Patent Document 1). This accumulator is configured by stacking a plurality of plates. Two adjacent plates out of a plurality of plates form a container unit that separates and stores a gas phase refrigerant and a liquid phase refrigerant. As a result, a plurality of container units are formed by the plurality of plates.
 ここで、複数の容器ユニットのうち隣り合う2つの容器ユニットには、互いに連通する連通口が形成されている。このため、複数の容器ユニットのそれぞれに貯められる気相冷媒が連通口を介して冷媒出口から圧縮機に排出される。 Here, two adjacent container units among the plurality of container units are formed with communication ports that communicate with each other. Therefore, the gas phase refrigerant stored in each of the plurality of container units is discharged to the compressor from the refrigerant outlet through the communication port.
特開2011-99593号公報Japanese Unexamined Patent Publication No. 2011-99593
 本願発明者の検討によれば、上記特許文献1のアキュムレータでは、上述の如く、気相冷媒と液相冷媒とに分離して貯める複数の容器ユニットが複数枚のプレートによって構成されているため、アキュムレータを製造する際の部品点数が多くなる。 According to the study of the inventor of the present application, in the accumulator of Patent Document 1, as described above, a plurality of container units for separately storing the gas phase refrigerant and the liquid phase refrigerant are composed of a plurality of plates. The number of parts when manufacturing an accumulator increases.
 本開示は、液相冷媒と気相冷媒とに分離して液相冷媒を貯めつつ気相冷媒を排出する冷凍サイクル機器において、部品点数を少なくすることを目的とする。 It is an object of the present disclosure to reduce the number of parts in a refrigeration cycle apparatus in which a liquid phase refrigerant and a gas phase refrigerant are separated and the liquid phase refrigerant is stored and the vapor phase refrigerant is discharged.
 本開示の1つの観点によれば、冷凍サイクルを構成する冷凍サイクル機器は、板状に形成されている第1タンクプレートと、板状に形成され、かつ第1タンクプレートに対して対向するように配置されて、第1タンクプレートとともに、タンク入口から流入される気液二相冷媒を気相冷媒と液相冷媒に分離して貯めるタンクを形成する第2タンクプレートと、第1タンクプレートおよび第2タンクプレートの間に配置され、タンク内の気相冷媒が入る配管入口と、タンクの外側に配置される配管出口とを備え、タンク内の気相冷媒を配管入口および配管出口を通してタンクの外側に排出する冷媒配管と、を備える。 According to one aspect of the present disclosure, the refrigeration cycle equipment constituting the refrigeration cycle is formed so as to face the first tank plate formed in a plate shape and the plate shape and facing the first tank plate. The second tank plate, the first tank plate, and the first tank plate, which are arranged in the above and form a tank for separating and storing the gas-liquid two-phase refrigerant flowing from the tank inlet into the gas-phase refrigerant and the liquid-phase refrigerant together with the first tank plate. It is provided between the second tank plate and has a pipe inlet for entering the gas phase refrigerant in the tank and a pipe outlet arranged on the outside of the tank. It is provided with a refrigerant pipe that discharges to the outside.
 これによれば、第1タンクプレート、第2タンクプレート、および冷媒配管といった3つの部品によって冷凍サイクル機器を構成することができる。このため、液相冷媒と気相冷媒とに分離して液相冷媒を貯めつつ気相冷媒を排出する冷凍サイクル機器において、部品点数を少なくすることができる。 According to this, the refrigeration cycle equipment can be composed of three parts such as a first tank plate, a second tank plate, and a refrigerant pipe. Therefore, the number of parts can be reduced in the refrigeration cycle equipment that separates the liquid phase refrigerant and the gas phase refrigerant to store the liquid phase refrigerant and discharge the vapor phase refrigerant.
 また、これによれば、第1タンクプレート、第2タンクプレートといった2つのタンクプレートによって冷凍サイクル機器を構成する。このため、3つ以上のタンクプレートを積層して冷凍サイクル機器を構成する場合に比べて、体積に対するタンクの容積を大きくすることができる。 According to this, the refrigeration cycle equipment is composed of two tank plates such as the first tank plate and the second tank plate. Therefore, the volume of the tank can be increased with respect to the volume as compared with the case where three or more tank plates are laminated to form a refrigeration cycle device.
 以上により、タンクの容積を確保しつつ、部品点数の少ない冷凍サイクル機器を提供することができる。 From the above, it is possible to provide refrigeration cycle equipment with a small number of parts while securing the volume of the tank.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that the reference symbols in parentheses attached to each component or the like indicate an example of the correspondence between the component or the like and the specific component or the like described in the embodiment described later.
第1実施形態における蒸気圧縮式冷凍サイクルの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the steam compression refrigeration cycle in 1st Embodiment. 第1実施形態におけるアキュムレータの全体を示す斜視図である。It is a perspective view which shows the whole of the accumulator in 1st Embodiment. 図2のアキュムレータを2つのタンクプレートおよび冷媒配管に分解した状態を示す分解図である。It is an exploded view which shows the state which disassembled the accumulator of FIG. 2 into two tank plates and a refrigerant pipe. 図2のアキュムレータのうち接触する2つのリブの接合状態を示すために、アキュムレータを厚み方向に平行に切断した断面図である。It is sectional drawing which cut the accumulator parallel to the thickness direction in order to show the bonding state of two contacting ribs of the accumulator of FIG. 図2の冷媒配管の下配管部のうちオイル戻し孔およびフィルタの配置関係を示す図であり、冷媒配管の下配管部のうち軸線を含む断面である。It is a figure which shows the arrangement relation of the oil return hole and the filter in the lower pipe part of the refrigerant pipe of FIG. 2, and is the cross section which includes the axis of the lower pipe part of a refrigerant pipe. 図2のアキュムレータのうち一方のタンクプレートを外してアキュムレータ内部の液相冷媒の液面を示す図である。It is a figure which shows the liquid level of the liquid phase refrigerant in the accumulator by removing the tank plate of one of the accumulator of FIG. 第1実施形態の第1変形例において、アキュムレータのうち接触する2つのリブの接合状態を示すために、アキュムレータを厚み方向に平行に切断した断面図であり、図4に相当する断面図である。In the first modification of the first embodiment, it is a cross-sectional view of the accumulator cut in parallel in the thickness direction in order to show the joint state of two contacting ribs of the accumulator, and is a cross-sectional view corresponding to FIG. .. 第1実施形態の第2変形例において、アキュムレータのうち接触する2つのリブの接合状態を示すために、アキュムレータを厚み方向に平行に切断した断面図であり、図4に相当する断面図である。In the second modification of the first embodiment, it is a cross-sectional view of the accumulator cut in parallel in the thickness direction in order to show the joint state of two contacting ribs of the accumulator, and is a cross-sectional view corresponding to FIG. .. 第1実施形態の第3変形例において、アキュムレータのうち接触する2つのリブの接合状態を示すために、アキュムレータを厚み方向に平行に切断した断面図であり、図4に相当する断面図である。In the third modification of the first embodiment, it is a cross-sectional view of the accumulator cut in parallel in the thickness direction in order to show the joint state of two contacting ribs of the accumulator, and is a cross-sectional view corresponding to FIG. .. 第1実施形態の第4変形例において、アキュムレータのうち接触する2つのリブの接合状態を示すために、アキュムレータを厚み方向に平行に切断した断面図であり、図4に相当する断面図である。In the fourth modification of the first embodiment, it is a cross-sectional view of the accumulator cut in parallel in the thickness direction in order to show the joint state of two contacting ribs of the accumulator, and is a cross-sectional view corresponding to FIG. .. 第1実施形態の第5変形例において、アキュムレータのうち接触する2つのリブの接合状態を示すために、アキュムレータを厚み方向に平行に切断した断面図であり、図4に相当する断面図である。In the fifth modification of the first embodiment, it is a cross-sectional view of the accumulator cut in parallel in the thickness direction in order to show the joint state of two contacting ribs of the accumulator, and is a cross-sectional view corresponding to FIG. .. 第2実施形態における蒸気圧縮式冷凍サイクルの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the steam compression refrigeration cycle in 2nd Embodiment. 第2実施形態におけるアキュムレータの全体を示す斜視図である。It is a perspective view which shows the whole of the accumulator in 2nd Embodiment. 図13のアキュムレータを2つのタンクプレート、冷媒配管、ヘッダ配管部に分解した状態を示す分解図である。It is an exploded view which shows the state which disassembled the accumulator of FIG. 13 into two tank plates, a refrigerant pipe, and a header pipe part. 図13のアキュムレータとコンデンサ、エバポレータとの配置関係を示す図であり、アキュムレータのうち一方のタンクプレートを外してアキュムレータ内部を示す図である。It is a figure which shows the arrangement relation of the accumulator, the condenser, and the evaporator of FIG. 13, and is the figure which shows the inside of the accumulator by removing the tank plate of one of the accumulators. 図13のアキュムレータのうち一方のタンクプレートを外してアキュムレータ内部の液相冷媒の液面を示す図である。It is a figure which shows the liquid level of the liquid phase refrigerant in the accumulator by removing the tank plate of one of the accumulator of FIG. 第3実施形態の冷凍サイクル機器のうち厚み方向他方側の外観を示す側面図である。It is a side view which shows the appearance of the other side in the thickness direction of the refrigeration cycle equipment of 3rd Embodiment. 第3実施形態の冷凍サイクル機器の2つのタンクプレートのうち厚み方向一方側のタンクプレートの内側、およびインナーフィンのうち厚み方向他方側を示す図である。It is a figure which shows the inside of the tank plate on one side in the thickness direction of the two tank plates of the refrigeration cycle equipment of the third embodiment, and the other side of the inner fins in the thickness direction. 第3実施形態における図17中XIX-XIXの断面図である。It is sectional drawing of XIX-XIX in FIG. 17 in 3rd Embodiment. 第3実施形態における冷凍サイクル機器を天地方向に直交する面で切断した内部構造を示す図である。It is a figure which shows the internal structure which cut | cut the refrigerating cycle apparatus in 3rd Embodiment by the plane orthogonal to the top-bottom direction. 第3実施形態の冷凍サイクル機器の厚み方向一方側の外観を示す側面図である。It is a side view which shows the appearance of one side in the thickness direction of the refrigeration cycle equipment of 3rd Embodiment. 第3実施形態の冷凍サイクル機器の厚み方向一方側のタンクプレート単体の内側を示す図である。It is a figure which shows the inside of the tank plate single body on one side in the thickness direction of the refrigeration cycle equipment of 3rd Embodiment. 第3実施形態の冷凍サイクル機器において厚み方向一方側のタンクプレートに冷媒配管を配置した状態の内部構造を示す図である。It is a figure which shows the internal structure of the refrigerating cycle equipment of 3rd Embodiment in the state which the refrigerant pipe is arranged in the tank plate on one side in the thickness direction. 第3実施形態の冷凍サイクル機器において厚み方向他方側のタンクプレート単体の内側を示す図である。It is a figure which shows the inside of the tank plate single body on the other side in the thickness direction in the refrigerating cycle apparatus of 3rd Embodiment. 第3実施形態の冷凍サイクル機器において厚み方向他方側のタンクプレートにインナーフィン、および冷媒配管を配置した状態の内部構造を示す図である。It is a figure which shows the internal structure in the state which the inner fin and the refrigerant pipe are arranged in the tank plate on the other side in the thickness direction in the refrigerating cycle equipment of 3rd Embodiment. 第3実施形態の冷凍サイクル機器において厚み方向他方側のタンクプレートに冷媒配管を配置した状態の内部構造を示す図である。It is a figure which shows the internal structure of the refrigerating cycle equipment of 3rd Embodiment in the state which the refrigerant pipe is arranged in the tank plate on the other side in the thickness direction. 第3実施形態における図17中XXVII-XXVIIの断面図である。It is sectional drawing of XXVII-XXVII in FIG. 17 in 3rd Embodiment. 第4実施形態の冷凍サイクル機器において厚み方向他方側のタンクプレートに2つの冷媒配管を配置した状態の内部構造を示す図である。It is a figure which shows the internal structure in the state which two refrigerant pipes are arranged in the tank plate on the other side in the thickness direction in the refrigeration cycle equipment of 4th Embodiment. 第5実施形態の冷凍サイクル機器において厚み方向他方側のタンクプレートに2つの冷媒配管を配置した状態の内部構造を示す図である。It is a figure which shows the internal structure in the state which two refrigerant pipes are arranged in the tank plate on the other side in the thickness direction in the refrigeration cycle equipment of 5th Embodiment. 第6実施形態の冷凍サイクル機器を幅方向他方側から視た側面図である。It is a side view which looked at the refrigerating cycle apparatus of 6th Embodiment from the other side in the width direction. 第6実施形態の冷凍サイクル機器において厚み方向他方側のタンクプレートの内側、およびインナーフィンのうち厚み方向一方側を示す図である。It is a figure which shows the inside of the tank plate on the other side in the thickness direction, and one side of the inner fin in the thickness direction in the refrigeration cycle equipment of the sixth embodiment. 第6実施形態の冷凍サイクル機器において厚み方向一方側のタンクプレートの内側を示す図である。It is a figure which shows the inside of the tank plate on one side in the thickness direction in the refrigerating cycle apparatus of 6th Embodiment. 第7実施形態の冷凍サイクル機器において厚み方向他方側のタンクプレートの内側の一部を示す斜視図である。FIG. 5 is a perspective view showing a part of the inside of a tank plate on the other side in the thickness direction in the refrigeration cycle equipment of the seventh embodiment. 図33A中のXXXIIIB-XXXIIIB断面図である。It is sectional drawing of XXXIIIB-XXXIIIB in FIG. 33A. 図33A中の冷媒調整部単体を厚み方向一方側から視た上面図である。FIG. 33A is a top view of the refrigerant adjusting unit alone in FIG. 33A as viewed from one side in the thickness direction. 図33C中の冷媒調整部単体を図示下側から視た側面図である。FIG. 33C is a side view of the refrigerant adjusting unit alone in FIG. 33C as viewed from the lower side of the drawing. 第8実施形態の冷凍サイクル機器のアキュムレータの冷媒配管のうち下配管部の一部、およびフィルタを示す断面図である。It is sectional drawing which shows a part of the lower pipe part, and the filter in the refrigerant pipe of the accumulator of the refrigerating cycle equipment of 8th Embodiment. 第9実施形態の冷凍サイクル機器のアキュムレータの冷媒配管のうち下配管部およびフィルタを軸線に直交する面で切断した断面図である。FIG. 5 is a cross-sectional view of the refrigerant pipe of the accumulator of the refrigeration cycle equipment of the ninth embodiment, in which the lower pipe portion and the filter are cut along a plane orthogonal to the axis line. 第9実施形態の冷凍サイクル機器のアキュムレータの冷媒配管のうち下配管部およびフィルタを軸線に平行である面で切断した断面図である。FIG. 5 is a cross-sectional view of the refrigerant pipe of the accumulator of the refrigeration cycle apparatus of the ninth embodiment, in which the lower pipe portion and the filter are cut along a plane parallel to the axis. 第10実施形態の冷凍サイクル機器のアキュムレータの冷媒配管のうち下配管部およびフィルタを軸線に直交する面で切断した断面図である。It is sectional drawing which cut the lower pipe part and the filter in the plane orthogonal to the axis of the refrigerant pipe of the accumulator of the refrigerating cycle equipment of the tenth embodiment. 第10実施形態の冷凍サイクル機器のアキュムレータの冷媒配管のうち下配管部およびフィルタを軸線に平行である面で切断した断面図である。It is sectional drawing which cut the lower pipe part and the filter in the plane parallel to the axis of the refrigerant pipe of the accumulator of the refrigerating cycle equipment of the tenth embodiment. 他の実施形態におけるアキュムレータのうち一方のタンクプレートを外してアキュムレータ内部を示す図である。It is a figure which shows the inside of the accumulator by removing the tank plate of one of the accumulators in another embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described with reference to the figures. In each of the following embodiments, parts that are the same or equal to each other are designated by the same reference numerals in the drawings in order to simplify the description.
 (第1実施形態)
 本第1実施形態のアキュムレータ10について図1、図2、図3、図4、図5を参照して説明する。
(First Embodiment)
The accumulator 10 of the first embodiment will be described with reference to FIGS. 1, 2, 3, 4, and 5.
 本実施形態のアキュムレータ10は、冷凍サイクル機器を構成するもので、コンプレッサ2、コンデンサ3、減圧弁4、エバポレータ5とともに、車載空調機器用の蒸気圧縮式冷凍サイクル1を構成する。本実施形態の車載空調機器としては、例えば、フォークリフトの運転者用空調機器、トラクター等の農業機械の運転者用空調機器、トラックの仮眠室用空調機器、マイクロカー等の自動車用の空調機器などが挙げられる。 The accumulator 10 of the present embodiment constitutes a refrigeration cycle device, and together with a compressor 2, a condenser 3, a pressure reducing valve 4, and an evaporator 5, constitutes a vapor compression refrigeration cycle 1 for an in-vehicle air conditioner. Examples of the in-vehicle air conditioning equipment of the present embodiment include air conditioning equipment for drivers of forklifts, air conditioning equipment for drivers of agricultural machinery such as tractors, air conditioning equipment for nap rooms of trucks, air conditioning equipment for automobiles such as microcars, and the like. Can be mentioned.
 蒸気圧縮式冷凍サイクル1は、コンプレッサ2、コンデンサ3、減圧弁4、アキュムレータ10、エバポレータ5、およびコンプレッサ2の順で冷媒を循環させてエバポレータ5で吸熱してコンデンサ3から放熱させる。 In the vapor compression refrigeration cycle 1, the refrigerant is circulated in the order of the compressor 2, the condenser 3, the pressure reducing valve 4, the accumulator 10, the evaporator 5, and the compressor 2, and the heat is absorbed by the evaporator 5 and dissipated from the condenser 3.
 アキュムレータ10は、エバポレータ5から流れ出る気液二相冷媒を気相冷媒と液相冷媒とに分離して液相冷媒を貯めつつ気相冷媒をコンプレッサ2に排出する。具体的には、アキュムレータ10は、図2および図3に示すように、タンクプレート20、30、および冷媒配管40を備える。 The accumulator 10 separates the gas-liquid two-phase refrigerant flowing out of the evaporator 5 into a gas-phase refrigerant and a liquid-phase refrigerant, stores the liquid-phase refrigerant, and discharges the gas-phase refrigerant to the compressor 2. Specifically, the accumulator 10 includes tank plates 20, 30 and a refrigerant pipe 40, as shown in FIGS. 2 and 3.
 タンクプレート20、30は、互いに対向するように配置されて、矩形状で、かつ平たい冷媒容器であるタンク13を形成する。 The tank plates 20 and 30 are arranged so as to face each other to form a tank 13 which is a rectangular and flat refrigerant container.
 タンクプレート20は、図2および図4に示すように、前壁部21、側部22、23、24、25、およびフランジ部26a、26b、26c、26dを備える第1タンクプレートである。前壁部21は、タンクプレート30の後壁部31に対向するように配置されている。前壁部21は、天地方向に拡がるとともに、幅方向に拡がる面状に形成されている。 As shown in FIGS. 2 and 4, the tank plate 20 is a first tank plate including a front wall portion 21, side portions 22, 23, 24, 25, and flange portions 26a, 26b, 26c, 26d. The front wall portion 21 is arranged so as to face the rear wall portion 31 of the tank plate 30. The front wall portion 21 is formed in a planar shape that expands in the vertical direction and also expands in the width direction.
 ここで、天地方向は、アキュムレータ10が空調機器の筐体に搭載された状態での天地方向を意味する。タンクプレート20、30が並ぶ方向を厚み方向という。幅方向は、天地方向に直交し、かつ厚み方向と直交する方向である。 Here, the top-bottom direction means the top-bottom direction in a state where the accumulator 10 is mounted on the housing of the air conditioner. The direction in which the tank plates 20 and 30 are lined up is called the thickness direction. The width direction is a direction orthogonal to the top-bottom direction and orthogonal to the thickness direction.
 以下、説明の便宜上、図4に示すように、厚み方向においてタンクプレート30に対してタンクプレート20側を厚み方向一方側とし、厚み方向においてタンクプレート20に対してタンクプレート30側を厚み方向他方側とする。 Hereinafter, for convenience of explanation, as shown in FIG. 4, the tank plate 20 side is one side in the thickness direction with respect to the tank plate 30 in the thickness direction, and the tank plate 30 side is the other side in the thickness direction with respect to the tank plate 20 in the thickness direction. Be on the side.
 前壁部21には、リブ28a、28b、28c、28dが設けられている。リブ28a、28b、28c、28dは、それぞれ、前壁部21のうち厚み方向一方側が厚み方向他方に凹み、かつ前壁部21のうち厚み方向他方側が厚み方向他方に凸となるように形成されている。 Ribs 28a, 28b, 28c, 28d are provided on the front wall portion 21. The ribs 28a, 28b, 28c, and 28d are formed so that one side of the front wall portion 21 in the thickness direction is recessed in the thickness direction and the other side of the front wall portion 21 in the thickness direction is convex in the thickness direction. ing.
 リブ28a、28b、28c、28dは、それぞれ、天地方向に延びるように形成されている。リブ28a、28b、28c、28dは、それぞれ、間隔を開けて幅方向に並べられている。 The ribs 28a, 28b, 28c, and 28d are formed so as to extend in the vertical direction, respectively. The ribs 28a, 28b, 28c, and 28d are arranged in the width direction at intervals.
 リブ28a、28bは、リブ28c、28dに対して幅方向一方側に配置されている。リブ28a、28bは、リブ28c、28dに比べて、天地方向の寸法が大きくなっている。リブ28a、28bは、天地方向の寸法が同一になっている。リブ28c、28dは、天地方向の寸法が同一になっている。 The ribs 28a and 28b are arranged on one side in the width direction with respect to the ribs 28c and 28d. The ribs 28a and 28b have larger dimensions in the vertical direction than the ribs 28c and 28d. The ribs 28a and 28b have the same dimensions in the vertical direction. The ribs 28c and 28d have the same dimensions in the vertical direction.
 リブ28a、28b、28c、28dは、それぞれの天地方向上端部が天地方向の同一位置に配置されている。 The ribs 28a, 28b, 28c, and 28d are arranged at the same position in the top-bottom direction at their respective top-bottom improvement ends.
 リブ28a、28bは、それぞれの天地方向下端部が天地方向の同一位置に配置されている。リブ28c、28dは、それぞれの天地方向下端部が天地方向の同一位置に配置されている。 The lower ends of the ribs 28a and 28b in the vertical direction are arranged at the same positions in the vertical direction. The lower ends of the ribs 28c and 28d in the vertical direction are arranged at the same positions in the vertical direction.
 側部22は、前壁部21に対して天地方向下側に配置されている。側部23は、前壁部21に対して幅方向他方側に配置されている。側部24は、前壁部21に対して天地方向上側に配置されている。側部25は、前壁部21に対して幅方向一方側に配置されている。 The side portion 22 is arranged on the lower side in the vertical direction with respect to the front wall portion 21. The side portion 23 is arranged on the other side in the width direction with respect to the front wall portion 21. The side portion 24 is arranged on the heavenly region improvement side with respect to the front wall portion 21. The side portion 25 is arranged on one side in the width direction with respect to the front wall portion 21.
 フランジ部26aは、湾曲部27aからタンク13の外側に延出するように形成されている。湾曲部27aは、側部22、23が接続されて湾曲状に形成されている。フランジ部26bは、湾曲部27bからタンク13外側に延出するように形成されている。湾曲部27bは、側部23、24が接続されて湾曲状に形成されている。 The flange portion 26a is formed so as to extend from the curved portion 27a to the outside of the tank 13. The curved portion 27a is formed in a curved shape by connecting the side portions 22 and 23. The flange portion 26b is formed so as to extend from the curved portion 27b to the outside of the tank 13. The curved portion 27b is formed in a curved shape by connecting the side portions 23 and 24.
 フランジ部26cは、湾曲部27cからタンク13の外側に延出するように形成されている。湾曲部27cは、側部24、25が接続されて湾曲状に形成されている。フランジ部26dは、湾曲部27dからタンク13の外側に延出するように形成されている。湾曲部27dは、側部25、22が接続されて湾曲状に形成されている。 The flange portion 26c is formed so as to extend from the curved portion 27c to the outside of the tank 13. The curved portion 27c is formed in a curved shape by connecting the side portions 24 and 25. The flange portion 26d is formed so as to extend from the curved portion 27d to the outside of the tank 13. The curved portion 27d is formed in a curved shape by connecting the side portions 25 and 22.
 タンクプレート30は、図2および図3に示すように、後壁部31、側部32、33、34、35、およびフランジ部36a、36b、36c、36dを備える第2タンクプレートである。後壁部31は、タンクプレート30の前壁部21に対向するように配置されている。後壁部31は、天地方向に拡がるとともに、幅方向に拡がる面状に形成されている。 As shown in FIGS. 2 and 3, the tank plate 30 is a second tank plate including a rear wall portion 31, side portions 32, 33, 34, 35, and flange portions 36a, 36b, 36c, 36d. The rear wall portion 31 is arranged so as to face the front wall portion 21 of the tank plate 30. The rear wall portion 31 is formed in a planar shape that expands in the vertical direction and also expands in the width direction.
 後壁部31には、リブ38a、38b、38c、38dが設けられている。リブ38a、38b、38c、38dは、それぞれ、後壁部31のうち厚み方向他方側が厚み方向一方に凹み、かつ後壁部31のうち厚み方向一方側が厚み方向一方側に凸となるように形成されている。 Ribs 38a, 38b, 38c, 38d are provided on the rear wall portion 31. The ribs 38a, 38b, 38c, and 38d are formed so that the other side of the rear wall portion 31 in the thickness direction is recessed in the thickness direction and one side of the rear wall portion 31 in the thickness direction is convex in the thickness direction. Has been done.
 リブ38a、38b、38c、38dは、それぞれ、天地方向に延びるように形成されている。リブ38a、38b、38c、38dは、それぞれ、間隔を開けて幅方向に並べられている。 The ribs 38a, 38b, 38c, and 38d are formed so as to extend in the vertical direction, respectively. The ribs 38a, 38b, 38c, and 38d are arranged in the width direction at intervals.
 リブ38a、38bは、リブ38c、38dに対して幅方向一方側に配置されている。リブ38a、38bは、リブ38c、38dに比べて、天地方向の寸法が大きくなっている。リブ38a、38bは、天地方向の寸法が同一になっている。リブ38c、38dは、天地方向の寸法が同一になっている。 The ribs 38a and 38b are arranged on one side in the width direction with respect to the ribs 38c and 38d. The ribs 38a and 38b have larger dimensions in the vertical direction than the ribs 38c and 38d. The ribs 38a and 38b have the same dimensions in the vertical direction. The ribs 38c and 38d have the same dimensions in the vertical direction.
 リブ38a、38b、38c、38dは、それぞれの天地方向上端部が天地方向の同一位置に配置されている。 The ribs 38a, 38b, 38c, and 38d are arranged at the same position in the top-bottom direction at their respective top-bottom improvement ends.
 リブ38a、38bは、それぞれの天地方向下端部が天地方向の同一位置に配置されている。リブ38c、38dは、それぞれの天地方向下端部が天地方向の同一位置に配置されている。 The lower ends of the ribs 38a and 38b in the vertical direction are arranged at the same positions in the vertical direction. The lower ends of the ribs 38c and 38d in the vertical direction are arranged at the same positions in the vertical direction.
 本字実施形態では、リブ28a、38aは、互いに対向して接触した状態で接合されて仕切部を構成する。リブ28b、38bは、互いに対向して接触した状態で接合されて仕切部を構成する。 In this character embodiment, the ribs 28a and 38a are joined in a state of facing each other and in contact with each other to form a partition portion. The ribs 28b and 38b are joined in a state of facing each other and in contact with each other to form a partition portion.
 さらに、リブ28c、38cは、互いに対向して接触した状態で接合されて仕切部を構成する。リブ28d、38dは、互いに対向して接触した状態で接合されて仕切部を構成する。 Further, the ribs 28c and 38c are joined in a state of facing each other and in contact with each other to form a partition portion. The ribs 28d and 38d are joined in a state of facing each other and in contact with each other to form a partition portion.
 側部32は、後壁部31に対して天地方向下側に配置されている。側部33は、後壁部31に対して幅方向他方側に配置されている。側部34は、後壁部31に対して天地方向上側に配置されている。側部35は、後壁部31に対して幅方向一方側に配置されている。 The side portion 32 is arranged on the lower side in the vertical direction with respect to the rear wall portion 31. The side portion 33 is arranged on the opposite side in the width direction with respect to the rear wall portion 31. The side portion 34 is arranged on the heavenly region improvement side with respect to the rear wall portion 31. The side portion 35 is arranged on one side in the width direction with respect to the rear wall portion 31.
 ここで、側部22、32は、互いに対向した状態で接合されている。側部23、33は、互いに対向した状態で接合されている。側部24、34は、互いに対向した状態で接合されている。側部25、35は、互いに対向した状態で接合されている。 Here, the side portions 22 and 32 are joined so as to face each other. The side portions 23 and 33 are joined so as to face each other. The side portions 24 and 34 are joined so as to face each other. The side portions 25 and 35 are joined so as to face each other.
 フランジ部36aは、湾曲部37aからタンク13の外側に延出するように形成されている。湾曲部37aは、側部32、33が接続されて湾曲状に形成されている。フランジ部36bは、湾曲部37bからタンク13の外側に延出するように形成されている。湾曲部37bは、側部33、34が接続されて湾曲状に形成されている。 The flange portion 36a is formed so as to extend from the curved portion 37a to the outside of the tank 13. The curved portion 37a is formed in a curved shape by connecting the side portions 32 and 33. The flange portion 36b is formed so as to extend from the curved portion 37b to the outside of the tank 13. The curved portion 37b is formed in a curved shape by connecting the side portions 33 and 34.
 フランジ部36cは、湾曲部37cからタンク13の外側に延出するように形成されている。湾曲部37cは、側部34、35が接続されて湾曲状に形成されている。フランジ部36dは、湾曲部37dからタンク13の外側に延出するように形成されている。湾曲部37dは、側部35、32が接続されて湾曲状に形成されている。 The flange portion 36c is formed so as to extend from the curved portion 37c to the outside of the tank 13. The curved portion 37c is formed in a curved shape by connecting the side portions 34 and 35. The flange portion 36d is formed so as to extend from the curved portion 37d to the outside of the tank 13. The curved portion 37d is formed in a curved shape by connecting the side portions 35 and 32.
 フランジ部26a、36aは、互いに対向した状態で接合されている。フランジ部26b、36bは、互いに対向した状態で接合されている。フランジ部26c、36cは、互いに対向した状態で接合されている。フランジ部26d、36dは、互いに対向した状態で接合されている。 The flange portions 26a and 36a are joined so as to face each other. The flange portions 26b and 36b are joined so as to face each other. The flange portions 26c and 36c are joined so as to face each other. The flange portions 26d and 36d are joined so as to face each other.
 タンクプレート30の後壁部31には、図3に示すように、タンク13内から厚み方向他方側に開口されているタンク入口である入口11が形成されている。入口11は、後壁部31のうち幅方向他方側で、かつ天地方向上側に配置されている。入口11には、後述するように、エバポレータ5の冷媒出口からの気液二相冷媒が流入される。 As shown in FIG. 3, the rear wall portion 31 of the tank plate 30 is formed with an inlet 11 which is a tank inlet which is opened from the inside of the tank 13 to the other side in the thickness direction. The entrance 11 is arranged on the other side of the rear wall portion 31 in the width direction and on the heavenly region improvement side. As will be described later, the gas-liquid two-phase refrigerant from the refrigerant outlet of the evaporator 5 flows into the inlet 11.
 タンクプレート20の側部23とタンクプレート30の側部33とには、後述する冷媒配管40を貫通させる貫通穴120が形成されている。具体的には、タンクプレート20の側部23には、貫通穴120を形成する凹部120aが形成されている。タンクプレート30の側部33には、貫通穴120を形成する凹部120bが形成されている。貫通穴120は、凹部120a、120bが組み合わさることにより、タンク13内から幅方向他方側に開口形成されている。 A through hole 120 is formed in the side portion 23 of the tank plate 20 and the side portion 33 of the tank plate 30 to allow the refrigerant pipe 40, which will be described later, to penetrate. Specifically, the side portion 23 of the tank plate 20 is formed with a recess 120a forming a through hole 120. A recess 120b forming a through hole 120 is formed in the side portion 33 of the tank plate 30. The through hole 120 is formed as an opening from the inside of the tank 13 to the other side in the width direction by combining the recesses 120a and 120b.
 冷媒配管40は、タンクプレート20の前壁部21とタンクプレート30の後壁部31との間に配置されている。冷媒配管40は、上配管部42および下配管部41によってL字状に形成されている。 The refrigerant pipe 40 is arranged between the front wall portion 21 of the tank plate 20 and the rear wall portion 31 of the tank plate 30. The refrigerant pipe 40 is formed in an L shape by the upper pipe portion 42 and the lower pipe portion 41.
 上配管部42は、天地方向に冷媒流路が延びるように形成されている。上配管部42は、リブ28b、28cの間に配置されている。上配管部42は、リブ38b、38cの間に配置されている。上配管部42のうち天地方向上側には、タンク13内から気相冷媒が入る配管入口40aが設けられている。 The upper piping portion 42 is formed so that the refrigerant flow path extends in the vertical direction. The upper piping portion 42 is arranged between the ribs 28b and 28c. The upper piping portion 42 is arranged between the ribs 38b and 38c. A pipe inlet 40a for entering a vapor phase refrigerant from inside the tank 13 is provided on the upper pipe portion 42 on the improvement side of the top region.
 配管入口40aは、リブ28a、28b、28b、28cのそれぞれの天地方向上端部に対して天地方向において同一位置に配置されている。配管入口40aは、リブ38a、38b、38b、38cのそれぞれの天地方向上端部に対して天地方向において同一位置に配置されている。 The pipe inlet 40a is arranged at the same position in the vertical direction with respect to the respective vertical improvement ends of the ribs 28a, 28b, 28b, and 28c. The pipe inlet 40a is arranged at the same position in the vertical direction with respect to the respective vertical improved ends of the ribs 38a, 38b, 38b, and 38c.
 ここで、上配管部42は、リブ28b、28cに対して接合され、かつリブ38b、38c接合されている。上配管部42は、前壁部21に接合され、かつ後壁部31に接合されている。 Here, the upper piping portion 42 is joined to the ribs 28b and 28c, and is joined to the ribs 38b and 38c. The upper piping portion 42 is joined to the front wall portion 21 and is joined to the rear wall portion 31.
 下配管部41は、上配管部42のうち天地方向下側から幅方向他方側に延びるように形成されている。下配管部41は、上配管部42を通過した冷媒を配管出口40bに導くための冷媒流路が形成されている。下配管部41は、貫通穴120を通してタンク13の内側と外側との間を貫通している。 The lower piping portion 41 is formed so as to extend from the lower side in the top-bottom direction to the other side in the width direction of the upper piping portion 42. The lower pipe portion 41 is formed with a refrigerant flow path for guiding the refrigerant that has passed through the upper pipe portion 42 to the pipe outlet 40b. The lower piping portion 41 penetrates between the inside and the outside of the tank 13 through the through hole 120.
 配管出口40bは、タンク13の外側に配置されている。配管出口40bは、下配管部41のうち幅方向他方側に形成されている。本実施形態の下配管部41は、側部22とリブ28c、28dとの間に配置され、かつ側部32とリブ38c、38dとの間に配置されている。下配管部41と側部22、32との間には、間隔が設けられている。下配管部41は、リブ28c、28dに対して接合され、かつリブ38c、38dに対して接合されている。下配管部41は、前壁部21に接合され、かつ後壁部31に接合されている。このように冷媒配管40は、タンクプレート20、30のうち内側(すなわち、タンク13側)に接合されている。 The piping outlet 40b is arranged outside the tank 13. The pipe outlet 40b is formed on the other side of the lower pipe portion 41 in the width direction. The lower piping portion 41 of the present embodiment is arranged between the side portion 22 and the ribs 28c and 28d, and is arranged between the side portion 32 and the ribs 38c and 38d. A space is provided between the lower piping portion 41 and the side portions 22 and 32. The lower piping portion 41 is joined to the ribs 28c and 28d, and is joined to the ribs 38c and 38d. The lower piping portion 41 is joined to the front wall portion 21 and is joined to the rear wall portion 31. In this way, the refrigerant pipe 40 is joined to the inside (that is, the tank 13 side) of the tank plates 20 and 30.
 下配管部41には、オイル戻し孔40cが下側に開口されている。オイル戻し孔40cは、タンク13内の液相冷媒に含まれる潤滑油を下配管部41内の冷媒流路に流入させるための孔部である。 The lower piping portion 41 has an oil return hole 40c opened downward. The oil return hole 40c is a hole for allowing the lubricating oil contained in the liquid phase refrigerant in the tank 13 to flow into the refrigerant flow path in the lower piping portion 41.
 本実施形態のオイル戻し孔40cは、図5に示すように、下配管部41のうちリブ41a、41bの間に設けられている。リブ41a、41bは、下配管部41から軸線CLを中心とする径方向外側に環状に突起する突起部である。リブ41a、41bは、軸線方向に間隔を開けて配置されている。軸線方向は、軸線CLが延びる方向である。軸線CLは、下配管部41の軸線である。 As shown in FIG. 5, the oil return hole 40c of the present embodiment is provided between the ribs 41a and 41b of the lower piping portion 41. The ribs 41a and 41b are protrusions that are annularly projected outward in the radial direction about the axis CL from the lower piping portion 41. The ribs 41a and 41b are arranged at intervals in the axial direction. The axis direction is the direction in which the axis CL extends. The axis CL is the axis of the lower piping portion 41.
 ここで、リブ41a、41bに対して軸線CLを中心とする径方向外側には、筒状に形成されているフィルタ43が設けられている。このことにより、フィルタ43は、オイル戻し孔40cを覆うように配置されることになる。フィルタ43は、オイル戻し孔40cに流入する潤滑油をろ過して不純物を除去する。 Here, a filter 43 formed in a tubular shape is provided on the outer side in the radial direction about the axis CL with respect to the ribs 41a and 41b. As a result, the filter 43 is arranged so as to cover the oil return hole 40c. The filter 43 filters the lubricating oil flowing into the oil return hole 40c to remove impurities.
 このように構成されるタンクプレート20、30の間には、入口11を介して流入される気液二相冷媒を液相冷媒と気相冷媒とに分離して貯めるタンク13が形成されている。 A tank 13 is formed between the tank plates 20 and 30 configured in this way to separate and store the gas-liquid two-phase refrigerant flowing in through the inlet 11 into the liquid-phase refrigerant and the gas-phase refrigerant. ..
 具体的には、タンク13は、リブ28a、28b、28c、28d、38a、38b、38c、38dによって分割タンク領域13a、13b、13c、13d、13e、13f、13gに分割されている。 Specifically, the tank 13 is divided into divided tank areas 13a, 13b, 13c, 13d, 13e, 13f, 13g by ribs 28a, 28b, 28c, 28d, 38a, 38b, 38c, 38d.
 分割タンク領域13aは、側部35とリブ38a、28aとの間に形成されている。分割タンク領域13bは、リブ38a、28aとリブ38b、28bとの間に形成されている。分割タンク領域13cは、リブ38b、28bとリブ38c、28cとの間に形成されている。 The divided tank area 13a is formed between the side portion 35 and the ribs 38a and 28a. The split tank region 13b is formed between the ribs 38a and 28a and the ribs 38b and 28b. The split tank region 13c is formed between the ribs 38b and 28b and the ribs 38c and 28c.
 分割タンク領域13dは、リブ38c、28cとリブ38d、28dとの間に形成されている。分割タンク領域13eは、リブ38d、28dと側部33との間に形成されている。 The divided tank region 13d is formed between the ribs 38c and 28c and the ribs 38d and 28d. The split tank region 13e is formed between the ribs 38d and 28d and the side portion 33.
 分割タンク領域13fは、リブ28a、28b、28c、28d、38a、38b、38c、38dと側部34との間に形成されている。分割タンク領域13gは、リブ28a、28b、28c、28d、38a、38b、38c、38dと側部32との間に形成されている。 The divided tank region 13f is formed between the ribs 28a, 28b, 28c, 28d, 38a, 38b, 38c, 38d and the side portion 34. The split tank region 13g is formed between the ribs 28a, 28b, 28c, 28d, 38a, 38b, 38c, 38d and the side portion 32.
 本実施形態では、分割タンク領域13a、13b、13c、13d、13eは、幅方向(すなわち、水平方向)に並べられている。分割タンク領域13a、13b、13c、13d、13eは、それぞれ、天地方向に延びるように形成されている。 In the present embodiment, the divided tank regions 13a, 13b, 13c, 13d, and 13e are arranged in the width direction (that is, the horizontal direction). The divided tank regions 13a, 13b, 13c, 13d, and 13e are each formed so as to extend in the vertical direction.
 このように構成される分割タンク領域13a、13b、13c、13d、13eは、タンク13内の液相冷媒の液面14が変動することを抑制するための複数の分割タンク領域である。 The divided tank regions 13a, 13b, 13c, 13d, and 13e configured in this way are a plurality of divided tank regions for suppressing fluctuations in the liquid level 14 of the liquid phase refrigerant in the tank 13.
 本実施形態のタンクプレート30、30、および冷媒配管40としては、アルミニウムを含むアルミニウム合金材料によって構成されている。タンクプレート30、30、および冷媒配管40を接合する手法としては、例えば、ろう付け接合が用いられる。 The tank plates 30, 30 and the refrigerant pipe 40 of this embodiment are made of an aluminum alloy material containing aluminum. As a method for joining the tank plates 30, 30 and the refrigerant pipe 40, for example, brazing joining is used.
 このように構成されるアキュムレータ10が静止した状態で冷媒配管40の配管入口40aよりもアキュムレータ10内の液相冷媒の液面14が天地方向下側に位置するように設定される冷媒量の冷媒が予め蒸気圧縮式冷凍サイクル1に充填されている。 With the accumulator 10 configured in this way stationary, the amount of refrigerant set so that the liquid level 14 of the liquid phase refrigerant in the accumulator 10 is located below the pipe inlet 40a of the refrigerant pipe 40 in the vertical direction. Is pre-filled in the steam compression refrigeration cycle 1.
 本実施形態のアキュムレータ10は、コンデンサ3、減圧弁4、エバポレータ5等とともに、ろう付け等によって一体成形される場合がある。しかし、以下、説明の便宜上、本実施形態では、アキュムレータ10単体の製造方法について説明する。 The accumulator 10 of the present embodiment may be integrally molded by brazing or the like together with the condenser 3, the pressure reducing valve 4, the evaporator 5, and the like. However, for convenience of explanation, a method for manufacturing the accumulator 10 alone will be described below in this embodiment.
 まず、最初の工程で、タンクプレート20、30、および冷媒配管40を別々に用意する。 First, in the first step, the tank plates 20 and 30 and the refrigerant pipe 40 are prepared separately.
 ここで、タンクプレート20、30、および冷媒配管40としては、アルミニウム合金材料からなる板材の表面、或いは裏面にろう材層が設けられているクラット材が用いられる。ろう材層は、ろう材から成る層である。 Here, as the tank plates 20, 30 and the refrigerant pipe 40, a lat material having a brazing material layer provided on the front surface or the back surface of a plate material made of an aluminum alloy material is used. The brazing filler metal layer is a layer made of brazing filler metal.
 次の工程で、タンクプレート20、30の間に冷媒配管40を挟んでタンクプレート20、30を対向させた状態で合わせる。 In the next step, the refrigerant pipe 40 is sandwiched between the tank plates 20 and 30, and the tank plates 20 and 30 are aligned in a state of facing each other.
 この際には、冷媒配管40の上配管部42がリブ28b、38bとリブ28c、38cとの間に配置される。冷媒配管40の下配管部41がリブ28c、38c、28d、38dに対して下側に配置される。配管出口40bがタンク13の外側に位置する。 At this time, the upper piping portion 42 of the refrigerant pipe 40 is arranged between the ribs 28b and 38b and the ribs 28c and 38c. The lower pipe portion 41 of the refrigerant pipe 40 is arranged below the ribs 28c, 38c, 28d, and 38d. The pipe outlet 40b is located outside the tank 13.
 次の工程で、タンクプレート20、30、および冷媒配管40を組み合わせた状態で、高温炉内で加熱してろう材層を融かしてタンクプレート20、30、および冷媒配管40をろう付け接合する。 In the next step, with the tank plates 20 and 30 and the refrigerant pipe 40 combined, the tank plates 20 and 30 and the refrigerant pipe 40 are brazed and joined by heating in a high temperature furnace to melt the brazing material layer. do.
 具体的には、タンクプレート20の側部22、23、24、25、フランジ部26a、26b、26c、26dと、タンクプレート30の側部32、33、34、35、フランジ部36a、36b、36c、36dと、がろう付け接合される。 Specifically, the side portions 22, 23, 24, 25 of the tank plate 20, the flange portions 26a, 26b, 26c, 26d, and the side portions 32, 33, 34, 35 of the tank plate 30, the flange portions 36a, 36b, It is brazed and joined to 36c and 36d.
 これに加えて、冷媒配管40が、タンクプレート20の前壁部21とタンクプレート30の後壁部31とにろう付け接合される。 In addition to this, the refrigerant pipe 40 is brazed to the front wall portion 21 of the tank plate 20 and the rear wall portion 31 of the tank plate 30.
 さらに、冷媒配管40の上配管部42がリブ28b、38b、28c、38cにろう付け接合される。冷媒配管40の下配管部41がリブ28c、38c、28d、38d、側部23の凹部120a、側部33の凹部120bにろう付け接合される。 Further, the upper pipe portion 42 of the refrigerant pipe 40 is brazed to the ribs 28b, 38b, 28c, 38c. The lower piping portion 41 of the refrigerant pipe 40 is brazed to the ribs 28c, 38c, 28d, 38d, the recess 120a of the side portion 23, and the recess 120b of the side portion 33.
 以上により、タンクプレート20、30、および冷媒配管40がろう付け接合によって一体化されて一体成形物が形成される。 From the above, the tank plates 20 and 30 and the refrigerant pipe 40 are integrated by brazing joint to form an integrally molded product.
 次に、本実施形態の蒸気圧縮式冷凍サイクル1の作動、およびアキュムレータ10の作動について説明する。 Next, the operation of the steam compression refrigeration cycle 1 and the operation of the accumulator 10 of the present embodiment will be described.
 まず、コンプレッサ2は、アキュムレータ10から気相冷媒を吸入して圧縮して高圧冷媒として吐出する。コンデンサ3は、コンプレッサ2から吐出される高圧冷媒を放熱する。 First, the compressor 2 sucks the vapor phase refrigerant from the accumulator 10, compresses it, and discharges it as a high-pressure refrigerant. The capacitor 3 dissipates heat from the high-pressure refrigerant discharged from the compressor 2.
 次に、減圧弁4は、コンデンサ3から流れ出る高圧冷媒を減圧する。エバポレータ5は、減圧弁4を通過した低圧冷媒を吸熱によって蒸発させる。アキュムレータ10は、エバポレータ5を通過した気液二相冷媒を気相冷媒と液相冷媒とに分離して液相冷媒を貯めつつ気相冷媒を排出する。 Next, the pressure reducing valve 4 decompresses the high-pressure refrigerant flowing out of the condenser 3. The evaporator 5 evaporates the low-pressure refrigerant that has passed through the pressure reducing valve 4 by endothermic reaction. The accumulator 10 separates the gas-liquid two-phase refrigerant that has passed through the evaporator 5 into a gas-phase refrigerant and a liquid-phase refrigerant, stores the liquid-phase refrigerant, and discharges the gas-phase refrigerant.
 具体的には、エバポレータ5を通過した気液二相冷媒が入口11を通してタンク13内に入る。タンク13内では、気液二相冷媒が気相冷媒と液相冷媒とに分離され、気相冷媒がタンク13のうち上側に貯まり、かつ液相冷媒がタンク13のうち下側に貯まることになる。 Specifically, the gas-liquid two-phase refrigerant that has passed through the evaporator 5 enters the tank 13 through the inlet 11. In the tank 13, the gas-liquid two-phase refrigerant is separated into a gas-phase refrigerant and a liquid-phase refrigerant, the vapor-phase refrigerant is stored in the upper side of the tank 13, and the liquid-phase refrigerant is stored in the lower side of the tank 13. Become.
 具体的には、分割タンク領域13a、13b、13c、13d、13eのそれぞれに、気相冷媒と液相冷媒とに分離された状態で貯まる。分割タンク領域13fには、気相冷媒が貯まる。分割タンク領域13gには、液相冷媒が貯まる。 Specifically, the gas phase refrigerant and the liquid phase refrigerant are stored in each of the divided tank regions 13a, 13b, 13c, 13d, and 13e in a separated state. The vapor phase refrigerant is stored in the divided tank region 13f. The liquid phase refrigerant is stored in the divided tank area 13 g.
 このとき、タンク13内の気相冷媒は、配管入口40aを通して冷媒配管40の冷媒流路を通して配管出口40bからコンプレッサ2の冷媒入口に流れる。 At this time, the vapor-phase refrigerant in the tank 13 flows from the pipe outlet 40b to the refrigerant inlet of the compressor 2 through the pipe inlet 40a and the refrigerant flow path of the refrigerant pipe 40.
 この際に、タンク13内の液相冷媒に含まれる潤滑油がフィルタ43およびオイル戻し孔40cを通して冷媒配管40の冷媒流路に流れる。この冷媒流路に流れる潤滑油は、配管出口40bからコンプレッサ2の冷媒入口すなわち、タンク13の外側に流れる。すなわち、この冷媒流路に流れる潤滑油は、配管出口40bからタンク13の外側に流れる。潤滑油は、コンプレッサ2を構成する圧縮機構等の潤滑に用いられる。 At this time, the lubricating oil contained in the liquid phase refrigerant in the tank 13 flows into the refrigerant flow path of the refrigerant pipe 40 through the filter 43 and the oil return hole 40c. The lubricating oil flowing through the refrigerant flow path flows from the pipe outlet 40b to the refrigerant inlet of the compressor 2, that is, to the outside of the tank 13. That is, the lubricating oil flowing in the refrigerant flow path flows from the pipe outlet 40b to the outside of the tank 13. The lubricating oil is used for lubricating the compression mechanism and the like constituting the compressor 2.
 このとき、フィルタ43は、タンク13内からオイル戻し孔40cを通して冷媒配管40の冷媒流路に流れる潤滑油から不純物を除く。これにより、オイル戻し孔40cが不純物によって詰まることを未然に防ぐことになる。 At this time, the filter 43 removes impurities from the lubricating oil flowing from the inside of the tank 13 to the refrigerant flow path of the refrigerant pipe 40 through the oil return hole 40c. This prevents the oil return hole 40c from being clogged with impurities.
 さらに、タンク13は、リブ28a、28b、28c、28d、38a、38b、38c、38dによって分割タンク領域13a、13b、13c、13d、13eに仕切られている。 Further, the tank 13 is divided into divided tank areas 13a, 13b, 13c, 13d, 13e by ribs 28a, 28b, 28c, 28d, 38a, 38b, 38c, 38d.
 このため、タンク13内の液相冷媒の液面14が振動すること抑制して、タンク13内の液相冷媒が冷媒配管40の配管入口40aに入ることを未然に防ぐことができる。 Therefore, it is possible to suppress the vibration of the liquid level 14 of the liquid phase refrigerant in the tank 13 and prevent the liquid phase refrigerant in the tank 13 from entering the pipe inlet 40a of the refrigerant pipe 40.
 以上説明した本実施形態によれば、アキュムレータ10は、冷媒を循環させる蒸気圧縮式冷凍サイクルを構成する。タンクプレート20、30は、板状に形成されて互いに対向するように配置されて、入口11から流入される気液二相冷媒を気相冷媒と液相冷媒とに分離して貯めるタンク13を形成する。 According to the present embodiment described above, the accumulator 10 constitutes a vapor compression refrigeration cycle in which a refrigerant is circulated. The tank plates 20 and 30 are formed in a plate shape and are arranged so as to face each other, and a tank 13 for separating and storing the gas-liquid two-phase refrigerant flowing in from the inlet 11 into a gas-phase refrigerant and a liquid-phase refrigerant Form.
 アキュムレータ10は、気相冷媒が入る配管入口40aと、タンク13の外側に配置されて気相冷媒を排出する配管出口40bとを備え、タンク13内の気相冷媒を配管入口40aおよび配管出口40bを通してタンク13の外側に出す冷媒配管40とを備える。 The accumulator 10 includes a pipe inlet 40a for entering the gas phase refrigerant and a pipe outlet 40b arranged outside the tank 13 for discharging the vapor phase refrigerant, and the gas phase refrigerant in the tank 13 is supplied to the pipe inlet 40a and the pipe outlet 40b. It is provided with a refrigerant pipe 40 which is discharged to the outside of the tank 13 through the pipe.
 したがって、気液二相冷媒を液相冷媒と気相冷媒とに分離して液相冷媒を貯めつつ気相冷媒を排出するアキュムレータ10を、タンクプレート20、30、および冷媒配管40といった3つの部品によって構成することができる。 Therefore, the accumulator 10 that separates the gas-liquid two-phase refrigerant into the liquid-phase refrigerant and the gas-phase refrigerant and discharges the gas-phase refrigerant while storing the liquid-phase refrigerant is provided with three components such as the tank plates 20, 30 and the refrigerant pipe 40. Can be configured by.
 以上により、冷凍サイクル機器としてのアキュムレータ10を、上記特許文献1に記載のアキュムレータに比べて、少ない部品点数で構成することができる。これに伴って、アキュムレータ10の製造コストを、上記特許文献1に記載のアキュムレータに比べて、低減することができる。 As described above, the accumulator 10 as a refrigeration cycle device can be configured with a smaller number of parts than the accumulator described in Patent Document 1. Along with this, the manufacturing cost of the accumulator 10 can be reduced as compared with the accumulator described in Patent Document 1.
 本実施形態では、冷媒配管40は、タンクプレート20のうち厚み方向(すなわち、並び方向)においてタンクプレート30側にろう付け接合されている。冷媒配管40は、タンクプレート30のうち厚み方向(すなわち、並び方向)においてタンクプレート20側にろう付け接合されている。 In the present embodiment, the refrigerant pipe 40 is brazed to the tank plate 30 side in the thickness direction (that is, the alignment direction) of the tank plate 20. The refrigerant pipe 40 is brazed to the tank plate 20 side in the thickness direction (that is, the arrangement direction) of the tank plate 30.
 したがって、アキュムレータ10の強度を増すことができる。これに伴い、タンク13内の冷媒圧力に対する耐圧性を高めることができる。 Therefore, the strength of the accumulator 10 can be increased. Along with this, the pressure resistance to the refrigerant pressure in the tank 13 can be increased.
 本実施形態では、リブ28a、28b、28c、28d、38a、38b、38c、38dは、タンク13を、分割タンク領域13a、13b、13c、13d、13eに仕切る。 In the present embodiment, the ribs 28a, 28b, 28c, 28d, 38a, 38b, 38c, 38d partition the tank 13 into divided tank areas 13a, 13b, 13c, 13d, 13e.
 ここで、タンク13に分割タンク領域13a、13b、13c、13d、13eが形成されていない場合に、車両の振動に伴って、アキュムレータ10が振動すると、タンク13内の液相冷媒の液面14が振動する。このため、タンク13内の液相冷媒が冷媒配管40の配管入口40a内に入るおそれがある。 Here, when the divided tank regions 13a, 13b, 13c, 13d, 13e are not formed in the tank 13, and the accumulator 10 vibrates with the vibration of the vehicle, the liquid level 14 of the liquid phase refrigerant in the tank 13 Vibrates. Therefore, the liquid phase refrigerant in the tank 13 may enter the pipe inlet 40a of the refrigerant pipe 40.
 これに対して、本実施形態では、タンク13がリブ28a、28b、28c、28d、38a、38b、38c、38dによって仕切られて分割タンク領域13a、13b、13c、13d、13eが形成されている。このため、タンク13内の液相冷媒の液面14が振動することが抑制される。タンク13内の液相冷媒が冷媒配管40の配管入口40a内に入ることを抑えることができる。 On the other hand, in the present embodiment, the tank 13 is partitioned by ribs 28a, 28b, 28c, 28d, 38a, 38b, 38c, 38d to form divided tank regions 13a, 13b, 13c, 13d, 13e. .. Therefore, the vibration of the liquid level 14 of the liquid phase refrigerant in the tank 13 is suppressed. It is possible to prevent the liquid phase refrigerant in the tank 13 from entering the pipe inlet 40a of the refrigerant pipe 40.
 特に、本実施形態では、分割タンク領域13a、13b、13c、13d、13eは、天地方向に延びるように形成され、かつ幅方向(すなわち、水平方向)に並ぶように形成されている。このため、タンク13内の液相冷媒の液面14が振動することがより一層抑制することができる。 In particular, in the present embodiment, the divided tank regions 13a, 13b, 13c, 13d, and 13e are formed so as to extend in the vertical direction and are arranged in the width direction (that is, in the horizontal direction). Therefore, it is possible to further suppress the vibration of the liquid level 14 of the liquid phase refrigerant in the tank 13.
 以上により、タンク13内の液相冷媒がコンプレッサ2の入口に流れることを未然に抑えることができる。 From the above, it is possible to prevent the liquid phase refrigerant in the tank 13 from flowing to the inlet of the compressor 2.
 本実施形態では、分割タンク領域13a、13b、13c、13d、13eを形成するために、タンクプレート20、30のリブ28a、28b、28c、28d、38a、38b、38c、38dを用いている。 In this embodiment, the ribs 28a, 28b, 28c, 28d, 38a, 38b, 38c, 38d of the tank plates 20 and 30 are used to form the divided tank regions 13a, 13b, 13c, 13d, 13e.
 このため、タンクプレート20、30以外の部品を用いて分割タンク領域13a、13b、13c、13d、13eを形成する場合に比べて、部品点数を少なくすることができる。これに伴って、アキュムレータ10の製造コストを、上記特許文献1に記載のアキュムレータに比べて、低減することができる。 Therefore, the number of parts can be reduced as compared with the case where the divided tank regions 13a, 13b, 13c, 13d, and 13e are formed by using parts other than the tank plates 20 and 30. Along with this, the manufacturing cost of the accumulator 10 can be reduced as compared with the accumulator described in Patent Document 1.
 本実施形態では、冷媒配管40には、タンク13内の気液二相冷媒に含まれる潤滑油が入るオイル戻し孔40cが形成されている。このため、タンク13内の潤滑油が冷媒配管40のオイル戻し孔40c、冷媒流路、および配管出口40bを通してタンク13の外側に排出してコンプレッサ2の入口に供給することができる。 In the present embodiment, the refrigerant pipe 40 is formed with an oil return hole 40c in which the lubricating oil contained in the gas-liquid two-phase refrigerant in the tank 13 enters. Therefore, the lubricating oil in the tank 13 can be discharged to the outside of the tank 13 through the oil return hole 40c of the refrigerant pipe 40, the refrigerant flow path, and the pipe outlet 40b and supplied to the inlet of the compressor 2.
 これにより、タンク13内の潤滑油を適切にコンプレッサ2に戻すことができる。このため、コンプレッサ2を構成する圧縮機構が潤滑油によって潤滑される。 As a result, the lubricating oil in the tank 13 can be appropriately returned to the compressor 2. Therefore, the compression mechanism constituting the compressor 2 is lubricated by the lubricating oil.
 本実施形態では、オイル戻し孔40cの近傍には、フィルタ43が設けられている。これにより、オイル戻し孔40cが不純物によって目詰まりすることを未然に防ぐことができる。 In the present embodiment, the filter 43 is provided in the vicinity of the oil return hole 40c. As a result, it is possible to prevent the oil return hole 40c from being clogged with impurities.
 また、上記特許文献1に記載のアキュムレータは、複数のプレートを積層した状態で接合されている。このため、接合箇所を多数必要とし、アキュムレータとしての信頼性に欠ける。 Further, the accumulator described in Patent Document 1 is joined in a state where a plurality of plates are laminated. Therefore, a large number of joints are required, and the reliability as an accumulator is lacking.
 これに対して、本実施形態では、アキュムレータ10がタンクプレート20、30、および冷媒配管40によって構成されている。このため、接合箇所を上記特許文献1に記載のアキュムレータに比べて減らすことができる。よって、アキュムレータ10としての信頼性を確保することができる。 On the other hand, in the present embodiment, the accumulator 10 is composed of the tank plates 20 and 30 and the refrigerant pipe 40. Therefore, the number of joints can be reduced as compared with the accumulator described in Patent Document 1. Therefore, the reliability of the accumulator 10 can be ensured.
 また、上記特許文献1に記載のアキュムレータは、複数のプレートを積層して複数のタンクを構成している。このため、アキュムレータの体積に対するタンク全体の容積の比率が低くなっている。 Further, the accumulator described in Patent Document 1 constitutes a plurality of tanks by laminating a plurality of plates. Therefore, the ratio of the volume of the entire tank to the volume of the accumulator is low.
 これに対して、本実施形態では、タンクプレート20、30によってタンク13を構成している。このため、アキュムレータ10の体積に対するタンク全体の容積の比率が高くすることができる。これに伴い、小さな体積のアキュムレータ10によってタンク13の容積を確保することができる。 On the other hand, in the present embodiment, the tank 13 is composed of the tank plates 20 and 30. Therefore, the ratio of the volume of the entire tank to the volume of the accumulator 10 can be increased. Along with this, the volume of the tank 13 can be secured by the accumulator 10 having a small volume.
 (第1変形例)
 上記第1実施形態では、タンクプレート20のリブ28aとタンクプレート30のリブ38aとを接合して仕切部を構成した例について説明したが、これに代えて、次のようにしてもよい。
(First modification)
In the first embodiment described above, an example in which the rib 28a of the tank plate 20 and the rib 38a of the tank plate 30 are joined to form a partition portion has been described, but instead of this, the following may be used.
 すなわち、図7に示すように、タンクプレート20のリブ28aとタンクプレート30の平面部39とを接合して仕切部を構成してもよい。この場合、タンクプレート30には、図7に示すように、リブ38aに代えて平面部39が形成されている。平面部39は、リブが形成されていなく、かつ天地方向および幅方向に延びる平面状に形成されている。 That is, as shown in FIG. 7, the rib 28a of the tank plate 20 and the flat surface portion 39 of the tank plate 30 may be joined to form a partition portion. In this case, as shown in FIG. 7, the tank plate 30 is formed with a flat surface portion 39 instead of the rib 38a. The flat surface portion 39 has no ribs and is formed in a flat shape extending in the vertical direction and the width direction.
 或いは、タンクプレート30のリブ38aとタンクプレート20の平面部とを接合して仕切部を構成してもよい。この場合、タンクプレート20には、リブ28aに代えて平面部が形成されている。平面部は、リブが形成されていなく、かつ天地方向および幅方向に延びる平面状に形成されている。 Alternatively, the rib 38a of the tank plate 30 and the flat surface portion of the tank plate 20 may be joined to form a partition portion. In this case, the tank plate 20 is formed with a flat surface portion instead of the rib 28a. The flat surface portion has no ribs and is formed in a flat shape extending in the vertical direction and the width direction.
 同様に、リブ28b、38bの場合も、タンクプレート20、30のうち一方のタンクプレートにリブを設け、他方のタンクプレートに平面部を設け、リブに平面部を接合して仕切部を構成してもよい。 Similarly, in the case of the ribs 28b and 38b, a rib is provided on one of the tank plates 20 and 30, a flat surface portion is provided on the other tank plate, and the flat surface portion is joined to the rib to form a partition portion. You may.
 同様に、リブ28c、38cの場合や、リブ28d、38dの場合も、タンクプレート20、30のうち一方のタンクプレートにリブを設け、かつ他方のタンクプレートに平面部を設け、さらにリブに平面部を接合して仕切部を構成してもよい。 Similarly, in the case of ribs 28c and 38c, and in the case of ribs 28d and 38d, one of the tank plates 20 and 30 is provided with a rib, the other tank plate is provided with a flat surface portion, and the rib is flat. The portions may be joined to form a partition portion.
 (第2変形例)
 本第2変形例では、図8に示すように、上記第1実施形態のタンクプレート20、30のリブ28a、38aに厚み方向に貫通する貫通孔50を設けてもよい。これにより、リブ28a、38aの接合状態が良好か否かを検査することができる。
(Second modification)
In the second modification, as shown in FIG. 8, through holes 50 penetrating in the thickness direction may be provided in the ribs 28a and 38a of the tank plates 20 and 30 of the first embodiment. Thereby, it is possible to inspect whether or not the joint state of the ribs 28a and 38a is good.
 同様に、リブ28b、38bに対して厚み方向に貫通する貫通孔50を設けてもよい。リブ28c、38cに対して厚み方向に貫通する貫通孔50を設けてもよい。リブ28d、38dに対して厚み方向に貫通する貫通孔50を設けてもよい。 Similarly, a through hole 50 that penetrates the ribs 28b and 38b in the thickness direction may be provided. A through hole 50 that penetrates the ribs 28c and 38c in the thickness direction may be provided. A through hole 50 that penetrates the ribs 28d and 38d in the thickness direction may be provided.
 (第3変形例)
 本第3変形例では、図9に示すように、上記第1変形例のリブ28a、平面部39を貫通する貫通孔50を設けてもよい。
(Third modification example)
In the third modification, as shown in FIG. 9, a through hole 50 penetrating the rib 28a and the flat surface portion 39 of the first modification may be provided.
 同様に、リブ28b、平面部39を厚み方向に貫通する貫通孔50を設けてもよい。リブ28b、平面部39を厚み方向に貫通する貫通孔50を設けてもよい。リブ28c、平面部39を厚み方向に貫通する貫通孔50を設けてもよい。リブ28d、平面部39を厚み方向に貫通する貫通孔50を設けてもよい。 Similarly, a through hole 50 may be provided that penetrates the rib 28b and the flat surface portion 39 in the thickness direction. A through hole 50 may be provided that penetrates the rib 28b and the flat surface portion 39 in the thickness direction. A through hole 50 may be provided that penetrates the rib 28c and the flat surface portion 39 in the thickness direction. A through hole 50 may be provided that penetrates the rib 28d and the flat surface portion 39 in the thickness direction.
 (第4変形例)
 本第2変形例では、図10に示すように、上記第1実施形態のタンクプレート20、30のリブ28a、38aのうち、リブ28aにのみ、厚み方向に貫通する貫通孔51を設けてもよい。この場合、貫通孔51はリブ38aによって塞がれることになる。
(Fourth modification)
In the second modification, as shown in FIG. 10, among the ribs 28a and 38a of the tank plates 20 and 30 of the first embodiment, only the rib 28a may be provided with a through hole 51 penetrating in the thickness direction. good. In this case, the through hole 51 is closed by the rib 38a.
 同様に、リブ28b、38bのうちリブ28bにのみ貫通孔51を設けてもよい。リブ28c、38cのうちリブ28cにのみ貫通孔を設けてもよい。リブ28d、38dのうちリブ28cにのみ貫通孔を設けてもよい。 Similarly, the through hole 51 may be provided only in the rib 28b among the ribs 28b and 38b. Of the ribs 28c and 38c, only the rib 28c may be provided with a through hole. Of the ribs 28d and 38d, only the rib 28c may be provided with a through hole.
 或いは、リブ28a、38aのうちリブ38aにのみ、貫通孔を設けてもよい。リブ28b、38bのうちリブ38bにのみ、貫通孔を設けてもよい。リブ28c、38cのうちリブ38cにのみ、貫通孔を設けてもよい。リブ28d、38dのうちリブ38dにのみ、貫通孔を設けてもよい。 Alternatively, a through hole may be provided only in the rib 38a among the ribs 28a and 38a. Of the ribs 28b and 38b, only the rib 38b may be provided with a through hole. Of the ribs 28c and 38c, only the rib 38c may be provided with a through hole. Of the ribs 28d and 38d, only the rib 38d may be provided with a through hole.
 (第5変形例)
 本第4変形例では、図11に示すように、上記第1変形例のリブ28a、平面部39のうち、リブ28aにのみ、貫通孔51を設けてもよい。或いは、リブ28a、平面部39のうち、平面部39にのみ、貫通孔を設けてもよい。
(Fifth modification)
In the fourth modification, as shown in FIG. 11, the through hole 51 may be provided only in the rib 28a of the rib 28a and the flat surface portion 39 of the first modification. Alternatively, a through hole may be provided only in the flat surface portion 39 of the rib 28a and the flat surface portion 39.
 同様に、リブ28b、平面部39のうち、リブ28bにのみ、貫通孔51を設けてもよい。リブ28b、平面部39のうち、平面部39にのみ、貫通孔51を設けてもよい。リブ28c、平面部39のうち、平面部39にのみ、貫通孔51を設けてもよい。リブ28d、平面部39のうち、平面部39にのみ、貫通孔51を設けてもよい。 Similarly, of the rib 28b and the flat surface portion 39, the through hole 51 may be provided only in the rib 28b. Of the rib 28b and the flat surface portion 39, the through hole 51 may be provided only in the flat surface portion 39. Of the rib 28c and the flat surface portion 39, the through hole 51 may be provided only in the flat surface portion 39. Of the rib 28d and the flat surface portion 39, the through hole 51 may be provided only in the flat surface portion 39.
 (第2実施形態)
 上記第1実施形態では、タンクプレート20、30によってアキュムレータ10を構成した例について説明した。しかし、これに代えて、アキュムレータ10およびコンデンサ用入口配管3aを含む冷凍サイクル機器10Aをタンクプレート20、30によって構成した本第2実施形態について図12~図16を参照して説明する。
(Second Embodiment)
In the first embodiment, an example in which the accumulator 10 is configured by the tank plates 20 and 30 has been described. However, instead of this, the second embodiment in which the refrigeration cycle equipment 10A including the accumulator 10 and the inlet pipe 3a for the condenser is composed of the tank plates 20 and 30 will be described with reference to FIGS. 12 to 16.
 本第2実施形態の冷凍サイクル機器10Aは、図12および図13に示すように、上記第1実施形態のアキュムレータ10にコンデンサ用入口配管3aを組み合わせたものである。そこで、アキュムレータ10の説明を簡素化し、主にコンデンサ用入口配管3aについて説明する。 As shown in FIGS. 12 and 13, the refrigerating cycle device 10A of the second embodiment is a combination of the accumulator 10 of the first embodiment and the inlet pipe 3a for a capacitor. Therefore, the description of the accumulator 10 will be simplified, and the capacitor inlet pipe 3a will be mainly described.
 まず、コンデンサ用入口配管3aは、コンプレッサ2の出口とコンデンサ3の入口との間に配置されている熱交換器用配管である。コンデンサ用入口配管3aは、コンプレッサ2の出口から吐出される高圧冷媒をコンデンサ3の入口に導くための冷媒配管である。 First, the condenser inlet pipe 3a is a heat exchanger pipe arranged between the outlet of the compressor 2 and the inlet of the condenser 3. The condenser inlet pipe 3a is a refrigerant pipe for guiding the high-pressure refrigerant discharged from the outlet of the compressor 2 to the inlet of the condenser 3.
 コンデンサ用入口配管3aは、アキュムレータ10に対して天地方向下側に配置されている。すなわち、コンデンサ用入口配管3aは、タンク13に対して天地方向下側に配置されている。換言すれば、コンデンサ用入口配管3aは、タンク13に対して厚み方向に直交する所定方向に配置されている。 The condenser inlet pipe 3a is arranged on the lower side in the vertical direction with respect to the accumulator 10. That is, the capacitor inlet pipe 3a is arranged on the lower side in the vertical direction with respect to the tank 13. In other words, the capacitor inlet pipe 3a is arranged in a predetermined direction orthogonal to the thickness direction with respect to the tank 13.
 コンデンサ用入口配管3aは、図14に示すように、プレート配管部60およびヘッダ配管部61を備える。プレート配管部60は、タンクプレート20の半管部62aとタンクプレート30の半管部62bとを組み合わせて構成されている。 As shown in FIG. 14, the capacitor inlet pipe 3a includes a plate pipe portion 60 and a header pipe portion 61. The plate piping portion 60 is configured by combining the half-tube portion 62a of the tank plate 20 and the half-tube portion 62b of the tank plate 30.
 半管部62aは、タンクプレート20のうち厚み方向一方側が厚み方向一方側に凸となり、かつタンクプレート20のうち厚み方向他方側が厚み方向一方側に凹むように構成されている。 The half-tube portion 62a is configured such that one side of the tank plate 20 in the thickness direction is convex to one side in the thickness direction, and the other side of the tank plate 20 in the thickness direction is recessed to one side in the thickness direction.
 半管部62bは、タンクプレート30のうち厚み方向一方側が厚み方向他方側に凹んで、タンクプレート30のうち厚み方向他方側が厚み方向他方側に凸となるように構成されている。 The half-tube portion 62b is configured such that one side of the tank plate 30 in the thickness direction is recessed to the other side in the thickness direction, and the other side of the tank plate 30 in the thickness direction is convex to the other side in the thickness direction.
 半管部62bのうち幅方向一方側には、出口63が厚み方向他方側に開口されている。出口63は、コンデンサ3の入口に接続されている。ヘッダ配管部61は、プレート配管部60の入口64に接続されている。 The outlet 63 is opened on one side of the half-tube portion 62b in the width direction on the other side in the thickness direction. The outlet 63 is connected to the inlet of the capacitor 3. The header piping unit 61 is connected to the inlet 64 of the plate piping unit 60.
 プレート配管部60の入口64は、ヘッダ配管部61のうち幅方向他方側に配置されている。プレート配管部60の入口64は、タンクプレート20の凹部64aとタンクプレート30の凹部64bとが組み合わされて構成されている。 The inlet 64 of the plate piping portion 60 is arranged on the other side of the header piping portion 61 in the width direction. The inlet 64 of the plate piping portion 60 is configured by combining the recess 64a of the tank plate 20 and the recess 64b of the tank plate 30.
 タンクプレート20の凹部64aは、タンクプレート20のうち厚み方向一方側が厚み方向一方側に凸となり、かつタンクプレート20のうち厚み方向他方側が厚み方向一方側に凹むように構成されている。 The recess 64a of the tank plate 20 is configured such that one side of the tank plate 20 in the thickness direction is convex to one side in the thickness direction, and the other side of the tank plate 20 in the thickness direction is recessed to one side in the thickness direction.
 タンクプレート30の凹部64bは、タンクプレート30のうち厚み方向一方側が厚み方向他方側に凹んで、タンクプレート30のうち厚み方向他方側が厚み方向他方側に凸となるように構成されている。 The recess 64b of the tank plate 30 is configured such that one side of the tank plate 30 in the thickness direction is recessed to the other side in the thickness direction, and the other side of the tank plate 30 in the thickness direction is convex to the other side in the thickness direction.
 ヘッダ配管部61は、プレート配管部60の入口64およびコンプレッサ2の出口の間を接続する。 The header piping unit 61 connects between the inlet 64 of the plate piping unit 60 and the outlet of the compressor 2.
 このように、コンデンサ用入口配管3aは、ヘッダ配管部61およびプレート配管部60によって構成されて、コンプレッサ2から吐出される高圧冷媒をコンデンサ3の入口に導くことになる。 As described above, the condenser inlet pipe 3a is composed of the header pipe portion 61 and the plate pipe portion 60, and guides the high-pressure refrigerant discharged from the compressor 2 to the inlet of the capacitor 3.
 このように構成される本実施形態では、ヘッダ配管部61は、タンクプレート20、30、冷媒配管40とともに組み付けられた状態で、ろう付け接合されている。このため、ヘッダ配管部61、冷媒配管40、およびタンクプレート20、30によって、アキュムレータ10およびヘッダ配管部61が一体成形物を構成することになる。 In the present embodiment configured as described above, the header piping portion 61 is brazed and joined in a state of being assembled together with the tank plates 20 and 30 and the refrigerant piping 40. Therefore, the accumulator 10 and the header piping 61 form an integrally molded product by the header piping 61, the refrigerant piping 40, and the tank plates 20 and 30.
 本実施形態では、アキュムレータ10およびヘッダ配管部61は、図15に示すように、コンデンサ3、およびエバポレータ5とともに、一体成形物を構成することになる。 In the present embodiment, the accumulator 10 and the header piping portion 61 form an integrally molded product together with the condenser 3 and the evaporator 5 as shown in FIG.
 以上説明した本実施形態によれば、タンクプレート20、30は、図16に示すように、タンク13に対して天地方向下側に配置されてコンデンサ3に接続されるコンデンサ用入口配管3aを形成する。 According to the present embodiment described above, as shown in FIG. 16, the tank plates 20 and 30 form a condenser inlet pipe 3a which is arranged on the lower side in the vertical direction with respect to the tank 13 and is connected to the condenser 3. do.
 タンクプレート20、30は、気液二相冷媒をタンク13内で気相冷媒と液相冷媒とに分離して液相冷媒を貯めつつタンク13内から冷媒配管を通して気相冷媒を排出するアキュムレータ10を構成する。アキュムレータ10およびコンデンサ用入口配管3aは、一体成形物を構成している。 The tank plates 20 and 30 are accumulators 10 that separate the gas-liquid two-phase refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant in the tank 13, store the liquid-phase refrigerant, and discharge the gas-phase refrigerant from the tank 13 through a refrigerant pipe. To configure. The accumulator 10 and the capacitor inlet pipe 3a constitute an integrally molded product.
 以上により、本実施形態では、アキュムレータ10およびコンデンサ用入口配管3aを独立して構成する場合に比べて、蒸気圧縮式冷凍サイクル1を構成する機器の個数を減らすことができる。 As described above, in the present embodiment, the number of devices constituting the steam compression refrigeration cycle 1 can be reduced as compared with the case where the accumulator 10 and the condenser inlet pipe 3a are independently configured.
 (第3実施形態)
 上記第2実施形態において、アキュムレータ10およびコンデンサ用入口配管3aを含む冷凍サイクル機器10Aをタンクプレート20、30によって構成した例について説明した。
(Third Embodiment)
In the second embodiment, an example in which the refrigeration cycle equipment 10A including the accumulator 10 and the inlet pipe 3a for the condenser is configured by the tank plates 20 and 30 has been described.
 しかし、これに代えて、タンクプレート200、300の間に配置されているインナーフィン600を用いて冷凍サイクル機器10Bを構成する第3実施形態について図17、図18、図19等を参照して説明する。 However, instead of this, refer to FIGS. 17, 18, 19, 19 and the like for a third embodiment in which the refrigerating cycle device 10B is configured by using the inner fins 600 arranged between the tank plates 200 and 300. explain.
 本実施形態の冷凍サイクル機器10Bは、アキュムレータ100とコンデンサ用入口配管3bとを組み合わせたものである。冷凍サイクル機器10Bは、タンクプレート200、300、冷媒配管400、500、およびタンクプレート200、300の間に配置されて波状に形成されているインナーフィン600を備える。 The refrigeration cycle device 10B of the present embodiment is a combination of the accumulator 100 and the condenser inlet pipe 3b. The refrigeration cycle device 10B includes inner fins 600 arranged in a wavy shape between the tank plates 200 and 300, the refrigerant pipes 400 and 500, and the tank plates 200 and 300.
 タンクプレート200、300は、上記第1実施形態のタンクプレート20、30と同様、互いに対向するように配置されて、矩形状で、かつ平たいタンク13を形成する。タンク13は、幅方向と天地方向とに拡がるように形成されている。 Similar to the tank plates 20 and 30 of the first embodiment, the tank plates 200 and 300 are arranged so as to face each other to form a rectangular and flat tank 13. The tank 13 is formed so as to expand in the width direction and the top-bottom direction.
 タンクプレート200は、上記第1、第2実施形態のタンクプレート20の代わりに設けられている第1タンクプレートである。タンクプレート200は、図18、図19、図20、図21、図22、および図23に示すように、前壁部21、側部22、23、24、25、およびフランジ部201を備える
 前壁部21は、タンクプレート300の後壁部31に対向するように配置されている。前壁部21は、天地方向に拡がるとともに、幅方向に拡がる面状に形成されている。
The tank plate 200 is a first tank plate provided in place of the tank plate 20 of the first and second embodiments. As shown in FIGS. 18, 19, 20, 22, and 23, the tank plate 200 includes a front wall portion 21, side portions 22, 23, 24, 25, and a flange portion 201. The wall portion 21 is arranged so as to face the rear wall portion 31 of the tank plate 300. The front wall portion 21 is formed in a planar shape that expands in the vertical direction and also expands in the width direction.
 ここで、天地方向は、アキュムレータ100が空調装置の筐体に搭載された状態での天地方向を意味する。タンクプレート20、30が並ぶ方向を厚み方向という。幅方向は、水平方向であって、天地方向に直交し、かつ厚み方向と直交する方向である。 Here, the top-bottom direction means the top-bottom direction in a state where the accumulator 100 is mounted on the housing of the air conditioner. The direction in which the tank plates 20 and 30 are lined up is called the thickness direction. The width direction is a horizontal direction, orthogonal to the top-bottom direction, and orthogonal to the thickness direction.
 以下、説明の便宜上、図19に示すように、厚み方向において、タンクプレート300に対してタンクプレート200側を厚み方向一方側とし、厚み方向においてタンクプレート200に対してタンクプレート300側を厚み方向他方側とする。 Hereinafter, for convenience of explanation, as shown in FIG. 19, the tank plate 200 side is one side in the thickness direction with respect to the tank plate 300 in the thickness direction, and the tank plate 300 side is the thickness direction with respect to the tank plate 200 in the thickness direction. The other side.
 前壁部21には、リブ28a、28b、28c、28d、28e、29a、29b、29c、29d、およびフランジ部201が設けられている。リブ28a、28b、28c、28d、28eは、それぞれ、前壁部21のうち厚み方向一方側が厚み方向他方に凹み、かつ前壁部21のうち厚み方向他方側が厚み方向他方に凸となるように形成されている。 The front wall portion 21 is provided with ribs 28a, 28b, 28c, 28d, 28e, 29a, 29b, 29c, 29d, and a flange portion 201. The ribs 28a, 28b, 28c, 28d, and 28e are such that one side of the front wall portion 21 in the thickness direction is recessed in the other side in the thickness direction, and the other side of the front wall portion 21 in the thickness direction is convex in the other direction in the thickness direction. It is formed.
 リブ28a、28b、28c、28d、28eは、それぞれ、第1方向に亘って形成されている。以下、リブ28a、28b、28c、28d、28eにおける第1方向を長手方向という。本実施形態のリブ28a、28b、28c、28d、28eにおける長手方向は、天地方向である。リブ28a、28b、28c、28d、28eは、それぞれ、間隔を開けて幅方向に並べられている。リブ28a、28b、28c、28d、28eは、幅方向に並べられている。 The ribs 28a, 28b, 28c, 28d, and 28e are each formed in the first direction. Hereinafter, the first direction in the ribs 28a, 28b, 28c, 28d, 28e is referred to as a longitudinal direction. The longitudinal direction of the ribs 28a, 28b, 28c, 28d, 28e of the present embodiment is the top-bottom direction. The ribs 28a, 28b, 28c, 28d, and 28e are arranged in the width direction at intervals. The ribs 28a, 28b, 28c, 28d, 28e are arranged in the width direction.
 リブ28aは、側部25との間に間隔を開けて配置されている。リブ28aのうち天地方向上側端部は、側部24に接続されている。リブ28aのうち天地方向下側端部は、側部22に接続されている。 The rib 28a is arranged at a distance from the side portion 25. The end of the rib 28a on the improved side is connected to the side 24. The lower end of the rib 28a in the vertical direction is connected to the side 22.
 リブ28bは、リブ28aに対して幅方向他方側に配置されている。リブ28bは、リブ28aとの間に間隔を開けて配置されている。リブ28bのうち天地方向上側端部は、側部24に接続されている。リブ28bのうち天地方向下側端部は、側部22に接続されている。 The rib 28b is arranged on the opposite side in the width direction with respect to the rib 28a. The ribs 28b are arranged at intervals from the ribs 28a. The end of the rib 28b on the improved side is connected to the side 24. The lower end of the rib 28b in the vertical direction is connected to the side 22.
 リブ28cは、リブ28bに対して幅方向他方側に配置されている。リブ28cは、リブ28bとの間に間隔を開けて配置されている。リブ28cのうち天地方向上側端部は、側部24に接続されている。リブ28cのうち天地方向下側端部は、側部22に接続されている。 The rib 28c is arranged on the opposite side in the width direction with respect to the rib 28b. The ribs 28c are arranged at intervals from the ribs 28b. The end of the rib 28c on the improved side is connected to the side 24. The lower end of the rib 28c in the vertical direction is connected to the side 22.
 リブ28dは、リブ28cに対して幅方向他方側に配置されている。リブ28dは、リブ28cとの間に間隔を開けて配置されている。リブ28dのうち天地方向上側端部は、側部24に接続されている。リブ28dのうち天地方向下側端部は、側部22に接続されている。 The rib 28d is arranged on the opposite side in the width direction with respect to the rib 28c. The rib 28d is arranged at a distance from the rib 28c. The end of the rib 28d on the improved side is connected to the side 24. The lower end of the rib 28d in the vertical direction is connected to the side 22.
 リブ28eは、リブ28dに対して幅方向他方側に配置されている。リブ28eは、側部23に対して幅方向一方側端部に配置されている。リブ28eは、リブ28dとの間に間隔を開けて配置されている。リブ28eのうち天地方向上側端部は、リブ29cに接続されている。リブ28eのうち天地方向下側は、側部22に接続されている。 The rib 28e is arranged on the opposite side in the width direction with respect to the rib 28d. The rib 28e is arranged at one end in the width direction with respect to the side portion 23. The rib 28e is arranged at a distance from the rib 28d. The end of the rib 28e on the improvement side of the sky region is connected to the rib 29c. The lower side of the rib 28e in the vertical direction is connected to the side portion 22.
 このようなリブ28a、28b、28c、28d、28eは、インナーフィン600とタンクプレート200との間において、図22に示すように、タンク13内を分割タンク領域122a、122b、122c、122d、122e、122fに分割する。 As shown in FIG. 22, such ribs 28a, 28b, 28c, 28d, 28e divide the inside of the tank 13 between the inner fin 600 and the tank plate 200, and the tank regions 122a, 122b, 122c, 122d, 122e , 122f.
 分割タンク領域122aは、タンク13のうちリブ28aおよび側部25の間に形成されている。分割タンク領域122bは、タンク13のうちリブ28a、28bの間に形成されている。分割タンク領域122cは、タンク13のうちリブ28b、28cの間に形成されている。 The divided tank area 122a is formed between the rib 28a and the side portion 25 of the tank 13. The divided tank region 122b is formed between the ribs 28a and 28b of the tank 13. The divided tank region 122c is formed between the ribs 28b and 28c of the tank 13.
 分割タンク領域122dは、タンク13のうちリブ28c、28dの間に形成されている。分割タンク領域122eは、タンク13のうちリブ28d、28eの間に形成されている。分割タンク領域122fは、タンク13のうちリブ28eおよび側部23の間に形成されている。 The divided tank area 122d is formed between the ribs 28c and 28d of the tank 13. The divided tank region 122e is formed between the ribs 28d and 28e of the tank 13. The split tank region 122f is formed between the rib 28e and the side portion 23 of the tank 13.
 本実施形態では、上記第1実施形態と同様に、図21に示すように、側部22は、前壁部21に対して天地方向下側に配置されている。側部23は、前壁部21に対して幅方向他方側に配置されている。側部24は、前壁部21に対して天地方向上側に配置されている。側部25は、前壁部21に対して幅方向一方側に配置されている。 In the present embodiment, as shown in FIG. 21, the side portion 22 is arranged on the lower side in the vertical direction with respect to the front wall portion 21 as in the first embodiment. The side portion 23 is arranged on the other side in the width direction with respect to the front wall portion 21. The side portion 24 is arranged on the heavenly region improvement side with respect to the front wall portion 21. The side portion 25 is arranged on one side in the width direction with respect to the front wall portion 21.
 リブ29aは、リブ28eのうち天地方向上側に配置されている。リブ29aは、側部24に接続されている。リブ29aは、リブ28aから厚み方向の他方側に凸になるように形成されている。 The rib 29a is arranged on the heavenly region improvement side of the rib 28e. The rib 29a is connected to the side portion 24. The rib 29a is formed so as to be convex from the rib 28a to the other side in the thickness direction.
 リブ29bは、リブ28cのうち天地方向上側に配置されている。リブ29bは、側部24に接続されている。リブ29bは、リブ28cから厚み方向の他方側に凸になるように形成されている。 The rib 29b is arranged on the heavenly region improvement side of the rib 28c. The rib 29b is connected to the side portion 24. The rib 29b is formed so as to be convex from the rib 28c to the other side in the thickness direction.
 本実施形態において、リブ29a、29bは、それぞれ、後述するように、入口11からタンク13内に流れ込む液相冷媒が冷媒配管40の配管入口40aに流れることを抑える役割を果たす。 In the present embodiment, the ribs 29a and 29b each play a role of suppressing the liquid-phase refrigerant flowing from the inlet 11 into the tank 13 from flowing to the pipe inlet 40a of the refrigerant pipe 40, as will be described later.
 具体的には、リブ29a、29bは、それぞれ、タンクプレート300のうちタンク13を形成する内壁21aからタンクプレート200側に突起するように形成されている。リブ29a、29bのそれぞれの厚み方向の先端部は、リブ28a、28b、28c、28dのそれぞれの厚み方向の先端部に比べて、厚み方向他方側に配置されている。 Specifically, the ribs 29a and 29b are formed so as to project from the inner wall 21a forming the tank 13 of the tank plate 300 toward the tank plate 200, respectively. The tip portions of the ribs 29a and 29b in the thickness direction are arranged on the other side in the thickness direction as compared with the tip portions of the ribs 28a, 28b, 28c and 28d in the thickness direction.
 リブ29c、29dは、それぞれ、リブ28aおよび側部25の間に配置されている。リブ29c、29dは、それぞれ、前壁部21のうち厚み方向一方側が厚み方向他方側に凹み、かつ前壁部21のうち厚み方向他方側が厚み方向一方側に凸となるように形成されている。リブ29c、29dは、天地方向に間隔を開けて配置されている。 The ribs 29c and 29d are arranged between the rib 28a and the side portion 25, respectively. The ribs 29c and 29d are formed so that one side of the front wall portion 21 in the thickness direction is recessed to the other side in the thickness direction, and the other side of the front wall portion 21 in the thickness direction is convex to one side in the thickness direction. .. The ribs 29c and 29d are arranged at intervals in the vertical direction.
 本実施形態において、リブ29c、29dは、それぞれ、後述するように、冷媒配管400を厚み方向一方側から支える役割を果たす。 In the present embodiment, the ribs 29c and 29d each play a role of supporting the refrigerant pipe 400 from one side in the thickness direction, as will be described later.
 リブ29eは、リブ29aのうち天地方向下側に配置されている。リブ28eは、リブ29aから厚み方向他方側に凸になるように形成されている。リブ28eは、側部22に接続されている。本実施形態において、リブ29eは、後述するように、冷媒配管400を厚み方向一方側から支える役割を果たす。 The rib 29e is arranged on the lower side of the rib 29a in the vertical direction. The rib 28e is formed so as to be convex from the rib 29a to the other side in the thickness direction. The rib 28e is connected to the side portion 22. In the present embodiment, the rib 29e plays a role of supporting the refrigerant pipe 400 from one side in the thickness direction, as will be described later.
 タンクプレート200には、凹部120aが形成されている。凹部120aは、タンクプレート300の凹部120bとともに、貫通穴120を構成する。さらに、フランジ部201は、側部22、23、24、25を天地方向および幅方向から囲むように形成されている。 The tank plate 200 is formed with a recess 120a. The recess 120a, together with the recess 120b of the tank plate 300, constitutes a through hole 120. Further, the flange portion 201 is formed so as to surround the side portions 22, 23, 24, 25 from the top-bottom direction and the width direction.
 本実施形態のタンクプレート200では、リブ28a、28b、28c、28d、28eは、それぞれ、天地方向に延びるように形成されている。このため、アキュムレータ100が天地方向に移動した際に分割タンク領域122a、122b、122c、122d、122e、122f内の冷媒が幅方向に移動すること抑える。 In the tank plate 200 of the present embodiment, the ribs 28a, 28b, 28c, 28d, and 28e are formed so as to extend in the vertical direction, respectively. Therefore, when the accumulator 100 moves in the vertical direction, the refrigerant in the divided tank regions 122a, 122b, 122c, 122d, 122e, and 122f is suppressed from moving in the width direction.
 タンクプレート300は、上記第1、第2実施形態のタンクプレート30の代わりに設けられている第2タンクプレートである。タンクプレート300は、図17、図19、図20、図24、図25、図26、および図27に示すように、後壁部31、側部32、33、34、35、およびフランジ部301を備える。 The tank plate 300 is a second tank plate provided in place of the tank plate 30 of the first and second embodiments. As shown in FIGS. 17, 19, 20, 20, 24, 25, 26, and 27, the tank plate 300 includes a rear wall portion 31, side portions 32, 33, 34, 35, and a flange portion 301. To be equipped.
 後壁部31は、タンクプレート300の前壁部21に対向するように配置されている。後壁部31は、天地方向に拡がるとともに、幅方向に拡がる面状に形成されている。 The rear wall portion 31 is arranged so as to face the front wall portion 21 of the tank plate 300. The rear wall portion 31 is formed in a planar shape that expands in the vertical direction and also expands in the width direction.
 後壁部31には、リブ38a、38b、38c、38d、38eが設けられている。リブ38a、38b、38c、38d,38eは、それぞれ、後壁部31のうち厚み方向他方側が厚み方向一方に凹み、かつ後壁部31のうち厚み方向一方側が厚み方向一方側に凸となるように形成されている。 Ribs 38a, 38b, 38c, 38d, 38e are provided on the rear wall portion 31. The ribs 38a, 38b, 38c, 38d, and 38e are respectively recessed in the thickness direction on the other side of the rear wall portion 31, and convex on one side in the thickness direction of the rear wall portion 31. Is formed in.
 リブ38a、38b、38c、38d、38eは、それぞれ、第1方向に延びるように形成されている。以下、リブ38a、38b、38c、38d、38eの第1方向を長手方向という。本実施形態のリブ38a、38b、38c、38d、38eの長手方向は、天地方向である。リブ38a、38b、38c、38d、38eは、それぞれ、間隔を開けて幅方向に並べられている。 The ribs 38a, 38b, 38c, 38d, and 38e are formed so as to extend in the first direction, respectively. Hereinafter, the first direction of the ribs 38a, 38b, 38c, 38d, 38e is referred to as a longitudinal direction. The longitudinal direction of the ribs 38a, 38b, 38c, 38d, 38e of the present embodiment is the top-bottom direction. The ribs 38a, 38b, 38c, 38d, and 38e are arranged in the width direction at intervals.
 リブ38aは、側部35との間に間隔を開けて配置されている。リブ38aのうち天地方向上側端部は、側部34に接続されている。リブ38aのうち天地方向下側端部は、側部32に接続されている。 The rib 38a is arranged at a distance from the side portion 35. The end of the rib 38a on the improved side is connected to the side 34. The lower end of the rib 38a in the vertical direction is connected to the side portion 32.
 リブ38bは、リブ38aに対して幅方向他方側に配置されている。リブ38bは、リブ38aとの間に間隔を開けて配置されている。リブ38bのうち天地方向上側端部は、側部34に接続されている。リブ38bのうち天地方向下側端部は、側部32に接続されている。 The rib 38b is arranged on the opposite side in the width direction with respect to the rib 38a. The ribs 38b are arranged at intervals from the ribs 38a. The end of the rib 38b on the improved side is connected to the side 34. The lower end of the rib 38b in the vertical direction is connected to the side portion 32.
 リブ38cは、リブ38bに対して幅方向他方側に配置されている。リブ38cは、リブ38bとの間に間隔を開けて配置されている。リブ38cのうち天地方向上側端部は、側部34に接続されている。リブ38cのうち天地方向下側端部は、側部32に接続されている。 The rib 38c is arranged on the opposite side in the width direction with respect to the rib 38b. The ribs 38c are arranged at intervals from the ribs 38b. The end of the rib 38c on the improved side is connected to the side 34. The lower end of the rib 38c in the vertical direction is connected to the side portion 32.
 リブ38dは、リブ38cに対して幅方向他方側に配置されている。リブ38dは、リブ38cとの間に間隔を開けて配置されている。リブ38dのうち天地方向上側端部は、側部34に接続されている。リブ38dのうち天地方向下側端部は、側部32に接続されている。 The rib 38d is arranged on the opposite side in the width direction with respect to the rib 38c. The rib 38d is arranged at a distance from the rib 38c. The end of the rib 38d on the improvement side of the heavens is connected to the side 34. The lower end of the rib 38d in the vertical direction is connected to the side portion 32.
 リブ38eは、リブ38dに対して幅方向他方側に配置されている。リブ38eは、側部33との間に間隔を開けて配置されている。リブ38eは、リブ38dとの間に間隔を開けて配置されている。リブ38eのうち天地方向上側端部は、リブ39dに接続されている。リブ38eのうち天地方向下側は、側部32に接続されている。 The rib 38e is arranged on the opposite side in the width direction with respect to the rib 38d. The rib 38e is arranged at a distance from the side portion 33. The rib 38e is arranged at a distance from the rib 38d. The end of the rib 38e on the improvement side of the sky region is connected to the rib 39d. The lower side of the rib 38e in the vertical direction is connected to the side portion 32.
 このようなリブ38a、38b、38c、38d、38eは、インナーフィン600とタンクプレート300との間において、図24に示すように、タンク13内を分割タンク領域132a、132b、132c、132d、132e、132fに分割する。 As shown in FIG. 24, such ribs 38a, 38b, 38c, 38d, 38e divide the inside of the tank 13 between the inner fin 600 and the tank plate 300, and the tank regions 132a, 132b, 132c, 132d, 132e , 132f.
 分割タンク領域132aは、タンク13のうちリブ38aおよび側部35の間に形成されている。分割タンク領域132bは、タンク13のうちリブ38a、38bの間に形成されている。分割タンク領域132cは、タンク13のうちリブ38b、38cの間に形成されている。 The divided tank area 132a is formed between the rib 38a and the side portion 35 of the tank 13. The divided tank region 132b is formed between the ribs 38a and 38b of the tank 13. The divided tank region 132c is formed between the ribs 38b and 38c of the tank 13.
 分割タンク領域132dは、タンク13のうちリブ38c、38dの間に形成されている。分割タンク領域132eは、タンク13のうちリブ38d、38eの間に形成されている。そして、分割タンク領域132fは、タンク13のうちリブ38eおよび側部33の間に形成されている。 The divided tank area 132d is formed between the ribs 38c and 38d of the tank 13. The divided tank region 132e is formed between the ribs 38d and 38e of the tank 13. The divided tank region 132f is formed between the rib 38e and the side portion 33 of the tank 13.
 本実施形態では、上記第1実施形態と同様に、図24および図25に示すように、側部32は、後壁部31に対して天地方向下側に配置されている。側部33は、後壁部31に対して幅方向他方側に配置されている。側部34は、後壁部31に対して天地方向上側に配置されている。側部35は、後壁部31に対して幅方向一方側に配置されている。 In the present embodiment, as shown in FIGS. 24 and 25, the side portion 32 is arranged on the lower side in the vertical direction with respect to the rear wall portion 31 as in the first embodiment. The side portion 33 is arranged on the opposite side in the width direction with respect to the rear wall portion 31. The side portion 34 is arranged on the heavenly region improvement side with respect to the rear wall portion 31. The side portion 35 is arranged on one side in the width direction with respect to the rear wall portion 31.
 リブ39aは、側部35およびリブ38aの間に配置されている。リブ39aは、タンク13のうち天地方向中央側に配置されている。リブ39aは、後壁部31のうち厚み方向他方側が厚み方向一方側に凹み、かつ後壁部31のうち厚み方向一方側が厚み方向他方側に凸となるように形成されている。 The rib 39a is arranged between the side portion 35 and the rib 38a. The rib 39a is arranged on the center side of the tank 13 in the vertical direction. The rib 39a is formed so that the other side of the rear wall portion 31 in the thickness direction is recessed on one side in the thickness direction, and one side of the rear wall portion 31 in the thickness direction is convex on the other side in the thickness direction.
 リブ39bは、リブ38dのうち天地方向上側に配置されている。リブ39bは、側部34に接続されている。リブ39bは、リブ38dから厚み方向の一方側に凸になるように形成されている。 The rib 39b is arranged on the heavenly region improvement side of the rib 38d. The rib 39b is connected to the side portion 34. The rib 39b is formed so as to be convex on one side in the thickness direction from the rib 38d.
 具体的には、リブ39bは、タンクプレート300のうちタンク13を形成する内壁31aからタンクプレート200側から突起するように形成されている。ここで、リブ39bのうち厚み方向先端部は、リブ38a、38b、38c、38dのそれぞれの厚み方向先端部に比べて、厚み方向の一方側に位置する。 Specifically, the rib 39b is formed so as to protrude from the tank plate 200 side from the inner wall 31a forming the tank 13 of the tank plate 300. Here, the tip portion of the rib 39b in the thickness direction is located on one side in the thickness direction with respect to the tip portion in the thickness direction of each of the ribs 38a, 38b, 38c, and 38d.
 このように、リブ39b、リブ29a、29bは、ぞれぞれ、図19の如く、タンクプレート200、300の間で入口11から配管入口40aに、液相冷媒を流通させる冷媒流路180を絞る流入抑制部を構成する。 As described above, the ribs 39b and the ribs 29a and 29b each have a refrigerant flow path 180 for flowing the liquid phase refrigerant from the inlet 11 to the pipe inlet 40a between the tank plates 200 and 300 as shown in FIG. It constitutes an inflow suppression unit to be squeezed.
 具体的には、リブ39b、リブ29a、29bは、入口11から冷媒流路180を通して液相冷媒が配管入口40aに流れることを図19の矢印REの如く抑制する役割を果たす。冷媒流路180は、タンクプレート200、300、およびインナーフィン600によって囲まれた領域に形成されている。 Specifically, the ribs 39b, 29a, and 29b play a role of suppressing the flow of the liquid phase refrigerant from the inlet 11 through the refrigerant flow path 180 to the pipe inlet 40a as shown by the arrow RE in FIG. The refrigerant flow path 180 is formed in a region surrounded by the tank plates 200, 300, and the inner fin 600.
 ここで、リブ39b、リブ29a、29b、入口11、および配管入口40aの配置関係について図19を参照して説明する。 Here, the arrangement relationship of the rib 39b, the ribs 29a, 29b, the inlet 11, and the pipe inlet 40a will be described with reference to FIG.
 図19に示すように、入口11、リブ39b、リブ29a、29b、および配管入口40aに対して厚み方向一方側に、幅方向と天地方向とに拡がる仮想面800を設定する。 As shown in FIG. 19, a virtual surface 800 extending in the width direction and the top-bottom direction is set on one side in the thickness direction with respect to the inlet 11, the rib 39b, the ribs 29a, 29b, and the pipe inlet 40a.
 厚み方向の他方側から入口11、リブ39b、リブ29a、29b、および配管入口40aを図19の矢印TOEの如く、仮想面800に投影したした際に仮想面800に形成される投影点を投影点801、802、803、804、805とする。投影点801、802、803、804、805は、幅方向に並べられることになる。 The projection points formed on the virtual surface 800 when the inlet 11, ribs 39b, ribs 29a, 29b, and pipe inlet 40a are projected onto the virtual surface 800 as shown by the arrow TOE in FIG. 19 are projected from the other side in the thickness direction. The points are 801 and 802, 803, 804 and 805. The projection points 801, 802, 803, 804, and 805 are arranged in the width direction.
 図24のリブ39cは、リブ38aのうち天地方向下側に配置されている。リブ39cは、側部32に接続されている。リブ39cは、リブ38aから厚み方向の一方側に凸になるように形成されている。リブ39cは、冷媒配管400を厚み方向の他方側から支える。 The rib 39c in FIG. 24 is arranged on the lower side of the rib 38a in the vertical direction. The rib 39c is connected to the side portion 32. The rib 39c is formed so as to be convex from the rib 38a on one side in the thickness direction. The rib 39c supports the refrigerant pipe 400 from the other side in the thickness direction.
 リブ39dは、天地方向に交差し、かつ幅方向に交差する方向に延びるように形成されている。リブ39dは、幅方向一方側から幅方向他方側に進むほど天地方向下側に向かうように形成されている。リブ39dのうち幅方向一方側は、側部34とリブ38dとに接続されている。リブ39dのうち幅方向他方側は、側部33に接続されている。 The rib 39d is formed so as to intersect in the vertical direction and extend in the width direction. The rib 39d is formed so as to go downward in the vertical direction from one side in the width direction to the other side in the width direction. One side of the rib 39d in the width direction is connected to the side portion 34 and the rib 38d. The other side of the rib 39d in the width direction is connected to the side portion 33.
 このようにリブ38a、38b、38c、38d、38eは、インナーフィン600とタンクプレート300との間において、図24に示すように、タンク13内を分割タンク領域132a、132b、132c、132d、132e、132fに分割する。 As described above, the ribs 38a, 38b, 38c, 38d, 38e divide the inside of the tank 13 between the inner fin 600 and the tank plate 300, as shown in FIG. , 132f.
 分割タンク領域132aは、タンク13のうちリブ38aおよび側部35の間に形成されている。分割タンク領域132bは、タンク13のうちリブ38a、38bの間に形成されている。分割タンク領域132cは、タンク13のうちリブ38b、38cの間に形成されている。 The divided tank area 132a is formed between the rib 38a and the side portion 35 of the tank 13. The divided tank region 132b is formed between the ribs 38a and 38b of the tank 13. The divided tank region 132c is formed between the ribs 38b and 38c of the tank 13.
 分割タンク領域132dは、タンク13のうちリブ38c、38dの間に形成されている。分割タンク領域132eは、タンク13のうちリブ38d、38eの間に形成されている。分割タンク領域132fは、タンク13のうちリブ38eおよび側部33の間に形成されている。 The divided tank area 132d is formed between the ribs 38c and 38d of the tank 13. The divided tank region 132e is formed between the ribs 38d and 38e of the tank 13. The divided tank region 132f is formed between the rib 38e and the side portion 33 of the tank 13.
 タンクプレート300には、入口11、凹部120b、およびフランジ部301が形成されている。入口11は、タンクプレート300の後壁部31を厚み方向に貫通されている。入口11は、後壁部31のうち天地方向上側で、かつ幅方向他方側に配置されている。入口11には、後述するように、エバポレータ5の冷媒出口からの気液二相冷媒が流入される。 The tank plate 300 is formed with an inlet 11, a recess 120b, and a flange portion 301. The inlet 11 penetrates the rear wall portion 31 of the tank plate 300 in the thickness direction. The entrance 11 is arranged on the heavenly region improvement side and the other side in the width direction of the rear wall portion 31. As will be described later, the gas-liquid two-phase refrigerant from the refrigerant outlet of the evaporator 5 flows into the inlet 11.
 凹部120bは、タンクプレート200の凹部120aとともに、貫通穴120を構成する。さらに、フランジ部301は、側部22、23、24、25を天地方向および幅方向から囲むように形成されている。 The recess 120b constitutes a through hole 120 together with the recess 120a of the tank plate 200. Further, the flange portion 301 is formed so as to surround the side portions 22, 23, 24, 25 from the top-bottom direction and the width direction.
 本実施形態では、上記第1実施形態と同様に、図24に示すように、側部32は、後壁部31に対して天地方向下側に配置されている。側部33は、後壁部31に対して幅方向他方側に配置されている。側部34は、後壁部31に対して天地方向上側に配置されている。側部35は、後壁部31に対して幅方向一方側に配置されている。さらに、フランジ部301は、側部32、33、34、35を天地方向および幅方向から囲むように形成されている。 In the present embodiment, as shown in FIG. 24, the side portion 32 is arranged on the lower side in the vertical direction with respect to the rear wall portion 31 as in the first embodiment. The side portion 33 is arranged on the opposite side in the width direction with respect to the rear wall portion 31. The side portion 34 is arranged on the heavenly region improvement side with respect to the rear wall portion 31. The side portion 35 is arranged on one side in the width direction with respect to the rear wall portion 31. Further, the flange portion 301 is formed so as to surround the side portions 32, 33, 34, 35 from the top-bottom direction and the width direction.
 本実施形態のタンクプレート300では、リブ38a、38b、38c、38d、38eは、それぞれ、天地方向に延びるように形成されている。このため、アキュムレータ100が天地方向に移動した際に分割タンク領域132a、132b、132c、132d、132e、132f内の冷媒が幅方向に移動すること抑える。 In the tank plate 300 of the present embodiment, the ribs 38a, 38b, 38c, 38d, and 38e are formed so as to extend in the vertical direction, respectively. Therefore, when the accumulator 100 moves in the vertical direction, the refrigerant in the divided tank regions 132a, 132b, 132c, 132d, 132e, 132f is suppressed from moving in the width direction.
 冷媒配管400は、図19および図20に示すように、タンクプレート200、300の間に配置されている。冷媒配管400は、タンク13のうちインナーフィン600に対してずれて配置されている。冷媒配管400は、J字状に形成されている。 The refrigerant pipe 400 is arranged between the tank plates 200 and 300 as shown in FIGS. 19 and 20. The refrigerant pipe 400 is arranged so as to be offset from the inner fin 600 of the tank 13. The refrigerant pipe 400 is formed in a J shape.
 具体的には、冷媒配管400は、図23に示すように、上配管部401、中間配管部402、および下配管部403を備える。 Specifically, as shown in FIG. 23, the refrigerant pipe 400 includes an upper pipe portion 401, an intermediate pipe portion 402, and a lower pipe portion 403.
 上配管部401は、中間配管部402のうち天地方向上側端部から側部24、34に沿って幅方向他方側に延びるように形成されている。上配管部401のうち幅方向他方側には、タンク13内から気相冷媒が入る配管入口40aが設けられている。 The upper piping portion 401 is formed so as to extend from the top region improvement side end portion of the intermediate piping portion 402 to the other side in the width direction along the side portions 24 and 34. On the other side of the upper piping portion 401 in the width direction, a piping inlet 40a for entering the vapor phase refrigerant from inside the tank 13 is provided.
 配管入口40aは、図18に示すように、タンク13のうち天地方向の中心線Tdに対して上側に配置されている。中心線Tdは、タンク13のうち天地方向の中心点を通過して水平方向に延びる仮想線である。配管入口40aは、タンク13のうち幅方向の中央側に配置されている。 As shown in FIG. 18, the pipe inlet 40a is arranged above the center line Td in the vertical direction of the tank 13. The center line Td is a virtual line extending in the horizontal direction through the center point in the vertical direction of the tank 13. The pipe inlet 40a is arranged on the central side of the tank 13 in the width direction.
 ここで、図18に示すように、タンク13内を幅方向において4つに均等に分割した領域700、701、702、703を設定する。本実施形態において、幅方向中央側とは、領域700、701、702、703のうち幅方向中央側の2つの領域701、702のことを意味する。すなわち、配管入口40aは、タンク13内の領域700、701、702、703のうち幅方向中央側の2つの領域701、702内に配置されている。本実施形態では、図27および図19に示すように、上配管部401の外壁410のうち配管入口40a側に形成されている入口側端部411とタンクプレート200との間に、間隔412が設けられている。上配管部401の外壁410の入口側端部411とタンクプレート300との間に、間隔413が設けられている。 Here, as shown in FIG. 18, regions 700, 701, 702, and 703 are set so that the inside of the tank 13 is evenly divided into four in the width direction. In the present embodiment, the width direction center side means two regions 701 and 702 on the width direction center side of the regions 700, 701, 702, and 703. That is, the pipe inlet 40a is arranged in two regions 701 and 702 on the central side in the width direction of the regions 700, 701, 702, and 703 in the tank 13. In the present embodiment, as shown in FIGS. 27 and 19, there is a gap 412 between the inlet side end 411 formed on the pipe inlet 40a side of the outer wall 410 of the upper pipe portion 401 and the tank plate 200. It is provided. An interval 413 is provided between the inlet side end portion 411 of the outer wall 410 of the upper piping portion 401 and the tank plate 300.
 中間配管部402は、上配管部401のうち幅方向一方側端部から側部25、35に沿って天地方向下側に延びるように形成されている。中間配管部402は、リブ29c、29dによって厚み方向一方側から支持されている。中間配管部402は、リブ39aによって厚み方向他方側から支持されている。 The intermediate piping portion 402 is formed so as to extend downward from one side end in the width direction along the side portions 25 and 35 of the upper piping portion 401 in the vertical direction. The intermediate piping portion 402 is supported by ribs 29c and 29d from one side in the thickness direction. The intermediate piping portion 402 is supported by the rib 39a from the other side in the thickness direction.
 下配管部403は、中間配管部402のうち天地方向下側端部から側部22、32に沿って幅方向他方側に延びるように形成されている。 The lower piping portion 403 is formed so as to extend from the lower end portion in the vertical direction of the intermediate piping portion 402 to the other side in the width direction along the side portions 22 and 32.
 下配管部403は、リブ29eと凹部120aとによって厚み方向一方側から支持されている。下配管部403は、リブ39cと凹部120bとによって厚み方向他方側から支持されている。 The lower piping portion 403 is supported from one side in the thickness direction by the rib 29e and the recess 120a. The lower piping portion 403 is supported from the other side in the thickness direction by the rib 39c and the recess 120b.
 下配管部403のうち幅方向他方側端部は、貫通穴120を通してタンク13の外側に突出している。下配管部403のうち幅方向他方側端部には、下配管部403を通過した冷媒を排出する配管出口40bが設けられている。下配管部403のうち幅方向他方側端部には、コンプレッサ2の冷媒入口側に接続される継ぎ手を成す配管プラグ404が設けられている。 The other end of the lower piping portion 403 in the width direction protrudes to the outside of the tank 13 through the through hole 120. A pipe outlet 40b for discharging the refrigerant that has passed through the lower pipe portion 403 is provided at the other end of the lower pipe portion 403 in the width direction. A piping plug 404 forming a joint connected to the refrigerant inlet side of the compressor 2 is provided at the other end of the lower piping portion 403 in the width direction.
 下配管部403のうち幅方向中央側には、オイル戻し孔40cが下側に開口されている。具体的には、オイル戻し孔40cは、タンク13のうち天地方向の中心線Tdよりも下側に配置されている。オイル戻し孔40cは、タンク13のうち幅方向の中央側に配置されている。 An oil return hole 40c is opened downward on the center side of the lower piping portion 403 in the width direction. Specifically, the oil return hole 40c is arranged below the center line Td in the vertical direction of the tank 13. The oil return hole 40c is arranged on the center side of the tank 13 in the width direction.
 ここで、幅方向中央側とは、上述の如く、領域700、701、702、703のうち幅方向中央側の2つの領域701、702のことを意味する。オイル戻し孔40cは、タンク13内の液相冷媒に含まれる潤滑油を下配管部41内の冷媒流路に流入させるための孔部である。 Here, the center side in the width direction means the two regions 701 and 702 on the center side in the width direction of the regions 700, 701, 702, and 703 as described above. The oil return hole 40c is a hole for allowing the lubricating oil contained in the liquid phase refrigerant in the tank 13 to flow into the refrigerant flow path in the lower piping portion 41.
 本実施形態のオイル戻し孔40cは、図23に示すように、下配管部41のうちリブ41a、41bの間に設けられている。リブ41a、41bは、下配管部41から下配管部403の軸線CLを中心とする径方向外側に環状に突起する突起部である。リブ41a、41bは、軸線方向に間隔を開けて配置されている。軸線方向は、軸線CLが延びる方向である。 As shown in FIG. 23, the oil return hole 40c of the present embodiment is provided between the ribs 41a and 41b of the lower piping portion 41. The ribs 41a and 41b are protrusions that are annularly projected outward in the radial direction about the axis CL of the lower piping portion 403 from the lower piping portion 41. The ribs 41a and 41b are arranged at intervals in the axial direction. The axis direction is the direction in which the axis CL extends.
 ここで、リブ41a、41bに対して軸線CLを中心とする径方向外側には、筒状に形成されているフィルタ43が設けられている。フィルタ43は、オイル戻し孔40cを覆うように配置されることになる。フィルタ43は、オイル戻し孔40cに流入する潤滑油をろ過して不純物を除去する。 Here, a filter 43 formed in a tubular shape is provided on the outer side in the radial direction about the axis CL with respect to the ribs 41a and 41b. The filter 43 will be arranged so as to cover the oil return hole 40c. The filter 43 filters the lubricating oil flowing into the oil return hole 40c to remove impurities.
 このことにより、フィルタ43は、オイル戻し孔40cに対して軸線CLを中心とする径方向に間隔44を開けて配置されている。間隔44は、フィルタ43を通過した潤滑油がオイル戻し孔40cに向けて流れる冷媒流路を形成する。 As a result, the filter 43 is arranged with an interval 44 in the radial direction centered on the axis CL with respect to the oil return hole 40c. The interval 44 forms a refrigerant flow path through which the lubricating oil that has passed through the filter 43 flows toward the oil return hole 40c.
 インナーフィン600は、図18、図20、図25、および図27に示すように、タンクプレート200、300の間に配置されている。インナーフィン600は、冷媒配管400に対して幅方向および天地方向において、ずれて配置されている。インナーフィン600は、金属製の板材が波状に形成されている。 The inner fin 600 is arranged between the tank plates 200 and 300 as shown in FIGS. 18, 20, 25, and 27. The inner fins 600 are arranged so as to be offset from the refrigerant pipe 400 in the width direction and the top-bottom direction. In the inner fin 600, a metal plate material is formed in a wavy shape.
 具体的には、インナーフィン600は、頂部601、602、603、604、605、606、607、608、609、および側部610、611、612、613、614、615、616、617、618、619を備える。 Specifically, the inner fin 600 has tops 601, 602, 603, 604, 605, 606, 607, 608, 609, and side 610, 611, 612, 613, 614, 615, 616, 617, 618, 619 is provided.
 頂部601、602、603、604、605、606、607、608、609は、それぞれ、天地方向および幅方向に拡がるように形成されている。頂部601、602、603、604、605、606、607、608、609は、それぞれ、幅方向の寸法が天地方向の寸法よりも大きくなっている。 The tops 601 and 602, 603, 604, 605, 606, 607, 608, and 609 are formed so as to extend in the vertical direction and the width direction, respectively. The width direction of each of the tops 601 and 602, 603, 604, 605, 606, 607, 608, and 609 is larger than the dimension in the top-bottom direction.
 頂部601、602、603、604、605、606、607、608、609は、それぞれ、天地方向に間隔を開けて並べられている。 The tops 601 and 602, 603, 604, 605, 606, 607, 608, and 609 are arranged at intervals in the vertical direction, respectively.
 頂部601、603、605、607、609は、それぞれ、厚み方向一方側が厚み方向他方側に凸となり、かつ厚み方向他方側が厚み方向他方側に凸となるように形成されている。頂部601、603、605、607、609は、それぞれ、第2方向に亘って設けられてタンクプレート300側に凸となるリブを構成する。以下、頂部601、603、605、607、609の第2方向を長手方向という。本実施形態の頂部601、603、605、607、609の長手方向は、幅方向である。 The tops 601, 603, 605, 607, and 609 are formed so that one side in the thickness direction is convex to the other side in the thickness direction and the other side in the thickness direction is convex to the other side in the thickness direction. The tops 601 and 603, 605, 607, and 609 each form ribs that are provided over the second direction and are convex toward the tank plate 300. Hereinafter, the second direction of the tops 601, 603, 605, 607, 609 is referred to as a longitudinal direction. The longitudinal direction of the tops 601, 603, 605, 607, 609 of this embodiment is the width direction.
 頂部602、604、606、608は、それぞれ、厚み方向一方側が厚み方向一方側に凸となり、かつ厚み方向他方側が厚み方向一方側に凸となるように形成されている。頂部602、604、606、608は、それぞれ、第2方向に亘って設けられてタンクプレート200側に凸となるリブを構成する。頂部602、604、606、608の第2方向を長手方向という。本実施形態の頂部602、604、606、608の長手方向は、幅方向である。 The tops 602, 604, 606, and 608 are each formed so that one side in the thickness direction is convex to one side in the thickness direction and the other side in the thickness direction is convex to one side in the thickness direction. The top portions 602, 604, 606, and 608 each form ribs that are provided in the second direction and are convex toward the tank plate 200 side. The second direction of the tops 602, 604, 606, 608 is called the longitudinal direction. The longitudinal direction of the tops 602, 604, 606, 608 of the present embodiment is the width direction.
 側部610、611、612、613、614、615、616、617、618、619は、それぞれ、厚み方向および幅方向に拡がるように形成されている。側部610、611、612、613、614、615、616、617、618、619は、それぞれ、厚み方向の寸法よりも幅方向の寸法の方が大きくなっている。 The side portions 610, 611, 612, 613, 614, 615, 616, 617, 618, and 619 are formed so as to expand in the thickness direction and the width direction, respectively. The side portions 610, 611, 612, 613, 614, 615, 616, 617, 618, and 619 are each larger in the width direction than in the thickness direction.
 側部610は、頂部601に対して天地方向上側に配置されている。側部611は、頂部601、602の間に配置されている。側部612は、頂部602、603の間に配置されている。側部613は、頂部603、604の間に配置されている。側部614は、頂部604、605の間に配置されている。 The side portion 610 is arranged on the heavenly region improvement side with respect to the top portion 601. The side portion 611 is arranged between the top portions 601 and 602. The side portion 612 is arranged between the top portions 602 and 603. The side portion 613 is arranged between the top portions 603 and 604. The side portion 614 is arranged between the top portions 604 and 605.
 側部615は、頂部605、606の間に配置されている。側部616は、頂部606、607の間に配置されている。側部617は、頂部607、608の間に配置されている。側部618は、頂部608、609の間に配置されている。側部619は、頂部609に対して天地方向下側に配置されている。 The side portion 615 is arranged between the top portions 605 and 606. The side portion 616 is arranged between the top portions 606 and 607. The side portion 617 is arranged between the top portions 607 and 608. The side portion 618 is arranged between the top portions 608 and 609. The side portion 619 is arranged on the lower side in the vertical direction with respect to the top portion 609.
 インナーフィン600のうち頂部602、604、606、608がタンクプレート200の前壁部21のリブ28a、28b、28c、28d、28eに対してろう付けにより接合されている。 The tops 602, 604, 606, and 608 of the inner fins 600 are brazed to the ribs 28a, 28b, 28c, 28d, and 28e of the front wall portion 21 of the tank plate 200.
 具体的には、頂部602、604、606、608の長手方向とリブ28a、28b、28c、28d、28eの長手方向とが平行にならないように、インナーフィン600がタンクプレート200に接合されている。
 ここで、頂部602、604、606、608の長手方向は、第2方向に相当し、リブ28a、28b、28c、28d、28eの長手方向は、第1方向に相当する。
Specifically, the inner fin 600 is joined to the tank plate 200 so that the longitudinal direction of the tops 602, 604, 606, 608 and the longitudinal direction of the ribs 28a, 28b, 28c, 28d, 28e are not parallel to each other. ..
Here, the longitudinal direction of the tops 602, 604, 606, 608 corresponds to the second direction, and the longitudinal direction of the ribs 28a, 28b, 28c, 28d, 28e corresponds to the first direction.
 換言すれば、頂部602、604、606、608の長手方向とリブ28a、28b、28c、28d、28eの長手方向とがねじれた位置関係になるように、インナーフィン600がタンクプレート200に接合されている。 In other words, the inner fin 600 is joined to the tank plate 200 so that the longitudinal direction of the tops 602, 604, 606, 608 and the longitudinal direction of the ribs 28a, 28b, 28c, 28d, 28e are in a twisted positional relationship. ing.
 ねじれた位置関係とは、頂部602、604、606、608の長手方向とリブ28a、28b、28c、28d、28eの長手方向が交わらなく、かつ平行でもない関係のことである。 The twisted positional relationship is a relationship in which the longitudinal directions of the tops 602, 604, 606, 608 and the longitudinal directions of the ribs 28a, 28b, 28c, 28d, 28e do not intersect and are not parallel.
 インナーフィン600のうち頂部601、603、605、607、609がタンクプレート300の後壁部31のリブ38a、38b、38c、38d、38eに対してろう付けにより接合されている。 The tops 601, 603, 605, 607, and 609 of the inner fins 600 are brazed to the ribs 38a, 38b, 38c, 38d, and 38e of the rear wall portion 31 of the tank plate 300.
 具体的には、頂部601、603、605、607、609の長手方向とリブ38a、38b、38c、38d、38eの長手方向とが平行にならないようにインナーフィン600がタンクプレート300に接合されている。
 ここで、頂部601、603、605、607、609の長手方向は、第2方向に相当し、リブ38a、38b、38c、38d、38eの長手方向は、第1方向に相当する。
Specifically, the inner fin 600 is joined to the tank plate 300 so that the longitudinal direction of the tops 601, 603, 605, 607, 609 and the longitudinal direction of the ribs 38a, 38b, 38c, 38d, 38e are not parallel to each other. There is.
Here, the longitudinal direction of the tops 601, 603, 605, 607, 609 corresponds to the second direction, and the longitudinal direction of the ribs 38a, 38b, 38c, 38d, 38e corresponds to the first direction.
 換言すれば、頂部601、603、605、607、609の長手方向とリブ38a、38b、38c、38d、38eの長手方向とがねじれた位置関係になるようにインナーフィン600がタンクプレート300に接合されている。ねじれた位置関係とは、頂部601、603、605、607、609の長手方向とリブ38a、38b、38c、38d、38eの長手方向とが交わることなく、かつ平行でもない関係のことである。 In other words, the inner fin 600 is joined to the tank plate 300 so that the longitudinal direction of the tops 601, 603, 605, 607, 609 and the longitudinal direction of the ribs 38a, 38b, 38c, 38d, 38e are in a twisted positional relationship. Has been done. The twisted positional relationship is a relationship in which the longitudinal directions of the tops 601, 603, 605, 607, and 609 do not intersect and the longitudinal directions of the ribs 38a, 38b, 38c, 38d, and 38e do not intersect and are not parallel.
 このことにより、インナーフィン600のうち頂部601、602、603、604、605、606、607、608、609がタンクプレート200、或いはタンクプレート300に接合されることになる。 As a result, the tops 601, 602, 603, 604, 605, 606, 607, 608, 609 of the inner fin 600 are joined to the tank plate 200 or the tank plate 300.
 インナーフィン600は、上述の如く、幅方向に延びる側部610、611、612、613、614、615、616、617、618、619を備える。このため、インナーフィン600は、アキュムレータ100が天地方向に移動した際にタンク13内の冷媒が天地方向に移動すること抑えることができる。また、インナーフィン600は、冷媒がタンク13内に流入することによって液面が振動することを未然に抑えることができる。 As described above, the inner fin 600 includes side portions 610, 611, 612, 613, 614, 615, 616, 617, 618, 619 extending in the width direction. Therefore, the inner fin 600 can prevent the refrigerant in the tank 13 from moving in the vertical direction when the accumulator 100 moves in the vertical direction. Further, the inner fin 600 can prevent the liquid level from vibrating due to the refrigerant flowing into the tank 13.
 このように構成されるタンクプレート200、300の間には、入口11を介して流入される気液二相冷媒を液相冷媒と気相冷媒とに分離して貯めるタンク13が形成されている。 A tank 13 is formed between the tank plates 200 and 300 configured in this way to separate and store the gas-liquid two-phase refrigerant flowing in through the inlet 11 into the liquid-phase refrigerant and the gas-phase refrigerant. ..
 本実施形態のタンクプレート200、300、冷媒配管400、500、およびインナーフィン600としては、アルミニウムを含むアルミニウム合金材料によって構成されている。 The tank plates 200 and 300, the refrigerant pipes 400 and 500, and the inner fin 600 of this embodiment are made of an aluminum alloy material containing aluminum.
 本実施形態のコンデンサ用入口配管3bは、コンプレッサ2の出口とコンデンサ3の入口との間に配置されている。コンデンサ用入口配管3bは、コンプレッサ2の出口から吐出される高圧冷媒をコンデンサ3の入口に導くための冷媒配管である。コンデンサ用入口配管3bおよびアキュムレータ100は、一体成形物を構成している。 The capacitor inlet pipe 3b of the present embodiment is arranged between the outlet of the compressor 2 and the inlet of the capacitor 3. The condenser inlet pipe 3b is a refrigerant pipe for guiding the high-pressure refrigerant discharged from the outlet of the compressor 2 to the inlet of the condenser 3. The capacitor inlet pipe 3b and the accumulator 100 constitute an integrally molded product.
 コンデンサ用入口配管3bは、アキュムレータ100に対して天地方向下側に配置されている。すなわち、コンデンサ用入口配管3bは、タンク13に対して天地方向下側(すなわち、厚み方向に直交する方向)に配置されている。 The condenser inlet pipe 3b is arranged on the lower side in the vertical direction with respect to the accumulator 100. That is, the capacitor inlet pipe 3b is arranged on the lower side in the vertical direction (that is, in the direction orthogonal to the thickness direction) with respect to the tank 13.
 コンデンサ用入口配管3bは、図17および図23に示すように、プレート配管部60A、および冷媒配管500を備える。プレート配管部60Aは、タンクプレート200の半管部63aとタンクプレート300の半管部63bとを組み合わせて構成されている。 As shown in FIGS. 17 and 23, the condenser inlet pipe 3b includes a plate pipe portion 60A and a refrigerant pipe 500. The plate piping portion 60A is configured by combining the half-tube portion 63a of the tank plate 200 and the half-tube portion 63b of the tank plate 300.
 半管部63aは、図18に示すように、タンクプレート200のうち厚み方向一方側が厚み方向一方側に凸となり、かつタンクプレート200のうち厚み方向他方側が厚み方向一方側に凹むように構成されている。 As shown in FIG. 18, the half-tube portion 63a is configured such that one side of the tank plate 200 in the thickness direction is convex to one side in the thickness direction and the other side of the tank plate 200 in the thickness direction is recessed to one side in the thickness direction. ing.
 半管部63bは、図24に示すように、タンクプレート300のうち厚み方向一方側が厚み方向他方側に凹んで、タンクプレート300のうち厚み方向他方側が厚み方向他方側に凸となるように構成されている。 As shown in FIG. 24, the half-tube portion 63b is configured such that one side of the tank plate 300 in the thickness direction is recessed to the other side in the thickness direction and the other side of the tank plate 300 in the thickness direction is convex to the other side in the thickness direction. Has been done.
 半管部63bのうち幅方向一方側には、出口63が厚み方向他方側に開口されている。出口63は、コンデンサ3の入口に接続されている。冷媒配管500は、プレート配管部60の入口64に接続されている。 The outlet 63 is opened on one side of the half-tube portion 63b in the width direction on the other side in the thickness direction. The outlet 63 is connected to the inlet of the capacitor 3. The refrigerant pipe 500 is connected to the inlet 64 of the plate pipe portion 60.
 プレート配管部60Aの入口64は、ヘッダ配管部61のうち幅方向他方側に配置されている。プレート配管部60Aの入口64は、タンクプレート200の凹部64aとタンクプレート300の凹部64bとが組み合わされて構成されている。 The inlet 64 of the plate piping portion 60A is arranged on the other side of the header piping portion 61 in the width direction. The inlet 64 of the plate piping portion 60A is configured by combining a recess 64a of the tank plate 200 and a recess 64b of the tank plate 300.
 タンクプレート200の凹部64aは、タンクプレート200のうち厚み方向一方側が厚み方向一方側に凸となり、かつタンクプレート200のうち厚み方向他方側が厚み方向一方側に凹むように構成されている。 The recess 64a of the tank plate 200 is configured such that one side of the tank plate 200 in the thickness direction is convex to one side in the thickness direction, and the other side of the tank plate 200 in the thickness direction is recessed to one side in the thickness direction.
 タンクプレート300の凹部64bは、タンクプレート300のうち厚み方向一方側が厚み方向他方側に凹んで、タンクプレート300のうち厚み方向他方側が厚み方向他方側に凸となるように構成されている。 The recess 64b of the tank plate 300 is configured such that one side of the tank plate 300 in the thickness direction is recessed in the other side in the thickness direction and the other side of the tank plate 300 in the thickness direction is convex in the other side in the thickness direction.
 本実施形態のタンクプレート300には、タンクプレート200の外周部に係合する複数の爪部310が設けられている。 The tank plate 300 of the present embodiment is provided with a plurality of claw portions 310 that engage with the outer peripheral portion of the tank plate 200.
 冷媒配管500は、プレート配管部60Aの入口64およびコンプレッサ2の出口の間を接続する。冷媒配管500のうち幅方向一方側端部は、冷媒出口501を構成するものであって、プレート配管部60Aの入口64に接合されている。冷媒配管500のうち幅方向他方側端部は、コンプレッサ2の冷媒出口側に接続される継ぎ手を成す配管プラグ504が設けられている。配管プラグ504には、コンプレッサ2の冷媒出口からが吐出される冷媒入口502を構成する。 The refrigerant pipe 500 connects between the inlet 64 of the plate pipe portion 60A and the outlet of the compressor 2. One end of the refrigerant pipe 500 in the width direction constitutes the refrigerant outlet 501 and is joined to the inlet 64 of the plate pipe portion 60A. A pipe plug 504 forming a joint connected to the refrigerant outlet side of the compressor 2 is provided at the other end of the refrigerant pipe 500 in the width direction. The piping plug 504 is configured with a refrigerant inlet 502 discharged from the refrigerant outlet of the compressor 2.
 このように、コンデンサ用入口配管3bは、冷媒配管500およびプレート配管部60Aによって構成されて、コンプレッサ2から吐出される高圧冷媒をコンデンサ3の入口に導くことになる。 As described above, the condenser inlet pipe 3b is composed of the refrigerant pipe 500 and the plate piping portion 60A, and guides the high-pressure refrigerant discharged from the compressor 2 to the inlet of the condenser 3.
 本実施形態では、図17および図24に示すように、タンクプレート300のうち冷媒配管400、500の間には、複数の貫通孔70aおよび複数の貫通孔71aが設けられている。複数の貫通孔70aおよび複数の貫通孔71aは、それぞれ、タンクプレート300において厚み方向に貫通している。 In the present embodiment, as shown in FIGS. 17 and 24, a plurality of through holes 70a and a plurality of through holes 71a are provided between the refrigerant pipes 400 and 500 in the tank plate 300. The plurality of through holes 70a and the plurality of through holes 71a each penetrate the tank plate 300 in the thickness direction.
 複数の貫通孔70aは、それぞれ、幅方向に並べられている。複数の貫通孔71aは、それぞれ、幅方向に並べられている。複数の貫通孔70aは、複数の貫通孔71aに対して天地方向上側に配置されている。 The plurality of through holes 70a are arranged in the width direction, respectively. The plurality of through holes 71a are arranged in the width direction, respectively. The plurality of through holes 70a are arranged on the heavenly region improvement side with respect to the plurality of through holes 71a.
 図18および図21に示すように、タンクプレート200のうち冷媒配管400、500の間には、複数の貫通孔70bおよび複数の貫通孔71bが設けられている。複数の貫通孔70aおよび複数の貫通孔71bは、それぞれ、タンクプレート300において厚み方向に貫通している。複数の貫通孔70bは、それぞれ、幅方向に並べられている。複数の貫通孔71bは、それぞれ、幅方向に並べられている。 As shown in FIGS. 18 and 21, a plurality of through holes 70b and a plurality of through holes 71b are provided between the refrigerant pipes 400 and 500 in the tank plate 200. The plurality of through holes 70a and the plurality of through holes 71b each penetrate the tank plate 300 in the thickness direction. The plurality of through holes 70b are arranged in the width direction, respectively. The plurality of through holes 71b are arranged in the width direction, respectively.
 複数の貫通孔70aは、それぞれ、複数の貫通孔70bのうち対応する貫通孔70bに連通されている。複数の貫通孔71bは、それぞれ、複数の貫通孔71bのうち対応する貫通孔70bに連通されている。複数の貫通孔70bは、複数の貫通孔71bに対して天地方向上側に配置されている。 Each of the plurality of through holes 70a communicates with the corresponding through hole 70b among the plurality of through holes 70b. Each of the plurality of through holes 71b communicates with the corresponding through holes 70b among the plurality of through holes 71b. The plurality of through holes 70b are arranged on the heavenly region improvement side with respect to the plurality of through holes 71b.
 複数の貫通孔70a、70b、複数の貫通孔71a、71bは、アキュムレータ100およびコンデンサ用入口配管3bの間の断熱性を高める役割を果たす。 The plurality of through holes 70a and 70b and the plurality of through holes 71a and 71b play a role of enhancing the heat insulating property between the accumulator 100 and the capacitor inlet pipe 3b.
 本実施形態のタンクプレート200、300、冷媒配管400、500、およびインナーフィン600を接合する手法としては、例えば、ろう付け接合が用いられる。 As a method for joining the tank plates 200, 300, the refrigerant pipes 400, 500, and the inner fin 600 of the present embodiment, for example, brazing joining is used.
 このように構成されるアキュムレータ100が静止した状態で冷媒配管400の配管入口40aよりもアキュムレータ100内の液相冷媒の液面14が天地方向下側に位置するように設定される冷媒量の冷媒が予め蒸気圧縮式冷凍サイクル1に充填されている。 With the accumulator 100 configured in this way stationary, the amount of refrigerant set so that the liquid level 14 of the liquid phase refrigerant in the accumulator 100 is located below the pipe inlet 40a of the refrigerant pipe 400 in the vertical direction. Is pre-filled in the steam compression refrigeration cycle 1.
 本実施形態のアキュムレータ100は、コンデンサ3、減圧弁4、エバポレータ5等とともに、ろう付け等によって一体成形される場合がある。しかし、以下、説明の便宜上、本実施形態では、アキュムレータ100単体の製造方法について説明する。 The accumulator 100 of the present embodiment may be integrally molded by brazing or the like together with the condenser 3, the pressure reducing valve 4, the evaporator 5, and the like. However, for convenience of explanation, a method for manufacturing the accumulator 100 alone will be described below in this embodiment.
 まず、最初の工程で、タンクプレート200、300、インナーフィン600、および冷媒配管400、500を別々に用意する。 First, in the first step, the tank plates 200 and 300, the inner fins 600, and the refrigerant pipes 400 and 500 are prepared separately.
 ここで、タンクプレート200、300、インナーフィン600、および冷媒配管400、500としては、アルミニウム合金材料からなる板材の表面、或いは裏面にろう材層が設けられているクラット材が用いられる。ろう材層は、ろう材から成る層である。 Here, as the tank plates 200 and 300, the inner fins 600, and the refrigerant pipes 400 and 500, a lat material having a brazing material layer provided on the front surface or the back surface of a plate material made of an aluminum alloy material is used. The brazing filler metal layer is a layer made of brazing filler metal.
 次の工程で、タンクプレート200、300の間にインナーフィン600、冷媒配管400、500を挟んでタンクプレート200、300を対向させた状態で合わせる。これに加えて、タンクプレート300の複数の爪部310をタンクプレート200の外周部に係合させる。 In the next step, the inner fins 600 and the refrigerant pipes 400 and 500 are sandwiched between the tank plates 200 and 300, and the tank plates 200 and 300 are aligned so as to face each other. In addition to this, a plurality of claws 310 of the tank plate 300 are engaged with the outer peripheral portion of the tank plate 200.
 次の工程で、タンクプレート200、300、および冷媒配管400、500を組み合わせた状態で、高温炉内で加熱してろう材層を融かしてタンクプレート200、300、および冷媒配管400、500をろう付け接合する。 In the next step, with the tank plates 200 and 300 and the refrigerant pipes 400 and 500 combined, the brazing material layer is melted by heating in a high temperature furnace to melt the tank plates 200 and 300 and the refrigerant pipes 400 and 500. Are brazed and joined.
 具体的には、タンクプレート200のフランジ部201の半管部63aとタンクプレート300のフランジ部301の半管部63bとがろう付け接合される。 Specifically, the half-tube portion 63a of the flange portion 201 of the tank plate 200 and the half-tube portion 63b of the flange portion 301 of the tank plate 300 are brazed and joined.
 これに加えて、タンクプレート200のリブ28a、28b、28c、28d、28eとインナーフィン600の頂部602、604、606、608とがろう付け接合される。 In addition to this, the ribs 28a, 28b, 28c, 28d, 28e of the tank plate 200 and the tops 602, 604, 606, 608 of the inner fin 600 are brazed and joined.
 さらに、タンクプレート300のリブ38a、38b、38c、38d、38eとインナーフィン600の頂部601、603、605、607、609とがろう付け接合される。 Further, the ribs 38a, 38b, 38c, 38d, 38e of the tank plate 300 and the tops 601, 603, 605, 607, 609 of the inner fin 600 are brazed and joined.
 これに加えて、タンクプレート200のリブ28c、29d、29e、および凹部120aと冷媒配管400とがろう付け接合される。タンクプレート300のリブ39a、39cおよび凹部120bと冷媒配管400とがろう付け接合される。 In addition to this, the ribs 28c, 29d, 29e, and the recess 120a of the tank plate 200 and the refrigerant pipe 400 are brazed and joined. The ribs 39a and 39c and the recess 120b of the tank plate 300 and the refrigerant pipe 400 are brazed and joined.
 以上により、タンクプレート200、300、および冷媒配管400、500がろう付け接合によって一体化されて一体成形物が形成される。 As described above, the tank plates 200 and 300 and the refrigerant pipes 400 and 500 are integrated by brazing to form an integrally molded product.
 次に、本実施形態の蒸気圧縮式冷凍サイクル1の作動、およびアキュムレータ100の作動について説明する。 Next, the operation of the steam compression refrigeration cycle 1 and the operation of the accumulator 100 of the present embodiment will be described.
 まず、コンプレッサ2は、アキュムレータ100から気相冷媒を吸入して圧縮して高圧冷媒として吐出する。コンデンサ3は、コンプレッサ2から吐出される高圧冷媒を放熱する。 
 次に、減圧弁4は、コンデンサ3から流れ出る高圧冷媒を減圧する。エバポレータ5は、減圧弁4を通過した低圧冷媒を吸熱によって蒸発させる。アキュムレータ100は、エバポレータ5を通過した気液二相冷媒を気相冷媒と液相冷媒とに分離して液相冷媒を貯めつつ気相冷媒を排出する。
First, the compressor 2 sucks the vapor phase refrigerant from the accumulator 100, compresses it, and discharges it as a high-pressure refrigerant. The capacitor 3 dissipates heat from the high-pressure refrigerant discharged from the compressor 2.
Next, the pressure reducing valve 4 reduces the pressure of the high-pressure refrigerant flowing out of the condenser 3. The evaporator 5 evaporates the low-pressure refrigerant that has passed through the pressure reducing valve 4 by endothermic reaction. The accumulator 100 separates the gas-liquid two-phase refrigerant that has passed through the evaporator 5 into a gas-phase refrigerant and a liquid-phase refrigerant, stores the liquid-phase refrigerant, and discharges the gas-phase refrigerant.
 具体的には、コンプレッサ2の冷媒出口から吐出される高圧冷媒は、冷媒入口502を通して冷媒配管500に流入される。この流入される高圧冷媒は、冷媒配管500の冷媒出口、プレート配管部60Aの出口63を通してコンデンサ3の冷媒入口に流れる。 Specifically, the high-pressure refrigerant discharged from the refrigerant outlet of the compressor 2 flows into the refrigerant pipe 500 through the refrigerant inlet 502. The inflowing high-pressure refrigerant flows to the refrigerant inlet of the condenser 3 through the refrigerant outlet of the refrigerant pipe 500 and the outlet 63 of the plate piping portion 60A.
 一方、アキュムレータ100において、エバポレータ5を通過した気液二相冷媒が入口11を通してタンク13内に入る。タンク13内では、気液二相冷媒が気相冷媒と液相冷媒とに分離され、気相冷媒がタンク13のうち上側に貯まり、かつ液相冷媒がタンク13のうち下側に貯まることになる。 On the other hand, in the accumulator 100, the gas-liquid two-phase refrigerant that has passed through the evaporator 5 enters the tank 13 through the inlet 11. In the tank 13, the gas-liquid two-phase refrigerant is separated into a gas-phase refrigerant and a liquid-phase refrigerant, the vapor-phase refrigerant is stored in the upper side of the tank 13, and the liquid-phase refrigerant is stored in the lower side of the tank 13. Become.
 具体的には、タンクプレート200およびインナーフィン600の間において、気相冷媒と液相冷媒とに分離された状態で貯まる。タンクプレート300およびインナーフィン600の間において、気相冷媒と液相冷媒とに分離された状態で貯まる。 Specifically, it is stored in a state of being separated into a gas phase refrigerant and a liquid phase refrigerant between the tank plate 200 and the inner fin 600. Between the tank plate 300 and the inner fin 600, the gas phase refrigerant and the liquid phase refrigerant are stored in a separated state.
 このとき、タンク13内の気相冷媒は、配管入口40aを通して冷媒配管40の冷媒流路を通して配管出口40bからコンプレッサ2の冷媒入口に流れる。 At this time, the vapor-phase refrigerant in the tank 13 flows from the pipe outlet 40b to the refrigerant inlet of the compressor 2 through the pipe inlet 40a and the refrigerant flow path of the refrigerant pipe 40.
 この際に、タンク13内の液相冷媒に含まれる潤滑油がフィルタ43、間隔44およびオイル戻し孔40cを通して冷媒配管40の冷媒流路に流れる。この冷媒流路に流れる潤滑油は、配管出口40bからコンプレッサ2の冷媒入口に流れる。潤滑油は、コンプレッサ2を構成する圧縮機構等の潤滑に用いられる。 At this time, the lubricating oil contained in the liquid phase refrigerant in the tank 13 flows into the refrigerant flow path of the refrigerant pipe 40 through the filter 43, the interval 44, and the oil return hole 40c. The lubricating oil flowing through the refrigerant flow path flows from the pipe outlet 40b to the refrigerant inlet of the compressor 2. The lubricating oil is used for lubricating the compression mechanism and the like constituting the compressor 2.
 このとき、フィルタ43は、タンク13内からオイル戻し孔40cを通して冷媒配管40の冷媒流路に流れる潤滑油から不純物を除く。これにより、オイル戻し孔40cが不純物によって詰まることを未然に防ぐことになる。 At this time, the filter 43 removes impurities from the lubricating oil flowing from the inside of the tank 13 to the refrigerant flow path of the refrigerant pipe 40 through the oil return hole 40c. This prevents the oil return hole 40c from being clogged with impurities.
 さらに、タンク13は、リブ38a、38b、38c、38d、38eによって分割タンク領域132a、132b、132c、132d、132e、132fに仕切られている。 Further, the tank 13 is divided into divided tank areas 132a, 132b, 132c, 132d, 132e, 132f by ribs 38a, 38b, 38c, 38d, 38e.
 さらに、タンク13は、リブ28a、28b、28c、28d、28eによって分割タンク領域122a、122b、122c、122d、122e、122fに仕切られている。 Further, the tank 13 is divided into divided tank areas 122a, 122b, 122c, 122d, 122e, 122f by ribs 28a, 28b, 28c, 28d, 28e.
 このため、アキュムレータ100が振動してアキュムレータ100が幅方向に移動した際にタンク13内の液相冷媒が幅方向に移動すること抑制して、タンク13内の液相冷媒が冷媒配管40の配管入口40aに入ることを未然に防ぐことができる。 Therefore, when the accumulator 100 vibrates and the accumulator 100 moves in the width direction, the liquid phase refrigerant in the tank 13 is suppressed from moving in the width direction, and the liquid phase refrigerant in the tank 13 is the pipe of the refrigerant pipe 40. It is possible to prevent entering the entrance 40a.
 一方、インナーフィン600の側部610、611、612、613、614、615、616、617、618、619は、それぞれ、幅方向に延びるように形成されている。 On the other hand, the side portions 610, 611, 612, 613, 614, 615, 616, 617, 618, and 619 of the inner fin 600 are formed so as to extend in the width direction, respectively.
 このため、アキュムレータ100が振動してアキュムレータ100が天地方向に移動した際にタンクプレート200およびインナーフィン600の間の液相冷媒が天地方向に移動すること抑制する。これに加えて、冷媒がタンク13内に流入することによって液面が振動することを未然に抑えることができる。このことにより、タンク13内の液相冷媒が冷媒配管40の配管入口40aに入ることを未然に防ぐことができる。 Therefore, when the accumulator 100 vibrates and the accumulator 100 moves in the vertical direction, the liquid phase refrigerant between the tank plate 200 and the inner fin 600 is suppressed from moving in the vertical direction. In addition to this, it is possible to prevent the liquid level from vibrating due to the refrigerant flowing into the tank 13. As a result, it is possible to prevent the liquid phase refrigerant in the tank 13 from entering the pipe inlet 40a of the refrigerant pipe 40.
 以上説明した本実施形態によれば、アキュムレータ100は、冷媒を循環させる蒸気圧縮式冷凍サイクルを構成する。タンクプレート200、300は、それぞれ、板状に形成されている。 According to the present embodiment described above, the accumulator 100 constitutes a vapor compression refrigeration cycle in which a refrigerant is circulated. The tank plates 200 and 300 are formed in a plate shape, respectively.
 タンクプレート200、300は、インナーフィン600および冷媒配管400を挟んで対向するように配置されて、入口11から流入される気液二相冷媒を気相冷媒と液相冷媒とに分離して液相冷媒を貯めるタンク13を形成する。タンク13は、幅方向と天地方向に拡がるように形成されている。 The tank plates 200 and 300 are arranged so as to face each other with the inner fin 600 and the refrigerant pipe 400 interposed therebetween, and separate the gas-liquid two-phase refrigerant flowing from the inlet 11 into the gas-phase refrigerant and the liquid-phase refrigerant. A tank 13 for storing the phase refrigerant is formed. The tank 13 is formed so as to expand in the width direction and the top-bottom direction.
 アキュムレータ100は、気相冷媒が入る配管入口40aと、タンク13の外側に配置されて気相冷媒を排出する配管出口40bとを備え、タンク13内の気相冷媒を配管入口40a、配管出口40bを通してタンク13の外側に出す冷媒配管400とを備える。 The accumulator 100 includes a pipe inlet 40a for entering the gas phase refrigerant and a pipe outlet 40b arranged outside the tank 13 for discharging the vapor phase refrigerant, and the gas phase refrigerant in the tank 13 is supplied to the pipe inlet 40a and the pipe outlet 40b. It is provided with a refrigerant pipe 400 that is discharged to the outside of the tank 13 through the pipe.
 したがって、気液二相冷媒を液相冷媒と気相冷媒とに分離して液相冷媒を貯めつつ気相冷媒を排出するアキュムレータ100を、タンクプレート200、300、インナーフィン600、および冷媒配管40といった4つの部品によって構成することができる。 Therefore, the accumulator 100 that separates the gas-liquid two-phase refrigerant into the liquid-phase refrigerant and the gas-phase refrigerant and discharges the gas-phase refrigerant while storing the liquid-phase refrigerant is provided in the tank plates 200, 300, the inner fin 600, and the refrigerant pipe 40. It can be composed of four parts such as.
 以上により、冷凍サイクル機器としてのアキュムレータ10を、上記特許文献1に記載のアキュムレータに比べて、少ない部品点数で構成することができる。 As described above, the accumulator 10 as a refrigeration cycle device can be configured with a smaller number of parts than the accumulator described in Patent Document 1.
 本実施形態では、タンクプレート200、300の間には、天地方向と幅方向とに拡がる板状に形成されているインナーフィン600が設けられている。タンクプレート200、300が並ぶ並び方向を厚み方向とする。 In the present embodiment, an inner fin 600 formed in a plate shape extending in the top-bottom direction and the width direction is provided between the tank plates 200 and 300. The direction in which the tank plates 200 and 300 are lined up is the thickness direction.
 厚み方向に直交して水平方向に平行である第1直交方向を幅方向とする。厚み方向に直交し、かつ幅方向に交差する第2直交方向を天地方向とする。 The width direction is the first orthogonal direction that is orthogonal to the thickness direction and parallel to the horizontal direction. The second orthogonal direction that is orthogonal to the thickness direction and intersects the width direction is defined as the top-bottom direction.
 タンクプレート300には、タンク13内において天地方向に亘って厚み方向一方側に向けて凸になる第1リブであるリブ38a、38b、38c、38d、38eが設けられている。 The tank plate 300 is provided with ribs 38a, 38b, 38c, 38d, 38e, which are first ribs that are convex in the tank 13 toward one side in the thickness direction in the vertical direction.
 タンクプレート200には、タンク13内において天地方向に亘って厚み方向他方側に向けて凸になる第1リブであるリブ28a、28b、28c、28d、28eが設けられている。 The tank plate 200 is provided with ribs 28a, 28b, 28c, 28d, 28e, which are first ribs that are convex in the tank 13 toward the other side in the thickness direction in the vertical direction.
 したがって、アキュムレータ100が幅方向に移動した際に、タンク13内の液相冷媒が幅方向に移動することをリブ28a、28b、28c、28d、28eによって抑制することができる。 Therefore, when the accumulator 100 moves in the width direction, the movement of the liquid phase refrigerant in the tank 13 in the width direction can be suppressed by the ribs 28a, 28b, 28c, 28d, and 28e.
 インナーフィン600には、タンク13内において天地方向に亘って厚み方向他方側に向けて凸になる第2リブである頂部601、603、605、607、609が設けられている。 The inner fin 600 is provided with top portions 601, 603, 605, 607, and 609, which are second ribs that are convex in the tank 13 toward the other side in the thickness direction in the vertical direction.
 インナーフィン600には、タンク13内において天地方向に亘って厚み方向一方側に向けて凸になる第2リブである頂部602、604、606、608が設けられている。 The inner fin 600 is provided with top portions 602, 604, 606, and 608, which are second ribs that are convex in the tank 13 toward one side in the thickness direction in the vertical direction.
 したがって、アキュムレータ100が天地方向に移動した際に、タンク13内の液相冷媒が天地方向に移動することをインナーフィン600によって抑制することができる。これに加えて、冷媒がタンク13内に流入することによって液面が振動することを未然に抑えることができる。 Therefore, when the accumulator 100 moves in the vertical direction, the inner fin 600 can suppress the movement of the liquid phase refrigerant in the tank 13 in the vertical direction. In addition to this, it is possible to prevent the liquid level from vibrating due to the refrigerant flowing into the tank 13.
 ここで、タンクプレート200、300にリブ28a~28e、38a~38eが形成されていなく、かつインナーフィン600が設けられていない場合に、車両の振動に伴って、アキュムレータ100が振動する。すると、タンク13内の液相冷媒の液面14が振動する。このため、タンク13内の液相冷媒が冷媒配管40の配管入口40a内に入るおそれがある。 Here, when the ribs 28a to 28e and 38a to 38e are not formed on the tank plates 200 and 300 and the inner fins 600 are not provided, the accumulator 100 vibrates with the vibration of the vehicle. Then, the liquid level 14 of the liquid phase refrigerant in the tank 13 vibrates. Therefore, the liquid phase refrigerant in the tank 13 may enter the pipe inlet 40a of the refrigerant pipe 40.
 これに対して、本実施形態では、タンクプレート200、300にリブ28a~28e、38a~38eが形成され、かつインナーフィン600が設けられている。このため、タンク13内の液相冷媒の液面14が振動することが抑制される。タンク13内の液相冷媒が冷媒配管40の配管入口40a内に入ることを抑えることができる。 On the other hand, in the present embodiment, ribs 28a to 28e and 38a to 38e are formed on the tank plates 200 and 300, and inner fins 600 are provided. Therefore, the vibration of the liquid level 14 of the liquid phase refrigerant in the tank 13 is suppressed. It is possible to prevent the liquid phase refrigerant in the tank 13 from entering the pipe inlet 40a of the refrigerant pipe 40.
 以上により、タンク13内の液相冷媒がコンプレッサ2の入口に流れることを未然に抑えることができる。 From the above, it is possible to prevent the liquid phase refrigerant in the tank 13 from flowing to the inlet of the compressor 2.
 上述した本実施形態によれば、以下のような効果を得ることができる。 According to the above-described embodiment, the following effects can be obtained.
 (1)冷媒配管40の上配管部42の配管入口40aは、タンク13のうち中心線Tdよりも上側に配置されている。このため、タンク13内の液相冷媒が冷媒配管40の上配管部42の配管入口40aに入り難くすることができる。 (1) The pipe inlet 40a of the upper pipe portion 42 of the refrigerant pipe 40 is arranged above the center line Td in the tank 13. Therefore, it is possible to prevent the liquid phase refrigerant in the tank 13 from entering the pipe inlet 40a of the upper pipe portion 42 of the refrigerant pipe 40.
 (2)冷媒配管40の上配管部42の配管入口40aは、タンク13のうち幅方向の中央側に配置されている。このため、アキュムレータ100が傾いてタンク13のうち幅方向の一方側と他方側とが天地方向において異なった状態になっても、タンク13内の液相冷媒が冷媒配管40の上配管部42の配管入口40aに入り難くすることができる。 (2) The pipe inlet 40a of the upper pipe portion 42 of the refrigerant pipe 40 is arranged on the center side of the tank 13 in the width direction. Therefore, even if the accumulator 100 is tilted and one side of the tank 13 in the width direction and the other side in the width direction are different in the top-bottom direction, the liquid-phase refrigerant in the tank 13 is still in the upper piping portion 42 of the refrigerant pipe 40. It is possible to make it difficult to enter the pipe inlet 40a.
 (3)冷媒配管400の外壁410のうち配管入口40a側に形成される入口側端部411とタンクプレート200との間に間隔412が形成されている。したがって、タンクプレート200のうちタンク13を形成する内壁21aを伝わって液相冷媒が冷媒配管400の配管入口40aに入ることを抑えることができる。 (3) A gap 412 is formed between the inlet side end 411 formed on the pipe inlet 40a side of the outer wall 410 of the refrigerant pipe 400 and the tank plate 200. Therefore, it is possible to prevent the liquid phase refrigerant from entering the pipe inlet 40a of the refrigerant pipe 400 along the inner wall 21a of the tank plate 200 forming the tank 13.
 (4)冷媒配管400の入口側端部411とタンクプレート300との間に間隔413が形成されている。したがって、タンクプレート300のうちタンク13を形成する内壁31aを伝わって液相冷媒が冷媒配管400の配管入口40aに入ることを抑えることができる。 (4) An interval 413 is formed between the inlet side end portion 411 of the refrigerant pipe 400 and the tank plate 300. Therefore, it is possible to prevent the liquid phase refrigerant from entering the pipe inlet 40a of the refrigerant pipe 400 along the inner wall 31a of the tank plate 300 forming the tank 13.
 (5)リブ39b、およびリブ29a、29bは、ぞれぞれ、タンクプレート200、300の間で入口11から配管入口40aに液相冷媒を流通させる冷媒流路を絞るように構成されている。したがって、入口11から冷媒配管400の配管入口40aに液相冷媒が入ることを未然に抑えることができる。 (5) The ribs 39b and the ribs 29a and 29b are configured to narrow the refrigerant flow path for flowing the liquid phase refrigerant from the inlet 11 to the pipe inlet 40a between the tank plates 200 and 300, respectively. .. Therefore, it is possible to prevent the liquid phase refrigerant from entering the pipe inlet 40a of the refrigerant pipe 400 from the inlet 11.
 (6)冷媒配管40には、タンク13内の気液二相冷媒に含まれる潤滑油が入るオイル戻し孔40cが形成されている。このため、タンク13内の潤滑油が冷媒配管40のオイル戻し孔40c、冷媒流路、および配管出口40bを通してタンク13の外側に排出してコンプレッサ2の入口に供給することができる。 (6) The refrigerant pipe 40 is formed with an oil return hole 40c in which the lubricating oil contained in the gas-liquid two-phase refrigerant in the tank 13 enters. Therefore, the lubricating oil in the tank 13 can be discharged to the outside of the tank 13 through the oil return hole 40c of the refrigerant pipe 40, the refrigerant flow path, and the pipe outlet 40b and supplied to the inlet of the compressor 2.
 これにより、タンク13内の潤滑油を適切にコンプレッサ2に戻すことができる。このため、コンプレッサ2を構成する圧縮機構が潤滑油によって潤滑される。 As a result, the lubricating oil in the tank 13 can be appropriately returned to the compressor 2. Therefore, the compression mechanism constituting the compressor 2 is lubricated by the lubricating oil.
 (7)オイル戻し孔40cの近傍には、フィルタ43が設けられている。これにより、オイル戻し孔40cが不純物によって目詰まりすることを未然に防ぐことができる。 (7) A filter 43 is provided in the vicinity of the oil return hole 40c. As a result, it is possible to prevent the oil return hole 40c from being clogged with impurities.
 ここで、例えば、オイル戻し孔40cに対してフィルタ43が接近した状態でフィルタ43が不純物に覆われる場合には、オイル戻し孔40cが不純物によって目詰まりした状態となる。 Here, for example, when the filter 43 is covered with impurities while the filter 43 is close to the oil return hole 40c, the oil return hole 40c is clogged with impurities.
 これに対して、本実施形態では、オイル戻し孔40cおよびフィルタ43の間には、潤滑油を流通させる流路を構成する間隔44が設けられている。このため、フィルタ43が不純物に覆われる場合であっても、オイル戻し孔40cが不純物によって目詰まりした状態になり難くすることができる。 On the other hand, in the present embodiment, an interval 44 is provided between the oil return hole 40c and the filter 43 to form a flow path through which the lubricating oil flows. Therefore, even when the filter 43 is covered with impurities, it is possible to prevent the oil return holes 40c from being clogged with impurities.
 (8)オイル戻し孔40cは、タンク13内において、天地方向の中心線Tdよりも下側で、かつタンク13のうち幅方向の中央側に配置されている。このため、アキュムレータ100が傾いてタンク13のうち幅方向の一方側と他方側とが天地方向において異なった状態になっても、オイル戻し孔40cが液面14よりも下側になり易くなる。これにより、タンク13内の潤滑油をオイル戻し孔40c内に導き易くなる。 (8) The oil return hole 40c is arranged in the tank 13 below the center line Td in the top-bottom direction and on the center side in the width direction of the tank 13. Therefore, even if the accumulator 100 is tilted and one side and the other side of the tank 13 in the width direction are different in the top-bottom direction, the oil return hole 40c tends to be lower than the liquid level 14. This makes it easier to guide the lubricating oil in the tank 13 into the oil return hole 40c.
 (第4実施形態)
 上記第3実施形態では、冷媒配管400の中間配管部402がタンクプレート200.300の側部25、35に沿って延びるように形成されている例について説明した。
(Fourth Embodiment)
In the third embodiment, an example has been described in which the intermediate pipe portion 402 of the refrigerant pipe 400 is formed so as to extend along the side portions 25 and 35 of the tank plate 200.300.
 これに代えて、アキュムレータ100において、冷媒配管400の中間配管部402がタンクプレート200.300の側部25、35から離れた位置に配置されていている第4実施形態について図28を参照して説明する。 Instead of this, in the accumulator 100, see FIG. 28 for a fourth embodiment in which the intermediate pipe portion 402 of the refrigerant pipe 400 is arranged at a position away from the side portions 25 and 35 of the tank plate 200.300. explain.
 本実施形態では、上記第1実施形態と同様に、配管入口40aは、タンク13のうち天地方向上側で、かつ幅方向中央側に配置されている。配管入口40aは、幅方向他方側に開口されている。 In the present embodiment, similarly to the first embodiment, the pipe inlet 40a is arranged on the top region improvement side and the center side in the width direction of the tank 13. The pipe inlet 40a is opened on the other side in the width direction.
 本実施形態の冷凍サイクル機器10Bと上記第3実施形態の冷凍サイクル機器10Bとは、アキュムレータ100の冷媒配管400が相違するだけで、その他の構成は、同一であるため、その他の構成の説明を省略する。 The refrigerating cycle device 10B of the present embodiment and the refrigerating cycle device 10B of the third embodiment differ only in the refrigerant pipe 400 of the accumulator 100, and the other configurations are the same. Omit.
 (第5実施形態)
 上記第4実施形態では、アキュムレータ100において、冷媒配管400の中間配管部402がタンクプレート200.300の側部25、35から離れた位置に配置されている例について説明した。
(Fifth Embodiment)
In the fourth embodiment, an example in which the intermediate pipe portion 402 of the refrigerant pipe 400 is arranged at a position away from the side portions 25 and 35 of the tank plate 200.300 in the accumulator 100 has been described.
 これに代えて、アキュムレータ100において、冷媒配管400の中間配管部402がタンクプレート200.300の側部25、35から離れた位置に配置され、かつ上配管部401がL字状に形成されている第5実施形態について図29を参照して説明する。 Instead, in the accumulator 100, the intermediate pipe portion 402 of the refrigerant pipe 400 is arranged at a position away from the side portions 25 and 35 of the tank plate 200.300, and the upper pipe portion 401 is formed in an L shape. The fifth embodiment will be described with reference to FIG. 29.
 本実施形態では、上記第1実施形態と同様に、上配管部401の配管入口40aは、タンク13のうち天地方向上側で、かつ幅方向中央側に配置されている。配管入口40aは、天地方向上側に開口されている。 In the present embodiment, similarly to the first embodiment, the pipe inlet 40a of the upper pipe portion 401 is arranged on the top region improvement side and the center side in the width direction of the tank 13. The pipe inlet 40a is opened on the improvement side of the heaven region.
 本実施形態の冷凍サイクル機器10Bと上記第4実施形態の冷凍サイクル機器10Bとは、アキュムレータ100の冷媒配管400が相違するだけで、その他の構成は、同一であるため、その他の構成の説明を省略する。 The refrigerating cycle device 10B of the present embodiment and the refrigerating cycle device 10B of the fourth embodiment differ only in the refrigerant pipe 400 of the accumulator 100, and the other configurations are the same. Omit.
 (第6実施形態)
 上記第3実施形態では、入口11からタンク13内に流入した液相冷媒が冷媒配管400の配管入口40aに流れることを抑えるために、リブ29a、29b、39bを設けた例について説明した。
(Sixth Embodiment)
In the third embodiment, an example in which ribs 29a, 29b, and 39b are provided in order to prevent the liquid phase refrigerant flowing into the tank 13 from the inlet 11 from flowing to the pipe inlet 40a of the refrigerant pipe 400 has been described.
 これに代えて、冷凍サイクル機器10Bにおいて、タンクプレート300に突起部11aが設けられている第6実施形態について図30、図31、図32を参照して説明する。 Instead of this, in the refrigeration cycle equipment 10B, a sixth embodiment in which the tank plate 300 is provided with the protrusion 11a will be described with reference to FIGS. 30, 31, and 32.
 本実施形態の冷凍サイクル機器10Bは、上記第3実施形態と実質的に同様に、タンクプレート200、300の間にインナーフィン600を配置されて構成されている。以下、本実施形態の冷凍サイクル機器10Bと上記第3実施形態の冷凍サイクル機器10Bとの間の相違点について説明する。 The refrigeration cycle device 10B of the present embodiment is configured by arranging inner fins 600 between the tank plates 200 and 300, substantially similar to the third embodiment. Hereinafter, the differences between the refrigeration cycle equipment 10B of the present embodiment and the refrigeration cycle equipment 10B of the third embodiment will be described.
 本実施形態の突起部11aは、タンクプレート300の後壁部31において、図24のリブ39b、39dの代わりに設けられたものである。突起部11aは、タンクプレート300のうち入口11に対して天地方向下側に設けられている。 The protrusion 11a of the present embodiment is provided on the rear wall portion 31 of the tank plate 300 in place of the ribs 39b and 39d of FIG. 24. The protrusion 11a is provided on the lower side of the tank plate 300 in the vertical direction with respect to the inlet 11.
 突起部11aは、タンクプレート300から方向一方側に突起するように形成されている。突起部11aは、タンクプレート300をバーリング加工によって形成されている。突起部11aは、幅方向一方側から他方側に向かうほど天地方向下側に進むように形成されている。 The protrusion 11a is formed so as to protrude in one direction from the tank plate 300. The protrusion 11a is formed by burring the tank plate 300. The protrusion 11a is formed so as to proceed downward in the vertical direction from one side in the width direction toward the other side.
 本実施形態の突起部11aは、エバポレータ5の冷媒出口からの入口11を通してタンク13内に流入された液相冷媒が冷媒配管40の配管入口40aに流れることを抑える役割を果たす。 The protrusion 11a of the present embodiment plays a role of suppressing the liquid phase refrigerant that has flowed into the tank 13 through the inlet 11 from the refrigerant outlet of the evaporator 5 from flowing to the pipe inlet 40a of the refrigerant pipe 40.
 本実施形態のリブ29bは、タンクプレート200において、図32に示すように、リブ28cに代わるリブ28dに設けられている。リブ29c、29dは、タンクプレート200の分割タンク領域122aに設けられている。リブ29c、29dは、それぞれ、タンクプレート200の前壁部21のうち厚み方向一方側が厚み方向他方側に凹んで、かつ厚み方向他方側が厚み方向他方側に凸となるように形成されている。 As shown in FIG. 32, the rib 29b of the present embodiment is provided on the rib 28d instead of the rib 28c in the tank plate 200. The ribs 29c and 29d are provided in the divided tank area 122a of the tank plate 200. The ribs 29c and 29d are formed so that one side of the front wall portion 21 of the tank plate 200 in the thickness direction is recessed in the other side in the thickness direction and the other side in the thickness direction is convex in the other side in the thickness direction.
 リブ29fは、リブ28eから厚み方向他方側に突起するように形成されている。リブ29hは、リブ28bから厚み方向他方側に突起するように形成されている。リブ29c、29d、29e、29f、29hは、冷媒配管400を厚み方向一方側から支える役割を果たす。 The rib 29f is formed so as to project from the rib 28e to the other side in the thickness direction. The rib 29h is formed so as to project from the rib 28b to the other side in the thickness direction. The ribs 29c, 29d, 29e, 29f, and 29h play a role of supporting the refrigerant pipe 400 from one side in the thickness direction.
 本実施形態のタンクプレート200の分割タンク領域122fには、リブ29eが設けられている。リブ29eは、前壁部21のうち厚み方向一方側が厚み方向他方側に凸となり、かつ厚み方向他方側が厚み方向他方側に凸となるように形成されている。 A rib 29e is provided in the divided tank area 122f of the tank plate 200 of the present embodiment. The rib 29e is formed so that one side of the front wall portion 21 in the thickness direction is convex to the other side in the thickness direction and the other side in the thickness direction is convex to the other side in the thickness direction.
 以上説明した本実施形態によれば、アキュムレータ100では、タンクプレート200、300の間には、天地方向と幅方向とに拡がる板状に形成されているインナーフィン600が設けられている。 According to the present embodiment described above, in the accumulator 100, an inner fin 600 formed in a plate shape extending in the top-bottom direction and the width direction is provided between the tank plates 200 and 300.
 よって、タンクプレート200のリブ28a、28b、28c、28d、28e、タンクプレート300のリブ38a、38b、38c、38d、38eがタンク13内の液相冷媒を壁面に沿わせて天地方向に移動させることで液相冷媒の変動を分散し抑制する。これとともに、インナーフィン600の頂部602、604、606、608がタンク13内の液相冷媒が天地方向に移動することを抑える。 Therefore, the ribs 28a, 28b, 28c, 28d, 28e of the tank plate 200 and the ribs 38a, 38b, 38c, 38d, 38e of the tank plate 300 move the liquid phase refrigerant in the tank 13 in the vertical direction along the wall surface. This disperses and suppresses fluctuations in the liquid phase refrigerant. At the same time, the tops 602, 604, 606, and 608 of the inner fin 600 suppress the liquid phase refrigerant in the tank 13 from moving in the vertical direction.
 以上により、タンク13内の液相冷媒がコンプレッサ2の入口に流れることを未然に抑えることができる。 From the above, it is possible to prevent the liquid phase refrigerant in the tank 13 from flowing to the inlet of the compressor 2.
 (第7実施形態)
 上記第6実施形態では、エバポレータ5から入口11を通してタンク13内に流入された液相冷媒が冷媒配管40の配管入口40aに入ることを抑えるために、タンクプレート300の後壁部31に突起部11aを設けた例について説明した。
(7th Embodiment)
In the sixth embodiment, a protrusion is formed on the rear wall portion 31 of the tank plate 300 in order to prevent the liquid phase refrigerant flowing into the tank 13 from the evaporator 5 through the inlet 11 from entering the pipe inlet 40a of the refrigerant pipe 40. An example in which 11a is provided has been described.
 しかし、これに代えて、エバポレータ5から入口11を通してタンク13内に流入された液相冷媒が冷媒配管40の配管入口40aに入ることを抑えるために、入口11に冷媒調整部110を設けた本第7実施形態について図33A-33Dを参照して説明する。 However, instead of this, in order to prevent the liquid phase refrigerant that has flowed into the tank 13 from the evaporator 5 through the inlet 11 from entering the pipe inlet 40a of the refrigerant pipe 40, a refrigerant adjusting unit 110 is provided at the inlet 11. A seventh embodiment will be described with reference to FIGS. 33A-33D.
 本実施形態の冷媒調整部110は、タンクプレート300の入口11に設けたバーリング111にはめ込みで設置されている。 The refrigerant adjusting unit 110 of the present embodiment is fitted into the burring 111 provided at the inlet 11 of the tank plate 300.
 冷媒調整部110の本体は、中空円筒形状で、側面の一部を開口部112としてある。開口部112は、冷媒配管入口40aの方向と異なる方向に開口されるように設置する。 The main body of the refrigerant adjusting unit 110 has a hollow cylindrical shape, and a part of the side surface thereof is an opening 112. The opening 112 is installed so as to be opened in a direction different from the direction of the refrigerant pipe inlet 40a.
 冷媒は、入口11から冷媒調整部110内に流入して冷媒調整部110の開口部112からタンク13内に排出される。 The refrigerant flows into the refrigerant adjusting unit 110 from the inlet 11, and is discharged into the tank 13 through the opening 112 of the refrigerant adjusting unit 110.
 以上により、冷媒調整部110は、エバポレータ5の冷媒出口からの入口11を通してタンク13内に流入された液相冷媒が冷媒配管40の配管入口40aに入ることを抑えることができる。 As described above, the refrigerant adjusting unit 110 can prevent the liquid phase refrigerant that has flowed into the tank 13 through the inlet 11 from the refrigerant outlet of the evaporator 5 from entering the pipe inlet 40a of the refrigerant pipe 40.
 (第8実施形態)
 上記第1実施形態では、冷媒配管40の下配管部41にリブ41a、41bを設けてフィルタ43およびオイル戻し孔40cの間に間隔を設けた例について説明した。
(8th Embodiment)
In the first embodiment, an example in which ribs 41a and 41b are provided in the lower pipe portion 41 of the refrigerant pipe 40 and a space is provided between the filter 43 and the oil return hole 40c has been described.
 しかし、これに代えて、冷媒配管40の下配管部41に縮径部403aを設けてフィルタ43およびオイル戻し孔40cの間に間隔44を設けた本第8実施形態について図34を参照にして説明する。 However, instead of this, with reference to FIG. 34, the eighth embodiment in which the lower pipe portion 41 of the refrigerant pipe 40 is provided with the reduced diameter portion 403a and the gap 44 is provided between the filter 43 and the oil return hole 40c. explain.
 冷媒配管40の下配管部41の縮径部403aは、下配管部41の縮径部403a以外の他の配管部よりも軸線ELを中心とする径方向寸法よりも小さくなっている。軸線ELは、下配管部41の軸線である。オイル戻し孔40cは、縮径部403aに設けられている。 The reduced diameter portion 403a of the lower piping portion 41 of the refrigerant pipe 40 is smaller than the radial dimension centered on the axis EL than the other piping portions other than the reduced diameter portion 403a of the lower piping portion 41. The axis EL is the axis of the lower piping portion 41. The oil return hole 40c is provided in the reduced diameter portion 403a.
 フィルタ43は、縮径部403aを覆うように円筒状に形成されている。このことにより、フィルタ43およびオイル戻し孔40cの間には、間隔44が設けられている。間隔44は、フィルタ43を通過した潤滑油をオイル戻し孔40cに導くための潤滑油流路を構成する。 The filter 43 is formed in a cylindrical shape so as to cover the reduced diameter portion 403a. As a result, an interval 44 is provided between the filter 43 and the oil return hole 40c. The interval 44 constitutes a lubricating oil flow path for guiding the lubricating oil that has passed through the filter 43 to the oil return hole 40c.
 このことにより、フィルタ43が不純物によって覆われた状態になっても、オイル戻し孔40cが不純物によって目詰まりすることを未然に防ぐことができる。 As a result, even if the filter 43 is covered with impurities, it is possible to prevent the oil return hole 40c from being clogged with impurities.
 (第9実施形態)
 上記第1実施形態では、冷媒配管40の下配管部41にリブ41a、41bを設けてフィルタ43およびオイル戻し孔40cの間に間隔を設けた例について説明した。
(9th Embodiment)
In the first embodiment, an example in which ribs 41a and 41b are provided in the lower pipe portion 41 of the refrigerant pipe 40 and a space is provided between the filter 43 and the oil return hole 40c has been described.
 しかし、これに代えて、下配管部41に対してフィルタ425、427をクリップ420により保持させる本第9実施形態について図35、図36を参照にして説明する。 However, instead of this, the ninth embodiment in which the filters 425 and 427 are held by the clips 420 with respect to the lower piping portion 41 will be described with reference to FIGS. 35 and 36.
 本第9実施形態のクリップ420は、図35に示すように、金属製の板材によって構成され、かつ天地方向下側から覆うように形成されている。クリップ420は、弾性力によって下配管部41に対してフィルタ425、427を保持する。クリップ420には、下側に開口されている窓部421が形成されている。 As shown in FIG. 35, the clip 420 of the ninth embodiment is made of a metal plate and is formed so as to cover from the lower side in the vertical direction. The clip 420 holds the filters 425 and 427 with respect to the lower piping portion 41 by elastic force. The clip 420 is formed with a window portion 421 that is open to the lower side.
 フィルタ425は、図36に示すように、下配管部41のオイル戻し孔40cを覆うように形成されている。フィルタ425は、フィルタ427を通過した潤滑油をオイル戻し孔40cに流通させる複数の冷媒流路を構成する繊維によって構成されている。 As shown in FIG. 36, the filter 425 is formed so as to cover the oil return hole 40c of the lower piping portion 41. The filter 425 is composed of fibers constituting a plurality of refrigerant flow paths that allow the lubricating oil that has passed through the filter 427 to flow through the oil return holes 40c.
 フィルタ427は、図36に示すように、フィルタ425に対して軸線ELを中心とする径方向外側に配置されている。フィルタ427は、クリップ420の窓部421を通過した潤滑油から不純物を除去する。 As shown in FIG. 36, the filter 427 is arranged on the outer side in the radial direction about the axis EL with respect to the filter 425. The filter 427 removes impurities from the lubricating oil that has passed through the window portion 421 of the clip 420.
 以上説明した本実施形態によれば、フィルタ427は、下配管部41のオイル戻し孔40cに対して軸線ELを中心とする径方向外側に配置されている。このため、フィルタ427によってクリップ420の窓部421を通過した潤滑油から不純物を除去することができる。 According to the present embodiment described above, the filter 427 is arranged radially outside the axis EL with respect to the oil return hole 40c of the lower piping portion 41. Therefore, the filter 427 can remove impurities from the lubricating oil that has passed through the window portion 421 of the clip 420.
 本実施形態では、下配管部41のオイル戻し孔40cおよびフィルタ427の間にフィルタ425が配置されている。フィルタ425は、フィルタ427を通過した潤滑油をオイル戻し孔40cに流通させる複数の潤滑油流路を構成する繊維によって構成されている。 In the present embodiment, the filter 425 is arranged between the oil return hole 40c of the lower piping portion 41 and the filter 427. The filter 425 is composed of fibers constituting a plurality of lubricating oil flow paths that allow the lubricating oil that has passed through the filter 427 to flow through the oil return holes 40c.
 以上により、フィルタ427が不純物によって覆われた状態になっても、オイル戻し孔40cが不純物によって目詰まりすることを未然に防ぐことができる。 From the above, even if the filter 427 is covered with impurities, it is possible to prevent the oil return hole 40c from being clogged with impurities.
 (第10実施形態)
 上記第9実施形態では、クリップ420および下配管部41の間にフィルタ425、427を配置した例について説明した。
(10th Embodiment)
In the ninth embodiment, an example in which the filters 425 and 427 are arranged between the clip 420 and the lower piping portion 41 has been described.
 しかし、これに代えて、クリップ420に対して軸線ELを中心とする径方向外側にフィルタ427を配置する本第10実施形態について図37、図38を参照して説明する。 However, instead of this, the tenth embodiment in which the filter 427 is arranged radially outside the axis EL with respect to the clip 420 will be described with reference to FIGS. 37 and 38.
 本実施形態のクリップ420は、図37に示すように、金属製の板材によって構成され、かつ天地方向下側から覆うように形成されている。クリップ420は、弾性力によって下配管部41に保持されている
 クリップ420の窓部421は、下配管部41のオイル戻し孔40cに連通するように配置されている。フィルタ427は、クリップ420に対して軸線ELを中心とする径方向外側に配置されている。
As shown in FIG. 37, the clip 420 of the present embodiment is made of a metal plate and is formed so as to cover from the lower side in the vertical direction. The clip 420 is held in the lower piping portion 41 by an elastic force. The window portion 421 of the clip 420 is arranged so as to communicate with the oil return hole 40c of the lower piping portion 41. The filter 427 is arranged radially outside the clip 420 about the axis EL.
 フィルタ427は、クリップ420の窓部421を覆うように配置されている。フィルタ427は、クリップ420によって支持されている。 The filter 427 is arranged so as to cover the window portion 421 of the clip 420. The filter 427 is supported by the clip 420.
 以上説明した本実施形態によれば、フィルタ427は、下配管部41のオイル戻し孔40cに対して軸線ELを中心とする径方向外側に配置されている。このため、フィルタ427によってクリップ420の窓部421を通過した潤滑油から不純物を除去することができる。 According to the present embodiment described above, the filter 427 is arranged radially outside the axis EL with respect to the oil return hole 40c of the lower piping portion 41. Therefore, the filter 427 can remove impurities from the lubricating oil that has passed through the window portion 421 of the clip 420.
 本実施形態では、下配管部41のオイル戻し孔40cおよびフィルタ427の間にクリップ420の窓部421が配置されている。クリップ420の窓部421は、フィルタ427を通過した潤滑油をオイル戻し孔40cに流通させる潤滑油流路を構成する。このことにより、フィルタ427が不純物によって覆われた状態になっても、オイル戻し孔40cが不純物によって目詰まりすることを未然に防ぐことができる。 In the present embodiment, the window portion 421 of the clip 420 is arranged between the oil return hole 40c of the lower piping portion 41 and the filter 427. The window portion 421 of the clip 420 constitutes a lubricating oil flow path that allows the lubricating oil that has passed through the filter 427 to flow through the oil return hole 40c. As a result, even if the filter 427 is covered with impurities, it is possible to prevent the oil return hole 40c from being clogged with impurities.
 (他の実施形態)
 (1)上記第1、第2の実施形態では、L字状に形成されている配管を冷媒配管40とした例について説明したが、これに代えて、次の(a)(b)(c)のようにしてもよい。(a)U字状に形成されている配管を冷媒配管40としてもよい。この冷媒配管40は、気相冷媒が入る配管入口40aと気相冷媒が出る配管出口40bとが上側に開口される。
(Other embodiments)
(1) In the first and second embodiments described above, an example in which the L-shaped pipe is used as the refrigerant pipe 40 has been described, but instead of this, the following (a), (b) and (c) have been described. ) May be used. (A) The U-shaped pipe may be used as the refrigerant pipe 40. In the refrigerant pipe 40, a pipe inlet 40a for entering the vapor phase refrigerant and a pipe outlet 40b for exiting the vapor phase refrigerant are opened on the upper side.
 この場合、車両が停止してアキュムレータ10に振動が生じていない状態でタンク13内の液相冷媒を冷媒配管40を通してコンプレッサ2の入口に流すことをより一層抑えることができる。(b)天地方向にストレートに延出する配管を冷媒配管40としてもよい。この冷媒配管40は、気相冷媒が入る配管入口40aが上側に開口し、かつ気相冷媒が出る配管出口40bが上側に開口される。(c)ストレートに延出する配管やU字状の配管以外の形状の配管を冷媒配管40としてもよい。 In this case, it is possible to further suppress the flow of the liquid phase refrigerant in the tank 13 to the inlet of the compressor 2 through the refrigerant pipe 40 in a state where the vehicle is stopped and the accumulator 10 is not vibrated. (B) The pipe extending straight in the vertical direction may be the refrigerant pipe 40. In the refrigerant pipe 40, the pipe inlet 40a into which the vapor phase refrigerant enters is opened on the upper side, and the pipe outlet 40b on which the vapor phase refrigerant is discharged is opened on the upper side. (C) The refrigerant pipe 40 may be a pipe having a shape other than the straight extending pipe or the U-shaped pipe.
 (2)上記第1~第10の実施形態では、リブ28a~28d、38a~38dによってタンク13を分割タンク領域13a~13gに仕切る例について説明した。しかし、これに代えて、図39に示すように、リブ28b、28c、38b、38cによって冷媒配管40の一部を構成してもよい。 (2) In the first to tenth embodiments described above, an example in which the tank 13 is divided into the divided tank areas 13a to 13g by the ribs 28a to 28d and 38a to 38d has been described. However, instead of this, as shown in FIG. 39, a part of the refrigerant pipe 40 may be formed by ribs 28b, 28c, 38b, 38c.
 図39の例では、リブ28b、28c、38b、38cによって形成される分割タンク領域13bが上配管部を構成する。分割タンク領域13bに下配管部41が接続されている。リブ28b、28cは、天地方向下側で接続されている。リブ38b、38cは、天地方向下側で接続されている。 In the example of FIG. 39, the divided tank region 13b formed by the ribs 28b, 28c, 38b, 38c constitutes the upper piping portion. The lower piping portion 41 is connected to the divided tank region 13b. The ribs 28b and 28c are connected on the lower side in the vertical direction. The ribs 38b and 38c are connected on the lower side in the vertical direction.
 なお、リブ28a~28d、38a~38dは、リブ28a、28b、28c、28d、およびリブ38a、38b、38c、38dを省略して記載したものである。 The ribs 28a to 28d and 38a to 38d are described by omitting the ribs 28a, 28b, 28c and 28d and the ribs 38a, 38b, 38c and 38d.
 (3)上記第1~第10の実施形態では、天地方向(すなわち、縦方向)に延びるリブ28a~28d、38a~38dを用いた例について説明したが、これに代えて次の(a)(b)(c)のようにしてもよい。 (3) In the first to tenth embodiments described above, an example using ribs 28a to 28d and 38a to 38d extending in the vertical direction (that is, the vertical direction) has been described, but instead of this, the following (a) (B) (c) may be used.
 (a)天地方向(すなわち、横方向)に延びるリブ28a~28d、38a~38dを用いてもよい。 (A) Ribs 28a to 28d and 38a to 38d extending in the vertical direction (that is, in the lateral direction) may be used.
 (b)V字状に形成されるリブ28a~28d、38a~38dを用いてもよい。(c)天地方向に交差し、かつ水平方向に交差する方向に延びるリブ28a~28d、38a~38dを用いてもよい。 (B) Ribs 28a to 28d and 38a to 38d formed in a V shape may be used. (C) Ribs 28a to 28d and 38a to 38d that intersect in the vertical direction and extend in the horizontal intersecting direction may be used.
 (4)上記第1~第10の実施形態では、タンク13内においてオイル戻し孔40cの近傍にフィルタ43を設けた例について説明したが、これに代えて、タンク13内において入口11の近傍にフィルタ43を設けてもよい。 (4) In the first to tenth embodiments described above, an example in which the filter 43 is provided in the vicinity of the oil return hole 40c in the tank 13 has been described, but instead, the filter 43 is provided in the vicinity of the inlet 11 in the tank 13. A filter 43 may be provided.
 (5)上記第1~第10の実施形態では、リブ28a~28dとリブ38a~38dとを接合した例について説明したが、これに代えて、次の(d)(e)のようにしてもよい。(d)リブ28a~28dとリブ38a~38dとがそれぞれ接合しないようにしてもよい。(e)リブ28a~28dのうち一部のリブをリブ38a~38dのうち対応するリブに接合し、かつリブ28a~28dのうち一部のリブ以外の残りのリブがリブ38a~38dのうち対応するリブに対して接合しないようにしてもよい。 (5) In the first to tenth embodiments described above, an example in which the ribs 28a to 28d and the ribs 38a to 38d are joined has been described, but instead of this, the following (d) and (e) are performed. May be good. (D) The ribs 28a to 28d and the ribs 38a to 38d may not be joined to each other. (E) Some of the ribs 28a to 28d are joined to the corresponding ribs of the ribs 38a to 38d, and the remaining ribs of the ribs 28a to 28d other than some of the ribs are of the ribs 38a to 38d. It may not be joined to the corresponding rib.
 (6)上記第1、第2の実施形態では、リブ28a~28d、38a~38d、冷媒配管40を用いてタンクプレート20、30を接合した例について説明した。しかし、これに代えて、リブ28a~28d、38a~38d以外の別部品を採用して、この別部品によってタンクプレート20、30を接合してもよい。 (6) In the first and second embodiments described above, examples of joining tank plates 20 and 30 using ribs 28a to 28d, 38a to 38d, and a refrigerant pipe 40 have been described. However, instead of this, a separate component other than the ribs 28a to 28d and 38a to 38d may be adopted, and the tank plates 20 and 30 may be joined by the separate component.
 (7)上記第2の実施形態では、タンクプレート20、30によって熱交換器用配管としてのコンデンサ用入口配管3aを形成した例について説明した。 (7) In the second embodiment described above, an example in which the inlet pipe 3a for a capacitor as a pipe for a heat exchanger is formed by the tank plates 20 and 30 has been described.
 しかし、これに代えて、熱交換器用配管としてのエバポレータ用入口配管をタンクプレート20、30によって構成してもよい。エバポレータ用入口配管は、減圧弁4から流れる低圧冷媒をエバポレータ5の入口に導くための入口配管である。エバポレータ用入口配管は、減圧弁4の出口とエバポレータ5の入口との間に接続されている。 However, instead of this, the evaporator inlet pipe as the heat exchanger pipe may be configured by the tank plates 20 and 30. The evaporator inlet pipe is an inlet pipe for guiding the low-pressure refrigerant flowing from the pressure reducing valve 4 to the inlet of the evaporator 5. The evaporator inlet pipe is connected between the outlet of the pressure reducing valve 4 and the inlet of the evaporator 5.
 (8)上記第1~第10の実施形態では、分割タンク領域13a、13b、13c、13d、13eを水平方向(すなわち、横方向)に並べた例について説明したが、これに代えて、(f)(g)のようにしてもよい。(f)分割タンク領域13a、13b、13c、13d、13eを天地方向(すなわち、縦方向)に並べてもよい。(g)天地方向に交差し、かつ水平方向に交差する方向に分割タンク領域13a、13b、13c、13d、13eを並べてもよい。 (8) In the first to tenth embodiments described above, an example in which the divided tank regions 13a, 13b, 13c, 13d, and 13e are arranged in the horizontal direction (that is, in the horizontal direction) has been described. f) It may be like (g). (F) The divided tank regions 13a, 13b, 13c, 13d, 13e may be arranged in the vertical direction (that is, in the vertical direction). (G) The divided tank regions 13a, 13b, 13c, 13d, and 13e may be arranged in a direction that intersects in the vertical direction and intersects in the horizontal direction.
 (9)上記第1~第2の実施形態では、コンデンサ用入口配管3aをタンク13に対して天地方向下側に配置した例について説明したが、これに代えて、次の(h)(i)のようにしてもよい。(h)コンデンサ用入口配管3aをタンク13に対して幅方向一方側、或いは幅方向他方側に配置してもよい。(i)コンデンサ用入口配管3aをタンク13に対して天地方向上側に配置してもよい。 (9) In the first to second embodiments described above, an example in which the capacitor inlet pipe 3a is arranged on the lower side in the vertical direction with respect to the tank 13 has been described, but instead of this, the following (h) (i) (i) ) May be used. (H) The capacitor inlet pipe 3a may be arranged on one side in the width direction or on the other side in the width direction with respect to the tank 13. (I) The capacitor inlet pipe 3a may be arranged on the top area improvement side with respect to the tank 13.
 (10)上記第1~第2の実施形態では、タンク13の入口11をタンクプレート30によって形成した例について説明したが、これに代えて、次の(i)(j)のようにしてもよい。(i)タンク13の入口11をタンクプレート20によって形成してもよい。(j)タンク13の入口11をタンクプレート20、30によって形成してもよい。 (10) In the first and second embodiments described above, an example in which the inlet 11 of the tank 13 is formed by the tank plate 30 has been described, but instead of this, the following (i) and (j) can be used. good. (I) The inlet 11 of the tank 13 may be formed by the tank plate 20. (J) The inlet 11 of the tank 13 may be formed by the tank plates 20 and 30.
 (11)上記第2の実施形態では、プレート配管部60の出口63をタンクプレート30に形成した例について説明したが、これに代えて、(k)(l)のようにしてもよい。(k)プレート配管部60の出口63をタンクプレート20に形成してもよい。(l)プレート配管部60の出口63をタンクプレート20、30によって形成してもよい。 (11) In the second embodiment described above, an example in which the outlet 63 of the plate piping portion 60 is formed on the tank plate 30 has been described, but instead of this, (k) and (l) may be used. (K) The outlet 63 of the plate piping portion 60 may be formed on the tank plate 20. (L) The outlet 63 of the plate piping portion 60 may be formed by the tank plates 20 and 30.
 (12)上記第3~第10の実施形態では、コンデンサ用入口配管3bをタンク13に対して天地方向下側に配置した例について説明したが、これに代えて、次の(m)(n)のようにしてもよい。(m)コンデンサ用入口配管3bをタンク13に対して幅方向一方側、或いは幅方向他方側に配置してもよい。(n)コンデンサ用入口配管3bをタンク13に対して天地方向上側に配置してもよい。 (12) In the third to tenth embodiments described above, an example in which the capacitor inlet pipe 3b is arranged on the lower side in the vertical direction with respect to the tank 13 has been described, but instead of this, the following (m) (n) (n) ) May be used. (M) The capacitor inlet pipe 3b may be arranged on one side in the width direction or on the other side in the width direction with respect to the tank 13. (N) The capacitor inlet pipe 3b may be arranged on the top area improvement side with respect to the tank 13.
 (13)上記第3~第10の実施形態では、上配管部401の外壁410の入口側端部411とタンクプレート200、300との間に間隔412を設けた例について説明した。 (13) In the third to tenth embodiments described above, an example in which an interval 412 is provided between the inlet side end portion 411 of the outer wall 410 of the upper piping portion 401 and the tank plates 200 and 300 has been described.
 これに代えて、上記第1、第2の実施形態において、上記第3~第10の実施形態と同様、上配管部401の外壁410の入口側端部411とタンクプレート200、300との間に間隔412を設けてもよい。 Instead, in the first and second embodiments, as in the third to tenth embodiments, between the inlet side end portion 411 of the outer wall 410 of the upper piping portion 401 and the tank plates 200 and 300. May be provided with an interval of 412.
 (14)上記第3~第10の実施形態では、タンクプレート200、300の間で入口11から配管入口40aに液相冷媒を流通させる冷媒流路を絞るためのリブ39b、リブ28a、28bを設けた例について説明した。 (14) In the third to tenth embodiments, ribs 39b, ribs 28a, and 28b for narrowing the refrigerant flow path for flowing the liquid phase refrigerant from the inlet 11 to the pipe inlet 40a are provided between the tank plates 200 and 300. The provided example has been described.
 これに代えて、上記第1、第2の実施形態において、上記第3~第10の実施形態と同様、タンクプレート200、300の間で入口11から配管入口40aに液相冷媒を流通させる冷媒流路を絞るためのリブ39b、リブ28a、28bを設けてもよい。 Instead of this, in the first and second embodiments, as in the third to tenth embodiments, the refrigerant that allows the liquid phase refrigerant to flow from the inlet 11 to the pipe inlet 40a between the tank plates 200 and 300. Ribs 39b, ribs 28a, and 28b for narrowing the flow path may be provided.
 (15)上記第3~第10の実施形態では、タンクプレート200、300の間にインナーフィン600が配置されているアキュムレータ100について説明した。しかし、これに代えて、上記第1、第2の実施形態において、上記第3~第10の実施形態と同様、アキュムレータ10において、タンクプレート20、30の間にインナーフィン600を配置してもよい。 (15) In the third to tenth embodiments described above, the accumulator 100 in which the inner fins 600 are arranged between the tank plates 200 and 300 has been described. However, instead of this, in the first and second embodiments, as in the third to tenth embodiments, the inner fins 600 may be arranged between the tank plates 20 and 30 in the accumulator 10. good.
 (16)上記第3実施形態では、入口11から液相冷媒が配管入口40aに流れることを抑制するために、リブ29a、29b、38bを設けた例を示した。上記第6実施形態では、入口11から液相冷媒が配管入口40aに流れることを抑制するために、バーリング加工によって突起部11aを入口11に対して天地方向下側に設けた例を示した。 (16) In the third embodiment, the ribs 29a, 29b, and 38b are provided in order to prevent the liquid phase refrigerant from flowing from the inlet 11 to the pipe inlet 40a. In the sixth embodiment, in order to prevent the liquid phase refrigerant from flowing from the inlet 11 to the pipe inlet 40a, an example is shown in which the protrusion 11a is provided on the lower side in the vertical direction with respect to the inlet 11 by burring.
 これに代えて、入口11から液相冷媒が配管入口40aに流れることを抑制するために、入口11から液相冷媒が配管入口40aに流れることを抑制するために、リブ29a、29b、38bと突起部11aとの双方を設けてもよい。
 (17)上記第1~第10の実施形態では、アキュムレータ10が車載空調機器を構成する例について説明したが、これにかぎらず、アキュムレータ10が車載空調機用の蒸気圧縮式冷凍サイクル1以外の他の蒸気圧縮式冷凍サイクルを構成してもよい。
 他の蒸気圧縮式冷凍サイクルとは、自動車以外の移動体用の空調機器、家庭用空調機器、ビル用空調機器、冷蔵庫など各種の冷凍機器を構成する蒸気圧縮式冷凍サイクルである。
Instead of this, in order to suppress the flow of the liquid phase refrigerant from the inlet 11 to the pipe inlet 40a, and to suppress the flow of the liquid phase refrigerant from the inlet 11 to the pipe inlet 40a, ribs 29a, 29b, 38b are used. Both with the protrusion 11a may be provided.
(17) In the first to tenth embodiments described above, an example in which the accumulator 10 constitutes an in-vehicle air conditioner has been described, but the accumulator 10 is not limited to the steam compression type refrigeration cycle 1 for the in-vehicle air conditioner. Other vapor compression refrigeration cycles may be configured.
The other vapor compression refrigeration cycle is a vapor compression refrigeration cycle that constitutes various refrigeration equipment such as air conditioners for mobile objects other than automobiles, household air conditioners, building air conditioners, and refrigerators.
 (18)上記第3~第10実施形態では、タンクプレート200のリブ28a、28b、28c、28d、28eにおける長手方向を天地方向とした例について説明した。しかし、これに代えて、リブ28a、28b、28c、28d、28eにおける長手方向としては、厚み方向に対して交差方向(例えば、直交方向)であるならば、天地方向以外の方向でもよい。タンクプレート200のリブ38a、38b、38c、38d、38eの長手方向も同様に、厚み方向に対して交差方向(例えば、直交方向)であるならば、天地方向以外の方向でもよい。
 (19)上記第3~第10実施形態では、インナーフィン600の頂部601、602、603、604、605、606、607、608、609の長手方向を幅方向とした例について説明した。
 しかし、これに代えて、インナーフィン600の頂部601、602、603、604、605、606、607、608、609の長手方向としては、厚み方向に対して交差方向(例えば、直交方向)であるならば、幅方向以外の方向でもよい。
 (20)なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
(18) In the third to tenth embodiments, an example in which the longitudinal direction of the ribs 28a, 28b, 28c, 28d, 28e of the tank plate 200 is the top-bottom direction has been described. However, instead of this, the longitudinal direction of the ribs 28a, 28b, 28c, 28d, 28e may be a direction other than the top-bottom direction as long as it is an intersecting direction (for example, an orthogonal direction) with respect to the thickness direction. Similarly, the longitudinal direction of the ribs 38a, 38b, 38c, 38d, 38e of the tank plate 200 may be a direction other than the top-bottom direction as long as it is an intersecting direction (for example, an orthogonal direction) with respect to the thickness direction.
(19) In the third to tenth embodiments, an example in which the longitudinal direction of the tops 601, 602, 603, 604, 605, 606, 607, 608, 609 of the inner fin 600 is the width direction has been described.
However, instead of this, the longitudinal direction of the tops 601, 602, 603, 604, 605, 606, 607, 608, 609 of the inner fin 600 is an intersecting direction (for example, an orthogonal direction) with respect to the thickness direction. If so, it may be in a direction other than the width direction.
(20) The present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. Further, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle. stomach. Further, in each of the above-described embodiments, when numerical values such as the number, numerical values, quantities, and ranges of the constituent elements of the embodiments are mentioned, when it is clearly stated that they are particularly essential, and in principle, the number is clearly limited to a specific number. It is not limited to the specific number except when it is done. Further, in each of the above embodiments, when referring to the shape, positional relationship, etc. of a component or the like, the shape, unless otherwise specified or limited in principle to a specific shape, positional relationship, etc. It is not limited to the positional relationship.
 (まとめ)
 上記第1実施形態、第2実施形態、および他の実施形態の一部または全部に記載された第1の観点によれば、冷凍サイクル機器は、冷凍サイクルを構成する冷凍サイクル機器であって、板状に形成されている第1タンクプレートを備える。
(summary)
According to the first aspect described in some or all of the first embodiment, the second embodiment, and the other embodiments, the refrigerating cycle device is a refrigerating cycle device constituting the refrigerating cycle. A first tank plate formed in a plate shape is provided.
 冷凍サイクル機器は、板状に形成され、かつ第1タンクプレートに対して対向するように配置されて、第1タンクプレートとともに、タンク入口から流入される気液二相冷媒を気相冷媒と液相冷媒に分離して貯めるタンクを形成する第2タンクプレートを備える。 冷凍サイクル機器は、第1タンクプレートおよび第2タンクプレートの間に配置され、タンク内の気相冷媒が入る配管入口と、タンクの外側に配置される配管出口とを備える冷媒配管を備える。冷媒配管は、タンク内の気相冷媒を配管入口および配管出口を通してタンクの外側に排出する。 The refrigeration cycle equipment is formed in a plate shape and is arranged so as to face the first tank plate, and together with the first tank plate, the gas-liquid two-phase refrigerant flowing in from the tank inlet is the gas-liquid refrigerant and the liquid. A second tank plate is provided to form a tank that is separated and stored in the phase refrigerant. The refrigeration cycle equipment is arranged between the first tank plate and the second tank plate, and includes a refrigerant pipe having a pipe inlet for entering the vapor phase refrigerant in the tank and a pipe outlet arranged outside the tank. The refrigerant pipe discharges the vapor phase refrigerant in the tank to the outside of the tank through the pipe inlet and the pipe outlet.
 第2の観点によれば、第1タンクプレートおよび第2タンクプレートが並ぶ方向を並び方向とした場合において、冷媒配管は、第1タンクプレートのうち並び方向で第2タンクプレート側に接合されている。さらに冷媒配管は、第2タンクプレートのうち並び方向で第1タンクプレート側に接合されている。 According to the second viewpoint, when the direction in which the first tank plate and the second tank plate are lined up is the line-up direction, the refrigerant pipes are joined to the second tank plate side in the line-up direction of the first tank plate. There is. Further, the refrigerant pipe is joined to the first tank plate side in the alignment direction of the second tank plate.
 したがって、第1タンクプレートおよび第2タンクプレートの間の強度、すなわち、冷凍サイクル機器の強度を確保することができる。 Therefore, the strength between the first tank plate and the second tank plate, that is, the strength of the refrigeration cycle equipment can be ensured.
 第3の観点によれば、冷媒配管は、L字状に形成されている。 According to the third viewpoint, the refrigerant pipe is formed in an L shape.
 第4の観点によれば、タンク内を複数の分割タンク領域に仕切る仕切部を備える。複数の分割タンク領域は、それぞれ、液相冷媒を貯める。 According to the fourth viewpoint, a partition portion for partitioning the inside of the tank into a plurality of divided tank areas is provided. Each of the plurality of split tank areas stores a liquid phase refrigerant.
 これにより、冷凍サイクル機器が振動してもタンク内の液相冷媒の液面が振動することが抑えられる。このため、タンク内の液相冷媒が冷媒配管を通してタンクの外側に排出されることを抑えることができる。 This prevents the liquid level of the liquid phase refrigerant in the tank from vibrating even if the refrigeration cycle equipment vibrates. Therefore, it is possible to prevent the liquid phase refrigerant in the tank from being discharged to the outside of the tank through the refrigerant pipe.
 第5の観点によれば、第1タンクプレートおよび第2タンクプレートは、天地方向と水平方向とに拡がる板状に形成されている。複数の分割タンク領域は、仕切部によって、水平方向に並ぶように形成されている。 According to the fifth viewpoint, the first tank plate and the second tank plate are formed in a plate shape extending in the vertical direction and the horizontal direction. The plurality of divided tank areas are formed so as to be arranged in the horizontal direction by the partition portion.
 これにより、冷凍サイクル機器が振動してもタンク内の液相冷媒の液面が振動することがより一層抑えられる。 As a result, even if the refrigeration cycle equipment vibrates, the vibration of the liquid level of the liquid phase refrigerant in the tank is further suppressed.
 第6の観点によれば、複数の分割タンク領域は、それぞれ、仕切部によって、天地方向に延びるように形成されている。 According to the sixth viewpoint, each of the plurality of divided tank areas is formed so as to extend in the vertical direction by the partition portion.
 第7の観点によれば、第1タンクプレートおよび第2タンクプレートのうち一方のタンクプレートには、他方のタンクプレート側に突起するリブが設けられている。リブは、他方のタンクプレートに接することにより他方のタンクプレートとともに仕切部を形成する。 したがって、仕切部を第1タンクプレート、第2タンクプレートによって構成することができるので、部品点数の増加を抑えることができる。 According to the seventh viewpoint, one of the first tank plate and the second tank plate is provided with a rib protruding toward the other tank plate. The ribs contact the other tank plate to form a partition together with the other tank plate. Therefore, since the partition portion can be composed of the first tank plate and the second tank plate, it is possible to suppress an increase in the number of parts.
 第8の観点によれば、一方のタンクプレートに形成されているリブが、他方のタンクプレートに接合されている。 According to the eighth viewpoint, the rib formed on one tank plate is joined to the other tank plate.
 したがって、一方のタンクプレートと他方のタンクプレートとが接合されるため、冷凍サイクル機器の強度を大きくすることができる。 Therefore, since one tank plate and the other tank plate are joined, the strength of the refrigeration cycle equipment can be increased.
 第9の観点によれば、冷凍サイクル機器は、第1タンクプレート、或いは第2タンクプレートの間に配置されるインナーフィンを備える。 According to the ninth aspect, the refrigeration cycle equipment includes an inner fin arranged between the first tank plate or the second tank plate.
 インナーフィンは波状形状であり、その頂部がそれぞれ第1プレートおよび第2プレートに接合されている。 The inner fin has a wavy shape, and its top is joined to the first plate and the second plate, respectively.
 第10の観点によれば、第1タンクプレート(200)および第2タンクプレート(300)には、インナーフィン側に向けて凸となるリブ(38a~38e、28a~28e)が第1方向に亘って設けられている。インナーフィンには、頂部が第2方向に亘って設けられている。リブの第1方向と頂部の第2方向とが平行にならないように、リブと頂部とが接合されている。 According to the tenth viewpoint, the first tank plate (200) and the second tank plate (300) have ribs (38a to 38e, 28a to 28e) that are convex toward the inner fin side in the first direction. It is provided over. The inner fin is provided with a top portion extending in the second direction. The rib and the top are joined so that the first direction of the rib and the second direction of the top are not parallel.
 第11の観点によれば、タンクは、天地方向と水平方向とに拡がるように形成されている。配管入口は、タンクの天地方向の中心線に対して上側で、かつタンクの水平方向の中央側に配置されている。 According to the eleventh viewpoint, the tank is formed so as to expand in the vertical direction and the horizontal direction. The pipe inlet is located above the center line in the vertical direction of the tank and on the center side in the horizontal direction of the tank.
 第12の観点によれば、冷媒配管の外壁のうち配管入口側に形成される入口側端部と第1タンクプレートとの間に間隔が形成され、入口側端部と第2タンクプレートとの間に間隔が形成されている。 According to the twelfth aspect, a gap is formed between the inlet side end formed on the pipe inlet side and the first tank plate in the outer wall of the refrigerant pipe, and the inlet side end and the second tank plate are formed. There is an interval between them.
 第13の観点によれば、第1タンクプレートおよび第2タンクプレートのうち一方のタンクプレートには、他方のタンクプレートに向けて突起して、タンク入口から冷媒配管の配管入口に液相冷媒が流れることを抑える流入抑制部を備える。 According to the thirteenth viewpoint, one of the first tank plate and the second tank plate projects toward the other tank plate, and the liquid-phase refrigerant is applied from the tank inlet to the pipe inlet of the refrigerant pipe. It is provided with an inflow suppression unit that suppresses the flow.
 第14の観点によれば、冷媒配管のうち配管入口および配管出口の間には、気相冷媒を流通させる冷媒流路が設けられている。冷媒配管には、タンク内の液相冷媒に含まれる潤滑油が冷媒流路内に入るオイル戻し孔が形成されている。タンク内の潤滑油が、冷媒配管のオイル戻し孔、冷媒流路、および配管出口を通してタンクの外側に排出される。 According to the fourteenth viewpoint, a refrigerant flow path for flowing a vapor phase refrigerant is provided between the pipe inlet and the pipe outlet in the refrigerant pipe. The refrigerant pipe is formed with an oil return hole through which the lubricating oil contained in the liquid phase refrigerant in the tank enters the refrigerant flow path. Lubricating oil in the tank is discharged to the outside of the tank through the oil return hole of the refrigerant pipe, the refrigerant flow path, and the pipe outlet.
 したがって、潤滑油を冷媒配管を通して外側に良好に排出することができる。 Therefore, the lubricating oil can be satisfactorily discharged to the outside through the refrigerant pipe.
 第15の観点によれば、オイル戻し孔は、タンクの天地方向の中心線に対して下側で、かつタンクの水平方向の中央側に配置されている。 According to the fifteenth viewpoint, the oil return hole is arranged below the center line in the vertical direction of the tank and on the central side in the horizontal direction of the tank.
 したがって、冷凍サイクル機器が水平方向に対して傾いた場合でも、オイル戻し孔に潤滑油が入り易くなる。 Therefore, even if the refrigeration cycle equipment is tilted with respect to the horizontal direction, the lubricating oil can easily enter the oil return hole.
 第16の観点によれば、タンク内に配置され、オイル戻し孔が潤滑油に含まれる不純物で目詰まりを生じることを抑えるために、オイル戻し孔に流れる潤滑油から不純物を除くフィルタを備える。 According to the 16th viewpoint, a filter is provided which is arranged in the tank and removes impurities from the lubricating oil flowing through the oil return holes in order to prevent the oil return holes from being clogged with impurities contained in the lubricating oil.
 したがって、オイル戻し孔が不純物によって目詰まりを生じることを抑えることができる。 Therefore, it is possible to prevent the oil return hole from being clogged by impurities.
 第17の観点によれば、フィルタは、オイル戻し孔を覆うように形成されている。 According to the 17th viewpoint, the filter is formed so as to cover the oil return hole.
 第18の観点によれば、フィルタは、オイル戻し孔との間に間隔を空けて配置されている。 According to the eighteenth viewpoint, the filters are arranged at intervals from the oil return holes.
 したがって、フィルタが不純物によって覆われた場合でも、オイル戻し孔が不純物によって目詰まりを生じることを抑えることができる。 Therefore, even if the filter is covered with impurities, it is possible to prevent the oil return holes from being clogged by impurities.
 第19の観点によれば、第1タンクプレートおよび第2タンクプレートは、タンク内で気相冷媒と液相冷媒とを分離して貯めつつタンク内から冷媒配管を通して気相冷媒を排出するアキュムレータを構成する。 According to the nineteenth viewpoint, the first tank plate and the second tank plate provide an accumulator that separates and stores the gas-phase refrigerant and the liquid-phase refrigerant in the tank and discharges the gas-phase refrigerant from the tank through the refrigerant pipe. Constitute.
 さらに、第1タンクプレートおよび第2タンクプレートは、熱交換器に接続される熱交換器用配管を形成する。アキュムレータおよび熱交換器用配管は、一体成形物を構成している。 Further, the first tank plate and the second tank plate form a heat exchanger pipe connected to the heat exchanger. The accumulator and heat exchanger piping constitute an integrally molded product.
 第20の観点によれば、第1タンクプレートおよび第2タンクプレートが並ぶ方向に直交する方向を所定方向とした場合において、熱交換器用配管は、タンクに対して所定方向に配置されている。 According to the twentieth viewpoint, the heat exchanger pipes are arranged in a predetermined direction with respect to the tank when the direction orthogonal to the direction in which the first tank plate and the second tank plate are lined up is set as a predetermined direction.
 第21の観点によれば、熱交換器は、冷凍サイクルを構成して冷媒を熱交換によって冷却させるコンデンサである。熱交換器用配管は、コンプレッサから吐出される高圧冷媒をコンデンサの入口に導くための配管である。 According to the 21st viewpoint, the heat exchanger is a capacitor that constitutes a refrigeration cycle and cools the refrigerant by heat exchange. The heat exchanger piping is a piping for guiding the high-pressure refrigerant discharged from the compressor to the inlet of the condenser.

Claims (21)

  1.  冷凍サイクルを構成する冷凍サイクル機器であって、
     板状に形成されている第1タンクプレート(20、200)と、
     板状に形成され、かつ前記第1タンクプレートに対して対向するように配置されて、前記第1タンクプレートとともに、タンク入口(11)から流入される気液二相冷媒を気相冷媒と液相冷媒に分離して貯めるタンク(13)を形成する第2タンクプレート(30、300)と、
     前記第1タンクプレートおよび前記第2タンクプレートの間に配置され、前記タンク内の前記気相冷媒が入る配管入口(40a)と、前記タンクの外側に配置される配管出口(40b)とを備え、前記タンク内の前記気相冷媒を前記配管入口および前記配管出口を通して前記タンクの外側に排出する冷媒配管(40、400)と、
     を備える冷凍サイクル機器。
    Refrigeration cycle equipment that composes the refrigeration cycle
    The first tank plate (20, 200) formed in a plate shape and
    The gas-liquid two-phase refrigerant which is formed in a plate shape and is arranged so as to face the first tank plate and flows in from the tank inlet (11) together with the first tank plate is a gas-phase refrigerant and a liquid. A second tank plate (30, 300) forming a tank (13) that is separated and stored in the phase refrigerant, and
    A pipe inlet (40a) arranged between the first tank plate and the second tank plate and into which the gas phase refrigerant in the tank enters and a pipe outlet (40b) arranged outside the tank are provided. , The refrigerant pipes (40, 400) that discharge the gas phase refrigerant in the tank to the outside of the tank through the pipe inlet and the pipe outlet.
    Refrigeration cycle equipment equipped with.
  2.  前記第1タンクプレートおよび前記第2タンクプレートが並ぶ方向を並び方向とした場合において、
     前記冷媒配管は、前記第1タンクプレートのうち前記並び方向で前記第2タンクプレート側に接合され、
     さらに前記冷媒配管は、前記第2タンクプレートのうち前記並び方向で前記第1タンクプレート側に接合されている請求項1に記載の冷凍サイクル機器。
    When the direction in which the first tank plate and the second tank plate are lined up is defined as the line-up direction,
    The refrigerant pipe is joined to the second tank plate side of the first tank plate in the alignment direction.
    The refrigerating cycle device according to claim 1, wherein the refrigerant pipe is joined to the first tank plate side of the second tank plate in the alignment direction.
  3.  前記冷媒配管は、L字状に形成されている請求項1または2に記載の冷凍サイクル機器。 The refrigerating cycle device according to claim 1 or 2, wherein the refrigerant pipe is formed in an L shape.
  4.  前記タンク内を複数の分割タンク領域(13a、13b、13c、13d、13e)に仕切る仕切部(28a、28b、28c、28d、38a、38b、38c、38d)を備え、
     前記複数の分割タンク領域は、それぞれ、前記液相冷媒を貯める請求項1ないし3のいずれか1つに記載の冷凍サイクル機器。
    A partition portion (28a, 28b, 28c, 28d, 38a, 38b, 38c, 38d) for partitioning the inside of the tank into a plurality of divided tank areas (13a, 13b, 13c, 13d, 13e) is provided.
    The refrigeration cycle device according to any one of claims 1 to 3, wherein each of the plurality of divided tank regions stores the liquid phase refrigerant.
  5.  前記第1タンクプレートおよび前記第2タンクプレートは、天地方向と水平方向とに拡がる板状に形成されており、
     前記複数の分割タンク領域は、前記仕切部によって、前記水平方向に並ぶように形成されている請求項4に記載の冷凍サイクル機器。
    The first tank plate and the second tank plate are formed in a plate shape that extends in the vertical direction and the horizontal direction.
    The refrigeration cycle apparatus according to claim 4, wherein the plurality of divided tank regions are formed so as to be arranged in the horizontal direction by the partition portion.
  6.  前記複数の分割タンク領域は、それぞれ、前記仕切部によって、前記天地方向に延びるように形成されている請求項5に記載の冷凍サイクル機器。 The refrigeration cycle device according to claim 5, wherein each of the plurality of divided tank areas is formed so as to extend in the vertical direction by the partition portion.
  7.  前記第1タンクプレートおよび前記第2タンクプレートのうち、一方のタンクプレートには、他方のタンクプレート側に突起するリブが設けられており、
     前記リブは前記他方のタンクプレートに接することにより前記他方のタンクプレートとともに前記仕切部を形成する請求項4ないし6のいずれか1つに記載の冷凍サイクル機器。
    Of the first tank plate and the second tank plate, one tank plate is provided with a rib protruding toward the other tank plate side.
    The refrigeration cycle apparatus according to any one of claims 4 to 6, wherein the ribs contact the other tank plate to form the partition portion together with the other tank plate.
  8.  前記リブが前記他方のタンクプレートに接合されている請求項7に記載の冷凍サイクル機器。 The refrigeration cycle device according to claim 7, wherein the rib is joined to the other tank plate.
  9.  前記第1タンクプレート(200)および前記第2タンクプレート(300)の間に配置されて波状に形成されているインナーフィン(600)を備え、
     前記インナーフィンの頂部(601~609)が前記第1タンクプレート或いは前記第2タンクプレートに接合されている請求項1ないし3のいずれか1つに記載の冷凍サイクル機器。
    An inner fin (600) arranged between the first tank plate (200) and the second tank plate (300) and formed in a wavy shape is provided.
    The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the tops (601 to 609) of the inner fins are joined to the first tank plate or the second tank plate.
  10.  前記第1タンクプレートおよび前記第2タンクプレートには、前記インナーフィン側に向けて凸となるリブ(38a~38e、28a~28e)が第1方向に亘って設けられ、
     前記インナーフィンには、前記頂部が第2方向に亘って設けられ、
     前記リブの前記第1方向と前記インナーフィンの前記頂部の前記第2方向とが平行にならないように、前記リブと前記頂部とが接合されている請求項9に記載の冷凍サイクル機器。
    The first tank plate and the second tank plate are provided with ribs (38a to 38e, 28a to 28e) that are convex toward the inner fin side in the first direction.
    The inner fin is provided with the top portion extending in the second direction.
    The refrigeration cycle device according to claim 9, wherein the rib and the top are joined so that the first direction of the rib and the second direction of the top of the inner fin are not parallel to each other.
  11.  前記タンクは、天地方向と水平方向とに拡がるように形成されており、
     前記配管入口は、前記タンクの前記天地方向の中心線(Td)に対して上側で、かつ前記タンクの前記水平方向の中央側に配置されている請求項9または10に記載の冷凍サイクル機器。
    The tank is formed so as to expand in the vertical direction and the horizontal direction.
    The refrigeration cycle device according to claim 9 or 10, wherein the pipe inlet is located above the center line (Td) of the tank in the vertical direction and on the center side of the tank in the horizontal direction.
  12.  前記冷媒配管の外壁(410)のうち前記配管入口側に形成される入口側端部(411)と前記第1タンクプレートとの間に間隔(412)が形成され、前記入口側端部と前記第2タンクプレートとの間に間隔(413)が形成されている請求項1ないし11のいずれか1つに記載の冷凍サイクル機器。 A gap (412) is formed between the inlet side end (411) formed on the pipe inlet side of the outer wall (410) of the refrigerant pipe and the first tank plate, and the inlet side end and the inlet side end are described. The refrigerating cycle apparatus according to any one of claims 1 to 11, wherein an interval (413) is formed between the second tank plate and the second tank plate.
  13.  前記第1タンクプレートおよび前記第2タンクプレートのうち一方のタンクプレートには、他方のタンクプレートに向けて突起して、前記タンク入口から前記冷媒配管の前記配管入口に前記液相冷媒が流れることを抑える流入抑制部(29a、29b、39b)を備える請求項1ないし11のいずれか1つに記載の冷凍サイクル機器。 The liquid-phase refrigerant flows from the tank inlet to the pipe inlet of the refrigerant pipe so as to project toward the other tank plate on one of the first tank plate and the second tank plate. The refrigerating cycle apparatus according to any one of claims 1 to 11, further comprising an inflow suppressing unit (29a, 29b, 39b) for suppressing.
  14.  前記冷媒配管のうち前記配管入口および前記配管出口の間には、前記気相冷媒を流通させる冷媒流路が設けられており、
     前記冷媒配管には、前記タンク内の前記液相冷媒に含まれる潤滑油が前記冷媒流路内に入るオイル戻し孔(40c)が形成されており、
     前記タンク内の前記潤滑油が、前記冷媒配管の前記オイル戻し孔、前記冷媒流路、および前記配管出口を通して前記タンクの外側に排出される請求項1ないし13のいずれか1つに記載の冷凍サイクル機器。
    A refrigerant flow path through which the gas phase refrigerant flows is provided between the pipe inlet and the pipe outlet of the refrigerant pipe.
    The refrigerant pipe is formed with an oil return hole (40c) in which the lubricating oil contained in the liquid phase refrigerant in the tank enters the refrigerant flow path.
    The refrigeration according to any one of claims 1 to 13, wherein the lubricating oil in the tank is discharged to the outside of the tank through the oil return hole of the refrigerant pipe, the refrigerant flow path, and the outlet of the pipe. Cycle equipment.
  15.  前記オイル戻し孔は、前記タンクの天地方向の中心線(Td)に対して下側で、かつ前記タンクの水平方向の中央側に配置されている請求項14に記載の冷凍サイクル機器。 The refrigerating cycle device according to claim 14, wherein the oil return hole is arranged below the center line (Td) in the vertical direction of the tank and on the central side in the horizontal direction of the tank.
  16.  前記タンク内に配置され、前記オイル戻し孔が前記潤滑油に含まれる不純物で目詰まりを生じることを抑えるために、前記オイル戻し孔に流れる前記潤滑油から前記不純物を除くフィルタ(43)を備える請求項15に記載の冷凍サイクル機器。 A filter (43) is provided which is arranged in the tank and removes the impurities from the lubricating oil flowing through the oil return holes in order to prevent the oil return holes from being clogged with impurities contained in the lubricating oil. The refrigeration cycle device according to claim 15.
  17.  前記フィルタは、前記オイル戻し孔を覆うように形成されている請求項16に記載の冷凍サイクル機器。 The refrigeration cycle device according to claim 16, wherein the filter is formed so as to cover the oil return hole.
  18.  前記フィルタは、前記オイル戻し孔との間に間隔(44)を空けて配置されている請求項16または17に記載の冷凍サイクル機器。 The refrigeration cycle device according to claim 16 or 17, wherein the filter is arranged with a space (44) between the filter and the oil return hole.
  19.  前記第1タンクプレートおよび前記第2タンクプレートは、前記タンク内で前記気相冷媒と前記液相冷媒とを分離して貯めつつ前記タンク内から前記冷媒配管を通して前記気相冷媒を排出するアキュムレータを構成し
     さらに前記第1タンクプレートおよび前記第2タンクプレートは、熱交換器(3)に接続される熱交換器用配管(3a)を形成し、
     前記アキュムレータおよび前記熱交換器用配管は、一体成形物を構成している請求項1ないし18のいずれか1つに記載の冷凍サイクル機器。
    The first tank plate and the second tank plate provide an accumulator that separates and stores the gas-phase refrigerant and the liquid-phase refrigerant in the tank and discharges the gas-phase refrigerant from the tank through the refrigerant pipe. Further, the first tank plate and the second tank plate form a heat exchanger pipe (3a) connected to the heat exchanger (3).
    The refrigeration cycle device according to any one of claims 1 to 18, wherein the accumulator and the heat exchanger piping constitute an integrally molded product.
  20.  前記第1タンクプレートおよび前記第2タンクプレートが並ぶ方向に直交する方向を所定方向とした場合において、
     前記熱交換器用配管は、前記タンクに対して前記所定方向に配置されている請求項19に記載の冷凍サイクル機器。
    When the direction orthogonal to the direction in which the first tank plate and the second tank plate are lined up is set as a predetermined direction,
    The refrigeration cycle device according to claim 19, wherein the heat exchanger piping is arranged in the predetermined direction with respect to the tank.
  21.  前記熱交換器は、前記冷凍サイクルを構成して冷媒を熱交換によって冷却させるコンデンサ(3)であり、
     前記熱交換器用配管は、コンプレッサ(2)から吐出される高圧冷媒を前記コンデンサの入口に導くための配管である請求項19または20に記載の冷凍サイクル機器。 前記アキュムレータおよび前記熱交換器用配管は、一体成形物を構成している請求項1ないし18のいずれか1つに記載の冷凍サイクル機器。
    The heat exchanger is a capacitor (3) that constitutes the refrigeration cycle and cools the refrigerant by heat exchange.
    The refrigeration cycle device according to claim 19 or 20, wherein the heat exchanger piping is a piping for guiding the high-pressure refrigerant discharged from the compressor (2) to the inlet of the condenser. The refrigeration cycle device according to any one of claims 1 to 18, wherein the accumulator and the heat exchanger piping constitute an integrally molded product.
PCT/JP2021/010055 2020-03-13 2021-03-12 Refrigeration cycle device WO2021182610A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020044248 2020-03-13
JP2020-044248 2020-03-13
JP2020-198663 2020-11-30
JP2020198663A JP2021148419A (en) 2020-03-13 2020-11-30 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2021182610A1 true WO2021182610A1 (en) 2021-09-16

Family

ID=77671830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010055 WO2021182610A1 (en) 2020-03-13 2021-03-12 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2021182610A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107660A (en) * 1976-03-05 1977-09-09 Hitachi Ltd Heat pump type air conditioner
JP2003014336A (en) * 2001-06-29 2003-01-15 Japan Climate Systems Corp Condenser
JP2007046798A (en) * 2005-08-05 2007-02-22 Denso Corp Gas-liquid separator and its manufacturing method
JP2009133566A (en) * 2007-11-30 2009-06-18 Calsonic Kansei Corp Gas-liquid separator
JP2011099593A (en) * 2009-11-04 2011-05-19 Daikin Industries Ltd Accumulator
JP2014145560A (en) * 2013-01-30 2014-08-14 Denso Corp Liquid storage device and liquid storage device integrated heat exchanger
WO2017212531A1 (en) * 2016-06-06 2017-12-14 三菱電機株式会社 Refrigeration cycle device
JP2018146153A (en) * 2017-03-03 2018-09-20 株式会社デンソー Condenser

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107660A (en) * 1976-03-05 1977-09-09 Hitachi Ltd Heat pump type air conditioner
JP2003014336A (en) * 2001-06-29 2003-01-15 Japan Climate Systems Corp Condenser
JP2007046798A (en) * 2005-08-05 2007-02-22 Denso Corp Gas-liquid separator and its manufacturing method
JP2009133566A (en) * 2007-11-30 2009-06-18 Calsonic Kansei Corp Gas-liquid separator
JP2011099593A (en) * 2009-11-04 2011-05-19 Daikin Industries Ltd Accumulator
JP2014145560A (en) * 2013-01-30 2014-08-14 Denso Corp Liquid storage device and liquid storage device integrated heat exchanger
WO2017212531A1 (en) * 2016-06-06 2017-12-14 三菱電機株式会社 Refrigeration cycle device
JP2018146153A (en) * 2017-03-03 2018-09-20 株式会社デンソー Condenser

Similar Documents

Publication Publication Date Title
JP6722242B2 (en) Condenser
JP5664063B2 (en) Condenser
US9200822B2 (en) Evaporator
US5097900A (en) Condenser having partitions for changing the refrigerant flow direction
JP5497419B2 (en) Combined internal heat exchanger and accumulator
JP2012154604A (en) Condenser
JP4222137B2 (en) Radiator
JP2021148419A (en) Refrigeration cycle apparatus
WO2021182610A1 (en) Refrigeration cycle device
JP2000227265A (en) Refrigerant condenser integrated with liquid receiver
JP4690883B2 (en) Heat exchanger and air conditioner
US8899073B2 (en) Parallel plate type refrigerant storage device
JP2001174103A (en) Refrigerant condenser
KR20040086241A (en) Refrigeration system and its condensing apparatus
KR101144262B1 (en) Condenser
KR102653343B1 (en) Condenser
WO2014119272A1 (en) Liquid reservoir and heat exchanger with integrated liquid reservoir
JP3955766B2 (en) Heat exchanger with receiver tank, receiver tank coupling member, receiver tank assembly structure of heat exchanger, and refrigeration system
JP5746872B2 (en) Capacitor
JP3922080B2 (en) Condenser with integrated receiver
JP3633030B2 (en) Evaporator for air conditioner
US11885569B2 (en) Heat exchanger
KR101461077B1 (en) Heat exchanger
WO2020110638A1 (en) Heat exchanger
JP5753694B2 (en) Capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767768

Country of ref document: EP

Kind code of ref document: A1