WO2021181953A1 - 画像内のホールパターンの探索方法、パターン検査方法、パターン検査装置、及び画像内のホールパターンの探索装置 - Google Patents

画像内のホールパターンの探索方法、パターン検査方法、パターン検査装置、及び画像内のホールパターンの探索装置 Download PDF

Info

Publication number
WO2021181953A1
WO2021181953A1 PCT/JP2021/003882 JP2021003882W WO2021181953A1 WO 2021181953 A1 WO2021181953 A1 WO 2021181953A1 JP 2021003882 W JP2021003882 W JP 2021003882W WO 2021181953 A1 WO2021181953 A1 WO 2021181953A1
Authority
WO
WIPO (PCT)
Prior art keywords
contour line
candidates
line position
pixel
image
Prior art date
Application number
PCT/JP2021/003882
Other languages
English (en)
French (fr)
Inventor
杉原 真児
Original Assignee
株式会社ニューフレアテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニューフレアテクノロジー filed Critical 株式会社ニューフレアテクノロジー
Publication of WO2021181953A1 publication Critical patent/WO2021181953A1/ja
Priority to US17/817,517 priority Critical patent/US20220375195A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/751Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Definitions

  • JP2020-041385 application number
  • JP2020-041385 application number
  • One aspect of the present invention relates to a hole pattern search method in an image, a pattern inspection method, a pattern inspection device, and a hole pattern search device in an image.
  • an inspection device that inspects using a secondary electron image of a pattern emitted by irradiating a substrate with a multi-beam using an electron beam, and an inspection device that inspects using an optical image of a pattern obtained by irradiating a substrate with ultraviolet rays. Or related to those inspection methods.
  • the circuit line width required for semiconductor elements has become narrower and narrower. Further, improvement of yield is indispensable for manufacturing LSI, which requires a large manufacturing cost.
  • the patterns constituting the LSI are approaching the order of 10 nanometers or less, and the dimensions that must be detected as pattern defects are extremely small. Therefore, it is necessary to improve the accuracy of the pattern inspection apparatus for inspecting the defects of the ultrafine pattern transferred on the semiconductor wafer.
  • one of the major factors for reducing the yield is a pattern defect of a mask used when exposing and transferring an ultrafine pattern on a semiconductor wafer by photolithography technology. Therefore, it is required to improve the accuracy of the pattern inspection apparatus for inspecting defects of the transfer mask used in LSI manufacturing.
  • inspection is performed by comparing a measurement image obtained by imaging a pattern formed on a substrate such as a semiconductor wafer or a lithography mask with design data or a measurement image obtained by imaging the same pattern on the substrate.
  • the method is known.
  • a pattern inspection method "die to die inspection” in which measurement image data obtained by imaging the same pattern in different places on the same substrate are compared with each other, or a design image based on pattern-designed design data.
  • die to database (die database) inspection” that generates data (reference image) and compares this with the measurement image that is the measurement data obtained by imaging the pattern.
  • the captured image is sent to the comparison circuit as measurement data.
  • the comparison circuit after the images are aligned with each other, the measurement data and the reference data are compared according to an appropriate algorithm, and if they do not match, it is determined that there is a pattern defect.
  • the pattern inspection device described above includes a device that irradiates a substrate to be inspected with a laser beam to image a transmitted image or a reflected image, and scans the substrate to be inspected with a primary electron beam.
  • Development of an inspection device that acquires a pattern image by detecting secondary electrons emitted from the substrate to be inspected with irradiation of the secondary electron beam is also in progress.
  • the contour line of the pattern in the image is extracted instead of comparing the pixel values, and the contour line of the reference image is used. It has been studied to use the distance of the above as a determination index (see, for example, Patent Document 1). However, it takes time to extract the hole pattern from the image with high accuracy. Therefore, highly accurate hole detection is required while shortening the processing time.
  • One aspect of the present invention provides a method and an apparatus capable of highly accurate hole detection while shortening the processing time.
  • the method for searching for a hole pattern in an image is as follows. From the image in which the hole pattern is formed, multiple contour line position candidates that are candidates for multiple positions through which the contour line of the hole pattern passes are extracted. For each pixel in the area containing a plurality of contour line position candidates, the distance from each contour line position candidate of the plurality of contour line position candidates to each pixel arranged in the target direction is defined for each direction in a plurality of directions.
  • the pattern inspection method of one aspect of the present invention is The image to be inspected of the substrate on which the first hole pattern is formed is acquired, and the image to be inspected is acquired.
  • a plurality of first contour line position candidates that are candidates for a plurality of positions through which the contour line of the first hole pattern passes are extracted from the image to be inspected.
  • From the reference image for comparison with the image to be inspected a plurality of second contour line position candidates that are candidates for a plurality of positions through which the contour lines of the second hole pattern corresponding to the first hole pattern pass are extracted. For each pixel in the region containing the plurality of second contour line position candidates, from each second contour line position candidate of the plurality of second contour line position candidates to the target direction for each direction in the plurality of directions.
  • the central pixel candidate of the second hole pattern is extracted, and the center pixel candidate is extracted.
  • the second contour line position candidate group satisfying a predetermined condition starting from the center pixel candidate is set as a plurality of reference contour line positions through which the contour line of the second hole pattern passes.
  • Explore and A group of first contour line position candidates in the vicinity of a plurality of reference contour line positions is interpolated from a plurality of first contour line position candidates to create a contour line to be inspected for the first hole pattern. Calculate the distance from multiple reference contour lines to the contour to be inspected, Compares the distance-based value with the test threshold and outputs the result, It is characterized by that.
  • the pattern inspection device of one aspect of the present invention is An image acquisition mechanism that acquires an image to be inspected on the substrate on which the first hole pattern is formed, A first contour line position candidate extraction circuit that extracts a plurality of first contour line position candidates that are candidates for a plurality of positions through which the contour line of the first hole pattern passes from the image to be inspected, and a first contour line position candidate extraction circuit. A second that extracts a plurality of second contour line position candidates that are candidates for a plurality of positions through which the contour lines of the second hole pattern corresponding to the first hole pattern pass from the reference image for comparison with the image to be inspected.
  • Contour line position candidate extraction circuit For each pixel in the region containing the plurality of second contour line position candidates, from each second contour line position candidate of the plurality of second contour line position candidates to the target direction for each direction in the plurality of directions.
  • a distance map creation circuit that creates a distance map that defines the distance to each pixel in a row
  • a central pixel candidate extraction circuit that extracts central pixel candidates of the second hall pattern using each distance map created for each direction, and a central pixel candidate extraction circuit. From the plurality of second contour line position candidates, the second contour line position candidate group satisfying a predetermined condition starting from the center pixel candidate is set as a plurality of reference contour line positions through which the contour line of the second hole pattern passes.
  • the search circuit to search and An inspected contour that creates an inspected contour line of a first hole pattern by interpolating a first contour line position candidate group in the vicinity of a plurality of reference contour line positions from a plurality of first contour line position candidates.
  • Line making circuit and A distance calculation circuit that calculates the distance from multiple reference contour line positions to the contour line to be inspected,
  • a comparison circuit that compares distance-based values with inspection thresholds, It is characterized by being equipped with.
  • the hole pattern search device in the image of one aspect of the present invention is A contour line position candidate extraction circuit that extracts a plurality of contour line position candidates that are candidates for a plurality of positions through which the contour line of the hole pattern passes from an image in which a hole pattern is formed, and a contour line position candidate extraction circuit. For each pixel in the region including the plurality of contour line position candidates, the distance from each contour line position candidate of the plurality of contour line position candidates to each pixel lined up in the target direction is set for each direction in the plurality of directions.
  • a distance map creation circuit that creates a defined distance map
  • a central pixel candidate extraction circuit that extracts central pixel candidates of the hall pattern using each distance map created for each direction, and a central pixel candidate extraction circuit.
  • a search circuit that searches for and outputs a group of contour line position candidates satisfying a predetermined condition from the plurality of contour line position candidates starting from the center pixel candidate as a plurality of contour line positions through which the contour line of the hole pattern passes.
  • highly accurate hole detection can be performed while shortening the processing time.
  • FIG. It is a block diagram which shows an example of the structure of the pattern inspection apparatus in Embodiment 1.
  • FIG. It is a conceptual diagram which shows the structure of the molded aperture array substrate in Embodiment 1.
  • FIG. It is a figure which shows an example of the plurality of chip regions formed on the semiconductor substrate in Embodiment 1.
  • FIG. It is a figure for demonstrating the scanning operation of a multi-beam in Embodiment 1.
  • FIG. It is a flowchart which shows the main part process of the inspection method in Embodiment 1.
  • FIG. It is a block diagram which shows an example of the structure in the comparison circuit in Embodiment 1.
  • FIG. It is a figure for demonstrating the calculation of the gradient of the gradation value for every pixel in Embodiment 1.
  • FIG. It is a figure which shows an example of the graphic pattern and the gradient vector in Embodiment 1.
  • FIG. It is a figure which shows an example of the one-dimensional profile in Embodiment 1.
  • FIG. It is a figure which shows an example of the distance map in Embodiment 1.
  • FIG. It is a figure which shows an example of the central pixel candidate of the hole pattern in Embodiment 1.
  • FIG. It is a figure which shows an example of a plurality of central pixel candidates of a hole pattern in Embodiment 1.
  • FIG. It is a figure for demonstrating the method of searching for a hole edge node in Embodiment 1.
  • FIG. It is a figure for demonstrating the method of the hole size check in Embodiment 1.
  • FIG. 1 It is a figure which shows an example of the contour line to be inspected and a plurality of reference hole edge nodes in Embodiment 1.
  • FIG. It is a figure for demonstrating an example of the distance calculation method in Embodiment 1.
  • FIG. It is a figure which shows an example of the distance from the reference hole edge node to the contour line to be inspected in Embodiment 1.
  • FIG. It is a figure which shows an example of the inspection result in Embodiment 1.
  • the electron beam inspection device will be described as an example of the pattern inspection device and / and the hole pattern search device in the image.
  • it may be an inspection device that irradiates the substrate to be inspected with ultraviolet rays and acquires an image to be inspected by using the light transmitted or reflected through the substrate to be inspected.
  • an inspection device for acquiring an image by using a multi-beam of a plurality of electron beams will be described, but the present invention is not limited to this. It may be an inspection device that acquires an image by using a single beam with one electron beam.
  • FIG. 1 is a configuration diagram showing an example of the configuration of the pattern inspection device according to the first embodiment.
  • the inspection device 100 for inspecting a pattern formed on a substrate is an example of a multi-electron beam inspection device.
  • the inspection device 100 includes an image acquisition mechanism 150 (secondary electronic image acquisition mechanism) and a control system circuit 160.
  • the image acquisition mechanism 150 includes an electron beam column 102 (electron lens barrel) and an examination room 103.
  • an electron gun 201 In the electron beam column 102, an electron gun 201, an electromagnetic lens 202, a molded aperture array substrate 203, an electromagnetic lens 205, a batch blanking deflector 212, a limiting aperture substrate 213, an electromagnetic lens 206, an electromagnetic lens 207 (objective lens), A main deflector 208, a sub-deflector 209, a beam separator 214, a deflector 218, an electromagnetic lens 224, an electromagnetic lens 226, and a multi-detector 222 are arranged.
  • an electron gun 201 In the electron beam column 102, an electron gun 201, an electromagnetic lens 202, a molded aperture array substrate 203, an electromagnetic lens 205, a batch blanking deflector 212, a limiting aperture substrate 213, an electromagnetic lens 206, an electromagnetic lens 207 (objective lens), A main deflector 208, a sub-deflector 209, a beam separator 214, a deflector 218, an electromagnetic lens 224, an electromagnetic
  • an electron gun 201 an electromagnetic lens 202, a molded aperture array substrate 203, an electromagnetic lens 205, a batch blanking deflector 212, a limiting aperture substrate 213, an electromagnetic lens 206, an electromagnetic lens 207 (objective lens), and a main deflection.
  • the device 208 and the sub-deflector 209 constitute a primary electron optical system that irradiates the substrate 101 with a multi-primary electron beam.
  • the beam separator 214, the deflector 218, the electromagnetic lens 224, and the electromagnetic lens 226 constitute a secondary electron optical system that irradiates the multi-detector 222 with a multi-secondary electron beam.
  • a stage 105 that can move at least in the XY direction is arranged in the inspection room 103.
  • a substrate 101 (sample) to be inspected is arranged on the stage 105.
  • the substrate 101 includes an exposure mask substrate and a semiconductor substrate such as a silicon wafer.
  • a plurality of chip patterns are formed on the semiconductor substrate.
  • a chip pattern is formed on the exposure mask substrate.
  • the chip pattern is composed of a plurality of graphic patterns.
  • the substrate 101 is a semiconductor substrate, for example, with the pattern forming surface facing upward. Further, on the stage 105, a mirror 216 that reflects the laser beam for laser length measurement emitted from the laser length measuring system 122 arranged outside the examination room 103 is arranged. The multi-detector 222 is connected to the detection circuit 106 outside the electron beam column 102.
  • the control computer 110 that controls the entire inspection device 100 uses the position circuit 107, the comparison circuit 108, the reference image creation circuit 112, the stage control circuit 114, the lens control circuit 124, and the blanking via the bus 120. It is connected to a control circuit 126, a deflection control circuit 128, a storage device 109 such as a magnetic disk device, a monitor 117, and a memory 118. Further, the deflection control circuit 128 is connected to a DAC (digital-to-analog conversion) amplifier 144, 146, 148. The DAC amplifier 146 is connected to the main deflector 208, and the DAC amplifier 144 is connected to the sub-deflector 209. The DAC amplifier 148 is connected to the deflector 218.
  • DAC digital-to-analog conversion
  • the detection circuit 106 is connected to the chip pattern memory 123.
  • the chip pattern memory 123 is connected to the comparison circuit 108.
  • the stage 105 is driven by the drive mechanism 142 under the control of the stage control circuit 114.
  • a drive system such as a three-axis (XY- ⁇ ) motor that drives in the X direction, the Y direction, and the ⁇ direction in the stage coordinate system is configured, and the stage 105 can be moved in the XY ⁇ direction. It has become.
  • X motors, Y motors, and ⁇ motors (not shown), for example, stepping motors can be used.
  • the stage 105 can be moved in the horizontal direction and the rotational direction by a motor of each axis of XY ⁇ . Then, the moving position of the stage 105 is measured by the laser length measuring system 122 and supplied to the position circuit 107.
  • the laser length measuring system 122 measures the position of the stage 105 by the principle of the laser interferometry method by receiving the reflected light from the mirror 216.
  • the X direction, the Y direction, and the ⁇ direction are set with respect to the plane orthogonal to the optical axis (center axis of the electron orbit) of the multi-primary electron beam.
  • the electromagnetic lens 202, the electromagnetic lens 205, the electromagnetic lens 206, the electromagnetic lens 207 (objective lens), the electromagnetic lens 224, the electromagnetic lens 226, and the beam separator 214 are controlled by the lens control circuit 124.
  • the batch blanking deflector 212 is composed of electrodes having two or more poles, and each electrode is controlled by a blanking control circuit 126 via a DAC amplifier (not shown).
  • the sub-deflector 209 is composed of electrodes having four or more poles, and each electrode is controlled by the deflection control circuit 128 via the DAC amplifier 144.
  • the main deflector 208 is composed of electrodes having four or more poles, and each electrode is controlled by a deflection control circuit 128 via a DAC amplifier 146.
  • the deflector 218 is composed of electrodes having four or more poles, and each electrode is controlled by a deflection control circuit 128 via a DAC amplifier 148.
  • a high-voltage power supply circuit (not shown) is connected to the electron gun 201, and an acceleration voltage from the high-voltage power supply circuit is applied between the filament (cathode) and the extraction electrode (anode) in the electron gun 201 (not shown), and another extraction electrode is used.
  • a voltage of (Wenert) and heating the cathode at a predetermined temperature a group of electrons emitted from the cathode is accelerated and emitted as an electron beam 200.
  • FIG. 1 describes a configuration necessary for explaining the first embodiment.
  • the inspection apparatus 100 may usually have other necessary configurations.
  • FIG. 2 is a conceptual diagram showing the configuration of the molded aperture array substrate according to the first embodiment.
  • one of the two-dimensional horizontal (x direction) m 1 row ⁇ vertical (y direction) n 1 step (m 1 , n 1 is an integer of 2 or more, and the other is Holes (openings) 22 (an integer of 1 or more) are formed at a predetermined arrangement pitch in the x and y directions.
  • Holes (openings) 22 an integer of 1 or more
  • a predetermined arrangement pitch in the x and y directions In the example of FIG. 2, a case where a 23 ⁇ 23 hole (opening) 22 is formed is shown.
  • each hole 22 is formed by a rectangle having the same dimensions and shape. Alternatively, ideally, it may be a circle having the same outer diameter.
  • the electron beam 200 emitted from the electron gun 201 is refracted by the electromagnetic lens 202 to illuminate the entire molded aperture array substrate 203.
  • a plurality of holes 22 are formed in the molded aperture array substrate 203, and the electron beam 200 illuminates an area including all the plurality of holes 22.
  • the multi-primary electron beam 20 is formed by each part of the electron beam 200 irradiated to the positions of the plurality of holes 22 passing through the plurality of holes 22 of the molded aperture array substrate 203.
  • the formed multi-primary electron beam 20 is refracted by the electromagnetic lens 205 and the electromagnetic lens 206, respectively, and the crossover position (each beam) of each beam of the multi-primary electron beam 20 is repeated while repeating the intermediate image and the crossover. It passes through the beam separator 214 arranged at the intermediate image position) and proceeds to the electromagnetic lens 207 (objective lens). Then, the electromagnetic lens 207 focuses (focuses) the multi-primary electron beam 20 on the substrate 101.
  • the multi-primary electron beam 20 focused (focused) on the surface of the substrate 101 (sample) by the objective lens 207 is collectively deflected by the main deflector 208 and the sub-deflector 209, and the substrate of each beam.
  • Each irradiation position on 101 is irradiated.
  • the position is displaced from the central hole of the limiting aperture substrate 213 and is shielded by the limiting aperture substrate 213.
  • the multi-primary electron beam 20 not deflected by the batch blanking deflector 212 passes through the central hole of the limiting aperture substrate 213 as shown in FIG.
  • By turning ON / OFF of the batch blanking deflector 212 blanking control is performed, and ON / OFF of the beam is collectively controlled.
  • the limiting aperture substrate 213 shields the multi-primary electron beam 20 deflected so that the beam is turned off by the batch blanking deflector 212. Then, the multi-primary electron beam 20 for inspection (for image acquisition) is formed by the beam group that has passed through the limiting aperture substrate 213 formed from the time when the beam is turned on to the time when the beam is turned off.
  • the multi-primary electron beam 20 When the multi-primary electron beam 20 is irradiated to a desired position of the substrate 101, it corresponds to each beam of the multi-primary electron beam 20 from the substrate 101 due to the irradiation of the multi-primary electron beam 20. , A bundle of secondary electrons including backscattered electrons (multi-secondary electron beam 300) is emitted.
  • the multi-secondary electron beam 300 emitted from the substrate 101 passes through the electromagnetic lens 207 and proceeds to the beam separator 214.
  • the beam separator 214 generates an electric field and a magnetic field in a direction orthogonal to each other on a plane orthogonal to the direction in which the central beam of the multi-primary electron beam 20 travels (the central axis of the electron orbit).
  • the electric field exerts a force in the same direction regardless of the traveling direction of the electron.
  • the magnetic field exerts a force according to Fleming's left-hand rule. Therefore, the direction of the force acting on the electron can be changed depending on the invasion direction of the electron.
  • the force due to the electric field and the force due to the magnetic field cancel each other out to the multi-primary electron beam 20 that invades the beam separator 214 from above, and the multi-primary electron beam 20 travels straight downward.
  • the multi-secondary electron beam 300 which is bent diagonally upward and separated from the multi-primary electron beam 20, is further bent by the deflector 218 and projected onto the multi-detector 222 while being refracted by the electromagnetic lenses 224 and 226. NS.
  • the multi-detector 222 detects the projected multi-secondary electron beam 300. Backscattered electrons and secondary electrons may be projected onto the multi-detector 222, or the backscattered electrons may be diverged on the way and the remaining secondary electrons may be projected.
  • the multi-detector 222 has a two-dimensional sensor.
  • each secondary electron of the multi-secondary electron beam 300 collides with the corresponding region of the two-dimensional sensor to generate electrons, and secondary electron image data is generated for each pixel.
  • a detection sensor is arranged for each primary electron beam of the multi-primary electron beam 20. Then, the corresponding secondary electron beam emitted by the irradiation of each primary electron beam is detected. Therefore, each detection sensor of the plurality of detection sensors of the multi-detector 222 detects the intensity signal of the secondary electron beam for the image caused by the irradiation of the primary electron beam in charge of each. The intensity signal detected by the multi-detector 222 is output to the detection circuit 106.
  • FIG. 3 is a diagram showing an example of a plurality of chip regions formed on the semiconductor substrate according to the first embodiment.
  • the substrate 101 is a semiconductor substrate (wafer)
  • a plurality of chips (wafer dies) 332 are formed in a two-dimensional array in the inspection region 330 of the semiconductor substrate (wafer).
  • a mask pattern for one chip formed on an exposure mask substrate is transferred to each chip 332 by being reduced to, for example, 1/4 by an exposure device (stepper, scanner, etc.) (not shown).
  • the region of each chip 332 is divided into a plurality of stripe regions 32 with a predetermined width, for example, in the y direction.
  • the scanning operation by the image acquisition mechanism 150 is performed, for example, for each stripe region 32.
  • each stripe region 32 is divided into a plurality of rectangular regions 33 in the longitudinal direction.
  • the movement of the beam to the rectangular region 33 of interest is performed by batch deflection of the entire multi-primary electron beam 20 by the main deflector 208.
  • FIG. 4 is a diagram for explaining a multi-beam scanning operation according to the first embodiment.
  • the irradiation region 34 that can be irradiated by one irradiation of the multi-primary electron beam 20 is (the x-direction obtained by multiplying the x-direction beam-to-beam pitch of the multi-primary electron beam 20 on the substrate 101 surface by the number of beams in the x-direction. Size) ⁇ (size in the y direction obtained by multiplying the pitch between beams in the y direction of the multi-primary electron beam 20 on the surface of the substrate 101 by the number of beams in the y direction).
  • each stripe region 32 is set to a size similar to the y-direction size of the irradiation region 34 or narrowed by the scan margin.
  • the irradiation area 34 has the same size as the rectangular area 33 is shown. However, it is not limited to this.
  • the irradiation area 34 may be smaller than the rectangular area 33. Alternatively, it may be large.
  • each beam of the multi-primary electron beam 20 is irradiated in the sub-irradiation region 29 surrounded by the inter-beam pitch in the x direction and the inter-beam pitch in the y direction in which the own beam is located, and the sub-irradiation region 29 is irradiated.
  • Scan inside Scan operation.
  • Each of the primary electron beams 10 constituting the multi-primary electron beam 20 is in charge of any of the sub-irradiation regions 29 different from each other. Then, at each shot, each primary electron beam 10 irradiates the same position in the responsible sub-irradiation region 29.
  • the movement of the primary electron beam 10 in the sub-irradiation region 29 is performed by batch deflection of the entire multi-primary electron beam 20 by the sub-deflector 209. This operation is repeated to sequentially irradiate the inside of one sub-irradiation region 29 with one primary electron beam 10. Then, when the scanning of one sub-irradiation region 29 is completed, the main deflector 208 moves to the adjacent rectangular region 33 in the stripe region 32 having the same irradiation position by the collective deflection of the entire multi-primary electron beam 20. This operation is repeated to irradiate the inside of the stripe region 32 in order.
  • the irradiation position is moved to the next striped region 32 by moving the stage 105 and / or batch deflection of the entire multi-primary electron beam 20 by the main deflector 208.
  • the secondary electron images for each sub-irradiation region 29 are acquired by irradiating each of the primary electron beams 10i.
  • a secondary electron image of the rectangular region 33, a secondary electron image of the stripe region 32, or a secondary electron image of the chip 332 is formed.
  • each sub-irradiation region 29 is divided into a plurality of rectangular frame regions 30, and a secondary electron image (image to be inspected) of 30 units of the frame region is used for inspection.
  • one sub-irradiation region 29 is divided into, for example, four frame regions 30.
  • the number to be divided is not limited to four. It may be divided into other numbers.
  • a plurality of chips 332 arranged in the x direction are grouped into the same group, and each group is divided into a plurality of stripe regions 32 with a predetermined width in the y direction, for example.
  • the movement between the stripe regions 32 is not limited to each chip 332, and may be performed for each group.
  • the main deflector 208 collectively deflects the irradiation position of the multi-primary electron beam 20 so as to follow the movement of the stage 105. Tracking operation is performed by. Therefore, the emission position of the multi-secondary electron beam 300 changes every moment with respect to the orbital central axis of the multi-primary electron beam 20. Similarly, when scanning the inside of the sub-irradiation region 29, the emission position of each secondary electron beam changes every moment in the sub-irradiation region 29. The deflector 218 collectively deflects the multi-secondary electron beam 300 so that each secondary electron beam whose emission position has changed is irradiated into the corresponding detection region of the multi-detector 222.
  • one of the pattern defects that must be detected when inspecting the detected image to be inspected is a CD (dimension) error of the hole pattern.
  • CD dimension
  • the amount of processing becomes enormous and the inspection time may be long.
  • such a method may cause a situation in which the contours of adjacent patterns are mistakenly traced. Therefore, there may be a problem that the shape of the detected hole pattern becomes inaccurate and the inspection accuracy deteriorates. Therefore, highly accurate hole detection is required while shortening the processing time. Therefore, in the first embodiment, a configuration will be described in which the center candidate of the hole pattern is extracted and the contour position constituting the hole pattern is obtained from the center candidate.
  • FIG. 5 is a flowchart showing a main process of the inspection method according to the first embodiment.
  • the inspection method according to the first embodiment is referred to by a scanning step (S102), a frame image creating step (S104), an actual image contour node extraction step (S106), and a reference image creating step (S110).
  • a series of steps of a step (S122), an actual image contour line interpolation step (S130), a distance calculation step (S132), and a comparison step (S134) are carried out.
  • the image acquisition mechanism 150 acquires an image to be inspected of the substrate 101 on which a graphic pattern including a hole pattern (first hole pattern) is formed.
  • the substrate 101 on which the hole pattern is formed is irradiated with the multi-primary electron beam 20, and the multi-secondary electron beam 300 emitted from the substrate 101 due to the irradiation of the multi-primary electron beam 20 is detected.
  • a secondary electron image of the substrate 101 is acquired.
  • backscattered electrons and secondary electrons may be projected onto the multi-detector 222, and the backscattered electrons are diverged in the middle and the remaining secondary electrons (multi-secondary electron beam 300) are projected. May be done.
  • the multi-secondary electron beam 300 emitted from the substrate 101 due to the irradiation of the multi-primary electron beam 20 is detected by the multi-detector 222.
  • the secondary electron detection data (measured image data: secondary electron image data: inspected image data) for each pixel in each sub-irradiation region 29 detected by the multi-detector 222 is output to the detection circuit 106 in the order of measurement.
  • analog detection data is converted into digital data by an A / D converter (not shown) and stored in the chip pattern memory 123. Then, the obtained measurement image data is transferred to the comparison circuit 108 together with the information indicating each position from the position circuit 107. It is transferred to the comparison circuit 108.
  • FIG. 6 is a block diagram showing an example of the configuration in the comparison circuit according to the first embodiment.
  • storage devices 50, 52, 56, 58 such as a magnetic disk device, a frame image creation unit 54, a reference contour node extraction unit 60, and an actual image contour node extraction unit are included.
  • the processing unit 78 is arranged.
  • Each "-unit" such as unit 72, actual image contour line interpolation processing unit 74, distance calculation unit 76, and comparison processing unit 78 includes a processing circuit, and the processing circuit includes an electric circuit, a computer, a processor, and a circuit board. , Quantum circuit, semiconductor device, etc. are included. Further, a common processing circuit (same processing circuit) may be used for each "-part". Alternatively, different processing circuits (separate processing circuits) may be used.
  • the input data or the calculated result required in the unit 72, the actual image contour line interpolation processing unit 74, the distance calculation unit 76, and the comparison processing unit 78 are stored in a memory (not shown) or a memory 118 each time.
  • the measurement image data (beam image) transferred into the comparison circuit 108 is stored in the storage device 50.
  • the frame image creation unit 54 further divides the image data of the sub-irradiation region 29 acquired by the scanning operation of each primary electron beam 10 into each frame region 30 of the plurality of frame regions 30.
  • the frame image 31 of the above is created. It is preferable that the frame regions 30 are configured so that the margin regions overlap each other so that the image is not omitted.
  • the created frame image 31 is stored in the storage device 56.
  • the actual image contour node extraction unit 62 (first contour line position candidate extraction unit) is a hole pattern (first hole pattern) from the frame image 31 (inspected image).
  • a plurality of contour line position candidates (first contour line position candidates) that are candidates for a plurality of positions through which the contour lines pass are extracted.
  • each contour line position candidate of the hole pattern of the actual image is used as the actual image contour node.
  • the actual image contour node extraction unit 62 (differential intensity calculation unit) calculates the gradient (differential intensity) of the gradation value of each pixel of the frame image 31.
  • FIG. 7 is a diagram for explaining the calculation of the gradient of the gradation value for each pixel in the first embodiment.
  • the actual image contour node extraction unit 62 convolves a differential filter in the pixel sequence of the frame image 31 (for example, a pixel sequence of 512 ⁇ 512) for each frame image 31. Specifically, while moving the target pixels in order, for example, a 3 ⁇ 3 pixel sequence is extracted centering on the target pixel, and the pixel sequence is multiplied by a differential filter.
  • the pixel sequence centered on the target pixel is not limited to the 3 ⁇ 3 pixel array. It may be composed of a matrix of more factors.
  • As the differential filter as shown in FIG.
  • a differential filter in the x direction and a differential filter in the y direction are used.
  • a differential filter for example, pixels with a large gradation gradient can be extracted by performing differential approximation while reducing noise by weighting the center of the pixel sequence and then smoothing it in the horizontal or vertical direction. It is preferable to use a simple Sobel filter.
  • a 3 ⁇ 3 differential filter is shown as an example. However, it is not limited to this. It may be composed of a matrix of more factors. Then, the x-direction differential filter and the y-direction differential filter are convoluted into, for example, a 3 ⁇ 3 pixel sequence centered on the target pixel.
  • the actual image contour node extraction unit 62 calculates the square sum root of the gradient in the x direction and the gradient in the y direction, and calculates the magnitude (value) of the gradient.
  • the actual image contour node extraction unit 62 calculates the position of the contour line in sub-pixel units for each pixel whose gradient magnitude (value of differential intensity) is equal to or greater than the threshold value. For example, the actual image contour node extraction unit 62 provides a one-dimensional profile for a plurality of pixels in the normal direction with respect to the gradient magnitude of the pixel for each pixel whose gradient magnitude (differential intensity value) is equal to or greater than the threshold value. Extract.
  • FIG. 8 is a diagram showing an example of a graphic pattern and a gradient vector in the first embodiment.
  • FIG. 8A shows an example of a gradient vector in a plurality of pixels having a gradient value equal to or greater than the threshold value in the upper right portion of the hall pattern.
  • a gradient vector having a predetermined magnitude can be obtained in the y direction (or ⁇ y direction).
  • a gradient vector having a predetermined magnitude can be obtained in the x direction (or ⁇ x direction).
  • a gradient vector of a predetermined magnitude can be obtained in the combined directions of the x and y directions.
  • the vector of the gradient vector indicates the normal direction with respect to the magnitude of the gradient of the pixel.
  • the normal direction corresponds to the direction orthogonal to the equi-gradient value line (equal differential intensity line).
  • the gradient vector in the x direction and the gradient in the y direction are the gradient vector in the x direction and the gradient vector in the y direction, respectively, the gradient vector in the x direction and the gradient vector in the y direction are combined (added).
  • the direction corresponds to the normal direction.
  • the gradient vectors of a plurality of pixels having a gradient value equal to or higher than the threshold value are extracted and shown, but it goes without saying that the gradient vectors may also exist for each of the other pixels. ..
  • the actual image contour node extraction unit 62 extracts a pixel having a gradient value equal to or higher than the threshold value from the gradient vector obtained for each pixel in the frame image 31 for each frame image 31. Then, for each extracted pixel, a one-dimensional profile in the normal direction with respect to the magnitude of the gradient of the pixel is extracted. In the example of FIG. 8B, an example of a contour line passing through a certain pixel on the hole pattern is shown.
  • FIG. 9 is a diagram showing an example of a one-dimensional profile according to the first embodiment.
  • the actual image contour node extraction unit 62 extracts the peak position in sub-pixel units from the one-dimensional profile arranged in the normal direction.
  • the peak position is located at a position (0 ⁇ x ⁇ 1) x deviated from the reference position (for example, the center of the pixel) in the pixel through which the contour line passes.
  • the reference position for example, the center of the pixel
  • the peak position becomes an actual image contour node.
  • the peak position is obtained in the y direction.
  • the same operation is performed for each pixel whose differential intensity value is equal to or greater than the threshold value, and a plurality of contour nodes that are candidates for a plurality of positions through which the contour lines of the hole pattern in the frame image 31 pass are extracted.
  • the same operation is performed for the reference image. First, create a reference image.
  • the reference image creation circuit 112 corresponds to the frame image 31 for each frame area 30 based on the design data that is the basis of the graphic pattern including the hole pattern formed on the substrate 101. Create a reference image. Specifically, it operates as follows. First, the design pattern data is read from the storage device 109 through the control computer 110, and each graphic pattern defined in the read design pattern data is converted into binary or multi-valued image data.
  • the figure defined in the design pattern data is, for example, a basic figure of a rectangle or a triangle.
  • Graphical data that defines the shape, size, position, etc. of each pattern graphic is stored with information such as a graphic code that serves as an identifier that distinguishes the graphic types of.
  • the design pattern data to be the graphic data is input to the reference image creation circuit 112, it is expanded to the data for each graphic, and the graphic code, the graphic dimension, etc. indicating the graphic shape of the graphic data are interpreted. Then, it is developed into binary or multi-valued design pattern image data as a pattern arranged in a grid having a grid of predetermined quantization dimensions as a unit and output.
  • the design data is read, the inspection area is virtually divided into squares with a predetermined dimension as a unit, the occupancy rate of the figure in the design pattern is calculated for each square, and the n-bit occupancy rate data is obtained. Output. For example, it is preferable to set one square as one pixel.
  • the occupancy rate of the pixel allocated the small area region amount corresponding 1/256 of figures are arranged in a pixel Calculate. Then, it becomes 8-bit occupancy rate data.
  • Such squares may be matched with the pixels of the measurement data.
  • the reference image creation circuit 112 filters the design image data of the design pattern, which is the image data of the figure, by using a predetermined filter function. Thereby, the design image data in which the image intensity (shade value) is the image data on the design side of the digital value can be matched with the image generation characteristics obtained by the irradiation of the multi-primary electron beam 20.
  • the image data for each pixel of the created reference image is output to the comparison circuit 108.
  • the reference image data transferred into the comparison circuit 108 is stored in the storage device 52.
  • the reference contour node extraction unit 60 (second contour line position candidate extraction unit) is a hole of the frame image 31 from the reference image for comparison with the frame image 31 (inspected image).
  • a plurality of contour line position candidates (second contour line position candidates) that are candidates for a plurality of positions through which the contour lines of the hole pattern (second hole pattern) corresponding to the pattern pass are extracted.
  • each contour line position candidate of the hole pattern of the reference image is used as a reference contour node. Specifically, it operates as follows.
  • the reference contour node extraction unit 60 (differential intensity calculation unit) calculates the gradient (differential intensity) of the gradation value of each pixel of the reference image.
  • the reference contour node extraction unit 60 convolves the x-direction differential filter and the y-direction differential filter into, for example, a 3 ⁇ 3 pixel sequence centered on the target pixel. As a result, the value of the gradient in the x direction and the value of the gradient in the y direction can be calculated. Then, the reference contour node extraction unit 60 calculates the sum of squares of the gradient in the x direction and the gradient in the y direction, and calculates the magnitude (value) of the gradient.
  • the reference contour node extraction unit 60 calculates the position of the contour line in sub-pixel units for each pixel whose gradient magnitude (differential intensity value) is equal to or greater than the threshold value, as in the case of the frame image 31.
  • the plurality of actual image contour nodes (first contour line position candidates) of the hole pattern of the actual image and the plurality of reference contour nodes (second contour line position candidates) of the hole pattern of the corresponding reference image are formed. Obtainable.
  • the distance map creation unit 64 has, for each pixel in the region including the plurality of reference contour nodes of the reference image, for each of the plurality of reference contour nodes in each of the directions of the plurality of directions. Create a distance map that defines the distance from the reference contour node to each pixel in the target direction.
  • FIG. 10 is a diagram showing an example of a distance map according to the first embodiment.
  • distance maps for example, four distance maps that define distances from four directions of up, down, left, and right are created.
  • a pixel with a value of zero defined contains one of a plurality of reference contour nodes.
  • 16 pixels are defined as zeros as reference contour nodes.
  • FIG. 10A the distance to each pixel when going from the left direction to the right direction starting from each reference contour node pixel is shown in pixel units.
  • FIG. 10B the distance to each pixel when going from the right direction to the left direction from each reference contour node pixel as a starting point is shown in pixel units.
  • FIG. 10C the distance to each pixel when going from the upper direction to the lower direction starting from each reference contour node pixel is shown in pixel units.
  • FIG. 10D the distance to each pixel when going from the lower direction to the upper direction starting from each reference contour node pixel is shown in pixel units. Pixels marked with * store distances from reference contour node pixels (not shown).
  • the pixel in the third row from the top and the second row from the left is one of the reference contour nodes.
  • a distance of 1 is defined for a pixel deviated by one to the right from the reference contour node pixel.
  • a distance 2 is defined for pixels that are displaced by two to the right from the reference contour node pixels.
  • the reference contour node pixels in the third row from the top and the second row from the left are similarly defined up to a distance of 4. The definition of the distance ends when the other reference contour node pixels are reached. Distances from other reference contour node pixels are defined as well.
  • the pixel in the third row from the top and the seventh column from the left is one of the reference contour nodes.
  • a distance of 1 is defined for a pixel deviated by one to the left from the reference contour node pixel.
  • a distance 2 is defined for a pixel displaced by two to the left from the reference contour node pixel.
  • the reference contour node pixels in the third row from the top and the seventh row from the left are similarly defined up to a distance of 4. The definition of the distance ends when the other reference contour node pixels are reached. Distances from other reference contour node pixels are defined as well.
  • the pixel in the first row from the top and the fourth column from the left is one of the reference contour nodes.
  • a distance of 1 is defined for a pixel that is deviated by one downward from the reference contour node pixel.
  • a distance 2 is defined for pixels that are displaced downward by only two from the reference contour node pixel.
  • the reference contour node pixels in the first row from the top and the fourth row from the left are similarly defined up to a distance of 4. The definition of the distance ends when the other reference contour node pixels are reached. Distances from other reference contour node pixels are defined as well.
  • the pixel in the sixth row from the top and the fourth column from the left is one of the reference contour nodes.
  • a distance of 1 is defined for a pixel that is displaced upward by only one from the reference contour node pixel.
  • a distance 2 is defined for a pixel that is displaced upward by only two from the reference contour node pixel.
  • the reference contour node pixels in the sixth row from the top and the fourth row from the left are similarly defined up to a distance of 4. The definition of the distance ends when the other reference contour node pixels are reached. Distances from other reference contour node pixels are defined as well.
  • the hole center candidate extraction unit 66 (center pixel candidate extraction unit) extracts the center pixel candidate of the hole pattern of the reference image by using each distance map created for each direction. ..
  • FIG. 11 is a diagram showing an example of a central pixel candidate of the hole pattern in the first embodiment.
  • the hole center candidate extraction unit 66 uses, for example, four distance maps that define distances from the top, bottom, left, and right, and pixels in which the distances from the top and bottom directions are substantially equidistant and the distances from the left and right directions are substantially equidistant. Is extracted. Pixels whose distance difference is within one pixel are extracted as substantially equidistant distances. Specifically, for example, a pixel in which the difference obtained by subtracting the distance from the right direction from the distance from the left direction becomes zero or a pixel in which the difference becomes -1, and the distance from the downward direction is subtracted from the distance from the upward direction. Extract the pixels whose difference is zero or -1. In such a case, as shown in the example of FIG. 11, the pixels (stars) in the third row from the top and the fourth row from the left are candidates for the center pixels of the hole pattern.
  • a pixel in which the difference obtained by subtracting the distance from the right direction from the distance from the left direction becomes zero or a pixel in which the difference becomes 1, and the difference obtained by subtracting the distance from the downward direction from the distance from the upward direction is zero. It may be configured to extract the pixel which becomes 1 or the pixel which becomes 1. In such a case, the pixels in the fourth row from the top and the fifth row from the left are candidates for the center pixel of the hole pattern.
  • a pixel in which the difference obtained by subtracting the distance from the right direction from the distance from the left direction becomes zero or a pixel in which the difference becomes 1, and the difference obtained by subtracting the distance from the downward direction from the distance from the upward direction is zero. It may be configured to extract the pixel which becomes -1 or the pixel which becomes -1. In such a case, the pixels in the third row from the top and the fifth row from the left are candidates for the center pixel of the hole pattern.
  • a pixel in which the difference obtained by subtracting the distance from the right direction from the distance from the left direction becomes zero or a pixel in which the difference becomes -1, and the difference obtained by subtracting the distance from the downward direction from the distance from the upward direction is It may be configured to extract the pixel which becomes zero or the pixel which becomes 1.
  • the pixels in the third row from the top and the fifth row from the left are candidates for the center pixel of the hole pattern.
  • the extraction definition may be the same and a plurality of central pixel candidates may be extracted.
  • FIG. 12 is a diagram showing an example of a plurality of central pixel candidates of the hole pattern according to the first embodiment. In the example of FIG. 12, the case where two central pixel candidates are extracted is shown.
  • the hole center check unit 68 determines that the distance L between the center pixel candidates is equal to or less than the threshold value.
  • One is deleted from the central pixel candidates.
  • the right center pixel candidate out of the two center pixel candidates is deleted. Which one to delete may be determined in advance by defining the positional relationship of the side to be deleted.
  • the processing of the reference hole edge search step (S120) described later can be shortened.
  • the contour line position on one hole pattern is determined as follows.
  • the reference hole edge search unit 70 selects a center pixel candidate from a plurality of reference contour nodes (second contour line position candidates) of the reference image.
  • a reference contour node group (second contour line position candidate group) that satisfies a predetermined condition as a starting point is searched as a plurality of reference hole edge nodes (reference contour line positions) through which the contour line of the hole pattern of the reference image passes.
  • FIG. 13 is a diagram for explaining how to search for a hole edge node in the first embodiment.
  • the reference hole edge search unit 70 starts from the center pixel candidate of the hole pattern and reaches the pixel including the reference contour node by changing the direction within n times (n is an integer of 2 or more). Is searched as a plurality of reference hole edge nodes (contour line positions) through which the contour line of the hole pattern passes.
  • n is an integer of 2 or more.
  • a plurality of reference contour nodes whose distances from the other reference contour nodes are within the threshold are searched as reference hole edge nodes (contour line positions) of the hole pattern. Since the value of the distance map in the center pixel candidate or the direction change pixel corresponds to the relative coordinates from the pixel to the reference contour node, the pixel corresponding to the relative coordinates is set as one of the hole edge nodes. Then, all the pixels between the center pixel candidate or the direction change pixel and the hole edge node are set as the next direction change pixel. By repeating this operation, all the hole edge nodes in one hole can be finally extracted.
  • the maximum number of turns is n.
  • n 2 times.
  • whether or not the distance from the other reference contour node is within the threshold value can be determined by referring to the distance map.
  • a reference contour node whose distance from another reference contour node does not fall within the threshold value is detected as a hole edge, there is a reference contour node that does not form a closed figure called a hole pattern, so this center pixel is a hole pattern. Removed from candidates.
  • a plurality of reference hole edge nodes (contour line positions) through which the contour line of the hole pattern passes can be obtained.
  • Such a plurality of reference hole edge nodes may be output to the storage device 58 as contour line positions constituting the contour line of the hole pattern of the reference image.
  • the following checks are further added.
  • the hole size check unit 72 determines whether or not each size of the hole is within the set range.
  • FIG. 14 is a diagram for explaining how to check the hole size in the first embodiment.
  • the size u2 to the outer peripheral edge in the x direction passing through the pixel candidates, the difference between the size h and the size u1, or / and the difference between the size w and the size u2 are listed as check items. When it deviates from the set range, the pattern obtained from the center pixel candidate is excluded from the candidates because it is not a hole pattern.
  • one center pixel candidate may be within the set range, and the other center pixel candidate may be outside the set range.
  • a plurality of reference hole edge nodes of the hole pattern that is within the set range are output to the storage device 58 and stored.
  • the actual image contour line interpolation processing unit 74 (inspected contour line creation unit) has a plurality of reference hole edges of the reference image from among the plurality of actual image contour nodes of the frame image 31.
  • the actual image contour node group (first contour line position candidate group) in the vicinity of the node is interpolated to create an inspected contour line of the hole pattern of the frame image 31.
  • FIG. 15 is a diagram showing an example of the contour line to be inspected and the plurality of reference hole edge nodes in the first embodiment.
  • the actual image contour line interpolation processing unit 74 selects the actual image contour nodes 13 group in the vicinity of the plurality of reference hole edge nodes 11 of the reference image from the plurality of actual image contour nodes of the frame image 31. Then, the actual image contour line interpolation processing unit 74 obtains the position of the inspected contour line 15 connecting the actual image contour nodes 13 groups by interpolation. For example, linear interpolation is used. It is preferable to use Lagrange interpolation, spline interpolation, or B-spline interpolation.
  • the distance calculation unit 76 calculates the distance from the plurality of reference hole edge nodes to the contour line to be inspected. When calculating the distance, it is also determined whether the outline of the actual image is located outside or inside the hole surrounded by the reference hole edge node. If it is located inside, the distance is calculated as a negative value. If it is located on the outside, the distance is calculated as a positive value.
  • FIG. 16 is a diagram for explaining an example of the distance calculation method in the first embodiment.
  • the coordinates of the actual image contour node 13 and each reference hole edge node 11 indicate the relative position of the pixel in which each node is located from the reference point (for example, the upper left corner).
  • the pixel size is 1. Select two actual contour nodes that are close to the reference hole edge node. In the case of the example of FIG. 16, since the distances to A and B (0.80, 0.85) are closer than the distances to other nodes (1.00, 1.70), a straight line connecting these two points is drawn. The contour line to be measured.
  • a perpendicular line is drawn from the reference edge hole node to the above contour line, and the length thereof is defined as the distance between the reference edge hole and the contour line.
  • the above distance is obtained by geometric calculation. The distance in the case of the example of FIG. 16 is about 0.76.
  • FIG. 17 is a diagram showing an example of the distance from the reference hole edge node to the contour line to be inspected in the first embodiment.
  • FIG. 17A is the same as FIG.
  • the vector direction when calculating the distance from the reference hole edge node to the contour line to be inspected is 90 ° with respect to the final search direction (search direction) when the reference hole edge node shown in FIG. 17A is searched.
  • search direction search direction
  • FIG. 17B the distance taken is positive.
  • the vector direction when calculating the distance from the reference hole edge node to the contour line to be inspected is 90 ° with respect to the final search direction (search direction) when the reference hole edge node shown in FIG. 17A is searched. If not, the distance taken is negative, as shown in FIG. 17 (b).
  • FIG. 17C shows an example of the distance from each reference hole edge node to the contour line to be inspected.
  • the distance calculation unit 76 calculates the total or average value of the distances from each reference hole edge node to the contour line to be inspected.
  • the total distance is shown to be, for example, ⁇ 8.6.
  • the average value of the distances the sum of the distances divided by the number N of the reference hole edge nodes is, for example, ⁇ 8.6 / 16.
  • the average value of the distances the value obtained by dividing the total distance by the area (number of pixels) AREA of the hole pattern of the reference image is, for example, ⁇ 8.6 / 33.
  • the comparison processing unit 78 compares the value based on the distance with the inspection threshold value.
  • the value based on the distance indicates the total or average value of the distances from each reference hole edge node to the contour line to be inspected described above. A hole pattern in which the reaction value is larger than the inspection threshold is judged to be defective.
  • the comparison result is output to the storage device 109, the monitor 117, or the memory 118.
  • the CD error can be calculated at high speed by performing integration by parts such as the total distance or the average value, instead of calculating the total area of the hole. Further, by obtaining the contour line of the hole pattern of the actual image by interpolation processing, it is possible to reduce the error due to the discreteness of the contour node when calculating the distance from each reference hole edge node to the contour line to be inspected.
  • FIG. 18 is a diagram showing an example of the inspection result in the first embodiment.
  • FIG. 18A shows an example of the result of comparing the hole pattern of the reference image in which the deviation amount at the time of alignment is adjusted to 0.0 pixel and the hole pattern of the actual image.
  • FIG. 18B shows an example of the result of comparing the hole pattern of the reference image and the hole pattern of the actual image in which the deviation amount at the time of alignment is intentionally adjusted to 0.5 pixel.
  • the difference between the hole pattern of the reference image and the hole pattern of the actual image could be reduced. This result indicates that the hole pattern could be extracted with high accuracy.
  • each reference hole edge node can be searched with high accuracy and / or at high speed from the reference image.
  • the hole pattern can be searched with high accuracy and / or at high speed from the reference image.
  • the actual image contour node 13 group that actually constitutes the contour line can be selected from among a plurality of actual image contour nodes of the hole pattern of the frame image. It can be extracted with high accuracy and / and high speed.
  • the series of "-circuits” includes a processing circuit, and the processing circuit includes an electric circuit, a computer, a processor, a circuit board, a quantum circuit, a semiconductor device, and the like. Further, a common processing circuit (same processing circuit) may be used for each "-circuit". Alternatively, different processing circuits (separate processing circuits) may be used.
  • the program for executing the processor or the like may be recorded on a recording medium such as a magnetic disk device or a flash memory.
  • the position circuit 107, the comparison circuit 108, the reference image creation circuit 112, the stage control circuit 114, the lens control circuit 124, the blanking control circuit 126, and the deflection control circuit 128 are composed of at least one of the above-mentioned processing circuits. Is also good.
  • a multi-primary electron beam 20 is formed by a molded aperture array substrate 203 from one beam emitted from an electron gun 201 as one irradiation source, but the present invention is limited to this. is not it.
  • the multi-primary electron beam 20 may be formed by irradiating the primary electron beams from a plurality of irradiation sources.
  • the hole pattern is not limited to the case of searching the hole pattern from the reference image, and the hole pattern can be searched from the image with high accuracy. Therefore, if the configuration for searching the hole pattern from the reference image created from the design data is applied to the frame image which is the actual image, the hole pattern can be searched with high accuracy from the frame image as well.
  • the frame image is not limited to the electron beam image, and the hole pattern in the image can be similarly extracted from the optical image obtained by irradiating light such as ultraviolet rays.
  • an inspection device that inspects using a secondary electron image of a pattern emitted by irradiating a substrate with a multi-beam using an electron beam, and an inspection device that inspects using an optical image of a pattern obtained by irradiating a substrate with ultraviolet rays. Or, it can be used for those inspection methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Image Analysis (AREA)

Abstract

本発明の一態様の画像内のホールパターンの探索方法は、ホールパターンが形成された画像からホールパターンの輪郭線が通る複数の位置の候補となる複数の輪郭線位置候補を抽出し、複数の輪郭線位置候補を含む領域内の各画素に対して、複数の方向の方向毎に、複数の輪郭線位置候補の各輪郭線位置候補から対象方向に並ぶ各画素までの距離を定義する距離マップを作成し、方向毎に作成された各距離マップを用いて、ホールパターンの中心画素候補を抽出し、複数の輪郭線位置候補の中から中心画素候補を起点にして所定の条件を満たす輪郭線位置候補群をホールパターンの輪郭線が通る複数の輪郭線位置として探索し、出力する、ことを特徴とする。

Description

画像内のホールパターンの探索方法、パターン検査方法、パターン検査装置、及び画像内のホールパターンの探索装置
 本出願は、2020年3月10日に日本国に出願されたJP2020-041385(出願番号)を基礎出願とする優先権を主張する出願である。JP2020-041385に記載された内容は、本出願にインコーポレートされる。
 本発明の一態様は、画像内のホールパターンの探索方法、パターン検査方法、パターン検査装置、及び画像内のホールパターンの探索装置に関する。例えば、電子線によるマルチビームで基板を照射して放出されるパターンの2次電子画像を用いて検査する検査装置、紫外線で基板を照射して得られるパターンの光学画像を用いて検査する検査装置、或いはそれらの検査方法に関する。
 近年、大規模集積回路(LSI)の高集積化及び大容量化に伴い、半導体素子に要求される回路線幅はますます狭くなってきている。そして、多大な製造コストのかかるLSIの製造にとって、歩留まりの向上は欠かせない。しかし、LSIを構成するパターンは、10ナノメータ以下のオーダーを迎えつつあり、パターン欠陥として検出しなければならない寸法も極めて小さいものとなっている。よって、半導体ウェハ上に転写された超微細パターンの欠陥を検査するパターン検査装置の高精度化が必要とされている。その他、歩留まりを低下させる大きな要因の一つとして、半導体ウェハ上に超微細パターンをフォトリソグラフィ技術で露光、転写する際に使用されるマスクのパターン欠陥があげられる。そのため、LSI製造に使用される転写用マスクの欠陥を検査するパターン検査装置の高精度化が必要とされている。
 欠陥検査手法としては、半導体ウェハやリソグラフィマスク等の基板上に形成されているパターンを撮像した測定画像と、設計データ、あるいは基板上の同一パターンを撮像した測定画像と比較することにより検査を行う方法が知られている。例えば、パターン検査方法として、同一基板上の異なる場所の同一パターンを撮像した測定画像データ同士を比較する「die to die(ダイ-ダイ)検査」や、パターン設計された設計データをベースに設計画像データ(参照画像)を生成して、これとパターンを撮像した測定データとなる測定画像とを比較する「die to database(ダイ-データベース)検査」がある。撮像された画像は測定データとして比較回路へ送られる。比較回路では、画像同士の位置合わせの後、測定データと参照データとを適切なアルゴリズムに従って比較し、一致しない場合には、パターン欠陥有りと判定する。
 上述したパターン検査装置には、レーザ光を検査対象基板に照射して、この透過像或いは反射像を撮像する装置の他、検査対象基板上を1次電子ビームで走査(スキャン)して、1次電子ビームの照射に伴い検査対象基板から放出される2次電子を検出して、パターン像を取得する検査装置の開発も進んでいる。これらのパターン検査装置では、パターンエッジ(端部)の位置を高精度に検出するために、画素値同士の比較ではなく、画像内のパターンの輪郭線を抽出して、参照画像の輪郭線との距離を判定指標に用いることが検討されている(例えば、特許文献1参照)。しかしながら、画像からホールパターンを高精度に抽出するには時間がかかる。そのため処理時間の短縮を図りながら高精度なホール検出が求められる。
特開2018-151202号公報
 本発明の一態様は、処理時間の短縮を図りながら高精度なホール検出が可能な方法及び装置を提供する。
 本発明の一態様の画像内のホールパターンの探索方法は、
 ホールパターンが形成された画像からホールパターンの輪郭線が通る複数の位置の候補となる複数の輪郭線位置候補を抽出し、
 複数の輪郭線位置候補を含む領域内の各画素に対して、複数の方向の方向毎に、複数の輪郭線位置候補の各輪郭線位置候補から対象方向に並ぶ各画素までの距離を定義する距離マップを作成し、
 方向毎に作成された各距離マップを用いて、ホールパターンの中心画素候補を抽出し、
 複数の輪郭線位置候補の中から中心画素候補を起点にして所定の条件を満たす輪郭線位置候補群をホールパターンの輪郭線が通る複数の輪郭線位置として探索し、出力する、
 ことを特徴とする。
 本発明の一態様のパターン検査方法は、
 第1のホールパターンが形成された基板の被検査画像を取得し、
 被検査画像から第1のホールパターンの輪郭線が通る複数の位置の候補となる複数の第1の輪郭線位置候補を抽出し、
 被検査画像と比較するための参照画像から第1のホールパターンに対応する第2のホールパターンの輪郭線が通る複数の位置の候補となる複数の第2の輪郭線位置候補を抽出し、
 複数の第2の輪郭線位置候補を含む領域内の各画素に対して、複数の方向の方向毎に、複数の第2の輪郭線位置候補の各第2の輪郭線位置候補から対象方向に並ぶ各画素までの距離を定義する距離マップを作成し、
 方向毎に作成された各距離マップを用いて、第2のホールパターンの中心画素候補を抽出し、
 複数の第2の輪郭線位置候補の中から中心画素候補を起点にして所定の条件を満たす第2の輪郭線位置候補群を第2のホールパターンの輪郭線が通る複数の参照輪郭線位置として探索し、
 複数の第1の輪郭線位置候補の中から複数の参照輪郭線位置の近傍の第1の輪郭線位置候補群を補間して、第1のホールパターンの被検査輪郭線を作成し、
 複数の参照輪郭線位置から被検査輪郭線への距離を算出し、
 距離に基づく値と検査閾値を比較し、結果を出力する、
 ことを特徴とする。
 本発明の一態様のパターン検査装置は、
 第1のホールパターンが形成された基板の被検査画像を取得する画像取得機構と、
 被検査画像から第1のホールパターンの輪郭線が通る複数の位置の候補となる複数の第1の輪郭線位置候補を抽出する第1の輪郭線位置候補抽出回路と、
 被検査画像と比較するための参照画像から第1のホールパターンに対応する第2のホールパターンの輪郭線が通る複数の位置の候補となる複数の第2の輪郭線位置候補を抽出する第2の輪郭線位置候補抽出回路と、
 複数の第2の輪郭線位置候補を含む領域内の各画素に対して、複数の方向の方向毎に、複数の第2の輪郭線位置候補の各第2の輪郭線位置候補から対象方向に並ぶ各画素までの距離を定義する距離マップを作成する距離マップ作成回路と、
 方向毎に作成された各距離マップを用いて、第2のホールパターンの中心画素候補を抽出する中心画素候補抽出回路と、
 複数の第2の輪郭線位置候補の中から中心画素候補を起点にして所定の条件を満たす第2の輪郭線位置候補群を第2のホールパターンの輪郭線が通る複数の参照輪郭線位置として探索する探索回路と、
 複数の第1の輪郭線位置候補の中から複数の参照輪郭線位置の近傍の第1の輪郭線位置候補群を補間して、第1のホールパターンの被検査輪郭線を作成する被検査輪郭線作成回路と、
 複数の参照輪郭線位置から被検査輪郭線への距離を算出する距離算出回路と、
 距離に基づく値と検査閾値を比較する比較回路と、
 を備えたことを特徴とする。
 本発明の一態様の画像内のホールパターンの探索装置は、
 ホールパターンが形成された画像から前記ホールパターンの輪郭線が通る複数の位置の候補となる複数の輪郭線位置候補を抽出する輪郭線位置候補抽出回路と、
 前記複数の輪郭線位置候補を含む領域内の各画素に対して、複数の方向の方向毎に、前記複数の輪郭線位置候補の各輪郭線位置候補から対象方向に並ぶ各画素までの距離を定義する距離マップを作成する距離マップ作成回路と、
 方向毎に作成された各距離マップを用いて、前記ホールパターンの中心画素候補を抽出する中心画素候補抽出回路と、
 前記複数の輪郭線位置候補の中から前記中心画素候補を起点にして所定の条件を満たす輪郭線位置候補群を前記ホールパターンの輪郭線が通る複数の輪郭線位置として探索し、出力する探索回路と、
 ことを特徴とする。
 本発明の一態様によれば、処理時間の短縮を図りながら高精度なホール検出ができる。
実施の形態1におけるパターン検査装置の構成の一例を示す構成図である。 実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。 実施の形態1における半導体基板に形成される複数のチップ領域の一例を示す図である。 実施の形態1におけるマルチビームのスキャン動作を説明するための図である。 実施の形態1における検査方法の要部工程を示すフローチャート図である。 実施の形態1における比較回路内の構成の一例を示すブロック図である。 実施の形態1における画素毎の階調値の勾配の演算を説明するための図である。 実施の形態1における図形パターンと勾配ベクトルとの一例を示す図である。 実施の形態1における1次元プロファイルの一例を示す図である。 実施の形態1における距離マップの一例を示す図である。 実施の形態1におけるホールパターンの中心画素候補の一例を示す図である。 実施の形態1におけるホールパターンの複数の中心画素候補の一例を示す図である。 実施の形態1におけるホールエッジノードの探索の仕方を説明するための図である。 実施の形態1におけるホールサイズチェックの仕方を説明するための図である。 実施の形態1における被検査輪郭線と複数の参照ホールエッジノードとの一例を示す図である。 実施の形態1における距離算出手法の一例を説明するための図である。 実施の形態1における参照ホールエッジノードから被検査輪郭線への距離の一例を示す図である。 実施の形態1における検査結果の一例を示す図である。
 以下、実施の形態では、パターン検査装置或いは/及び画像内のホールパターンの探索装置の一例として、電子ビーム検査装置について説明する。但し、これに限るものではない。例えば、紫外線を被検査基板に照射して、被検査基板を透過或いは反射した光を用いて被検査画像を取得する検査装置であっても構わない。また、実施の形態では、複数の電子ビームによるマルチビームを用いて画像を取得する検査装置について説明するが、これに限るものではない。1本の電子ビームによるシングルビームを用いて画像を取得する検査装置であっても構わない。
[実施の形態1]
 図1は、実施の形態1におけるパターン検査装置の構成の一例を示す構成図である。図1において、基板に形成されたパターンを検査する検査装置100は、マルチ電子ビーム検査装置の一例である。検査装置100は、画像取得機構150(2次電子画像取得機構)、及び制御系回路160を備えている。画像取得機構150は、電子ビームカラム102(電子鏡筒)及び検査室103を備えている。電子ビームカラム102内には、電子銃201、電磁レンズ202、成形アパーチャアレイ基板203、電磁レンズ205、一括ブランキング偏向器212、制限アパーチャ基板213、電磁レンズ206、電磁レンズ207(対物レンズ)、主偏向器208、副偏向器209、ビームセパレーター214、偏向器218、電磁レンズ224、電磁レンズ226、及びマルチ検出器222が配置されている。図1の例において、電子銃201、電磁レンズ202、成形アパーチャアレイ基板203、電磁レンズ205、一括ブランキング偏向器212、制限アパーチャ基板213、電磁レンズ206、電磁レンズ207(対物レンズ)、主偏向器208、及び副偏向器209は、マルチ1次電子ビームを基板101に照射する1次電子光学系を構成する。ビームセパレーター214、偏向器218、電磁レンズ224、及び電磁レンズ226は、マルチ2次電子ビームをマルチ検出器222に照射する2次電子光学系を構成する。
 検査室103内には、少なくともXY方向に移動可能なステージ105が配置される。ステージ105上には、検査対象となる基板101(試料)が配置される。基板101には、露光用マスク基板、及びシリコンウェハ等の半導体基板が含まれる。基板101が半導体基板である場合、半導体基板には複数のチップパターン(ウェハダイ)が形成されている。基板101が露光用マスク基板である場合、露光用マスク基板には、チップパターンが形成されている。チップパターンは、複数の図形パターンによって構成される。かかる露光用マスク基板に形成されたチップパターンが半導体基板上に複数回露光転写されることで、半導体基板には複数のチップパターン(ウェハダイ)が形成されることになる。以下、基板101が半導体基板である場合を主として説明する。基板101は、例えば、パターン形成面を上側に向けてステージ105に配置される。また、ステージ105上には、検査室103の外部に配置されたレーザ測長システム122から照射されるレーザ測長用のレーザ光を反射するミラー216が配置されている。マルチ検出器222は、電子ビームカラム102の外部で検出回路106に接続される。
 制御系回路160では、検査装置100全体を制御する制御計算機110が、バス120を介して、位置回路107、比較回路108、参照画像作成回路112、ステージ制御回路114、レンズ制御回路124、ブランキング制御回路126、偏向制御回路128、磁気ディスク装置等の記憶装置109、モニタ117、及びメモリ118に接続されている。また、偏向制御回路128は、DAC(デジタルアナログ変換)アンプ144,146,148に接続される。DACアンプ146は、主偏向器208に接続され、DACアンプ144は、副偏向器209に接続される。DACアンプ148は、偏向器218に接続される。
 また、検出回路106は、チップパターンメモリ123に接続される。チップパターンメモリ123は、比較回路108に接続されている。また、ステージ105は、ステージ制御回路114の制御の下に駆動機構142により駆動される。駆動機構142では、例えば、ステージ座標系におけるX方向、Y方向、θ方向に駆動する3軸(X-Y-θ)モータの様な駆動系が構成され、XYθ方向にステージ105が移動可能となっている。これらの、図示しないXモータ、Yモータ、θモータは、例えばステッピングモータを用いることができる。ステージ105は、XYθ各軸のモータによって水平方向及び回転方向に移動可能である。そして、ステージ105の移動位置はレーザ測長システム122により測定され、位置回路107に供給される。レーザ測長システム122は、ミラー216からの反射光を受光することによって、レーザ干渉法の原理でステージ105の位置を測長する。ステージ座標系は、例えば、マルチ1次電子ビームの光軸(電子軌道中心軸)に直交する面に対して、X方向、Y方向、θ方向が設定される。
 電磁レンズ202、電磁レンズ205、電磁レンズ206、電磁レンズ207(対物レンズ)、電磁レンズ224、電磁レンズ226、及びビームセパレーター214は、レンズ制御回路124により制御される。また、一括ブランキング偏向器212は、2極以上の電極により構成され、電極毎に図示しないDACアンプを介してブランキング制御回路126により制御される。副偏向器209は、4極以上の電極により構成され、電極毎にDACアンプ144を介して偏向制御回路128により制御される。主偏向器208は、4極以上の電極により構成され、電極毎にDACアンプ146を介して偏向制御回路128により制御される。偏向器218は、4極以上の電極により構成され、電極毎にDACアンプ148を介して偏向制御回路128により制御される。
 電子銃201には、図示しない高圧電源回路が接続され、電子銃201内の図示しないフィラメント(カソード)と引出電極(アノード)間への高圧電源回路からの加速電圧の印加と共に、別の引出電極(ウェネルト)の電圧の印加と所定の温度のカソードの加熱によって、カソードから放出された電子群が加速させられ、電子ビーム200となって放出される。
 ここで、図1では、実施の形態1を説明する上で必要な構成を記載している。検査装置100にとって、通常、必要なその他の構成を備えていても構わない。
 図2は、実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。図2において、成形アパーチャアレイ基板203には、2次元状の横(x方向)m列×縦(y方向)n段(m,nは、一方が2以上の整数、他方が1以上の整数)の穴(開口部)22がx,y方向に所定の配列ピッチで形成されている。図2の例では、23×23の穴(開口部)22が形成されている場合を示している。各穴22は、理想的には共に同じ寸法形状の矩形で形成される。或いは、理想的には同じ外径の円形であっても構わない。これらの複数の穴22を電子ビーム200の一部がそれぞれ通過することで、m×n本(=N本)のマルチ1次電子ビーム20が形成されることになる。
 次に、検査装置100における画像取得機構150の動作について説明する。
 電子銃201(放出源)から放出された電子ビーム200は、電磁レンズ202によって屈折させられ、成形アパーチャアレイ基板203全体を照明する。成形アパーチャアレイ基板203には、図2に示すように、複数の穴22(開口部)が形成され、電子ビーム200は、すべての複数の穴22が含まれる領域を照明する。複数の穴22の位置に照射された電子ビーム200の各一部が、かかる成形アパーチャアレイ基板203の複数の穴22をそれぞれ通過することによって、マルチ1次電子ビーム20が形成される。
 形成されたマルチ1次電子ビーム20は、電磁レンズ205、及び電磁レンズ206によってそれぞれ屈折させられ、中間像およびクロスオーバーを繰り返しながら、マルチ1次電子ビーム20の各ビームのクロスオーバー位置(各ビームの中間像位置)に配置されたビームセパレーター214を通過して電磁レンズ207(対物レンズ)に進む。そして、電磁レンズ207は、マルチ1次電子ビーム20を基板101にフォーカス(合焦)する。対物レンズ207により基板101(試料)面上に焦点が合わされた(合焦された)マルチ1次電子ビーム20は、主偏向器208及び副偏向器209によって一括して偏向され、各ビームの基板101上のそれぞれの照射位置に照射される。なお、一括ブランキング偏向器212によって、マルチ1次電子ビーム20全体が一括して偏向された場合には、制限アパーチャ基板213の中心の穴から位置がはずれ、制限アパーチャ基板213によって遮蔽される。一方、一括ブランキング偏向器212によって偏向されなかったマルチ1次電子ビーム20は、図1に示すように制限アパーチャ基板213の中心の穴を通過する。かかる一括ブランキング偏向器212のON/OFFによって、ブランキング制御が行われ、ビームのON/OFFが一括制御される。このように、制限アパーチャ基板213は、一括ブランキング偏向器212によってビームOFFの状態になるように偏向されたマルチ1次電子ビーム20を遮蔽する。そして、ビームONになってからビームOFFになるまでに形成された、制限アパーチャ基板213を通過したビーム群により、検査用(画像取得用)のマルチ1次電子ビーム20が形成される。
 基板101の所望する位置にマルチ1次電子ビーム20が照射されると、かかるマルチ1次電子ビーム20が照射されたことに起因して基板101からマルチ1次電子ビーム20の各ビームに対応する、反射電子を含む2次電子の束(マルチ2次電子ビーム300)が放出される。
 基板101から放出されたマルチ2次電子ビーム300は、電磁レンズ207を通って、ビームセパレーター214に進む。
 ここで、ビームセパレーター214はマルチ1次電子ビーム20の中心ビームが進む方向(電子軌道中心軸)に直交する面上において電界と磁界を直交する方向に発生させる。電界は電子の進行方向に関わりなく同じ方向に力を及ぼす。これに対して、磁界はフレミング左手の法則に従って力を及ぼす。そのため電子の侵入方向によって電子に作用する力の向きを変化させることができる。ビームセパレーター214に上側から侵入してくるマルチ1次電子ビーム20には、電界による力と磁界による力が打ち消し合い、マルチ1次電子ビーム20は下方に直進する。これに対して、ビームセパレーター214に下側から侵入してくるマルチ2次電子ビーム300には、電界による力と磁界による力がどちらも同じ方向に働き、マルチ2次電子ビーム300は斜め上方に曲げられ、マルチ1次電子ビーム20から分離する。
 斜め上方に曲げられ、マルチ1次電子ビーム20から分離したマルチ2次電子ビーム300は、偏向器218によって、さらに曲げられ、電磁レンズ224,226によって、屈折させられながらマルチ検出器222に投影される。マルチ検出器222は、投影されたマルチ2次電子ビーム300を検出する。マルチ検出器222には、反射電子及び2次電子が投影されても良いし、反射電子は途中で発散してしまい残った2次電子が投影されても良い。マルチ検出器222は、2次元センサを有する。そして、マルチ2次電子ビーム300の各2次電子が2次元センサのそれぞれ対応する領域に衝突して、電子を発生し、2次電子画像データを画素毎に生成する。言い換えれば、マルチ検出器222には、マルチ1次電子ビーム20の1次電子ビーム毎に、検出センサが配置される。そして、各1次電子ビームの照射によって放出された対応する2次電子ビームを検出する。よって、マルチ検出器222の複数の検出センサの各検出センサは、それぞれ担当する1次電子ビームの照射に起因する画像用の2次電子ビームの強度信号を検出することになる。マルチ検出器222にて検出された強度信号は、検出回路106に出力される。
 図3は、実施の形態1における半導体基板に形成される複数のチップ領域の一例を示す図である。図3において、基板101が半導体基板(ウェハ)である場合、半導体基板(ウェハ)の検査領域330には、複数のチップ(ウェハダイ)332が2次元のアレイ状に形成されている。各チップ332には、露光用マスク基板に形成された1チップ分のマスクパターンが図示しない露光装置(ステッパ、スキャナ等)によって例えば1/4に縮小されて転写されている。各チップ332の領域は、例えばy方向に向かって所定の幅で複数のストライプ領域32に分割される。画像取得機構150によるスキャン動作は、例えば、ストライプ領域32毎に実施される。例えば、-x方向にステージ105を移動させながら、相対的にx方向にストライプ領域32のスキャン動作を進めていく。各ストライプ領域32は、長手方向に向かって複数の矩形領域33に分割される。対象となる矩形領域33へのビームの移動は、主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって行われる。
 図4は、実施の形態1におけるマルチビームのスキャン動作を説明するための図である。図4の例では、5×5列のマルチ1次電子ビーム20の場合を示している。1回のマルチ1次電子ビーム20の照射で照射可能な照射領域34は、(基板101面上におけるマルチ1次電子ビーム20のx方向のビーム間ピッチにx方向のビーム数を乗じたx方向サイズ)×(基板101面上におけるマルチ1次電子ビーム20のy方向のビーム間ピッチにy方向のビーム数を乗じたy方向サイズ)で定義される。各ストライプ領域32の幅は、照射領域34のy方向サイズと同様、或いはスキャンマージン分狭くしたサイズに設定すると好適である。図3及び図4の例では、照射領域34が矩形領域33と同じサイズの場合を示している。但し、これに限るものではない。照射領域34が矩形領域33よりも小さくても良い。或いは大きくても構わない。そして、マルチ1次電子ビーム20の各ビームは、自身のビームが位置するx方向のビーム間ピッチとy方向のビーム間ピッチとで囲まれるサブ照射領域29内に照射され、当該サブ照射領域29内を走査(スキャン動作)する。マルチ1次電子ビーム20を構成する各1次電子ビーム10は、互いに異なるいずれかのサブ照射領域29を担当することになる。そして、各ショット時に、各1次電子ビーム10は、担当サブ照射領域29内の同じ位置を照射することになる。サブ照射領域29内の1次電子ビーム10の移動は、副偏向器209によるマルチ1次電子ビーム20全体での一括偏向によって行われる。かかる動作を繰り返し、1つの1次電子ビーム10で1つのサブ照射領域29内を順に照射していく。そして、1つのサブ照射領域29のスキャンが終了したら、主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって照射位置が同じストライプ領域32内の隣接する矩形領域33へと移動する。かかる動作を繰り返し、ストライプ領域32内を順に照射していく。1つのストライプ領域32のスキャンが終了したら、ステージ105の移動或いは/及び主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって照射位置が次のストライプ領域32へと移動する。以上のように各1次電子ビーム10iの照射によってサブ照射領域29毎の2次電子画像が取得される。これらのサブ照射領域29毎の2次電子画像を組み合わせることで、矩形領域33の2次電子画像、ストライプ領域32の2次電子画像、或いはチップ332の2次電子画像が構成される。
 なお、図4に示すように、各サブ照射領域29が矩形の複数のフレーム領域30に分割され、フレーム領域30単位の2次電子画像(被検査画像)が検査に使用される。図4の例では、1つのサブ照射領域29が、例えば4つのフレーム領域30に分割される場合を示している。但し、分割される数は4つに限るものではない。その他の数に分割されても構わない。
 なお、例えばx方向に並ぶ複数のチップ332を同じグループとして、グループ毎に例えばy方向に向かって所定の幅で複数のストライプ領域32に分割されるようにしても好適である。そして、ストライプ領域32間の移動は、チップ332毎に限るものではなく、グループ毎に行っても好適である。
 ここで、ステージ105が連続移動しながらマルチ1次電子ビーム20を基板101に照射する場合、マルチ1次電子ビーム20の照射位置がステージ105の移動に追従するように主偏向器208によって一括偏向によるトラッキング動作が行われる。そのため、マルチ2次電子ビーム300の放出位置がマルチ1次電子ビーム20の軌道中心軸に対して刻々と変化する。同様に、サブ照射領域29内をスキャンする場合に、各2次電子ビームの放出位置は、サブ照射領域29内で刻々と変化する。このように放出位置が変化した各2次電子ビームをマルチ検出器222の対応する検出領域内に照射させるように、偏向器218は、マルチ2次電子ビーム300を一括偏向する。
 ここで、検出された被検査画像の検査を行うにあたって、検出しなければならないパターン欠陥の1つとして、ホールパターンのCD(寸法)エラーがあげられる。上述したように、画像からホールパターンを高精度に抽出するには時間がかかる。例えば、閉図形か否かがわからない状態から全方向検査を行って輪郭線を辿るには処理量が膨大となり検査時間が長くかかってしまう場合があり得る。また、かかる手法では誤って隣接するパターンの輪郭を辿ってしまう事態も生じ得る。そのため、検出されるホールパターンの形状が不正確となり、検査精度が劣化してしまうといった問題も生じ得る。そのため処理時間の短縮を図りながら高精度なホール検出が求められる。そこで、実施の形態1では、ホールパターンの中心候補を抽出し、中心候補からホールパターンを構成する輪郭位置を求める構成について説明する。
 図5は、実施の形態1における検査方法の要部工程を示すフローチャート図である。図5において、実施の形態1における検査方法は、スキャン工程(S102)と、フレーム画像作成工程(S104)と、実画輪郭ノード抽出工程(S106)と、参照画像作成工程(S110)と、参照輪郭ノード抽出工程(S112)と、距離マップ作成工程(S114)と、ホール中心候補抽出工程(S116)と、ホール中心チェック工程(S118)と、参照ホールエッジ探索工程(S120)と、ホールサイズチェック工程(S122)と、実画輪郭線補間工程(S130)と、距離算出工程(S132)と、比較工程(S134)と、いう一連の工程を実施する。
 スキャン工程(S102)として、画像取得機構150は、ホールパターン(第1のホールパターン)を含む図形パターンが形成された基板101の被検査画像を取得する。ここでは、ホールパターンが形成された基板101にマルチ1次電子ビーム20を照射して、マルチ1次電子ビーム20の照射に起因して基板101から放出されるマルチ2次電子ビーム300を検出することにより、基板101の2次電子画像を取得する。上述したように、マルチ検出器222には、反射電子及び2次電子が投影されても良いし、反射電子は途中で発散してしまい残った2次電子(マルチ2次電子ビーム300)が投影されても良い。
 上述したように、マルチ1次電子ビーム20の照射に起因して基板101から放出されるマルチ2次電子ビーム300は、マルチ検出器222で検出される。マルチ検出器222によって検出された各サブ照射領域29内の画素毎の2次電子の検出データ(測定画像データ:2次電子画像データ:被検査画像データ)は、測定順に検出回路106に出力される。検出回路106内では、図示しないA/D変換器によって、アナログの検出データがデジタルデータに変換され、チップパターンメモリ123に格納される。そして、得られた測定画像データは、位置回路107からの各位置を示す情報と共に、比較回路108に転送される。比較回路108に転送される。
 図6は、実施の形態1における比較回路内の構成の一例を示すブロック図である。図6において、実施の形態1における比較回路108内には、磁気ディスク装置等の記憶装置50,52,56,58、フレーム画像作成部54、参照輪郭ノード抽出部60、実画輪郭ノード抽出部62、距離マップ作成部64、ホール中心候補抽出部66、ホール中心チェック部68、参照ホールエッジ抽出部70、ホールサイズチェック部72、実画輪郭線補間処理部74、距離算出部76、及び比較処理部78が配置される。フレーム画像作成部54、参照輪郭ノード抽出部60、実画輪郭ノード抽出部62、距離マップ作成部64、ホール中心候補抽出部66、ホール中心チェック部68、参照ホールエッジ抽出部70、ホールサイズチェック部72、実画輪郭線補間処理部74、距離算出部76、及び比較処理部78といった各「~部」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「~部」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。フレーム画像作成部54、参照輪郭ノード抽出部60、実画輪郭ノード抽出部62、距離マップ作成部64、ホール中心候補抽出部66、ホール中心チェック部68、参照ホールエッジ抽出部70、ホールサイズチェック部72、実画輪郭線補間処理部74、距離算出部76、及び比較処理部78内に必要な入力データ或いは演算された結果はその都度図示しないメモリ、或いはメモリ118に記憶される。
 比較回路108内に転送された測定画像データ(ビーム画像)は、記憶装置50に格納される。
 フレーム画像作成工程(S104)として、フレーム画像作成部54は、各1次電子ビーム10のスキャン動作によって取得されたサブ照射領域29の画像データをさらに分割した複数のフレーム領域30のフレーム領域30毎のフレーム画像31を作成する。なお、各フレーム領域30は、画像の抜けが無いように、互いにマージン領域が重なり合うように構成されると好適である。作成されたフレーム画像31は、記憶装置56に格納される。
 実画輪郭ノード抽出工程(S106)として、実画輪郭ノード抽出部62(第1の輪郭線位置候補抽出部)は、フレーム画像31(被検査画像)からホールパターン(第1のホールパターン)の輪郭線が通る複数の位置の候補となる複数の輪郭線位置候補(第1の輪郭線位置候補)を抽出する。ここでは、実画のホールパターンの各輪郭線位置候補を実画輪郭ノードとする。具体的には以下のように動作する。実画輪郭ノード抽出部62(微分強度演算部)は、フレーム画像31の画素毎に、当該画素の階調値の勾配(微分強度)を演算する。
 図7は、実施の形態1における画素毎の階調値の勾配の演算を説明するための図である。図7において、実画輪郭ノード抽出部62は、フレーム画像31毎に、フレーム画像31の画素列(例えば512×512の画素列)に微分フィルタを畳み込む。具体的には、対象となる画素を順に移動させながら、対象画素を中心として、例えば、3×3の画素列を抽出し、かかる画素列に微分フィルタを乗じる。対象画素を中心とした画素列は、3×3の画素列に限るものではない。さらに多くの因子の行列で構成されていても良い。微分フィルタは、図7に示すように、x方向の微分フィルタとy方向の微分フィルタとを用いる。微分フィルタとして、例えば、画素列の中央に重みをつけた上で横方向或いは縦方向に平滑化を施すことによりノイズを低減しながら微分近似を行うことで、階調勾配が大きい画素を抽出可能なソーベルフィルタを用いると好適である。図7の例では、3×3の微分フィルタを一例として示している。但し、これに限るものではない。さらに多くの因子の行列で構成されていても良い。そして、対象画素を中心とした例えば3×3の画素列にx方向の微分フィルタとy方向の微分フィルタとをそれぞれ畳み込む。これにより、x方向の勾配の値とy方向の勾配の値とを演算できる。そして、実画輪郭ノード抽出部62は、x方向の勾配とy方向の勾配との2乗和根を演算して、勾配の大きさ(値)を演算する。
 そして、実画輪郭ノード抽出部62は、勾配の大きさ(微分強度の値)が閾値以上の画素毎に、サブ画素単位で輪郭線の位置を演算する。例えば、実画輪郭ノード抽出部62は、勾配の大きさ(微分強度の値)が閾値以上の画素毎に、当該画素の勾配の大きさに対する法線方向の複数の画素についての1次元プロファイルを抽出する。
 図8は、実施の形態1における図形パターンと勾配ベクトルとの一例を示す図である。図8(a)では、ホールパターンの右上部における閾値以上の勾配値を持った複数の画素における勾配ベクトルの一例を示している。例えば、図形のx方向に延びる輪郭線上の画素では、y方向(或いは-y方向)に所定の大きさの勾配ベクトルが得られる。図示していないが、例えば、図形のy方向に延びる輪郭線上の画素では、x方向(或いは-x方向)に所定の大きさの勾配ベクトルが得られる。例えば、x,y方向に沿っていない輪郭線(例えば、図形の角部)上の画素では、x,y方向の合成された方向に所定の大きさの勾配ベクトルが得られる。ここで、勾配ベクトルのベクトルは、当該画素の勾配の大きさに対する法線方向を示している。法線方向とは、等勾配値線(等微分強度線)に直交する方向に相当する。実際の演算では、x方向の勾配とy方向の勾配とを、それぞれx方向の勾配ベクトルとy方向の勾配ベクトルとした場合、x方向の勾配ベクトルとy方向の勾配ベクトルとを合成(加算)した方向が法線方向に相当する。図8(a)の例では、閾値以上の勾配値を持った複数の画素の勾配ベクトルを抽出して示しているが、その他の画素についてもそれぞれ勾配ベクトルが存在し得ることはいうまでもない。実画輪郭ノード抽出部62は、フレーム画像31毎に、当該フレーム画像31内の各画素で得られた勾配ベクトルの中から、閾値以上の勾配値を持った画素を抽出する。そして、抽出された画素毎に、当該画素の勾配の大きさに対する法線方向の1次元プロファイルを抽出する。図8(b)の例では、ホールパターン上のある画素内を通る輪郭線の一例を示している。
 図9は、実施の形態1における1次元プロファイルの一例を示す図である。実画輪郭ノード抽出部62は、法線方向に並ぶ1次元プロファイルからサブ画素単位でピーク位置を抽出する。図9の例では、輪郭線が通過する画素内で基準位置(例えば画素中心)からxずれた位置(0≦x≦1)にピーク位置があることを示している。かかるピーク位置が実画輪郭ノードとなる。y方向についても同様にピーク位置を求める。
 微分強度の値が閾値以上の画素毎に、同様の動作を行って、フレーム画像31内のホールパターンの輪郭線が通る複数の位置の候補となる複数の輪郭ノードを抽出する。同様の動作を参照画像についても行う。まずは、参照画像を作成する。
 参照画像作成工程(S110)として、参照画像作成回路112は、基板101に形成されたホールパターンを含む図形パターンの元になる設計データに基づいて、フレーム領域30毎に、フレーム画像31に対応する参照画像を作成する。具体的には、以下のように動作する。まず、記憶装置109から制御計算機110を通して設計パターンデータを読み出し、この読み出された設計パターンデータに定義された各図形パターンを2値ないしは多値のイメージデータに変換する。
 上述したように、設計パターンデータに定義される図形は、例えば長方形や三角形を基本図形としたもので、例えば、図形の基準位置における座標(x、y)、辺の長さ、長方形や三角形等の図形種を区別する識別子となる図形コードといった情報で各パターン図形の形、大きさ、位置等を定義した図形データが格納されている。
 かかる図形データとなる設計パターンデータが参照画像作成回路112に入力されると図形ごとのデータにまで展開し、その図形データの図形形状を示す図形コード、図形寸法などを解釈する。そして、所定の量子化寸法のグリッドを単位とするマス目内に配置されるパターンとして2値ないしは多値の設計パターン画像データに展開し、出力する。言い換えれば、設計データを読み込み、検査領域を所定の寸法を単位とするマス目として仮想分割してできたマス目毎に設計パターンにおける図形が占める占有率を演算し、nビットの占有率データを出力する。例えば、1つのマス目を1画素として設定すると好適である。そして、1画素に1/2(=1/256)の分解能を持たせるとすると、画素内に配置されている図形の領域分だけ1/256の小領域を割り付けて画素内の占有率を演算する。そして、8ビットの占有率データとなる。かかるマス目(検査画素)は、測定データの画素に合わせればよい。
 次に、参照画像作成回路112は、図形のイメージデータである設計パターンの設計画像データに、所定のフィルタ関数を使ってフィルタ処理を施す。これにより、画像強度(濃淡値)がデジタル値の設計側のイメージデータである設計画像データをマルチ1次電子ビーム20の照射によって得られる像生成特性に合わせることができる。作成された参照画像の画素毎の画像データは比較回路108に出力される。比較回路108内に転送された参照画像データは、記憶装置52に格納される。
 参照輪郭ノード抽出工程(S112)として、参照輪郭ノード抽出部60(第2の輪郭線位置候補抽出部)は、フレーム画像31(被検査画像)と比較するための参照画像からフレーム画像31のホールパターンに対応するホールパターン(第2のホールパターン)の輪郭線が通る複数の位置の候補となる複数の輪郭線位置候補(第2の輪郭線位置候補)を抽出する。ここでは、参照画像のホールパターンの各輪郭線位置候補を参照輪郭ノードとする。具体的には以下のように動作する。参照輪郭ノード抽出部60(微分強度演算部)は、参照画像の画素毎に、当該画素の階調値の勾配(微分強度)を演算する。フレーム画像31に対する場合と同様、参照輪郭ノード抽出部60は、対象画素を中心とした例えば3×3の画素列にx方向の微分フィルタとy方向の微分フィルタとをそれぞれ畳み込む。これにより、x方向の勾配の値とy方向の勾配の値とを演算できる。そして、参照輪郭ノード抽出部60は、x方向の勾配とy方向の勾配との2乗和根を演算して、勾配の大きさ(値)を演算する。
 そして、参照輪郭ノード抽出部60は、フレーム画像31に対する場合と同様、勾配の大きさ(微分強度の値)が閾値以上の画素毎に、サブ画素単位で輪郭線の位置を演算する。
 以上により、実画のホールパターンの複数の実画輪郭ノード(第1の輪郭線位置候補)と、対応する参照画像のホールパターンの複数の参照輪郭ノード(第2の輪郭線位置候補)とを得ることができる。
 距離マップ作成工程(S114)として、距離マップ作成部64は、参照画像の複数の参照輪郭ノードを含む領域内の各画素に対して、複数の方向の方向毎に、複数の参照輪郭ノードの各参照輪郭ノードから対象方向に並ぶ各画素までの距離を定義する距離マップを作成する。
 図10は、実施の形態1における距離マップの一例を示す図である。図10において、距離マップとして、例えば、上下左右の4方向からの距離をそれぞれ定義する4つの距離マップを作成する。各距離マップにおいて、値ゼロが定義された画素に複数の参照輪郭ノードのいずれかが含まれる。図10の例では、各距離マップにおいて、例えば16個の画素が参照輪郭ノードとしてゼロが定義される。図10(a)では、各参照輪郭ノード画素を起点に左方向から右方向へ向かう場合の各画素までの距離を画素単位で示している。図10(b)では、各参照輪郭ノード画素を起点に右方向から左方向へ向かう場合の各画素までの距離を画素単位で示している。図10(c)では、各参照輪郭ノード画素を起点に上方向から下方向へ向かう場合の各画素までの距離を画素単位で示している。図10(d)では、各参照輪郭ノード画素を起点に下方向から上方向へ向かう場合の各画素までの距離を画素単位で示している。*が記されている画素には、図示されていない参照輪郭ノード画素からの距離が格納される。
 図10(a)の例では、例えば、上から3段目かつ左から2列目の画素が参照輪郭ノードの1つであることがわかる。かかる参照輪郭ノード画素から右方向に1つだけずれた画素には距離1が定義される。かかる参照輪郭ノード画素から右方向に2つだけずれた画素には距離2が定義される。図10(a)の例では、上から3段目かつ左から2列目の参照輪郭ノード画素について、同様に距離4まで定義されている。他の参照輪郭ノード画素に到達した時点で距離の定義は終了する。他の参照輪郭ノード画素からの距離も同様に定義される。
 図10(b)の例では、例えば、上から3段目かつ左から7列目の画素が参照輪郭ノードの1つであることがわかる。かかる参照輪郭ノード画素から左方向に1つだけずれた画素には距離1が定義される。かかる参照輪郭ノード画素から左方向に2つだけずれた画素には距離2が定義される。図10(b)の例では、上から3段目かつ左から7列目の参照輪郭ノード画素について、同様に距離4まで定義されている。他の参照輪郭ノード画素に到達した時点で距離の定義は終了する。他の参照輪郭ノード画素からの距離も同様に定義される。
 図10(c)の例では、例えば、上から1段目かつ左から4列目の画素が参照輪郭ノードの1つであることがわかる。かかる参照輪郭ノード画素から下方向に1つだけずれた画素には距離1が定義される。かかる参照輪郭ノード画素から下方向に2つだけずれた画素には距離2が定義される。図10(c)の例では、上から1段目かつ左から4列目の参照輪郭ノード画素について、同様に距離4まで定義されている。他の参照輪郭ノード画素に到達した時点で距離の定義は終了する。他の参照輪郭ノード画素からの距離も同様に定義される。
 図10(d)の例では、例えば、上から6段目かつ左から4列目の画素が参照輪郭ノードの1つであることがわかる。かかる参照輪郭ノード画素から上方向に1つだけずれた画素には距離1が定義される。かかる参照輪郭ノード画素から上方向に2つだけずれた画素には距離2が定義される。図10(d)の例では、上から6段目かつ左から4列目の参照輪郭ノード画素について、同様に距離4まで定義されている。他の参照輪郭ノード画素に到達した時点で距離の定義は終了する。他の参照輪郭ノード画素からの距離も同様に定義される。
 ホール中心候補抽出工程(S116)として、ホール中心候補抽出部66(中心画素候補抽出部)は、方向毎に作成された各距離マップを用いて、参照画像のホールパターンの中心画素候補を抽出する。
 図11は、実施の形態1におけるホールパターンの中心画素候補の一例を示す図である。ホール中心候補抽出部66は、例えば、上下左右からの距離をそれぞれ定義した4つの距離マップを使って、上下方向からの距離が略等距離、かつ左右方向からの距離が略等距離となる画素を抽出する。略等距離として、距離の差分が1画素分以下に納まる画素を抽出する。具体的には、例えば、左方向からの距離から右方向からの距離を差し引いた差分がゼロとなる画素若しくは-1になる画素であって、上方向からの距離から下方向からの距離を差し引いた差分がゼロとなる画素若しくは-1になる画素を抽出する。かかる場合、図11の例に示すように、上から3段目かつ左から4列目の画素(星印)がホールパターンの中心画素候補になる。
 或いは、例えば、左方向からの距離から右方向からの距離を差し引いた差分がゼロとなる画素若しくは1になる画素であって、上方向からの距離から下方向からの距離を差し引いた差分がゼロとなる画素若しくは1になる画素を抽出するように構成しても良い。かかる場合、上から4段目かつ左から5列目の画素がホールパターンの中心画素候補になる。
 或いは、例えば、左方向からの距離から右方向からの距離を差し引いた差分がゼロとなる画素若しくは1になる画素であって、上方向からの距離から下方向からの距離を差し引いた差分がゼロとなる画素若しくは-1になる画素を抽出するように構成しても良い。かかる場合、上から3段目かつ左から5列目の画素がホールパターンの中心画素候補になる。
 或いは、例えば、左方向からの距離から右方向からの距離を差し引いた差分がゼロとなる画素若しくは-1になる画素であって、上方向からの距離から下方向からの距離を差し引いた差分がゼロとなる画素若しくは1になる画素を抽出するように構成しても良い。かかる場合、上から3段目かつ左から5列目の画素がホールパターンの中心画素候補になる。
 このように定義の仕方によって1画素程度ずれる場合があるがそれは構わない。或いは抽出定義が同じで複数の中心画素候補が抽出される場合であっても構わない。
 図12は、実施の形態1におけるホールパターンの複数の中心画素候補の一例を示す図である。図12の例では、2つの中心画素候補が抽出された場合を示している。
 ホール中心チェック工程(S118)として、ホール中心チェック部68(削除回路)は、ホールパターンの中心画素候補が2つ以上抽出される場合に、中心画素候補間の距離Lが閾値以下であれば、一方を中心画素候補から削除する。図12の例では、2つの中心画素候補のうち右側の中心画素候補を削除する。どちらを削除するのかは予め削除する側の位置関係を定義しておけばよい。中心画素候補間の距離Lが短い場合にはあえて2つ存在する必要がない。一方を削除することで後述する参照ホールエッジ探索工程(S120)の処理を短縮できる。
 ここまでの時点では、参照画像のホールパターンの輪郭線位置候補となる複数の参照輪郭ノードを把握できているものの、かかる複数の参照輪郭ノードを辿ることで必ず所望のホールパターンを形成するかどうかはわかっていない。例えば、隣接する別のホールパターンの輪郭線上に位置するかもしれない。そこで、次のように、1つのホールパターン上の輪郭線位置を決定する。
 参照ホールエッジ探索工程(S120)として、参照ホールエッジ探索部70(参照輪郭線位置探索部)は、参照画像の複数の参照輪郭ノード(第2の輪郭線位置候補)の中から中心画素候補を起点にして所定の条件を満たす参照輪郭ノード群(第2の輪郭線位置候補群)を参照画像のホールパターンの輪郭線が通る複数の参照ホールエッジノード(参照輪郭線位置)として探索する。
 図13は、実施の形態1におけるホールエッジノードの探索の仕方を説明するための図である。図13において、参照ホールエッジ探索部70は、ホールパターンの中心画素候補を起点にして参照輪郭ノードを含む画素までn回(nは2以上の整数)以内の方向転換により辿り着く参照輪郭ノード群をホールパターンの輪郭線が通る複数の参照ホールエッジノード(輪郭線位置)として探索する。ここでは、ホールパターンの中心画素候補を起点にして、上下左右(±x方向,±y方向)いずれかの直線をn回方向転換して(例えば折り返して)参照輪郭ノードを含む画素に辿り着くすべての参照輪郭ノードのうち、他の参照輪郭ノードからの距離が閾値内の複数の参照輪郭ノードをかかるホールパターンの参照ホールエッジノード(輪郭線位置)として探索する。中心画素候補または方向転換画素における距離マップの値はその画素から参照輪郭ノードへの相対座標に相当するので、その相対座標にあたる画素をホールエッジノードの一つとする。そして中心画素候補または方向転換の画素とホールエッジノードの間にある全ての画素を次の方向転換の画素とする。この操作を繰り返すことにより、最終的に一つのホールにある全てのホールエッジノードを抽出することができる。ここで、上述のように方向転換回数は最大n回とする。中心画素候補から各ホールエッジノードへの経路は複数存在する場合があるので、ホールエッジノードの多重カウントを避けるようにする。図13の例では、例えば、中心画素候補が上から3段目かつ左から4列目の画素である場合に、上方向から右方向へ転換し、その後、下方向へ転換した2回の方向転換により上から6段目かつ左から5列目の参照輪郭ノードを含む画素に辿り着く場合を示している。かかる画素へは、経路によっては1回の方向転換でも辿り着く場合もある。また、例えば、上から1段目かつ左から2列目の参照輪郭ノードを含む画素に辿り着く場合には、どのように経路を辿る場合でも少なくとも2回以上の方向転換が必要となる。方向転換の回数は、形成されるホールパターンの形状に応じて設定されればよい。例えば、n=2回に設定される。また、他の参照輪郭ノードからの距離が閾値内かどうかは距離マップを参照して判断できる。他の参照輪郭ノードからの距離が閾値内に入らない参照輪郭ノードをホールエッジとして検出した場合には、ホールパターンという閉図形を構成しない参照輪郭ノードが存在するため、この中心画素はホールパターンの候補から外される。
 以上のようにして、ホールパターンの輪郭線が通る複数の参照ホールエッジノード(輪郭線位置)を得ることができる。以上のように、距離マップを利用することで、ホールの認識とホールエッジ探索を高速化できる。かかる複数の参照ホールエッジノードをもって参照画像のホールパターンの輪郭線を構成する輪郭線位置として記憶装置58に出力しても良い。実施の形態1では、さらに、以下のチェックを追加する。
 ホールサイズチェック工程(S122)として、ホールサイズチェック部72は、ホールの各サイズが設定範囲内かどうかを判定する。
 図14は、実施の形態1におけるホールサイズチェックの仕方を説明するための図である。図14の例では、例えば、x方向の最外周端間のサイズw、y方向の最外周端間のサイズh、ホールの中心画素候補を通るy方向の外周端までのサイズu1、ホールの中心画素候補を通るx方向の外周端までのサイズu2、サイズhとサイズu1との差分、或いは/及びサイズwとサイズu2との差分をチェック項目として挙げている。設定範囲から外れる場合、かかる中心画素候補から得られたパターンはホールパターンではないとして候補から外される。複数の中心画素候補が抽出される場合、一方の中心画素候補では設定範囲内になり、他方の中心画素候補では設定範囲から外れる場合もあり得る。かかる場合、設定範囲内となった方のホールパターンの複数の参照ホールエッジノードが記憶装置58に出力され、格納されることになる。
 実画輪郭線補間工程(S130)として、実画輪郭線補間処理部74(被検査輪郭線作成部)は、フレーム画像31の複数の実画輪郭ノードの中から参照画像の複数の参照ホールエッジノードの近傍の実画輪郭ノード群(第1の輪郭線位置候補群)を補間して、フレーム画像31のホールパターンの被検査輪郭線を作成する。
 図15は、実施の形態1における被検査輪郭線と複数の参照ホールエッジノードとの一例を示す図である。実画輪郭線補間処理部74は、フレーム画像31の複数の実画輪郭ノードの中から参照画像の複数の参照ホールエッジノード11の近傍の実画輪郭ノード13群を選択する。そして、実画輪郭線補間処理部74は、かかる実画輪郭ノード13群を繋ぐ被検査輪郭線15の位置を補間により求める。例えば、直線補間を用いる。ラグランジュ補間、或いは、スプライン補間、或いは、Bスプライン補間を用いると好適である。例えば、ラグランジュ補間では、隣接する3つの実画輪郭ノード(x位置)をx(-1)、x(0)、x(1)とすると、区間[-1,1]の任意の場所tにおける輪郭位置は、次の式(1)で定義できる。y方向についても同様の計算を行う。図15の例では実画輪郭ノード13間を直線でつなぐ場合を示しているが、ラグランジュ補間を用いることで3つの実画輪郭ノードを繋ぐ曲線を生成できる。
(1) x(t)=x(-1)・(t/2-t/2)+x(0)・(-t+1)
         +x(1)・(t/2+t/2)
 距離算出工程(S132)として、距離算出部76は、複数の参照ホールエッジノードから被検査輪郭線への距離を算出する。距離を計算する場合に、実画の輪郭線が参照ホールエッジノードで囲まれるホールの外側に位置するのか、内側に位置するのかを合わせて判定する。内側に位置する場合、負の値として距離を算出する。外側に位置する場合、正の値として距離を算出する。
 図16は、実施の形態1における距離算出手法の一例を説明するための図である。図16の例において、実画輪郭ノード13及び各参照ホールエッジノード11の座標は、各ノードが位置する画素の基準点(例えば左上角)からの相対位置を示す。ここでは画素サイズを1とする。参照ホールエッジノードから距離の近い実画輪郭ノード2点を選ぶ。図16の例の場合、AおよびBとの距離(0.80、0.85)が他のノードとの距離(1.00、1.70)より近いので、この2点間を結ぶ直線を測定対象の輪郭線とする。参照エッジホールノードから、上記の輪郭線に垂線を引き、その長さを参照エッジホールと輪郭線の距離とする。幾何学的な演算により、上記距離を求める。図16の例の場合の距離は約0.76となる。
 図17は、実施の形態1における参照ホールエッジノードから被検査輪郭線への距離の一例を示す図である。図17(a)は、図13と同じである。参照ホールエッジノードから被検査輪郭線への距離を計算する場合のベクトル方向が、図17(a)に示す参照ホールエッジノードを探索した際の最終の探索方向(サーチ方向)に対して90°以下であれば、図17(b)に示すように、かかる距離は正とする。参照ホールエッジノードから被検査輪郭線への距離を計算する場合のベクトル方向が、図17(a)に示す参照ホールエッジノードを探索した際の最終の探索方向(サーチ方向)に対して90°以下でなければ、図17(b)に示すように、かかる距離は負とする。図17(c)に各参照ホールエッジノードから被検査輪郭線への距離の一例が示されている。
 距離算出部76は、各参照ホールエッジノードから被検査輪郭線への距離の総和、あるいは平均値を算出する。図17(c)の例では、ケース1として、距離の総和が、例えば-8.6であることが示されている。ケース2として、距離の平均値として、距離の総和を参照ホールエッジノードの数Nで割った値が、例えば-8.6/16であることが示されている。ケース3として、距離の平均値として、距離の総和を参照画像のホールパターンの面積(画素数)AREAで割った値が、例えば-8.6/33であることが示されている。
 比較工程(S134)として、比較処理部78(比較部)は、距離に基づく値と検査閾値を比較する。距離に基づく値(反応値)は、上述した各参照ホールエッジノードから被検査輪郭線への距離の総和、あるいは平均値等を示す。反応値が検査閾値よりも大きいホールパターンを欠陥ありと判定する。比較結果は、記憶装置109、モニタ117、若しくはメモリ118に出力される。
 以上のように、ホールの全面積を計算するのではなく、距離の総和、あるいは平均値といった部分積分を行うことでCDエラーを高速に計算できる。また、実画のホールパターンの輪郭線を補間処理で求めることで、各参照ホールエッジノードから被検査輪郭線への距離を算出する場合に輪郭ノードの離散性に起因する誤差を低減できる。
 図18は、実施の形態1における検査結果の一例を示す図である。図18(a)では、位置合わせ時のずれ量が0.0画素に調整された参照画像のホールパターンと実画のホールパターンとを比較した結果の一例を示している。図18(b)では、位置合わせ時のずれ量をあえて0.5画素に調整された参照画像のホールパターンと実画のホールパターンとを比較した結果の一例を示している。いずれの場合で比較しても、参照画像のホールパターンと実画のホールパターンとの差を小さくできた。この結果は、高精度にホールパターンを抽出できたことを示す。
 以上のように、実施の形態1によれば、処理時間の短縮を図りながら高精度なホール検出ができる。例えば、参照画像から各参照ホールエッジノードを高精度或いは/及び高速に探索できる。ひいては、参照画像からホールパターンを高精度或いは/及び高速に探索できる。また、参照ホールエッジノードを高精度に探索できるので、その結果を利用すればフレーム画像のホールパターンの複数の実画輪郭ノードの中から実際に輪郭線を構成する実画輪郭ノード13群を高精度或いは/及び高速に抽出できる。
 以上の説明において、一連の「~回路」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「~回路」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。プロセッサ等を実行させるプログラムは、磁気ディスク装置、フラッシュメモリ等の記録媒体に記録されればよい。例えば、位置回路107、比較回路108、参照画像作成回路112、ステージ制御回路114、レンズ制御回路124、ブランキング制御回路126、及び偏向制御回路128は、上述した少なくとも1つの処理回路で構成されても良い。
 以上、具体例を参照しながら実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。図1の例では、1つの照射源となる電子銃201から照射された1本のビームから成形アパーチャアレイ基板203によりマルチ1次電子ビーム20を形成する場合を示しているが、これに限るものではない。複数の照射源からそれぞれ1次電子ビームを照射することによってマルチ1次電子ビーム20を形成する態様であっても構わない。
 また、参照画像からホールパターンを探索する場合に限るものではなく、画像からホールパターンを高精度に探索できる。よって、設計データから作成された参照画像からホールパターンを探索する構成を実画であるフレーム画像に適用すれば、フレーム画像からもホールパターンを高精度に探索できる。また、フレーム画像(実画)についても、電子線画像に限らず、例えば、紫外線等の光を照射して得られた光学画像からも、同様に、画像内のホールパターンを抽出できる。
 また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。
 その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての画像内のホールパターンの探索方法、パターン検査方法、及びパターン検査装置は、本発明の範囲に包含される。
 画像内のホールパターンの探索方法、パターン検査方法、及びパターン検査装置に関する。例えば、電子線によるマルチビームで基板を照射して放出されるパターンの2次電子画像を用いて検査する検査装置、紫外線で基板を照射して得られるパターンの光学画像を用いて検査する検査装置、或いはそれらの検査方法に利用できる。
10 1次電子ビーム
11 参照ホールエッジノード
13 実画輪郭ノード
15 被検査輪郭線
20 マルチ1次電子ビーム
22 穴
29 サブ照射領域
30 フレーム領域
31 フレーム画像
32 ストライプ領域
33 矩形領域
34 照射領域
50,52,56,58 記憶装置
54 フレーム画像作成部
60 参照輪郭ノード抽出部
62 実画輪郭ノード抽出部
64 距離マップ作成部
66 ホール中心候補抽出部
68 ホール中心チェック部
70 参照ホールエッジ抽出部
72 ホールサイズチェック部
74 実画輪郭線補間処理部
76 距離算出部
78 比較処理部
100 検査装置
101 基板
102 電子ビームカラム
103 検査室
105 ステージ
106 検出回路
107 位置回路
108 比較回路
109 記憶装置
110 制御計算機
112 参照画像作成回路
114 ステージ制御回路
117 モニタ
118 メモリ
120 バス
122 レーザ測長システム
123 チップパターンメモリ
124 レンズ制御回路
126 ブランキング制御回路
128 偏向制御回路
142 駆動機構
144,146,148 DACアンプ
150 画像取得機構
160 制御系回路
201 電子銃
202 電磁レンズ
203 成形アパーチャアレイ基板
205,206,207,224,226 電磁レンズ
208 主偏向器
209 副偏向器
212 一括ブランキング偏向器
213 制限アパーチャ基板
214 ビームセパレーター
216 ミラー
218 偏向器
222 マルチ検出器
300 マルチ2次電子ビーム
330 検査領域
332 チップ

Claims (14)

  1.  ホールパターンが形成された画像から前記ホールパターンの輪郭線が通る複数の位置の候補となる複数の輪郭線位置候補を抽出し、
     前記複数の輪郭線位置候補を含む領域内の各画素に対して、複数の方向の方向毎に、前記複数の輪郭線位置候補の各輪郭線位置候補から対象方向に並ぶ各画素までの距離を定義する距離マップを作成し、
     方向毎に作成された各距離マップを用いて、前記ホールパターンの中心画素候補を抽出し、
     前記複数の輪郭線位置候補の中から前記中心画素候補を起点にして所定の条件を満たす輪郭線位置候補群を前記ホールパターンの輪郭線が通る複数の輪郭線位置として探索し、出力する、
     ことを特徴とする画像内のホールパターンの探索方法。
  2.  前記ホールパターンの中心画素候補が2つ以上抽出される場合に、中心画素候補間の距離が閾値以下であれば、一方を中心画素候補から削除することを特徴とする請求項1記載の画像内のホールパターンの探索方法。
  3.  前記中心画素候補を起点にして輪郭線位置候補を含む画素までn回(nは2以上の整数)以内の方向転換により辿り着く輪郭線位置候補群を前記ホールパターンの輪郭線が通る複数の輪郭線位置として探索することを特徴とする請求項1記載の画像内のホールパターンの探索方法。
  4.  第1のホールパターンが形成された基板の被検査画像を取得し、
     前記被検査画像から前記第1のホールパターンの輪郭線が通る複数の位置の候補となる複数の第1の輪郭線位置候補を抽出し、
     前記被検査画像と比較するための参照画像から前記第1のホールパターンに対応する第2のホールパターンの輪郭線が通る複数の位置の候補となる複数の第2の輪郭線位置候補を抽出し、
     前記複数の第2の輪郭線位置候補を含む領域内の各画素に対して、複数の方向の方向毎に、前記複数の第2の輪郭線位置候補の各第2の輪郭線位置候補から対象方向に並ぶ各画素までの距離を定義する距離マップを作成し、
     方向毎に作成された各距離マップを用いて、前記第2のホールパターンの中心画素候補を抽出し、
     前記複数の第2の輪郭線位置候補の中から前記中心画素候補を起点にして所定の条件を満たす第2の輪郭線位置候補群を前記第2のホールパターンの輪郭線が通る複数の参照輪郭線位置として探索し、
     前記複数の第1の輪郭線位置候補の中から前記複数の参照輪郭線位置の近傍の第1の輪郭線位置候補群を補間して、前記第1のホールパターンの被検査輪郭線を作成し、
     前記複数の参照輪郭線位置から前記被検査輪郭線への距離を算出し、
     前記距離に基づく値と検査閾値を比較し、結果を出力する、
     ことを特徴とするパターン検査方法。
  5.  ラグランジュ補間処理を用いて前記被検査輪郭線を作成することを特徴とする請求項4記載のパターン検査方法。
  6.  前記第2のホールパターンの中心画素候補が2つ以上抽出される場合に、中心画素候補間の距離が閾値以下であれば、一方を中心画素候補から削除することを特徴とする請求項4記載のパターン検査方法。
  7.  前記中心画素候補を起点にして第2の輪郭線位置候補を含む画素までn回(nは2以上の整数)以内の方向転換により辿り着く第2の輪郭線位置候補群を前記第2のホールパターンの輪郭線が通る複数の参照輪郭線位置として探索することを特徴とする請求項4記載のパターン検査方法。
  8.  第1のホールパターンが形成された基板の被検査画像を取得する画像取得機構と、
     前記被検査画像から前記第1のホールパターンの輪郭線が通る複数の位置の候補となる複数の第1の輪郭線位置候補を抽出する第1の輪郭線位置候補抽出回路と、
     前記被検査画像と比較するための参照画像から前記第1のホールパターンに対応する第2のホールパターンの輪郭線が通る複数の位置の候補となる複数の第2の輪郭線位置候補を抽出する第2の輪郭線位置候補抽出回路と、
     前記複数の第2の輪郭線位置候補を含む領域内の各画素に対して、複数の方向の方向毎に、前記複数の第2の輪郭線位置候補の各第2の輪郭線位置候補から対象方向に並ぶ各画素までの距離を定義する距離マップを作成する距離マップ作成回路と、
     方向毎に作成された各距離マップを用いて、前記第2のホールパターンの中心画素候補を抽出する中心画素候補抽出回路と、
     前記複数の第2の輪郭線位置候補の中から前記中心画素候補を起点にして所定の条件を満たす第2の輪郭線位置候補群を前記第2のホールパターンの輪郭線が通る複数の参照輪郭線位置として探索する探索回路と、
     前記複数の第1の輪郭線位置候補の中から前記複数の参照輪郭線位置の近傍の第1の輪郭線位置候補群を補間して、前記第1のホールパターンの被検査輪郭線を作成する被検査輪郭線作成回路と、
     前記複数の参照輪郭線位置から前記被検査輪郭線への距離を算出する距離算出回路と、
     前記距離に基づく値と検査閾値を比較する比較回路と、
     を備えたことを特徴とするパターン検査装置。
  9.  ラグランジュ補間処理を用いて前記被検査輪郭線を作成することを特徴とする請求項8記載のパターン検査装置。
  10.  前記第2のホールパターンの中心画素候補が2つ以上抽出される場合に、中心画素候補間の距離が閾値以下であれば、一方を中心画素候補から削除する削除回路をさらに備えたことを特徴とする請求項8記載のパターン検査装置。
  11.  前記探索回路は、前記中心画素候補を起点にして第2の輪郭線位置候補を含む画素までn回(nは2以上の整数)以内の方向転換により辿り着く第2の輪郭線位置候補群を前記第2のホールパターンの輪郭線が通る複数の参照輪郭線位置として探索することを特徴とする請求項8記載のパターン検査装置。
  12.  ホールパターンが形成された画像から前記ホールパターンの輪郭線が通る複数の位置の候補となる複数の輪郭線位置候補を抽出する輪郭線位置候補抽出回路と、
     前記複数の輪郭線位置候補を含む領域内の各画素に対して、複数の方向の方向毎に、前記複数の輪郭線位置候補の各輪郭線位置候補から対象方向に並ぶ各画素までの距離を定義する距離マップを作成する距離マップ作成回路と、
     方向毎に作成された各距離マップを用いて、前記ホールパターンの中心画素候補を抽出する中心画素候補抽出回路と、
     前記複数の輪郭線位置候補の中から前記中心画素候補を起点にして所定の条件を満たす輪郭線位置候補群を前記ホールパターンの輪郭線が通る複数の輪郭線位置として探索し、出力する探索回路と、
     ことを特徴とする画像内のホールパターンの探索装置。
  13.  前記ホールパターンの中心画素候補が2つ以上抽出される場合に、中心画素候補間の距離が閾値以下であれば、一方を中心画素候補から削除する削除回路をさらに備えたことを特徴とする請求項12記載の画像内のホールパターンの探索装置。
  14.  前記探索回路は、前記中心画素候補を起点にして輪郭線位置候補を含む画素までn回(nは2以上の整数)以内の方向転換により辿り着く輪郭線位置候補群を前記ホールパターンの輪郭線が通る複数の輪郭線位置として探索することを特徴とする請求項12記載の画像内のホールパターンの探索装置。
PCT/JP2021/003882 2020-03-10 2021-02-03 画像内のホールパターンの探索方法、パターン検査方法、パターン検査装置、及び画像内のホールパターンの探索装置 WO2021181953A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/817,517 US20220375195A1 (en) 2020-03-10 2022-08-04 Method for searching for hole pattern in image, pattern inspection method, pattern inspection apparatus, and apparatus for searching hole pattern in image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020041385A JP7409913B2 (ja) 2020-03-10 2020-03-10 画像内のホールパターンの探索方法、パターン検査方法、及びパターン検査装置
JP2020-041385 2020-03-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/817,517 Continuation US20220375195A1 (en) 2020-03-10 2022-08-04 Method for searching for hole pattern in image, pattern inspection method, pattern inspection apparatus, and apparatus for searching hole pattern in image

Publications (1)

Publication Number Publication Date
WO2021181953A1 true WO2021181953A1 (ja) 2021-09-16

Family

ID=77671353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003882 WO2021181953A1 (ja) 2020-03-10 2021-02-03 画像内のホールパターンの探索方法、パターン検査方法、パターン検査装置、及び画像内のホールパターンの探索装置

Country Status (4)

Country Link
US (1) US20220375195A1 (ja)
JP (1) JP7409913B2 (ja)
TW (1) TWI760110B (ja)
WO (1) WO2021181953A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230267596A1 (en) * 2022-02-23 2023-08-24 Nanya Technology Corporation System and non-transitory computer-readable medium for identifying cause of manufacturing defects
US12118709B2 (en) 2022-02-23 2024-10-15 Nanya Technology Corporation Method for identifying cause of manufacturing defects
CN118280859B (zh) * 2024-03-15 2024-10-11 上海欧普泰科技创业股份有限公司 光伏边框孔洞缺陷自动检测方法和系统、电子设备及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223414A (ja) * 2008-03-13 2009-10-01 Hitachi High-Technologies Corp 一致度計算装置及び方法、プログラム
JP2012002663A (ja) * 2010-06-17 2012-01-05 Toshiba Corp パターン検査装置およびパターン検査方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223414A (ja) * 2008-03-13 2009-10-01 Hitachi High-Technologies Corp 一致度計算装置及び方法、プログラム
JP2012002663A (ja) * 2010-06-17 2012-01-05 Toshiba Corp パターン検査装置およびパターン検査方法

Also Published As

Publication number Publication date
JP2021144360A (ja) 2021-09-24
TW202135001A (zh) 2021-09-16
US20220375195A1 (en) 2022-11-24
JP7409913B2 (ja) 2024-01-09
TWI760110B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2021181953A1 (ja) 画像内のホールパターンの探索方法、パターン検査方法、パターン検査装置、及び画像内のホールパターンの探索装置
KR102185186B1 (ko) 패턴 검사 장치 및 패턴 검사 방법
JP7352447B2 (ja) パターン検査装置及びパターン検査方法
JP7074479B2 (ja) マルチビーム検査装置
JP2020144010A (ja) マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
US20230145411A1 (en) Pattern inspection apparatus, and method for acquiring alignment amount between outlines
JP2019039808A (ja) パターン検査装置及びパターン検査方法
US11569057B2 (en) Pattern inspection apparatus and pattern outline position acquisition method
JP7386619B2 (ja) 電子ビーム検査方法及び電子ビーム検査装置
WO2021205729A1 (ja) マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
JP2020119682A (ja) マルチ電子ビーム照射装置、マルチ電子ビーム検査装置、及びマルチ電子ビーム照射方法
JP2019153536A (ja) 電子ビーム検査装置及び電子ビーム検査方法
WO2022014136A1 (ja) パターン検査装置及びパターン検査方法
WO2021140866A1 (ja) パターン検査装置及びパターン検査方法
WO2021235076A1 (ja) パターン検査装置及びパターン検査方法
JP2022052853A (ja) 電子ビーム検査装置及び電子ビーム検査方法
JP2021131946A (ja) マルチ荷電粒子ビーム位置合わせ方法及びマルチ荷電粒子ビーム検査装置
JP2020134165A (ja) 検査装置及び検査方法
WO2021205728A1 (ja) マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
JP2022077421A (ja) 電子ビーム検査装置及び電子ビーム検査方法
JP2022126438A (ja) 線分画像作成方法及び線分画像作成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768552

Country of ref document: EP

Kind code of ref document: A1