WO2021181949A1 - Seamless can body and method for producing seamless can body - Google Patents

Seamless can body and method for producing seamless can body Download PDF

Info

Publication number
WO2021181949A1
WO2021181949A1 PCT/JP2021/003842 JP2021003842W WO2021181949A1 WO 2021181949 A1 WO2021181949 A1 WO 2021181949A1 JP 2021003842 W JP2021003842 W JP 2021003842W WO 2021181949 A1 WO2021181949 A1 WO 2021181949A1
Authority
WO
WIPO (PCT)
Prior art keywords
seamless
cup
tubular body
raised bottom
raised
Prior art date
Application number
PCT/JP2021/003842
Other languages
French (fr)
Japanese (ja)
Inventor
具実 小林
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to EP21766913.4A priority Critical patent/EP4119252A4/en
Priority to US17/905,878 priority patent/US20230150711A1/en
Priority to CN202180019231.5A priority patent/CN115210015A/en
Publication of WO2021181949A1 publication Critical patent/WO2021181949A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/30Deep-drawing to finish articles formed by deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/12Cans, casks, barrels, or drums
    • B65D1/14Cans, casks, barrels, or drums characterised by shape
    • B65D1/16Cans, casks, barrels, or drums characterised by shape of curved cross-section, e.g. cylindrical
    • B65D1/165Cylindrical cans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • B21D51/2646Of particular non cylindrical shape, e.g. conical, rectangular, polygonal, bulged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/12Cans, casks, barrels, or drums
    • B65D1/14Cans, casks, barrels, or drums characterised by shape
    • B65D1/16Cans, casks, barrels, or drums characterised by shape of curved cross-section, e.g. cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • B65D81/20Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas
    • B65D81/2046Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas under superatmospheric pressure
    • B65D81/2053Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas under superatmospheric pressure in an least partially rigid container

Definitions

  • the present invention relates to a seamless can body and a method for manufacturing a seamless can body.
  • Patent Document 1 and Patent Document 2 disclose so-called bottom reform processing, which is performed for the purpose of preventing a phenomenon (buckling) in which the dome portion of the can bottom is inverted, which appears when the internal pressure of the can exceeds the compressive strength. Has been done. Specifically, a bottom reforming process for forming a concave portion by pressing an inner peripheral wall of a ground contact portion of a can bottom located inside in a radial direction orthogonal to the can axis is disclosed.
  • the bottom reforming step it is common to form a concave portion by pressing the inner peripheral wall of the can bottom with a forming roller or the like. Further, in recent years, in order to reduce the weight of the seamless can body, it is required to further reduce the thickness of the base plate (blank) before the drawing and ironing process. However, when the bottom reform processing is performed, the thickness of the metal material of the pressing portion to which the molding roller or the like is abutted is extended and thinned by the processing, so that the thickness of the base plate (blank) is reduced. There was a limit to that.
  • the present inventor has made it possible to provide a seamless can body having excellent pressure resistance performance and a method for manufacturing the same, which has led to the present invention.
  • the seamless can body includes (1) a tubular body portion, a circumferential ground contact portion connected from the lower end of the tubular body portion, and a raising extending from the peripheral ground contact portion toward the central axis side. includes a bottom portion, said raised bottom outer surface area a D of the area of the virtual plane to outline the circumferential ground portion a B, and when defined, respectively, 1.55 ⁇ (a D / a B) It is characterized in that the relationship of ⁇ 1.40 is satisfied.
  • a metal material is provided of a tubular body portion, an outer peripheral bottom portion continuing from the lower end of the tubular body portion, and the like.
  • the raised bottom of the outer surface area a D of, a B the area of the virtual plane of the circumferential ground portion to the contour, and when defined, respectively, 1.55 ⁇ (a D / a B) ⁇ 1.40 It is characterized by satisfying the relationship of.
  • the outer surface area A D of the raised portion, the area A B of the virtual plane to outline the circumferential ground portion, the volume V M of the volume V D, and metal member forming the raised bottom of the space surrounded by the virtual plane and the raised portion It is a schematic diagram for explaining each.
  • the seamless can body 1 of the present embodiment has a tubular body portion 10 and a can bottom portion 20 having at least an outer peripheral bottom portion 20a continuous from the lower end of the tubular body portion 10. It is a can body.
  • the neck / flange shape is drawn above the tubular body 10 as an example, but a known seamless can body structure having an opening 10a above the tubular body 10 can be applied.
  • the tubular body portion 10 is a portion that constitutes the side surface of the seamless can body 1, and is formed by drawing and ironing a known metal plate such as aluminum or steel, which will be described later.
  • the tubular body portion 10 has a width depending on the application, but is configured to have a thickness of, for example, about 0.07 to 0.40 mm as an example.
  • the tubular body portion 10 in the present embodiment is defined with the lower end 10e, which will be described later, as the lower end, and the upper end up to the boundary with the neck shoulder (a portion whose diameter is reduced as it goes upward in the axial direction) as shown in FIG. Will be done.
  • the can bottom portion 20 has a continuous outer peripheral bottom portion 20a that contracts inward from the lower end 10e of the tubular body portion 10 described above, and bulges from the inside of the outer peripheral bottom portion 20a toward the opening 10a. It is configured to include at least a raised bottom portion 30. As is clear from FIG. 1, the outer peripheral bottom portion 20a and the raised bottom portion 30 in the present embodiment are separated by a circumferential grounding portion 20b that is grounded when the seamless can body 1 is placed on a flat surface such as a table. ing.
  • the circumferential ground contact portion 20b is a portion connected to the lower end 10e of the tubular body portion 10, and the outer peripheral bottom portion 20a is a portion located between the tubular body portion 10 and the circumferential ground contact portion 20b.
  • the seamless can body 1 includes a raised bottom portion 30 formed in a convex shape upward from the circumferential ground contact portion 20b.
  • the raised bottom portion 30 of the present embodiment is formed so as to be continuous from the circumferential ground contact portion 20b toward the central axis side.
  • the raised bottom portion 30 has a shape like a gentle dome (convex toward the tip) after rising from the circumferential ground contact portion 20b, but the shape is not limited to this form, and at least the top portion is at least.
  • a part may be flat plate-shaped.
  • the type of metal material used for the seamless can body 1 is not particularly limited. That is, a known metal plate usually used for a seamless can body, for example, an aluminum alloy plate or a steel plate (for example, tin plate) can be used. Further, the metal plate may be appropriately surface-coated, such as one in which a known film is laminated on at least one side, one coated with an organic resin, or one subjected to chemical conversion treatment. Further, the seamless can body 1 of the present embodiment is subjected to, for example, known flange processing, necking processing, screw processing, etc., and after beer, soft drinks, coffee, juice, liquid foods, etc. are contained as contents. , A lid, a cap, or the like is attached to the opening 10a by a known method.
  • the raised bottom portion 30 disclosed in the present embodiment can exhibit excellent pressure resistance performance when satisfying the relational expression (1) above. That is, the above-mentioned (A D / A B) is a concept bulging degree upward raised portion 30 in this embodiment made into parameters (numeric), as the expanded degree (A D / A B ) Exceeds 1.40, a balance between the plate thickness and pressure resistance performance normally accepted in the product market can be secured.
  • the area of the outer surface area A D and the virtual plane VP of the raised portion 30 A B which can be calculated by a known calculation formula can be obtained with good easily and accurately, for example by a commercial form measuring instrument.
  • a contour record (model number 1600 DH) manufactured by Tokyo Seimitsu Co., Ltd. was used for measurement. That is, the shape data generated by the vertical movement of the stylus moving on the plane passing through the central axis of the cup is transferred to the CAD to obtain the cross-sectional shape, and based on this, the surface area as a rotating body and the plate thickness (measured separately) The volume was measured with sufficient precision (by multiplying the data).
  • the bulging degree (A D / A B) when serving as the bulging degree (A D / A B) is less than 1.40, can not be carried out ensuring rigidity of the raised portion, for example, waste of greater Senebanara not a cost increase and resources the thickness It becomes difficult to secure the balance between the above-mentioned plate thickness and the pressure resistance performance.
  • the upper limit of (A D / A B) as a bulge degree can be variously set by the specifications of the can body market demands, for example, preferably 1.55 or less. When the (A D / A B)> 1.55, since inconvenience that leads to waste of increase or resource cost becomes excessive material area may occur.
  • the seamless can body 1 of the present embodiment is lightweight while having excellent pressure resistance performance.
  • the raised bottom portion 30 disclosed in the present embodiment is reduced in weight in addition to the above-mentioned excellent pressure resistance performance when further satisfying the above-mentioned relational expression (2). It resulted in the realization of. That is, the above-mentioned volume of V D of the space surrounded by the virtual plane VP and the raised bottom 30, volume V M of the metal member forming the raised bottom 30, and when defined, respectively, by the following equation (2) It is desirable to satisfy the relationship shown. 26.0 ⁇ (V D / V M ) ⁇ 22.0 ⁇ (2)
  • the volume V M of the above-mentioned volume V D and the metal member of the raised portion 30, can also be calculated by a known calculation formula, it is determined with ease and accuracy by a commercially available form measuring instrument can.
  • the shape measuring machine; Been (Tokyo Seimitsu Co., trade name contour records, model number 1600DH) also measured volume V D and volume V M with.
  • the above-mentioned (V D / V M) is functioning as a balance indicator of pressure resistance and light weight and the container having an internal volume in this embodiment, the upper limit of (V D / V M) is a 26 or less Is preferable.
  • the (V D / V M)> 26 since disadvantages such as reduction cost increase and content weight than the improvement of withstand voltage performance can occur.
  • the method for manufacturing the seamless can body 1 in the present embodiment is a method for manufacturing the seamless can body having the tubular body portion 10 and the can bottom portion 20 as shown in FIG. 1, as STEP 1 as shown in FIG. It includes at least a first molding step and a subsequent second molding step as a STEP.
  • the metal material (precursor 3) is attached to the tubular body portion 10 and the outer peripheral bottom portion 20a continuing from the lower end 10e of the tubular body portion 10.
  • the cup body 2 having the bulging portion 4 bulging from the outer peripheral bottom portion 20a toward the opening at the first height Ho (see FIG. 5).
  • the provisional circumferential ground contact portion 20a' is positioned at the lower end inside the tubular body portion 10 and at the boundary with the bulging portion 4.
  • the cup body 2 can be formed by a known molding method such as drawing / re-drawing and drawing / ironing.
  • the metal material (precursor 3) is divided into a tubular body portion 10 and a provisional peripheral ground contact portion 20a'located at the lower end inside the tubular body portion 10. It can be said that the cup body 2 has a bulging portion 4 having a first height Ho located inside the provisional peripheral ground contact portion 20a'.
  • the bulging portion 4 of the cup body 2 in the present embodiment has an inclined portion S extending inward and upward from the outer peripheral bottom portion 20a and a cup dome inside from the end portion Se of the inclined portion S. It is composed of a part D and.
  • a known method as described in JP-A-9-285832 can be adopted as a method for molding the tubular body portion 10.
  • a precursor 3 having a cup shape is prepared by forming a can body portion by a known method using the above-mentioned metal material (blank). Then, the metal material (precursor 3) is directed toward the tubular body portion 10, the cup outer peripheral bottom portion A that continues so as to reduce the diameter from the lower end 10e of the tubular body portion 10, and the inner upper side from the cup outer peripheral bottom portion A. It is formed into a cup body 2 having the above-mentioned bulging portion 4 that bulges at the first height Ho.
  • the end portion Se of the inclined portion S can also be said to be a connection point with the cup dome portion D.
  • the first molding step shown in FIG. 5 may be carried out as a step of separating the precursor 3 in which the tubular body portion 10 is molded by a known press step or the like by using an upper mold and a lower mold. It can be done, or it can be done at the end of the stroke following the step of ironing.
  • a tubular punch 401 located in and supporting the precursor 3 having a cup shape, and the outer peripheral bottom portion of the precursor 3 cooperate with the punch 401.
  • the first molding step is carried out by the holddown ring 501 that moves and supports the dosing die 502.
  • the tapered portion 402 of the punch 401 and the tapered support portion 503 of the holddown ring 501 hold the outer peripheral bottom portion of the precursor 3, and drive the punch 401 and the dome 502 so as to engage with each other so that they are relatively close to each other. Therefore, a cup body 2 having a Ho cup dome portion D at the bottom can be obtained.
  • the shape of the cup body 2 obtained by the first molding step will be described. That is, the inclined portion S in the cup body 2 extends inward and upward from the outer peripheral bottom portion A of the cup.
  • the inclined portion S of the cup body 2 includes a curved portion sandwiched between the lowest portion of the cup body 2 in the Z-axis direction and the boundary (end Se) with the cup dome portion D. It shall refer to the straight part.
  • the shape of the cup dome portion D described above is an example, and the top of the dome may not be curved but may be horizontal, for example.
  • Inclined portion S as shown in FIG. 5 (c), may even vertical, but it is more preferable to incline at a predetermined angle theta 1. That is, the angle ⁇ 1 formed by the inclined portion S and the Z axis is preferably 5 ° to 30 °, and spray coating is easy when a coating film is formed on the inner surface by a spray coating method after the first molding step. Therefore, it is more preferably 10 ° to 30 °.
  • a curve in which a plurality of different radii of curvature are connected in addition to a single radius of curvature is set.
  • the first height Ho of the cup dome portion D in the cup body 2 is larger than the height Hp of the raised bottom portion 30 in the seamless can body 1 obtained by the second molding step described later.
  • the reason for this is that compressive stress is applied to the inclined portion S while pushing down the cup dome portion D in the cup body 2 in the second molding step described later. That is, the first height Ho of the cup dome portion D in the cup body 2 is increased in advance, and finally the preferable height Hp of the raised bottom portion 30 in the seamless can body 1 is obtained.
  • the above-mentioned bulging portion 4 is pushed down so as to have a second height Hp lower than the above-mentioned first height Ho.
  • a peripheral ground contact portion 20b continuous from the lower end 10e of the tubular body portion 10 and a raised bottom portion 30 continuous from the peripheral ground contact portion 20b toward the central axis side are formed.
  • Shape of the raised portion 30 at this time, as described above, satisfies the equation is defined by the area A B of the outer surface area A D and the virtual plane VP (1).
  • the shape of the raised portion 30 in this case, the formula is defined as the volume V D of the space surrounded by the virtual plane VP and the raised bottom 30, the volume of the metal member forming a raised bottom with a V M ( It is desirable to satisfy 2).
  • the cup body 2 is processed with a mold different from the molding die in the above-mentioned first molding step to form the seamless can body 1. That is, while the cup body 2 is brought into contact with the lower mold forming member, a pressing force is applied to the cup dome portion D of the cup body 2 in the can outer direction ( ⁇ Z axis direction) by using the upper mold forming member. Alternatively, while the cup body 2 is brought into contact with the lower mold forming member and the upper mold forming member, a pressing force may be applied in the + Z axis direction using the lower mold forming member.
  • the cup outer peripheral bottom portion A of the cup body 2 is placed on the cup outer peripheral side holder 60.
  • the dome pushing tool 70 is relatively lowered, and the support portion 701 of the dome pushing tool 70 comes into contact with the cup dome portion D.
  • the cup outer peripheral side holder 60 has a tapered surface 601 and a groove 602, and the dome pushing tool 70 is further pushed down after the cup outer peripheral bottom portion A of the cup body 2 comes into contact with the tapered surface 601.
  • the metal of the inclined portion S of the cup body 2 is guided into the groove 602 and pushed into the groove 602 while receiving compressive stress.
  • FIG. 7 is a schematic view showing the compressive stress applied when the inclined portion S is formed on the rising portion 20d in the present embodiment.
  • the inclined portion S when the inclined portion S is pushed into the groove 602 of the lower mold forming member, the inclined portion S tries to imitate the compressive stress ⁇ ⁇ in the meridional direction and the lower mold forming member by the pushing force of the dome pushing tool 70.
  • the compressive stress ⁇ ⁇ in the circumferential direction due to the movement inward in the radial direction acts at the same time, and the thickness of the metal material in the inclined portion S increases (the arrow direction ⁇ ⁇ in FIG. 7).
  • the seamless can body 1 is obtained after passing through the second molding step.
  • the dome pushing tool may be relatively raised and the seamless can body 1 may be taken out from the cup outer peripheral side holder 60.
  • the seamless can body 1 obtained after the second molding step is preferably the seamless can body 1 in the above-described embodiment. That is, as shown in FIG. 1, the seamless can body 1 obtained after the second molding step has an outer peripheral bottom portion 20a and a peripheral ground contact portion 20b.
  • the second molding step has the following characteristics. That is, in the second molding step, by pushing the cup body 2 described above into the lower mold molding member (cup outer peripheral side holder 60) in the second molding step, the inclined portion S is positioned inside the outer peripheral bottom portion 20a. It is formed into a ground contact portion 20b, an inner end portion 20c located inside the peripheral ground contact portion 20b, and a rising portion 20d rising upward from the inner end portion 20c.
  • the can body shaft is set so that the inner diameter of the connection point (outermost end 20e) between the rising portion 20d and the dome portion 20f of the seamless can body 1 is larger than the inner diameter of the inner end portion 20c.
  • a ring groove is formed in which the outermost end 20e is convex toward the outside of the dome.
  • the cross-sectional view is generally in the shape of “ ⁇ ” or “ ⁇ ”.
  • the plate thickness of the ring groove portion does not tend to be thin, but rather tends to be thick, and a deep groove can be formed without difficulty.
  • the shape and length of the upper portion of the outer peripheral bottom portion A of the cup body 2 are not changed between the first molding step and the second molding step. That is, when the cup body 2 is placed on the cup outer peripheral side holder 60, the lowest point in the Z-axis direction of the surface where the cup outer peripheral bottom portion A of the cup body 2 and the tapered surface 601 of the cup outer peripheral side holder 60 come into contact is defined. Let it be the T point. The position of this T point does not change as the dome pushing tool 70 is lowered and the cup dome portion D is pushed down. (See Fig. 6)
  • the portion of the cup body 2 that was the inclined portion S becomes a part of the outer peripheral bottom portion 20a of the seamless can body 1, the peripheral ground contact portion 20b, the inner end portion 20c, and the rising portion 20d. It is molded (see also FIG. 2 and the like as appropriate). That is, most of the inclined portion S of the cup body 2 finally enters the groove 602 of the cup outer peripheral side holder 60.
  • this second molding step there is no significant sliding in the contact between the cup body 2 and the upper and lower molds. Therefore, the metal surface of the cup body 2 is not damaged, and it is not necessary to use a lubricant.
  • the portion in the range from the bottom outer peripheral portion A to the inclined portion S of the cup body 2 is centered on the lowermost curvature portion.
  • Organic coatings 40a and 40b can be applied. That is, in the present embodiment, since two or more molding processes are performed in the form of at least the first molding step and the second molding step, it is assumed that the bottom of the seamless can body is rubbed between these molding steps and during subsequent transportation. NS.
  • the organic coatings 40a and 40b are formed on the provisional peripheral ground contact portion 20a'and the peripheral ground contact portion 20b, respectively. It will be formed (see FIG. 8).
  • FIG. 9 shows an example of a coating device capable of applying the organic coating 40 to a portion in the range from the bottom outer peripheral portion A to the inclined portion S of the cup.
  • the coating film liquid LQ (the liquid that becomes the organic coating film 40) stored in the storage container SC is applied by the coating rollers R1 and R2. It can be applied to the bottom of the cup body 2. Since a rubber material having appropriate elasticity is used for the surface of the roller R2, it can be reliably applied to a portion in the range from the bottom outer portion A of the cup to the inclined portion S.
  • the above-mentioned coating device is an example, and a known method such as spray coating the coating liquid LQ on the bottom of the cup body 2 with a known robot handler or the like may be applied.
  • the cup body 2 is appropriately known to have a cleaning step, a printing step, and a shape into a tubular body.
  • Neck-in (mouth drawing) processing or the like may be performed within a range that does not hinder the imparting processing or the second molding step.
  • the seamless can body 1 of the present embodiment and the manufacturing method thereof described above, it is possible to realize a seamless can body having excellent pressure resistance performance, and to achieve both weight reduction and pressure resistance strength of the can bottom at a high level. It will be possible.
  • an example of an experiment carried out based on the above method is shown below with reference to FIG.
  • the present invention is not limited to the following experimental examples.
  • a metal material precursor 3
  • an aluminum alloy plate JIS H 4000 A3104-H19 having plate thicknesses of 0.200 mm, 0.205 mm, 0.215 mm, 0.225 mm, 0.240 mm, 0.245 mm, and 0.250 mm.
  • (Material) is prepared, and the first molding step, the surface treatment step, and the second molding step are performed, and the can diameter is 211D (outer diameter ⁇ 66.0 mm) with an internal volume of 350 mL, as in Experimental Examples 1 to 19 described later.
  • a squeezed iron can DI can having different specifications of the can bottom, that is, a seamless can body 1 was manufactured.
  • the outer surface side of the obtained various seamless cans 1 and 2 commercially available products passing through the center line of the cans using the above-mentioned shape measuring machine manufactured by Tokyo Precision Co., Ltd., trade name; contour record, model number 1600DH. contour was measured, transferred the obtained shape data to CAD, the outer surface area a D, the area a B of a virtual plane the circumferential ground portion 20b and the contour, surrounded by the virtual plane VP and the raised bottom 30 volume V D of the space, and (in this example aluminum alloy) metal member forming the raised bottom 30 and calculates various parameters including the volume V M of.
  • a pressure resistance performance test was carried out on the seamless can body 1 thus obtained.
  • the compressive strength was determined by sealing the opening of the can with a plate with a hole and feeding pressurized water into the can through a pipe through the hole.
  • the pressure resistance applicable to carbonated beverages was evaluated as " ⁇ " when it exceeded 0.686 MPa, and as "x" when it was less than this. From intention to save material required for can manufacturing, focusing on the metal volume V M of the raised portion as the material usage can bottom, the well below the 615 mm 3 was evaluated as " ⁇ ", more of what " ⁇ " I evaluated it.
  • Experimental Example 1 is given as a basic specification according to the molding method of the present invention, and has almost the same ground contact diameter and material plate thickness as a commercially available product having a can diameter of 211D (about 66 mm) currently on the market. Although 0.225 mm was extremely thin, the overall evaluation was " ⁇ ". As described above, in Experimental Example 1, it is shown that both the performance and cost of the can bottom are extremely excellent. Experimental Examples 2-5 are those that were changed to increase the height H p of the raised portion 30 Experimental Example 1 described above. The first height Ho (see FIG. 5C) was appropriately increased in advance so that the inner diameter ⁇ d R of the outermost end 20e and the innermost diameter ⁇ d e of the innermost end 20c shown in FIG. 10 did not change. ..
  • Experimental Examples 6 to 8 are modified to reduce the material plate thickness as compared with Experimental Example 1.
  • Experimental Examples 9 to 11 are modified to increase the material plate thickness as compared with Experimental Example 1.
  • Experimental Examples 12 to 15 are modified to reduce the inner diameter ⁇ d R of the outermost end 20e from Experimental Example 1. As the innermost diameter .phi.d e does not change the height H p and the inner end portion 20c raised bottom 30, and molded in advance respective first height Ho also reduced appropriately.
  • Experimental Example 16 is modified to increase the inner diameter ⁇ d R of the outermost end 20e from Experimental Example 1.
  • the innermost .phi.d e height H p and the inner end portion 20c of the raised portion 30 does not change, even molded increased appropriately first height Ho in advance, respectively.
  • the radius r D of the dome spherical surface is slightly increased to 40 mm in order to further increase the inner diameter ⁇ d R of the outermost end 20e as compared with Experimental Example 16.
  • Experimental Example 19 is a modification in which the material plate thickness is reduced to 0.215 mm from Experimental Example 4.
  • any ones overall evaluation is " ⁇ ", defined in Claim values are both present invention values and (V D / V M) of (A D / A B) It was within the range of the numerical value to be calculated.
  • what overall evaluation is " ⁇ " are all the values of (A D / A B) and (V D / V M) are both outside the range of numbers as defined in the claims of the present invention there were.
  • the embodiment described above is an example embodying the gist of the present invention, and may be appropriately modified without departing from the above gist of the present invention. Further, a known structure may be added to the seamless can body shown in the embodiment without departing from the above gist of the present invention.
  • the present invention can be applied to a container that requires excellent pressure resistance, and can be particularly used for a can body that can store liquids such as beverages and chemicals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)

Abstract

Provided is a seamless can body having excellent pressure resistance, and a method for producing the seamless can body. This seamless can body includes a tubular body section (10), a peripheral ground section (20b) continuing from a lower end of the tubular body section, and a raised bottom section (30) continuing toward the center-axis side from the peripheral ground section. When the outer surface area of the raised bottom section is defined as AD and the area of a virtual plane the outline of which is the peripheral ground section is defined as AB, the relationship 1.55≥(AD/AB) ≥1.40 is satisfied.

Description

シームレス缶体及びシームレス缶体の製造方法Seamless can body and manufacturing method of seamless can body
 本発明は、シームレス缶体及びシームレス缶体の製造方法に関する。 The present invention relates to a seamless can body and a method for manufacturing a seamless can body.
 従来、絞りしごき加工によって缶胴部などが成形される、いわゆるシームレス缶体が知られている。このシームレス缶体は、浅絞り後のしごき加工により缶胴部が薄肉化されているため、軽量性に優れている。その一方で、これらのシームレス缶体において、缶底部を薄肉化しても耐圧性能を維持又は向上させるための種々の提案が従来なされている。 Conventionally, a so-called seamless can body in which a can body and the like are formed by squeezing and ironing is known. This seamless can body is excellent in light weight because the can body is thinned by ironing after shallow drawing. On the other hand, in these seamless can bodies, various proposals have been made in order to maintain or improve the pressure resistance performance even if the bottom portion of the can is thinned.
 例えば特許文献1や特許文献2には、缶の内圧が耐圧強度を超えたときに現れる、缶底のドーム部が反転する現象(バックリング)を防止する目的で施す、いわゆるボトムリフォーム加工が開示されている。具体的には、缶底の接地部の、缶軸に直交する径方向の内側に位置する内周壁を押圧することにより、凹部を成形するボトムリフォーム加工が開示されている。 For example, Patent Document 1 and Patent Document 2 disclose so-called bottom reform processing, which is performed for the purpose of preventing a phenomenon (buckling) in which the dome portion of the can bottom is inverted, which appears when the internal pressure of the can exceeds the compressive strength. Has been done. Specifically, a bottom reforming process for forming a concave portion by pressing an inner peripheral wall of a ground contact portion of a can bottom located inside in a radial direction orthogonal to the can axis is disclosed.
特開2018-103227号公報Japanese Unexamined Patent Publication No. 2018-10322 特開2016-47541号公報Japanese Unexamined Patent Publication No. 2016-47541
 すなわち、上記したボトムリフォーム工程では、缶底の内周壁を成形ローラ等を使用して押圧することにより凹部を成形することが一般的である。
 また昨今、シームレス缶体の軽量化を図るために、絞りしごき加工を行う前の素板(ブランク)の板厚を益々薄くすることが求められている。しかしながら上記ボトムリフォーム加工を施した場合、上記の成形ローラ等が当接される押圧部の金属素材の厚みはその加工により延ばされて薄くなるため、素板(ブランク)の板厚を薄くすることに関しての限界があった。
That is, in the above-mentioned bottom reforming step, it is common to form a concave portion by pressing the inner peripheral wall of the can bottom with a forming roller or the like.
Further, in recent years, in order to reduce the weight of the seamless can body, it is required to further reduce the thickness of the base plate (blank) before the drawing and ironing process. However, when the bottom reform processing is performed, the thickness of the metal material of the pressing portion to which the molding roller or the like is abutted is extended and thinned by the processing, so that the thickness of the base plate (blank) is reduced. There was a limit to that.
 本発明者は上記に例示した課題に鑑みて鋭意検討を繰り返した結果、優れた耐圧性能を備えるシームレス缶体及びその製造方法を提供することを可能とし、本発明に至ったものである。 As a result of repeated diligent studies in view of the above-exemplified problems, the present inventor has made it possible to provide a seamless can body having excellent pressure resistance performance and a method for manufacturing the same, which has led to the present invention.
 本発明の一実施形態におけるシームレス缶体は、(1)筒状胴部と、前記筒状胴部の下端から連なる周状接地部と、前記周状接地部から中心軸側に向かって連なる上げ底部と、を含み、前記上げ底部の外面表面積をA、前記周状接地部を輪郭とする仮想平面の面積をA、とそれぞれ規定したとき、1.55≧(A/A)≧1.40の関係を満たすことを特徴とする。 The seamless can body according to the embodiment of the present invention includes (1) a tubular body portion, a circumferential ground contact portion connected from the lower end of the tubular body portion, and a raising extending from the peripheral ground contact portion toward the central axis side. includes a bottom portion, said raised bottom outer surface area a D of the area of the virtual plane to outline the circumferential ground portion a B, and when defined, respectively, 1.55 ≧ (a D / a B) It is characterized in that the relationship of ≧ 1.40 is satisfied.
 また、上記(1)記載のシームレス缶体においては、(2)前記仮想平面と前記上げ底部とで囲まれる空間の容積をV、前記上げ底部を形成する金属部材の体積をV、とそれぞれ規定したときに、26.0≧(V/V)≧22.0の関係を満たすことが好ましい。 In the seamless can body (1), wherein, (2) volume and V D of the space surrounded by the virtual plane and the raised portion, the volume of the metal member forming the raised bottom V M, and when defined, respectively, preferably satisfies the relationship 26.0 ≧ (V D / V M ) ≧ 22.0.
 また、上記課題を解決するため、本発明の一実施形態におけるシームレス缶体の製造方法は、(3)金属素材を、筒状胴部と、前記筒状胴部の下端から続く外周底部と、前記外周底部から開口部へ向けて第1の高さで膨出する膨出部と、を有するカップ体に成形する第1成形工程と、前記第1の高さより低い第2の高さとなるように前記膨出部を押し下げて、前記筒状胴部の下端から連なる周状接地部と、前記周状接地部から中心軸側に向かって連なる上げ底部とを形成する第2成形工程と、を含み、前記上げ底部の外面表面積をA、前記周状接地部を輪郭とする仮想平面の面積をA、とそれぞれ規定したとき、1.55≧(A/A)≧1.40の関係を満たす、ことを特徴とする。 Further, in order to solve the above problems, in the method of manufacturing a seamless can body in one embodiment of the present invention, (3) a metal material is provided of a tubular body portion, an outer peripheral bottom portion continuing from the lower end of the tubular body portion, and the like. A first molding step of molding into a cup body having a bulging portion that bulges at a first height from the bottom of the outer periphery toward the opening, and a second height that is lower than the first height. A second molding step of pushing down the bulging portion to form a circumferential ground contact portion continuous from the lower end of the tubular body portion and a raised bottom portion continuous from the peripheral ground contact portion toward the central axis side. wherein, the raised bottom of the outer surface area a D of, a B the area of the virtual plane of the circumferential ground portion to the contour, and when defined, respectively, 1.55 ≧ (a D / a B) ≧ 1.40 It is characterized by satisfying the relationship of.
 本発明によれば、耐圧性能に優れた上げ底部によってバックリングの発生を防止したシームレス缶体をより少ない量の材料で得ることができる。 According to the present invention, it is possible to obtain a seamless can body in which the occurrence of buckling is prevented by the raised bottom portion having excellent pressure resistance performance with a smaller amount of material.
実施形態におけるシームレス缶体の全体の縦断面を示す模式図である。It is a schematic diagram which shows the whole vertical cross section of the seamless can body in an embodiment. 実施形態におけるシームレス缶体の缶底を示す拡大図である。It is an enlarged view which shows the can bottom of the seamless can body in an embodiment. 上げ底部の外面表面積A、周状接地部を輪郭とする仮想平面の面積A、仮想平面と上げ底部とで囲まれる空間の容積V、および上げ底部を形成する金属部材の体積Vをそれぞれ説明するための模式図である。The outer surface area A D of the raised portion, the area A B of the virtual plane to outline the circumferential ground portion, the volume V M of the volume V D, and metal member forming the raised bottom of the space surrounded by the virtual plane and the raised portion It is a schematic diagram for explaining each. 実施形態におけるシームレス缶体の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the seamless can body in an embodiment. 実施形態のシームレス缶体の製造方法のうち第1成形工程を示す図である。It is a figure which shows the 1st molding process in the manufacturing method of the seamless can body of an embodiment. 実施形態のシームレス缶体の製造方法のうち第2成形工程を示す図である。It is a figure which shows the 2nd molding process in the manufacturing method of the seamless can body of an embodiment. 実施形態において立ち上がり部に付与される圧縮応力を示す模式図である。It is a schematic diagram which shows the compressive stress applied to the rising part in an embodiment. 実施形態におけるシームレス缶体のうち、第1成形工程後における暫定周状接地部と、第2成形工程後の周状接地部と、の状態遷移を説明する模式図である。It is a schematic diagram explaining the state transition of the provisional peripheral grounding part after the 1st molding process, and the peripheral grounding part after the 2nd molding process in the seamless can body in an embodiment. シームレス缶体の缶底への有機被膜の塗布例を示す模式図である。It is a schematic diagram which shows the application example of the organic film on the can bottom of a seamless can body. 実験例における缶底部の周辺を示す模式図である。It is a schematic diagram which shows the periphery of the bottom of a can in an experimental example.
 以下、適宜図面を参照しつつ、本発明のシームレス缶体及びその製造方法について具体的に説明する。なお、以下の実施形態は本発明の一例を示してその内容について説明するものであり、本発明を意図的に限定するものではない。 Hereinafter, the seamless can body of the present invention and the manufacturing method thereof will be specifically described with reference to the drawings as appropriate. In addition, the following embodiment shows an example of the present invention and describes the content thereof, and does not intentionally limit the present invention.
[第1実施形態]
<シームレス缶体1>
 図1に示すように、本実施形態のシームレス缶体1は、筒状胴部10と、この筒状胴部10の下端から連続する外周底部20aを少なくとも備えた缶底部20と、を有するシームレス缶体である。なお図示では筒状胴部10より上方は一例としてネック・フランジ形状が描かれているが、筒状胴部10より上方は開口部10aを有する公知のシームレス缶体の構造が適用できる。
[First Embodiment]
<Seamless can body 1>
As shown in FIG. 1, the seamless can body 1 of the present embodiment has a tubular body portion 10 and a can bottom portion 20 having at least an outer peripheral bottom portion 20a continuous from the lower end of the tubular body portion 10. It is a can body. In the figure, the neck / flange shape is drawn above the tubular body 10 as an example, but a known seamless can body structure having an opening 10a above the tubular body 10 can be applied.
 筒状胴部10は、シームレス缶体1の側面を構成する部位であり、後述するアルミニウムやスチールなど公知の金属板を絞りしごき加工することで形成される。この筒状胴部10は、用途により幅はあるが例えば一例として概ね0.07~0.40mm程度の厚みを持つように構成されている。
 本実施形態における筒状胴部10は、後述する下端10eを下端部として、上端部は図1に示すようにネックショルダー(軸方向上方に向かうに従って縮径される部位)との境界までと定義される。
The tubular body portion 10 is a portion that constitutes the side surface of the seamless can body 1, and is formed by drawing and ironing a known metal plate such as aluminum or steel, which will be described later. The tubular body portion 10 has a width depending on the application, but is configured to have a thickness of, for example, about 0.07 to 0.40 mm as an example.
The tubular body portion 10 in the present embodiment is defined with the lower end 10e, which will be described later, as the lower end, and the upper end up to the boundary with the neck shoulder (a portion whose diameter is reduced as it goes upward in the axial direction) as shown in FIG. Will be done.
 缶底部20は、図1のとおり上記した筒状胴部10の下端10eから内側へ縮径するように連続する外周底部20aと、この外周底部20aの内側から開口部10aに向かって膨出する上げ底部30とを少なくとも含んで構成されている。
 なお図1からも明らかなとおり、本実施形態における外周底部20aと上げ底部30は、シームレス缶体1をテーブルなどの平面上に載置した際に接地する周状接地部20bを境に区分けされている。換言すれば、周状接地部20bは筒状胴部10の下端10eから連なる部位であり、外周底部20aは筒状胴部10と周状接地部20bの間に位置する部位であるとも言える。
As shown in FIG. 1, the can bottom portion 20 has a continuous outer peripheral bottom portion 20a that contracts inward from the lower end 10e of the tubular body portion 10 described above, and bulges from the inside of the outer peripheral bottom portion 20a toward the opening 10a. It is configured to include at least a raised bottom portion 30.
As is clear from FIG. 1, the outer peripheral bottom portion 20a and the raised bottom portion 30 in the present embodiment are separated by a circumferential grounding portion 20b that is grounded when the seamless can body 1 is placed on a flat surface such as a table. ing. In other words, it can be said that the circumferential ground contact portion 20b is a portion connected to the lower end 10e of the tubular body portion 10, and the outer peripheral bottom portion 20a is a portion located between the tubular body portion 10 and the circumferential ground contact portion 20b.
 このようにシームレス缶体1は、周状接地部20bから上方に向けて凸状に形成された上げ底部30を具備してなる。図示から明らかなとおり、本実施形態の上げ底部30は、周状接地部20bから中心軸側に向かって連なるように形成されている。なお、この上げ底部30は、本実施形態では周状接地部20bから立ち上がった後に緩やかなドーム(先に向かって凸)状のごとき形状となっているが、この形態に限られず、頂部の少なくとも一部が平板状となっていてもよい。 As described above, the seamless can body 1 includes a raised bottom portion 30 formed in a convex shape upward from the circumferential ground contact portion 20b. As is clear from the drawing, the raised bottom portion 30 of the present embodiment is formed so as to be continuous from the circumferential ground contact portion 20b toward the central axis side. In the present embodiment, the raised bottom portion 30 has a shape like a gentle dome (convex toward the tip) after rising from the circumferential ground contact portion 20b, but the shape is not limited to this form, and at least the top portion is at least. A part may be flat plate-shaped.
 なお、本実施形態において、シームレス缶体1に用いられる金属素材の種類としては特に制限されない。すなわち、シームレス缶体に通常用いられる公知の金属板、例えばアルミニウム合金板や鋼板(例えばブリキ等)を使用することができる。また、金属板は少なくとも片面に公知のフィルムを積層したものや、有機樹脂を塗装したもの、化成処理を施したもの等、表面被覆を適宜施していてもよい。
 また、本実施形態のシームレス缶体1は、例えば公知のフランジ加工やネッキング加工、ねじ加工等が施され、また、ビールや炭酸飲料、コーヒー、ジュース、流動食品等が内容物として収容された後に、開口部10aに公知の方法で蓋やキャップなどが取り付けられる。
In the present embodiment, the type of metal material used for the seamless can body 1 is not particularly limited. That is, a known metal plate usually used for a seamless can body, for example, an aluminum alloy plate or a steel plate (for example, tin plate) can be used. Further, the metal plate may be appropriately surface-coated, such as one in which a known film is laminated on at least one side, one coated with an organic resin, or one subjected to chemical conversion treatment.
Further, the seamless can body 1 of the present embodiment is subjected to, for example, known flange processing, necking processing, screw processing, etc., and after beer, soft drinks, coffee, juice, liquid foods, etc. are contained as contents. , A lid, a cap, or the like is attached to the opening 10a by a known method.
<上げ底部30の構造的特徴>
 次に図1及び3なども参照しつつ、本実施形態における上記した上げ底部30の構造について詳述する。
 これらの図から明らかなとおり、本実施形態のシームレス缶体1における上げ底部30は、この上げ底部30の外面表面積をA、周状接地部20bを輪郭とする仮想平面VPの面積をA、とそれぞれ規定したとき、以下の式(1)で示す関係を満たしている。
 1.55≧(A/A)≧1.40 ・・・(1)
<Structural features of raised bottom 30>
Next, the structure of the raised bottom portion 30 in the present embodiment will be described in detail with reference to FIGS. 1 and 3.
As is clear from these figures, the raised bottom 30 of the seamless can body 1 of this embodiment, the outer surface area A D of the raised bottom 30, the area of the virtual plane VP to outline the circumferential ground portion 20b A B When each of the above is specified, the relationship shown by the following equation (1) is satisfied.
1.55 ≧ (A D / A B ) ≧ 1.40 ··· (1)
 上述したとおり、近年ではいわゆる強炭酸など缶の内圧が高めとなる炭酸飲料も提供されるなど、飲料市場に投入される飲料の種類も豊富となってきている。このニーズの広範囲化に伴って、これら強炭酸やビールなどの炭酸飲料や果汁飲料などの非炭酸飲料が保存されるシームレス缶体にも優れた耐圧性能が希求されることが想定できる。シームレス缶体の耐圧性能を向上させるには板厚を単純に増加させることも考えられるが、缶自体の重量増やコスト増を招き現実的ではない。 As mentioned above, in recent years, a wide variety of beverages have been introduced into the beverage market, such as so-called strong carbonated beverages that increase the internal pressure of cans. With the widening of this need, it can be assumed that excellent pressure resistance is required for seamless cans in which carbonated drinks such as strong carbonated drinks and beer and non-carbonated drinks such as fruit juice drinks are stored. It is conceivable to simply increase the plate thickness in order to improve the pressure resistance performance of the seamless can body, but this is not realistic because it causes an increase in the weight and cost of the can itself.
 そこで本発明者が鋭意検討した結果、本実施形態で開示する上げ底部30は、上記(1)の関係式を満たすときに優れた耐圧性能を示せることに帰結した。すなわち、上記した(A/A)は、本実施形態における上げ底部30の上方への膨出度合いをパラメータ(数値)化した概念であり、この膨出度合いとしての(A/A)が1.40を超えると、製品市場において通常受け入れられる板厚と耐圧性能とのバランスが確保できる。 Therefore, as a result of diligent studies by the present inventor, it has been concluded that the raised bottom portion 30 disclosed in the present embodiment can exhibit excellent pressure resistance performance when satisfying the relational expression (1) above. That is, the above-mentioned (A D / A B) is a concept bulging degree upward raised portion 30 in this embodiment made into parameters (numeric), as the expanded degree (A D / A B ) Exceeds 1.40, a balance between the plate thickness and pressure resistance performance normally accepted in the product market can be secured.
 なお上げ底部30の外面表面積Aや仮想平面VPの面積Aは、公知の計算式により計算することもできるが、例えば市販の形状測定機によって容易にかつ精度よく求めることができる。本実施形態では、かような形状測定機として、株式会社東京精密製のコンターレコード(型番1600DH)を用いて測定した。すなわち、カップの中心軸を通る平面上を移動する触針の上下動により生成した形状データをCADに移して断面形状を得て、これを元に回転体としての表面積ならびに(別途測定した板厚データを掛け合わせて)体積を十分な高精度をもって測定した。 Note the area of the outer surface area A D and the virtual plane VP of the raised portion 30 A B, which can be calculated by a known calculation formula can be obtained with good easily and accurately, for example by a commercial form measuring instrument. In this embodiment, as such a shape measuring machine, a contour record (model number 1600 DH) manufactured by Tokyo Seimitsu Co., Ltd. was used for measurement. That is, the shape data generated by the vertical movement of the stylus moving on the plane passing through the central axis of the cup is transferred to the CAD to obtain the cross-sectional shape, and based on this, the surface area as a rotating body and the plate thickness (measured separately) The volume was measured with sufficient precision (by multiplying the data).
 一方でこの膨出度合いとしての(A/A)が1.40未満であると、上げ底部の剛性確保が行えず、例えば板厚をより大きくせねばならずコスト増や資源の無駄使いにつながるなどの不具合が発生し得るようになってしまい、上記した板厚と耐圧性能とのバランスを確保することが困難となる。
 なお膨出度合いとしての(A/A)の上限については、市場が要求する缶体の仕様によって種々設定できるが、例えば1.55以下であることが好ましい。(A/A)>1.55となると、材料面積が過剰となりコストの増大または資源の無駄使いにつながるという不具合が発生し得るからである。
On the other hand when serving as the bulging degree (A D / A B) is less than 1.40, can not be carried out ensuring rigidity of the raised portion, for example, waste of greater Senebanara not a cost increase and resources the thickness It becomes difficult to secure the balance between the above-mentioned plate thickness and the pressure resistance performance.
Note that although the upper limit of (A D / A B) as a bulge degree, can be variously set by the specifications of the can body market demands, for example, preferably 1.55 or less. When the (A D / A B)> 1.55, since inconvenience that leads to waste of increase or resource cost becomes excessive material area may occur.
 さらに輸送コストなども鑑みると、本実施形態のシームレス缶体1は、耐圧性能に優れながらも軽量であることが望ましい。かような観点に基づいて本発明者が追求したところ、本実施形態で開示する上げ底部30は、上記(2)の関係式を更に満たすときに、上記した優れた耐圧性能に加えて軽量化も実現できることに帰結した。
 すなわち、上記した仮想平面VPと上げ底部30とで囲まれる空間の容積をV、上げ底部30を形成する金属部材の体積をV、とそれぞれ規定したときに、以下の式(2)で示す関係を満たすことが望ましい。
 26.0≧(V/V)≧22.0 ・・・(2)
Further, in consideration of transportation costs and the like, it is desirable that the seamless can body 1 of the present embodiment is lightweight while having excellent pressure resistance performance. As a result of the pursuit of the present inventor based on such a viewpoint, the raised bottom portion 30 disclosed in the present embodiment is reduced in weight in addition to the above-mentioned excellent pressure resistance performance when further satisfying the above-mentioned relational expression (2). It resulted in the realization of.
That is, the above-mentioned volume of V D of the space surrounded by the virtual plane VP and the raised bottom 30, volume V M of the metal member forming the raised bottom 30, and when defined, respectively, by the following equation (2) It is desirable to satisfy the relationship shown.
26.0 ≧ (V D / V M ) ≧ 22.0 ··· (2)
 なお上記と同様に、上げ底部30の上記した容積Vや金属部材の体積Vは、公知の計算式により計算することもできるが、市販の形状測定機によって容易にかつ精度よく求めることができる。本実施形態では、上記した形状測定機(株式会社東京精密製、商品名;コンターレコード、型番1600DH)を用いて容積Vと体積Vの測定も行った。 Note the same manner as described above, the volume V M of the above-mentioned volume V D and the metal member of the raised portion 30, can also be calculated by a known calculation formula, it is determined with ease and accuracy by a commercially available form measuring instrument can. In this embodiment, the shape measuring machine; Been (Tokyo Seimitsu Co., trade name contour records, model number 1600DH) also measured volume V D and volume V M with.
 なお、上記した(V/V)は本実施形態においては耐圧性能と軽量化および容器の内容量のバランス指標として機能しており、(V/V)の上限は26以下であることが好ましい。(V/V)>26となると、耐圧性能の向上よりコスト増や内容量低下などのデメリットが発生し得るからである。 Incidentally, the above-mentioned (V D / V M) is functioning as a balance indicator of pressure resistance and light weight and the container having an internal volume in this embodiment, the upper limit of (V D / V M) is a 26 or less Is preferable. When the (V D / V M)> 26, since disadvantages such as reduction cost increase and content weight than the improvement of withstand voltage performance can occur.
<シームレス缶体1の製造方法>
 次に本実施形態におけるシームレス缶体1の製造方法について、図4~8も適宜参照しつつ説明する。
 本実施形態におけるシームレス缶体1の製造方法としては、図1に示すような筒状胴部10と缶底部20とを有するシームレス缶体の製造方法であって、図4に示すとおりSTEP1としての第1成形工程と、これに後続するSTEPとしての第2成形工程を少なくとも含む。
<Manufacturing method of seamless can body 1>
Next, the method for manufacturing the seamless can body 1 in the present embodiment will be described with reference to FIGS. 4 to 8 as appropriate.
The method for manufacturing the seamless can body 1 in the present embodiment is a method for manufacturing the seamless can body having the tubular body portion 10 and the can bottom portion 20 as shown in FIG. 1, as STEP 1 as shown in FIG. It includes at least a first molding step and a subsequent second molding step as a STEP.
[第1成形工程]
 本実施形態におけるシームレス缶体1の製造方法は、この第1成形工程において、金属素材(前駆体3)を、筒状胴部10と、この筒状胴部10の下端10eから続く外周底部20aと、この外周底部20aから開口部へ向けて第1の高さHoで膨出する膨出部4と、を有するカップ体2に成形する(図5参照)。このとき、筒状胴部10よりも内側の下端であって膨出部4との境には、暫定周状接地部20a´が位置付けられている。このカップ体2は絞り・再絞り成形、絞り・しごき成形などの公知の成形加工法により成形可能である。
 換言すれば、この第1成形工程では、金属素材(前駆体3)を、筒状胴部10と、この筒状胴部10よりも内側の下端に位置する暫定周状接地部20a´と、この暫定周状接地部20a´よりも内側に位置する第1の高さHoを有する膨出部4と、を有するカップ体2に成形しているとも言える。
[First molding process]
In the method for manufacturing the seamless can body 1 in the present embodiment, in the first molding step, the metal material (precursor 3) is attached to the tubular body portion 10 and the outer peripheral bottom portion 20a continuing from the lower end 10e of the tubular body portion 10. And the cup body 2 having the bulging portion 4 bulging from the outer peripheral bottom portion 20a toward the opening at the first height Ho (see FIG. 5). At this time, the provisional circumferential ground contact portion 20a'is positioned at the lower end inside the tubular body portion 10 and at the boundary with the bulging portion 4. The cup body 2 can be formed by a known molding method such as drawing / re-drawing and drawing / ironing.
In other words, in this first molding step, the metal material (precursor 3) is divided into a tubular body portion 10 and a provisional peripheral ground contact portion 20a'located at the lower end inside the tubular body portion 10. It can be said that the cup body 2 has a bulging portion 4 having a first height Ho located inside the provisional peripheral ground contact portion 20a'.
 なお図示のとおり、本実施形態におけるカップ体2の膨出部4は、この外周底部20aから内側上方に向けて延出する傾斜部Sと、この傾斜部Sの端部Seから内側のカップドーム部Dと、で構成されている。また、本実施形態のシームレス缶体の製造方法において、筒状胴部10の成形方法としては、例えば特開平9-285832号公報に記載のような公知の方法を採用可能である。 As shown in the figure, the bulging portion 4 of the cup body 2 in the present embodiment has an inclined portion S extending inward and upward from the outer peripheral bottom portion 20a and a cup dome inside from the end portion Se of the inclined portion S. It is composed of a part D and. Further, in the method for manufacturing a seamless can body of the present embodiment, as a method for molding the tubular body portion 10, for example, a known method as described in JP-A-9-285832 can be adopted.
 より詳細に図5(a)~(c)に例示する工程を説明する。
 まず、上述した金属素材(ブランク)を用いて、公知の方法により缶胴部を形成することにより、カップ形状を有する前駆体3を準備する。
 そして金属素材(前駆体3)を、筒状胴部10と、前記筒状胴部10の下端10eから縮径するように続くカップ外周底部Aと、このカップ外周底部Aから内側上方に向けて第1の高さHoで膨出する上記した膨出部4と、を有するカップ体2に成形する。ここで傾斜部Sの端部Seは、カップドーム部Dとの接続点ともいうことができる。
The steps illustrated in FIGS. 5A to 5C will be described in more detail.
First, a precursor 3 having a cup shape is prepared by forming a can body portion by a known method using the above-mentioned metal material (blank).
Then, the metal material (precursor 3) is directed toward the tubular body portion 10, the cup outer peripheral bottom portion A that continues so as to reduce the diameter from the lower end 10e of the tubular body portion 10, and the inner upper side from the cup outer peripheral bottom portion A. It is formed into a cup body 2 having the above-mentioned bulging portion 4 that bulges at the first height Ho. Here, the end portion Se of the inclined portion S can also be said to be a connection point with the cup dome portion D.
 図5に示される第1成形工程は、公知のプレス工程等により筒状胴部10が成形された前駆体3に対し、上型と下型とを用いて、分離した工程として実施することもできるし、しごき加工を行う工程に続くストローク終段で行うこともできる。
 具体的な例としては、図5に示されるように、カップ形状を有する前駆体3内に位置してこれを支持する筒状のパンチ401と、前駆体3の外周底部を前記パンチ401と協動して支持するホールドダウンリング501と、ドーミングダイ502と、により上記第1成形工程が実施される。
The first molding step shown in FIG. 5 may be carried out as a step of separating the precursor 3 in which the tubular body portion 10 is molded by a known press step or the like by using an upper mold and a lower mold. It can be done, or it can be done at the end of the stroke following the step of ironing.
As a specific example, as shown in FIG. 5, a tubular punch 401 located in and supporting the precursor 3 having a cup shape, and the outer peripheral bottom portion of the precursor 3 cooperate with the punch 401. The first molding step is carried out by the holddown ring 501 that moves and supports the dosing die 502.
 まず、パンチ401のテーパ部402とホールドダウンリング501のテーパ状支持部503とで前駆体3の外周底部を保持し、パンチ401とドーミングダイ502とがかみ合うように駆動して相対的に近接させて、ボトムにHoのカップドーム部Dを有するカップ体2を得ることができる。
 ここで、上記第1成形工程により得られたカップ体2の形状について説明する。すなわち、カップ体2における傾斜部Sは、前記カップ外周底部Aから内側上方に向けて延出するものである。
First, the tapered portion 402 of the punch 401 and the tapered support portion 503 of the holddown ring 501 hold the outer peripheral bottom portion of the precursor 3, and drive the punch 401 and the dome 502 so as to engage with each other so that they are relatively close to each other. Therefore, a cup body 2 having a Ho cup dome portion D at the bottom can be obtained.
Here, the shape of the cup body 2 obtained by the first molding step will be described. That is, the inclined portion S in the cup body 2 extends inward and upward from the outer peripheral bottom portion A of the cup.
 すなわちカップ体2の傾斜部Sは、図5に示すように、Z軸方向においてカップ体2の最も低い部分と、カップドーム部Dとの境(端部Se)とで挟まれた曲線部分及び直線部分を言うものとする。
 なお上記したカップドーム部Dの形状は一例であって、ドームの頂上を曲面状とせず例えば水平面状としてもよい。
That is, as shown in FIG. 5, the inclined portion S of the cup body 2 includes a curved portion sandwiched between the lowest portion of the cup body 2 in the Z-axis direction and the boundary (end Se) with the cup dome portion D. It shall refer to the straight part.
The shape of the cup dome portion D described above is an example, and the top of the dome may not be curved but may be horizontal, for example.
 図5(c)に示すように傾斜部Sは、垂直でもかまわないが、所定の角度θで傾斜させることがより好ましい。すなわち、傾斜部SとZ軸のなす角度θについては、5°~30°であることが好ましく、第1成形工程後に内面にスプレー塗装法により塗膜を形成する場合にスプレー塗装がしやすくなるため10°~30°であることがより好ましい。 Inclined portion S as shown in FIG. 5 (c), may even vertical, but it is more preferable to incline at a predetermined angle theta 1. That is, the angle θ 1 formed by the inclined portion S and the Z axis is preferably 5 ° to 30 °, and spray coating is easy when a coating film is formed on the inner surface by a spray coating method after the first molding step. Therefore, it is more preferably 10 ° to 30 °.
 また、カップ外周底部Aから傾斜部Sのなす角θにおける曲率半径R(図5(c)参照)については単一の曲率半径の他に複数の異なる曲率半径を連ねた曲線を設定することもできる。例えば単一の曲率半径Rであれば、素板(ブランク)の板厚をt0として、R=5×t0~15×t0とすることが、第1成形工程後に内面にスプレー塗装法により塗膜を形成する場合にスプレー塗装がしやすくなるため、より好ましい。
 さらに、カップ体2におけるカップドーム部Dの第1の高さHoは、後述する第2成形工程により得られるシームレス缶体1における上げ底部30の高さHpよりも大きいことが好ましい。この理由としては、後述する第2成形工程においてカップ体2におけるカップドーム部Dを押し下げながら、傾斜部Sに圧縮応力を付与するためである。すなわち、カップ体2におけるカップドーム部Dの第1の高さHoを事前に大きくしておき、最終的にシームレス缶体1において好ましい上げ底部30の高さHpを得るためである。
Further, for the radius of curvature R (see FIG. 5C) at the angle θ 2 formed by the inclined portion S from the bottom of the outer periphery of the cup, a curve in which a plurality of different radii of curvature are connected in addition to a single radius of curvature is set. You can also. For example, in the case of a single radius of curvature R, the thickness of the base plate (blank) is set to t0, and R = 5 × t0 to 15 × t0. It is more preferable because it facilitates spray coating when forming the above.
Further, it is preferable that the first height Ho of the cup dome portion D in the cup body 2 is larger than the height Hp of the raised bottom portion 30 in the seamless can body 1 obtained by the second molding step described later. The reason for this is that compressive stress is applied to the inclined portion S while pushing down the cup dome portion D in the cup body 2 in the second molding step described later. That is, the first height Ho of the cup dome portion D in the cup body 2 is increased in advance, and finally the preferable height Hp of the raised bottom portion 30 in the seamless can body 1 is obtained.
[第2成形工程]
 次に図6を参照しつつ、本実施形態におけるシームレス缶体1の製造方法のうち第2成形工程について説明する。
 上記第1成形工程によって暫定周状接地部20a´及び傾斜部Sを有するカップ体2が成形された後は、以下に詳述する第2成形工程が実施される。
[Second molding process]
Next, the second molding step of the manufacturing method of the seamless can body 1 in the present embodiment will be described with reference to FIG.
After the cup body 2 having the provisional peripheral ground contact portion 20a'and the inclined portion S is molded by the first molding step, the second molding step described in detail below is carried out.
 すなわち本実施形態におけるシームレス缶体1の製造方法は、この第2成形工程において、上記した第1の高さHoより低い第2の高さHpとなるように上記した膨出部4を押し下げて、筒状胴部10の下端10eから連なる周状接地部20bと、この周状接地部20bから中心軸側に向かって連なる上げ底部30とを形成する。
 換言すれば、この第2成形工程において、カップ体2に対して上記した膨出部4を押し下げることで、暫定周状接地部20a´とは異なる位置に配置された周状接地部20bと、第1の高さHoよりも低い高さHpを有する上げ底部30と、を形成しているとも言える。
That is, in the method for manufacturing the seamless can body 1 in the present embodiment, in this second molding step, the above-mentioned bulging portion 4 is pushed down so as to have a second height Hp lower than the above-mentioned first height Ho. , A peripheral ground contact portion 20b continuous from the lower end 10e of the tubular body portion 10 and a raised bottom portion 30 continuous from the peripheral ground contact portion 20b toward the central axis side are formed.
In other words, in this second molding step, by pushing down the above-mentioned bulging portion 4 with respect to the cup body 2, the peripheral ground contact portion 20b arranged at a position different from the provisional peripheral ground contact portion 20a', and the peripheral ground contact portion 20b. It can also be said that the raised bottom portion 30 having a height Hp lower than that of the first height Ho is formed.
 このときの上げ底部30の形状は、上述のとおり、外面表面積Aと仮想平面VPの面積Aとで規定される上記式(1)を満たしている。また、このときの上げ底部30の形状は、仮想平面VPと上げ底部30とで囲まれる空間の容積Vと、上げ底部を形成する金属部材の体積をVとで規定される上記式(2)を満たすことが望ましい。 Shape of the raised portion 30 at this time, as described above, satisfies the equation is defined by the area A B of the outer surface area A D and the virtual plane VP (1). The shape of the raised portion 30 in this case, the formula is defined as the volume V D of the space surrounded by the virtual plane VP and the raised bottom 30, the volume of the metal member forming a raised bottom with a V M ( It is desirable to satisfy 2).
 より具体的に第2成形工程においては、前記カップ体2に対して、上述の第1成形工程における成形金型とは異なる金型により加工を施し、シームレス缶体1が成形される。すなわち、カップ体2を下型成形部材に当接させながら、上型成形部材を用いてカップ体2のカップドーム部Dに対して缶外方向(-Z軸方向)に押圧力を加える。
 あるいは、カップ体2を下型成形部材及び上型成形部材に当接させながら、下型成形部材を用いて+Z軸方向に押圧力を加えてもよい。
More specifically, in the second molding step, the cup body 2 is processed with a mold different from the molding die in the above-mentioned first molding step to form the seamless can body 1. That is, while the cup body 2 is brought into contact with the lower mold forming member, a pressing force is applied to the cup dome portion D of the cup body 2 in the can outer direction (−Z axis direction) by using the upper mold forming member.
Alternatively, while the cup body 2 is brought into contact with the lower mold forming member and the upper mold forming member, a pressing force may be applied in the + Z axis direction using the lower mold forming member.
 より詳細には図6に示すように、カップ体2のカップ外周底部Aをカップ外周側ホルダー60に載せる。ドーム押し下げ工具70が相対的に下降し、カップドーム部Dにドーム押し下げ工具70の支持部701が接触する。ここで、カップ外周側ホルダー60はテーパ面601及び溝602を有しており、カップ体2のカップ外周底部Aが前記テーパ面601に接触した後に、ドーム押し下げ工具70がさらに押し下げられることにより、カップ体2の傾斜部Sの金属が、圧縮応力を受けながら溝602内に案内され、押し込まれる。 More specifically, as shown in FIG. 6, the cup outer peripheral bottom portion A of the cup body 2 is placed on the cup outer peripheral side holder 60. The dome pushing tool 70 is relatively lowered, and the support portion 701 of the dome pushing tool 70 comes into contact with the cup dome portion D. Here, the cup outer peripheral side holder 60 has a tapered surface 601 and a groove 602, and the dome pushing tool 70 is further pushed down after the cup outer peripheral bottom portion A of the cup body 2 comes into contact with the tapered surface 601. The metal of the inclined portion S of the cup body 2 is guided into the groove 602 and pushed into the groove 602 while receiving compressive stress.
 そして、前記第1の高さHoより低い第2の高さHpとなるように、前記カップドーム部Dを押し下げる。同時に、上型成形部材(ドーム押し下げ工具70)及び下型成形部材(カップ外周側ホルダー60)を用いて、前記傾斜部Sに対して、子午線方向の圧縮応力σφならびに周方向の圧縮応力σθを作用させる。
 なお図7は、本実施形態において、傾斜部Sが立ち上がり部20dに形成される際に付与される圧縮応力を示す模式図である。すなわち、傾斜部Sを前記下型成形部材の溝602内に押し込まれる際、該傾斜部Sにはドーム押し下げ工具70の押す力により子午線方向の圧縮応力σφと下型成形部材に倣おうとして径方向内側に移動することによる周方向の圧縮応力σθが同時に作用して、当該傾斜部Sにおける金属素材の厚みは増大する(図7における矢印方向σψ)。
Then, the cup dome portion D is pushed down so as to have a second height Hp lower than the first height Ho. At the same time, using the upper mold forming member (dome pushing tool 70) and the lower mold forming member (cup outer peripheral side holder 60), the compressive stress σ φ in the meridian direction and the compressive stress σ in the circumferential direction with respect to the inclined portion S. Let θ act.
FIG. 7 is a schematic view showing the compressive stress applied when the inclined portion S is formed on the rising portion 20d in the present embodiment. That is, when the inclined portion S is pushed into the groove 602 of the lower mold forming member, the inclined portion S tries to imitate the compressive stress σ φ in the meridional direction and the lower mold forming member by the pushing force of the dome pushing tool 70. The compressive stress σ θ in the circumferential direction due to the movement inward in the radial direction acts at the same time, and the thickness of the metal material in the inclined portion S increases (the arrow direction σ ψ in FIG. 7).
 このようにして、第2成形工程を経た後にシームレス缶体1が得られる。
 成形が終了したら、ドーム押し下げ工具を相対的に上昇させ、シームレス缶体1をカップ外周側ホルダー60から取り出せばよい。
 ここで、第2成形工程後に得られるシームレス缶体1としては、上述した本実施形態におけるシームレス缶体1であることが好ましい。
 すなわち、第2成形工程後に得られるシームレス缶体1としては、図1に示すように、外周底部20a及び周状接地部20bを有するものである。
In this way, the seamless can body 1 is obtained after passing through the second molding step.
When the molding is completed, the dome pushing tool may be relatively raised and the seamless can body 1 may be taken out from the cup outer peripheral side holder 60.
Here, the seamless can body 1 obtained after the second molding step is preferably the seamless can body 1 in the above-described embodiment.
That is, as shown in FIG. 1, the seamless can body 1 obtained after the second molding step has an outer peripheral bottom portion 20a and a peripheral ground contact portion 20b.
 なお、第2成形工程は、以下の特徴を有することがさらに好ましい。
 すなわち、第2成形工程では、上述したカップ体2を第2成形工程の下型成形部材(カップ外周側ホルダー60)に押し込むことで、傾斜部Sを、外周底部20aよりも内側に位置する周状接地部20bと、前記周状接地部20bよりも内側に位置する内側端部20cと、前記内側端部20cから上方に立ち上がる立ち上がり部20dと、に形成する。
It is more preferable that the second molding step has the following characteristics.
That is, in the second molding step, by pushing the cup body 2 described above into the lower mold molding member (cup outer peripheral side holder 60) in the second molding step, the inclined portion S is positioned inside the outer peripheral bottom portion 20a. It is formed into a ground contact portion 20b, an inner end portion 20c located inside the peripheral ground contact portion 20b, and a rising portion 20d rising upward from the inner end portion 20c.
 さらにこの第2成形工程では、シームレス缶体1の立ち上がり部20dとドーム部20fとの接続点(最外端20e)の内径が、内側端部20cの内径よりも大きくなるように、缶体軸の外方に向かって最外端20eが凸となるリング溝を形成する。言い換えると、同図のとおり、最外端20eの付近では、断面図において概ね「⊂」又は「⊃」形状となっている。
 従来、回転ロールや割型を用いて上記したようなリング溝を形成するリフォーム成形方法(ボトムリフォーム加工)が存在した。しかしながら従来の方法では、加工部位が薄くなりやすく十分に深い溝を形成することが困難であった。
 これに対して本実施形態で示した方法によればリング溝部の板厚は薄くならず逆に厚くなる傾向が生じ、且つ無理なく深い溝が形成できる。
Further, in this second molding step, the can body shaft is set so that the inner diameter of the connection point (outermost end 20e) between the rising portion 20d and the dome portion 20f of the seamless can body 1 is larger than the inner diameter of the inner end portion 20c. A ring groove is formed in which the outermost end 20e is convex toward the outside of the dome. In other words, as shown in the figure, in the vicinity of the outermost end 20e, the cross-sectional view is generally in the shape of “⊂” or “⊃”.
Conventionally, there has been a reform molding method (bottom reform processing) for forming a ring groove as described above using a rotary roll or a split mold. However, with the conventional method, it is difficult to form a sufficiently deep groove because the processed portion tends to be thin.
On the other hand, according to the method shown in the present embodiment, the plate thickness of the ring groove portion does not tend to be thin, but rather tends to be thick, and a deep groove can be formed without difficulty.
 本実施形態のシームレス缶体の製造方法において、第1成形工程と第2成形工程との間で、カップ体2のカップ外周底部Aの上部の形状や長さに変化は与えられない。
 すなわち、カップ体2をカップ外周側ホルダー60に載せた際に、カップ体2のカップ外周底部Aとカップ外周側ホルダー60のテーパ面601とが接触する面の、Z軸方向において最も低い点をT点とする。このT点は、ドーム押し下げ工具70の下降及びカップドーム部Dの押し下げに伴って、位置は変化しない。(図6参照)
In the method for manufacturing a seamless can body of the present embodiment, the shape and length of the upper portion of the outer peripheral bottom portion A of the cup body 2 are not changed between the first molding step and the second molding step.
That is, when the cup body 2 is placed on the cup outer peripheral side holder 60, the lowest point in the Z-axis direction of the surface where the cup outer peripheral bottom portion A of the cup body 2 and the tapered surface 601 of the cup outer peripheral side holder 60 come into contact is defined. Let it be the T point. The position of this T point does not change as the dome pushing tool 70 is lowered and the cup dome portion D is pushed down. (See Fig. 6)
 一方で、第2成形工程により、カップ体2の傾斜部Sであった部分は、シームレス缶体1の外周底部20aの一部と周状接地部20bと内側端部20cと立ち上がり部20dとに成形される(図2なども適宜参照)。すなわちカップ体2の傾斜部Sは、カップ外周側ホルダー60の溝602に最終的には大半が入り込む。
 なおこの第2成形工程において、カップ体2と上下金型との間の接触には著しい摺動がない。そのため、カップ体2の金属表面の損傷を生じることはなく、もとより潤滑剤を使用する必要はない。
On the other hand, due to the second molding step, the portion of the cup body 2 that was the inclined portion S becomes a part of the outer peripheral bottom portion 20a of the seamless can body 1, the peripheral ground contact portion 20b, the inner end portion 20c, and the rising portion 20d. It is molded (see also FIG. 2 and the like as appropriate). That is, most of the inclined portion S of the cup body 2 finally enters the groove 602 of the cup outer peripheral side holder 60.
In this second molding step, there is no significant sliding in the contact between the cup body 2 and the upper and lower molds. Therefore, the metal surface of the cup body 2 is not damaged, and it is not necessary to use a lubricant.
 また、素板(ブランク)の板厚t0としては、通常シームレス缶体を製造される場合の板厚であればよく、用途により概ねt0=0.15mm~0.4mm程度の厚さの金属板を打ち抜いて素板(ブランク)として使用することができるが、上記厚みに限定されるものではない。 Further, the plate thickness t0 of the base plate (blank) may be any thickness as long as it is usually used when a seamless can body is manufactured, and a metal plate having a thickness of about t0 = 0.15 mm to 0.4 mm depending on the application. Can be punched out and used as a base plate (blank), but the thickness is not limited to the above.
[表面被覆処理工程]
 素板として、表面に有機被覆を持たない金属板を用いた場合には、図4に示すとおり、本実施形態のシームレス缶体の製造方法においては、上記した第1成形工程と第2成形工程との間に、カップ体2の少なくとも内面に対して表面被覆処理を行う内面処理工程(STEP2)をさらに有することが好ましい。かような表面被覆処理としては、シームレス缶体1の内面側に用いられる公知の塗膜などの塗装が挙げられる。
[Surface coating treatment process]
When a metal plate having no organic coating on the surface is used as the base plate, as shown in FIG. 4, in the seamless can body manufacturing method of the present embodiment, the above-mentioned first molding step and second molding step are performed. It is preferable to further have an inner surface treatment step (STEP2) in which at least the inner surface of the cup body 2 is surface-coated. Examples of such a surface coating treatment include coating a known coating film or the like used on the inner surface side of the seamless can body 1.
 また、さらに外面側においては、第1成形工程以降の搬送性や耐食性を確保する目的で、カップ体2の最下端曲率部を中心として、カップ外周底部Aから傾斜部Sにかけての範囲の部分に有機被膜40a及び40b(図8参照)を施すことができる。
 すなわち本実施形態では、少なくとも第1成形工程および第2成形工程といった形で2工程以上の成形加工を行うため、これら成形工程間とそれ以降の搬送時にシームレス缶体の底部が擦れることが想定される。これに対し、例えば上記した有機被膜40を第1成形工程と第2成形工程の間で付与することで、暫定周状接地部20a´と周状接地部20bとにそれぞれ有機被膜40aおよび40bが形成される(図8参照)ことになる。
Further, on the outer surface side, for the purpose of ensuring the transportability and corrosion resistance after the first molding step, the portion in the range from the bottom outer peripheral portion A to the inclined portion S of the cup body 2 is centered on the lowermost curvature portion. Organic coatings 40a and 40b (see FIG. 8) can be applied.
That is, in the present embodiment, since two or more molding processes are performed in the form of at least the first molding step and the second molding step, it is assumed that the bottom of the seamless can body is rubbed between these molding steps and during subsequent transportation. NS. On the other hand, for example, by applying the above-mentioned organic coating 40 between the first molding step and the second molding step, the organic coatings 40a and 40b are formed on the provisional peripheral ground contact portion 20a'and the peripheral ground contact portion 20b, respectively. It will be formed (see FIG. 8).
 図9に、カップ外周底部Aから傾斜部Sにかけての範囲の部分に有機被膜40を塗布可能な塗布装置の一例を示す。同図に示すように、カップ体2は搬送機構TMによって水平移動されるときに、収容容器SC内に貯留された塗膜液LQ(有機被膜40となる液体)を塗布用ローラーR1及びR2によってカップ体2の底部へ塗布することができる。ローラーR2の表面には適度な弾性を有するゴム材を用いているためカップ外周底部Aから傾斜部Sにかけての範囲の部分に確実に塗布することができる。
 なお上記した塗布装置は一例であって、例えば公知のロボットハンドラなどでカップ体2の底部へ塗膜液LQをスプレー塗布するなど公知の手法を適用してもよい。
FIG. 9 shows an example of a coating device capable of applying the organic coating 40 to a portion in the range from the bottom outer peripheral portion A to the inclined portion S of the cup. As shown in the figure, when the cup body 2 is horizontally moved by the transport mechanism TM, the coating film liquid LQ (the liquid that becomes the organic coating film 40) stored in the storage container SC is applied by the coating rollers R1 and R2. It can be applied to the bottom of the cup body 2. Since a rubber material having appropriate elasticity is used for the surface of the roller R2, it can be reliably applied to a portion in the range from the bottom outer portion A of the cup to the inclined portion S.
The above-mentioned coating device is an example, and a known method such as spray coating the coating liquid LQ on the bottom of the cup body 2 with a known robot handler or the like may be applied.
 なお上記STEP2としての表面被覆処理工程の他に、第1成形工程と第2成形工程との間に、カップ体2に対して、適宜公知の洗浄工程、印刷工程、筒状胴部への形状付与加工、あるいは第2成形工程を行うのに支障がない範囲でのネックイン(口絞り)加工等が実施されてもよい。 In addition to the surface coating treatment step as STEP 2, between the first molding step and the second molding step, the cup body 2 is appropriately known to have a cleaning step, a printing step, and a shape into a tubular body. Neck-in (mouth drawing) processing or the like may be performed within a range that does not hinder the imparting processing or the second molding step.
 以上説明した本実施形態のシームレス缶体1およびその製造方法によれば、優れた耐圧性能を有するシームレス缶体を実現でき、軽量化及び缶底の耐圧強度の要求を高い次元で両立することが可能となる。 According to the seamless can body 1 of the present embodiment and the manufacturing method thereof described above, it is possible to realize a seamless can body having excellent pressure resistance performance, and to achieve both weight reduction and pressure resistance strength of the can bottom at a high level. It will be possible.
実験例Experimental example
 上記した手法に基づいて実施した実験例を図10も参照しながら以下に示す。しかしながら、本発明は以下の実験例に何ら限定されるものではない。
 まず金属素材(前駆体3)として板厚が0.200mm、0.205mm、0.215mm、0.225mm、0.240mm、0.245mm、0.250mmのアルミニウム合金板(JIS H 4000 A3104-H19材)を準備し、上記第1成形工程、表面処理工程および第2成形工程を行って、内容積350mLで缶径が211D(外径φ66.0mm)の後に述べる実験例1~19のように缶底の仕様の異なる絞りしごき缶(DI缶)すなわちシームレス缶体1を製造した。
An example of an experiment carried out based on the above method is shown below with reference to FIG. However, the present invention is not limited to the following experimental examples.
First, as a metal material (precursor 3), an aluminum alloy plate (JIS H 4000 A3104-H19) having plate thicknesses of 0.200 mm, 0.205 mm, 0.215 mm, 0.225 mm, 0.240 mm, 0.245 mm, and 0.250 mm. (Material) is prepared, and the first molding step, the surface treatment step, and the second molding step are performed, and the can diameter is 211D (outer diameter φ66.0 mm) with an internal volume of 350 mL, as in Experimental Examples 1 to 19 described later. A squeezed iron can (DI can) having different specifications of the can bottom, that is, a seamless can body 1 was manufactured.
 得られた各種のシームレス缶体1および市販品2種に対し、上記した形状測定機(株式会社東京精密製、商品名;コンターレコード、型番1600DH)を用いて缶体の中心線を通る外面側の輪郭を測定し、得られた形状データをCADに移して、上記した外面表面積A、周状接地部20bを輪郭とする仮想平面の面積A、仮想平面VPと上げ底部30とで囲まれる空間の容積V、及び上げ底部30を形成する金属部材(本例ではアルミニウム合金)の体積Vを含む各種パラメータを算出した。 The outer surface side of the obtained various seamless cans 1 and 2 commercially available products passing through the center line of the cans using the above-mentioned shape measuring machine (manufactured by Tokyo Precision Co., Ltd., trade name; contour record, model number 1600DH). contour was measured, transferred the obtained shape data to CAD, the outer surface area a D, the area a B of a virtual plane the circumferential ground portion 20b and the contour, surrounded by the virtual plane VP and the raised bottom 30 volume V D of the space, and (in this example aluminum alloy) metal member forming the raised bottom 30 and calculates various parameters including the volume V M of.
 また、このようにして得られたシームレス缶体1に対し、耐圧性能試験を実施した。耐圧強度は、缶の開口部を孔付き板で密封し、この孔よりパイプを通して加圧水を缶内に送入することにより行なった。耐圧(バックリング圧)評価は、炭酸飲料用に適用可能な耐圧として0.686MPaを超えるものを「○」とし、これ以下のものを「×」と評価した。
 缶製造に要する材料を節減する意図から、缶底部の材料使用量として上げ底部のメタル体積Vに着目し、615mmを下回るものを「○」と評価し、これ以上のものを「×」と評価した。
Further, a pressure resistance performance test was carried out on the seamless can body 1 thus obtained. The compressive strength was determined by sealing the opening of the can with a plate with a hole and feeding pressurized water into the can through a pipe through the hole. In the pressure resistance (buckling pressure) evaluation, the pressure resistance applicable to carbonated beverages was evaluated as "◯" when it exceeded 0.686 MPa, and as "x" when it was less than this.
From intention to save material required for can manufacturing, focusing on the metal volume V M of the raised portion as the material usage can bottom, the well below the 615 mm 3 was evaluated as "○", more of what "×" I evaluated it.
 上げ底部30の容積Vが過大になることによる容器内容量が減少してしまう不利益を評価するために、上げ底部30の容積Vに着目し、17000mm(=17ml)を下回るものを「○」と評価し、これ以上のものを「×」と評価した。なお本実験例のシームレス缶体1の内容量は一例として350mlを想定しており、17mlはその約5%にあたる。
 これらの評価結果“耐圧性能”、“材料使用量”、“容量減少”が全て「○」となるものに総合評価を「○」とし、ひとつでも「×」の評価があるものを総合評価「×」とした。
 表1に実験例1~19のシームレス缶体1及び市販品2種の仕様(測定値、算出値)ならびに評価結果をまとめて示した。
In order to evaluate the disadvantage that the volume V D of the raised bottom 30 decreases due to the excessive volume V D of the container, we focused on the volume V D of the raised bottom 30 and set the volume V D below 17,000 mm 3 (= 17 ml). It was evaluated as "○", and more than that was evaluated as "×". The content of the seamless can body 1 in this experimental example is assumed to be 350 ml as an example, and 17 ml is about 5% of that.
If these evaluation results "pressure resistance", "material usage", and "capacity reduction" are all "○", the overall evaluation is "○", and if there is even one evaluation of "x", the overall evaluation is " × ”.
Table 1 summarizes the specifications (measured values, calculated values) and evaluation results of the seamless can body 1 of Experimental Examples 1 to 19 and two types of commercially available products.
 実験例1は、本発明の成形方法による基本的仕様として挙げるもので、現時点で市販されている缶径211D(約66mm)の市販品と比較して、接地径はほぼ同じで、素材板厚0.225mmは著しく薄肉であるにもかかわらず総合評価は「○」となった。このように実験例1では、缶底の性能およびコスト面が共に極めて優れていることが示されている。
 実験例2~5は、上記した実験例1より上げ底部30の高さHを増やす変更を行ったものである。図10に示す最外端20eの内径φdや内側端部20cの最内径φdは変わらないように、予めそれぞれ第1の高さHo(図5(c)参照)も適宜増やして成形した。
Experimental Example 1 is given as a basic specification according to the molding method of the present invention, and has almost the same ground contact diameter and material plate thickness as a commercially available product having a can diameter of 211D (about 66 mm) currently on the market. Although 0.225 mm was extremely thin, the overall evaluation was "○". As described above, in Experimental Example 1, it is shown that both the performance and cost of the can bottom are extremely excellent.
Experimental Examples 2-5 are those that were changed to increase the height H p of the raised portion 30 Experimental Example 1 described above. The first height Ho (see FIG. 5C) was appropriately increased in advance so that the inner diameter φd R of the outermost end 20e and the innermost diameter φd e of the innermost end 20c shown in FIG. 10 did not change. ..
 実験例6~8は、実験例1より素材板厚を減少させる変更を行ったものである。
 実験例9~11は、実験例1より素材板厚を増加させる変更を行ったものである。
 実験例12~15は、実験例1より最外端20eの内径φdを減少させる変更を行ったものである。上げ底部30の高さHや内側端部20cの最内径φdは変わらないように、予めそれぞれ第1の高さHoも適宜減少させて成形した。
Experimental Examples 6 to 8 are modified to reduce the material plate thickness as compared with Experimental Example 1.
Experimental Examples 9 to 11 are modified to increase the material plate thickness as compared with Experimental Example 1.
Experimental Examples 12 to 15 are modified to reduce the inner diameter φd R of the outermost end 20e from Experimental Example 1. As the innermost diameter .phi.d e does not change the height H p and the inner end portion 20c raised bottom 30, and molded in advance respective first height Ho also reduced appropriately.
 実験例16は、実験例1より最外端20eの内径φdを増加させる変更を行ったものである。上げ底部30の高さHや内側端部20cの最内径φdは変わらないように、予めそれぞれ第1の高さHoも適宜増やして成形した。
 実験例17、18は、実験例16より最外端20eの内径φdをさらに増加させる変更を行うためにドーム球面半径r(図10参照)を40mmにやや大きくしたものである。上げ底部30の高さHや内側端部20cの最内径φdは変わらないように、予めそれぞれ第1の高さHoも適宜変更して成形した。
Experimental Example 16 is modified to increase the inner diameter φd R of the outermost end 20e from Experimental Example 1. As the innermost .phi.d e height H p and the inner end portion 20c of the raised portion 30 does not change, even molded increased appropriately first height Ho in advance, respectively.
In Experimental Examples 17 and 18, the radius r D of the dome spherical surface (see FIG. 10) is slightly increased to 40 mm in order to further increase the inner diameter φd R of the outermost end 20e as compared with Experimental Example 16. As unchanged innermost .phi.d e height H p and the inner end portion 20c of the raised portion 30, also molded appropriately changed first height Ho in advance, respectively.
 実験例19は、実験例4より素材板厚を0.215mmに減少させる変更を行ったものである。
 2種類の市販品は、現時点において市場に流通しているものの中で、内容物は炭酸ガスを含み、底部にロールによる所謂リフォーム成形が施されており、且つ比較的薄肉で軽量と思しきものを選定し、これを測定、評価したものである。
 以上の実験例の評価結果で、総合評価が「○」となるものはいずれも、(A/A)の値と(V/V)の値は共に本発明の請求項に規定される数値の範囲内であった。一方で総合評価が「×」となるものは、いずれも(A/A)の値と(V/V)の値は共に本発明の請求項に規定される数値の範囲外であった。
Experimental Example 19 is a modification in which the material plate thickness is reduced to 0.215 mm from Experimental Example 4.
Of the two types of commercial products currently on the market, those that contain carbon dioxide gas, have so-called reform molding by rolls on the bottom, and are relatively thin and lightweight. It was selected, measured and evaluated.
Evaluation results of the above Experimental Examples, any ones overall evaluation is "○", defined in Claim values are both present invention values and (V D / V M) of (A D / A B) It was within the range of the numerical value to be calculated. On the other hand what overall evaluation is "×" are all the values of (A D / A B) and (V D / V M) are both outside the range of numbers as defined in the claims of the present invention there were.
 以上で示した実験例などでは缶径が全て66mmにおいて行われていたが、(A/A)の値と(V/V)の値は共に無次元数であり、耐圧性能、コスト面の評価は缶の大きさに関わらず相似則が成り立つ。すなわち、本発明は、上記した缶径が66mmであるものに限られず、種々の缶径において本発明の規定する数値範囲を実施でき、かような場合にも上記で示した作用効果と同様の作用効果を奏する。 Had been performed in all Kan径66mm etc. Experimental examples shown in the above, the values of (A D / A B) and (V D / V M) are both dimensionless number, withstand voltage characteristics, Similarity rules hold for cost evaluation regardless of the size of the can. That is, the present invention is not limited to the above-mentioned can diameter of 66 mm, and the numerical range specified by the present invention can be implemented in various can diameters, and even in such a case, the same action and effect as described above are obtained. It has an effect.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上説明した実施形態は本発明の趣旨を具現化した一例であり、本発明の上記趣旨を逸脱しない範囲で適宜変更を加えてもよい。さらには本発明の上記趣旨を逸脱しない範囲で実施形態で示したシームレス缶体に対して公知の構造を追加してもよい。 The embodiment described above is an example embodying the gist of the present invention, and may be appropriately modified without departing from the above gist of the present invention. Further, a known structure may be added to the seamless can body shown in the embodiment without departing from the above gist of the present invention.
 本発明は、優れた耐圧性能が要求される容器に対して適用可能であり、特に飲料や薬品などの液体を貯蔵可能な缶体に利用することができる。 The present invention can be applied to a container that requires excellent pressure resistance, and can be particularly used for a can body that can store liquids such as beverages and chemicals.
 1   シームレス缶体
 2   カップ体
 3   前駆体
 4   膨出部
 10  筒状胴部
 20  缶底部
 60  下型成形部材(カップ外周側ホルダー)
 70  上型成形部材(ドーム押し下げ工具)
 D   カップドーム部
 S   傾斜部
 Hp  上げ底部30の高さ(第2の高さ)
 Ho  膨出部4の高さ(第1の高さ)
1 Seamless can body 2 Cup body 3 Precursor 4 Swelling part 10 Cylindrical body part 20 Can bottom part 60 Lower mold member (cup outer peripheral side holder)
70 Upper mold member (dome pushing tool)
D Cup dome part S Inclined part Hp Height of raised bottom 30 (second height)
Height of Ho bulge 4 (first height)

Claims (3)

  1.  筒状胴部と、
     前記筒状胴部の下端から連なる周状接地部と、
     前記周状接地部から中心軸側に向かって連なる上げ底部と、を含み、
     前記上げ底部の外面表面積をA、前記周状接地部を輪郭とする仮想平面の面積をA、とそれぞれ規定したとき、
     1.55≧(A/A)≧1.40
     の関係を満たすことを特徴とするシームレス缶。
    With a tubular body,
    A peripheral grounding portion extending from the lower end of the tubular body portion and
    Including a raised bottom portion extending from the circumferential ground contact portion toward the central axis side,
    The outer surface area A D of the raised bottom, the area of the virtual plane of the circumferential ground portion to the contour A B, and when defined, respectively,
    1.55 ≧ (A D / A B ) ≧ 1.40
    Seamless cans that are characterized by satisfying the relationship of.
  2.  前記仮想平面と前記上げ底部とで囲まれる空間の容積をV、前記上げ底部を形成する金属部材の体積をV、とそれぞれ規定したときに、
     26.0≧(V/V)≧22.0
     の関係を満たす、請求項1に記載のシームレス缶。
    Volume of V D of the space surrounded by the virtual plane and the raised bottom, volume V M of the metal member forming the raised bottom, and when defined, respectively,
    26.0 ≧ (V D / V M ) ≧ 22.0
    The seamless can according to claim 1, which satisfies the above relationship.
  3.  金属素材を、筒状胴部と、前記筒状胴部の下端から続く外周底部と、前記外周底部から開口部へ向けて第1の高さで膨出する膨出部と、を有するカップ体に成形する第1成形工程と、
     前記第1の高さより低い第2の高さとなるように前記膨出部を押し下げて、前記筒状胴部の下端から連なる周状接地部と、前記周状接地部から中心軸側に向かって連なる上げ底部とを形成する第2成形工程と、を含み、
     前記上げ底部の外面表面積をA、前記周状接地部を輪郭とする仮想平面の面積をA、とそれぞれ規定したとき、
     1.55≧(A/A)≧1.40
     の関係を満たす、ことを特徴とするシームレス缶体の製造方法。
    A cup body in which a metal material has a tubular body portion, an outer peripheral bottom portion that continues from the lower end of the tubular body portion, and a bulging portion that bulges at a first height from the outer peripheral bottom portion toward the opening. The first molding process and
    The bulging portion is pushed down so as to have a second height lower than the first height, and the circumferential grounding portion connected from the lower end of the tubular body portion and the circumferential grounding portion toward the central axis side. Including a second molding step of forming a continuous raised bottom,
    The outer surface area A D of the raised bottom, the area of the virtual plane of the circumferential ground portion to the contour A B, and when defined, respectively,
    1.55 ≧ (A D / A B ) ≧ 1.40
    A method for manufacturing a seamless can body, which is characterized by satisfying the relationship between the two.
PCT/JP2021/003842 2020-03-09 2021-02-03 Seamless can body and method for producing seamless can body WO2021181949A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21766913.4A EP4119252A4 (en) 2020-03-09 2021-02-03 Seamless can body and method for producing seamless can body
US17/905,878 US20230150711A1 (en) 2020-03-09 2021-02-03 Seamless can body and method of manufacturing seamless can body
CN202180019231.5A CN115210015A (en) 2020-03-09 2021-02-03 Seamless can body and method for manufacturing seamless can body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-040382 2020-03-09
JP2020040382A JP7447564B2 (en) 2020-03-09 2020-03-09 Seamless can body and method for manufacturing seamless can body

Publications (1)

Publication Number Publication Date
WO2021181949A1 true WO2021181949A1 (en) 2021-09-16

Family

ID=77667664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003842 WO2021181949A1 (en) 2020-03-09 2021-02-03 Seamless can body and method for producing seamless can body

Country Status (6)

Country Link
US (1) US20230150711A1 (en)
EP (1) EP4119252A4 (en)
JP (1) JP7447564B2 (en)
CN (1) CN115210015A (en)
TW (1) TW202138080A (en)
WO (1) WO2021181949A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023085679A (en) * 2021-12-09 2023-06-21 東洋製罐株式会社 can body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285832A (en) 1996-04-23 1997-11-04 Kishimoto Akira Seamless can and its forming method
JPH11123481A (en) * 1997-10-24 1999-05-11 Kishimoto Akira Seamless can, and its forming method
JP2016047541A (en) 2014-08-27 2016-04-07 ユニバーサル製缶株式会社 Producing method of can, bottom reforming mechanism, and top supporting member used for it
JP2018104095A (en) * 2016-12-22 2018-07-05 ユニバーサル製缶株式会社 Bottle can
JP2018103227A (en) 2016-12-27 2018-07-05 ユニバーサル製缶株式会社 Bottom reform mechanism, top support member, and can manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693828A (en) * 1970-07-22 1972-09-26 Crown Cork & Seal Co Seamless steel containers
US4515284A (en) * 1980-08-21 1985-05-07 Reynolds Metals Company Can body bottom configuration
US4412627A (en) * 1981-05-29 1983-11-01 Metal Container Corporation Drawn and ironed can body
JP2647485B2 (en) * 1988-04-06 1997-08-27 三菱重工業株式会社 Bottom structure of thin can
JPH05338640A (en) * 1990-09-17 1993-12-21 Aluminum Co Of America <Alcoa> Base profile of container made by drawing and manufacture thereof
US5105973B1 (en) * 1990-10-22 1998-06-02 Ball Corp Beverage container with improved bottom strength
US5234126A (en) * 1991-01-04 1993-08-10 Abbott Laboratories Plastic container
US5730314A (en) * 1995-05-26 1998-03-24 Anheuser-Busch Incorporated Controlled growth can with two configurations
EP3083420A1 (en) * 2013-12-16 2016-10-26 Ball Europe GmbH Can body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285832A (en) 1996-04-23 1997-11-04 Kishimoto Akira Seamless can and its forming method
JPH11123481A (en) * 1997-10-24 1999-05-11 Kishimoto Akira Seamless can, and its forming method
JP2016047541A (en) 2014-08-27 2016-04-07 ユニバーサル製缶株式会社 Producing method of can, bottom reforming mechanism, and top supporting member used for it
JP2018104095A (en) * 2016-12-22 2018-07-05 ユニバーサル製缶株式会社 Bottle can
JP2018103227A (en) 2016-12-27 2018-07-05 ユニバーサル製缶株式会社 Bottom reform mechanism, top support member, and can manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4119252A4

Also Published As

Publication number Publication date
US20230150711A1 (en) 2023-05-18
JP7447564B2 (en) 2024-03-12
TW202138080A (en) 2021-10-16
EP4119252A1 (en) 2023-01-18
CN115210015A (en) 2022-10-18
JP2021138441A (en) 2021-09-16
EP4119252A4 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
EP2185428B1 (en) Base for metallic container
WO2020158355A1 (en) Seamless can body and method for producing seamless can body
JP5323757B2 (en) Metal bottle cans
US4834256A (en) Can with domed bottom structure
US4953738A (en) One piece can body with domed bottom
CN105492330A (en) Necked beverage can having a seamed-on end
JP2012192984A5 (en)
WO2021181949A1 (en) Seamless can body and method for producing seamless can body
JP2016043991A (en) can
JP6760460B1 (en) Manufacturing method of seamless can body and seamless can body
WO2021181950A1 (en) Seamless can body and manufacturing method for seamless can body
JP6448217B2 (en) can
JPH07300124A (en) Drawing-ironing-formed can and ironing punch
EP0337500A2 (en) Container
JP2544222Y2 (en) End wall for pressure vessel
TWI840492B (en) Seamless tank body and method for manufacturing seamless tank body
JP6835109B2 (en) Manufacturing method of seamless can body and seamless can body
JP7424448B2 (en) Seamless can body and method for manufacturing seamless can body
JP7402835B2 (en) Seamless can body and method for manufacturing seamless can body
US20230227213A1 (en) Metallic end closure for small diameter container
JP7072380B2 (en) How to make a bottle can
JP7310412B2 (en) Can and its manufacturing method
US20230002101A1 (en) Can container
US20220055785A1 (en) Bottle can, manufacturing method of bottle can, and design method of bottle can
JP4573985B2 (en) Smooth neck molding method and tool for thin-walled cans

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021766913

Country of ref document: EP

Effective date: 20221010