WO2021181818A1 - Solid-state imaging element and electronic device - Google Patents

Solid-state imaging element and electronic device Download PDF

Info

Publication number
WO2021181818A1
WO2021181818A1 PCT/JP2020/047960 JP2020047960W WO2021181818A1 WO 2021181818 A1 WO2021181818 A1 WO 2021181818A1 JP 2020047960 W JP2020047960 W JP 2020047960W WO 2021181818 A1 WO2021181818 A1 WO 2021181818A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
solid
image sensor
state image
incident direction
Prior art date
Application number
PCT/JP2020/047960
Other languages
French (fr)
Japanese (ja)
Inventor
戸田 淳
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2021181818A1 publication Critical patent/WO2021181818A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only

Definitions

  • This technology relates to a solid-state image sensor. More specifically, the present invention relates to a solid-state image sensor and an electronic device including a filter having a periodic pattern array.
  • a technique of performing a plurality of spectroscopy in multiple bands of three or more primary colors of light by using a filter such as a surface plasmon resonance filter is known.
  • a filter such as a surface plasmon resonance filter
  • a plurality of spectra can be performed by providing a filter having a periodic pattern array.
  • the spectral shape changes depending on the incident direction, so that the wavelength accuracy of the multi-spectral spectrum may deteriorate.
  • the half-value width after signal processing increases or the peak wavelength shift occurs in the multi-spectrum as the multi-spectral. It may cause deterioration of accuracy.
  • This technology was created in view of such a situation, and aims to obtain a spectral spectrum with high spectral accuracy in a solid-state image sensor.
  • the present technology has been made to solve the above-mentioned problems, and the first side surface thereof is a semiconductor substrate on which a photodiode is formed and a multilayer structure laminated on the light receiving surface side of the semiconductor substrate.
  • the incident direction of the main light beam and the rotation angle of the periodic pattern array coincide with each other in at least one pixel included in the predetermined pixel group as a unit. It may be. This has the effect of absorbing changes in the spectral shape of the main light beam depending on the incident direction for each pixel.
  • the filter may make the incident direction of the main light ray seen from the center of the imaging surface coincide with the rotation angle of the periodic pattern array. This has the effect of absorbing changes in the spectral shape depending on the incident direction of the main light beam.
  • the filter may have different periodic pitches of the periodic pattern array depending on the incident direction of the main light beam. This has the effect of correcting the long wavelength shift of the peak wavelength of the spectrum.
  • the filter may have different periods so as to be proportional to the cosine of the angle of the incident direction of the main ray. This has the effect of approximately correcting the long wavelength shift of the peak wavelength of the spectrum.
  • the filter may be a plasmon resonance filter.
  • the filter may be a propagation type surface plasmon resonance filter or a localized surface plasmon resonance filter.
  • a moth-eye structure arranged on the outermost surface of the upper layer than the above filter may be further provided. This has the effect of reducing surface reflections.
  • the filter performs a plurality of spectroscopys in multiple bands of three or more primary colors of light. This has the effect of being applied to applications using multiple spectra.
  • FIG. 1 is a cross-sectional view showing an example of the device structure of the solid-state image sensor 100 according to the embodiment of the present technology.
  • the solid-state image sensor 100 has a plurality of pixels arranged in an array.
  • the device structure of this solid-state imaging device is a semiconductor substrate 110, an antireflection film 120, a silicon oxide film 130, a light-shielding film 140, a filter 200, a silicon oxide film 150, a silicon oxynitride film 160, and silicon nitride. It has a multilayer structure in which a film 170, a silicon oxynitride film 180, and a silicon oxide film 190 are laminated. A PN junction photodiode is formed on the semiconductor substrate 110 for each pixel.
  • the antireflection film 120 prevents reflection of light on the surface of the semiconductor substrate 110, and is configured by, for example, forming a film of hafnium oxide, silicon nitride, or the like on the surface of the semiconductor substrate 110.
  • the silicon oxide films 130, 150 and 190 are insulating films having an insulating property, and are formed of, for example, SiO 2 .
  • the light-shielding film 140 shields light from leaking between pixels to prevent color mixing to adjacent pixels.
  • the light-shielding film 140 is formed by, for example, W.
  • the filter 200 is an optical element for performing spectroscopy. In this embodiment, it is assumed that a plasmon resonance filter is used as the filter 200.
  • the silicon oxynitride films 160 and 180 are antireflection layers, and are formed of, for example, SION.
  • the silicon nitride film 170 is a passivation film for protecting the filter 200 from oxidation.
  • the silicon nitride film 170 is formed of, for example, Si 3 N 4 .
  • OCL On Chip Lens
  • FIG. 2 is a diagram showing an example of the incident direction of the main light beam of the solid-state image sensor 100 according to the embodiment of the present technology.
  • FIG. 3 is a diagram showing an example of the surface shape of the propagation type surface plasmon resonance filter according to the embodiment of the present technology.
  • the propagation type surface plasmon resonance filter which is a kind of plasmon resonance filter, has a configuration in which a plurality of holes are periodically provided in the metal film.
  • the plurality of holes function as a diffraction grating, and the spectral characteristics can be controlled by controlling the period and the hole diameter of the holes.
  • the direction of a nearby hole is defined as the X direction with respect to a certain hole. That is, the X direction is set every 60 degrees in one cycle with one as a reference.
  • the direction in the middle of the X direction is the Y direction.
  • the Y direction is the Y direction every 60 degrees in one cycle with one as a reference.
  • the half-value width after signal processing increases or peaks as multi-spectroscopy in which spectroscopy is performed in multiple bands of three or more primary colors of light. A phenomenon occurs in which a wavelength shift occurs. As a result, the accuracy of multi-spectroscopy may deteriorate.
  • 4 to 6 are diagrams showing an example of the spectral characteristics of the surface plasmon resonance filter.
  • the incident angle ⁇ is 25 degrees in FIG. 4, 30 degrees in FIG. 5, and 35 degrees in FIG.
  • FIG. 7 is a diagram showing an example of a pattern of a propagation type surface plasmon resonance filter according to an embodiment of the present technology.
  • the propagation type surface plasmon resonance filter has a configuration in which a plurality of holes 220 are periodically provided in a film of a metal 210.
  • a metal 210 for example, AlCu is assumed, but it may be a metal such as pure Al, Au, or Ag.
  • the thickness of this propagation type surface plasmon resonance filter is, for example, about 150 nm.
  • a dielectric such as an oxide film may be present in the upper and lower layers and the holes 220 of this propagation type surface plasmon resonance filter.
  • a dielectric such as an oxide film may be present in the upper and lower layers and the holes 220 of this propagation type surface plasmon resonance filter.
  • the structure of the hole 220 is circular here, it may have any shape such as a square, a rectangle, or a hexagon.
  • the rhombic lattice is used as the unit lattice as the arrangement of the holes 220 of the propagation type surface plasmon resonance filter. Then, each pixel on the imaging surface is rotated and arranged so that the incident direction of the main light beam and the positional relationship of the arrangement of the rhombic lattice are always constant. That is, it includes an arrangement in which the periodic pattern array of the unit cell is rotated according to the incident direction of the main light beam. As a result, the incident direction of the main light beam and the rotation angle of the periodic pattern array coincide with each other when viewed from the center of the imaging surface. By changing the orientation of the filter array of each pixel by rotating it little by little with respect to the imaging surface, it is possible to obtain multi-spectral spectral characteristics that are constant regardless of the image plane position and the incident direction of the main light beam.
  • FIG. 8 is a diagram showing another example of the pattern of the propagation type surface plasmon resonance filter in the embodiment of the present technology.
  • the rhombus array was described, but as in this example, even in the case of a square array, by rotating the orientation in the same manner, it is possible to obtain the spectral characteristics of multi-spectroscopy that are always constant.
  • FIG. 9 is a diagram showing an example of a unit cell of the filter 200 according to the embodiment of the present technology.
  • a in the figure shows an example when the unit cell is a square array.
  • Reference numeral b in the figure shows an example in which the unit cell is a rectangular array.
  • c shows an example when the unit cell is a parallelogram array.
  • FIG. 10 is a diagram showing an example of the surface shape of the localized surface plasmon resonance filter according to the embodiment of the present technology.
  • the localized surface plasmon resonance filter has a structure in which the metal 240 is scattered on the dielectric 230.
  • the dielectric 230 for example, SiO 2 is assumed.
  • the arrangement of the metals 240 is used as the unit cell.
  • the periodic pattern array of the unit cell is provided by rotating it according to the incident direction of the main ray.
  • the periodic pattern array of the unit cell of the filter by rotating the periodic pattern array of the unit cell of the filter according to the incident direction of the main ray, it becomes constant regardless of the image plane position and the incident direction of the main ray.
  • the spectral characteristics of multi-spectral can be obtained.
  • FIG. 11 is a diagram showing surface plasmon excitation by the diffraction grating of the surface plasmon resonance filter in the embodiment of the present technology.
  • the structural condition of the wave number k SP of the surface plasmon in the presence of the diffraction grating is expressed by the following equation from the X component k 0 Sin ⁇ of the wave number of the incident light and the wave number 2 ⁇ m / S of the diffraction grating.
  • k SP -k 0 Sin ⁇ + 2 ⁇ m / S-expression (1)
  • k 0 is the wave number of the incident light
  • is the angle of the incident light.
  • m is the order
  • S is the period of the diffraction grating.
  • k SP ( ⁇ / c) (( ⁇ 1 ⁇ 2 ) / ( ⁇ 1 + ⁇ 2 )) 1/2 equation (2)
  • c is the speed of light
  • is the plasma frequency.
  • ⁇ 1 and ⁇ 2 are the permittivity of the metal and the peripheral medium, respectively.
  • FIG. 12 is a diagram showing the resonance conditions of the surface plasmon of the surface plasmon resonance filter according to the embodiment of the present technology.
  • the horizontal axis is the wave number k x
  • the vertical axis is the plasma frequency ⁇ .
  • Vertical or diagonal lines are the structural conditions of equation (1).
  • the curve is the physical characteristic condition of equation (2).
  • ⁇ P is the plasma frequency
  • the angular frequency ⁇ P (ne / ⁇ 0 * m) 1/2 determined by the dielectric constant ⁇ 0 of the vacuum.
  • the condition of the intersection that satisfies the above equations (1) and (2) is required.
  • the wave number component k 0 Sin ⁇ of the left term of the equation (1) decreases in the case of oblique incident, resulting in a long wavelength shift.
  • FIGS. 13 to 15 are diagrams showing examples of spectral characteristics before and after correction of the surface plasmon resonance filter.
  • FIG. 16 is a diagram showing an example of a pattern arrangement of the filter 200 according to the embodiment of the present technology.
  • 16 spectra are arranged in 4 ⁇ 4 pixels by changing the period and hole diameter of the holes of each pixel, and 16 spectra are arranged in a repeating pattern as a unit of one cycle.
  • the repetition pattern may be n ⁇ n pixels of arbitrary n (n is an integer).
  • a repeating pattern of m ⁇ n pixels may be used assuming an arbitrary m (m is an integer) so that the aspect ratios are different.
  • a multi-spectral image By applying signal processing to such a plurality of spectra, a multi-spectral image can be obtained.
  • This multi-spectral signal can be applied to various applications such as agriculture and biological detection, as will be described later.
  • the surface may have a Moth Eye structure.
  • the surface reflection can be reduced, the vibration (ripple) of the spectrum due to the optical interference with the surface reflected wave is eliminated, and the accuracy as the multi-spectral can be further improved.
  • FIG. 17 is a cross-sectional view showing a modified example of the device structure of the solid-state image sensor 100 according to the embodiment of the present technology.
  • the device structure of this modified example includes a moth-eye structure 300 on the surface of the structure of the above-described embodiment.
  • This moth-eye structure 300 suppresses the reflectance on the surface on the upper layer side of the filter 200 to 1% or less. As a result, the moth-eye structure 300 can weaken the interference effect in the upper layer than the filter 200.
  • FIG. 18 is a diagram showing a first example of a method for manufacturing the moth-eye structure 300 according to the embodiment of the present technology.
  • the mold 30 which is a mold is prepared in advance.
  • a silicon substrate may be processed by dry etching to form a mold with a pattern smaller than the wavelength order with a resist by electron beam lithography.
  • an ultraviolet curable resin 320 is applied onto the substrate 310 by spin coating. Further, the resin 320 is hardened by irradiating ultraviolet rays while pressing the mold. Next, when the mold is peeled off, the moth-eye structure is transferred to the resin 320.
  • FIG. 19 is a diagram showing a second example of a method for manufacturing the moth-eye structure 300 according to the embodiment of the present technology.
  • a moth-eye structure 300 is formed on the surface of the resin substrate 301 separately from the structure from the semiconductor substrate 110 to the silicon oxynitride film 180, and the solid-state image sensor 100 is formed by laminating the structure 300. Can be manufactured.
  • FIG. 20 is a diagram showing an example of the spectral characteristics of the solid-state imaging device 100 including the moth-eye structure 300 according to the embodiment of the present technology.
  • This graph shows the results of simulating the spectral sensitivity characteristics when light is incident on the solid-state image sensor 100 having the moth-eye structure 300 from above by the three-dimensional FDTD (Finite-Difference Time-Domain) method. ..
  • FDTD Finite-Difference Time-Domain
  • FIG. 21 is a diagram showing an example of application of the solid-state image sensor 100 in the embodiment of the present technology to growing agricultural products and the like.
  • the figure shows the spectral characteristics of reflectance depending on the vegetative state.
  • An index showing the distribution status and activity of such vegetation is called NDVI (Normalized Difference Vegetation Index).
  • NDVI Normalized Difference Vegetation Index
  • the reflectance differs between healthy plants, weakened plants, and dead plants due to the large change in reflectance depending on the vegetation state in the wavelength range of 600 to 800 nm.
  • this reflectance is primarily from the leaves of the plant.
  • the vegetation state of the plant can be sensed by acquiring multi-spectral characteristics of two or more wavelengths at least with a wavelength of 600 to 800 nm in between or at a wavelength of 600 to 800 nm.
  • a solid-state image sensor that detects a wavelength in the 600 to 700 nm range and a solid-state image sensor that detects a wavelength in the 700 to 800 nm range can be used to detect the vegetation state from the relationship between the two signal values. Further, the vegetation state can be sensed from the relationship between the two signal values by using a solid-state image sensor that detects a wavelength in the range of 400 to 600 nm and a solid-state image sensor that detects a wavelength in the wavelength range of 800 to 1000 nm. Further, in order to improve the detection accuracy, three or more solid-state imaging devices may be used to detect three or more wavelength regions, and the vegetation state may be detected from the relationship between the signal values. ..
  • a solid-state image sensor capable of detecting such a wavelength range can be mounted on a small unmanned aerial vehicle such as a drone, and the growing state of the crop can be observed from the sky to proceed with the growing of the crop.
  • FIG. 22 is a diagram showing an example of application of the solid-state image sensor 100 in the embodiment of the present technology to human skin detection.
  • the figure shows the spectral spectral characteristics of the reflectance of human skin, and it can be seen from the figure that the reflectance changes significantly in the wavelength range of 450 to 650 nm. From these changes, it becomes possible to authenticate whether the subject is human skin. For example, by detecting three spectra having wavelengths of 450 nm, 550 nm, and 650 nm, it is possible to authenticate whether or not the subject is human skin. For example, when the subject is a material other than human skin, the spectral characteristics of the reflectance change, so that it can be distinguished from human skin.
  • a solid-state image sensor capable of detecting such a wavelength range in, for example, a biometric authentication device, it can be applied to prevent counterfeiting of faces, fingerprints, irises, etc., and more accurate biometric authentication can be performed. It will be possible.
  • FIG. 23 is a diagram showing a configuration example of an electronic device which is an application example of the solid-state image sensor 100 in the embodiment of the present technology.
  • the electronic device includes a lens 400, a solid-state image sensor 100, a signal processing circuit 510, a monitor 530, and a memory 520. This electronic device can capture still images and moving images.
  • the lens 400 includes at least one lens, and guides the incident light from the subject to the solid-state imaging element 100 to form an image on the light-receiving surface of the solid-state imaging element 100.
  • Charges are accumulated in the solid-state image sensor 100 for a certain period of time according to the image formed on the light receiving surface via the lens 400. Then, the signal accumulated in the solid-state image sensor 100 and corresponding to the electric charge is supplied to the signal processing circuit 510.
  • the signal processing circuit 510 performs various signal processing on the pixel signal output from the solid-state image sensor 100.
  • the image data obtained by performing signal processing by the signal processing circuit 510 is supplied to the monitor 530 and displayed, or supplied to the memory 530 and stored.
  • the present technology can have the following configurations.
  • Solid-state image sensor Solid-state image sensor.
  • a solid-state image sensor including a semiconductor substrate on which a photodiode is formed and a filter included in a multilayer structure laminated on the light receiving surface side of the semiconductor substrate and whose periodic pattern array is rotated according to the incident direction of the main light beam.
  • the filter performs a plurality of spectroscopy in multiple bands of three or more primary colors of light.
  • Solid-state image sensor 110
  • Semiconductor substrate 120
  • Silicon oxide film 140
  • Light-shielding film 160
  • Silicon oxynitride film 170
  • Silicon nitride film 200
  • Metal 220 Hole 230 Dielectric 300

Abstract

In a solid-state imaging element, an optical spectrum with high spectral accuracy is obtained. The solid-state imaging element comprises a semiconductor substrate and a filter. A photodiode is formed on the semiconductor substrate. The filter is included in a multilayer structure laminated on the light receiving surface side of the semiconductor substrate. In the filter, a periodic pattern array is rotated according to the incident direction of a main ray. For example, a propagation type surface plasmon resonance filter or a localized surface plasmon resonance filter is used as the filter.

Description

固体撮像素子および電子機器Solid-state image sensor and electronic equipment
 本技術は、固体撮像素子に関する。詳しくは、周期パターン配列を有するフィルタを備える固体撮像素子および電子機器に関する。 This technology relates to a solid-state image sensor. More specifically, the present invention relates to a solid-state image sensor and an electronic device including a filter having a periodic pattern array.
 従来、マルチ分光を検知することができる固体撮像素子として、例えば、表面プラズモン共鳴フィルタなどのフィルタを用いて、光の3原色以上の多帯域で複数の分光を行う技術が知られている。例えば、所定の周期間隔で凹凸構造を持つ導体金属の構造体であるプラズモン共鳴体により構成されるフィルタを備えた撮像素子が開示されている(例えば、特許文献1参照。)。 Conventionally, as a solid-state image sensor capable of detecting multi-spectroscopy, a technique of performing a plurality of spectroscopy in multiple bands of three or more primary colors of light by using a filter such as a surface plasmon resonance filter is known. For example, an image pickup device including a filter composed of a plasmon resonator, which is a structure of a conductor metal having a concavo-convex structure at predetermined periodic intervals, is disclosed (see, for example, Patent Document 1).
特開2012-059865号公報Japanese Unexamined Patent Publication No. 2012-059865
 上述の従来技術では、周期パターン配列を有するフィルタを備えることにより、複数の分光を行うことができる。しかしながら、上述の従来技術では、像面に主光線が入射する場合、入射方向によって分光形状が変化するため、マルチ分光の波長精度が劣化するおそれがある。この場合、像高だけでなく、その像面位置によって分光特性が変化するため、マルチ分光としては信号処理後の半値幅が増加し、または、ピーク波長のシフトが起こることにより、マルチ分光としての精度劣化を引き起こすおそれがある。 In the above-mentioned conventional technique, a plurality of spectra can be performed by providing a filter having a periodic pattern array. However, in the above-mentioned conventional technique, when the main ray is incident on the image plane, the spectral shape changes depending on the incident direction, so that the wavelength accuracy of the multi-spectral spectrum may deteriorate. In this case, since the spectral characteristics change not only with the image height but also with the image plane position, the half-value width after signal processing increases or the peak wavelength shift occurs in the multi-spectrum as the multi-spectral. It may cause deterioration of accuracy.
 本技術はこのような状況に鑑みて生み出されたものであり、固体撮像素子において、分光精度の高い分光スペクトルを得ることを目的とする。 This technology was created in view of such a situation, and aims to obtain a spectral spectrum with high spectral accuracy in a solid-state image sensor.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、フォトダイオードが形成される半導体基板と、上記半導体基板の受光面側に積層される多層構造に含まれて主光線の入射方向に従って周期パターン配列を回転させたフィルタとを具備する固体撮像素子および電子機器である。これにより、主光線の入射方向による分光形状の変化を吸収するという作用をもたらす。 The present technology has been made to solve the above-mentioned problems, and the first side surface thereof is a semiconductor substrate on which a photodiode is formed and a multilayer structure laminated on the light receiving surface side of the semiconductor substrate. A solid-state image sensor and an electronic device including a filter in which a periodic pattern array is rotated according to an incident direction of a main light beam. This has the effect of absorbing changes in the spectral shape depending on the incident direction of the main light beam.
 また、この第1の側面において、上記フィルタは、所定の画素群を単位としてその画素群に含まれる少なくとも1つの画素において上記主光線の入射方向と上記周期パターン配列の回転角度とが一致するようにしてもよい。これにより、主光線の入射方向による分光形状の変化を画素毎に吸収するという作用をもたらす。 Further, in the first aspect, in the filter, the incident direction of the main light beam and the rotation angle of the periodic pattern array coincide with each other in at least one pixel included in the predetermined pixel group as a unit. It may be. This has the effect of absorbing changes in the spectral shape of the main light beam depending on the incident direction for each pixel.
 また、この第1の側面において、上記フィルタは、撮像面の中心から見た上記主光線の入射方向と上記周期パターン配列の回転角度とが一致するようにしてもよい。これにより、主光線の入射方向による分光形状の変化を吸収するという作用をもたらす。 Further, in this first aspect, the filter may make the incident direction of the main light ray seen from the center of the imaging surface coincide with the rotation angle of the periodic pattern array. This has the effect of absorbing changes in the spectral shape depending on the incident direction of the main light beam.
 また、この第1の側面において、上記フィルタは、上記主光線の入射方向に応じて上記周期パターン配列の周期ピッチが異なるようにしてもよい。これにより、分光のピーク波長の長波長シフトを補正するという作用をもたらす。 Further, in this first aspect, the filter may have different periodic pitches of the periodic pattern array depending on the incident direction of the main light beam. This has the effect of correcting the long wavelength shift of the peak wavelength of the spectrum.
 また、この第1の側面において、上記フィルタは、上記主光線の入射方向の角度の余弦に比例するように周期が異なるようにしてもよい。これにより、分光のピーク波長の長波長シフトを近似的に補正するという作用をもたらす。 Further, in this first aspect, the filter may have different periods so as to be proportional to the cosine of the angle of the incident direction of the main ray. This has the effect of approximately correcting the long wavelength shift of the peak wavelength of the spectrum.
 また、この第1の側面において、上記フィルタは、プラズモン共鳴フィルタであってもよい。この場合において、上記フィルタは、伝播型表面プラズモン共鳴フィルタであってもよく、また、局在型表面プラズモン共鳴フィルタであってもよい。 Further, in this first aspect, the filter may be a plasmon resonance filter. In this case, the filter may be a propagation type surface plasmon resonance filter or a localized surface plasmon resonance filter.
 また、この第1の側面において、上記フィルタよりも上層の最表面に配置されるモスアイ構造をさらに具備してもよい。これにより、表面反射を減少させるという作用をもたらす。 Further, on this first side surface, a moth-eye structure arranged on the outermost surface of the upper layer than the above filter may be further provided. This has the effect of reducing surface reflections.
 また、この第1の側面において、上記フィルタは、光の3原色以上の多帯域で複数の分光を行うことが想定される。これにより、複数の分光を用いたアプリケーションに応用するという作用をもたらす。 Further, in this first aspect, it is assumed that the filter performs a plurality of spectroscopys in multiple bands of three or more primary colors of light. This has the effect of being applied to applications using multiple spectra.
本技術の実施の形態における固体撮像素子100のデバイス構造の一例を示す断面図である。It is sectional drawing which shows an example of the device structure of the solid-state image sensor 100 in embodiment of this technique. 本技術の実施の形態における固体撮像素子100の主光線の入射方向の一例を示す図である。It is a figure which shows an example of the incident direction of the main ray of the solid-state image sensor 100 in embodiment of this technique. 本技術の実施の形態における伝播型表面プラズモン共鳴フィルタの表面形状の一例を示す図である。It is a figure which shows an example of the surface shape of the propagation type surface plasmon resonance filter in embodiment of this technique. 表面プラズモン共鳴フィルタの分光特性の第1の例を示す図である。It is a figure which shows the 1st example of the spectral characteristic of a surface plasmon resonance filter. 表面プラズモン共鳴フィルタの分光特性の第2の例を示す図である。It is a figure which shows the 2nd example of the spectral property of a surface plasmon resonance filter. 表面プラズモン共鳴フィルタの分光特性の第3の例を示す図である。It is a figure which shows the 3rd example of the spectral property of a surface plasmon resonance filter. 本技術の実施の形態における伝播型表面プラズモン共鳴フィルタのパターンの一例を示す図である。It is a figure which shows an example of the pattern of the propagation type surface plasmon resonance filter in embodiment of this technique. 本技術の実施の形態における伝播型表面プラズモン共鳴フィルタのパターンの他の例を示す図である。It is a figure which shows another example of the pattern of the propagation type surface plasmon resonance filter in embodiment of this technique. 本技術の実施の形態におけるフィルタ200の単位格子の例を示す図である。It is a figure which shows the example of the unit cell of the filter 200 in embodiment of this technique. 本技術の実施の形態における局在型表面プラズモン共鳴フィルタの表面形状の一例を示す図である。It is a figure which shows an example of the surface shape of the localized surface plasmon resonance filter in embodiment of this technique. 本技術の実施の形態における表面プラズモン共鳴フィルタの回折格子による表面プラズモン励起を示す図である。It is a figure which shows the surface plasmon excitation by the diffraction grating of the surface plasmon resonance filter in embodiment of this technique. 本技術の実施の形態における表面プラズモン共鳴フィルタの表面プラズモンの共鳴条件を示す図である。It is a figure which shows the resonance condition of the surface plasmon of the surface plasmon resonance filter in embodiment of this technique. 表面プラズモン共鳴フィルタの補正前後の分光特性の第1の例を示す図である。It is a figure which shows the 1st example of the spectral characteristic before and after the correction of a surface plasmon resonance filter. 表面プラズモン共鳴フィルタの補正前後の分光特性の第2の例を示す図である。It is a figure which shows the 2nd example of the spectral characteristic before and after the correction of a surface plasmon resonance filter. 表面プラズモン共鳴フィルタの補正前後の分光特性の第3の例を示す図である。It is a figure which shows the 3rd example of the spectral characteristic before and after the correction of a surface plasmon resonance filter. 本技術の実施の形態におけるフィルタ200のパターン配列の例を示す図である。It is a figure which shows the example of the pattern arrangement of the filter 200 in embodiment of this technique. 本技術の実施の形態における固体撮像素子100のデバイス構造の変形例を示す断面図である。It is sectional drawing which shows the modification of the device structure of the solid-state image sensor 100 in embodiment of this technique. 本技術の実施の形態におけるモスアイ構造300の製造方法の第1の例を示す図である。It is a figure which shows the 1st example of the manufacturing method of the moth-eye structure 300 in embodiment of this technique. 本技術の実施の形態におけるモスアイ構造300の製造方法の第2の例を示す図である。It is a figure which shows the 2nd example of the manufacturing method of the moth-eye structure 300 in embodiment of this technique. 本技術の実施の形態におけるモスアイ構造300を備える固体撮像素子100の分光特性の例を示す図である。It is a figure which shows the example of the spectral characteristic of the solid-state image sensor 100 provided with the moth-eye structure 300 in embodiment of this technique. 本技術の実施の形態における固体撮像素子100の農作物等育成への応用例を示す図である。It is a figure which shows the application example of the solid-state image sensor 100 in the embodiment of this technique to the cultivation of agricultural crops and the like. 本技術の実施の形態における固体撮像素子100の人肌検知への応用例を示す図である。It is a figure which shows the application example to the human skin detection of the solid-state image sensor 100 in embodiment of this technique. 本技術の実施の形態における固体撮像素子100の適用例である電子機器の構成例を示す図である。It is a figure which shows the structural example of the electronic device which is the application example of the solid-state image sensor 100 in embodiment of this technique.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.実施の形態
 2.変形例
 3.応用例
 4.適用例
Hereinafter, embodiments for carrying out the present technology (hereinafter referred to as embodiments) will be described. The explanation will be given in the following order.
1. 1. Embodiment 2. Modification example 3. Application example 4. Application example
 <1.実施の形態>
 [デバイス構造]
 図1は、本技術の実施の形態における固体撮像素子100のデバイス構造の一例を示す断面図である。
<1. Embodiment>
[Device structure]
FIG. 1 is a cross-sectional view showing an example of the device structure of the solid-state image sensor 100 according to the embodiment of the present technology.
 固体撮像素子100は、複数の画素がアレイ状に配置されたものである。この固体撮像素子のデバイス構造は、半導体基板110に、反射防止膜120と、シリコン酸化膜130と、遮光膜140と、フィルタ200と、シリコン酸化膜150と、シリコン酸窒化膜160と、シリコン窒化膜170と、シリコン酸窒化膜180と、シリコン酸化膜190とを積層した多層構造を備える。半導体基板110には、PN接合のフォトダイオードが画素ごとに形成される。 The solid-state image sensor 100 has a plurality of pixels arranged in an array. The device structure of this solid-state imaging device is a semiconductor substrate 110, an antireflection film 120, a silicon oxide film 130, a light-shielding film 140, a filter 200, a silicon oxide film 150, a silicon oxynitride film 160, and silicon nitride. It has a multilayer structure in which a film 170, a silicon oxynitride film 180, and a silicon oxide film 190 are laminated. A PN junction photodiode is formed on the semiconductor substrate 110 for each pixel.
 反射防止膜120は、半導体基板110の表面における光の反射を防止するものであり、例えば、酸化ハフニウムや窒化シリコンなどが半導体基板110の表面に成膜されることにより構成される。 The antireflection film 120 prevents reflection of light on the surface of the semiconductor substrate 110, and is configured by, for example, forming a film of hafnium oxide, silicon nitride, or the like on the surface of the semiconductor substrate 110.
 シリコン酸化膜130、150および190は、絶縁性を備えた絶縁膜であり、例えば、SiOにより形成される。 The silicon oxide films 130, 150 and 190 are insulating films having an insulating property, and are formed of, for example, SiO 2 .
 遮光膜140は、画素間の光の漏れを遮光して、隣接画素への混色を防止するものである。この遮光膜140は、例えば、Wにより形成される。 The light-shielding film 140 shields light from leaking between pixels to prevent color mixing to adjacent pixels. The light-shielding film 140 is formed by, for example, W.
 フィルタ200は、分光を行うための光学素子である。この実施の形態では、フィルタ200としてプラズモン共鳴フィルタを利用することを想定する。 The filter 200 is an optical element for performing spectroscopy. In this embodiment, it is assumed that a plasmon resonance filter is used as the filter 200.
 シリコン酸窒化膜160および180は、反射防止のための層であり、例えば、SiONにより形成される。 The silicon oxynitride films 160 and 180 are antireflection layers, and are formed of, for example, SION.
 シリコン窒化膜170は、フィルタ200を酸化から保護するためのパッシベーション膜である。このシリコン窒化膜170は、例えば、Siにより形成される。 The silicon nitride film 170 is a passivation film for protecting the filter 200 from oxidation. The silicon nitride film 170 is formed of, for example, Si 3 N 4 .
 なお、これらの構造の上に、入射光を集光するためのOCL(On Chip Lens)を備えてもよい。 In addition, OCL (On Chip Lens) for condensing incident light may be provided on these structures.
 [分光特性]
 図2は、本技術の実施の形態における固体撮像素子100の主光線の入射方向の一例を示す図である。
[Spectroscopic characteristics]
FIG. 2 is a diagram showing an example of the incident direction of the main light beam of the solid-state image sensor 100 according to the embodiment of the present technology.
 像面に主光線が入射する場合、像高が高くなるにつれて、固体撮像素子100の受光面の中心Oに対して垂直に入射する光の主光線40に対する傾きが大きくなる。これにより、光の主光線41がレンズ400を介して固体撮像素子100の受光面に入射する角度(Chief Ray Angle:CRA)θが大きくなる。プラズモン共鳴フィルタでは、この入射角θによって分光形状が変化することが知られている。 When the main ray is incident on the image plane, the inclination of the light incident perpendicular to the center O of the light receiving surface of the solid-state image sensor 100 with respect to the main ray 40 increases as the image height increases. As a result, the angle (Chief Ray Angle: CRA) θ at which the main ray 41 of light is incident on the light receiving surface of the solid-state image sensor 100 via the lens 400 becomes large. In the plasmon resonance filter, it is known that the spectral shape changes depending on the incident angle θ.
 図3は、本技術の実施の形態における伝播型表面プラズモン共鳴フィルタの表面形状の一例を示す図である。 FIG. 3 is a diagram showing an example of the surface shape of the propagation type surface plasmon resonance filter according to the embodiment of the present technology.
 プラズモン共鳴フィルタの一種である伝播型表面プラズモン共鳴フィルタでは、金属膜に複数の孔が周期的に設けられた構成を備える。複数の孔は、回折格子として機能し、孔の周期や孔径を制御することによって、分光特性を制御することが可能である。 The propagation type surface plasmon resonance filter, which is a kind of plasmon resonance filter, has a configuration in which a plurality of holes are periodically provided in the metal film. The plurality of holes function as a diffraction grating, and the spectral characteristics can be controlled by controlling the period and the hole diameter of the holes.
 ここでは、孔の配置として菱形を単位格子とした場合において説明する。この場合、ある孔を基準として近傍の孔の方向をX方向とする。すなわち、1つを基準として1周期60度毎にX方向となる。一方、X方向の中間の方向をY方向とする。Y方向についても同様に、1つを基準として1周期60度毎にY方向となる。このとき、同じ角度の斜め入射でも、X方向とY方向とで異なる分光となる。このことは、入射方向によって分光形状が変化することを意味する。 Here, the case where the rhombus is used as the unit lattice as the arrangement of the holes will be described. In this case, the direction of a nearby hole is defined as the X direction with respect to a certain hole. That is, the X direction is set every 60 degrees in one cycle with one as a reference. On the other hand, the direction in the middle of the X direction is the Y direction. Similarly, the Y direction is the Y direction every 60 degrees in one cycle with one as a reference. At this time, even if the oblique incidence is at the same angle, the spectra are different in the X direction and the Y direction. This means that the spectral shape changes depending on the incident direction.
 すなわち、像高だけでなく、その像面位置によって分光特性が変化するために、光の3原色以上の多帯域で分光を行うマルチ分光としては信号処理後の半値幅が増加し、または、ピーク波長のシフトが起こるという現象が生じる。これにより、マルチ分光としての精度劣化が生じるおそれがある。 That is, since the spectral characteristics change not only with the image height but also with the image plane position, the half-value width after signal processing increases or peaks as multi-spectroscopy in which spectroscopy is performed in multiple bands of three or more primary colors of light. A phenomenon occurs in which a wavelength shift occurs. As a result, the accuracy of multi-spectroscopy may deteriorate.
 図4乃至図6は、表面プラズモン共鳴フィルタの分光特性の例を示す図である。 4 to 6 are diagrams showing an example of the spectral characteristics of the surface plasmon resonance filter.
 フィルタ条件は、何れも周期S0=350nm、孔径Φ=210nmである。入射角度θは、図4が25度、図5が30度、図6が35度である。また、比較のために、像高ゼロの角度 θ=0度の垂直入射のときの分光特性も同時に示している。 The filter conditions are a period S0 = 350 nm and a pore diameter Φ = 210 nm. The incident angle θ is 25 degrees in FIG. 4, 30 degrees in FIG. 5, and 35 degrees in FIG. In addition, for comparison, the spectral characteristics at the time of vertical incident at an angle of zero image height θ = 0 degrees are also shown at the same time.
 これらの結果から、垂直入射に比べて、斜め入射することにより主ピークが長波長側にシフトすることが示されている。また、X方向とY方向の入射方向でも分光が変化しているが、角度が大きくなるほど、主ピーク強度が低下するとともに、X方向とY方向の入射方向の違いによる分光の乖離が大きくなる傾向がある。 From these results, it is shown that the main peak shifts to the long wavelength side by obliquely incident compared to vertically incident. In addition, the spectroscopy changes in the incident directions of the X and Y directions, but the larger the angle, the lower the main peak intensity and the greater the divergence of the spectroscopy due to the difference between the incident directions of the X and Y directions. There is.
 [フィルタ配列]
 図7は、本技術の実施の形態における伝播型表面プラズモン共鳴フィルタのパターンの一例を示す図である。
[Filter array]
FIG. 7 is a diagram showing an example of a pattern of a propagation type surface plasmon resonance filter according to an embodiment of the present technology.
 伝播型表面プラズモン共鳴フィルタは、金属210の膜に複数の孔220が周期的に設けられた構成を備える。金属210としては、例えば、AlCuが想定されるが、純Al、Au、Ag等の金属であってもよい。この伝播型表面プラズモン共鳴フィルタの厚みは、例えば150nm程度である。 The propagation type surface plasmon resonance filter has a configuration in which a plurality of holes 220 are periodically provided in a film of a metal 210. As the metal 210, for example, AlCu is assumed, but it may be a metal such as pure Al, Au, or Ag. The thickness of this propagation type surface plasmon resonance filter is, for example, about 150 nm.
 また、この伝播型表面プラズモン共鳴フィルタの上下層および孔220の中には、酸化膜等の誘電体が存在してもよい。また、孔220の構造をここでは円形としているが、正方形、長方形、六方形など、何れの形状であってもよい。 Further, a dielectric such as an oxide film may be present in the upper and lower layers and the holes 220 of this propagation type surface plasmon resonance filter. Further, although the structure of the hole 220 is circular here, it may have any shape such as a square, a rectangle, or a hexagon.
 ここでは、伝播型表面プラズモン共鳴フィルタの孔220の配列として菱形格子を単位格子とする。そして、撮像面の各画素に対して、主光線の入射方向と菱形格子の配列の位置関係が常に一定になるように回転させて配列させる。すなわち、単位格子の周期パターン配列を、主光線の入射方向に従って回転させた配置を備える。これにより、撮像面の中心から見て、主光線の入射方向と周期パターン配列の回転角度とが一致する。このように各画素のフィルタ配列の方位を撮像面に対して少しずつ回転させて変化させることにより、像面位置や主光線の入射方向によらず一定になるマルチ分光の分光特性が得られる。 Here, the rhombic lattice is used as the unit lattice as the arrangement of the holes 220 of the propagation type surface plasmon resonance filter. Then, each pixel on the imaging surface is rotated and arranged so that the incident direction of the main light beam and the positional relationship of the arrangement of the rhombic lattice are always constant. That is, it includes an arrangement in which the periodic pattern array of the unit cell is rotated according to the incident direction of the main light beam. As a result, the incident direction of the main light beam and the rotation angle of the periodic pattern array coincide with each other when viewed from the center of the imaging surface. By changing the orientation of the filter array of each pixel by rotating it little by little with respect to the imaging surface, it is possible to obtain multi-spectral spectral characteristics that are constant regardless of the image plane position and the incident direction of the main light beam.
 図8は、本技術の実施の形態における伝播型表面プラズモン共鳴フィルタのパターンの他の例を示す図である。 FIG. 8 is a diagram showing another example of the pattern of the propagation type surface plasmon resonance filter in the embodiment of the present technology.
 上の例では菱形配列について説明したが、この例のように、正方形配列であっても、同様に方位を回転させることにより、常に一定になるマルチ分光の分光特性を得ることができる。 In the above example, the rhombus array was described, but as in this example, even in the case of a square array, by rotating the orientation in the same manner, it is possible to obtain the spectral characteristics of multi-spectroscopy that are always constant.
 図9は、本技術の実施の形態におけるフィルタ200の単位格子の例を示す図である。 FIG. 9 is a diagram showing an example of a unit cell of the filter 200 according to the embodiment of the present technology.
 同図におけるaは、単位格子が正方形配列である場合の例を示す。同図におけるbは、単位格子が長方形配列である場合の例を示す。同図におけるcは、単位格子が平行四辺形配列である場合の例を示す。 A in the figure shows an example when the unit cell is a square array. Reference numeral b in the figure shows an example in which the unit cell is a rectangular array. In the figure, c shows an example when the unit cell is a parallelogram array.
 これらの配列およびその他の配列でも、全ての配列において、主光線の入射方向と配列の関係を一致させることによって、同様の効果が得られる。 In these sequences and other sequences, the same effect can be obtained by matching the relationship between the incident direction of the main ray and the sequences in all the sequences.
 図10は、本技術の実施の形態における局在型表面プラズモン共鳴フィルタの表面形状の一例を示す図である。 FIG. 10 is a diagram showing an example of the surface shape of the localized surface plasmon resonance filter according to the embodiment of the present technology.
 上述の説明では伝播型表面プラズモン共鳴フィルタへの適用例について説明したが、この実施の形態は局在型表面プラズモン共鳴フィルタに適用してもよい。局在型表面プラズモン共鳴フィルタでは、誘電体230に金属240が点在した構造を備える。誘電体230としては、例えば、SiOが想定される。この場合、金属240の配列を単位格子とする。そして、伝播型表面プラズモン共鳴フィルタと同様に、単位格子の周期パターン配列を、主光線の入射方向に従って回転させた配置を備える。 In the above description, an example of application to a propagation type surface plasmon resonance filter has been described, but this embodiment may be applied to a localized surface plasmon resonance filter. The localized surface plasmon resonance filter has a structure in which the metal 240 is scattered on the dielectric 230. As the dielectric 230, for example, SiO 2 is assumed. In this case, the arrangement of the metals 240 is used as the unit cell. Then, similarly to the propagation type surface plasmon resonance filter, the periodic pattern array of the unit cell is provided by rotating it according to the incident direction of the main ray.
 このように、本技術の実施の形態によれば、フィルタの単位格子の周期パターン配列を、主光線の入射方向に従って回転させることにより、像面位置や主光線の入射方向によらず一定になるマルチ分光の分光特性を得ることができる。 As described above, according to the embodiment of the present technology, by rotating the periodic pattern array of the unit cell of the filter according to the incident direction of the main ray, it becomes constant regardless of the image plane position and the incident direction of the main ray. The spectral characteristics of multi-spectral can be obtained.
 <2.変形例>
 [補正]
 上述の実施の形態では、フィルタの単位格子の周期パターン配列を主光線の入射方向に従って回転させることにより、分光特性の改善を図っていた。これに対し、さらに、像高が高くなるにつれて同時に孔の周期を短くして、分光のピーク波長の長波長シフトを補正してもよい。
<2. Modification example>
[correction]
In the above-described embodiment, the spectral characteristics are improved by rotating the periodic pattern array of the unit cell of the filter according to the incident direction of the main light beam. On the other hand, as the image height increases, the period of the pores may be shortened at the same time to correct the long wavelength shift of the peak wavelength of the spectrum.
 図11は、本技術の実施の形態における表面プラズモン共鳴フィルタの回折格子による表面プラズモン励起を示す図である。 FIG. 11 is a diagram showing surface plasmon excitation by the diffraction grating of the surface plasmon resonance filter in the embodiment of the present technology.
 回折格子が存在する場合の表面プラズモンの波数kSPの構造条件は、入射光の波数のX成分k0Sinθと回折格子の波数2πm/Sから、次式により表される。
  kSP=-k0Sinθ+2πm/S        式(1)
ここで、k0は入射光の波数であり、θは入射光の角度である。また、mは次数で、Sは回折格子の周期である。
The structural condition of the wave number k SP of the surface plasmon in the presence of the diffraction grating is expressed by the following equation from the X component k 0 Sin θ of the wave number of the incident light and the wave number 2πm / S of the diffraction grating.
k SP = -k 0 Sinθ + 2πm / S-expression (1)
Here, k 0 is the wave number of the incident light, and θ is the angle of the incident light. Further, m is the order and S is the period of the diffraction grating.
 さらに、金属とその周辺媒質で決まる表面プラズモンの波数kSPの物性条件は、次式により表される。
  kSP=(ω/c)((ε1ε2)/(ε1+ε2))1/2   式(2)
ここでcは光速であり、ωはプラズマ周波数である。また、ε1およびε2は、それぞれ金属および周辺媒質の誘電率である。
Further, the physical characteristic condition of the wave number k SP of the surface plasmon determined by the metal and its peripheral medium is expressed by the following equation.
k SP = (ω / c) ((ε 1 ε 2 ) / (ε 1 + ε 2 )) 1/2 equation (2)
Here, c is the speed of light and ω is the plasma frequency. In addition, ε 1 and ε 2 are the permittivity of the metal and the peripheral medium, respectively.
 図12は、本技術の実施の形態における表面プラズモン共鳴フィルタの表面プラズモンの共鳴条件を示す図である。 FIG. 12 is a diagram showing the resonance conditions of the surface plasmon of the surface plasmon resonance filter according to the embodiment of the present technology.
 同図において、横軸は波数kxであり、縦軸はプラズマ周波数ωである。垂直または斜めの線が式(1)の構造条件である。曲線が式(2)の物性条件である。なお、この表面プラズモンの曲線は、
  ω=ωP/21/2
に漸近する。ここで、ωPは、プラズマ周波数であり、真空の誘電率ε0で決まる角振動数ωP=(ne/ε0*m)1/2となる。
In the figure, the horizontal axis is the wave number k x , and the vertical axis is the plasma frequency ω. Vertical or diagonal lines are the structural conditions of equation (1). The curve is the physical characteristic condition of equation (2). The curve of this surface plasmon is
ω = ω P / 2 1/2
Asymptotic to. Here, ω P is the plasma frequency, and the angular frequency ω P = (ne / ε 0 * m) 1/2 determined by the dielectric constant ε 0 of the vacuum.
 表面プラズモンの共鳴条件のためには、上の式(1)と式(2)を満たす交点の条件が必要となる。ここで、垂直入射のときに比べて、斜入射のときに式(1)の左項の波数成分k0Sinθほど減少するため、結果として長波長シフトする。これを補正するためには、図のようにフィルタの孔の周期Sを変化させる。S'をその補正周期とすると、厳密には
  S'={1/(1+Sinθ)}×S
となる。このとき、近似的に
  S'=Cosθ×S
としてもよい。すなわち、表面プラズモン共鳴フィルタは、主光線の入射方向の角度の余弦に比例するように、その周期が異なる。
For the resonance condition of the surface plasmon, the condition of the intersection that satisfies the above equations (1) and (2) is required. Here, as compared with the case of vertical incident, the wave number component k 0 Sin θ of the left term of the equation (1) decreases in the case of oblique incident, resulting in a long wavelength shift. In order to correct this, the period S of the hole of the filter is changed as shown in the figure. Strictly speaking, S'= {1 / (1 + Sinθ)} × S, where S'is the correction cycle.
Will be. At this time, approximately S'= Cosθ × S
May be. That is, the surface plasmon resonance filters have different periods so as to be proportional to the cosine of the angle of the main ray in the incident direction.
 図13乃至図15は、表面プラズモン共鳴フィルタの補正前後の分光特性の例を示す図である。フィルタ条件は、何れも周期S0=350nm、孔径Φ=210nmである。 13 to 15 are diagrams showing examples of spectral characteristics before and after correction of the surface plasmon resonance filter. The filter conditions are a period S0 = 350 nm and a pore diameter Φ = 210 nm.
 図13におけるaは、補正していない場合の角度θ=25度で斜めに光入射したときの分光特性である。なお、角度θ=0度(Ref.)の垂直入射の分光特性も同時にプロットしている。 A in FIG. 13 is a spectral characteristic when light is obliquely incident at an angle θ = 25 degrees when not corrected. The spectral characteristics of vertically incident at an angle θ = 0 degrees (Ref.) Are also plotted at the same time.
 図13におけるbは、角度θ=25度で光入射に対して各像面に対して主光線のフィルタ配列に対する入射方向をX方向だけ、または、Y方向だけの2通りに限って補正して、かつ、周期Sを同時に補正した分光特性と、角度θ=0度(Ref.)の垂直入射の分光特性(補正無)を示す。このときの周期補正Sは、
  S=S0×Cos(25度)=317nm
となる。この結果から、補正処理の分光では主ピークの波長が、垂直入射のピーク波長にほぼ一致していることが分かる。
In FIG. 13, b corrects the incident direction of the main ray with respect to the filter array for each image plane with respect to the light incident at an angle θ = 25 degrees only in the X direction or only in the Y direction. Moreover, the spectral characteristics in which the period S is corrected at the same time and the spectral characteristics (without correction) of the vertical incident at an angle θ = 0 degrees (Ref.) Are shown. The period correction S at this time is
S = S0 x Cos (25 degrees) = 317 nm
Will be. From this result, it can be seen that the wavelength of the main peak almost coincides with the peak wavelength of the vertical incident in the spectroscopy of the correction process.
 同様に、図14は、入射角度θ=30度で光を斜入射したときの同様な補正(S=300nm)の有無の分光特性を示す。また、図15は、入射角度θ=35度で光を斜入射したときの同様な補正(S=287nm)の有無の分光特性を示す。これらの結果から、像高の高い主光線の入射角度 θ=30~35度でも、補正後の分光では主ピークの波長がほぼ撮像面中心(像高ゼロの垂直入射)のピーク波長に一致し、ピーク波長の補正ができていることが分かる。なお、パターンを回転させることにより、X方向のみまたはY方向のみの何れかの分光に統一することが可能である。また、X方向およびY方向の中間の任意の方向であってもよい。 Similarly, FIG. 14 shows the spectral characteristics with and without the same correction (S = 300 nm) when light is obliquely incident at an incident angle θ = 30 degrees. Further, FIG. 15 shows the spectral characteristics with and without the same correction (S = 287 nm) when light is obliquely incident at an incident angle θ = 35 degrees. From these results, even if the incident angle of the main ray with a high image height is θ = 30 to 35 degrees, the wavelength of the main peak in the corrected spectroscopy almost matches the peak wavelength at the center of the imaging surface (vertical incident with zero image height). , It can be seen that the peak wavelength has been corrected. By rotating the pattern, it is possible to unify the spectroscopy into either the X direction or the Y direction only. Further, it may be in any direction between the X direction and the Y direction.
 [繰り返しパターン配列]
 図16は、本技術の実施の形態におけるフィルタ200のパターン配列の例を示す図である。
[Repeat pattern array]
FIG. 16 is a diagram showing an example of a pattern arrangement of the filter 200 according to the embodiment of the present technology.
 この例では、4×4画素において各画素の孔の周期と孔径を変えて16分光を配置し、さらに16分光を1周期のユニットとして繰り返しパターンで配列している。ここでは4×4画素の例を示したが、繰り返しパターンは任意のn(nは整数)のn×n画素であってもよい。また、縦横比が異なるように、任意のm(mは整数)を想定してm×n画素の繰り返しパターンであってもよい。 In this example, 16 spectra are arranged in 4 × 4 pixels by changing the period and hole diameter of the holes of each pixel, and 16 spectra are arranged in a repeating pattern as a unit of one cycle. Although an example of 4 × 4 pixels is shown here, the repetition pattern may be n × n pixels of arbitrary n (n is an integer). Further, a repeating pattern of m × n pixels may be used assuming an arbitrary m (m is an integer) so that the aspect ratios are different.
 このような複数の分光に信号処理を施すことによって、マルチ分光の画像を得ることができる。このマルチ分光による信号から、後述するように、農業や生体検知などの様々なアプリケーションに応用することができる。 By applying signal processing to such a plurality of spectra, a multi-spectral image can be obtained. This multi-spectral signal can be applied to various applications such as agriculture and biological detection, as will be described later.
 [モスアイ構造]
 上述の実施の形態において、表面をモスアイ(Moth Eye)構造としてもよい。これにより表面反射を減少させて、表面反射波との光干渉での分光の振動(リップル)が無くなり、よりマルチ分光としての精度を向上させることができる。
[Moss eye structure]
In the above-described embodiment, the surface may have a Moth Eye structure. As a result, the surface reflection can be reduced, the vibration (ripple) of the spectrum due to the optical interference with the surface reflected wave is eliminated, and the accuracy as the multi-spectral can be further improved.
 図17は、本技術の実施の形態における固体撮像素子100のデバイス構造の変形例を示す断面図である。 FIG. 17 is a cross-sectional view showing a modified example of the device structure of the solid-state image sensor 100 according to the embodiment of the present technology.
 この変形例のデバイス構造は、上述の実施の形態の構造の表面にモスアイ構造300を備える。このモスアイ構造300は、フィルタ200よりも上層側の表面における反射率を1%以下に抑制する。これにより、モスアイ構造300は、フィルタ200よりも上層での干渉効果を弱めることができる。 The device structure of this modified example includes a moth-eye structure 300 on the surface of the structure of the above-described embodiment. This moth-eye structure 300 suppresses the reflectance on the surface on the upper layer side of the filter 200 to 1% or less. As a result, the moth-eye structure 300 can weaken the interference effect in the upper layer than the filter 200.
 図18は、本技術の実施の形態におけるモスアイ構造300の製造方法の第1の例を示す図である。 FIG. 18 is a diagram showing a first example of a method for manufacturing the moth-eye structure 300 according to the embodiment of the present technology.
 モスアイ構造300を製造するためには、波長以下の微細加工が必要である。そこで、ここではナノインプリント技術を用いた製造方法について説明する。まず、鋳型であるモールド30を予め準備する。例えば、電子線リソグラフィーによるレジストで波長オーダより小さいパターンで、例えばシリコン基板をドライエッチングで加工してモールドとしてもよい。 In order to manufacture the moth-eye structure 300, microfabrication below the wavelength is required. Therefore, here, a manufacturing method using nanoimprint technology will be described. First, the mold 30 which is a mold is prepared in advance. For example, a silicon substrate may be processed by dry etching to form a mold with a pattern smaller than the wavelength order with a resist by electron beam lithography.
 そして、基板310上に、例えば紫外線硬化性の樹脂320をスピンコートで塗布する。さらに、モールドを押し当てた状態で紫外線を照射して樹脂320を固める。次に、モールドを剥離すれば、樹脂320にモスアイ構造が転写される。 Then, for example, an ultraviolet curable resin 320 is applied onto the substrate 310 by spin coating. Further, the resin 320 is hardened by irradiating ultraviolet rays while pressing the mold. Next, when the mold is peeled off, the moth-eye structure is transferred to the resin 320.
 図19は、本技術の実施の形態におけるモスアイ構造300の製造方法の第2の例を示す図である。 FIG. 19 is a diagram showing a second example of a method for manufacturing the moth-eye structure 300 according to the embodiment of the present technology.
 この第2の例では、半導体基板110からシリコン酸窒化膜180までの構造体とは別個に、樹脂基板301の表面上にモスアイ構造300を形成し、これを貼り合わせることにより固体撮像素子100を製造することができる。 In this second example, a moth-eye structure 300 is formed on the surface of the resin substrate 301 separately from the structure from the semiconductor substrate 110 to the silicon oxynitride film 180, and the solid-state image sensor 100 is formed by laminating the structure 300. Can be manufactured.
 図20は、本技術の実施の形態におけるモスアイ構造300を備える固体撮像素子100の分光特性の例を示す図である。 FIG. 20 is a diagram showing an example of the spectral characteristics of the solid-state imaging device 100 including the moth-eye structure 300 according to the embodiment of the present technology.
 このグラフは、モスアイ構造300を備える固体撮像素子100に対して上側から光を入射したときの分光感度特性を、3次元のFDTD(Finite-Difference Time-Domain)法でシミュレーションした結果を示している。このようにモスアイ構造を採用することにより、リップルが低減され、マルチ分光としての精度を向上させることができる。 This graph shows the results of simulating the spectral sensitivity characteristics when light is incident on the solid-state image sensor 100 having the moth-eye structure 300 from above by the three-dimensional FDTD (Finite-Difference Time-Domain) method. .. By adopting the moth-eye structure in this way, ripple can be reduced and the accuracy of multi-spectroscopy can be improved.
 <3.応用例>
 [農作物等育成]
 図21は、本技術の実施の形態における固体撮像素子100の農作物等育成への応用例を示す図である。
<3. Application example>
[Crop cultivation]
FIG. 21 is a diagram showing an example of application of the solid-state image sensor 100 in the embodiment of the present technology to growing agricultural products and the like.
 同図は、植物状態による反射率の分光特性を示している。このような植生の分布状況や活性度を示す指標は、NDVI(Normalized Difference Vegetation Index:正規化差植生指標)と称される。同図より、波長600~800nmの範囲において植生状態によって大きく反射率が変化することにより、健康な植物、弱った植物、および枯れた植物で反射率が異なることが分かる。例えば、この反射率は主に植物の葉からのものである。そして、これらの結果から、少なくとも波長600~800nmを挟んで、または、波長600~800nmにおいて、2つ以上の波長のマルチな分光特性を取得することで、植物の植生状態を感知できることができる。 The figure shows the spectral characteristics of reflectance depending on the vegetative state. An index showing the distribution status and activity of such vegetation is called NDVI (Normalized Difference Vegetation Index). From the figure, it can be seen that the reflectance differs between healthy plants, weakened plants, and dead plants due to the large change in reflectance depending on the vegetation state in the wavelength range of 600 to 800 nm. For example, this reflectance is primarily from the leaves of the plant. Then, from these results, the vegetation state of the plant can be sensed by acquiring multi-spectral characteristics of two or more wavelengths at least with a wavelength of 600 to 800 nm in between or at a wavelength of 600 to 800 nm.
 例えば、波長600~700nm域を検出する固体撮像素子と、波長700~800nm域を検出する固体撮像素子との2つを用いて、2つの信号値の関係から植生状態を感知することができる。また、波長400~600nm域を検出する固体撮像素子と、波長800~1000nm域を検出する固体撮像素子との2つを用いて、2つの信号値の関係から植生状態を感知することができる。さらに、検出精度の向上を図るために、3つ以上の固体撮像素子を用いて、3つ以上の複数の波長域を検出して、それらの信号値の関係から植生状態を感知してもよい。 For example, a solid-state image sensor that detects a wavelength in the 600 to 700 nm range and a solid-state image sensor that detects a wavelength in the 700 to 800 nm range can be used to detect the vegetation state from the relationship between the two signal values. Further, the vegetation state can be sensed from the relationship between the two signal values by using a solid-state image sensor that detects a wavelength in the range of 400 to 600 nm and a solid-state image sensor that detects a wavelength in the wavelength range of 800 to 1000 nm. Further, in order to improve the detection accuracy, three or more solid-state imaging devices may be used to detect three or more wavelength regions, and the vegetation state may be detected from the relationship between the signal values. ..
 したがって、このような波長域を検出可能な固体撮像素子を、例えば、ドローン等の小型無人航空機に搭載して、上空から農作物の育成状態を観測して、作物の育成を進めることができる。 Therefore, a solid-state image sensor capable of detecting such a wavelength range can be mounted on a small unmanned aerial vehicle such as a drone, and the growing state of the crop can be observed from the sky to proceed with the growing of the crop.
 [人肌検知]
 図22は、本技術の実施の形態における固体撮像素子100の人肌検知への応用例を示す図である。
[Human skin detection]
FIG. 22 is a diagram showing an example of application of the solid-state image sensor 100 in the embodiment of the present technology to human skin detection.
 同図は人肌の反射率の分光スペクトル特性であり、同図から波長450~650nmの範囲において反射率が大きく変化することが分かる。これらの変化から、被写体が人肌かどうかの認証が可能となる。例えば、波長450nm、550nm、および、650nmの3分光を検知することにより、被写体が人肌かどうかの認証が可能となる。例えば、被写体が人肌でない別の材料の場合、反射率の分光特性が変わるため、人肌と区別することができる。 The figure shows the spectral spectral characteristics of the reflectance of human skin, and it can be seen from the figure that the reflectance changes significantly in the wavelength range of 450 to 650 nm. From these changes, it becomes possible to authenticate whether the subject is human skin. For example, by detecting three spectra having wavelengths of 450 nm, 550 nm, and 650 nm, it is possible to authenticate whether or not the subject is human skin. For example, when the subject is a material other than human skin, the spectral characteristics of the reflectance change, so that it can be distinguished from human skin.
 したがって、このような波長域を検出可能な固体撮像素子を、例えば、生体認証装置に搭載することで、顔や指紋、虹彩などの偽造防止に応用することができ、より精度の高い生体認証が可能となる。 Therefore, by mounting a solid-state image sensor capable of detecting such a wavelength range in, for example, a biometric authentication device, it can be applied to prevent counterfeiting of faces, fingerprints, irises, etc., and more accurate biometric authentication can be performed. It will be possible.
 <4.適用例>
 [電子機器]
 図23は、本技術の実施の形態における固体撮像素子100の適用例である電子機器の構成例を示す図である。
<4. Application example>
[Electronics]
FIG. 23 is a diagram showing a configuration example of an electronic device which is an application example of the solid-state image sensor 100 in the embodiment of the present technology.
 電子機器は、レンズ400、固体撮像素子100、信号処理回路510、モニタ530、および、メモリ520を備える。この電子機器は、静止画像および動画像を撮像可能である。 The electronic device includes a lens 400, a solid-state image sensor 100, a signal processing circuit 510, a monitor 530, and a memory 520. This electronic device can capture still images and moving images.
 レンズ400は、少なくとも1枚のレンズを備え、被写体からの入射光を固体撮像素子100に導いて、固体撮像素子100の受光面に結像させる。 The lens 400 includes at least one lens, and guides the incident light from the subject to the solid-state imaging element 100 to form an image on the light-receiving surface of the solid-state imaging element 100.
 固体撮像素子100には、レンズ400を介して受光面に結像される像に応じて、一定期間、電荷が蓄積される。そして、固体撮像素子100に蓄積され電荷に応じた信号が信号処理回路510に供給される。 Charges are accumulated in the solid-state image sensor 100 for a certain period of time according to the image formed on the light receiving surface via the lens 400. Then, the signal accumulated in the solid-state image sensor 100 and corresponding to the electric charge is supplied to the signal processing circuit 510.
 信号処理回路510は、固体撮像素子100から出力された画素信号に対して各種の信号処理を施す。信号処理回路510が信号処理を施すことにより得られた画像データは、モニタ530に供給されて表示され、または、メモリ530に供給されて記憶される。 The signal processing circuit 510 performs various signal processing on the pixel signal output from the solid-state image sensor 100. The image data obtained by performing signal processing by the signal processing circuit 510 is supplied to the monitor 530 and displayed, or supplied to the memory 530 and stored.
 このような電子機器において、固体撮像素子100に上述の実施の形態のフィルタ200を使用することにより、像面位置や主光線の入射方向によらず一定になるマルチ分光の分光特性を得ることができる。 In such an electronic device, by using the filter 200 of the above-described embodiment for the solid-state image sensor 100, it is possible to obtain multi-spectral spectral characteristics that are constant regardless of the image plane position and the incident direction of the main light beam. can.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 Note that the above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the matters specifying the invention in the claims have a corresponding relationship with each other. Similarly, the matters specifying the invention within the scope of claims and the matters in the embodiment of the present technology having the same name have a corresponding relationship with each other. However, the present technology is not limited to the embodiment, and can be embodied by applying various modifications to the embodiment without departing from the gist thereof.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 なお、本技術は以下のような構成もとることができる。
(1)フォトダイオードが形成される半導体基板と、
 前記半導体基板の受光面側に積層される多層構造に含まれて主光線の入射方向に従って周期パターン配列を回転させたフィルタと
を具備する固体撮像素子。
(2)前記フィルタは、所定の画素群を単位としてその画素群に含まれる少なくとも1つの画素において前記主光線の入射方向と前記周期パターン配列の回転角度とが一致する
前記(1)に記載の固体撮像素子。
(3)前記フィルタは、撮像面の中心から見た前記主光線の入射方向と前記周期パターン配列の回転角度とが一致する
前記(1)または(2)に記載の固体撮像素子。
(4)前記フィルタは、前記主光線の入射方向に応じて前記周期パターン配列の周期ピッチが異なる
前記(1)から(3)のいずれかに記載の固体撮像素子。
(5)前記フィルタは、前記主光線の入射方向の角度の余弦に比例するように周期が異なる
前記(1)から(4)のいずれかに記載の固体撮像素子。
(6)前記フィルタは、プラズモン共鳴フィルタである
前記(1)から(5)のいずれかに記載の固体撮像素子。
(7)前記フィルタは、伝播型表面プラズモン共鳴フィルタである
前記(1)から(6)のいずれかに記載の固体撮像素子。
(8)前記フィルタは、局在型表面プラズモン共鳴フィルタである
前記(1)から(6)のいずれかに記載の固体撮像素子。
(9)前記フィルタよりも上層の最表面に配置されるモスアイ構造をさらに具備する
前記(1)から(8)のいずれかに記載の固体撮像素子。
(10)前記フィルタは、光の3原色以上の多帯域で複数の分光を行う
前記(1)から(9)のいずれかに記載の固体撮像素子。
(11)フォトダイオードが形成される半導体基板と、前記半導体基板の受光面側に積層される多層構造に含まれて主光線の入射方向に従って周期パターン配列を回転させたフィルタとを備える固体撮像素子
を具備する電子機器。
(12)前記フィルタは、光の3原色以上の多帯域で複数の分光を行い、
 前記複数の分光の分布に応じて分析を行うための前記(11)に記載の電子機器。
The present technology can have the following configurations.
(1) The semiconductor substrate on which the photodiode is formed and
A solid-state image sensor including a filter included in a multilayer structure laminated on the light receiving surface side of the semiconductor substrate and whose periodic pattern array is rotated according to the incident direction of the main light beam.
(2) The filter according to the above (1), wherein the incident direction of the main light beam and the rotation angle of the periodic pattern array coincide with each other in at least one pixel included in the predetermined pixel group as a unit. Solid-state image sensor.
(3) The solid-state image pickup device according to (1) or (2), wherein the filter is the solid-state image pickup device according to (1) or (2), wherein the incident direction of the main light ray viewed from the center of the image pickup surface and the rotation angle of the periodic pattern array coincide with each other.
(4) The solid-state image sensor according to any one of (1) to (3), wherein the filter has a different periodic pitch of the periodic pattern array depending on the incident direction of the main light beam.
(5) The solid-state image sensor according to any one of (1) to (4), wherein the filter has a different period so as to be proportional to the cosine of the angle of the incident direction of the main ray.
(6) The solid-state image sensor according to any one of (1) to (5) above, wherein the filter is a plasmon resonance filter.
(7) The solid-state imaging device according to any one of (1) to (6) above, wherein the filter is a propagation type surface plasmon resonance filter.
(8) The solid-state imaging device according to any one of (1) to (6) above, wherein the filter is a localized surface plasmon resonance filter.
(9) The solid-state image sensor according to any one of (1) to (8), further comprising a moth-eye structure arranged on the outermost surface of the layer above the filter.
(10) The solid-state image sensor according to any one of (1) to (9) above, wherein the filter performs a plurality of spectroscopys in multiple bands of three or more primary colors of light.
(11) A solid-state image sensor including a semiconductor substrate on which a photodiode is formed and a filter included in a multilayer structure laminated on the light receiving surface side of the semiconductor substrate and whose periodic pattern array is rotated according to the incident direction of the main light beam. Electronic device equipped with.
(12) The filter performs a plurality of spectroscopy in multiple bands of three or more primary colors of light.
The electronic device according to (11) above, for performing analysis according to the distribution of the plurality of spectra.
 30 モールド
 100 固体撮像素子
 110 半導体基板
 120 反射防止膜
 130、150、190 シリコン酸化膜
 140 遮光膜
 160、180 シリコン酸窒化膜
 170 シリコン窒化膜
 200 フィルタ
 210、240 金属
 220 孔
 230 誘電体
 300 モスアイ構造
 400 レンズ
30 Mold 100 Solid-state image sensor 110 Semiconductor substrate 120 Anti-reflection film 130, 150, 190 Silicon oxide film 140 Light-shielding film 160, 180 Silicon oxynitride film 170 Silicon nitride film 200 Filter 210, 240 Metal 220 Hole 230 Dielectric 300 Moss eye structure 400 lens

Claims (12)

  1.  フォトダイオードが形成される半導体基板と、
     前記半導体基板の受光面側に積層される多層構造に含まれて主光線の入射方向に従って周期パターン配列を回転させたフィルタと
    を具備する固体撮像素子。
    The semiconductor substrate on which the photodiode is formed and
    A solid-state image sensor including a filter included in a multilayer structure laminated on the light receiving surface side of the semiconductor substrate and whose periodic pattern array is rotated according to the incident direction of the main light beam.
  2.  前記フィルタは、所定の画素群を単位としてその画素群に含まれる少なくとも1つの画素において前記主光線の入射方向と前記周期パターン配列の回転角度とが一致する
    請求項1記載の固体撮像素子。
    The solid-state image sensor according to claim 1, wherein the filter is a solid-state image sensor according to claim 1, wherein the incident direction of the main light beam and the rotation angle of the periodic pattern array match in at least one pixel included in the predetermined pixel group as a unit.
  3.  前記フィルタは、撮像面の中心から見た前記主光線の入射方向と前記周期パターン配列の回転角度とが一致する
    請求項1記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein the filter is the solid-state imaging device according to claim 1, wherein the incident direction of the main light beam viewed from the center of the imaging surface and the rotation angle of the periodic pattern array match.
  4.  前記フィルタは、前記主光線の入射方向に応じて前記周期パターン配列の周期ピッチが異なる
    請求項1記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein the filter has a different periodic pitch of the periodic pattern array depending on the incident direction of the main light beam.
  5.  前記フィルタは、前記主光線の入射方向の角度の余弦に比例するように周期が異なる
    請求項1記載の固体撮像素子。
    The solid-state image sensor according to claim 1, wherein the filter has a different period so as to be proportional to the cosine of the angle of the incident direction of the main ray.
  6.  前記フィルタは、プラズモン共鳴フィルタである
    請求項1記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein the filter is a plasmon resonance filter.
  7.  前記フィルタは、伝播型表面プラズモン共鳴フィルタである
    請求項1記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein the filter is a propagation type surface plasmon resonance filter.
  8.  前記フィルタは、局在型表面プラズモン共鳴フィルタである
    請求項1記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein the filter is a localized surface plasmon resonance filter.
  9.  前記フィルタよりも上層の最表面に配置されるモスアイ構造をさらに具備する
    請求項1記載の固体撮像素子。
    The solid-state image sensor according to claim 1, further comprising a moth-eye structure arranged on the outermost surface of the upper layer of the filter.
  10.  前記フィルタは、光の3原色以上の多帯域で複数の分光を行う
    請求項1記載の固体撮像素子。
    The solid-state image sensor according to claim 1, wherein the filter performs a plurality of spectroscopys in a plurality of bands of three or more primary colors of light.
  11.  フォトダイオードが形成される半導体基板と、前記半導体基板の受光面側に積層される多層構造に含まれて主光線の入射方向に従って周期パターン配列を回転させたフィルタとを備える固体撮像素子
    を具備する電子機器。
    A solid-state image sensor including a semiconductor substrate on which a photodiode is formed and a filter included in a multilayer structure laminated on the light receiving surface side of the semiconductor substrate and whose periodic pattern array is rotated according to the incident direction of the main light beam is provided. Electronics.
  12.  前記フィルタは、光の3原色以上の多帯域で複数の分光を行い、
     前記複数の分光の分布に応じて分析を行うための請求項11記載の電子機器。
    The filter performs a plurality of spectroscopys in multiple bands of three or more primary colors of light.
    The electronic device according to claim 11, wherein the analysis is performed according to the distribution of the plurality of spectra.
PCT/JP2020/047960 2020-03-09 2020-12-22 Solid-state imaging element and electronic device WO2021181818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-039487 2020-03-09
JP2020039487A JP2021141264A (en) 2020-03-09 2020-03-09 Solid-state imaging element and electronic device

Publications (1)

Publication Number Publication Date
WO2021181818A1 true WO2021181818A1 (en) 2021-09-16

Family

ID=77669112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047960 WO2021181818A1 (en) 2020-03-09 2020-12-22 Solid-state imaging element and electronic device

Country Status (2)

Country Link
JP (1) JP2021141264A (en)
WO (1) WO2021181818A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055202A (en) * 2011-09-02 2013-03-21 Toshiba Corp Solid state image sensor
JP2014158267A (en) * 2014-03-17 2014-08-28 Sony Corp Color filter, imaging element, image processing device, and image processing method
JP2019145563A (en) * 2018-02-16 2019-08-29 ソニーセミコンダクタソリューションズ株式会社 Sensor device and electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055202A (en) * 2011-09-02 2013-03-21 Toshiba Corp Solid state image sensor
JP2014158267A (en) * 2014-03-17 2014-08-28 Sony Corp Color filter, imaging element, image processing device, and image processing method
JP2019145563A (en) * 2018-02-16 2019-08-29 ソニーセミコンダクタソリューションズ株式会社 Sensor device and electronic device

Also Published As

Publication number Publication date
JP2021141264A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US10895674B2 (en) Optical filtering device including Fabry-Perot cavities and structured layer belonging conjointly to first and second interference filters
US7858921B2 (en) Guided-mode-resonance transmission color filters for color generation in CMOS image sensors
JP7127962B2 (en) optical filter array
KR102053561B1 (en) Method of manufacturing the light detecting device and the light detecting device
US20220021828A1 (en) High dynamic range optical sensing device employing broadband optical filters integrated with light intensity detectors
US20220146726A1 (en) Solid-state imaging device and electronic apparatus
KR20200024097A (en) Optical filter, optical filter system, spectrometer and method of fabrication thereof
US20090323060A1 (en) Spectral optical sensor and method for producing an optical spectral sensor
US20240047494A1 (en) Micro spectrum chip based on units of random shapes
US20180084167A1 (en) Stacked-filter image-sensor spectrometer and associated stacked-filter pixels
WO2020144971A1 (en) Solid-state imaging device and electronic device
CN109791073A (en) Multispectral imaging equipment
CN111811652A (en) Spectrum chip based on sub-wavelength high-contrast grating, spectrometer and preparation method
CN109429025B (en) Image sensor and imaging apparatus
US20220344381A1 (en) Micro spectrum chip based on units of different shapes
WO2021181818A1 (en) Solid-state imaging element and electronic device
US10139339B2 (en) Colour sensor with angle-selective structures
IL279955B2 (en) Multispectral imaging sensor provided with means for limiting crosstalk
CN109642823A (en) The method for limiting the crosstalk in imaging sensor
JP2017097121A (en) Spectral device and imaging apparatus
US20220019010A1 (en) Optical filter with nanostructured layers and spectral sensor having layers of such kind
CN212458658U (en) Spectrum chip and spectrometer based on sub-wavelength high-contrast grating
US20230326946A1 (en) Miniature spectrum chip based on units of different shapes, and method for generating micro-nano structure array in miniature spectrum chip
KR102303796B1 (en) Plasmonic angle-sensitive spectral filter with multiple resonances
CN113874689A (en) Spectral reconstruction using multi-channel color sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924065

Country of ref document: EP

Kind code of ref document: A1