WO2021181743A1 - Electrically heated carrier and exhaust gas purification device - Google Patents

Electrically heated carrier and exhaust gas purification device Download PDF

Info

Publication number
WO2021181743A1
WO2021181743A1 PCT/JP2020/039966 JP2020039966W WO2021181743A1 WO 2021181743 A1 WO2021181743 A1 WO 2021181743A1 JP 2020039966 W JP2020039966 W JP 2020039966W WO 2021181743 A1 WO2021181743 A1 WO 2021181743A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
electrode
electrically heated
electrodes
intermediate layer
Prior art date
Application number
PCT/JP2020/039966
Other languages
French (fr)
Japanese (ja)
Inventor
博紀 高橋
幸春 森田
達士 市川
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2022505752A priority Critical patent/JP7455957B2/en
Publication of WO2021181743A1 publication Critical patent/WO2021181743A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/56
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic

Definitions

  • the present invention relates to an electrically heated carrier and an exhaust gas purifying device.
  • Patent Document 1 As the ceramic carrier used for the electric heating catalyst (EHC), in Patent Document 1 below, a carrier having PTC characteristics is used, and more specifically, a matrix composed of a borosilicate containing an alkaline atom is used. Is disclosed.
  • the PTC characteristic is a characteristic in which the electrical resistance increases as the temperature rises.
  • the EHC is provided with an electrode, a base material, and a joint portion for joining the electrode and the base material. Since the joint is easily exposed to high-temperature exhaust gas, it is likely to be oxidized and lead to a local increase in electrical resistance.
  • Patent Document 2 discloses that the joint between the electrode and the base material contains a borosilicate containing an alkaline atom. By using a borosilicate containing an alkaline atom at the joint, oxidation of the metal at the joint is suppressed, and a local increase in electrical resistance at the joint is suppressed.
  • an electrode specifically, an electrode containing a conductive material
  • a honeycomb structure as a carrier containing silicon
  • the present invention has been made to solve the above problems, and one of the purposes thereof is to reduce the possibility of embrittlement or deterioration of the honeycomb structure and electrodes even when heated to a high temperature.
  • an electrically heated carrier and an exhaust gas purifying device are provided.
  • One aspect of the electrically heated carrier according to the present invention is a partition wall that is disposed inside the outer peripheral wall and partitions a plurality of cells that penetrate from one end face to the other end face to form a flow path.
  • a columnar honeycomb structure that generates heat when energized, and a pair of electrodes provided on the surface of the outer peripheral wall, and the honeycomb structure is made of Si-containing ceramics and has a pair.
  • the electrode contains a conductive material, has an intermediate layer between the honeycomb structure and the electrode, and the porosity of the intermediate layer is 0 to 50%.
  • One aspect of the exhaust gas purification device includes the above-mentioned electric heating type carrier and a can body holding the electric heating type carrier.
  • an electrically heated carrier that can reduce the risk of embrittlement or deterioration of the honeycomb structure and electrodes even when heated to a high temperature.
  • FIG. 3 is an enlarged cross-sectional view showing an enlarged region III of FIG. It is explanatory drawing which shows the exhaust gas purification apparatus which concerns on embodiment of this invention.
  • FIG. 1 is a perspective view showing an electrically heated carrier 1 according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view orthogonal to the extending direction of the cell of the electrically heated carrier 1 of FIG. 1
  • FIG. 3 is a view. It is an enlarged cross-sectional view which shows the region III of 2 in an enlarged manner.
  • the electrically heated carrier 1 of the present embodiment has a honeycomb structure 2, a pair of electrodes 3a and 3b, and a pair of intermediate layers 4a and 4b.
  • the present invention by providing the pair of intermediate layers 4a and 4b, it is possible to reduce the possibility that the honeycomb structure 2 and the electrodes 3a and 3b are embrittled or deteriorated even when heated to a high temperature.
  • the present inventors speculate that the reason for this is as follows.
  • the reason why the electrodes 3a and 3b and / or the honeycomb structure 2 are likely to be embrittled or deteriorated is that the silicon in the honeycomb structure 2 is an element that is relatively easy to move, and when the honeycomb structure 2 is heated to a high temperature.
  • the honeycomb structure 2 is a columnar structure, and partitions the outer peripheral wall 20 and a plurality of cells 21a arranged inside the outer peripheral wall 20 and penetrating from one end face to the other end face to form a flow path. It has a partition wall 21 to be formed.
  • the honeycomb structure 2 is made of a ceramic containing silicon, and as the ceramic, borosilicate containing SiC or an alkaline atom can be used.
  • the alkaline atom include Na, Mg, K, Ca, Li, Be, Sr, Cs and Ba.
  • the borosilicate may contain one or more kinds of alkali metal atoms, may contain one or more kinds of alkaline earth metal atoms, or may contain a combination thereof.
  • the alkaline atom is more preferably Na, Mg, K, or Ca.
  • the honeycomb structure 2 may have a matrix composed of the above-mentioned borosilicate containing an alkaline atom and a domain composed of a conductive filler.
  • the matrix is a portion that serves as a base material for the honeycomb structure 2.
  • the matrix may be amorphous or crystalline. According to such a configuration, the region that controls the electric resistance when the EHC is energized and heated becomes the matrix that is the base material.
  • the matrix has a smaller temperature dependence of electrical resistivity than the SiC material, and the electrical resistivity exhibits PTC characteristics (characteristics in which the electrical resistance increases as the temperature rises).
  • the total content of alkaline atoms may be 10% by mass or less. More preferably, it may be 5% by mass or less, or 2% by mass or less. According to such a configuration, it becomes easy to reduce the electric resistance of the matrix, and the electrical resistivity of the matrix shows more PTC characteristics. Further, it is possible to suppress the formation of an insulating glass film due to the segregation of alkaline atoms on the surface side of the honeycomb structure 2 during firing in an oxidizing atmosphere.
  • the lower limit is not particularly limited, but the total content of alkaline atoms may be 0.01% by mass or more, or 0.2% by mass or more. Alkaline atoms may be intentionally added to suppress the oxidation of the conductive filler.
  • the honeycomb structure 2 since it is an element that is relatively easily mixed from the raw material of the honeycomb structure 2, it complicates the manufacturing process to completely remove it, and therefore, it is usually included within the above range.
  • the "total content of alkaline atoms" indicates, when the borosilicate contains one kind of alkaline atoms, the mass% of the one kind of alkaline atoms.
  • the borosilicate contains a plurality of alkaline atoms, the total content (mass%) with the content (mass%) of each of the plurality of alkaline atoms is shown.
  • the content of each of the B (boron) atom, Si (silicon) atom, and O (oxygen) atom constituting the borosilicate is preferably in the following range, for example.
  • the content of B atom in borosilicate is 0.1% by mass or more and 5% by mass or less.
  • the content of Si atom in borosilicate is 5% by mass or more and 40% by mass or less.
  • the content of O atom in borosilicate is 40% by mass or more and 85% by mass or less. According to such a configuration, it is possible to easily show the PTC characteristics in the honeycomb structure 2.
  • borosilicate for example, aluminoborosilicate can be used. According to such a configuration, it is possible to obtain a honeycomb structure 2 in which the temperature dependence of the electrical resistivity is small, the electrical resistivity exhibits PTC characteristics, or the temperature dependence of the electrical resistivity is suppressed. can.
  • the content of Al atom in the aluminum borosilicate may be, for example, 0.5% by mass or more and 10% by mass or less.
  • Examples of the atoms contained in the borosilicate constituting the matrix in addition to the atoms in the above-mentioned borosilicate include Fe and C.
  • the contents of alkaline atoms, Si, O, and Al can be measured using an electron probe microanalyzer (EPMA) analyzer.
  • the B content can be measured using an inductively coupled plasma (ICP) analyzer. According to the ICP analysis, the B content in the entire honeycomb structure 2 is measured, so that the obtained measurement result is converted into the B content in the borosilicate.
  • ICP inductively coupled plasma
  • the honeycomb structure 2 may have only a matrix, or may have one or more other substances in addition to the matrix.
  • other substances include fillers, materials that reduce the coefficient of thermal expansion, materials that increase thermal conductivity, materials that improve strength, and the like.
  • the electrical resistivity of the entire honeycomb structure 2 is determined by adding the electrical resistivity of the matrix and the electrical resistivity of the conductive filler. .. Therefore, the electrical resistivity of the honeycomb structure 2 can be controlled by adjusting the conductivity of the conductive filler and the content of the conductive filler.
  • the electrical resistivity of the conductive filler may exhibit either PTC characteristics (characteristics in which the electric resistance increases as the temperature rises) or NTC characteristics (characteristics in which the electric resistance decreases as the temperature rises), and electricity. The resistivity does not have to be temperature dependent.
  • the conductive filler may contain Si atoms. According to such a configuration, it is possible to improve the shape stability of the honeycomb structure 2.
  • Examples of the conductive filler containing Si atoms include Si particles, Fe—Si particles, SiW particles, SiC particles, Si—Mo particles, Si—Ti particles and the like. These can be used alone or in combination of two or more.
  • the Si particles may be Si particles doped with a dopant.
  • Dopants include boron (B), aluminum (Al), gallium (Ga), indium (In), nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), bismuth (Bi) and the like. Can be mentioned.
  • the dopant concentration may be contained as a dopant in the silicon particles in the range of 1 ⁇ 10 16 to 5 ⁇ 10 20 pieces / cm 3.
  • the volume resistivity of the honeycomb structure 2 decreases as the concentration of the dopant in the Si particles increases, and the volume resistivity of the honeycomb structure 2 increases as the concentration of the dopant in the Si particles decreases.
  • the amount of dopant in the silicon particles contained in the honeycomb structure 2 is preferably 5 ⁇ 10 16 to 5 ⁇ 10 20 pieces / cm 3 , and 5 ⁇ 10 17 to 5 ⁇ 10 20 pieces / cm 3. More preferred. If the dopant in the Si particles contained in the honeycomb structure 2 is a homologous element, it may contain a plurality of types of elements because it can exhibit conductivity without being affected by counterdoping. Further, it is more preferable that the dopant is one or two selected from the group consisting of B and Al. It is also preferable that it is one or two selected from the group consisting of N and P.
  • the honeycomb structure 2 may have a configuration in which the matrix and the conductive filler are contained in a total of 50 vol% or more.
  • the honeycomb structure 2 contains Si, and this Si may be derived by containing a Si atom in a borosilicate containing SiC or an alkaline atom, or a conductive filler containing a Si atom as a conductive filler. It may be derived from this using a filler.
  • the rate of increase in electrical resistance of the honeycomb structure 2 is preferably 1 ⁇ 10 -8 to 5 ⁇ 10 -4 ⁇ ⁇ m / K.
  • the rate of increase in electrical resistance of the honeycomb structure 2 is 1 ⁇ 10 -8 ⁇ ⁇ m / K or more, it becomes easy to suppress the temperature distribution during energization and heating.
  • the rate of increase in electrical resistance of the honeycomb structure 2 is 5 ⁇ 10 -4 ⁇ ⁇ m / K or less, the change in resistance during energization and heating can be reduced.
  • the rate of increase in electrical resistance of the honeycomb structure 2 is more preferably 5 ⁇ 10 -8 to 1 ⁇ 10 -4 ⁇ ⁇ m / K, and 1 ⁇ 10 -7 to 1 ⁇ 10 -4 ⁇ ⁇ m / K. It is even more preferable to have it.
  • the electrical resistivity increase rate of the honeycomb structure 2 first, the electrical resistivity at two points at 50 ° C. and 400 ° C. is measured by the four-terminal method, and the electrical resistivity at 50 ° C. is subtracted from the electrical resistivity at 400 ° C. It can be obtained by dividing the value derived in this manner by the temperature difference of 350 ° C. between 400 ° C. and 50 ° C. to calculate the rate of increase in electrical resistance.
  • the outer shape of the honeycomb structure 2 is not particularly limited as long as it is columnar. It can have a columnar shape (octagonal shape, etc.). Further, the size of the honeycomb structure 2 is preferably 2000 to 20000 mm 2 and preferably 5000 to 17000 mm for the reason of improving heat resistance (suppressing cracks entering the peripheral wall 20 in the circumferential direction). 2 is more preferable.
  • the honeycomb structure 2 has conductivity.
  • the honeycomb structure 2 is not particularly limited in electrical resistivity as long as it can be energized and generated by Joule heat , but it is preferably 1 ⁇ 10 -5 to 2 ⁇ ⁇ m, and 5 ⁇ 10 -5 to It is more preferably 1 ⁇ ⁇ m, and even more preferably 1 ⁇ 10 -4 to 0.5 ⁇ ⁇ m.
  • the electrical resistivity of the honeycomb structure 2 is a value measured at 25 ° C. by the four-terminal method.
  • the shape of the cell in the cross section perpendicular to the extending direction of the cell 21a is preferably a quadrangle, a hexagon, an octagon, or a combination thereof. Among these, a quadrangle and a hexagon are preferable.
  • a quadrangle is particularly preferable from the viewpoint of easily achieving both structural strength and heating uniformity.
  • the thickness of the partition wall 21 forming the cell 21a is preferably 0.1 to 0.3 mm, more preferably 0.1 to 0.2 mm.
  • the thickness of the partition wall 21 is 0.1 mm or more, it is possible to suppress a decrease in the strength of the honeycomb structure 2.
  • the thickness of the partition wall 21 is 0.3 mm or less, it is possible to suppress an increase in pressure loss when exhaust gas is flowed when the honeycomb structure 2 is used as a catalyst carrier and a catalyst is supported.
  • the thickness of the partition wall 21 is defined as the length of a portion of a line segment connecting the centers of gravity of adjacent cells 21a that passes through the partition wall 21 in a cross section perpendicular to the extending direction of the cell 21a.
  • the honeycomb structure 2 preferably has a cell density of 40 to 150 cells / cm 2 , and more preferably 60 to 100 cells / cm 2 in a cross section perpendicular to the flow path direction of the cells 21a.
  • the cell density is 40 cells / cm 2 or more, a sufficient catalyst-supporting area is secured.
  • the cell density is 150 cells / cm 2 or less, when the honeycomb structure 2 is used as a catalyst carrier and the catalyst is supported, it is possible to prevent the pressure loss when the exhaust gas is flowed from becoming too large.
  • the cell density is a value obtained by dividing the number of cells by the area of one bottom surface portion of the honeycomb structure 2 excluding the outer peripheral wall 20 portion.
  • the thickness of the outer peripheral wall 20 is preferably 0.1 mm or more, more preferably 0.15 mm or more, and even more preferably 0.2 mm or more.
  • the thickness of the outer peripheral wall 20 is preferably 1.0 mm or less. , More preferably 0.7 mm or less, and even more preferably 0.5 mm or less.
  • the thickness of the outer peripheral wall 20 is the normal direction with respect to the tangent line of the outer peripheral wall 20 at the measurement location when the portion of the outer peripheral wall 20 whose thickness is to be measured is observed in a cross section perpendicular to the extending direction of the cell. Defined as thickness.
  • the partition wall 21 preferably has a porosity of less than 30%. If the porosity of the partition wall 21 is less than 30%, the risk of damage during canning is reduced.
  • the porosity of the partition wall 21 is more preferably 20% or less, and even more preferably 10% or less.
  • the partition wall 21 has a porosity of 1% or more in order to suppress peeling between the partition wall 21 and the catalyst when the catalyst is supported on the partition wall 21. It is preferably 2% or more, and even more preferably 5% or more.
  • the porosity is a value calculated by binarizing the pores and the non-pores (specifically, the ceramic material portion) in the SEM observation image of the partition wall 21.
  • the honeycomb structure 2 is provided with a pair of electrodes 3a and 3b on the surface of the outer peripheral wall 20, and the electrodes 3a and 3b contain a conductive material.
  • the electrodes 3a and 3b are arranged so as to face each other with the central axis of the honeycomb structure 2 interposed therebetween.
  • the positions of the electrodes 3a and 3b in the circumferential direction of the honeycomb structure 2 are arbitrary.
  • the electrodes 3a and 3b of the present embodiment have electrode layers 30a and 30b and electrode terminals 31a and 31b, respectively.
  • the electrode layers 30a and 30b have a strip-shaped outer shape extending in the circumferential direction of the outer peripheral wall 20 and the extending direction of the cell, and are interposed between the intermediate layers 4a and 4b and the electrode terminals 31a and 31b, which will be described later. Has been done.
  • the electrode terminals 31a and 31b have a columnar outer shape, and are provided so as to stand up from the surfaces of the electrode layers 30a and 30b.
  • the electrode terminals 31a and 31b are electrically bonded to the electrode layers 30a and 30b, and when a voltage is applied to the electrode terminals 31a and 31b, the honeycomb structure 2 can be heated by Joule heat. Therefore, the honeycomb structure 2 can be suitably used as a heater.
  • the applied voltage is preferably 12 to 900 V, more preferably 48 to 600 V, but the applied voltage can be changed as appropriate.
  • the electrode layers 30a and 30b may be omitted.
  • the electrode terminals 31a and 31b are provided so as to stand up against the intermediate layers 4a and 4b.
  • each of the electrode layers 30a and 30b has a length of 80% or more between both bottom surfaces of the honeycomb structure 2, preferably 90% or more. Therefore, it is more preferable that the current extends over the entire length from the viewpoint that the current easily spreads in the axial direction of the electrode layers 30a and 30b. By facilitating the spread of the electric current, the uniform heat generation property of the honeycomb structure 2 can be enhanced.
  • the thickness of each of the electrode layers 30a and 30b is preferably 0.01 to 5 mm, more preferably 0.01 to 3 mm. By setting it in such a range, uniform heat generation can be enhanced. When the thickness of each of the electrode layers 30a and 30b is 0.01 mm or more, the electric resistance is appropriately controlled and heat can be generated more uniformly. If it is 5 mm or less, the risk of damage during canning is reduced.
  • the thickness of each of the electrode layers 30a and 30b is such that when the portion of the electrode layer 30a and 30b whose thickness is to be measured is observed in a cross section perpendicular to the stretching direction of the cell, the measurement portion on the outer surface of each of the electrode layers 30a and 30b. Is defined as the thickness in the normal direction with respect to the tangent line in.
  • the electrical resistivity of the electrode layers 30a and 30b is not particularly limited, but is preferably 1 ⁇ 10 -5 to 5 ⁇ 10 -1 ⁇ ⁇ m. When the electrical resistance of the electrode layers 30a and 30b is 5 ⁇ 10 -1 ⁇ ⁇ m or less, the resistance at the time of energization heating can be reduced.
  • the electrical resistance of the electrode layers 30a and 30b is more preferably 1 ⁇ 10 -4 to 2 ⁇ 10 -1 ⁇ ⁇ m, and further preferably 5 ⁇ 10 -3 to 1 ⁇ 10 -1 ⁇ ⁇ m. More preferred.
  • the electrical resistivity of the electrode layers 30a and 30b is a value measured at 25 ° C. by the four-terminal method.
  • the sizes of the electrode terminals 31a and 31b are not limited, but for example, they are formed in a columnar shape having an area of both end faces of 10 to 800 mm 2 and a length of 10 to 100 mm in the direction in which the electrode terminals 31a and 31b stand up. can do.
  • the cross-sectional area of the electrode terminals 31a and 31b on the plane orthogonal to the length direction L of the electrode terminals 31a and 31b may be uniform in the length direction L of the electrode terminals 31a and 31b, but in the length direction L. It may change.
  • the cross-sectional area of the ends (bases) of the electrode terminals 31a and 31b on the honeycomb structure 2 side may be wider than the cross-sectional area on the tip side of the electrode terminals 31a and 31b. Further, in the electrode terminals 31a and 31b, at least at the base of the electrode terminals 31a and 31b, the cross-sectional area of the electrode terminals 31a and 31b becomes the bottom area of the electrode terminals 31a and 31b (on the honeycomb structure 2 side) as the distance from the honeycomb structure 2 increases. It may have a shape that gradually (continuously or stepwise) decreases from the end face (bottom surface) area). For example, the bases of the electrode terminals 31a and 31b may have a truncated cone shape. The areas of both end faces of the electrode terminals 31a and 31b may be different from each other.
  • the materials of the electrode layers 30a and 30b and the electrode terminals 31a and 31b are formed of a conductive material.
  • the conductive material include oxide ceramics, metals or mixtures of metal compounds and oxide ceramics, carbon, oxide ceramics containing carbon, and composite materials containing carbon.
  • the materials of the electrode layers 30a and 30b and the electrode terminals 31a and 31b may be the same.
  • the metal may be a single metal or an alloy, and for example, silicon, aluminum, iron, stainless steel, titanium, tungsten, Ni—Cr alloy, zinc, copper, nickel, silver, gold and the like can be preferably used.
  • metal compounds include those other than oxide ceramics, such as metal oxides, metal nitrides, metal carbides, metal siliceates, metal borides, and composite oxides, such as FeSi 2 , CrSi 2 , and alumina. Titanium oxide, tin oxide (Sb-doped), indium oxide (Sn-doped), zinc oxide (Al-doped) and the like can be preferably used. Both the metal and the metal compound may be one kind alone, or two or more kinds may be used in combination.
  • Specific examples of oxide ceramics include glass, cordierite, and mullite. The glass may further contain an oxide consisting of at least one component selected from the group consisting of B, Mg, Al, Si, P, Ti and Zr.
  • the main component is carbon such as graphite (graphite), carbon black, carbon fiber (carbon fiber), charcoal / activated charcoal, coke, fullerene, and carbon nanotubes.
  • carbon is the main component means that the carbon content is 50% by mass or more with respect to all the components constituting the electrode terminals 31a and 31b.
  • the carbon content is more preferably 80% by mass or more, and even more preferably 90% by mass or more.
  • the electrodes 3a and 3b are formed of carbon or a metal such as nickel or aluminum, they have the property of easily binding to Si atoms and form Si and VDD of the honeycomb structure 2. Therefore, by providing the intermediate layers 4a and 4b of the present invention, the embrittlement or deterioration suppressing effect on the honeycomb structure 2 and the electrodes 3a and 3b can be more effectively obtained.
  • Metal terminals may be joined to the tips of the electrode terminals 31a and 31b, respectively.
  • the carbon electrode terminals 31a and 31b can be joined to the metal terminal by caulking, welding, brazing, a conductive adhesive or the like.
  • a conductive metal such as an iron alloy or a nickel alloy can be adopted.
  • Intermediate layers 4a and 4b are provided between the honeycomb structure 2 and the electrodes 3a and 3b.
  • the intermediate layers 4a and 4b of the present embodiment are interposed between the outer peripheral wall 20 of the honeycomb structure 2 and the electrode layers 30a and 30b of the electrodes 3a and 3b.
  • the intermediate layers 4a and 4b inhibit the silicon contained in the outer peripheral wall 20 from moving to the electrode layers 30a and 30b.
  • the honeycomb structure 2 and the electrodes 3a and 3b are in full and direct contact with each other. Compared with the case, the movement of silicon is suppressed.
  • the intermediate layers 4a and 4b are provided, so that the electrodes 3a are provided.
  • the nickel silicide which is a brittle metal compound and suppresses the movement of silicon from the honeycomb structure 2 to the nickel side (electrodes 3a, 3b side), Formation can be suppressed.
  • the extending region of the intermediate layers 4a and 4b is the same size as the extending region of the electrode layers 30a and 30b (electrodes 3a and 3b) or is wider than the extending region thereof. In other words, it is preferable that there is no region where the electrode layers 30a and 30b are in direct contact with the outer peripheral wall 20. This is to suppress the movement of silicon more reliably. However, it is not excluded that the intermediate layers 4a and 4b are partially provided between the electrode layers 30a and 30b and the outer peripheral wall 20. Even in the embodiment in which the intermediate layers 4a and 4b are partially provided, the movement of silicon can be suppressed as compared with the case where the honeycomb structure 2 and the electrodes 3a and 3b are in full and direct contact with each other. ..
  • the intermediate layers 4a and 4b are appropriately designed so as to relieve the stress generated between the honeycomb structure 2 and the electrodes 3a and 3b. Is also one of the preferred forms. For example, the stress generated when the electrodes 3a and 3b are installed by brazing and / or firing, the stress generated due to the difference in the thermal expansion coefficient between the honeycomb structure 2 and the electrodes 3a and 3b, and the temperature generated during use.
  • the intermediate layers 4a and 4b can also play a role of relieving the stress caused by the difference in distribution.
  • the outer surface (diameter outer surface) of the intermediate layers 4a and 4b can form the same curved surface as the outer surface (diameter outer surface) of the outer peripheral wall 20. It is preferable that no step or groove is formed at the boundary between the intermediate layers 4a and 4b and the outer peripheral wall 20.
  • the intermediate layers 4a and 4b can be formed by altering a part of the outer peripheral wall 20. A part of the outer peripheral wall 20 is scraped off to form a groove, and a member having the same shape as the groove is fitted into the groove, or the materials of the intermediate layers 4a and 4b are applied or piled up in the groove to form the intermediate layer 4a, 4b may be formed.
  • the intermediate layers 4a and 4b may form a convex portion that protrudes outward in the radial direction from the outer peripheral surface of the outer peripheral wall 20.
  • the outer surface (diameter inner surface) of the intermediate layers 4a and 4b may form the same curved surface as the outer surface (diameter inner surface) of the electrode layers 30a and 30b (electrodes 3a and 3b). In this case, it is preferable that no step or groove is formed at the boundary between the intermediate layers 4a and 4b and the electrode layers 30a and 30b.
  • the intermediate layers 4a and 4b can be formed by altering a part of the electrode layers 30a and 30b.
  • a part of the electrode layers 30a and 30b is scraped off to form a groove, and a member having the same shape as the groove is fitted into the groove, or the material of the intermediate layers 4a and 4b is applied or piled up in the groove to form an intermediate layer.
  • 4a and 4b may be formed.
  • the intermediate layers 4a and 4b may form a convex portion that protrudes inward in the radial direction from the outer peripheral surface of the electrode layers 30a and 30b.
  • the thickness of the intermediate layers 4a and 4b is preferably 0.03 to 2 mm, more preferably 0.05 to 1 mm, and even more preferably 0.1 to 0.5 mm.
  • the electrodes 3a and 3b can be kept at a relatively low temperature even when the honeycomb structure 2 becomes hot due to automobile exhaust gas or the like.
  • the thickness of the intermediate layers 4a and 4b By reducing the thickness of the intermediate layers 4a and 4b to 2 mm or less, the structural influence on the honeycomb structure 2, the electrode layers 30a and 30b or the electrically heated carrier 1 can be reduced.
  • the intermediate layers 4a and 4b can have pores. Young's modulus can be controlled by having pores in the intermediate layers 4a and 4b.
  • the porosity of the intermediate layers 4a and 4b is preferably 0 to 50%, more preferably 0 to 30%. From the viewpoint of the strength between the honeycomb structure 2 and the electrode layers 30a and 30b, the porosity of the intermediate layers 4a and 4b is preferably 50% or less.
  • the thermal conductivity of the intermediate layers 4a and 4b is preferably 1 W / mk or more, and more preferably 5 W / mk or more.
  • the thermal conductivity is 1 W / mk or more, the heat of the honeycomb structure 2 can be quickly transferred to the outside without being retained at the interface with the electrodes 3a and 3b, so that the honeycomb structure 2 and the electrodes 3a can be quickly transferred to the outside.
  • 3b can suppress brittleness or deterioration.
  • the thermal expansion coefficient of the 4b alpha is 10 ⁇ 10 -6 or less, more preferably 6 ⁇ 10 -6 or less. With this configuration, the thermal stress between the honeycomb structure-intermediate layer-electrode layer can be relaxed.
  • the Young's modulus of the intermediate layers 4a and 4b is preferably 10 to 100 GPa. When the Young's modulus is 10 to 100 GPa, the stress between the honeycomb structure-intermediate layer-electrode layer can be relaxed.
  • a diffusion inhibitor containing at least one element selected from the group consisting of zirconium, titanium, tantalum, niobium, vanadium, tungsten, molybdenum, chromium, silicon and manganese is mixed. Is preferable. By containing the above elements, the movement of silicon can be suppressed, and the embrittlement or deterioration of the honeycomb structure 2 and the electrodes 3a and 3b can be suppressed.
  • the material of the intermediate layers 4a, 4b is at least selected from the group consisting of tungsten, molybdenum, titanium, niobium and vanadium in order to facilitate the acquisition of other properties desired as the intermediate layers 4a, 4b.
  • a material containing one element is more preferable, and a material containing at least one element selected from the group consisting of tungsten, titanium and niobium is further preferable. Twice
  • the electroheating carrier 1 By supporting the catalyst on the electroheating carrier 1, the electroheating carrier 1 can be used as the catalyst carrier.
  • a fluid such as automobile exhaust gas can flow through the flow paths of the plurality of cells 21a.
  • the catalyst include noble metal-based catalysts and catalysts other than these.
  • a noble metal such as platinum (Pt), palladium (Pd), or rhodium (Rh) is supported on the surface of the alumina pores, and a three-way catalyst containing a co-catalyst such as ceria or zirconia, an oxidation catalyst, or an alkali.
  • An example is a NOx storage reduction catalyst (LNT catalyst) containing earth metal and platinum as storage components of nitrogen oxide (NOx).
  • LNT catalyst NOx storage reduction catalyst
  • catalysts that do not use noble metals include NOx selective reduction catalysts (SCR catalysts) containing copper-substituted or iron-substituted zeolites. Further, two or more kinds of catalysts selected from the group consisting of these catalysts may be used.
  • the method of supporting the catalyst is also not particularly limited, and can be carried out according to the conventional method of supporting the catalyst on the honeycomb structure 2.
  • the method for producing an electrically heated carrier of the present invention includes a step A1 for obtaining an unfired honeycomb structure with an electrode terminal forming paste and a honeycomb structure with an electrode terminal forming paste by firing the unfired honeycomb structure.
  • the step A2 for obtaining the structure is included.
  • the electrode layer forming paste and the electrode terminal forming paste may be attached to the honeycomb structure after calcination.
  • the electrode terminals made of carbon may be attached to the honeycomb structure.
  • step A1 a columnar honeycomb molded body that is a precursor of the honeycomb structure is produced, and an electrode layer forming paste is applied to the side surface of the honeycomb molded body to obtain an unfired honeycomb structure with the electrode layer forming paste.
  • step A1 a step of providing an electrode terminal forming paste on the electrode layer forming paste to obtain an unfired honeycomb structure with the electrode terminal forming paste.
  • boric acid a conductive filler containing Si atoms, and kaolin are mixed.
  • a borosilicate containing an alkaline atom, a conductive filler containing a Si atom, and kaolin are mixed.
  • the borosilicate may have a fibrous or particulate shape, and is preferably fibrous because it improves the extrudability of the mixture.
  • the mass ratio of boric acid is preferably 4 or more and 8 or less in order to facilitate obtaining the honeycomb structure 2 having a small temperature dependence of electrical resistivity.
  • the content of boron contained in the borosilicate can be increased by increasing the firing temperature described later. As the amount of boron doped in the silicate is increased, the electrical resistance of the honeycomb structure 2 can be further reduced.
  • binder examples include methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol and the like.
  • the binder content can be, for example, about 2% by mass.
  • the clay is extruded to produce a honeycomb molded body.
  • a mouthpiece having a desired overall shape, cell shape, partition wall thickness, cell density and the like can be used.
  • both bottom portions of the honeycomb molded body can be cut to obtain the desired length.
  • the dried honeycomb molded body is called a columnar honeycomb dried body.
  • the intermediate layer forming paste can be prepared, for example, by mixing an anti-diffusion material containing the above elements, optionally a binder and water.
  • the obtained intermediate layer forming paste is applied to the side surface of the honeycomb molded body (typically, the columnar honeycomb dried body) to obtain an unfired honeycomb structure with the intermediate layer forming paste.
  • the method of applying the intermediate layer forming paste to the honeycomb molded body can be performed according to a known method for producing a honeycomb structure.
  • the electrode layer forming paste for forming the electrode layer is prepared.
  • the electrode layer forming paste can be produced by mixing a conductive material blended according to the required characteristics of the electrode layer with a binder and water.
  • the obtained electrode layer forming paste is applied to the side surface of the honeycomb molded body with the intermediate layer forming paste to obtain an unfired honeycomb structure with the electrode layer forming paste.
  • the method of applying the electrode layer forming paste to the honeycomb molded body can be performed according to a known method for producing a honeycomb structure.
  • the honeycomb molded body may be fired once before applying the intermediate layer forming paste or the electrode layer forming paste in step A1. That is, in this modified example, the honeycomb molded body is fired to produce a columnar honeycomb fired body, and the intermediate layer forming paste or the electrode layer forming paste is applied to the columnar honeycomb molded body.
  • the electrode terminal forming material for forming the electrode terminal is prepared.
  • the electrode terminal forming material can be kneaded by appropriately adding various additives to the conductive material blended according to the required characteristics of the electrode terminals.
  • the prepared and kneaded electrode terminal forming material is formed into a predetermined shape by press molding, and dried and / or fired. Since the electrode terminals are deformed by shrinkage during drying and / or firing, it is preferable to perform cutting and / or polishing after drying and / or firing.
  • the electrode terminals are provided in a predetermined shape so as to stand up from the surface of the electrode layer on the honeycomb structure. As a method of providing the honeycomb structure so as to stand up from the surface of the electrode layer, an electrode layer forming paste can be used.
  • the unfired honeycomb structure with the electrode terminal forming paste is fired to obtain the honeycomb structure with the electrode terminals.
  • the firing conditions can be under an inert gas atmosphere or an atmospheric atmosphere, below atmospheric pressure, a firing temperature of 1150 to 1350 ° C., and a firing time of 0.1 to 50 hours.
  • the firing atmosphere may be, for example, an inert gas atmosphere, and the firing pressure may be normal pressure.
  • it is preferable to reduce the residual oxygen from the viewpoint of preventing oxidation, and it is not possible after the atmosphere at the time of firing is set to a high vacuum of 1.0 ⁇ 10 -4 Pa or more. It is preferable to purge the active gas and fire it.
  • the inert gas atmosphere examples include an N 2 gas atmosphere, a helium gas atmosphere, and an argon gas atmosphere.
  • the unfired honeycomb structure with the electrode terminal forming paste may be dried before firing. Further, before firing, degreasing may be performed in order to remove the binder and the like. In this way, an electrically heated carrier in which the electrode terminals are electrically connected to the electrode layer is obtained.
  • FIG. 4 is an explanatory diagram showing an exhaust gas purification device according to an embodiment of the present invention.
  • the electrically heated carrier 1 according to the embodiment of the present invention described above can be used in an exhaust gas purification device.
  • the exhaust gas purifying device includes an electrically heated carrier 1 and a metal can body 5 that holds the electrically heated carrier 1.
  • the metal electrodes 6a and 6b bonded to the electrode terminals 31a and 31b may be further provided.
  • the electrically heated carrier 1 is installed in the middle of the exhaust gas flow path for flowing the exhaust gas from the engine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

An electrically heated carrier 1 according to the present invention is provided with: a columnar honeycomb structure 2 that generates heat when current is passed therethrough and that comprises an outer circumferential wall 20 and a division wall 21 which is disposed on the inner side of the outer circumferential wall 20 and which compartmentalizes and forms a plurality of cells 21a penetrating from one end face up to the other end face so as to form flow channels; and a pair of electrodes 3a, 3b disposed on an outer surface of the outer circumferential wall 20. The honeycomb structure 2 is composed of ceramics containing Si. The pair of electrodes 3a, 3b contain an electrically conductive material. Intermediate layers 4a, 4b are provided between the honeycomb structure 2 and the respective electrodes 3a, 3b. The intermediate layers have a porosity of 0-50%.

Description

電気加熱式担体及び排気ガス浄化装置Electric heating type carrier and exhaust gas purification device
 本発明は、電気加熱式担体及び排気ガス浄化装置に関する。 The present invention relates to an electrically heated carrier and an exhaust gas purifying device.
 電気加熱触媒(EHC)に用いられるセラミックス担体として、下記の特許文献1には、PTC特性を有する担体を用いること、より具体的にはアルカリ系原子を含むホウケイ酸塩で構成されるマトリックスを用いることが開示されている。PTC特性とは、温度が高くなるにつれて電気抵抗が上昇する特性である。PTC特性を有する担体を用いることで、通電加熱時に電流が集中して流れることによる局所的な発熱に起因する偏った温度分布を改善することが図られている。 As the ceramic carrier used for the electric heating catalyst (EHC), in Patent Document 1 below, a carrier having PTC characteristics is used, and more specifically, a matrix composed of a borosilicate containing an alkaline atom is used. Is disclosed. The PTC characteristic is a characteristic in which the electrical resistance increases as the temperature rises. By using a carrier having PTC characteristics, it is possible to improve the uneven temperature distribution caused by local heat generation due to the concentrated flow of current during energization heating.
 EHCには、電極、基材、及びこれら電極と基材とを接合する接合部が設けられる。接合部は、高温の排気ガスに曝されやすいことから、酸化されて局所的な電気抵抗の上昇につながりやすい。下記の特許文献2には、電極と基材との接合部が、アルカリ系原子を含むホウケイ酸塩を含むことが開示されている。接合部にアルカリ系原子を含むホウケイ酸塩を用いることで、接合部での金属の酸化が抑制され、接合部での電気抵抗の局所的な増大を抑制することが図られている。 The EHC is provided with an electrode, a base material, and a joint portion for joining the electrode and the base material. Since the joint is easily exposed to high-temperature exhaust gas, it is likely to be oxidized and lead to a local increase in electrical resistance. Patent Document 2 below discloses that the joint between the electrode and the base material contains a borosilicate containing an alkaline atom. By using a borosilicate containing an alkaline atom at the joint, oxidation of the metal at the joint is suppressed, and a local increase in electrical resistance at the joint is suppressed.
特開2019-012682号公報Japanese Unexamined Patent Publication No. 2019-012682 国際公開第2019/065381号International Publication No. 2019/065381
 本発明者らの検討の結果、電極(具体的には、導電性材料を含む電極)と、ケイ素を含む担体としてハニカム構造体とを組み合わせたとき、焼成中や高温の排気ガスに曝された際に電極及び/又はハニカム構造体が脆化又は劣化して破損する虞があることがわかった。 As a result of the studies by the present inventors, when an electrode (specifically, an electrode containing a conductive material) and a honeycomb structure as a carrier containing silicon are combined, they are exposed to exhaust gas during firing or at a high temperature. At that time, it was found that the electrodes and / or the honeycomb structure may be brittle or deteriorated and damaged.
 本発明は、上記のような課題を解決するためになされたものであり、その目的の一つは、高温まで加熱されたとしてもハニカム構造体及び電極に脆化又は劣化が生じる虞を低減できる電気加熱式担体及び排気ガス浄化装置を提供する。 The present invention has been made to solve the above problems, and one of the purposes thereof is to reduce the possibility of embrittlement or deterioration of the honeycomb structure and electrodes even when heated to a high temperature. Provided are an electrically heated carrier and an exhaust gas purifying device.
 本発明に係る電気加熱式担体の一態様は、外周壁と、外周壁の内側に配設され、一方の端面から他方の端面まで貫通して流路を形成する複数のセルを区画形成する隔壁と、を有し、通電されることにより発熱する柱状のハニカム構造体と、外周壁の表面上に設けられた一対の電極と、を備え、ハニカム構造体がSiを含むセラミックスで構成され、一対の電極が、導電性材料を含有し、ハニカム構造体と電極との間に中間層を有し、中間層の気孔率が0~50%である。 One aspect of the electrically heated carrier according to the present invention is a partition wall that is disposed inside the outer peripheral wall and partitions a plurality of cells that penetrate from one end face to the other end face to form a flow path. A columnar honeycomb structure that generates heat when energized, and a pair of electrodes provided on the surface of the outer peripheral wall, and the honeycomb structure is made of Si-containing ceramics and has a pair. The electrode contains a conductive material, has an intermediate layer between the honeycomb structure and the electrode, and the porosity of the intermediate layer is 0 to 50%.
 本発明に係る排気ガス浄化装置の一態様は、上述の電気加熱式担体と、電気加熱式担体を保持する缶体とを備える。 One aspect of the exhaust gas purification device according to the present invention includes the above-mentioned electric heating type carrier and a can body holding the electric heating type carrier.
 本発明によれば、高温まで加熱されたとしてもハニカム構造体及び電極に脆化又は劣化が生じる虞を低減できる電気加熱式担体を提供することができる。 According to the present invention, it is possible to provide an electrically heated carrier that can reduce the risk of embrittlement or deterioration of the honeycomb structure and electrodes even when heated to a high temperature.
本発明の実施の形態における電気加熱式担体1を示す斜視図である。It is a perspective view which shows the electric heating type carrier 1 in embodiment of this invention. 図1の電気加熱式担体1を示す断面図である。It is sectional drawing which shows the electric heating type carrier 1 of FIG. 図2の領域IIIを拡大して示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing an enlarged region III of FIG. 本発明の実施形態に係る排気ガス浄化装置を示す説明図である。It is explanatory drawing which shows the exhaust gas purification apparatus which concerns on embodiment of this invention.
 以下、本発明を実施するための形態について、図面を参照して説明する。本発明は各実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施の形態に示される全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施形態の構成要素を適宜組み合わせてもよい。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The present invention is not limited to each embodiment, and the components can be modified and embodied without departing from the gist thereof. In addition, various inventions can be formed by appropriately combining the plurality of components disclosed in each embodiment. For example, some components may be removed from all the components shown in the embodiments. Furthermore, the components of different embodiments may be combined as appropriate.
<電気加熱式担体>
 図1は本発明の実施の形態における電気加熱式担体1を示す斜視図であり、図2は図1の電気加熱式担体1のセルの延伸方向に直交する断面図であり、図3は図2の領域IIIを拡大して示す拡大断面図である。
<Electric heating type carrier>
FIG. 1 is a perspective view showing an electrically heated carrier 1 according to an embodiment of the present invention, FIG. 2 is a cross-sectional view orthogonal to the extending direction of the cell of the electrically heated carrier 1 of FIG. 1, and FIG. 3 is a view. It is an enlarged cross-sectional view which shows the region III of 2 in an enlarged manner.
 図1~図3に示すように、本実施の形態の電気加熱式担体1は、ハニカム構造体2、一対の電極3a,3b及び一対の中間層4a,4bを有している。本発明は、上記一対の中間層4a,4bを設けることで、高温まで加熱されたとしてもハニカム構造体2及び電極3a,3bに脆化又は劣化が生じる虞を低減できる。本発明者らは、この理由について、以下のように推測している。電極3a,3b及び/又はハニカム構造体2が脆化又は劣化しやすい要因としては、ハニカム構造体2中のケイ素が比較的移動しやすい元素であり、ハニカム構造体2が高温まで加熱された際に、多くの元素移動が生じるためと考えられる。そして、ハニカム構造体2中のケイ素が移動することにより、ハニカム構造体2や電極3a,3bの成分変化が生じることで、ハニカム構造体2及び電極3a,3bの脆化又は劣化につながると考えている。本発明では、上記の通り、ハニカム構造体2と電極3a,3bとの間に中間層4a,4bを設けることで、このようなケイ素の移動を抑制し、これによりハニカム構造体2及び電極3a,3bの脆化又は劣化の虞を低減していると考えている。 As shown in FIGS. 1 to 3, the electrically heated carrier 1 of the present embodiment has a honeycomb structure 2, a pair of electrodes 3a and 3b, and a pair of intermediate layers 4a and 4b. According to the present invention, by providing the pair of intermediate layers 4a and 4b, it is possible to reduce the possibility that the honeycomb structure 2 and the electrodes 3a and 3b are embrittled or deteriorated even when heated to a high temperature. The present inventors speculate that the reason for this is as follows. The reason why the electrodes 3a and 3b and / or the honeycomb structure 2 are likely to be embrittled or deteriorated is that the silicon in the honeycomb structure 2 is an element that is relatively easy to move, and when the honeycomb structure 2 is heated to a high temperature. It is thought that this is because many elemental movements occur. Then, it is considered that the movement of silicon in the honeycomb structure 2 causes a change in the components of the honeycomb structure 2 and the electrodes 3a and 3b, which leads to embrittlement or deterioration of the honeycomb structure 2 and the electrodes 3a and 3b. ing. In the present invention, as described above, by providing the intermediate layers 4a and 4b between the honeycomb structure 2 and the electrodes 3a and 3b, such movement of silicon is suppressed, whereby the honeycomb structure 2 and the electrodes 3a are suppressed. , 3b is considered to reduce the risk of embrittlement or deterioration.
(1.ハニカム構造体)
 ハニカム構造体2は、柱状の構造体であり、外周壁20と、外周壁20の内側に配設され、一方の端面から他方の端面まで貫通して流路を形成する複数のセル21aを区画形成する隔壁21とを有する。
(1. Honeycomb structure)
The honeycomb structure 2 is a columnar structure, and partitions the outer peripheral wall 20 and a plurality of cells 21a arranged inside the outer peripheral wall 20 and penetrating from one end face to the other end face to form a flow path. It has a partition wall 21 to be formed.
 ハニカム構造体2は、ケイ素を含むセラミックスで構成されており、当該セラミックスとしては、SiC又はアルカリ系原子を含むホウケイ酸塩を用いることができる。当該アルカリ系原子としては、例えば、Na、Mg、K、Ca、Li、Be、Sr、Cs及びBaが挙げられる。ホウケイ酸塩は、アルカリ金属原子を1種又は2種以上含んでいてもよく、アルカリ土類金属原子を1種又は2種以上含んでいてもよく、これらの組み合わせを含んでいてもよい。アルカリ系原子として、より好ましくは、Na、Mg、K、又はCaである。 The honeycomb structure 2 is made of a ceramic containing silicon, and as the ceramic, borosilicate containing SiC or an alkaline atom can be used. Examples of the alkaline atom include Na, Mg, K, Ca, Li, Be, Sr, Cs and Ba. The borosilicate may contain one or more kinds of alkali metal atoms, may contain one or more kinds of alkaline earth metal atoms, or may contain a combination thereof. The alkaline atom is more preferably Na, Mg, K, or Ca.
 詳細は後述するが、ハニカム構造体2は、上述のアルカリ系原子を含むホウケイ酸塩から構成されるマトリックスと、導電性フィラーから構成されるドメインとを有してもよい。マトリックスは、ハニカム構造体2の母材となる部位である。なお、マトリックスは、非晶質であってもよいし、結晶質であってもよい。このような構成によれば、EHCへの通電加熱時に電気抵抗を支配する領域が、母材であるマトリックスとなる。マトリックスは、SiC材質と比べて電気抵抗率の温度依存性が小さく、かつ、電気抵抗率がPTC特性(温度が高くなるにつれて電気抵抗が上昇する特性)を示す。 Although details will be described later, the honeycomb structure 2 may have a matrix composed of the above-mentioned borosilicate containing an alkaline atom and a domain composed of a conductive filler. The matrix is a portion that serves as a base material for the honeycomb structure 2. The matrix may be amorphous or crystalline. According to such a configuration, the region that controls the electric resistance when the EHC is energized and heated becomes the matrix that is the base material. The matrix has a smaller temperature dependence of electrical resistivity than the SiC material, and the electrical resistivity exhibits PTC characteristics (characteristics in which the electrical resistance increases as the temperature rises).
 ホウケイ酸塩において、アルカリ系原子の合計含有量は、10質量%以下であってもよい。より好ましくは5質量%以下であってもよく、2質量%以下であってもよい。このような構成によれば、マトリックスを低電気抵抗化させやすくなり、マトリックスの電気抵抗率が、よりPTC特性を示すようになる。また、酸化雰囲気での焼成時におけるハニカム構造体2の表面側へのアルカリ系原子の偏析による絶縁性ガラス被膜の形成を抑制することができる。下限については、特に限定はないが、アルカリ系原子の合計含有量は、0.01質量%以上であってもよく、0.2質量%以上であってもよい。アルカリ系原子は、導電性フィラーの酸化抑制のために、意図的に添加されてもよい。また、ハニカム構造体2の原料から比較的混入しやすい元素であるため、完全に除去するには製造工程を複雑化してしまうため、通常は、上記の範囲内で含まれる。なお、ハニカム構造体2において、原料として、アルカリ系原子を含むホウケイ酸ガラスを使用せずに、ホウ酸を用いることで、アルカリ系原子を低減することも可能である。ここで、「アルカリ系原子の合計含有量」とは、ホウケイ酸塩がアルカリ系原子を1種含む場合には、その1種のアルカリ系原子の質量%を示す。また、ホウケイ酸塩がアルカリ系原子を複数種含む場合には、その複数の各アルカリ系原子の各含有量(質量%)との合計の含有量(質量%)を示す。
In the borosilicate, the total content of alkaline atoms may be 10% by mass or less. More preferably, it may be 5% by mass or less, or 2% by mass or less. According to such a configuration, it becomes easy to reduce the electric resistance of the matrix, and the electrical resistivity of the matrix shows more PTC characteristics. Further, it is possible to suppress the formation of an insulating glass film due to the segregation of alkaline atoms on the surface side of the honeycomb structure 2 during firing in an oxidizing atmosphere. The lower limit is not particularly limited, but the total content of alkaline atoms may be 0.01% by mass or more, or 0.2% by mass or more. Alkaline atoms may be intentionally added to suppress the oxidation of the conductive filler. Further, since it is an element that is relatively easily mixed from the raw material of the honeycomb structure 2, it complicates the manufacturing process to completely remove it, and therefore, it is usually included within the above range. In the honeycomb structure 2, it is possible to reduce alkaline atoms by using boric acid instead of using borosilicate glass containing alkaline atoms as a raw material. Here, the "total content of alkaline atoms" indicates, when the borosilicate contains one kind of alkaline atoms, the mass% of the one kind of alkaline atoms. When the borosilicate contains a plurality of alkaline atoms, the total content (mass%) with the content (mass%) of each of the plurality of alkaline atoms is shown.
 ホウケイ酸塩を構成するB(ホウ素)原子、Si(シリコン)原子、O(酸素)原子のぞれぞれの含有量としては、例えば、以下の範囲であることが好ましい。ホウケイ酸塩におけるB原子の含有量は、0.1質量%以上5質量%以下である。 The content of each of the B (boron) atom, Si (silicon) atom, and O (oxygen) atom constituting the borosilicate is preferably in the following range, for example. The content of B atom in borosilicate is 0.1% by mass or more and 5% by mass or less.
 ホウケイ酸塩におけるSi原子の含有量は、5質量%以上40質量%以下である。 The content of Si atom in borosilicate is 5% by mass or more and 40% by mass or less.
 ホウケイ酸塩におけるO原子の含有量は、40質量%以上85質量%以下である。このような構成によれば、ハニカム構造体2において、PTC特性を示しやすくすることができる。 The content of O atom in borosilicate is 40% by mass or more and 85% by mass or less. According to such a configuration, it is possible to easily show the PTC characteristics in the honeycomb structure 2.
 ホウケイ酸塩としては、例えばアルミノホウケイ酸塩などを用いることができる。このような構成によれば、電気抵抗率の温度依存性が小さく、かつ、電気抵抗率がPTC特性を示す、又は、電気抵抗率の温度依存性が抑制されたハニカム構造体2を得ることができる。アルミノホウケイ酸塩におけるAl原子の含有量は、例えば、0.5質量%以上10質量%以下であってもよい。 As the borosilicate, for example, aluminoborosilicate can be used. According to such a configuration, it is possible to obtain a honeycomb structure 2 in which the temperature dependence of the electrical resistivity is small, the electrical resistivity exhibits PTC characteristics, or the temperature dependence of the electrical resistivity is suppressed. can. The content of Al atom in the aluminum borosilicate may be, for example, 0.5% by mass or more and 10% by mass or less.
 上述したホウケイ酸塩における各原子の他にマトリックスを構成するホウケイ酸塩に含まれる原子としては、例えば、Fe、Cなどが挙げられる。上述した各原子のうち、アルカリ系原子、Si、O、Alの含有量については、電子線マイクロアナライザ(EPMA)分析装置を用いて測定することができる。上述した各原子のうち、Bの含有量については、誘導結合プラズマ(ICP)分析装置を用いて測定することができる。ICP分析によると、ハニカム構造体2全体におけるB含有量が測定されるため、得られた測定結果は、ホウケイ酸塩におけるB含有量に換算される。 Examples of the atoms contained in the borosilicate constituting the matrix in addition to the atoms in the above-mentioned borosilicate include Fe and C. Of the above-mentioned atoms, the contents of alkaline atoms, Si, O, and Al can be measured using an electron probe microanalyzer (EPMA) analyzer. Of the above-mentioned atoms, the B content can be measured using an inductively coupled plasma (ICP) analyzer. According to the ICP analysis, the B content in the entire honeycomb structure 2 is measured, so that the obtained measurement result is converted into the B content in the borosilicate.
 ハニカム構造体2は、マトリックスだけを有していてもよいし、マトリックス以外にも、他の物質を1種又は2種以上有していてもよい。他の物質としては、例えば、フィラー、熱膨張率を低下させる材料、熱伝導率を上昇させる材料、強度を向上させる材料などが挙げられる。 The honeycomb structure 2 may have only a matrix, or may have one or more other substances in addition to the matrix. Examples of other substances include fillers, materials that reduce the coefficient of thermal expansion, materials that increase thermal conductivity, materials that improve strength, and the like.
 ハニカム構造体2が、マトリックスと導電性フィラーとを有していると、マトリックスの電気抵抗率と導電性フィラーの電気抵抗率との足し合わせによってハニカム構造体2全体の電気抵抗率が決定される。このため、導電性フィラーの導電性、導電性フィラーの含有量を調整することで、ハニカム構造体2の電気抵抗率の制御が可能になる。導電性フィラーの電気抵抗率は、PTC特性(温度が高くなるにつれて電気抵抗が上昇する特性)、NTC特性(温度が高くなるにつれて電気抵抗が小さくなる特性)のいずれを示してもよいし、電気抵抗率の温度依存性がなくてもよい。 When the honeycomb structure 2 has a matrix and a conductive filler, the electrical resistivity of the entire honeycomb structure 2 is determined by adding the electrical resistivity of the matrix and the electrical resistivity of the conductive filler. .. Therefore, the electrical resistivity of the honeycomb structure 2 can be controlled by adjusting the conductivity of the conductive filler and the content of the conductive filler. The electrical resistivity of the conductive filler may exhibit either PTC characteristics (characteristics in which the electric resistance increases as the temperature rises) or NTC characteristics (characteristics in which the electric resistance decreases as the temperature rises), and electricity. The resistivity does not have to be temperature dependent.
 導電性フィラーは、Si原子を含んでいてもよい。このような構成によれば、ハニカム構造体2の形状安定性を向上させることが可能である。 The conductive filler may contain Si atoms. According to such a configuration, it is possible to improve the shape stability of the honeycomb structure 2.
 Si原子を含む導電性フィラーとしては、例えば、Si粒子、Fe-Si系粒子、Si-W系粒子、Si-C系粒子、Si-Mo系粒子、Si-Ti系粒子などが挙げられる。これらは1種又は2種以上を併用することができる。 Examples of the conductive filler containing Si atoms include Si particles, Fe—Si particles, SiW particles, SiC particles, Si—Mo particles, Si—Ti particles and the like. These can be used alone or in combination of two or more.
 Si粒子は、ドーパントによりドープされているSi粒子であってもよい。ドーパントとしては、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)等が挙げられる。ドーパント濃度としては、1×1016~5×1020個/cm3という範囲でケイ素粒子中にドーパントとして含まれてもよい。ここで、一般に、Si粒子中のドーパントの濃度が高くなるとハニカム構造体2の体積抵抗率が下がり、Si粒子中のドーパントの濃度が低くなるとハニカム構造体2の体積抵抗率が上がる。 The Si particles may be Si particles doped with a dopant. Dopants include boron (B), aluminum (Al), gallium (Ga), indium (In), nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), bismuth (Bi) and the like. Can be mentioned. The dopant concentration may be contained as a dopant in the silicon particles in the range of 1 × 10 16 to 5 × 10 20 pieces / cm 3. Here, in general, the volume resistivity of the honeycomb structure 2 decreases as the concentration of the dopant in the Si particles increases, and the volume resistivity of the honeycomb structure 2 increases as the concentration of the dopant in the Si particles decreases.
 ハニカム構造体2に含まれるケイ素粒子におけるドーパント量は、5×1016~5×1020個/cm3であるのが好ましく、5×1017~5×1020個/cm3であるのがより好ましい。ハニカム構造体2に含まれるSi粒子中のドーパントは同族元素であれば、カウンタードーピングの影響を受けずに導電性を発現できるため、複数の種類の元素を含んでいてもよい。また、ドーパントが、B及びAlからなる群から選択される一種または二種であるのがより好ましい。また、N及びPからなる群から選択される一種または二種であるのも好ましい。 The amount of dopant in the silicon particles contained in the honeycomb structure 2 is preferably 5 × 10 16 to 5 × 10 20 pieces / cm 3 , and 5 × 10 17 to 5 × 10 20 pieces / cm 3. More preferred. If the dopant in the Si particles contained in the honeycomb structure 2 is a homologous element, it may contain a plurality of types of elements because it can exhibit conductivity without being affected by counterdoping. Further, it is more preferable that the dopant is one or two selected from the group consisting of B and Al. It is also preferable that it is one or two selected from the group consisting of N and P.
 ハニカム構造体2がマトリックスと導電性フィラーとを有する場合、ハニカム構造体2は、マトリックスと導電性フィラーとを合計で50vol%以上含有する構成であってもよい。 When the honeycomb structure 2 has a matrix and a conductive filler, the honeycomb structure 2 may have a configuration in which the matrix and the conductive filler are contained in a total of 50 vol% or more.
 ハニカム構造体2にSiを含むが、このSiは、SiC又はアルカリ系原子を含むホウケイ酸塩中にSi原子を含有させてこれを由来としてもよいし、導電性フィラーとしてSi原子を含む導電性フィラーを用いてこれを由来としてもよい。 The honeycomb structure 2 contains Si, and this Si may be derived by containing a Si atom in a borosilicate containing SiC or an alkaline atom, or a conductive filler containing a Si atom as a conductive filler. It may be derived from this using a filler.
 ハニカム構造体2の電気抵抗上昇率は、1×10-8~5×10-4Ω・m/Kであるのが好ましい。ハニカム構造体2の電気抵抗上昇率が1×10-8Ω・m/K以上であると、通電加熱時の温度分布の抑制がしやすくなる。ハニカム構造体2の電気抵抗上昇率が5×10-4Ω・m/K以下であると、通電加熱時の抵抗変化を小さくすることができる。ハニカム構造体2の電気抵抗上昇率が5×10-8~1×10-4Ω・m/Kであるのがより好ましく、1×10-7~1×10-4Ω・m/Kであるのが更により好ましい。ハニカム構造体2の電気抵抗上昇率は、まず、四端子法により、50℃及び400℃での2点の電気抵抗率を測定し、400℃の電気抵抗率から50℃の電気抵抗率を引き算して導出した値を、400℃と50℃の温度差350℃で割り算して電気抵抗上昇率を算出することで求めることができる。 The rate of increase in electrical resistance of the honeycomb structure 2 is preferably 1 × 10 -8 to 5 × 10 -4 Ω · m / K. When the rate of increase in electrical resistance of the honeycomb structure 2 is 1 × 10 -8 Ω · m / K or more, it becomes easy to suppress the temperature distribution during energization and heating. When the rate of increase in electrical resistance of the honeycomb structure 2 is 5 × 10 -4 Ω · m / K or less, the change in resistance during energization and heating can be reduced. The rate of increase in electrical resistance of the honeycomb structure 2 is more preferably 5 × 10 -8 to 1 × 10 -4 Ω ・ m / K, and 1 × 10 -7 to 1 × 10 -4 Ω ・ m / K. It is even more preferable to have it. For the electrical resistivity increase rate of the honeycomb structure 2, first, the electrical resistivity at two points at 50 ° C. and 400 ° C. is measured by the four-terminal method, and the electrical resistivity at 50 ° C. is subtracted from the electrical resistivity at 400 ° C. It can be obtained by dividing the value derived in this manner by the temperature difference of 350 ° C. between 400 ° C. and 50 ° C. to calculate the rate of increase in electrical resistance.
 ハニカム構造体2の外形は柱状である限り特に限定されず、例えば、底面が円形の柱状(円柱形状)、底面がオーバル形状の柱状、底面が多角形(四角形、五角形、六角形、七角形、八角形等)の柱状等の形状とすることができる。また、ハニカム構造体2の大きさは、耐熱性を高める(外周壁20の周方向に入るクラックを抑制する)という理由により、底面の面積が2000~20000mm2であることが好ましく、5000~17000mm2であることがより好ましい。 The outer shape of the honeycomb structure 2 is not particularly limited as long as it is columnar. It can have a columnar shape (octagonal shape, etc.). Further, the size of the honeycomb structure 2 is preferably 2000 to 20000 mm 2 and preferably 5000 to 17000 mm for the reason of improving heat resistance (suppressing cracks entering the peripheral wall 20 in the circumferential direction). 2 is more preferable.
 ハニカム構造体2は、導電性を有する。ハニカム構造体2は、通電してジュール熱により発熱可能である限り、電気抵抗率については特に制限はないが、1×10-5~2Ω・mであることが好ましく、5×10-5~1Ω・mであることがより好ましく、1×10-4~0.5Ω・mであることが更により好ましい。本発明において、ハニカム構造体2の電気抵抗率は、四端子法により25℃で測定した値とする。 The honeycomb structure 2 has conductivity. The honeycomb structure 2 is not particularly limited in electrical resistivity as long as it can be energized and generated by Joule heat , but it is preferably 1 × 10 -5 to 2Ω · m, and 5 × 10 -5 to It is more preferably 1 Ω · m, and even more preferably 1 × 10 -4 to 0.5 Ω · m. In the present invention, the electrical resistivity of the honeycomb structure 2 is a value measured at 25 ° C. by the four-terminal method.
 セル21aの延伸方向に垂直な断面におけるセルの形状に制限はないが、四角形、六角形、八角形、又はこれらの組み合わせであることが好ましい。これ等のなかでも、四角形及び六角形が好ましい。セル形状をこのようにすることにより、ハニカム構造体2に排気ガスを流したときの圧力損失が小さくなり、触媒の浄化性能が優れたものとなる。構造強度及び加熱均一性を両立させやすいという観点からは、四角形が特に好ましい。 There is no limitation on the shape of the cell in the cross section perpendicular to the extending direction of the cell 21a, but it is preferably a quadrangle, a hexagon, an octagon, or a combination thereof. Among these, a quadrangle and a hexagon are preferable. By making the cell shape in this way, the pressure loss when the exhaust gas is passed through the honeycomb structure 2 is reduced, and the purification performance of the catalyst is excellent. A quadrangle is particularly preferable from the viewpoint of easily achieving both structural strength and heating uniformity.
 セル21aを区画形成する隔壁21の厚みは、0.1~0.3mmであることが好ましく、0.1~0.2mmであることがより好ましい。隔壁21の厚みが0.1mm以上であることで、ハニカム構造体2の強度が低下するのを抑制可能である。隔壁21の厚みが0.3mm以下であることで、ハニカム構造体2を触媒担体として用いて、触媒を担持した場合に、排気ガスを流したときの圧力損失が大きくなるのを抑制できる。本発明において、隔壁21の厚みは、セル21aの延伸方向に垂直な断面において、隣接するセル21aの重心同士を結ぶ線分のうち、隔壁21を通過する部分の長さとして定義される。 The thickness of the partition wall 21 forming the cell 21a is preferably 0.1 to 0.3 mm, more preferably 0.1 to 0.2 mm. When the thickness of the partition wall 21 is 0.1 mm or more, it is possible to suppress a decrease in the strength of the honeycomb structure 2. When the thickness of the partition wall 21 is 0.3 mm or less, it is possible to suppress an increase in pressure loss when exhaust gas is flowed when the honeycomb structure 2 is used as a catalyst carrier and a catalyst is supported. In the present invention, the thickness of the partition wall 21 is defined as the length of a portion of a line segment connecting the centers of gravity of adjacent cells 21a that passes through the partition wall 21 in a cross section perpendicular to the extending direction of the cell 21a.
 ハニカム構造体2は、セル21aの流路方向に垂直な断面において、セル密度が40~150セル/cm2であることが好ましく、60~100セル/cm2であることがより好ましい。セル密度をこのような範囲にすることにより、排気ガスを流したときの圧力損失を小さくした状態で、触媒の浄化性能を高くすることができる。セル密度が40セル/cm2以上であると、触媒担持面積が十分に確保される。セル密度が150セル/cm2以下であるとハニカム構造体2を触媒担体として用いて、触媒を担持した場合に、排気ガスを流したときの圧力損失が大きくなりすぎることが抑制される。セル密度は、外周壁20部分を除くハニカム構造体2の一つの底面部分の面積でセル数を除して得られる値である。 The honeycomb structure 2 preferably has a cell density of 40 to 150 cells / cm 2 , and more preferably 60 to 100 cells / cm 2 in a cross section perpendicular to the flow path direction of the cells 21a. By setting the cell density in such a range, the purification performance of the catalyst can be improved while the pressure loss when the exhaust gas is passed is reduced. When the cell density is 40 cells / cm 2 or more, a sufficient catalyst-supporting area is secured. When the cell density is 150 cells / cm 2 or less, when the honeycomb structure 2 is used as a catalyst carrier and the catalyst is supported, it is possible to prevent the pressure loss when the exhaust gas is flowed from becoming too large. The cell density is a value obtained by dividing the number of cells by the area of one bottom surface portion of the honeycomb structure 2 excluding the outer peripheral wall 20 portion.
 ハニカム構造体2の外周壁20を設けることは、ハニカム構造体2の構造強度を確保し、また、セル21aを流れる流体が外周壁20から漏洩するのを抑制する観点で有用である。具体的には、外周壁20の厚みは好ましくは0.1mm以上であり、より好ましくは0.15mm以上、更により好ましくは0.2mm以上である。但し、外周壁20を厚くしすぎると高強度になりすぎてしまい、隔壁21との強度バランスが崩れて耐熱衝撃性が低下することから、外周壁20の厚みは好ましくは1.0mm以下であり、より好ましくは0.7mm以下であり、更により好ましくは0.5mm以下である。ここで、外周壁20の厚みは、厚みを測定しようとする外周壁20の箇所をセルの延伸方向に垂直な断面で観察したときに、当該測定箇所における外周壁20の接線に対する法線方向の厚みとして定義される。 Providing the outer peripheral wall 20 of the honeycomb structure 2 is useful from the viewpoint of ensuring the structural strength of the honeycomb structure 2 and suppressing the fluid flowing through the cell 21a from leaking from the outer peripheral wall 20. Specifically, the thickness of the outer peripheral wall 20 is preferably 0.1 mm or more, more preferably 0.15 mm or more, and even more preferably 0.2 mm or more. However, if the outer peripheral wall 20 is made too thick, the strength becomes too high, the strength balance with the partition wall 21 is lost, and the heat impact resistance is lowered. Therefore, the thickness of the outer peripheral wall 20 is preferably 1.0 mm or less. , More preferably 0.7 mm or less, and even more preferably 0.5 mm or less. Here, the thickness of the outer peripheral wall 20 is the normal direction with respect to the tangent line of the outer peripheral wall 20 at the measurement location when the portion of the outer peripheral wall 20 whose thickness is to be measured is observed in a cross section perpendicular to the extending direction of the cell. Defined as thickness.
 隔壁21は、気孔率が30%未満であることが好ましい。隔壁21の気孔率が30%未満であると、キャニング時に破損する恐れが低減される。隔壁21の気孔率は20%以下であることがより好ましく、10%以下であるのが更により好ましい。ハニカム構造体2を触媒担体として用いる場合には、隔壁21に触媒を担持する際に、隔壁21と触媒との剥離を抑制するために、隔壁21は、気孔率が1%以上であることが好ましく、2%以上であることがより好ましく、5%以上であることが更により好ましい。気孔率は、隔壁21のSEM観察画像を気孔と気孔以外(具体的にはセラミックス材料部分)とを二値化して算出した値である。 The partition wall 21 preferably has a porosity of less than 30%. If the porosity of the partition wall 21 is less than 30%, the risk of damage during canning is reduced. The porosity of the partition wall 21 is more preferably 20% or less, and even more preferably 10% or less. When the honeycomb structure 2 is used as a catalyst carrier, the partition wall 21 has a porosity of 1% or more in order to suppress peeling between the partition wall 21 and the catalyst when the catalyst is supported on the partition wall 21. It is preferably 2% or more, and even more preferably 5% or more. The porosity is a value calculated by binarizing the pores and the non-pores (specifically, the ceramic material portion) in the SEM observation image of the partition wall 21.
(2.電極)
 ハニカム構造体2には、外周壁20の表面上に一対の電極3a,3bが設けられており、電極3a,3bは導電性材料を含む。電極3a,3bは、ハニカム構造体2の中心軸を挟んで対向するように配設されている。しかしながら、ハニカム構造体2の周方向に係る電極3a,3bの配置位置は任意である。
(2. Electrode)
The honeycomb structure 2 is provided with a pair of electrodes 3a and 3b on the surface of the outer peripheral wall 20, and the electrodes 3a and 3b contain a conductive material. The electrodes 3a and 3b are arranged so as to face each other with the central axis of the honeycomb structure 2 interposed therebetween. However, the positions of the electrodes 3a and 3b in the circumferential direction of the honeycomb structure 2 are arbitrary.
 本実施の形態の電極3a,3bは、電極層30a,30b及び電極端子31a,31bをそれぞれ有している。電極層30a,30bは、外周壁20の周方向及びセルの延伸方向に延在された帯状の外形を有しており、後述の中間層4a,4bと電極端子31a,31bとの間に介在されている。電極端子31a,31bは、柱状の外形を有しており、電極層30a,30bの表面から起立するように設けられている。 The electrodes 3a and 3b of the present embodiment have electrode layers 30a and 30b and electrode terminals 31a and 31b, respectively. The electrode layers 30a and 30b have a strip-shaped outer shape extending in the circumferential direction of the outer peripheral wall 20 and the extending direction of the cell, and are interposed between the intermediate layers 4a and 4b and the electrode terminals 31a and 31b, which will be described later. Has been done. The electrode terminals 31a and 31b have a columnar outer shape, and are provided so as to stand up from the surfaces of the electrode layers 30a and 30b.
 電極端子31a,31bは電極層30a,30bと電気的に接合されており、電極端子31a,31bに電圧を印加するとジュール熱によりハニカム構造体2を発熱させることが可能である。このため、ハニカム構造体2はヒーターとしても好適に用いることができる。印加する電圧は12~900Vが好ましく、48~600Vがより好ましいが、印加する電圧は適宜変更可能である。 The electrode terminals 31a and 31b are electrically bonded to the electrode layers 30a and 30b, and when a voltage is applied to the electrode terminals 31a and 31b, the honeycomb structure 2 can be heated by Joule heat. Therefore, the honeycomb structure 2 can be suitably used as a heater. The applied voltage is preferably 12 to 900 V, more preferably 48 to 600 V, but the applied voltage can be changed as appropriate.
 なお、電極層30a,30bを省略してもよい。電極層30a,30bを省略する場合は、電極端子31a,31bは、中間層4a,4bに対して起立するように設けられる。 The electrode layers 30a and 30b may be omitted. When the electrode layers 30a and 30b are omitted, the electrode terminals 31a and 31b are provided so as to stand up against the intermediate layers 4a and 4b.
 電極層30a,30bの形成領域に特段の制約はないが、各電極層30a,30bは、ハニカム構造体2の両底面間の80%以上の長さに亘って、好ましくは90%以上の長さに亘って、より好ましくは全長に亘って延びていることが、電極層30a,30bの軸方向へ電流が広がりやすいという観点から望ましい。電流を広がりやすくすることで、ハニカム構造体2の均一発熱性を高めることができる。 There are no particular restrictions on the formation regions of the electrode layers 30a and 30b, but each of the electrode layers 30a and 30b has a length of 80% or more between both bottom surfaces of the honeycomb structure 2, preferably 90% or more. Therefore, it is more preferable that the current extends over the entire length from the viewpoint that the current easily spreads in the axial direction of the electrode layers 30a and 30b. By facilitating the spread of the electric current, the uniform heat generation property of the honeycomb structure 2 can be enhanced.
 各電極層30a,30bの厚みは、0.01~5mmであることが好ましく、0.01~3mmであることがより好ましい。このような範囲とすることにより均一発熱性を高めることができる。各電極層30a,30bの厚みが0.01mm以上であると、電気抵抗が適切に制御され、より均一に発熱することができる。5mm以下であると、キャニング時に破損する恐れが低減される。各電極層30a,30bの厚みは、厚みを測定しようとする電極層30a,30bの箇所をセルの延伸方向に垂直な断面で観察したときに、各電極層30a,30bの外面の当該測定箇所における接線に対する法線方向の厚みとして定義される。 The thickness of each of the electrode layers 30a and 30b is preferably 0.01 to 5 mm, more preferably 0.01 to 3 mm. By setting it in such a range, uniform heat generation can be enhanced. When the thickness of each of the electrode layers 30a and 30b is 0.01 mm or more, the electric resistance is appropriately controlled and heat can be generated more uniformly. If it is 5 mm or less, the risk of damage during canning is reduced. The thickness of each of the electrode layers 30a and 30b is such that when the portion of the electrode layer 30a and 30b whose thickness is to be measured is observed in a cross section perpendicular to the stretching direction of the cell, the measurement portion on the outer surface of each of the electrode layers 30a and 30b. Is defined as the thickness in the normal direction with respect to the tangent line in.
 電極層30a,30bの電気抵抗率については特に制限はないが、1×10-5~5×10-1Ω・mであることが好ましい。電極層30a,30bの電気抵抗が5×10-1Ω・m以下であると、通電加熱時の抵抗を小さくすることができる。電極層30a,30bの電気抵抗は、1×10-4~2×10-1Ω・mであることがより好ましく、5×10-3~1×10-1Ω・mであることが更により好ましい。本発明において、電極層30a,30bの電気抵抗率は、四端子法により25℃で測定した値とする。 The electrical resistivity of the electrode layers 30a and 30b is not particularly limited, but is preferably 1 × 10 -5 to 5 × 10 -1 Ω · m. When the electrical resistance of the electrode layers 30a and 30b is 5 × 10 -1 Ω · m or less, the resistance at the time of energization heating can be reduced. The electrical resistance of the electrode layers 30a and 30b is more preferably 1 × 10 -4 to 2 × 10 -1 Ω · m, and further preferably 5 × 10 -3 to 1 × 10 -1 Ω · m. More preferred. In the present invention, the electrical resistivity of the electrode layers 30a and 30b is a value measured at 25 ° C. by the four-terminal method.
 電極端子31a,31bの大きさは、限定的ではないが、例えば、両端面の面積が10~800mm2であり、電極端子31a,31bが起立する方向の長さが10~100mmの柱状に形成することができる。電極端子31a,31bの長さ方向Lに直交する面における電極端子31a,31bの断面積は、電極端子31a,31bの長さ方向Lに一様であってもよいが、長さ方向Lに変化してもよい。ハニカム構造体2側の電極端子31a,31bの端部(基部)の断面積を電極端子31a,31bの先端側における断面積よりも広くしてもよい。また、電極端子31a,31bは、少なくとも電極端子31a,31bの基部において、ハニカム構造体2から離れるにつれて電極端子31a,31bの断面積が電極端子31a,31bの底面積(ハニカム構造体2側の端面(底面)の面積)から徐々に(連続的又は段階的に)減少する形状を有していてもよい。例えば電極端子31a,31bの基部を円錐台形状としてもよい。電極端子31a,31bの両端面の面積は互いに異なっていてもよい。 The sizes of the electrode terminals 31a and 31b are not limited, but for example, they are formed in a columnar shape having an area of both end faces of 10 to 800 mm 2 and a length of 10 to 100 mm in the direction in which the electrode terminals 31a and 31b stand up. can do. The cross-sectional area of the electrode terminals 31a and 31b on the plane orthogonal to the length direction L of the electrode terminals 31a and 31b may be uniform in the length direction L of the electrode terminals 31a and 31b, but in the length direction L. It may change. The cross-sectional area of the ends (bases) of the electrode terminals 31a and 31b on the honeycomb structure 2 side may be wider than the cross-sectional area on the tip side of the electrode terminals 31a and 31b. Further, in the electrode terminals 31a and 31b, at least at the base of the electrode terminals 31a and 31b, the cross-sectional area of the electrode terminals 31a and 31b becomes the bottom area of the electrode terminals 31a and 31b (on the honeycomb structure 2 side) as the distance from the honeycomb structure 2 increases. It may have a shape that gradually (continuously or stepwise) decreases from the end face (bottom surface) area). For example, the bases of the electrode terminals 31a and 31b may have a truncated cone shape. The areas of both end faces of the electrode terminals 31a and 31b may be different from each other.
 電極層30a,30b及び電極端子31a,31bの材質は、導電性材料で形成される。導電性材料としては、酸化物セラミックス、金属若しくは金属化合物と酸化物セラミックスとの混合物、カーボン、カーボンを含有した酸化物セラミックス、又は、カーボンを含有した複合材料が挙げられる。電極層30a,30b及び電極端子31a,31bの材質は、同じであってもよい。 The materials of the electrode layers 30a and 30b and the electrode terminals 31a and 31b are formed of a conductive material. Examples of the conductive material include oxide ceramics, metals or mixtures of metal compounds and oxide ceramics, carbon, oxide ceramics containing carbon, and composite materials containing carbon. The materials of the electrode layers 30a and 30b and the electrode terminals 31a and 31b may be the same.
 金属として、単体金属又は合金のいずれでもよく、例えばシリコン、アルミニウム、鉄、ステンレス、チタン、タングステン、Ni-Cr合金、亜鉛、銅、ニッケル、銀、金などを好適に用いることができる。金属化合物として、酸化物セラミックス以外の物であって、金属酸化物、金属窒化物、金属炭化物、金属珪化物、金属ホウ化物、複合酸化物等が挙げられ、例えばFeSi2、CrSi2、アルミナ、酸化チタン、酸化スズ(Sbドープ)、酸化インジウム(Snドープ)、酸化亜鉛(Alドープ)などを好適に用いることができる。金属と金属化合物は、いずれも、単独一種でもよく、二種以上を併用しても良い。酸化物セラミックスとしては、具体的には、ガラス、コージェライト、ムライトなどがある。ガラスは、B、Mg、Al、Si、P、Ti及びZrからなる群から選択される少なくとも一種の成分からなる酸化物を更に含んでも良い。 The metal may be a single metal or an alloy, and for example, silicon, aluminum, iron, stainless steel, titanium, tungsten, Ni—Cr alloy, zinc, copper, nickel, silver, gold and the like can be preferably used. Examples of metal compounds include those other than oxide ceramics, such as metal oxides, metal nitrides, metal carbides, metal siliceates, metal borides, and composite oxides, such as FeSi 2 , CrSi 2 , and alumina. Titanium oxide, tin oxide (Sb-doped), indium oxide (Sn-doped), zinc oxide (Al-doped) and the like can be preferably used. Both the metal and the metal compound may be one kind alone, or two or more kinds may be used in combination. Specific examples of oxide ceramics include glass, cordierite, and mullite. The glass may further contain an oxide consisting of at least one component selected from the group consisting of B, Mg, Al, Si, P, Ti and Zr.
 カーボンとしては、黒鉛(グラファイト)、カーボンブラック、炭素繊維(カーボンファイバー)、木炭/活性炭、コークス、フラーレン、カーボンナノチューブなどのカーボンを主成分とすることが好ましい。カーボンを主成分とするとは、電極端子31a,31bを構成する全成分に対してカーボンの含有量が50質量%以上であることを意味する。カーボンの含有量は、より好ましくは、80質量%以上であり、更により好ましくは90質量%以上である。 As the carbon, it is preferable that the main component is carbon such as graphite (graphite), carbon black, carbon fiber (carbon fiber), charcoal / activated charcoal, coke, fullerene, and carbon nanotubes. The fact that carbon is the main component means that the carbon content is 50% by mass or more with respect to all the components constituting the electrode terminals 31a and 31b. The carbon content is more preferably 80% by mass or more, and even more preferably 90% by mass or more.
 こちらの材料のうち、電極3a,3bとして、カーボンや、ニッケル又はアルミニウムなどの金属で形成されている場合は、Si原子と結びつきやすい性質を持っており、ハニカム構造体2のSiとシリサイドを形成する場合があるため、本発明の中間層4a,4bを設けることで、ハニカム構造体2及び電極3a,3bに対する脆化又は劣化抑制効果をより有効に得ることができる。 Of these materials, when the electrodes 3a and 3b are formed of carbon or a metal such as nickel or aluminum, they have the property of easily binding to Si atoms and form Si and VDD of the honeycomb structure 2. Therefore, by providing the intermediate layers 4a and 4b of the present invention, the embrittlement or deterioration suppressing effect on the honeycomb structure 2 and the electrodes 3a and 3b can be more effectively obtained.
 電極端子31a,31bの先端に金属端子がそれぞれ接合されていてもよい。カーボン製の電極端子31a,31bと金属端子との接合は、かしめ加工、溶接、ろう付け、導電性接着剤等により行うことができる。金属端子の材質としては、鉄合金やニッケル合金等の導電性金属を採用することができる。 Metal terminals may be joined to the tips of the electrode terminals 31a and 31b, respectively. The carbon electrode terminals 31a and 31b can be joined to the metal terminal by caulking, welding, brazing, a conductive adhesive or the like. As the material of the metal terminal, a conductive metal such as an iron alloy or a nickel alloy can be adopted.
(3.中間層)
 ハニカム構造体2と電極3a,3bとの間には、中間層4a,4bが設けられている。本実施の形態の中間層4a,4bは、ハニカム構造体2の外周壁20と電極3a,3bの電極層30a,30bとの間に介在されている。中間層4a,4bは、外周壁20に含まれるケイ素が電極層30a,30bに移動することを阻害する。換言すると、ハニカム構造体2と電極3a,3bとの間に中間層4a,4bが設けられていることにより、ハニカム構造体2及び電極3a,3bが全面的かつ直接的に互いに接触されている場合と比較して、ケイ素の移動が抑制される。電極3a,3bの材質にもよるが、例えば、電極3a,3bにニッケルを含有した金属およびセラミックスの複合材料を用いた場合には、中間層4a,4bが設けられていることにより、電極3a,3b中のニッケルとハニカム構造体2中のケイ素との間に直接接触することを避けることが出来る。仮に、ハニカム構造体2が1000℃以上となる場合でも、ハニカム構造体2からニッケル側(電極3a,3b側)にケイ素が移動することを抑制し、かつ、脆性な金属化合物であるニッケルシリサイドの形成を抑制することができる。
(3. Middle layer)
Intermediate layers 4a and 4b are provided between the honeycomb structure 2 and the electrodes 3a and 3b. The intermediate layers 4a and 4b of the present embodiment are interposed between the outer peripheral wall 20 of the honeycomb structure 2 and the electrode layers 30a and 30b of the electrodes 3a and 3b. The intermediate layers 4a and 4b inhibit the silicon contained in the outer peripheral wall 20 from moving to the electrode layers 30a and 30b. In other words, by providing the intermediate layers 4a and 4b between the honeycomb structure 2 and the electrodes 3a and 3b, the honeycomb structure 2 and the electrodes 3a and 3b are in full and direct contact with each other. Compared with the case, the movement of silicon is suppressed. Although it depends on the material of the electrodes 3a and 3b, for example, when a composite material of metal and ceramics containing nickel is used for the electrodes 3a and 3b, the intermediate layers 4a and 4b are provided, so that the electrodes 3a are provided. , It is possible to avoid direct contact between the nickel in 3b and the silicon in the honeycomb structure 2. Even if the temperature of the honeycomb structure 2 is 1000 ° C. or higher, nickel silicide, which is a brittle metal compound and suppresses the movement of silicon from the honeycomb structure 2 to the nickel side ( electrodes 3a, 3b side), Formation can be suppressed.
 中間層4a,4bの延在領域は、電極層30a,30b(電極3a,3b)の延在領域と同じ大きさであるか又はその延在領域よりも広くされていることが好ましい。換言すると、電極層30a,30bが外周壁20に直接的に接触する領域がないことが好ましい。ケイ素の移動をより確実に抑制するためである。しかしながら、中間層4a,4bが電極層30a,30bと外周壁20との間に部分的に設けられている態様も除外されない。中間層4a,4bが部分的に設けられている態様においても、ハニカム構造体2及び電極3a,3bが全面的かつ直接的に互いに接触されている場合と比較して、ケイ素の移動を抑制できる。 It is preferable that the extending region of the intermediate layers 4a and 4b is the same size as the extending region of the electrode layers 30a and 30b ( electrodes 3a and 3b) or is wider than the extending region thereof. In other words, it is preferable that there is no region where the electrode layers 30a and 30b are in direct contact with the outer peripheral wall 20. This is to suppress the movement of silicon more reliably. However, it is not excluded that the intermediate layers 4a and 4b are partially provided between the electrode layers 30a and 30b and the outer peripheral wall 20. Even in the embodiment in which the intermediate layers 4a and 4b are partially provided, the movement of silicon can be suppressed as compared with the case where the honeycomb structure 2 and the electrodes 3a and 3b are in full and direct contact with each other. ..
 ハニカム構造体2と電極3a,3bとの材質にもよるが、中間層4a,4bが、ハニカム構造体2と電極3a,3bとの間に生じる応力を緩和する様に適宜設計されていることも、好ましい形態の一つである。例えばロウ付け及び/又は焼成等により電極3a,3bを設置する際に発生する応力や、ハニカム構造体2と電極3a,3bとの熱膨張係数の違いにより発生する応力、使用中に発生する温度分布の差異により発生する熱応力などに対して、中間層4a,4bは、その応力を緩和する役目を担うこともできる。 Although it depends on the material of the honeycomb structure 2 and the electrodes 3a and 3b, the intermediate layers 4a and 4b are appropriately designed so as to relieve the stress generated between the honeycomb structure 2 and the electrodes 3a and 3b. Is also one of the preferred forms. For example, the stress generated when the electrodes 3a and 3b are installed by brazing and / or firing, the stress generated due to the difference in the thermal expansion coefficient between the honeycomb structure 2 and the electrodes 3a and 3b, and the temperature generated during use. The intermediate layers 4a and 4b can also play a role of relieving the stress caused by the difference in distribution.
 図3に示すように、中間層4a,4bの外面(径方向外側の面)は、外周壁20の外面(径方向外側の面)と同一曲面を構成することができる。中間層4a,4bと外周壁20との境目に段差又は溝が形成されていないことが好ましい。外周壁20の一部領域を変質して中間層4a,4bを形成することができる。外周壁20の一部を削り取って溝を形成し、その溝と同一形状の部材を溝に嵌め込むか、又はその溝に中間層4a,4bの材料を塗布若しくは盛ることにより、中間層4a,4bを形成してもよい。中間層4a,4bは、外周壁20の外周面から径方向外方に突出する凸部を構成してもよい。 As shown in FIG. 3, the outer surface (diameter outer surface) of the intermediate layers 4a and 4b can form the same curved surface as the outer surface (diameter outer surface) of the outer peripheral wall 20. It is preferable that no step or groove is formed at the boundary between the intermediate layers 4a and 4b and the outer peripheral wall 20. The intermediate layers 4a and 4b can be formed by altering a part of the outer peripheral wall 20. A part of the outer peripheral wall 20 is scraped off to form a groove, and a member having the same shape as the groove is fitted into the groove, or the materials of the intermediate layers 4a and 4b are applied or piled up in the groove to form the intermediate layer 4a, 4b may be formed. The intermediate layers 4a and 4b may form a convex portion that protrudes outward in the radial direction from the outer peripheral surface of the outer peripheral wall 20.
 図示しないが、中間層4a,4bの外面(径方向内側の面)は、電極層30a,30b(電極3a,3b)の外面(径方向内側の面)と同一曲面を構成してもよい。この場合、中間層4a,4bと電極層30a,30bとの境目に段差又は溝が形成されていないことが好ましい。電極層30a,30bの一部領域を変質して中間層4a,4bを形成することができる。電極層30a,30bの一部を削り取って溝を形成し、その溝と同一形状の部材を溝に嵌め込むか、又はその溝に中間層4a,4bの材料を塗布若しくは盛ることにより、中間層4a,4bを形成してもよい。中間層4a,4bは、電極層30a,30bの外周面から径方向内方に突出する凸部を構成してもよい。 Although not shown, the outer surface (diameter inner surface) of the intermediate layers 4a and 4b may form the same curved surface as the outer surface (diameter inner surface) of the electrode layers 30a and 30b ( electrodes 3a and 3b). In this case, it is preferable that no step or groove is formed at the boundary between the intermediate layers 4a and 4b and the electrode layers 30a and 30b. The intermediate layers 4a and 4b can be formed by altering a part of the electrode layers 30a and 30b. A part of the electrode layers 30a and 30b is scraped off to form a groove, and a member having the same shape as the groove is fitted into the groove, or the material of the intermediate layers 4a and 4b is applied or piled up in the groove to form an intermediate layer. 4a and 4b may be formed. The intermediate layers 4a and 4b may form a convex portion that protrudes inward in the radial direction from the outer peripheral surface of the electrode layers 30a and 30b.
 中間層4a,4bの厚みは、0.03~2mmであることが好ましく、0.05~1mmであることがより好ましく、0.1~0.5mmであることが更により好ましい。中間層4a,4bの厚みを0.03mm以上にすることで、ハニカム構造体2が自動車排気ガス等により高温となった場合でも、電極3a,3bを比較的低温に保つことができる。中間層4a,4bの厚みを2mm以下にすることで、ハニカム構造体2、電極層30a,30b又は電気加熱式担体1への構造的な影響を小さくすることができる。 The thickness of the intermediate layers 4a and 4b is preferably 0.03 to 2 mm, more preferably 0.05 to 1 mm, and even more preferably 0.1 to 0.5 mm. By setting the thickness of the intermediate layers 4a and 4b to 0.03 mm or more, the electrodes 3a and 3b can be kept at a relatively low temperature even when the honeycomb structure 2 becomes hot due to automobile exhaust gas or the like. By reducing the thickness of the intermediate layers 4a and 4b to 2 mm or less, the structural influence on the honeycomb structure 2, the electrode layers 30a and 30b or the electrically heated carrier 1 can be reduced.
 中間層4a,4bは、気孔を有することができる。中間層4a,4bが気孔を有することで、ヤング率をコントロールすることができる。中間層4a,4bの気孔率が0~50%であることが好ましく、0~30%であることがより好ましい。ハニカム構造体2と電極層30a,30b間の強度の観点から、中間層4a,4bの気孔率は50%以下であることが好ましい。 The intermediate layers 4a and 4b can have pores. Young's modulus can be controlled by having pores in the intermediate layers 4a and 4b. The porosity of the intermediate layers 4a and 4b is preferably 0 to 50%, more preferably 0 to 30%. From the viewpoint of the strength between the honeycomb structure 2 and the electrode layers 30a and 30b, the porosity of the intermediate layers 4a and 4b is preferably 50% or less.
 中間層4a,4bの熱伝導率が1W/mk以上であることが好ましく、5W/mk以上であることがより好ましい。熱伝導率が1W/mk以上であることで、ハニカム構造体2の熱を電極3a,3bとの界面に留めることなく、速やかに外部に伝達することができるため、ハニカム構造体2及び電極3a,3bの脆化又は劣化を抑制することができる。 The thermal conductivity of the intermediate layers 4a and 4b is preferably 1 W / mk or more, and more preferably 5 W / mk or more. When the thermal conductivity is 1 W / mk or more, the heat of the honeycomb structure 2 can be quickly transferred to the outside without being retained at the interface with the electrodes 3a and 3b, so that the honeycomb structure 2 and the electrodes 3a can be quickly transferred to the outside. , 3b can suppress brittleness or deterioration.
 中間層4a,4bの熱膨張係数αが10×10-6以下であることが好ましく、6×10-6以下であることがより好ましい。このように構成することによって、ハニカム構造体-中間層-電極層間の熱応力を緩和することができる。 Preferably the intermediate layer 4a, the thermal expansion coefficient of the 4b alpha is 10 × 10 -6 or less, more preferably 6 × 10 -6 or less. With this configuration, the thermal stress between the honeycomb structure-intermediate layer-electrode layer can be relaxed.
 中間層4a,4bのヤング率が10~100GPaであることが好ましい。ヤング率が10~100GPaであることで、ハニカム構造体-中間層-電極層間の応力を緩和することができる。 The Young's modulus of the intermediate layers 4a and 4b is preferably 10 to 100 GPa. When the Young's modulus is 10 to 100 GPa, the stress between the honeycomb structure-intermediate layer-electrode layer can be relaxed.
 中間層4a,4bの材質として、ジルコニウム、チタン、タンタル、ニオブ、バナジウム、タングステン、モリブデン、クロム、シリコン及びマンガンからなる群より選択される少なくとも1種の元素を含む拡散防止材が混合されたものであることが好ましい。上記の元素を含むことで、ケイ素の移動を抑制することができ、ハニカム構造体2及び電極3a,3bの脆化又は劣化を抑制することができる。 As the material of the intermediate layers 4a and 4b, a diffusion inhibitor containing at least one element selected from the group consisting of zirconium, titanium, tantalum, niobium, vanadium, tungsten, molybdenum, chromium, silicon and manganese is mixed. Is preferable. By containing the above elements, the movement of silicon can be suppressed, and the embrittlement or deterioration of the honeycomb structure 2 and the electrodes 3a and 3b can be suppressed.
 中間層4a,4bの材質を選択する際、前述の拡散防止に加えて、例えば、熱伝導率、熱膨張係数及びヤング率等の他の特性も考慮に入れることが考えられる。拡散防止に加えて、中間層4a,4bとして望まれる他の特性を得やすくするため、中間層4a,4bの材質としては、タングステン、モリブデン、チタン、ニオブ及びバナジウムからなる群より選択される少なくとも1種の元素を含む材質がより好ましく、タングステン、チタン及びニオブからなる群より選択される少なくとも1種の元素を含む材質がさらに好ましい。  When selecting the materials of the intermediate layers 4a and 4b, it is conceivable to take into consideration other characteristics such as thermal conductivity, coefficient of thermal expansion and Young's modulus in addition to the above-mentioned diffusion prevention. In addition to preventing diffusion, the material of the intermediate layers 4a, 4b is at least selected from the group consisting of tungsten, molybdenum, titanium, niobium and vanadium in order to facilitate the acquisition of other properties desired as the intermediate layers 4a, 4b. A material containing one element is more preferable, and a material containing at least one element selected from the group consisting of tungsten, titanium and niobium is further preferable. Twice
<触媒体>
 電気加熱式担体1に触媒を担持することにより、電気加熱式担体1を触媒担体として使用することができる。複数のセル21aの流路には、例えば、自動車排気ガス等の流体を流すことができる。触媒としては、例えば、貴金属系触媒又はこれら以外の触媒が挙げられる。貴金属系触媒としては、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)といった貴金属をアルミナ細孔表面に担持し、セリア、ジルコニア等の助触媒を含む三元触媒や酸化触媒、又は、アルカリ土類金属と白金を窒素酸化物(NOx)の吸蔵成分として含むNOx吸蔵還元触媒(LNT触媒)が例示される。貴金属を用いない触媒として、銅置換又は鉄置換ゼオライトを含むNOx選択還元触媒(SCR触媒)等が例示される。また、これらの触媒からなる群から選択される2種以上の触媒を用いてもよい。なお、触媒の担持方法についても特に制限はなく、従来、ハニカム構造体2に触媒を担持する担持方法に準じて行うことができる。
<Catalyst>
By supporting the catalyst on the electroheating carrier 1, the electroheating carrier 1 can be used as the catalyst carrier. For example, a fluid such as automobile exhaust gas can flow through the flow paths of the plurality of cells 21a. Examples of the catalyst include noble metal-based catalysts and catalysts other than these. As the noble metal catalyst, a noble metal such as platinum (Pt), palladium (Pd), or rhodium (Rh) is supported on the surface of the alumina pores, and a three-way catalyst containing a co-catalyst such as ceria or zirconia, an oxidation catalyst, or an alkali. An example is a NOx storage reduction catalyst (LNT catalyst) containing earth metal and platinum as storage components of nitrogen oxide (NOx). Examples of catalysts that do not use noble metals include NOx selective reduction catalysts (SCR catalysts) containing copper-substituted or iron-substituted zeolites. Further, two or more kinds of catalysts selected from the group consisting of these catalysts may be used. The method of supporting the catalyst is also not particularly limited, and can be carried out according to the conventional method of supporting the catalyst on the honeycomb structure 2.
<電気加熱式担体の製造方法>
 次に、本発明に係る電気加熱式担体を製造する方法について例示的に説明する。本発明の電気加熱式担体の製造方法は一実施形態において、電極端子形成ペースト付き未焼成ハニカム構造体を得る工程A1と、電極端子形成ペースト付き未焼成ハニカム構造体を焼成して電極端子付きハニカム構造体を得る工程A2とを含む。また、他の実施形態としては、電極層形成用ペースト、電極端子形成用ペーストを仮焼成後に、ハニカム構造体に貼り付けてもよい。また、カーボンで構成された電極端子については、カーボン製の電極端子をハニカム構造体に貼り付けてもよい。
<Manufacturing method of electrically heated carrier>
Next, a method for producing the electroheated carrier according to the present invention will be exemplified. In one embodiment, the method for producing an electrically heated carrier of the present invention includes a step A1 for obtaining an unfired honeycomb structure with an electrode terminal forming paste and a honeycomb structure with an electrode terminal forming paste by firing the unfired honeycomb structure. The step A2 for obtaining the structure is included. Further, as another embodiment, the electrode layer forming paste and the electrode terminal forming paste may be attached to the honeycomb structure after calcination. Further, for the electrode terminals made of carbon, the electrode terminals made of carbon may be attached to the honeycomb structure.
 工程A1は、ハニカム構造体の前駆体である柱状のハニカム成形体を作製し、ハニカム成形体の側面に電極層形成ペーストを塗布して、電極層形成ペースト付き未焼成ハニカム構造体を得た後、電極層形成ペースト上に電極端子形成ぺーストを設けて電極端子形成ペースト付き未焼成ハニカム構造体を得る工程である。 In step A1, a columnar honeycomb molded body that is a precursor of the honeycomb structure is produced, and an electrode layer forming paste is applied to the side surface of the honeycomb molded body to obtain an unfired honeycomb structure with the electrode layer forming paste. This is a step of providing an electrode terminal forming paste on the electrode layer forming paste to obtain an unfired honeycomb structure with the electrode terminal forming paste.
 ハニカム成形体の作製としては、まず、ホウ酸と、Si原子を含む導電性フィラーと、カオリンとを混合する。あるいは、アルカリ系原子を含むホウケイ酸塩と、Si原子を含む導電性フィラーと、カオリンとを混合する。ホウケイ酸塩は、繊維状、粒子状などの形状を有してもよく、混合物の押し出し性が向上するため、繊維状であるのが好ましい。当該混合物において、電気抵抗率の温度依存性が小さいハニカム構造体2を得やすくするために、ホウ酸の質量比を、4以上8以下とするのが好ましい。ホウケイ酸塩に含まれるホウ素の含有量は、後述する焼成温度を高くすることで増加させることができる。ケイ酸塩にドープされるホウ素量を多くするほど、ハニカム構造体2の電気抵抗をより低下させることができる。 To prepare the honeycomb molded product, first, boric acid, a conductive filler containing Si atoms, and kaolin are mixed. Alternatively, a borosilicate containing an alkaline atom, a conductive filler containing a Si atom, and kaolin are mixed. The borosilicate may have a fibrous or particulate shape, and is preferably fibrous because it improves the extrudability of the mixture. In the mixture, the mass ratio of boric acid is preferably 4 or more and 8 or less in order to facilitate obtaining the honeycomb structure 2 having a small temperature dependence of electrical resistivity. The content of boron contained in the borosilicate can be increased by increasing the firing temperature described later. As the amount of boron doped in the silicate is increased, the electrical resistance of the honeycomb structure 2 can be further reduced.
 次に、当該混合物に、バインダ及び水を加える。バインダとしては、例えば、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール等を挙げることができる。また、バインダの含有量は、例えば、2質量%程度とすることができる。 Next, add a binder and water to the mixture. Examples of the binder include methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol and the like. The binder content can be, for example, about 2% by mass.
 次に、得られた成形原料を混練して坏土を形成した後、坏土を押出成形してハニカム成形体を作製する。押出成形に際しては、所望の全体形状、セル形状、隔壁厚み、セル密度等を有する口金を用いることができる。次に、得られたハニカム成形体について、乾燥を行うことが好ましい。ハニカム成形体の中心軸方向長さが、所望の長さではない場合は、ハニカム成形体の両底部を切断して所望の長さとすることができる。乾燥後のハニカム成形体を柱状ハニカム乾燥体と呼ぶ。 Next, after kneading the obtained molding raw materials to form a clay, the clay is extruded to produce a honeycomb molded body. In extrusion molding, a mouthpiece having a desired overall shape, cell shape, partition wall thickness, cell density and the like can be used. Next, it is preferable to dry the obtained honeycomb molded product. When the length in the central axis direction of the honeycomb molded body is not the desired length, both bottom portions of the honeycomb molded body can be cut to obtain the desired length. The dried honeycomb molded body is called a columnar honeycomb dried body.
 次に中間層を形成するための中間層形成ペーストを調合する。中間層形成ペーストは、例えば、上記の元素を含む拡散防止材、任意にバインダ及び水を混合することで調製することができる。 Next, prepare an intermediate layer forming paste for forming the intermediate layer. The intermediate layer forming paste can be prepared, for example, by mixing an anti-diffusion material containing the above elements, optionally a binder and water.
 次に、得られた中間層形成ペーストを、ハニカム成形体(典型的には柱状ハニカム乾燥体)の側面に塗布し、中間層形成ペースト付き未焼成ハニカム構造体を得る。中間層形成ペーストをハニカム成形体に塗布する方法については、公知のハニカム構造体の製造方法に準じて行うことができる。 Next, the obtained intermediate layer forming paste is applied to the side surface of the honeycomb molded body (typically, the columnar honeycomb dried body) to obtain an unfired honeycomb structure with the intermediate layer forming paste. The method of applying the intermediate layer forming paste to the honeycomb molded body can be performed according to a known method for producing a honeycomb structure.
 次に、電極層を形成するための電極層形成ペーストを調合する。電極層形成ペーストは、電極層の要求特性に応じて配合した導電性材料に、バインダ及び水と混合することで作製することができる。 Next, the electrode layer forming paste for forming the electrode layer is prepared. The electrode layer forming paste can be produced by mixing a conductive material blended according to the required characteristics of the electrode layer with a binder and water.
 次に、得られた電極層形成ペーストを、中間層形成ペースト付ハニカム成形体の側面に塗布し、電極層形成ペースト付き未焼成ハニカム構造体を得る。電極層形成ペーストをハニカム成形体に塗布する方法については、公知のハニカム構造体の製造方法に準じて行うことができる。 Next, the obtained electrode layer forming paste is applied to the side surface of the honeycomb molded body with the intermediate layer forming paste to obtain an unfired honeycomb structure with the electrode layer forming paste. The method of applying the electrode layer forming paste to the honeycomb molded body can be performed according to a known method for producing a honeycomb structure.
 ハニカム構造体の製造方法の変更例として、工程A1において、中間層形成ペースト又は電極層形成ペーストを塗布する前に、ハニカム成形体を一旦焼成してもよい。すなわち、この変更例では、ハニカム成形体を焼成して柱状ハニカム焼成体を作製し、当該柱状ハニカム焼成体に、中間層形成ペースト又は電極層形成ペーストを塗布する。 As an example of changing the method for manufacturing the honeycomb structure, the honeycomb molded body may be fired once before applying the intermediate layer forming paste or the electrode layer forming paste in step A1. That is, in this modified example, the honeycomb molded body is fired to produce a columnar honeycomb fired body, and the intermediate layer forming paste or the electrode layer forming paste is applied to the columnar honeycomb molded body.
 次に、電極端子を形成するための電極端子形成材料を調合する。電極端子形成材料は、電極端子の要求特性に応じて配合した導電性材料に各種添加剤を適宜添加して混練することでできる。次に、調合・混錬した電極端子形成材料を、プレス成型にて所定形状に形成し、乾燥及び/又は焼成を行う。電極端子は乾燥時及び/又は焼成時の収縮により変形するので、乾燥後及び/又は焼成後に切断及び/又は研磨加工を行うことが好ましい。次に、電極端子を、ハニカム構造体上の電極層の表面から起立するように、所定形状に設ける。ハニカム構造体上の電極層の表面から起立するように設ける方法については、電極層形成ペーストを用いることができる。 Next, the electrode terminal forming material for forming the electrode terminal is prepared. The electrode terminal forming material can be kneaded by appropriately adding various additives to the conductive material blended according to the required characteristics of the electrode terminals. Next, the prepared and kneaded electrode terminal forming material is formed into a predetermined shape by press molding, and dried and / or fired. Since the electrode terminals are deformed by shrinkage during drying and / or firing, it is preferable to perform cutting and / or polishing after drying and / or firing. Next, the electrode terminals are provided in a predetermined shape so as to stand up from the surface of the electrode layer on the honeycomb structure. As a method of providing the honeycomb structure so as to stand up from the surface of the electrode layer, an electrode layer forming paste can be used.
 工程A2では、電極端子形成ペースト付き未焼成ハニカム構造体を焼成して、電極端子付きハニカム構造体を得る。焼成条件は、不活性ガス雰囲気下又は大気雰囲気下、大気圧以下、焼成温度1150~1350℃、焼成時間0.1~50時間とすることができる。なお、焼成雰囲気は、例えば、不活性ガス雰囲気、焼成時圧力は、常圧などとすることができる。ハニカム構造体2の電気抵抗を低下させるためには、酸化防止の観点から残存酸素を低減することが好ましく、焼成時の雰囲気内を1.0×10-4Pa以上の高真空にした後に不活性ガスをパージして焼成することが好ましい。不活性ガス雰囲気としては、N2ガス雰囲気、ヘリウムガス雰囲気、アルゴンガス雰囲気などが挙げられる。焼成を行う前に、電極端子形成ペースト付き未焼成ハニカム構造体を乾燥してもよい。また、焼成の前に、バインダ等を除去するため、脱脂を行ってもよい。このようにして、電極端子が電極層に電気的に接続された電気加熱式担体が得られる。 In step A2, the unfired honeycomb structure with the electrode terminal forming paste is fired to obtain the honeycomb structure with the electrode terminals. The firing conditions can be under an inert gas atmosphere or an atmospheric atmosphere, below atmospheric pressure, a firing temperature of 1150 to 1350 ° C., and a firing time of 0.1 to 50 hours. The firing atmosphere may be, for example, an inert gas atmosphere, and the firing pressure may be normal pressure. In order to reduce the electrical resistance of the honeycomb structure 2, it is preferable to reduce the residual oxygen from the viewpoint of preventing oxidation, and it is not possible after the atmosphere at the time of firing is set to a high vacuum of 1.0 × 10 -4 Pa or more. It is preferable to purge the active gas and fire it. Examples of the inert gas atmosphere include an N 2 gas atmosphere, a helium gas atmosphere, and an argon gas atmosphere. The unfired honeycomb structure with the electrode terminal forming paste may be dried before firing. Further, before firing, degreasing may be performed in order to remove the binder and the like. In this way, an electrically heated carrier in which the electrode terminals are electrically connected to the electrode layer is obtained.
<排気ガス浄化装置>
 次に、図4は、本発明の実施形態に係る排気ガス浄化装置を示す説明図である。上述した本発明の実施形態に係る電気加熱式担体1は、排気ガス浄化装置に用いることができる。当該排気ガス浄化装置は、電気加熱式担体1と、電気加熱式担体1を保持する金属製の缶体5とを有する。図4に示すように、電極端子31a,31bに接合された金属電極6a,6bをさらに有していてもよい。排気ガス浄化装置において、電気加熱式担体1は、エンジンからの排気ガスを流すための排気ガス流路の途中に設置される。
<Exhaust gas purification device>
Next, FIG. 4 is an explanatory diagram showing an exhaust gas purification device according to an embodiment of the present invention. The electrically heated carrier 1 according to the embodiment of the present invention described above can be used in an exhaust gas purification device. The exhaust gas purifying device includes an electrically heated carrier 1 and a metal can body 5 that holds the electrically heated carrier 1. As shown in FIG. 4, the metal electrodes 6a and 6b bonded to the electrode terminals 31a and 31b may be further provided. In the exhaust gas purification device, the electrically heated carrier 1 is installed in the middle of the exhaust gas flow path for flowing the exhaust gas from the engine.
 1   電気加熱式担体
 2   ハニカム構造体
 20  外周壁
 21  隔壁
 21a セル
 3a,3b   電極
 30a,30b 電極層
 31a,31b 電極端子
 4a,4b   中間層
1 Electric heating type carrier 2 Honeycomb structure 20 Peripheral wall 21 Partition wall 21a Cell 3a, 3b Electrode 30a, 30b Electrode layer 31a, 31b Electrode terminal 4a, 4b Intermediate layer

Claims (11)

  1.  外周壁と、前記外周壁の内側に配設され、一方の端面から他方の端面まで貫通して流路を形成する複数のセルを区画形成する隔壁と、を有し、通電されることにより発熱する柱状のハニカム構造体と、
     前記外周壁の表面上に設けられた一対の電極と、
     を備え、
     前記ハニカム構造体がSiを含むセラミックスで構成され、
     前記一対の電極が、導電性材料を含有し、
     前記ハニカム構造体と前記電極との間に中間層を有し、
     前記中間層の気孔率が0~50%である、
     電気加熱式担体。
    It has an outer peripheral wall and a partition wall that is disposed inside the outer peripheral wall and forms a plurality of cells that penetrate from one end face to the other end face to form a flow path, and generates heat when energized. Columnar honeycomb structure and
    A pair of electrodes provided on the surface of the outer peripheral wall and
    With
    The honeycomb structure is made of ceramics containing Si,
    The pair of electrodes contains a conductive material and
    It has an intermediate layer between the honeycomb structure and the electrodes.
    The porosity of the intermediate layer is 0 to 50%.
    Electric heating type carrier.
  2.  前記中間層の熱伝導率が1W/mk以上である、
     請求項1に記載の電気加熱式担体。
    The thermal conductivity of the intermediate layer is 1 W / mk or more.
    The electrically heated carrier according to claim 1.
  3.  前記中間層の熱膨張係数αが10×10-6以下である、
     請求項1又は請求項2に記載の電気加熱式担体。
    The coefficient of thermal expansion α of the intermediate layer is 10 × 10 -6 or less.
    The electroheated carrier according to claim 1 or 2.
  4.  前記中間層のヤング率が10~100GPaである、
     請求項1から請求項3までのいずれか一項に記載の電気加熱式担体。
    The Young's modulus of the intermediate layer is 10 to 100 GPa.
    The electrically heated carrier according to any one of claims 1 to 3.
  5.  前記中間層の材質が、ジルコニウム、チタン、タンタル、ニオブ、バナジウム、タングステン、モリブデン、クロム、シリコン及びマンガンからなる群より選択される少なくとも1種の元素を含む、
     請求項1から請求項4までのいずれか一項に記載の電気加熱式担体。
    The material of the intermediate layer contains at least one element selected from the group consisting of zirconium, titanium, tantalum, niobium, vanadium, tungsten, molybdenum, chromium, silicon and manganese.
    The electrically heated carrier according to any one of claims 1 to 4.
  6.  前記電極は、柱状の電極端子を有する、
     請求項1から請求項5までのいずれか一項に記載の電気加熱式担体。
    The electrode has a columnar electrode terminal.
    The electrically heated carrier according to any one of claims 1 to 5.
  7.  前記電極は、前記中間層と前記電極端子との間に介在された帯状の電極層をさらに有する、
     請求項6に記載の電気加熱式担体。
    The electrode further has a band-shaped electrode layer interposed between the intermediate layer and the electrode terminal.
    The electrically heated carrier according to claim 6.
  8.  前記Siを含むセラミックスが、SiC又はアルカリ系原子を含むホウケイ酸塩である、請求項1から請求項7までのいずれか一項に記載の電気加熱式担体。 The electroheated carrier according to any one of claims 1 to 7, wherein the ceramic containing Si is a borosilicate containing SiC or an alkaline atom.
  9.  前記ハニカム構造体は、アルカリ系原子を含むホウケイ酸塩から構成されるマトリックスと、導電性フィラーから構成されるドメインと、を有する
     請求項1から請求項8までのいずれか一項に記載の電気加熱式担体。
    The electricity according to any one of claims 1 to 8, wherein the honeycomb structure has a matrix composed of a borosilicate containing an alkaline atom and a domain composed of a conductive filler. Heated carrier.
  10.  前記隔壁の気孔率が30%未満である、
     請求項1から請求項9までのいずれか一項に記載の電気加熱式担体。
    The porosity of the partition wall is less than 30%.
    The electrically heated carrier according to any one of claims 1 to 9.
  11.  請求項1から請求項10までのいずれか一項に記載の電気加熱式担体と、
     前記電気加熱式担体を保持する缶体と
     を備える、
     排気ガス浄化装置。
    The electrically heated carrier according to any one of claims 1 to 10.
    A can body that holds the electroheated carrier.
    Exhaust gas purification device.
PCT/JP2020/039966 2020-03-09 2020-10-23 Electrically heated carrier and exhaust gas purification device WO2021181743A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022505752A JP7455957B2 (en) 2020-03-09 2020-10-23 Electrically heated carrier and exhaust gas purification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020040294 2020-03-09
JP2020-040294 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021181743A1 true WO2021181743A1 (en) 2021-09-16

Family

ID=77671548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039966 WO2021181743A1 (en) 2020-03-09 2020-10-23 Electrically heated carrier and exhaust gas purification device

Country Status (2)

Country Link
JP (1) JP7455957B2 (en)
WO (1) WO2021181743A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105567A1 (en) * 2010-02-26 2011-09-01 日本碍子株式会社 Honeycomb structure
JP2012030215A (en) * 2010-07-02 2012-02-16 Denso Corp Honeycomb structure body and method of producing the same
JP2015085313A (en) * 2013-09-27 2015-05-07 株式会社日本自動車部品総合研究所 Electric heating catalyst body
JP2019063719A (en) * 2017-09-29 2019-04-25 株式会社デンソー Electric heating type catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105567A1 (en) * 2010-02-26 2011-09-01 日本碍子株式会社 Honeycomb structure
JP2012030215A (en) * 2010-07-02 2012-02-16 Denso Corp Honeycomb structure body and method of producing the same
JP2015085313A (en) * 2013-09-27 2015-05-07 株式会社日本自動車部品総合研究所 Electric heating catalyst body
JP2019063719A (en) * 2017-09-29 2019-04-25 株式会社デンソー Electric heating type catalyst

Also Published As

Publication number Publication date
JP7455957B2 (en) 2024-03-26
JPWO2021181743A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US20200222891A1 (en) Electrically heated catalyst
JP7184707B2 (en) Honeycomb structure, electrically heated honeycomb structure, electrically heated carrier, and exhaust gas purification device
US11092052B2 (en) Electric heating type support, exhaust gas purifying device, and method for producing electric heating type support
JP5388940B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP7155054B2 (en) Electrically heated carrier and exhaust gas purification device
JP7430776B2 (en) Electrically heated converter and method for manufacturing the electrically heated converter
US20220240352A1 (en) Electrically heating support and exhaust gas purifying device
WO2021181743A1 (en) Electrically heated carrier and exhaust gas purification device
US20220287154A1 (en) Honeycomb structure, electrically heating support and exhaust gas purifying device
JP5657981B2 (en) Method for producing ceramic-metal joined body, and ceramic-metal joined body
WO2021176757A1 (en) Electrically heated carrier and exhaust gas purification device
JP7335836B2 (en) Electrically heated carrier, exhaust gas purifier, and method for producing electrically heated carrier
JP7225470B2 (en) Electrically heated carrier and exhaust gas purification device
WO2021176756A1 (en) Electrically heated carrier and exhaust gas purification device
CN115151715A (en) Electric heating type converter and electric heating type carrier
JP7250996B2 (en) Honeycomb structure and electrically heated carrier
JP2022135885A (en) Honeycomb structure, electrically heated carrier, and exhaust gas purification device
JP7320154B1 (en) Honeycomb structure, electrically heated carrier, and exhaust gas purifier
US20230311110A1 (en) Honeycomb structure, electrically heated carrier and exhaust gas purification device
JP7259133B2 (en) Electrically heated carrier and exhaust gas purification device
US20230313721A1 (en) Honeycomb structure, electrically heated carrier, and exhaust gas purification device
US20230278022A1 (en) Honeycomb structure, electrically heating catalyst support and exhaust gas purifying device
WO2021106261A1 (en) Electrical heating-type carrier, and exhaust gas purification device
JP2022093013A (en) Electric heating type carrier and exhaust emission control system
JP2022072369A (en) Joined body, and method of producing joined body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505752

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924256

Country of ref document: EP

Kind code of ref document: A1