WO2021181735A1 - 生体音響センサおよびそれを備えた聴診器 - Google Patents

生体音響センサおよびそれを備えた聴診器 Download PDF

Info

Publication number
WO2021181735A1
WO2021181735A1 PCT/JP2020/037272 JP2020037272W WO2021181735A1 WO 2021181735 A1 WO2021181735 A1 WO 2021181735A1 JP 2020037272 W JP2020037272 W JP 2020037272W WO 2021181735 A1 WO2021181735 A1 WO 2021181735A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
detection unit
housing
diaphragm
vibration detection
Prior art date
Application number
PCT/JP2020/037272
Other languages
English (en)
French (fr)
Inventor
加藤 貴敏
渡辺 博文
井上 浩一
山本 浩誠
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021181735A1 publication Critical patent/WO2021181735A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes

Definitions

  • the present invention relates to a bioacoustic sensor that measures vibrations generated by a living body such as heart sounds and a stethoscope including the same.
  • Patent Document 1 discloses an electronic stethoscope that comes into contact with a living body and collects sound generated from the living body.
  • This electronic stethoscope is composed of a sound collecting unit provided with a microphone and in contact with a living body, and a holding unit that holds the sound collecting unit so that its posture can be changed.
  • the holding portion holds the sound collecting portion via an elastic member such as a spring or rubber so that the sound collecting portion can be changed in posture.
  • the contact surface of the sound collecting portion comes into close contact with the living body.
  • an object of the present invention is to suppress the attenuation of the vibration transmitted from the living body in the bioacoustic sensor that measures the vibration of the living body.
  • the housing A diaphragm provided on the housing and having a contact surface in contact with a living body, It has a vibration-electric conversion device provided in the housing and converting the vibration of the diaphragm into an electric signal.
  • a bioacoustic sensor in which the diaphragm has a fulcrum at a fixed position and is provided on the housing so as to swing around the fulcrum.
  • a speaker driven based on an electric signal from the vibration-electric conversion device of the bioacoustic sensor A chest piece containing the bioacoustic sensor and the speaker, Provided is a stethoscope having an eartip that is connected to the chestpiece and outputs the sound of the speaker to the outside.
  • the present invention in a bioacoustic sensor that measures the vibration of a living body, it is possible to suppress the attenuation of the vibration transmitted from the living body.
  • FIG. 1 Perspective view of a stethoscope provided with a bioacoustic sensor according to the first embodiment of the present invention.
  • Perspective view of the chest piece with the cover member attached Perspective view of the chest piece with the cover member removed
  • Cross-sectional view of the chest piece with the cover member removed Cross-sectional view of an example vibration detection unit
  • An exploded perspective view of an example vibration detection unit Perspective view showing the details of an example piezoelectric plate Block diagram showing the control system of the stethoscope Cross-sectional view of the bioacoustic sensor with the vibration detection unit tilted PZT characteristic diagram of Examples and Comparative Examples
  • Schematic of the bioacoustic sensor of the embodiment Schematic diagram of the bioacoustic sensor of the comparative example Cross-sectional view of the bioacoustic sensor according to the second embodiment of the present invention.
  • the bioacoustic sensor includes a housing, a diaphragm provided on the housing and having a contact surface in contact with the living body, and a diaphragm provided on the housing to convert the vibration of the diaphragm into an electric signal. It has a vibration-electric conversion device, and the diaphragm is provided on the housing so as to have a fulcrum at a fixed position and swing around the fulcrum.
  • the bioacoustic sensor has a vibration detection unit including the diaphragm, and the vibration detection unit is supported by the housing so as to swing around a fulcrum at a fixed position with respect to the housing. May be good.
  • one of the vibration detection unit and the housing is provided with a convex portion, and the other is provided with a concave portion that contacts the tip of the convex portion and swings with the tip as a fulcrum. You may.
  • the bioacoustic sensor urges the vibration detection unit toward the housing to detect the vibration. It may have an urging member that maintains contact between the unit and the housing. As a result, the contact between the housing and the vibration detection unit can be maintained.
  • the vibration detection unit may be supported by the housing via a ball joint.
  • the bioacoustic sensor has an intermediate support that swingably supports the vibration detection unit about a first swing center line parallel to the contact surface of the diaphragm, and the housing is the housing. Supporting the intermediate support so that it can swing around a second swing center line that is parallel to the contact surface of the diaphragm and orthogonal to the first swing center line. May be good.
  • the housing is provided with a concave storage portion for storing the vibration detection unit, and a recess for avoiding contact with the vibration detection unit when the vibration detection unit is tilted to the maximum is provided on the bottom surface of the storage portion. You may prepare. As a result, the size of the bioacoustic sensor can be reduced as compared with the case where contact is avoided without the recess.
  • the vibration-electric conversion device may be provided in the vibration detection unit.
  • the vibration-electric conversion device is a piezoelectric plate
  • the vibration detection unit is provided on a base member that supports the piezoelectric plate and the base member, and is provided in the normal direction of the contact surface with respect to the piezoelectric plate.
  • the vibrating plate supporting member that supports the vibrating plate and the vibrating plate and the piezoelectric plate are arranged in a state of facing each other at intervals, and the vibrating plate and the piezoelectric plate are arranged in the normal direction.
  • a vibration transmission member that comes into contact with the vibration plate and transmits the vibration of the vibration plate to the piezoelectric plate may be included.
  • the vibration-electric conversion device is a piezoelectric plate fixed to the housing, the diaphragm has a convex portion, and the diaphragm is in a state where the tip of the convex portion is in contact with the piezoelectric plate.
  • the tip of the convex portion may be used as a fulcrum to swing.
  • the bioacoustic sensor may have a filter circuit that removes noise contained in an electric signal output from the vibration-electric conversion device.
  • the auditor according to another aspect of the present invention includes the bioacoustic sensor, a speaker driven based on an electric signal from the vibration-electric conversion device of the bioacoustic sensor, and the bioacoustic sensor and the speaker. It has a chest piece and an ear tip that is connected to the chest piece and outputs the sound of the speaker to the outside.
  • FIG. 1 is a perspective view of a stethoscope provided with a bioacoustic sensor according to the first embodiment of the present invention.
  • the stethoscope 10 is a so-called digital stethoscope, which is attached to two eustachian tubes 14 and two eustachian tubes 14 to which ear tips 12 are attached to their tips, respectively. It has a connected Y-shaped tube 16 and a chest piece 18 connected to the Y-shaped tube 16.
  • the bioacoustic sensor according to the first embodiment is incorporated in the chest piece 18.
  • FIG. 2A is a perspective view of the chest piece with the cover member attached. Further, FIG. 2B is a perspective view of the chest piece with the cover member removed. FIG. 3 is a cross-sectional view of the chest piece with the cover member removed.
  • the XYZ Cartesian coordinate system shown in the figure is for facilitating the understanding of the invention and does not limit the invention.
  • the chest piece 18 has, for example, a columnar housing 20.
  • the housing 20 includes a contact surface 20a that comes into contact with a living body (for example, a human being).
  • a living body for example, a human being.
  • the contact surface 20a is covered with a cover member 22 made of a silicon material or the like, as shown in FIG.
  • the contact surface 20a comes into contact with the living body via the cover member 22.
  • the contact surface 20a may come into direct contact with the living body.
  • the bioacoustic sensor 24 is manufactured by incorporating a plurality of components into the housing 20.
  • the bioacoustic sensor 24 has a housing 20 (a part thereof) and a vibration detection unit 26 supported by the housing 20.
  • a concave storage portion 20b for storing the vibration detection unit 26 is formed on the contact surface 20a of the housing 20.
  • the vibration detection unit 26 is stored in the storage unit 20b with a part protruding from the contact surface 20a.
  • the storage portion 20b in which the vibration detection unit 26 is housed is covered with a film seal 28 made of an elastically deformable material, for example, an elastomer resin material.
  • the film seal 28 adheres to the contact surface 20a of the housing 20 and also adheres to the vibration detection unit 26. Through the film seal 28, the housing 20 continues to support the vibration detection unit 26.
  • the film seal 28 also serves to prevent foreign matter from entering the storage portion 20b.
  • FIG. 4 is a cross-sectional view of an example vibration detection unit. Further, FIG. 5 is an exploded perspective view of an example vibration detection unit.
  • the vibration detection unit 26 includes a base member 30, a diaphragm 32, a diaphragm support member 34, a piezoelectric plate 36, a piezoelectric plate support member 38, and a vibration transmission member 40.
  • these components are arranged side by side in the normal direction (Z-axis direction) of the contact surface 32a of the diaphragm 32.
  • the base member 30 of the vibration detection unit 26 is a rigid body made of a material that is not easily deformed, for example, a metal material.
  • the base member 30 is in a direction (X-axis direction and Y-axis direction) orthogonal to the normal direction (Z-axis direction) of the central portion 30a and the contact surface 32a of the diaphragm 32. It includes four beam portions 30b extending from the central portion 30a.
  • a concave portion 30c is formed on the back surface of the central portion 30a of the base member 30 (the surface opposite to the surface facing the piezoelectric plate 36).
  • the concave portion 30c is, for example, a bottomed hole having a bottom surface composed of a curved concave surface.
  • the concave portion 30c of the base member 30 swingably contacts the tip of the convex portion 20d formed in the center of the bottom surface 20c of the storage portion 20b of the housing 20.
  • the convex portion 20d is, for example, a conical protrusion.
  • the tip of the convex portion 20d has a curvature larger than the curvature of the concave bottom surface of the concave portion 30c.
  • the base member 30 may be provided with a convex portion, and the housing 20 may be provided with a concave portion that is in swingable contact with the tip of the convex portion.
  • the contact between the vibration detection unit 26 (that is, the base member 30) and the housing 20 is maintained by the film seal 28 made of the elastic material urging the vibration detection unit 26 toward the housing 20.
  • the diaphragm 32 of the vibration detection unit 26 includes a contact surface 32a that comes into contact with the living body and a back surface 26b that is opposite to the contact surface 32a.
  • the contact surface 32a comes into contact with the living body via the cover member 22 and the film seal 28, as shown in FIGS. 2A to 3B.
  • the diaphragm 32 is a disk-shaped member made of a material that is not substantially compressed and deformed, for example, a metal material or a hard resin. The diaphragm 32 vibrates in response to the vibration of the living body in contact with the contact surface 32a.
  • the diaphragm support member 34 of the vibration detection unit 26 is, for example, a ring-shaped rigid body made of a resin material.
  • the diaphragm support member 34 is arranged on the tip of each of the four beam portions 30b of the base member 30. Further, the diaphragm support member 34 supports the outer peripheral edge side portion of the back surface 26b of the diaphragm 32.
  • the diaphragm support member 34 supports the diaphragm 32 via an elastic member 42 that can be elastically deformed in the normal direction (Z-axis direction) of the contact surface 32a of the diaphragm 32.
  • the elastic member 42 is made of, for example, a sponge material. With such an elastic member 42, the diaphragm support member 34 supports the diaphragm 32 so as to vibrate in the normal direction of the contact surface 32a.
  • the elastic member 42 can be omitted.
  • the piezoelectric plate 36 of the vibration detection unit 26 is a vibration-electric conversion device that converts the vibration of the diaphragm 32 into a corresponding electric signal. Specifically, the piezoelectric plate 36 is deformed by vibration and generates an electric signal corresponding to the amount of the deformation. In the case of the first embodiment, the piezoelectric plate 36 has a disk shape.
  • FIG. 6 is a perspective view showing details of an example piezoelectric plate.
  • the piezoelectric plate 36 includes, for example, a piezo element 44 and first and second electrodes 46 and 48 that sandwich the piezo element 44. Further, the piezoelectric plate 36 includes a first signal line 50 electrically connected to the first electrode 46 and a second signal line 52 electrically connected to the second electrode 48.
  • the piezoelectric plate 36 By deforming the piezoelectric plate 36, that is, by deforming the piezo element 44, the potential difference between the first electrode 46 and the second electrode 48 changes. An electric signal (current) corresponding to the potential difference is output to the outside via the first and second signal lines 50 and 52.
  • the piezoelectric plate support member 38 of the vibration detection unit 26 is provided in the central portion 30a of the base member 30 and supports the piezoelectric plate 36. That is, the base member 30 supports the piezoelectric plate 36 via the piezoelectric plate support member 38.
  • the piezoelectric plate support member 38 supports the central portion of the piezoelectric plate 36 in the normal direction (Z-axis direction) of the contact surface 32a of the diaphragm 32.
  • the piezoelectric plate support member 38 does not have to be a member different from the base member 30, and may be a part of the base member 30.
  • the vibration transmission member 40 of the vibration detection unit 26 is a member for transmitting the vibration of the diaphragm 32 to the piezoelectric plate 36.
  • the diaphragm 32 is supported by the diaphragm support member 34 in a state of facing the piezoelectric plate 36 at intervals in the normal direction (Z-axis direction) of the contact surface 32a.
  • the vibration transmission member 40 is arranged between the diaphragm 32 and the piezoelectric plate 36, and comes into contact with the diaphragm 32 and the piezoelectric plate 36 in the normal direction.
  • the vibration transmission member 40 is a ring-shaped member made of an elastic material, for example, a sponge material.
  • the ring-shaped vibration transmitting member 40 comes into contact with the outer peripheral edge side portion of the piezoelectric plate 36 in the normal direction (Z-axis direction) of the contact surface 32a of the diaphragm 32. That is, the vibration transmission member 40 does not overlap with the piezoelectric plate support member 38 in the normal direction.
  • the piezoelectric plate 36 comes into contact with the vibration plate 32 via the vibration transmission member 40.
  • the diaphragm 32 receives the vibration of the living body on its contact surface 32a and vibrates, the vibration is transmitted to the outer peripheral edge side portion of the piezoelectric plate 36. Since the central portion of the piezoelectric plate 36 is supported by the piezoelectric plate support member 38, the piezoelectric plate 36 repeatedly bends and deforms so that the outer peripheral edge side portion is displaced with respect to the central portion. As a result, the piezoelectric plate 36 can generate an electric signal corresponding to the vibration of the diaphragm 32.
  • FIG. 7 is a block diagram showing a control system of a stethoscope.
  • the stethoscope 10 has an MPU (microprocessor unit) 60 that processes an electric signal from the bioacoustic sensor 24 (that is, the piezoelectric plate 36) in addition to the bioacoustic sensor 24. Further, the MPU 60 includes an A / D conversion unit 60a that converts an electric signal from analog to digital.
  • MPU microprocessor unit
  • the electric signal from the bioacoustic sensor 24 digitally processed by the MPU 60 is converted into voice by the amplifier 62 and the speaker 64, and the voice is output via the Y-shaped tube 16, the eustachian tube 14, and the ear tip 12.
  • the chest piece 18 of the stethoscope 10 that is, the contact surface 32a of the diaphragm 32
  • a heart sound is output.
  • the electric signal from the bioacoustic sensor 24 digitally processed by the MPU 60 is stored in the storage device 66 as data.
  • the storage device 66 is a memory card that can be attached to and detached from the chest piece 18 of the stethoscope 10.
  • Heart sound data is stored when the chest piece 18 of the stethoscope 10 (that is, the contact surface 32a of the diaphragm 32) is in contact with the skin near the heart of the living body.
  • the MPU 60 is configured to be able to transmit an electric signal from the digitally processed bioacoustic sensor 24 to an external device (for example, a computer) in real time via the wireless communication module 68. Further, the MPU 60 is configured to transmit data such as heartbeat data stored in the storage device 66 to an external device via the wireless communication module 68.
  • the wireless communication module 68 is, for example, a wireless communication module that conforms to a digital wireless communication standard such as Bluetooth (registered trademark).
  • a plurality of operation buttons 70 are provided in the housing 20 of the chest piece 18.
  • the operation button 70 for example, the stethoscope 10 is started or stopped.
  • a battery 72 for driving the MPU 60 is mounted on the chest piece 18.
  • the MPU 60, the amplifier 62, the speaker 64, the storage device 66, the wireless communication module 68, and the battery 72 are housed in the internal space 20e of the housing 20 shown in FIG.
  • the bioacoustic sensor 24 may have a filter circuit 74 that removes noise included in the electric signal output from the piezoelectric plate 36.
  • the bioacoustic sensor 24 is mounted on the stethoscope 10 and used. Therefore, the range of vibration frequencies to be detected by the bioacoustic sensor 24 is specified to some extent.
  • the filter circuit 74 amplifies, for example, the HPF (High Pass Filter) 76 for removing the noise of the frequency of about 10 Hz or less and the signal passing through the HPF 76. It includes an amplifier 78 and an LPF (Low Pass Filter) 80 that removes noise having a frequency of 1 to 2 kHz that has passed through the amplifier 78.
  • the HPF76 removes noise having a frequency of about 10 Hz or less caused by a change in pressing pressure when a examiner using a stethoscope 10 presses the chest piece 18 against the skin surface of a living body.
  • the LPF 80 removes noise having a frequency of about 2 kHz or higher, which is generated by the scraping sound generated when the examiner moves the chest piece 18 while maintaining contact with the living body.
  • the bioacoustic sensor 24 can detect the vibration of the frequency to be detected and output the corresponding electric signal.
  • the vibration detection unit 26 of the bioacoustic sensor 24 swings, and the contact surface 32a of the diaphragm 32 in the vibration detection unit 26 comes into close contact with the skin surface. do. This will be specifically described with reference to FIG.
  • FIG. 8 is a cross-sectional view of the bioacoustic sensor in a state where the vibration detection unit is tilted.
  • the vibration detection unit 26 of the bioacoustic sensor 24 is supported by the tip of the convex portion 20d of the housing 20, the tip can be substantially swung with the tip as the fulcrum P.
  • the vibration detection unit 26 swings, and the contact surface 32a of the diaphragm 32 comes into close contact with the skin surface over the entire surface.
  • the pulsation (vibration) of the heart of the living body is efficiently transmitted to the contact surface 32a of the diaphragm 32.
  • the diaphragm 32 of the bioacoustic sensor 24 vibrates due to the beating of the heart.
  • the vibration is transmitted to the piezoelectric plate 36 via the vibration transmission member 40 (see FIG. 4). Due to the transmitted vibration, the piezoelectric plate 36 repeatedly deforms and outputs an electric signal corresponding to the vibration to the MPU 60.
  • the vibration of the living body is transmitted to the diaphragm 32 of the vibration detection unit 26 without being greatly attenuated. That is, the vibration energy from the living body is transmitted to the diaphragm 32 without a large loss.
  • the vibration detection unit 26 is supported by the housing 20 so as to be swingable with the tip of the convex portion 20d of the housing 20 substantially as a fulcrum P. .. Since the fulcrum P is the tip of the convex portion 20d, it exists at a substantially fixed position with respect to the housing 20.
  • the fulcrum exists at a fixed position means that the fulcrum does not move substantially, and further, two objects constituting the fulcrum (in the case of the first embodiment, vibration).
  • the contact points between the detection unit 26 and the convex portion 20d) change during the swing, it means that the swing center of the swing target exists at a substantially fixed position with respect to the remaining targets and does not move. do.
  • the fulcrum P is independent of the vibration of the skin surface of the living body, that is, The fulcrum P does not follow the vibration of the living body. Therefore, the vibration detection unit 26 repeatedly receives compressive stress between the skin surface and the fulcrum P due to the vibration of the skin surface. That is, the vibration energy from the living body is used only for the displacement of the diaphragm 32 in the vibration detection unit 26, and the vibration energy does not escape to the outside through the housing 20. As a result, the damping of the vibration transmitted from the living body is suppressed.
  • FIG. 9 is a PZT characteristic diagram of Examples and Comparative Examples. Further, FIG. 10A is a schematic view of the bioacoustic sensor of the embodiment. FIG. 10B is a schematic view of the bioacoustic sensor of the comparative example.
  • the vibration detection unit 26 is supported by the tip of the convex portion 20d of the housing 20. Therefore, the vibration detection unit 26 swings with the tip of the convex portion 20d as a fulcrum P substantially. Further, the contact between the vibration detection unit 26 and the convex portion 20d is maintained by the spring 28 (film seal).
  • the vibration detection unit 26 is supported by the housing 120 via an elastic member 190 such as a spring.
  • the deformation of the elastic member 190 changes the position and orientation of the vibration detection unit 26.
  • a vibrating force F is applied to the diaphragm 32 of the vibration detection unit 26 of each of the bioacoustic sensor 24 of the embodiment and the bioacoustic sensor 124 of the comparative example, the frequency of the vibrating force F is changed, and the frequency characteristic of the PZT characteristic is changed. Examined. The result is shown in FIG. Note that FIG. 9 shows, as a reference example, the frequency characteristics of the PZT characteristics when the vibration detection unit 26 is fixed to the housing and an exciting force is applied.
  • the frequency characteristics of the sensitivities of the examples and the reference examples are substantially the same.
  • the sensitivity of the comparative example is lower than that of the examples and the reference examples. This is because a part of the exciting force F (vibration energy) applied to the diaphragm 32 of the vibration detection unit 26 is absorbed by the elastic member 190. From such a result shown in FIG. 9, the example, that is, the vibration detection unit 26 swings around the fulcrum P at a fixed position, so that the vibration energy of the living body vibrates the vibration plate 32 in the vibration detection unit 26. It can be seen that it is used efficiently.
  • the housing 20 and the vibration detection unit 26 need to be rigid bodies that do not absorb the vibration, that is, are not deformed by the vibration.
  • the diaphragm 32 comes into contact with the skin surface near the heart of a living body with a pressing force of several hundred gf, it is necessary to have rigidity that does not deform with respect to the displacement of the heartbeat (displacement of several tens to several hundreds of ⁇ m).
  • the housing 20 and the vibration detection unit 26, as an example, preferably have a flexural rigidity of about 10 N / mm or more, are made of a material having such a flexural rigidity, and / or have such a flexural rigidity. Is made to have by the structure.
  • a lightweight material is preferable when used in a stethoscope as in the first embodiment, and for example, a metal material such as aluminum or SUS, a PC, a PEEK material, or the like. Examples include engineering plastic materials and rigid plastic materials such as ABS and PA.
  • examples of the structure suitable for a stethoscope and having bending rigidity include a lightweight and high-strength structure such as an embossed structure and a honeycomb structure.
  • the vibration detection unit 26 is a convex of the housing 20. It is necessary to avoid contact with the housing 20 except for contact with the tip of the shaped portion 20d.
  • the vibration detection unit 26 needs to avoid contact with the bottom surface 20c and the side surface 20f of the storage portion 20b of the housing 20 when it is tilted to the maximum. be.
  • vibration is detected from a natural state (dashed line) in which the normal direction of the contact surface 20a of the housing 20 and the normal direction of the contact surface 32a of the vibration detection unit 26 (diaphragm 32) are parallel. It is assumed that the unit 26 is tilted by an angle ⁇ at the maximum. This maximum tilt angle ⁇ is, for example, ⁇ 3 °. Further, in the case of the first embodiment, the maximum inclination angle ⁇ is determined by the elastic force of the film seal 28 that urges the vibration detection unit 26 toward the housing 20, as shown in FIG.
  • the natural state of the vibration detection unit 26 means a state in which no external force acts on the contact surface 32a of the vibration detection unit 26.
  • the distal end E1 on the diaphragm 32 side of the vibration detection unit 26 farthest from the fulcrum P (that is, the outer peripheral edge of the contact surface 32a of the diaphragm 32) becomes the contact surface of the housing 20. It is displaced by ⁇ H in the normal direction of 20a.
  • This displacement amount ⁇ H can be expressed as the following mathematical formula 1 where R is the distance between the fulcrum P and the distal end (that is, the radius of the diaphragm 32) in the direction parallel to the contact surface 32a. ..
  • the displacement amount ⁇ H is preferably about 0.52 mm.
  • a recess 20 g such as a groove is provided on the bottom surface of the storage portion 20b. It may be provided at 20c.
  • the inner diameter Rin of the storage portion 20b of the housing 20 needs to be larger than the distance L between the distal end E1 and the fulcrum P in the vibration detection unit 26 when it is tilted to the maximum (when it is tilted at an angle ⁇ ). There is.
  • This distance L can be expressed by the following mathematical formula 2.
  • Equation 2 D is the distance between the fulcrum P and the contact surface 32a of the vibration detection unit 26 (diaphragm 32).
  • the inner diameter Rin of the storage portion 20b needs to be larger than the distance L.
  • the difference between the inner diameter Rin and the distance L is preferably 0.5 to 1 mm.
  • the bioacoustic sensor that measures the vibration of the living body, it is possible to suppress the attenuation of the vibration transmitted from the living body.
  • the bioacoustic sensor according to the second embodiment is different from the bioacoustic sensor according to the first embodiment in the form of supporting the vibration detection unit by the housing. Therefore, the bioacoustic sensor according to the second embodiment will be described focusing on the different points.
  • FIG. 11 is a cross-sectional view of the bioacoustic sensor according to the second embodiment of the present invention.
  • the vibration detection unit 26 is supported by the housing 220 via the ball joint 292.
  • the vibration detection unit 26 swings around the center of the ball portion 292a of the ball joint 292 as a fulcrum.
  • the center of the ball portion 292a of the ball joint 292 is located at a substantially fixed position with respect to the housing 220.
  • the attenuation of the vibration transmitted from the living body can be suppressed in the bioacoustic sensor that measures the vibration of the living body as in the first embodiment described above.
  • the bioacoustic sensor according to the third embodiment is different from the bioacoustic sensor according to the first embodiment in the form of supporting the vibration detection unit by the housing. Therefore, the bioacoustic sensor according to the third embodiment will be described focusing on the different points.
  • FIG. 12A is a cross-sectional view of the bioacoustic sensor according to the third embodiment of the present invention. Further, FIG. 12B is a top view of the bioacoustic sensor according to the third embodiment.
  • the vibration detection unit 26 is supported by the housing 320 via the intermediate support 394.
  • the intermediate support 394 is a ring-shaped member that surrounds the vibration detection unit 26 in the normal direction (Z-axis direction) of the contact surface 32a of the diaphragm 32 of the vibration detection unit 26. Further, the intermediate support 394 supports the vibration detection unit 26 so as to be swingable around the first swing center line C1 parallel to the contact surface 32a. Specifically, the intermediate support 394 swingably supports the vibration detection unit 26 via a pair of support pins 396 extending parallel to the contact surface 32a from the intermediate support 394.
  • the housing 320 can swing around a second swing center line C2 that is parallel to the contact surface 32a of the diaphragm 32 and orthogonal to the first swing center line C1 in the middle.
  • the housing 320 supports the intermediate support 394 via a pair of support pins 398 extending parallel to the contact surface 32a from the housing 320.
  • the intersection of the first and second swing center lines C1 and C2 substantially functions as a fulcrum P, and the vibration detection unit 26 swings around the fulcrum P.
  • the intersections of the first and second swing center lines C1 and C2 exist at a fixed position with respect to the housing 320.
  • the film seal 28 can be omitted. However, if it is necessary to prevent foreign matter from entering the housing 320, the film seal 28 may be provided.
  • the attenuation of the vibration transmitted from the living body can be suppressed in the bioacoustic sensor that measures the vibration of the living body as in the first embodiment described above.
  • the diaphragm 32 is provided in the vibration detection unit 26 that swings around a fulcrum at a fixed position with respect to the housing.
  • the diaphragm 32 indirectly has a fulcrum, swings around the fulcrum, and can be brought into close contact with the skin surface of the living body.
  • the diaphragm is not provided in such a vibration detection unit.
  • FIG. 13 is a cross-sectional view of the bioacoustic sensor according to the fourth embodiment of the present invention.
  • the diaphragm 432 is located at the center of the back surface 434b opposite to the contact surface 432a that comes into contact with the living body via the film seal 28.
  • it includes an inverted conical convex portion 434c.
  • the tip of the convex portion 434c comes into contact with the piezoelectric plate 36 fixed to the housing 420.
  • the diaphragm 432 is urged toward the piezoelectric plate 36 by a film seal 28 made of an elastic material in order to maintain contact with the piezoelectric plate 36.
  • the diaphragm 432 swings with the tip of the convex portion 434c as a fulcrum. Since the diaphragm 432 vibrates itself, its fulcrum is not strictly at a fixed position with respect to the housing. However, since the tip of the convex portion 434c keeps in contact with the piezoelectric plate 36, the fulcrum exists at a fixed position with respect to the piezoelectric plate 36. That is, the diaphragm 432 is provided on the housing 420 so as to directly include a fulcrum existing at a fixed position with respect to the piezoelectric plate 36 and swing around the fulcrum.
  • the attenuation of the vibration transmitted from the living body can be suppressed in the bioacoustic sensor that measures the vibration of the living body as in the first embodiment described above.
  • the contact between the vibration detection unit 26 and the tip of the convex portion 20d of the housing 20 is the contact surface between the contact surface 20a of the housing 20 and the contact surface of the diaphragm 32. It is maintained by being urged by the film seal 28 adhered to the 32a.
  • the urging member that urges the vibration detection unit is not limited to the film seal 28.
  • a tension spring may be arranged between the bottom surface 20c or the side surface 20f of the storage portion 20b of the housing 20 and the vibration detection unit 26, one end thereof may be connected to the housing, and the other end may be connected to the vibration detection unit 26. ..
  • the magnet may maintain the contact between the vibration detection unit 26 and the housing 20.
  • the magnet may maintain the contact between the vibration detection unit 26 and the convex portion 20d, it is possible to suppress unintended noise, for example, noise generated by the vibration detection unit 26 and the convex portion 20d repeating contact and separation. can.
  • the piezoelectric plate 36 is attached to the outer peripheral edge side portion of the diaphragm 32 via a ring-shaped vibration transmission member 40. Vibration is transmitted.
  • the embodiments of the present invention are not limited to this.
  • FIG. 14 is a cross-sectional view of another example vibration detection unit.
  • the vibration transmission member 540 is not a ring shape but a columnar shape. Further, the vibration transmission member 540 contacts the central portion of the diaphragm 32 and the central portion of the piezoelectric plate 36.
  • the piezoelectric plate support member 538 that supports the piezoelectric plate 36 has a ring shape that contacts the outer peripheral edge side portion of the piezoelectric plate 36.
  • the vibration-electric conversion device that converts the vibration of the diaphragm 32 into an electric signal is the piezoelectric plate 36.
  • the vibration-electric conversion device may be a piezoelectric film, a condenser microphone, a MEMS microphone, or the like.
  • the vibration-electric conversion device does not need to come into contact with the diaphragm 32, and therefore does not necessarily need to be provided in the vibration detection unit 26.
  • the bioacoustic sensor of the embodiment according to the present invention is provided in a housing, a diaphragm provided on the housing and having a contact surface in contact with the living body, and a diaphragm provided on the housing.
  • a living body having a vibration-electric conversion device that converts the vibration of the vibration into an electric signal, and the diaphragm is provided on the housing so as to have a fulcrum at a fixed position and swing around the fulcrum. It is an acoustic sensor.
  • the present invention is applicable to a device for measuring sounds (vibrations) generated from a living body such as heart sounds.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

生体音響センサは、筺体と、筺体に設けられ、生体に接触する接触面を備える振動板と、筺体に設けられ、振動板の振動を電気信号に変換する振動電気変換デバイスとを有する。振動板が、一定位置の支点を備え、その支点を中心にして揺動するように筺体に設けられている。

Description

生体音響センサおよびそれを備えた聴診器
 本発明は、例えば心音などの生体が発する振動を測定する生体音響センサおよびそれを備える聴診器に関する。
 例えば、特許文献1には、生体に接触させて該生体からの発生音を集音する電子聴診器が開示されている。この電子聴診器は、マイクロフォンを備えて生体に接触する集音部と、集音部を姿勢変更可能に保持する保持部とから構成されている。具体的には、保持部は、ばねやゴムなどの弾性部材を介して集音部を保持することにより、その集音部を姿勢変更可能に保持する。その結果、集音部の接触面が生体に密着する。
特開2015-146991号公報
 しかしながら、特許文献1に記載された電子聴診器の場合、生体から電子聴診器に伝達される発生音、すなわち振動が弾性部材によって吸収されて減衰される。その結果、小さな発生音を聴診できない可能性がある。
 そこで、本発明は、生体の振動を測定する生体音響センサにおいて、生体から伝達された振動の減衰を抑制することを課題とする。
 上記技術的課題を解決するために、本発明の一態様によれば、
 筐体と、
 前記筺体に設けられ、生体に接触する接触面を備える振動板と、
 前記筺体に設けられ、前記振動板の振動を電気信号に変換する振動電気変換デバイスと、を有し、
 前記振動板が、一定位置の支点を備え、前記支点を中心にして揺動するように前記筺体に設けられている、生体音響センサが提供される。
 また、本発明の別態様によれば、
 前記生体音響センサと、
 前記生体音響センサの振動電気変換デバイスからの電気信号に基づいて駆動するスピーカーと、
 前記生体音響センサと前記スピーカーとを内蔵するチェストピースと、
 前記チェストピースに接続され、前記スピーカーの音声を外部に出力するイヤーチップと、を有する、聴診器が提供される。
 本発明によれば、生体の振動を測定する生体音響センサにおいて、生体から伝達された振動の減衰を抑制することができる。
本発明の実施の形態1に係る生体音響センサを備えた聴診器の斜視図 カバー部材が装着された状態のチェストピースの斜視図 カバー部材が取り外された状態のチェストピースの斜視図 カバー部材が取り外された状態のチェストピースの断面図 一例の振動検出ユニットの断面図 一例の振動検出ユニットの分解斜視図 一例の圧電板の詳細を示す斜視図 聴診器の制御系を示すブロック図 振動検出ユニットが傾いた状態の生体音響センサの断面図 実施例および比較例のPZT特性図 実施例の生体音響センサの概略図 比較例の生体音響センサの概略図 本発明の実施の形態2に係る生体音響センサの断面図 本発明の実施の形態3に係る生体音響センサの断面図 実施の形態3に係る生体音響センサの上面図 本発明の実施の形態4に係る生体音響センサの断面図 別例の振動検出ユニットの断面図
 本発明の一態様の生体音響センサは、筐体と、前記筺体に設けられ、生体に接触する接触面を備える振動板と、前記筺体に設けられ、前記振動板の振動を電気信号に変換する振動電気変換デバイスと、を有し、前記振動板が、一定位置の支点を備え、前記支点を中心にして揺動するように前記筺体に設けられている。
 この態様によれば、生体の振動を測定する生体音響センサにおいて、生体から伝達された振動の減衰を抑制することができる。
 例えば、生体音響センサは、前記振動板を含む振動検出ユニットを有し、前記振動検出ユニットが、前記筺体に対して一定位置の支点を中心にして揺動するように、前記筺体に支持されてもよい。
 例えば、前記振動検出ユニットおよび前記筺体の一方に凸状部が設けられているとともに、他方に前記凸状部の先端に対して接触し、前記先端を支点にして揺動する凹状部が設けられてもよい。
 前記筺体が前記振動検出ユニットを凸状部の先端とその先端に接触する凹状部を介して支持する場合、生体音響センサは、前記振動検出ユニットを前記筺体に向かって付勢し、前記振動検出ユニットと前記筺体との間の接触を維持する付勢部材を有してもよい。これにより、筺体と振動検出ユニットの接触を維持することができる。
 例えば、前記振動検出ユニットが、ボールジョイントを介して、前記筺体に支持されてもよい。
 例えば、生体音響センサが、前記振動検出ユニットを前記振動板の接触面に平行な第1の揺動中心線を中心にして揺動可能に支持する中間支持体を有し、前記筺体が、前記振動板の接触面に対して平行であって且つ前記第1の揺動中心線に対して直交する第2の揺動中心線を中心にして揺動可能に、前記中間支持体を支持してもよい。
 例えば、前記筺体が、前記振動検出ユニットを格納する凹状の格納部を備え、前記格納部の底面に、前記振動検出ユニットが最大に傾いたときに当該振動検出ユニットとの接触を回避する凹部を備えてもよい。これにより、凹部がない状態で接触を回避する場合に比べて、生体音響センサのサイズを小さくすることができる。
 例えば、前記振動電気変換デバイスが、前記振動検出ユニットに設けられてもよい。
 例えば、前記振動電気変換デバイスが圧電板であって、前記振動検出ユニットが、前記圧電板を支持するベース部材と、前記ベース部材に設けられ、前記圧電板に対して前記接触面の法線方向に間隔をあけて対向した状態で、前記振動板を支持する振動板支持部材と、前記振動板と前記圧電板との間に配置され、前記法線方向に前記振動板と前記圧電板とに接触し、前記振動板の振動を前記圧電板に伝達する振動伝達部材と、を含んでもよい。
 例えば、前記振動電気変換デバイスが前記筺体に固定された圧電板であって、前記振動板が凸状部を備え、前記振動板が、前記凸状部の先端が前記圧電板に接触した状態で、前記凸状部の先端を支点として揺動してもよい。
 例えば、生体音響センサが、前記振動電気変換デバイスから出力された電気信号に含まれるノイズを除去するフィルター回路を有してもよい。
 また、本発明の別態様の聴診器は、前記生体音響センサと、前記生体音響センサの振動電気変換デバイスからの電気信号に基づいて駆動するスピーカーと、前記生体音響センサと前記スピーカーとを内蔵するチェストピースと、前記チェストピースに接続され、前記スピーカーの音声を外部に出力するイヤーチップと、を有する。
 この態様によれば、生体の発生音(振動)を聴診する聴診器において、生体から伝達された振動の減衰を抑制することができる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
 図1は、本発明の実施の形態1に係る生体音響センサを備えた聴診器の斜視図である。
 図1に示すように、本実施の形態1に係る聴診器10は、いわゆるデジタル聴診器であって、先端にイヤーチップ12がそれぞれ取り付けられた2つの耳管14と、2つの耳管14に接続されたY字チューブ16と、Y字チューブ16に接続されたチェストピース18とを有する。本実施の形態1に係る生体音響センサは、チェストピース18に組み込まれている。
 図2Aは、カバー部材を装着した状態のチェストピースの斜視図である。また、図2Bは、カバー部材を取り外した状態のチェストピースの斜視図である。そして、図3は、カバー部材を取り外した状態のチェストピースの断面図である。なお、図に示すX-Y-Z直交座標系は、発明の理解を容易にするためのものであって、発明を限定するものではない。
 図2A~図3に示すように、チェストピース18は、例えば円柱状の筐体20を有する。筐体20は、生体(例えば人間)と接触する接触面20aを備える。なお、本実施の形態1の場合、接触面20aは、図1に示すように、シリコン材料などから作製されたカバー部材22によって覆われている。この場合、接触面20aはカバー部材22を介して生体に接触する。これに代わって、接触面20aは、生体に直接接触してもよい。
 本実施の形態1の場合、生体音響センサ24は、筐体20に複数の構成要素を組み込むことによって作製されている。
 具体的には、図3に示すように、本実施の形態1の場合、生体音響センサ24は、筐体20(その一部)と、筺体20に支持された振動検出ユニット26とを有する。筐体20の接触面20aには、振動検出ユニット26を格納する凹状の格納部20bが形成されている。その格納部20bに、一部が接触面20aから突出した状態で、振動検出ユニット26は格納されている。なお、本実施の形態1の場合、振動検出ユニット26を格納した格納部20bは、弾性変形可能な材料、例えばエラストマ樹脂材料から作製されたフィルムシール28によって覆われている。フィルムシール28は、筺体20の接触面20aに接着するとともに、振動検出ユニット26にも接着する。このフィルムシール28を介して、筺体20は、振動検出ユニット26を支持し続ける。なお、フィルムシール28は、格納部20bへの異物侵入を防止する役割もする。
 図4は、一例の振動検出ユニットの断面図である。また、図5は、一例の振動検出ユニットの分解斜視図である。
 図4および図5に示すように、振動検出ユニット26は、ベース部材30、振動板32、振動板支持部材34、圧電板36、圧電板支持部材38、および振動伝達部材40を有する。振動検出ユニット26において、これらの構成要素は、振動板32の接触面32aの法線方向(Z軸方向)に並んで配置されている。
 振動検出ユニット26のベース部材30は、変形しにくい材料、例えば金属材料から作製された剛体である。本実施の形態1の場合、ベース部材30は、中央部30aと、振動板32の接触面32aの法線方向(Z軸方向)に対して直交する方向(X軸方向およびY軸方向)に中央部30aから延在する4本のビーム部30bとを備える。
 また、図4に示すように、ベース部材30の中央部30aの裏面(圧電板36と対向する面に対して反対側の面)には、凹状部30cが形成されている。凹状部30cは、例えば、湾曲した凹面で構成される底面を備える有底穴である。
 このベース部材30の凹状部30cは、図3に示すように、筺体20の格納部20bの底面20cの中央に形成された凸状部20dの先端に対して揺動可能に接触する。凸状部20dは、例えば、円錐状の突起である。また例えば、凹状部30cの凹面状の底面の曲率に比べて大きい曲率を、凸状部20dの先端が備える。これにより、詳細は後述するが、ベース部材30、すなわち振動検出ユニット26は、凸状部20dの先端を実質的に支点として天秤のように揺動可能である。
 なお、これに代わって、ベース部材30に凸状部を設け、その凸状部の先端と揺動可能に接触する凹状部を筺体20に設けてもよい。
 また、振動検出ユニット26(すなわちベース部材30)と筺体20の接触は、弾性材料から作製されたフィルムシール28が振動検出ユニット26を筺体20に向かって付勢することによって維持されている。
 振動検出ユニット26の振動板32は、生体に接触する接触面32aと、その接触面32aに対して反対側の裏面26bとを備える。本実施の形態1の場合、接触面32aは、図2A~図3Bに示すように、カバー部材22とフィルムシール28とを介して生体に接触する。また、振動板32は、実質的に圧縮変形しない材料、例えば金属材料や硬質樹脂から作製された円盤状の部材である。振動板32は、接触面32aに接触する生体の振動を受けて振動する。
 振動検出ユニット26の振動板支持部材34は、本実施の形態1の場合、例えば樹脂材料から作製されたリング状の剛体である。振動板支持部材34は、ベース部材30の4本のビーム部30bそれぞれの先端部上に配置される。また、振動板支持部材34は、振動板32の裏面26bにおける外周縁側部分を支持する。
 本実施の形態1の場合、振動板支持部材34は、振動板32の接触面32aの法線方向(Z軸方向)に弾性変形可能な弾性部材42を介して、振動板32を支持している。弾性部材42は、例えばスポンジ材料から作製されている。このような弾性部材42により、振動板支持部材34は、接触面32aの法線方向に振動可能に振動板32を支持している。なお、振動板支持部材34を弾性材料から作製する場合、この弾性部材42を省略することができる。
 振動検出ユニット26の圧電板36は、振動板32の振動を対応する電気信号に変換する振動電気変換デバイスである。具体的には、圧電板36は、振動によって変形し、その変形量に対応する電気信号を生成する。本実施の形態1の場合、圧電板36は円盤状である。
 図6は、一例の圧電板の詳細を示す斜視図である。
 図6に示すように、圧電板36は、例えば、ピエゾ素子44と、ピエゾ素子44を挟持する第1および第2の電極46、48とを備える。また、圧電板36は、第1の電極46に電気的に接続された第1の信号線50と、第2の電極48に電気的に接続された第2の信号線52とを備える。圧電板36が変形することにより、すなわちピエゾ素子44が変形することにより、第1の電極46と第2の電極48との間の電位差が変化する。その電位差に対応する電気信号(電流)が、第1および第2の信号線50、52を介して外部に出力される。
 図4および図5に戻り、振動検出ユニット26の圧電板支持部材38は、ベース部材30の中央部30aに設けられ、圧電板36を支持する。すなわち、ベース部材30は、圧電板支持部材38を介して、圧電板36を支持する。本実施の形態1の場合、圧電板支持部材38は、振動板32の接触面32aの法線方向(Z軸方向)視で、圧電板36の中央部分を支持する。なお、圧電板支持部材38は、ベース部材30と異なる部材でなくてもよく、ベース部材30の一部分であってもよい。
 振動検出ユニット26の振動伝達部材40は、振動板32の振動を圧電板36に伝達するための部材である。具体的には、振動板32は、圧電板36に対して接触面32aの法線方向(Z軸方向)に間隔をあけて対向した状態で、振動板支持部材34によって支持されている。振動伝達部材40は、振動板32と圧電板36との間に配置され、法線方向に振動板32と圧電板36とに接触する。
 また、振動伝達部材40は、本実施の形態1の場合、弾性材料、例えばスポンジ材料から作製されたリング状の部材である。リング状の振動伝達部材40は、振動板32の接触面32aの法線方向(Z軸方向)視で、圧電板36の外周縁側部分と接触する。すなわち、法線方向視で、振動伝達部材40は、圧電板支持部材38に対してオーバーラップしない。
 このような振動伝達部材40によれば、圧電板36は、振動伝達部材40を介して振動板32と接触する。振動板32が生体の振動をその接触面32aで受けて振動すると、その振動を圧電板36の外周縁側部分に伝達する。その圧電板36は、その中央部分が圧電板支持部材38によって支持されているために、外周縁側部分が中央部分に対して変位するようにたわみ変形を繰り返す。その結果、圧電板36は、振動板32の振動に対応する電気信号を発生することができる。
 ここまでは、聴診器10のチェストピース18、すなわち生体音響センサ24の構造について説明してきた。ここからは、聴診器10の制御系について説明する。
 図7は、聴診器の制御系を示すブロック図である。
 図7に示すように、聴診器10は、生体音響センサ24に加えて、生体音響センサ24(すなわち圧電板36)からの電気信号を処理するMPU(マイクロプロセッサユニット)60を有する。また、MPU60は、電気信号をアナログ-デジタル変換するA/D変換部60aを備える。
 MPU60にデジタル処理された生体音響センサ24からの電気信号は、アンプ62およびスピーカー64によって音声に変換され、その音声がY字チューブ16、耳管14、およびイヤーチップ12を介して出力される。聴診器10のチェストピース18(すなわち振動板32の接触面32a)が生体の心臓近くの皮膚に接触しているとき、心音が出力される。
 また、MPU60によってデジタル処理された生体音響センサ24からの電気信号は、データとして、記憶デバイス66に記憶される。例えば、記憶デバイス66は、聴診器10のチェストピース18に対して着脱可能なメモリーカードである。聴診器10のチェストピース18(すなわち振動板32の接触面32a)が生体の心臓近くの皮膚に接触しているとき、心音データが記憶される。
 さらに、MPU60は、無線通信モジュール68を介して、外部の装置(例えばコンピュータ)に対して、デジタル処理した生体音響センサ24からの電気信号をリアルタイムに送信可能に構成されている。また、MPU60は、記憶デバイス66に記憶されている心音データなどのデータを、無線通信モジュール68を介して外部の装置に送信するように構成されている。なお、無線通信モジュール68は、例えば、Bluetooth(登録商標)などのデジタル無線通信規格に準拠する無線通信モジュールである。
 このようなMPU60を操作するために、図1に示すように、複数の操作ボタン70がチェストピース18の筐体20に設けられている。操作ボタン70を操作することにより、例えば聴診器10の起動するまたは停止する。また、操作ボタン70を操作することにより、デジタル処理された生体音響センサ24からの電気信号を無線通信モジュール68を介して送信するモード、電気信号を音声に変換してイヤーチップ12を介して出力するモードなどのモード選択が行われる。
 また、MPU60を駆動するためのバッテリ72がチェストピース18に搭載されている。なお、MPU60、アンプ62、スピーカー64、記憶デバイス66、無線通信モジュール68、およびバッテリ72は、図3に示す筐体20の内部空間20eに収納されている。
 なお、図7に示すように、生体音響センサ24は、圧電板36から出力された電気信号に含まれるノイズを除去するフィルター回路74を有してもよい。
 本実施の形態1の場合、生体音響センサ24は、聴診器10に搭載されて使用される。そのため、生体音響センサ24が検出すべき振動の周波数の範囲は、ある程度特定される。特定の周波数の範囲以外の周波数のノイズを除去するために、フィルター回路74は、例えば、概ね10Hz以下の周波数のノイズを除去するHPF(High Pass Filter)76と、HPF76を通過した信号を増幅する増幅器78と、増幅器78を通過した1~2kHzの周波数のノイズを除去するLPF(Low Pass Filter)80とを含んでいる。
 HPF76は、聴診器10を使用する診察者がチェストピース18を生体の皮膚表面に押し当てる押圧力の変化によって生じる、概ね10Hz以下の周波数のノイズを除去する。LPF80は、診察者がチェストピース18を生体との接触を維持しつつ移動させたときに生じる擦過音に由来する、2kHz程度以上の周波数のノイズを除去する。これにより、生体音響センサ24は、検出すべき周波数の振動を検出し、対応する電気信号を出力することができる。
 ここからは、生体音響センサ24の動作について説明する。ここでは、その説明のために、聴診器10を用いて生体(例えば人間)の心音を聴診するためにチェストピース18の筐体20の接触面20aが心臓近くの皮膚表面に接触している例を挙げる。
 チェストピース18の筺体20の接触面20aが生体の皮膚表面に接触すると、生体音響センサ24の振動検出ユニット26が揺動し、振動検出ユニット26における振動板32の接触面32aが皮膚表面に密着する。このことについて、図8を参照しながら具体的に説明する。
 図8は、振動検出ユニットが傾いた状態の生体音響センサの断面図である。
 図8に示すように、生体音響センサ24の振動検出ユニット26は、筺体20の凸状部20dの先端によって支持されているために、その先端を実質的に支点Pとして揺動可能である。それにより、チェストピース18の筺体20の接触面20aが生体の心臓近くの皮膚表面に接触すると振動検出ユニット26が揺動し、振動板32の接触面32aがその全体にわたって皮膚表面に密着する。その結果、生体の心臓の拍動(振動)が、振動板32の接触面32aに効率的に伝達される。
 心臓の拍動により、生体音響センサ24の振動板32が振動する。その振動は、圧電板36に振動伝達部材40を介して伝達される(図4参照)。その伝達された振動により、圧電板36は変形を繰り返し、振動に対応する電気信号をMPU60に出力する。
 また、生体の振動は、大きく減衰することなく、振動検出ユニット26の振動板32に伝達する。すなわち、生体からの振動エネルギが、大きく損失することなく、振動板32に伝達される。
 具体的に説明すると、振動検出ユニット26は、図3および図8に示すように、筺体20の凸状部20dの先端を実質的に支点Pとして揺動可能に、筺体20に支持されている。その支点Pは、凸状部20dの先端であるので、実質的に筺体20に対して一定の位置に存在する。なお、「支点が一定の位置に存在する」ことは、支点が実質的に移動しないことを意味し、さらに言えば、支点を構成する2つの対象(本実施の形態1の場合には、振動検出ユニット26と凸状部20d)の互いの接触箇所は揺動中に変わるものの、揺動する対象の揺動中心が残りの対象に対する実質的に固定の位置に存在して移動しないことを意味する。
 また、診察者が筺体20(チェストピース18)を生体の皮膚表面に接触した状態で振動しないように保持しているので、支点Pが生体の皮膚表面の振動に対して独立している、すなわち支点Pが生体の振動に追随しない。そのため、振動検出ユニット26は、皮膚表面の振動により、皮膚表面と支点Pとの間で圧縮応力を繰り返し受ける。すなわち、生体からの振動エネルギが、振動検出ユニット26内の振動板32の変位のみに使用され、筺体20を介して外部に振動エネルギが逃げることがない。その結果、生体から伝達された振動の減衰が抑制される。
 この振動板32を含む振動検出ユニット26が一定位置の支点Pを中心にして揺動することの効果について、図9を参照しながら説明する。
 図9は、実施例および比較例のPZT特性図である。また、図10Aは、実施例の生体音響センサの概略図である。そして、図10Bは、比較例の生体音響センサの概略図である。
 図10Aに示すように、実施例の生体音響センサ24においては、振動検出ユニット26が、筺体20の凸状部20dの先端に支持されている。そのため、振動検出ユニット26は、凸状部20dの先端を実質的に支点Pとして揺動する。また、ばね28(フィルムシール)によって振動検出ユニット26と凸状部20dとの接触が維持されている。
 実施例と異なり、比較例の生体音響センサ124においては、振動検出ユニット26が、ばねなどの弾性部材190を介して筺体120に支持されている。弾性部材190が変形することにより、振動検出ユニット26の位置および姿勢が変化する。
 実施例の生体音響センサ24と比較例の生体音響センサ124それぞれの振動検出ユニット26の振動板32に加振力Fを加え、その加振力Fの周波数を変更し、PZT特性の周波数特性を調べた。その結果が図9に示されている。なお、図9には、参考例として、振動検出ユニット26を筺体に固定して加振力を加えたときのPZT特性の周波数特性を示している。
 図9に示すように、聴診器10に搭載されて使用されるときの実用的な周波数の範囲(数100Hz以下)において、実施例と参考例は、感度の周波数特性は概ね一致する。一方、比較例の感度は、実施例や参考例に比べて低い。これは、振動検出ユニット26の振動板32に加えられた加振力F(振動エネルギ)の一部が弾性部材190に吸収されるためである。このような図9に示す結果から、実施例、すなわち振動検出ユニット26が一定位置の支点Pを中心にして揺動することにより、生体の振動エネルギが振動検出ユニット26内の振動板32の振動に効率的に使用されることがわかる。
 なお、生体の振動エネルギが振動板32の振動に使用されるためには、筺体20および振動検出ユニット26が、振動を吸収しない、すなわち振動によって変形しない剛体である必要がある。例えば、振動板32が数100gfの押圧力で生体の心臓近くの皮膚表面に接触する場合、心臓の鼓動の変位(数10~数100μmの変位)に対して変形しない剛性が必要である。この場合、筺体20および振動検出ユニット26は、一例として、約10N/mm以上の曲げ剛性を備えるのが好ましく、そのような曲げ剛性を備える材料から作製される、および/またはそのような曲げ剛性を構造によって持つように作製される。そのような曲げ剛性を備える材料としては、本実施の形態1のように聴診器に使用される場合には軽量な材料が好ましく、例えば、アルミ、SUSなどの金属材料、PC、PEEK材などのエンジニアリングプラスチック材料、ABS、PAなどの硬質プラスチック材料が挙げられる。また、聴診器に適して曲げ剛性を備える構造としては、例えば、エンボス構造、ハニカム構造などの軽量で高強度の構造が挙げられる。
 また、振動検出ユニット26を揺動可能に維持するために、また、振動検出ユニット26の振動板32から筺体20への振動の伝達を抑制するために、振動検出ユニット26は、筺体20の凸状部20dの先端との接触を除いて、筺体20との接触を回避する必要がある。
 本実施の形態1の場合、振動検出ユニット26は、図8に実線で示すように、最大に傾いたときに、筺体20の格納部20bの底面20cおよび側面20fとの接触を回避する必要がある。
 図8に示すように、筺体20の接触面20aの法線方向と振動検出ユニット26(振動板32)の接触面32aの法線方向が平行である自然状態(二点鎖線)から、振動検出ユニット26は、最大で角度θだけ傾くとする。この最大傾き角度θは、例えば±3°である。また、最大傾き角度θは、本実施の形態1の場合、図3に示すように、振動検出ユニット26を筺体20に向かって付勢するフィルムシール28の弾性力によって決まる。なお、振動検出ユニット26の自然状態は、振動検出ユニット26の接触面32aに外力が作用していない状態を言う。
 角度θで振動検出ユニット26が傾くと、支点Pから最も遠い振動検出ユニット26における振動板32側の遠位端E1(すなわち振動板32の接触面32aにおける外周縁)が、筺体20の接触面20aの法線方向にΔHだけ変位する。この変位量ΔHは、接触面32aに平行な方向についての支点Pと遠位端との間の距離(すなわち振動板32の半径)をRとすると、下記の数式1のように表すことができる。
Figure JPOXMLDOC01-appb-M000001
 距離Rが10mmである場合、変位量ΔHは、約0.52mmであるのが好ましい。
 なお、支点Pから最も遠い振動検出ユニット26における遠位端E1が変位量ΔHで筺体20の格納部20bの底面20cから離れる方向に変位すると、遠位端E1に対して支点Pを挟んで反対側の遠位端E2が反対方向に同一の変位量ΔHで変位する。このとき、遠位端E2と底面20cとの接触を回避する必要がある。そのために、自然状態(二点鎖線)の振動検出ユニット26における遠位端E2と底面20cとの距離は、ΔHに比べて大きくする必要がある。あるいは、振動検出ユニット26が最大に傾いたときに、振動検出ユニット26(本実施の形態1の場合、ベース部材30)との接触を回避する、例えば溝などの凹部20gを格納部20bの底面20cに設けてもよい。凹部20gを設けることにより、設けない場合に比べて、筺体20の格納部20bの深さを小さくすることができ、その結果として筺体20のサイズを小さくすることができる。
 また、振動検出ユニット26が傾いたときに、その遠位端E1が筐体20の格納部20bの側面20fとの接触を回避する必要がある。すなわち、筺体20の格納部20bの内径Rinが、最大に傾いたとき(角度θで傾いたとき)の振動検出ユニット26における遠位端E1と支点Pとの間の距離Lに比べて大きい必要がある。この距離Lは、下記の数式2のように表すことができる。
Figure JPOXMLDOC01-appb-M000002
 数式2において、Dは、支点Pと振動検出ユニット26(振動板32)の接触面32aとの間の距離である。
 筺体20の格納部20bの側面20fと振動検出ユニット26との接触を回避するためには、格納部20bの内径Rinが距離Lに比べて大きい必要がある。製造上のバラツキを考慮すると、内径Rinと距離Lとの差は、0.5~1mmであるのが好ましい。
 以上のような本実施の形態1によれば、生体の振動を測定する生体音響センサにおいて、生体から伝達された振動の減衰を抑制することができる。
(実施の形態2)
 本実施の形態2に係る生体音響センサは、筺体による振動検出ユニットの支持の形態について、上述の実施の形態1に係る生体音響センサと異なる。したがって、異なる点を中心に、本実施の形態2に係る生体音響センサについて説明する。
 図11は、本発明の実施の形態2に係る生体音響センサの断面図である。
 図11に示すように、本実施の形態2に係る生体音響センサ224において、振動検出ユニット26は、ボールジョイント292を介して、筺体220に支持されている。この場合、振動検出ユニット26は、ボールジョイント292のボール部292aの中心を、支点として揺動する。ボールジョイント292のボール部292aの中心は、筺体220に対して実質的に一定の位置に存在する。
 本実施の形態2によれば、上述の実施の形態1と同様に、生体の振動を測定する生体音響センサにおいて、生体から伝達された振動の減衰を抑制することができる。
(実施の形態3)
 本実施の形態3に係る生体音響センサは、筺体による振動検出ユニットの支持の形態について、上述の実施の形態1に係る生体音響センサと異なる。したがって、異なる点を中心に、本実施の形態3に係る生体音響センサについて説明する。
 図12Aは、本発明の実施の形態3に係る生体音響センサの断面図である。また、図12Bは、本実施の形態3に係る生体音響センサの上面図である。
 図12Aおよび図12Bにおいて、本実施の形態3に係る生体音響センサ324において、振動検出ユニット26は、中間支持体394を介して、筺体320に支持されている。
 中間支持体394は、振動検出ユニット26の振動板32の接触面32aの法線方向(Z軸方向)視で、振動検出ユニット26を囲むリング状の部材である。また、中間支持体394は、振動検出ユニット26を、接触面32aに平行な第1の揺動中心線C1を中心にして揺動可能に支持している。具体的には、中間支持体394から接触面32aに平行に延在する一対の支持ピン396を介して、中間支持体394は振動検出ユニット26を揺動可能に支持する。
 筺体320は、振動板32の接触面32aに対して平行であって且つ第1の揺動中心線C1に対して直交する第2の揺動中心線C2を中心にして揺動可能に、中間支持体394を支持する。具体的には、筺体320から接触面32aに平行に延在する一対の支持ピン398を介して、筺体320は中間支持体394を支持する。
 このような中間支持体394により、第1および第2の揺動中心線C1、C2の交点が支点Pとして実質的に機能し、振動検出ユニット26は、その支点Pを中心として揺動する。この第1および第2の揺動中心線C1、C2の交点は、筺体320に対して一定の位置に存在する。
 なお、本実施の形態3の場合、筺体320に対して中間支持体394を介して振動検出ユニット26が取り付けられているので、フィルムシール28を省略することも可能である。ただ、筺体320への異物の侵入を防止する必要がある場合、フィルムシール28を設けてもよい。
 本実施の形態3によれば、上述の実施の形態1と同様に、生体の振動を測定する生体音響センサにおいて、生体から伝達された振動の減衰を抑制することができる。
(実施の形態4)
 上述の実施の形態1~3の場合、振動板32は、筺体に対して一定位置の支点を中心にして揺動する振動検出ユニット26に設けられている。その結果、振動板32は、間接的に支点を備え、その支点を中心にして揺動し、生体の皮膚表面に密着することができる。これと異なり、本実施の形態4に係る生体音響センサにおいて、振動板は、このような振動検出ユニットに設けられていない。
 図13は、本発明の実施の形態4に係る生体音響センサの断面図である。
 図13に示すように、本実施の形態4に係る生体音響センサ424において、振動板432は、生体とフィルムシール28を介して接触する接触面432aに対して反対側の裏面434bの中央に、例えば、逆円錐状の凸状部434cを備える。その凸状部434cの先端は、筺体420に固定された圧電板36に接触する。また、振動板432は、圧電板36との接触を維持するために、弾性材料から作製されたフィルムシール28によって圧電板36に向かって付勢されている。
 このような構成によれば、振動板432は、その凸状部434cの先端を支点として揺動する。振動板432は、自身が振動するので、その支点は筺体に対して厳密には一定位置にない。しかしながら、凸状部434cの先端が圧電板36に対して接触し続けるため、支点は圧電板36に対しては一定位置に存在する。すなわち、振動板432は、圧電板36に対して一定の位置に存在する支点を直接的に備え、その支点を中心にして揺動可能に、筺体420に設けられている。
 本実施の形態4によれば、上述の実施の形態1と同様に、生体の振動を測定する生体音響センサにおいて、生体から伝達された振動の減衰を抑制することができる。
 以上、複数の実施の形態1~4を挙げて本発明を説明したが、本発明の実施の形態はこれらに限らない。
 例えば、上述の実施の形態1の場合、図3に示すように、振動検出ユニット26と筺体20の凸状部20dの先端との接触は、筺体20の接触面20aと振動板32の接触面32aとに接着されたフィルムシール28に付勢されることによって維持されている。しかしながら、振動検出ユニットを付勢する付勢部材は、フィルムシール28に限らない。例えば、筺体20の格納部20bの底面20cまたは側面20fと振動検出ユニット26との間に引っ張りばねを配置し、その一端を筺体に接続し、他端を振動検出ユニット26に接続してもよい。なお、付勢部材に代わって、磁石によって振動検出ユニット26と筺体20の接触が維持されてもよい。振動検出ユニット26と凸状部20dとの接触が維持されることにより、意図しない雑音、例えば振動検出ユニット26と凸状部20dが接触と離間とを繰り返すことによって発生する雑音を抑制することができる。
 また、上述の実施の形態1の場合、図4に示すように、振動検出ユニット26において、圧電板36は、その外周縁側部分に、リング状の振動伝達部材40を介して、振動板32の振動が伝達される。しかしながら、本発明の実施の形態はこれに限らない。
 図14は、別例の振動検出ユニットの断面図である。
 図14に示すように、別例の振動検出ユニット526において、振動伝達部材540は、リング状ではなく、柱状である。また、振動伝達部材540は、振動板32の中央部分と圧電板36の中央部分に接触する。このような振動伝達部材540に対応するために、圧電板36を支持する圧電板支持部材538は、圧電板36の外周縁側部分と接触するリング形状を備える。これにより、図4に示す振動検出ユニット26における圧電板36と同様に、図14に示す振動検出ユニット526における圧電板36も、振動板32の振動により、外周縁側部分が中央部分に対して変位するようにたわみ変形を繰り返す。
 さらに、上述の実施の形態1の場合、振動板32の振動を電気信号に変換する振動電気変換デバイスは、圧電板36である。しかしながら、本発明の実施の形態はこれに限らない。振動電気変換デバイスは、圧電フィルム、コンデンサマイク、MEMSマイクなどであってもよい。マイクである場合、振動電気変換デバイスは、振動板32に接触する必要がなく、そのため振動検出ユニット26に必ず設ける必要もない。
 すなわち、本発明に係る実施の形態の生体音響センサは、広義には、筐体と、前記筺体に設けられ、生体に接触する接触面を備える振動板と、前記筺体に設けられ、前記振動板の振動を電気信号に変換する振動電気変換デバイスと、を有し、前記振動板が、一定位置の支点を備え、前記支点を中心にして揺動するように前記筺体に設けられている、生体音響センサである。
 以上、複数の実施の形態を挙げて本発明を説明したが、ある実施の形態に対して少なくとも1つの実施の形態を全体としてまたは部分的に組み合わせて本発明に係るさらなる実施の形態とすることが可能であることは、当業者にとって明らかである。
 本発明は、心音などの生体から発生する音(振動)を測定する機器に適用可能である。

Claims (12)

  1.  筺体と、
     前記筺体に設けられ、生体に接触する接触面を備える振動板と、
     前記筺体に設けられ、前記振動板の振動を電気信号に変換する振動電気変換デバイスと、を有し、
     前記振動板が、一定位置の支点を備え、前記支点を中心にして揺動するように前記筺体に設けられている、生体音響センサ。
  2.  前記振動板を含む振動検出ユニットを有し、
     前記振動検出ユニットが、前記筺体に対して一定位置の支点を中心にして揺動するように、前記筺体に支持されている、請求項1に記載の生体音響センサ。
  3.  前記振動検出ユニットおよび前記筺体の一方に凸状部が設けられているとともに、他方に前記凸状部の先端に対して接触し、前記先端を支点にして揺動する凹状部が設けられている、請求項2に記載の生体音響センサ。
  4.  前記振動検出ユニットを前記筺体に向かって付勢し、前記振動検出ユニットと前記筺体との間の点接触を維持する付勢部材を有する、請求項3に記載の生体音響センサ。
  5.  前記振動検出ユニットが、ボールジョイントを介して、前記筺体に支持されている、請求項2に記載の生体音響センサ。
  6.  前記振動検出ユニットを前記振動板の接触面に平行な第1の揺動中心線を中心にして揺動可能に支持する中間支持体を有し、
     前記筺体が、前記振動板の接触面に対して平行であって且つ前記第1の揺動中心線に対して直交する第2の揺動中心線を中心にして揺動可能に、前記中間支持体を支持する、請求項2に記載の生体音響センサ。
  7.  前記筺体が、前記振動検出ユニットを格納する凹状の格納部を備え、
     前記格納部の底面に、前記振動検出ユニットが最大に傾いたときに当該振動検出ユニットとの接触を回避する凹部を備える、請求項2から6のいずれか一項に記載の生体音響センサ。
  8.  前記振動電気変換デバイスが、前記振動検出ユニットに設けられている、請求項2から7のいずれか一項に記載の生体音響センサ。
  9.  前記振動電気変換デバイスが、圧電板であって、
     前記振動検出ユニットが、
     前記圧電板を支持するベース部材と、
     前記ベース部材に設けられ、前記圧電板に対して前記接触面の法線方向に間隔をあけて対向した状態で、前記振動板を支持する振動板支持部材と、
     前記振動板と前記圧電板との間に配置され、前記法線方向に前記振動板と前記圧電板とに接触し、前記振動板の振動を前記圧電板に伝達する振動伝達部材と、を含む、請求項8に記載の生体音響センサ。
  10.  前記振動電気変換デバイスが、前記筺体に固定された圧電板であって、 前記振動板が、凸状部を備え、
     前記振動板が、前記凸状部の先端が前記圧電板に接触した状態で、前記凸状部の先端を支点として揺動する、請求項1に記載の生体音響センサ。
  11.  前記振動電気変換デバイスから出力された電気信号に含まれるノイズを除去するフィルター回路を有する、請求項1から10のいずれか一項に記載の生体音響センサ。
  12.  請求項1から11のいずれか一項に記載の生体音響センサと、
     前記生体音響センサの振動電気変換デバイスからの電気信号に基づいて駆動するスピーカーと、
     前記生体音響センサと前記スピーカーとを内蔵するチェストピースと、
     前記チェストピースに接続され、前記スピーカーの音声を外部に出力するイヤーチップと、を有する、聴診器。
PCT/JP2020/037272 2020-03-09 2020-09-30 生体音響センサおよびそれを備えた聴診器 WO2021181735A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-039669 2020-03-09
JP2020039669 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021181735A1 true WO2021181735A1 (ja) 2021-09-16

Family

ID=77671475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037272 WO2021181735A1 (ja) 2020-03-09 2020-09-30 生体音響センサおよびそれを備えた聴診器

Country Status (1)

Country Link
WO (1) WO2021181735A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162992A1 (ja) * 2022-02-24 2023-08-31 テルモ株式会社 チェストピース及び聴診器
CN117686087A (zh) * 2024-02-02 2024-03-12 山东建筑大学 一种设备振动检测装置及检测方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317637A (ja) * 1991-04-15 1992-11-09 Ube Ind Ltd 生体音響変換器
KR20030080714A (ko) * 2002-04-10 2003-10-17 주식회사 엘바이오 전자 청진기
JP2012090909A (ja) * 2010-10-28 2012-05-17 Akita Univ 生体音取得端末、電子聴診器および生体音測定装置
JP2014180308A (ja) * 2013-03-18 2014-09-29 Tokyo Menitsukusu:Kk 電子聴診器
WO2016178363A1 (ja) * 2015-05-07 2016-11-10 株式会社村田製作所 生体信号検出装置
JP2017108761A (ja) * 2015-12-14 2017-06-22 株式会社村田製作所 生体信号検出装置
JP2017519606A (ja) * 2014-04-22 2017-07-20 エイチディー メディカル インコーポレイテッド 音響的又は電子的に胸部音を検査するシステム及び方法
US20170251974A1 (en) * 2016-03-04 2017-09-07 Masimo Corporation Nose sensor
JP2018102727A (ja) * 2016-12-27 2018-07-05 オムロンヘルスケア株式会社 生体音測定装置
CN108836492A (zh) * 2018-05-04 2018-11-20 张俊铭 一种听诊器放置盒

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317637A (ja) * 1991-04-15 1992-11-09 Ube Ind Ltd 生体音響変換器
KR20030080714A (ko) * 2002-04-10 2003-10-17 주식회사 엘바이오 전자 청진기
JP2012090909A (ja) * 2010-10-28 2012-05-17 Akita Univ 生体音取得端末、電子聴診器および生体音測定装置
JP2014180308A (ja) * 2013-03-18 2014-09-29 Tokyo Menitsukusu:Kk 電子聴診器
JP2017519606A (ja) * 2014-04-22 2017-07-20 エイチディー メディカル インコーポレイテッド 音響的又は電子的に胸部音を検査するシステム及び方法
WO2016178363A1 (ja) * 2015-05-07 2016-11-10 株式会社村田製作所 生体信号検出装置
JP2017108761A (ja) * 2015-12-14 2017-06-22 株式会社村田製作所 生体信号検出装置
US20170251974A1 (en) * 2016-03-04 2017-09-07 Masimo Corporation Nose sensor
JP2018102727A (ja) * 2016-12-27 2018-07-05 オムロンヘルスケア株式会社 生体音測定装置
CN108836492A (zh) * 2018-05-04 2018-11-20 张俊铭 一种听诊器放置盒

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162992A1 (ja) * 2022-02-24 2023-08-31 テルモ株式会社 チェストピース及び聴診器
CN117686087A (zh) * 2024-02-02 2024-03-12 山东建筑大学 一种设备振动检测装置及检测方法
CN117686087B (zh) * 2024-02-02 2024-05-10 山东建筑大学 一种设备振动检测装置及检测方法

Similar Documents

Publication Publication Date Title
WO2021181735A1 (ja) 生体音響センサおよびそれを備えた聴診器
JP6100730B2 (ja) イヤホン
US9872113B2 (en) Measurement device and measurement system
EP3600056A1 (en) Haptic feedback and interface systems
JP2012152377A (ja) 体内音取得装置、及び、それを備えた電子聴診器
CN113286213A (zh) 一种振动传感器
EP1135063B1 (en) Sound pickup sensor
CN215300865U (zh) 一种振动传感器
JP5203899B2 (ja) 体内音取得装置及び体内音取得装置の周波数特性調整方法
JP2011019799A (ja) 電子聴診器
JP2013175847A (ja) 振動検出装置
US20190000392A1 (en) Electronic Blood Pressure Monitor, Blood Pressure Measuring Method, and Electronic Stethoscope
JP7367772B2 (ja) 生体音響センサおよびそれを備えた聴診器
WO2022024162A1 (ja) イヤホン
RU2611735C1 (ru) Комбинированный приемник для регистрации дыхательных звуков на поверхности грудной клетки
EP3866156A1 (en) Impact detection device and percussion instrument
JP7112489B2 (ja) 音取得装置
JP2002243539A (ja) 振動検出器
JP5257920B2 (ja) 携帯電話およびマイクロホンユニット
WO2024053227A1 (ja) 生体音検出装置
RU2801712C1 (ru) Датчик вибрации
WO2023162992A1 (ja) チェストピース及び聴診器
WO2022158436A1 (ja) ジャイロ式振動計、電子機器、および電子システム
JP4112883B2 (ja) 加速度センサ
JP6706039B2 (ja) 生体音聴診装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP