WO2021180192A1 - 浮力摆动重力自平衡组发电装置 - Google Patents

浮力摆动重力自平衡组发电装置 Download PDF

Info

Publication number
WO2021180192A1
WO2021180192A1 PCT/CN2021/080355 CN2021080355W WO2021180192A1 WO 2021180192 A1 WO2021180192 A1 WO 2021180192A1 CN 2021080355 W CN2021080355 W CN 2021080355W WO 2021180192 A1 WO2021180192 A1 WO 2021180192A1
Authority
WO
WIPO (PCT)
Prior art keywords
kinetic energy
buoyancy
power generation
generation device
buoyancy kinetic
Prior art date
Application number
PCT/CN2021/080355
Other languages
English (en)
French (fr)
Inventor
封晏
Original Assignee
封晏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010172916.0A external-priority patent/CN111550360A/zh
Application filed by 封晏 filed Critical 封晏
Publication of WO2021180192A1 publication Critical patent/WO2021180192A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/02Other machines or engines using hydrostatic thrust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention belongs to the field of new energy technology, and relates to the technology of using buoyancy to generate electricity. Specifically, it is the use of constant mountain currents, including water conservancy projects or reservoir discharges, or natural river flows with small drops, and the use of ocean tides to store water through cofferdams
  • the matched water inlet valve and water outlet valve mechanism control the water level rise and fall frequency to generate kinetic energy buoyancy swing gravity self-balancing group power generation device.
  • the Chinese patent with application number 201810382037.3 discloses a buoyant kinetic energy power generation device, which specifically relates to a device that uses constant mountain currents (including water conservancy projects or reservoir discharges) or general small river flows, or ocean tides.
  • Drive buoyancy kinetic energy power generation device Although this invention has the implementation conditions for using the above-mentioned water resources to generate electricity, it still has major shortcomings.
  • the main problem is that a single set of independent buoyancy kinetic energy power generation device needs to be equipped with a special balance weight:
  • the power cable balance weight c4 (see Chinese patent 201810382037.3) needs to be drawn one by one, which not only increases the cost of manufacturing, transportation, installation, and maintenance, but also affects the service life and may produce Security risks;
  • the amplitude amplification X-shaped equal-proportional moment lever group used to balance the buoyancy kinetic energy efficiency device has two efficiency-enhancing section balance weights b4 (see Chinese patent 201810382037.3) arranged in the column, which undoubtedly further increases the manufacturing and transportation , Installation and maintenance costs.
  • the present invention urgently proposes a new type of buoyant kinetic energy power generation device to better realize industrialization and function safely, effectively and stably.
  • the present invention not only has innovative upgrades in technology, but also in various aspects such as transmission mode, production efficiency, transportation mode, convenient and environmentally friendly construction, fast installation, cost reduction, and optimization of input-output ratio. In-depth research and innovation have been done, and power generation efficiency, safety and service life have been improved.
  • the purpose of the present invention is to overcome the above shortcomings and provide a more scientific and reasonable buoyancy swing gravity self-balancing group power generation device.
  • the device arranges two sets of buoyancy kinetic energy power generation devices of the same structure into parallel or mirrored fixed combination modules, using a wave pool
  • the inlet control valve and outlet control valve at both ends of the group alternately inject and discharge water into two adjacent fluctuating pools, so that the two sets of linked buoyancy kinetic energy generating devices will rise and fall in opposite directions, and connect the two buoyancy kinetic energy through one set
  • the transmission chain of the power generation device is associated with the lifting kinetic energy of the two buoyancy kinetic energy power generation devices, so that it uses the same gravity and reverse operation law to replace the pulling power cable balance weight c4 that must be equipped in the original technology (see Chinese patent 201810382037.3) , Work together to act on the kinetic energy input sprocket of the two-way integrated kinetic energy integration and slow release device; at the same time, it is connected to the buoyancy kinetic energy generating device A
  • the present invention proposes a buoyancy swing gravity self-balancing group power generation device, which is mainly composed of a generator, a two-way integrated kinetic energy integrated slow release device, a buoyancy kinetic energy power generation device A and a buoyancy kinetic energy power generation device B; the buoyancy kinetic energy power generation device A and the The buoyancy kinetic energy power generation device B is arranged in parallel or in a mirror image, and the buoyancy kinetic energy power generation device A and the buoyancy kinetic energy power generation device B are operated alternately and fluctuating in opposite directions;
  • the buoyancy kinetic energy power generation device A includes a bearing column and a buoyancy kinetic energy generating device, a buoyancy kinetic energy amplification device, and a buoyancy kinetic energy synergist installed on the bearing column from bottom to top.
  • the buoyancy kinetic energy generating device is installed by a wave pool, It is composed of a wave buoy in the wave pool and a water inlet control valve and a water outlet control valve that open and close linkage.
  • the center of the wave buoy is provided with a buoy column sliding lumen that is slidingly matched with the load-bearing column; the buoyancy kinetic energy
  • the amplifying device is composed of an X-shaped proportional moment lever group and a proportional moment lever pontoon connecting rod.
  • the lower end of the proportional moment lever pontoon connecting rod is hinged to the connecting ear of the wave pontoon lever group mounted on the top of the wave pontoon.
  • the X-shaped ratio The column X-shaped proportional moment lever bearing hinge point of the moment lever group is hingedly installed above the wave buoy in the lower half of the load-bearing column; the buoyancy kinetic energy synergistic device is composed of multiple sets of amplitude amplification X-shaped equal proportional moment levers
  • the group array is superimposed and hinged, that is, multiple groups of amplitude amplified X-shaped proportional moment lever groups are in a superimposed state, and the hinge points of each of the amplitude amplified X-shaped proportional moment lever groups are aligned with the X-shaped set on the load-bearing column.
  • the hinge point of the lever group is in sliding fit with the lifting chute, the top of the buoyancy kinetic energy synergist is provided with a sprocket of the amplitude amplification lever group; the structural composition of the buoyancy kinetic energy power generation device B is completely the same as that of the buoyancy kinetic energy power generation device A same;
  • the wave pool of the buoyancy and kinetic energy power generation device B and the wave pool of the buoyancy and kinetic energy power generation device A are fixedly adjacent to each other to form a wave pool group.
  • a single group of the wave pool group or multiple groups of the wave pool group arrays are arranged between the water inlet control valve and the water outlet control valve;
  • the buoyancy kinetic energy power generation device A and the buoyancy kinetic energy power generation device B drive a set of the two-way integrated kinetic energy integrated slow-release device through a common meshing link or a set of transmission chains.
  • the weight of the buoyancy kinetic energy power generation device A A column generator mounting shelf is connected between the column and the load-bearing column of the buoyancy kinetic energy power generation device B.
  • the column generator mounting shelf is used to install the generator; both ends of the transmission chain are fixedly connected to Two ends of the column generator mounting shelf, one end of the drive chain is fixed to the end of the column generator mounting shelf close to the buoyancy kinetic energy generating device A, and the other end of the drive chain is in turn
  • the buoyancy kinetic energy power generation device A and the buoyancy kinetic energy power generation device B are also connected with a left and right amplitude amplification lever group gravity balance sling or chain, the load-bearing column of the buoyancy kinetic energy power generation device A and the buoyancy kinetic energy power generation device
  • the load-bearing columns of B are connected with a column top beam, and both ends of the column top beam are respectively provided with an amplitude amplification lever group gravity balance sling pulley A and a amplitude amplification lever group gravity balance sling pulley B, the buoyancy kinetic energy power generation device
  • the top of the buoyancy and kinetic energy synergist device of A is provided with an amplitude amplification lever group gravity balance cable hanging ear A
  • the top of the buoyancy and kinetic energy synergist device of the buoyancy kinetic energy generator B is provided with an amplitude amplification lever group gravity balance cable Hanging ear B; the left and right amplitude amplification lever group gravity balance
  • the buoyancy kinetic energy power generation device B has an enlarged X-shaped equal-proportional moment lever group to cancel each other's own gravity, so as to eliminate the influence of the component's own gravity on the kinetic energy of the equipment.
  • the "left" and “right” in the "left and right amplitude amplification lever group gravity balance sling" refer to the buoyancy kinetic energy generating device A and the buoyancy kinetic energy generating device B, respectively.
  • the above-mentioned water inlet and outlet control valves preferably have an open gushing structure similar to the on/off quick-opening pipe valve, but it has a set of 90° fork inlet and outlet water gushing ports, and the opening and closing valves are rotated at 90° intervals in the circumferential direction.
  • the above-mentioned water inlet and outlet control valves are mirrored at both ends of the wave pool group, and the above-mentioned water inlet and outlet control valves are synchronized and linked. Off), and vice versa, to control the water level rise and fall of the left and right adjacent pools.
  • the linkage control of the inlet and outlet water control valves at both ends of the pool group can be realized by mechanical or intelligent electronic control, which will not be repeated here.
  • the upper part of the column generator mounting shelf is used to install the generator, and the two-way integrated kinetic energy integrated slow release device is installed below the column generator mounting shelf.
  • the installation positions of the column generator mounting shelf, the generator and the two-way integrated kinetic energy integrated slow-release device can be changed, and the specific installation positions are determined according to actual application conditions.
  • the lower ends of the load-bearing columns of the buoyancy kinetic energy power generation device A and the load-bearing columns of the buoyancy kinetic energy power generation device B are firmly installed at the bottom of the respective wave pools, and a set of column stability beams are fixedly connected with the two sets of load-bearing columns by bolts.
  • the column stabilizing beam is preferably fixed above the wave pool group.
  • a vertical column bidirectional integrated kinetic energy integrated slow-release device installation shelf can be arranged below the column generator mounting shelf, and both ends of the vertical column bidirectional integrated kinetic energy integrated slow-release device installation shelf are respectively fixed to two On the load-bearing column, the two-way integrated kinetic energy integrated slow-release device is installed on the installation shelf of the column two-way integrated kinetic energy integrated slow-release device.
  • a limit wheel A and a limit wheel B are respectively provided on both sides of the kinetic energy input sprocket, the limit wheel A is arranged close to the buoyancy kinetic energy generating device A, and the limit wheel B is close to the The buoyancy kinetic energy power generation device B is installed; when the transmission chain is installed, it passes through the limit wheel A and the limit wheel B.
  • the fixed end A of the drive chain and the fixed end B of the drive chain at both ends of the drive chain are fixedly connected to the two ends of the column generator mounting shelf.
  • the fixed end A of the transmission chain starts to travel upwards through the sprocket A of the amplitude amplification lever group at the top of the amplitude amplification X-shaped equal-ratio torque lever group (that is, the sprocket of the amplitude amplification lever group of the buoyancy kinetic energy generator A), and then passes downward.
  • the limit wheel A After the limit wheel A passes through the kinetic energy input sprocket of the two-way integrated kinetic energy integrated slow-release device, it passes upward through the limit wheel B on the side of the buoyancy kinetic energy generating device B and then continues upward through the amplitude amplification X After the amplitude amplification lever group sprocket B (that is, the amplitude amplification lever group sprocket of the buoyancy kinetic energy generator B) at the top of the equal proportional moment lever group, it is fixed downward to the fixed end B of the transmission chain of the column generator mounting shelf superior.
  • the limit wheels A and B are both limit chain wheels.
  • the transmission chain and the sprockets matched with the transmission chain can be set in a single group or a double group.
  • a buoyancy kinetic energy power generation device A'and a buoyancy kinetic energy power generation device B' are provided to replace the buoyancy kinetic energy power generation device A and the buoyancy kinetic energy power generation device B, the buoyancy kinetic energy power generation device A'and the buoyancy kinetic energy
  • the power generation device B' is fixed adjacently and operates in synchronous and reverse fluctuations;
  • the buoyancy kinetic energy power generation device A' includes a bearing column A'and a buoyancy kinetic energy generating device and a kinetic energy transmission device installed on the bearing column A'from bottom to top, and a buoyancy kinetic energy generating device of the buoyancy kinetic energy generating device A'
  • the structure of the buoyancy kinetic energy generating device of the buoyancy kinetic energy generating device A is the same; the kinetic energy transmission device is composed of a driving device and a transmission device, and the driving device is composed of a roller transmission rack and a gear meshing with the roller transmission rack.
  • the roller gear and the drive sprocket coaxially connected with the roller gear are composed of a driving sprocket, the lower end of the roller transmission rack is connected to the top end of the wave buoy through a buoy connecting shaft bolt, and the The lower part is arranged on the load-bearing column A'with a directional limit bearing set; the upper part of the roller transmission rack is installed at the center of the fixed shaft mounting bracket on the load-bearing column A'.
  • the limit bearing A matched with the drive sprocket is one-way limited and fixed, and the roller gear meshes with the roller transmission rack;
  • the buoyancy kinetic energy generating device B'and the buoyancy kinetic energy The structure of the power generation device A'is the same, and the buoyancy kinetic energy power generation device B'and the buoyancy kinetic energy power generation device A'are arranged side by side or mirrored, the load-bearing column A'of the buoyancy kinetic energy power generation device A'and the buoyancy kinetic energy power generation
  • the load-bearing column B'of the device B' is respectively provided with a set of said driving devices connected with the buoyancy kinetic energy generating device;
  • the load-bearing column A'and the load-bearing column B' are connected with the column generator mounting shelf, column fixing beams or components for installing the generator and the two-way integrated kinetic energy integrated slow-release device.
  • the transmission device includes an endless transmission chain that simultaneously connects the drive sprocket of the buoyancy kinetic energy power generation device B', the drive sprocket of the buoyancy kinetic energy power generation device A', and the bidirectional coupling
  • the kinetic energy input sprocket of a kinetic energy integrated slow-release device; the kinetic energy output sprocket of the two-way integrated kinetic energy slow-release device is matched with the pulley or gear of the generator by connecting a belt or gear.
  • a buoyancy kinetic energy power generation device A" and a buoyancy kinetic energy power generation device B" are provided to replace the buoyancy kinetic energy power generation device A and the buoyancy kinetic energy power generation device B, and the buoyancy kinetic energy power generation device A" and the buoyancy kinetic energy
  • the power generation device B" is fixed adjacently and operates in synchronous and reverse fluctuations;
  • the buoyancy kinetic energy power generation device A" includes a load-bearing column A" and a buoyancy kinetic energy generating device and a kinetic energy transmission device installed on the load-bearing column A" from bottom to top.
  • the buoyancy kinetic energy generating device of the buoyancy kinetic energy generating device A" The buoyancy kinetic energy generating device has the same structure as the buoyancy kinetic energy generating device A; the buoyancy kinetic energy generating device B" and the buoyancy kinetic energy generating device A" have the same structure, and the buoyancy kinetic energy generating device B" and the buoyancy
  • the kinetic energy power generation device A" is arranged in parallel or in a mirror image; the kinetic energy transmission device is composed of a driving device and a transmission device.
  • the driving device is composed of a transmission rod, a lever and a half-moon sprocket.
  • the top of the wave buoy of the kinetic energy power generation device B" is respectively provided with a transmission rod, and the lower end of the transmission rod is hinged on the buoy connecting shaft bolt of the wave buoy, and the upper ends of the two transmission rods are respectively connected with the upper end of the lever.
  • the two ends are hinged to form a lever force point; the buoyancy kinetic energy power generation device B" and the load-bearing column of the buoyancy kinetic energy power generation device A" are connected with a column fixing beam, and the center of the column fixing beam is installed with a lever center fixing bracket, the The half moon sprocket and the lever are fixedly connected, and the center axis fulcrums of the half moon sprocket and the lever are set on the same axis, and the center axis fulcrums of the half moon sprocket and the lever are set at the center of the lever and fixed On the stand
  • the transmission device is composed of two transmission chains fixed on both sides of the half-moon sprocket and the kinetic energy input sprocket of the two-way integrated kinetic energy slow release device.
  • the half-moon sprocket and the kinetic energy input sprocket of the two-way integrated kinetic energy integrated slow release device; the kinetic energy output sprocket of the two-way integrated kinetic energy integrated slow release device is connected to the generator through a belt or a gear
  • the belt pulleys or gears are matched.
  • a drive gear can be provided to replace the half-moon sprocket, the drive gear is installed in the middle of the lever and coaxially arranged with the lever, and the drive gear is directly integrated with the two-way integrated kinetic energy to slow release
  • the kinetic energy input sprocket of the device is matched, the kinetic energy input sprocket is also changed to the kinetic energy input gear to mesh with the driving gear to transmit power, and there is no need to provide the second transmission chain.
  • a buoyancy kinetic energy power generation device A"' and a buoyancy kinetic energy power generation device B"' are provided to replace the buoyancy kinetic energy power generation device A and the buoyancy kinetic energy power generation device B, and the buoyancy kinetic energy power generation device A"' and the The buoyancy kinetic energy power generation device B"' is fixed adjacently and operates synchronously and reversely;
  • the buoyancy kinetic energy power generation device A"' includes a load-bearing column A"' and a buoyancy kinetic energy generating device and a kinetic energy transmission device installed on the load-bearing column A"' from bottom to top.
  • the buoyancy kinetic energy power generation device A"' The buoyancy kinetic energy generating device has the same structure as the buoyancy kinetic energy generating device of the buoyancy kinetic energy generating device A;
  • the buoyancy kinetic energy generating device B"' has the same structure as the buoyancy kinetic energy generating device A"', and the buoyancy kinetic energy generating device B"' and the buoyancy kinetic energy power generation device A"' are arranged in parallel or mirrored;
  • the kinetic energy transmission device is composed of a driving device and a transmission device, the driving device is composed of a transmission rod and a lever, and the buoyancy kinetic energy power generation device A" 'And the top of the wave buoy of the buoyancy kinetic energy power generation device B"' are respectively provided with a transmission rod
  • the transmission device is composed of a transmission chain three, the middle of the transmission chain three is matched with the kinetic energy input sprocket of the two-way integrated kinetic energy slow release device, and the two ends of the transmission chain three are respectively circumscribed and positioned
  • the sprocket A and the positioning sprocket B are then respectively hinged with the lever application points at both ends of the lever;
  • the positioning sprocket A and the positioning sprocket B are respectively fixedly arranged on the buoyancy kinetic energy generating device through a positioning sprocket bracket A"' and the load-bearing column of the buoyancy kinetic energy power generation device B"';
  • the kinetic energy output sprocket of the two-way integrated kinetic energy integrated slow-release device is connected to the pulley or gear of the generator through a belt or gear.
  • a buoyancy kinetic energy power generation device A"" and a buoyancy kinetic energy power generation device B”” are set to replace the buoyancy kinetic energy power generation device A and the buoyancy kinetic energy power generation device B, and the buoyancy kinetic energy power generation device A"" and the The buoyancy kinetic energy power generation device B”" is fixed adjacently and operates synchronously and reversely;
  • the buoyancy kinetic energy power generation device A"" includes a load-bearing column A”" and a buoyancy kinetic energy generating device and a kinetic energy transmission device installed on the load-bearing column A"" from the bottom up.
  • the buoyancy kinetic energy power generation device A"" The buoyancy kinetic energy generating device has the same structure as the buoyancy kinetic energy generating device of the buoyancy kinetic energy generating device A; the buoyancy kinetic energy generating device B”" has the same structure as the buoyancy kinetic energy generating device A"", and the buoyancy kinetic energy generating device B"" and the buoyancy kinetic energy power generation device A”" are arranged in parallel or in a mirror image;
  • the kinetic energy transmission device is composed of a driving device and a transmission device;
  • the driving device is composed of a spiral groove push rod, a spiral push rod meshing convex gear ring that meshes with the spiral groove push rod, and a convex tooth ring meshing with the spiral push rod.
  • the gear ring is horizontally fixedly connected as an integral drive sprocket.
  • the lower end of the spiral groove push rod is connected to the top of the wave buoy through a buoy connecting shaft bolt, and the upper end of the spiral groove push rod engages with the spiral push rod.
  • the convex gear ring is engaged; the load-bearing column of the buoyancy kinetic energy generating device A"" and the load-bearing column of the buoyancy kinetic energy generating device B"" are respectively provided with a set of the driving devices, and the buoyancy kinetic energy generating device A""
  • a reversing positioning wheel beam is connected between the load-bearing column and the load-bearing column of the buoyancy kinetic energy power generation device B"", and the two spiral push rods are engaged with the convex gear ring respectively installed in the reversing position by a set of tapered bearing sets.
  • the two sets of tapered bearing sets are fixed on the reversing positioning wheel beam by the bearing set bead;
  • the transmission device is composed of a reversing positioning wheel and a closed multi-directional transmission chain or a transmission belt; the kinetic energy input sprocket of the two-way integrated kinetic energy integrated slow release device is respectively provided with the reversing positioning wheel ,
  • the two reversing positioning wheels are installed on the crossbeam of the reversing positioning wheel, and the reversing positioning wheel and the horizontally arranged driving sprocket are vertically turned;
  • the multi-directional transmission chain or the transmission belt is from the top
  • the two driving sprockets, the two reversing positioning wheels and the kinetic energy input sprocket form a closed-loop transmission connection; Or the gear is matched with the pulley or gear of the generator.
  • the present invention provides a buoyancy kinetic energy generating device, a buoyancy kinetic energy amplification and synergistic device, and a buoyancy swing gravity self-balancing group power generation device that acts on a two-way integrated kinetic energy integration and slow release device through a set of kinetic energy transmission devices. It has the following Actual use significance:
  • the power generation method has a wide distribution of resources and is not affected by time and weather. It is a kind of energy storage equipment, uninterrupted power generation, stable production capacity, simple and reliable technology, strong practicability, long life, low cost, and input-output energy efficiency ratio High power generation method:
  • the cut-in interface of the buoyancy swing gravity self-balancing group power generation field can be preset in the hydrological terrain section suitable for the layout, or the water storage Hubo water storage power generation can be considered, and the waterway will not be developed.
  • the long-term macro development layout of the navigable river section or the branch outflow is set up to use the through-flow water to generate electricity (the main canal can also be used to directly pass the water to generate electricity) and the comprehensive utilization of water conservancy projects to benefit future generations;
  • the artificial lake of the tidal energy storage cofferdam of the hydraulic reclamation circle can simultaneously develop seafood farming to meet the huge survival needs of the people.
  • the low-cost and unlimited resource power generation method can develop seawater desalination, solve the water demand of water-scarce areas, build a project in the north that will cooperate with the future Northwest Hongqi River project, and make a broader and balanced layout for the development of Northwest China;
  • Phalanx layout can greatly save the cost of integrated and parallel circuits
  • the present invention further researches and innovates the buoyancy swing gravity self-balancing group power generation device, and makes further improvements in various aspects such as transmission mode, production efficiency, transportation mode, convenient and environmentally friendly construction, rapid installation, cost reduction, and optimization of input-output ratio.
  • the research, improvement and development of the company can select more suitable power generation methods in different environments, which is conducive to providing clean and environmentally friendly energy for the sustainable development of human society, and protecting resources and the ecological environment.
  • Fig. 1 is a schematic front view of a power generation device of a buoyant swing gravity self-balancing group in embodiment 1 and embodiment 2 of the present invention
  • Fig. 2 is a schematic side view of the power generation device of the buoyant swing gravity self-balancing group of Fig. 1;
  • Fig. 3 is a schematic front view of the working principle and arrangement method of the power generation device of the buoyancy swing gravity self-balancing group power generation device of the present invention using constant mountain flow or small river drop flow and ocean tidal power generation;
  • FIG. 4 is a schematic top view of the working principle and layout method of the power generation device of the buoyancy swing gravity self-balancing group power generation device of the present invention using constant mountain flow or small river drop flow and ocean tidal power generation;
  • Fig. 5 is a schematic diagram of the arrangement method of the buoyancy swing gravity self-balancing group power generation device of the present invention using the small drop flow of the river to generate power;
  • Fig. 6 is a schematic diagram of a method for arranging power generation sites in the buoyancy swing gravity self-balancing group power generation device of the present invention using the topography of the river with small drop flow;
  • Fig. 7 is a schematic diagram of a cofferdam method for generating electricity by using ocean tides in a buoyancy swing gravity self-balancing group power generation device of the present invention
  • Fig. 8 is a schematic front view of a buoyancy swinging rack-and-pinion power generating device in the third embodiment of the present invention.
  • Fig. 9 is a schematic side view of the buoyancy swing rack drive type power generating device of Fig. 8;
  • Fig. 10 is a schematic front view of another arrangement of the buoyancy swing rack drive power generating device of Fig. 8;
  • FIG. 11 is a schematic front view of the buoyancy swing lever transmission chain type power generation device in the fourth embodiment of the present invention.
  • FIG. 12 is a schematic front view of the buoyancy swing lever and gear transmission type power generating device in the fifth embodiment of the present invention.
  • FIG. 13 is a schematic front view of another form of the buoyancy swing lever and gear transmission type power generating device in the fifth embodiment of the present invention.
  • FIG. 14 is a schematic front view of the buoyancy swing spiral groove push rod type power generation device in the sixth embodiment of the present invention.
  • FIG. 15 is a schematic side view of the buoyancy swing spiral groove push rod type power generation device in the sixth embodiment of the present invention.
  • 16 is a schematic diagram of the working principle of multiple arrays of the buoyancy kinetic energy power generation device of the present invention.
  • B01 Buoyancy and kinetic energy power generation device B, B100'. Wave pool B, B130. Wave float B, B223'. Amplitude amplification lever group gravity balance cable hanging ear B, B224. Amplitude amplification lever group sprocket B, B224'. Limit Wheel B, B225'. Drive chain fixed end B, B225′′. Drive chain elastic pulley B, B226. Amplifying lever group gravity balance sling pulley B, B02. Load-bearing column B;
  • Roller drive rack that is, the rack matched with the gear with rollers, or ordinary racks can be used instead;
  • Roller gear that is, each tooth is equipped with a roller, which is characterized by low resistance and can also be replaced by ordinary gears;
  • Spiral groove push rod the outer surface of the push rod has a transmission groove similar to the rifling of a barrel
  • Spiral push rod meshing convex gear ring that is, the ring-shaped matching transmission component that meshes with the spiral groove push rod.
  • this embodiment proposes a buoyancy swing gravity self-balancing group power generation device, which consists of two identical buoyancy kinetic energy power generation devices A A01 and buoyancy kinetic energy power generation device B B01 that are operated in parallel or in parallel with each other.
  • buoyancy kinetic energy power generation device A A01 and buoyancy kinetic energy power generation device B B01 both contain independent load-bearing columns, namely load-bearing column A A02, load-bearing column B B02, load-bearing column AA02 and load-bearing column B B02 are installed from bottom to top Buoyancy kinetic energy generating device, buoyancy kinetic energy amplification device X and buoyancy kinetic energy synergist+; buoyancy kinetic energy generating device A A01 and buoyancy kinetic energy generating device B
  • the buoyancy kinetic energy generating device of B01 is fixed by adjacent wave pool A A100' and wave pool B B100', the wave buoys A A130 and the wave buoy B B130 installed in the two wave pools, and the water inlet control valve 120' and the water outlet control valve 120′′ that are linked to open and close; the water inlet control valve 120' and the water outlet control There is a fixed adjacent wave pool group between the valves 120", that is, wave pool A A100' and wave pool B
  • the buoyancy kinetic energy amplification device X of device A A01 and buoyancy kinetic energy generating device B B01 is composed of an X-shaped proportional moment lever group 221 and a proportional moment lever pontoon connecting rod 222.
  • the undulating buoy lever group connecting ear 132 at the top of the buoy B B130 is hinged, and the column of the X-shaped proportional moment lever group 221, the X-shaped proportional moment lever bearing hinge point 200 is hingedly installed on the lower half of the load-bearing column and above the undulating buoy; buoyancy kinetic energy
  • the buoyancy kinetic energy synergist of the power generation device A A01 and the buoyancy kinetic energy power generation device B B01 + is composed of multiple sets of X-shaped equal proportional moment lever group 201 array superimposed articulation, and each single group of X-shaped equal proportional moment lever group 201 hinge point ( Axle structure) are in sliding fit with the hinge point lifting chute 211' of the bearing column X-shaped lever group hinge, the bearing column X-shaped lever group hinge point lifting chute 211' is axially opened in the center of the bearing column; the superimposed wave amplitude
  • the top of the proportional moment lever group that is, the tops of the two sets of buoyancy kinetic energy efficiency devices + are respectively hinged with the sprocket A224 of the sprocket A224 of the sprocket A224 and the sprocket B of the sprocket B224 of the sprocket of the sprocket of the sprocket of the sprocket of the sprocket of the sprocket of the sprocket of the sprocket of the sprocket of the sprocket of the sprocket of the sprocket.
  • the buoy connecting rod pontoon hinge point 200' of the proportional moment lever pontoon connecting rod 222 and the undulating pontoon lever group connecting lug 132 is also slidingly fitted with the above-mentioned bearing column X-shaped lever group hinge point lifting chute 211'.
  • the above-mentioned buoyancy swing gravity self-balancing group power generation device drives a set of two-way integrated kinetic energy integrated slow release device 300 through the transmission chain 225 shared link, and the transmission chain 225 two
  • the fixed end of the transmission chain A225' and the fixed end B of the transmission chain B225' are fixedly connected to the two ends of the column generator mounting shelf 213; the transmission chain 225 is from the column generator mounting shelf 213 on the side of the buoyancy kinetic energy generator A A01
  • the fixed end AA225' of the transmission chain starts to wind upwards through the amplitude amplification X-shaped equal-proportional moment lever group.
  • the amplitude amplification lever group sprocket A A224 After the amplitude amplification lever group sprocket A A224, it travels downwards through the limit wheel A A224' and then winds the two-way unity kinetic energy integration slowly. After the kinetic energy on the release device 300 is input to the sprocket 301, it passes upwards through the buoyancy kinetic energy generating device B B01 side limit wheel B B224' and then continues upwards through the amplitude amplification X-shaped equal-proportional moment lever group top volatility amplification lever group sprocket B After B224, it is fixed downward to the fixed end B B225' of the transmission chain of the column generator mounting shelf 213; the transmission chain 225 and the sprocket with different functions matched with the transmission chain 225 can be set in a single group or It is a two-group parallel symmetrical and synchronous arrangement (see FIG.
  • the kinetic energy output sprocket 303 on the two-way integrated kinetic energy integrated slow release device 300 is connected to the generator 305 through a connecting belt 304 or a gear.
  • a drive chain tensioner A 225" and a drive chain tensioner B B225" are respectively provided to connect the two ends of the drive chain 225 together.
  • the above-mentioned transmission chain 225 not only replaces the balance weight of the pontoon in the Chinese patent (201810382037.3), but also can obtain greater driving kinetic energy through the kinetic energy superposition of the buoyancy kinetic energy generator A and the buoyant kinetic energy generator B, and can also be omitted A series of costly and laborious unnecessary troubles.
  • the two sets of buoyancy kinetic energy power generation devices of the above-mentioned buoyancy swing gravity self-balancing group power generation device are slidably suspended by a left and right amplitude amplification lever group gravity balance sling 227 or a chain through a balance cable hook 227' at both ends of the cross beam 212 at the top of the column.
  • the amplitude of the power generation device A A01 and the buoyancy kinetic energy power generation device B B01 are amplified.
  • the X-shaped equal proportional moment lever group itself affects the gravity exerted by the kinetic energy, and is linked with the transmission chain 225.
  • the buoyancy kinetic energy power generation device A A01 and the buoyancy kinetic energy power generation device B B01 The two-way integrated kinetic energy integrated slow-release device 300 functions by assisting each other in the lifting and swinging of the two.
  • a balance cable pulley hanger 226' is provided on the top beam 212 of the column, and the balance cable pulley hanger 226' is used to fix the amplitude amplification lever group gravity balance sling pulley A A226 and the amplitude amplification lever group gravity balance sling pulley B B226.
  • the above-mentioned left and right amplitude amplification lever group gravity balance sling 227 and the transmission chain 225 cooperate with each other to form a closed superimposed linkage power transmission between the buoyancy kinetic energy generating device A A01 and the buoyancy kinetic energy generating device B B01. Both are indispensable and both enhance Kinetic energy can save redundant counterweight settings.
  • the load-bearing column AA02 and the load-bearing column B B02 are also connected with a column bidirectional integrated gear set mounting shelf 214 and a column stabilizing beam 215', and the column bidirectional integrated gear set mounting shelf 214 is located under the column generator mounting shelf 213 for installing the two-way integrated kinetic energy integrated slow-release device 300; the column stabilizing beam 215' is located below the column two-way integrated gear set mounting shelf 214, and above the pontoon group, Fixed on the top of both sides of the wave pool group, used to fix the load-bearing column.
  • the wave buoy A 130 and the wave buoy B B130 are both closed buoy structures, and a counterweight 101 is set inside.
  • the wave buoy A A130 is located in the wave pool. It is at the high water level 114 of the pool, and the undulating pool where the wave buoy B B130 linked with it is located is at the low water level 115 of the pool.
  • the counterweight 101 can be a water injection counterweight or a concrete counterweight.
  • the external conditions for the operation of the power generation device of the buoyant swing gravity self-balancing group may be: the drop water flow that meets the design requirements, the inlet water level-the high water level of the pool 114 is higher than the water outlet water level-the low pool
  • the water level 115 is about 0.5-2.5 meters.
  • the load-bearing columns are two sets of columns passing through the buoy column sliding lumen 131 in the center of the wave buoy A and the wave buoy B.
  • the lower end is fixed to the column at the bottom of the pool;
  • the column stabilizing beam 215' is fixed to the top of both sides of the pool, so that the load-bearing column can stand stably.
  • the function of the load-bearing column is as follows:
  • buoyancy kinetic energy power generation device A A01 and buoyancy kinetic energy power generation device B B01 with the same structure, the wave pool A A100' and the wave pool B B100'
  • the wave float A in the pool A 130 and the wave float B B130, the water inlet control valve 120' and the water outlet control valve 120" are formed under the action of the drop water flow; the drop water flow is opened and closed by the synchronous rotation of the water inlet control valve 120' and the water outlet control valve 120" (that is, the water inlet control When the valve 120' is opened, the outlet control valve 120” is closed, and vice versa, as shown in Figure 4).
  • the water level in the adjacent wave pool A A100' and wave pool B B100' fluctuates frequently, and the buoyancy potential energy of the water drives
  • the wave buoy A 130 and the wave buoy B B130 equipped with counterweights undulate in opposite directions synchronously (wrong frequency), so that the buoy connecting rods hinged on the top of the wave buoys A 130 and B B130 are connected to the proportional moment lever buoy at the hinge point 200'
  • the connecting rod 222 drives the X-shaped proportional moment lever group 221, that is, the buoyancy kinetic energy amplification device X operates.
  • the buoyancy kinetic energy amplification device X refers to the X-shaped proportional moment lever group 221 composed of two cross levers with a torque greater than 1:1. Pry the gravity of 1 time torque, so that the force is amplified by 3 times, and the lever operation section on this vertical working surface is the buoyancy kinetic energy amplification device X; the column of the X-shaped proportional torque lever group 221 is the X-shaped proportional torque lever bearing The force hinge point 200 is fixedly installed on the X-shaped proportional moment lever bearing hinge point of the load-bearing column; while the proportional moment lever pontoon connecting rod 222 connects the buoyancy kinetic energy generator wave buoy A 130 and wave buoy B B130 and X-shaped proportional moment lever Group 221 transmission link at the end of the long moment arm.
  • the buoyancy kinetic energy synergist+ refers to the buoyancy kinetic energy synergist+ composed of an array of wave-amplified X-shaped equal-proportional moment lever groups;
  • Array stacking refers to the vertical repeated stacking of the same unit, that is, multiple groups of lever unit groups with a torque ratio of 1:1 are vertically stacked and hinged. The purpose of array stacking:
  • the gravity balance sling 227 of the left and right wave amplitude amplification lever groups due to the above-mentioned amplitude amplification X-shaped equal proportional moment lever group array, increases its own weight sharply, which offsets a considerable part of the buoyancy or buoyancy of the wave buoys A130 and BB130.
  • the kinetic energy of gravity (the side where the water level rises is the buoyancy state, and the side where the water level falls is the gravitational state), and the output kinetic energy is compromised; to solve this problem, two sets of buoyancy kinetic energy power generation devices A A01 with the same structure are combined with buoyancy kinetic energy power generation Device B 0B is set up as a fixed combination of mirror images, and the top of the two sets of buoyancy and kinetic energy generating devices are arrayed on both sides of the amplitude amplification X-shaped equal proportional moment lever group.
  • a left and right amplitude amplification lever group gravity balance sling 227 is connected at the top.
  • the working principle is as follows: buoyancy swing The amplitude of the A-side array of the power generator of the gravity self-balancing group is amplified. The gravity of the X-shaped proportional moment lever group is amplified. The gravity of the B-side array is amplified. The gravity of the X-shaped proportional moment lever group is 0. A and B sides) offset each other's degraded output kinetic energy.
  • the transmission chain 225 is matched with the gravity balance sling 227 of the left and right amplitude amplification lever group, and the kinetic energy output from the buoyancy kinetic energy generating device A A01 and the buoyancy kinetic energy generating device B B01 are combined and output to the two-way unity.
  • the kinetic energy of the kinetic energy integrated slow-release device 300 is input to the sprocket 301.
  • the buoyancy swing gravity self-balancing group power generation device uses the buoyancy kinetic energy power generation device A A01 and the buoyancy kinetic energy power generation device B B01. Staggered frequency up and down fluctuations run to generate kinetic energy, the mechanical kinetic energy conducted by the staggered frequency up and down fluctuations oscillates bidirectionally and is not uniform and continuous, and the bidirectional integrated kinetic energy integrated slow-release device 300 functions to pass the bidirectional mechanical kinetic energy through the gear set The reconstruction becomes a one-way operating force, and the output is a one-way and continuous uniform kinetic energy through a force storage slow-release device.
  • the above-mentioned two-way integrated kinetic energy integrated slow-release device 300 is an existing technology, and please refer to the patent application with application number 201810382037.3.
  • the overall working principle of the buoyancy swing gravity self-balancing group power generation device is as follows:
  • the kinetic energy efficiency device + fluctuates up and down, and the lifting kinetic energy of the buoyancy kinetic energy generation device A A01 and the buoyancy kinetic energy generation device B B01 is associated with the buoyancy kinetic energy generation device A A01 and the buoyancy kinetic energy generation device B B01 through a set of transmission chain 225, so that the corresponding Each part uses its own same gravity and reverse operation law to replace the pulling power cable balance weight c4 that must be specially configured in the original technology, so that the two sides cooperate together (buoyancy on one side + gravity on the other side).
  • a kinetic energy integrated slow release device 300's kinetic energy input sprocket 301 works; at the same time, it is balanced and slidingly suspended on the top of the buoyancy kinetic energy generating device A A01 and the buoyancy kinetic energy generating device B B01 through a left and right amplitude amplification lever group gravity balance sling 227.
  • the balance weight also eliminates the need for two synergy section balance weights in the buoyancy kinetic energy power generation device, which not only realizes more reasonable, simple and efficient water kinetic energy conversion, but also reduces costs.
  • the natural flow drop of the river downstream generally does not have the water resources required for the construction of traditional hydroelectric power generation, but as long as there is a certain flow rate, it means that the corresponding drop exists.
  • the inlet control valve 120' and the outlet control valve 120′′ adjust the frequency of the water level rise and fall (see Figure 3, Figure 4), so that the water level alternately swings up and down between the buoyancy kinetic energy generating device A A01 and the buoyancy kinetic energy generating device B B01, driving fluctuations
  • the wave buoy A A130 and wave buoy B B130 in the pool A A100' and the wave pool B B100' fluctuate up and down (see Figure 1), and then drive the transmission chain 225 to transfer kinetic energy to the kinetic energy input chain of the two-
  • this embodiment proposes a buoyancy swing gravity self-balancing group power generation device, which consists of two identical buoyancy kinetic energy power generation devices A A01 and buoyancy kinetic energy power generation device B B01 that operate in parallel or Mirror configuration; buoyancy kinetic energy power generation device A A01 and buoyancy kinetic energy power generation device B B01 both contain independent load-bearing columns, namely load-bearing column A A02, load-bearing column B B02, load-bearing column AA02 and load-bearing column B B02 are installed from bottom to top Buoyancy kinetic energy generating device, buoyancy kinetic energy amplification device X and buoyancy kinetic energy synergist+; buoyancy kinetic energy generating device A A01 and buoyancy kinetic energy generating device B The buoyancy kinetic energy generating device of B01 is fixed by adjacent wave pool A A100' and wave pool B B100', the wave buoys A A130 and the wave buoy B B130 installed in the two wave pools, and the water inlet
  • the buoyancy kinetic energy amplification device X of device A A01 and buoyancy kinetic energy generating device B B01 is composed of an X-shaped proportional moment lever group 221 and a proportional moment lever pontoon connecting rod 222.
  • the undulating buoy lever group connecting ear 132 at the top of the buoy B B130 is hinged, and the column of the X-shaped proportional moment lever group 221, the X-shaped proportional moment lever bearing hinge point 200 is hingedly installed on the lower half of the load-bearing column and above the undulating buoy; buoyancy kinetic energy
  • the buoyancy kinetic energy synergist of the power generation device A A01 and the buoyancy kinetic energy power generation device B B01 + is composed of multiple sets of X-shaped equal proportional moment lever group 201 array superimposed articulation, and each single group of X-shaped equal proportional moment lever group 201 hinge point ( Axle structure) are in sliding fit with the hinge point lifting chute 211' of the bearing column X-shaped lever group hinge, the bearing column X-shaped lever group hinge point lifting chute 211' is axially opened in the center of the bearing column; the superimposed wave amplitude
  • the top of the proportional moment lever group that is, the top of the two sets of buoyancy kinetic energy efficiency devices +, are respectively equipped with sprocket A of the amplitude amplification lever group A224 and the sprocket of the amplitude amplification lever group B B224.
  • the above-mentioned buoyancy swing gravity self-balancing group power generation device drives a set of two-way integrated kinetic energy integrated slow release device 300 through the transmission chain 225 shared link, and the transmission chain 225 two
  • the fixed end of the transmission chain A225' and the fixed end B of the transmission chain B225' are fixedly connected to the two ends of the column generator mounting shelf 213; the transmission chain 225 is from the column generator mounting shelf 213 on the side of the buoyancy kinetic energy generator A A01
  • the fixed end AA225' of the transmission chain starts to wind upwards through the amplitude amplification X-shaped equal-proportional moment lever group.
  • the amplitude amplification lever group sprocket A A224 After the amplitude amplification lever group sprocket A A224, it travels downwards through the limit wheel A A224' and then winds the two-way unity kinetic energy integration slowly. After the kinetic energy on the release device 300 is input to the sprocket 301, it passes upwards through the buoyancy kinetic energy generating device B B01 side limit wheel B B224' and then continues upwards through the amplitude amplification X-shaped equal-proportional moment lever group top volatility amplification lever group sprocket B After B224, it is fixed downward to the fixed end B B225' of the transmission chain of the column generator mounting shelf 213; the transmission chain 225 and the sprocket with different functions matched with the transmission chain 225 can be set in a single group or It is a two-group parallel symmetrical and synchronous arrangement (see FIG. 2); the kinetic energy output sprocket 303 on the two-way integrated kinetic energy integrated slow release device
  • the above-mentioned transmission chain 225 not only replaces the balance weight of the pontoon in the Chinese patent (201810382037.3), but also obtains greater driving kinetic energy, saves a series of costly and laborious redundant troubles, and is safer.
  • the two sets of buoyancy kinetic energy power generation devices of the above-mentioned buoyancy swing gravity self-balance group power generation device are suspended by a left and right amplitude amplification lever group gravity balance sling 227 or a chain slidingly suspended on both ends of the column top cross beam 212.
  • the amplitude of the power generation device B and B01 is amplified.
  • the X-shaped equal-proportional moment lever group itself affects the gravity exerted by the kinetic energy, and in the lifting and swing of the buoyancy kinetic energy generation device A A01 and the buoyancy kinetic energy power generation device B B01, they assist each other and drive the two-way integration.
  • the kinetic energy integrated slow-release device 300 functions, which also saves a series of redundant troubles such as production, transportation, installation and maintenance.
  • the highest tidal drop on the coast of China is 8.93m, with the largest drop in Zhejiang and Fujian, and this power generation method can generate electricity within the range of 0.5-2m.
  • the specific methods of using ocean tides to generate electricity are:
  • the height of the tidal drop is closely related to the shape of the coast, so the tidal drop of two different places on the same coast is very different.
  • the high-level reservoir (lake) is equipped with a wave gathering dam and a wave facing slope and a one-way water inlet valve facing the sea.
  • the wave gathering dam and the wave facing slope can increase the tide level and store water more at high tide.
  • the low water level discharge pool (lake) is equipped with a one-way discharge valve, and the water flow can only be discharged in one direction at low tide, so as to keep the pool as low as possible.
  • the water level difference between the high and low pools is used to swing the gravity self-balancing group through buoyancy.
  • the water inlet and outlet valves of the power generation device alternately switch at a constant frequency.
  • the rising and falling water levels of the wave pool A 100' and the wave pool B B100' generate buoyancy kinetic energy for power generation;
  • the ratio of the storage capacity of the high water level reservoir to the low water level reservoir can be set to 3 :2 or 2:1 relationship, part of the power generation and overflow discharge of the high-level reservoir can be directly discharged into the sea outside the low-level drainage basin by using the water level difference at low tide; look for a bay with a bell mouth shape to modify the shape A higher tidal drop can be obtained.
  • connection falcon adopts a universal structure, that is, wave pool A 100' and wave pool B B100' and water inlet control valve Between 120', wave pool A A100' and wave pool B B100' and another group of fixed adjacent same wave pool A A100' and wave pool B, as well as wave pool A A100' and wave pool B B100' and Between the outlet control valves 120", the uniform two-way continuous wild-matched falcon connection and anchoring tight water assembly are used; the inlet control valve 120' and the outlet control valve 120" have the same shape, structure, size, and mating connection. It is also exactly the same as the mating connection of the adjacent wave pool A A100' and wave pool B B100'. It adopts a common shape of half-yin and yang interface, so that there are only two components in total, namely:
  • This embodiment is convenient for factory production, transportation, and assembly construction, and can maximize efficiency, shorten construction period, and reduce cost.
  • the wave buoy A A130 and the wave buoy B B130 can also be cast by concrete, because the component originally needs to be filled with counterweight water or filled with counterweights to work normally.
  • the wave buoy A A130 and the wave buoy B B130 is preferably a closed cylinder structure with a built-in counterweight structure.
  • the above buoyancy swing gravity self-balancing group power generation device and the existing traditional hydropower facilities can play a role at the same time, and can also be further combined with water conservancy improvement purposes for comprehensive utilization, and can be created according to local conditions according to different terrain, climate and water resources. Many different forms of utilization have been developed, and further utilization methods will be gradually created in the follow-up research according to the specific terrain and water resources conditions.
  • this embodiment proposes another buoyancy swing gravity self-balancing group power generation device, which is essentially a buoyancy swing rack drive type power generation device.
  • the buoyancy kinetic energy power generation device A A01 and the buoyancy kinetic energy power generation device B B01 in reverse wave operation are arranged in a mirror image configuration (when two sets of buoyancy kinetic energy power generation devices with the same structure are arranged opposite to each other, the drop water flow is under the synchronous opening and closing of the inlet and outlet control valves.
  • the water level in the adjacent fluctuating pool fluctuates and fluctuates.
  • the buoyancy potential energy of the water drives the fluctuating pontoon with counterweight to fluctuate synchronously and alternately, driving the power generating device including the two-way integrated kinetic energy integrated slow release device 300 to drive the generator 305 to generate electricity.
  • the transmission chain structure Connect two separate sets of buoyancy kinetic energy power generation devices to work synchronously, so that the buoyancy of one side of the undulating pontoon + the gravity of the other side undulating buoy work simultaneously to obtain stronger kinetic energy); buoyancy kinetic energy power generation device A A01 and buoyancy kinetic energy power generation Device B B01 all contain their own buoyancy kinetic energy generation device and kinetic energy transmission device; the buoyancy kinetic energy generation device is basically the same as the buoyancy kinetic energy generation device in Examples 1 and 2, including wave pool A, wave pool B, and wave float A , Wave buoy B, buoy column sliding lumen 131 arranged in the center of the wave buoy, load-bearing column A A02, load-bearing column B B02, water inlet control valve 120', water outlet control
  • the function of the load-bearing column 1.
  • the power generation device B B01 can be set up in a single group or in multiple groups according to the incoming water flow of the drop water level;
  • the kinetic energy transmission device is composed of the driving device and transmission that are symmetrically installed on the buoyancy kinetic energy power generation device A A01 and the buoyancy kinetic energy power generation device B B01.
  • the driving device refers to the wave pool A and the wave pool B on both sides of the buoyancy kinetic energy power generation device A A01 and the buoyancy kinetic energy power generation device B B01.
  • the structure shown in Fig. 10 is the same as the structure of the above-mentioned power generating device.
  • the arrangement structure is slightly shifted, that is, the two-way integrated kinetic energy integrated slow release device 300 is connected to two generators 305 at the same time, which has the advantage of saving material cost and space. In actual operation, the use of one or two generators depends on the situation.
  • this embodiment proposes another buoyancy swinging gravity self-balancing group power generation device, which is essentially a buoyancy swing lever drive chain type power generation device.
  • the buoyancy kinetic energy power generation device A A01 and the buoyancy kinetic energy power generation device B B01 are arranged in a mirror image configuration (when two sets of the same structure of the buoyancy kinetic energy power generation device are arranged opposite to each other, the drop water flow is under the synchronous opening and closing of the inlet and outlet control valves, adjacent to each other.
  • the water level in the fluctuating pool fluctuates and fluctuates, and the buoyant potential energy of the water drives the fluctuating pontoon with counterweight to fluctuate synchronously and alternately, driving the power generating device including the two-way integrated kinetic energy integrated slow release device 300 to drive the generator 305 to generate electricity, and the transmission chain structure connects the two A set of separate buoyancy and kinetic energy power generation devices work synchronously, so that the buoyancy of one side of the undulating pontoon + the gravity of the other side undulating buoy work at the same time to obtain stronger kinetic energy); B01 all contain their own buoyancy kinetic energy generating device and kinetic energy transmission device; the buoyancy kinetic energy generating device is basically the same as the buoyancy kinetic energy generating device in the first and second embodiments, including the wave pool A, wave pool B, wave float A, wave The buoy B, the buoy column sliding lumen 131 arranged in the center of the wave buoy, the load-bearing column A A02, the load-bearing column B B02, the water in
  • the function of the load-bearing column 1.
  • the fixed adjacent buoyancy kinetic energy power generation device A A01 and the buoyancy kinetic energy power generation device between the water inlet control valve 120' and the water outlet control valve 120" B B01 can choose a single set of settings or multiple sets of array settings according to the incoming water flow of the drop water level.
  • the kinetic energy transmission device is composed of a driving device and a transmission device symmetrically arranged on the buoyancy kinetic energy generating device A A01 and the buoyancy kinetic energy generating device B B01; the driving device of this embodiment includes the corresponding buoyancy kinetic energy generating device A A01 and the buoyancy kinetic energy generating device.
  • the sprocket 301 reciprocates forward and backward, and then integrates the kinetic energy into one-way continuous rotational kinetic energy through the two-way integrated kinetic energy integrated slow-release device 300 to drive power generation
  • the machine 305 generates power;
  • the transmission device of this embodiment is composed of a transmission chain whose two ends are hinged on both sides of the half-moon sprocket C02- and the kinetic energy input sprocket 301 of the bidirectional integrated kinetic energy integrated slow release device 300 forming a closed-loop transmission connection.
  • the half-moon sprocket C02- and the transmission chain here can also be replaced by a drive gear C02+.
  • the kinetic energy input sprocket 301 of the two-way integrated kinetic energy integrated slow release device 300 is changed to a gear that meshes with the drive gear C02+ D01', the drive gear C02+ directly meshes with the gear D01' for transmission, no need to set a transmission chain.
  • the transmission mode is changed .
  • this embodiment proposes another buoyancy swinging gravity self-balancing group power generation device, which is essentially a buoyancy swing lever drive chain type power generation device.
  • the buoyancy kinetic energy power generation device A A01 and the buoyancy kinetic energy power generation device B B01 are arranged in a mirror image configuration (when two sets of the same structure of the buoyancy kinetic energy power generation device are arranged opposite to each other, the drop water flow is under the synchronous opening and closing of the inlet and outlet control valves, adjacent to each other.
  • the water level in the fluctuating pool fluctuates and fluctuates, and the buoyant potential energy of the water drives the fluctuating pontoon with counterweight to fluctuate synchronously and alternately, driving the power generating device including the two-way integrated kinetic energy integrated slow release device 300 to drive the generator 305 to generate electricity, and the transmission chain structure connects the two A set of separate buoyancy and kinetic energy power generation devices work synchronously, so that the buoyancy of one side of the undulating pontoon + the gravity of the other side undulating buoy work at the same time to obtain stronger kinetic energy); B01 all contain their own buoyancy kinetic energy generating device and kinetic energy transmission device; the buoyancy kinetic energy generating device is basically the same as the buoyancy kinetic energy generating device in the first and second embodiments, including the wave pool A, wave pool B, wave float A, wave The buoy B, the buoy column sliding lumen 131 arranged in the center of the wave buoy, the load-bearing column A A02, the load-bearing column B B02, the water in
  • the function of the load-bearing column 1.
  • the fixed adjacent buoyancy kinetic energy power generation device A A01 and the buoyancy kinetic energy power generation device between the water inlet control valve 120' and the water outlet control valve 120" B B01 can choose a single set of settings or multiple sets of array settings according to the incoming water flow of the drop water level.
  • the kinetic energy transmission device is composed of a driving device and a transmission device.
  • the driving device of this embodiment includes wave buoys in the wave pool A and wave pool B corresponding to the two sides of the buoyancy kinetic energy generating device A A01 and the buoyancy kinetic energy generating device B B01. A and the wave buoy B, the lower end is hinged on the buoy connecting shaft bolt A B00 and the buoy connecting shaft bolt B B00', the transmission rod A B04 and the transmission rod B B04', and the transmission rod A B04 and the transmission rod B B04'
  • the upper lever application point A O03 and the lever application point B O03' are hinged lever O02.
  • the central axis fulcrum O00 of the lever O02 is set on the bearing seat in the center of the column fixed cross beam 215; After the kinetic energy input sprocket 301 of the two-way integrated kinetic energy integrated slow-release device 300 is driven and matched, its two ends are respectively passed through the positioning sprocket A C03 and the positioning sprocket B C03', and then respectively connect to the lever application points A O03 at both ends of the lever O02 It is hinged to the lever application point B O03', as shown in Figure 13, the positioning sprocket A C03 and the positioning sprocket B C03' are respectively fixed on the load-bearing column A and the load-bearing column B through the positioning sprocket bracket.
  • the structure of the power generating device of this embodiment is basically the same as that of the fourth embodiment, except that one or a set of drive chain elastic pulleys should be added to the appropriate position of the drive chain during specific application, namely the positioning sprocket A C03 and the positioning Sprocket B C03', so that the transmission chain and the kinetic energy input sprocket 301 are always closely matched, but the specific operation effect of the fourth embodiment will be better than this solution.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • this embodiment proposes another buoyancy swing gravity self-balancing group power generation device, which is essentially a buoyancy swing spiral groove push rod type power generation device, consisting of two sets of the same structure, fixed adjacent, synchronized
  • the buoyancy kinetic energy power generation device A A01 and the buoyancy kinetic energy power generation device B B01 that operate in staggered frequency and reverse fluctuations are arranged in a mirror image configuration (when two sets of buoyancy kinetic energy power generation devices with the same structure are arranged opposite to each other, the water flow in the inlet and outlet water control valves synchronously open and close alternately
  • the water level in the adjacent fluctuating pool fluctuates up and down, and the buoyancy potential energy of the water drives the fluctuating pontoon with counterweight to fluctuate alternately and synchronously, driving the power generating device including the two-way integrated kinetic energy integrated slow-release device 300 to drive the generator 305 to generate electricity.
  • the chain structure connects two separate sets of buoyancy and kinetic energy power generation devices to work synchronously, so that the buoyancy of the undulating buoy on one side and the gravity of the undulating buoy on the other side work simultaneously to obtain stronger kinetic energy); buoyancy and kinetic energy power generation device A A01 and buoyancy
  • the kinetic energy generation device B B01 all contain their own buoyancy kinetic energy generation device and kinetic energy transmission device; the buoyancy kinetic energy generation device has basically the same structure as the buoyancy kinetic energy generation device in the first and second embodiments, including wave pool A, wave pool B, wave
  • the relationship and the structural arrangement are the same as those of the first and second embodiments, and will not be repeated here.
  • the function of the load-bearing column 1.
  • the buoyancy kinetic energy power generation device B B01 can be set in a single group or in multiple arrays according to the incoming water flow of the drop water level.
  • the kinetic energy transmission device of this embodiment is composed of a driving device and a transmission device symmetrically arranged on the buoyancy kinetic energy power generation device A A01 and the buoyancy kinetic energy power generation device B B01.
  • the driving device of this embodiment includes the wave buoy A and the wave buoy B in the wave pool A and the wave pool B on both sides of the buoyancy kinetic energy power generation device A A01 and the buoyancy kinetic energy power generation device B B01, and the shaft bolt is connected to the buoyancy kinetic energy device B.
  • the convex gear ring and the horizontally arranged drive sprocket rotate back and forth); the spiral push rod meshes with the convex gear ring A B05+ and the spiral
  • buoyancy kinetic energy power generation device A A01 and the buoyancy kinetic energy power generation device B B01 have the water inlet control valve 120' and the water outlet control valve 120” (as shown in Figure 16), they are synchronously linked to open and close (inlet control valve) according to the set time and frequency.
  • the water outlet control valve 120 When 120' is opened, the water outlet control valve 120” is closed, and vice versa), the water level in the wave pool A and wave pool B swings in opposite directions, the buoyancy potential of the water drives the wave float A and the wave float B, and the lower end is hinged on the float connection shaft Bolt A B00 and buoy connecting shaft bolt B Spiral groove push rod A B05 and spiral groove push rod B on B00'
  • the spiral groove AB05- and the spiral groove B B05-' on B05' respectively drive the spiral push rod meshing convex gear ring A B05+ and the spiral push rod meshing convex gear ring B B05+' to reciprocate forward and backward.
  • the transmission device of this embodiment is composed of a multi-directional transmission chain or transmission belt C08' (toothed rubber belt can be turned freely), reversing positioning wheel A C09, reversing positioning wheel B C09'; reversing positioning wheel A C09, change The kinetic energy input sprocket 301 side of the kinetic energy input sprocket 301 of the bidirectional integrated kinetic energy integrated slow-release device 300 installed on the reversing locating wheel beam B07-, and the edges of the drive sprocket A C02 and drive sprocket B C02' 90-degree vertical steering setting (reversing positioning wheel cooperates with multi-directional transmission chain or transmission belt to change the transmission direction of transmission chain); closed-loop multi-directional transmission chain or transmission belt C08' respectively winds through the drive chain from top to bottom Wheel A C02 and driving sprocket B C02', reversing positioning wheel A C09 and reversing positioning wheel B C09', and then form a closed-loop transmission connection with the
  • the above buoyancy swing power generation device is most suitable for the utilization of tidal resources in the coastal areas of my country. It can play a role at the same time as the existing traditional hydroelectric power generation facilities. It can also be further combined with water conservancy improvement purposes for comprehensive utilization. It can be adapted to local conditions according to different terrain, climate and water resources. Created many different forms of utilization, and its supporting "Modular Pool Component of Buoyancy Swing Gravity Self-balancing Group Power Generation Device" has been submitted for invention patent application (202011408562.1), and further optimized utilization methods will be based on specific terrain and water resources conditions In the follow-up research gradually created.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种浮力摆动重力自平衡组发电装置,由发电机(305)、双向合一动能整合缓释装置(300)、浮力动能发电装置A(A01)和浮力动能发电装置B(B01)构成。浮力动能发电装置A(A01)和浮力动能发电装置B(B01)并列或镜像设置,且浮力动能发电装置A(A01)和浮力动能发电装置B(B01)反向交替波动运行。浮力动能发电装置A(A01)和浮力动能发电装置B(B01)之间通过一条或一组传动链(225)共用啮合链接驱动一套双向合一动能整合缓释装置(300)。该装置可利用水利工程、水库泄水、普通小落差江河水流以及海洋潮汐进行发电。

Description

浮力摆动重力自平衡组发电装置 技术领域
本发明属于新能源技术领域,涉及利用浮力发电的技术,具体的是一种利用山涧恒流,包括水利工程或水库泄水,或自然的小落差江河水流,以及利用海洋潮汐通过围堰蓄水与相配合的进水阀门和出水阀门机构控制水位升降频率产生动能的浮力摆动重力自平衡组发电装置。
背景技术
为保护环境、减少碳排放,各先进国家都在大力研发新的能源技术,目前较广泛采用的是风电和太阳能发电,但此类发电不仅成本高、产能低、且不能连续稳定发电。而利用江河下游的一般性水位落差的大规模浮力发电技术与传统水力发电不同,无需大落差即可发电,水的动能密度远高于风能和太阳能,而潮汐发电技术也一直在探索研究中,就现有的采用传统水轮机的潮汐或洋流发电技术效率很低,且装机容量有限,不适合更大规模的利用。
申请号为201810382037.3的中国专利公开了一种浮力动能发电装置,它具体涉及一种利用山涧恒流(包括水利工程或水库泄水)或以一般小落差江河水流,或以海洋潮汐的水位落差的驱动浮力动能发电装置,这项发明虽具备了利用上述水资源发电的实施条件,但仍存在较大不足,主要问题在于单组独立的浮力动能发电装置需要单独专门配置平衡配重块:
1.用于波动浮筒的平衡配重,需一一抽拉动力索平衡配重块c4(参见中国专利201810382037.3),既增加了制造、运输、安装、维护成本,又会影响使用寿命,可能产生安全隐患;
2.用于平衡浮力动能增效装置的波幅放大X形等比例力矩杠杆组的两个设置于立柱内的增效段平衡配重块b4(参见中国专利201810382037.3),无疑进一步增加了制造、运输、安装、维护成本。
因此,本发明迫切提出一种新型的浮力动能发电装置,以更好地实现产业化,安全有效稳定地发挥作用。相比申请号为201810382037.3的中国专利,本发明不仅在技术上进行了创新性升级,在传动方式、生产效率、 运输方式、便捷环保施工、快速安装、降低成本、优化投入产出比等各方面均做了深入研究和创新,而且提高了发电效率、安全性和使用寿命。
发明内容
本发明目的在于克服上述不足,提供一种更加科学合理的浮力摆动重力自平衡组发电装置,该装置把两组相同结构的浮力动能发电装置设置成并列或镜像固定搭配的组合模块,利用波动水池组两端的进水控制阀和出水控制阀交替向相邻一体的两个波动水池注水和泄水,使双组联动的浮力动能发电装置互相反向错频升降,并通过一组连接两浮力动能发电装置的传动链关联两浮力动能发电装置的升降动能,使之利用自身相同的重力和反向运行规律取代原有技术中必须配备的抽拉动力索平衡配重块c4(参见中国专利201810382037.3),共同合作对双向合一动能整合和缓释装置的动能输入链轮起作用;同时又通过一条左右波幅放大杠杆组重力平衡吊索或链条悬吊连接在浮力动能发电装置A和浮力动能发电装置B顶端的波幅放大杠杆组重力平衡索挂耳A上,通过这样的配合,不但省去了原有技术中两台浮力动能发电装置不可或缺的波动浮筒的平衡配重块一一抽拉动力索平衡配重块c4(参见中国专利201810382037.3),同时也省去了两台浮力动能发电装置中各两个设置于立柱内的增效段平衡配重块b4(参见中国专利201810382037.3),既大大降低了材料、制造、运输、安装、维护保养等建设成本,又提高了工作效率和使用寿命,从而实现更合理更简洁更高效的水动能转换。
为实现上述目的,本发明采取了以下技术方案:
本发明提出一种浮力摆动重力自平衡组发电装置,主要由发电机、双向合一动能整合缓释装置、浮力动能发电装置A和浮力动能发电装置B构成;所述浮力动能发电装置A与所述浮力动能发电装置B并列或镜像设置,且所述浮力动能发电装置A与所述浮力动能发电装置B反向交替波动运行;
所述浮力动能发电装置A包括承重立柱以及自下而上安装于所述承重立柱上的浮力动能发生装置、浮力动能放大装置和浮力动能增效装置,所述浮力动能发生装置由波动水池、安装于所述波动水池内的波动浮筒以及开闭联动的进水控制阀和出水控制阀组成,所述波动浮筒的中央设置有 与所述承重立柱滑动配合的浮筒立柱滑动管腔;所述浮力动能放大装置由X形比例力矩杠杆组和比例力矩杠杆浮筒连杆组成,所述比例力矩杠杆浮筒连杆的下端和安装于所述波动浮筒顶端的波动浮筒杠杆组连接耳铰接,所述X形比例力矩杠杆组的立柱X形比例力矩杠杆承力铰接点铰接安装于所述承重立柱的下半部的所述波动浮筒上方;所述浮力动能增效装置由多组波幅放大X形等比例力矩杠杆组阵列叠加铰接构成,即多组波幅放大X形等比例力矩杠杆组呈叠加状态,且每个所述波幅放大X形等比例力矩杠杆组的铰接点均与所述承重立柱上设置的X形杠杆组铰接点升降滑槽滑动配合,所述浮力动能增效装置的顶端设有波幅放大杠杆组链轮;所述浮力动能发电装置B的结构组成与所述浮力动能发电装置A的结构组成完全相同;
所述浮力动能发电装置B的波动水池与所述浮力动能发电装置A的波动水池固定相邻形成波动水池组,所述进水控制阀和所述出水控制阀同步交替联动、错位开闭,所述进水控制阀和所述出水控制阀之间设置单组所述波动水池组或设置多组所述波动水池组阵列布置;
所述浮力动能发电装置A与所述浮力动能发电装置B之间通过一条或一组传动链共用啮合链接驱动一套所述双向合一动能整合缓释装置,所述浮力动能发电装置A的承重立柱与所述浮力动能发电装置B的承重立柱之间连接有立柱发电机安装搁板,所述立柱发电机安装搁板用于安装所述发电机;所述传动链的两端分别固定连接在所述立柱发电机安装搁板的两端,将所述传动链的一端固定在所述立柱发电机安装搁板的靠近所述浮力动能发电装置A的一端后,所述传动链的另一端依次绕经所述浮力动能发电装置A的所述波幅放大杠杆组链轮、所述双向合一动能整合缓释装置的动能输入链轮、所述浮力动能发电装置B的所述波幅放大杠杆组链轮后,固定在所述立柱发电机安装搁板的靠近所述浮力动能发电装置B的一端;所述双向合一动能整合缓释装置的动能输出链轮通过连接皮带或齿轮与所述发电机的皮带轮或齿轮相配合;
所述浮力动能发电装置A与所述浮力动能发电装置B之间还连接有一条左右波幅放大杠杆组重力平衡吊索或链条,所述浮力动能发电装置A的承重立柱与所述浮力动能发电装置B的承重立柱之间连接有立柱顶端 横梁,所述立柱顶端横梁的两端分别设置波幅放大杠杆组重力平衡吊索滑轮A和波幅放大杠杆组重力平衡吊索滑轮B,所述浮力动能发电装置A的所述浮力动能增效装置的顶端设置有波幅放大杠杆组重力平衡索挂耳A,所述浮力动能发电装置B的所述浮力动能增效装置的顶端设置有波幅放大杠杆组重力平衡索挂耳B;所述左右波幅放大杠杆组重力平衡吊索或链条绕过所述波幅放大杠杆组重力平衡吊索滑轮A和所述波幅放大杠杆组重力平衡吊索滑轮B后,两端分别连接在所述波幅放大杠杆组重力平衡索挂耳A和所述波幅放大杠杆组重力平衡索挂耳B上,用以抵消所述浮力动能发电装置A与所述浮力动能发电装置B两者的波幅放大X形等比例力矩杠杆组自身的影响动能发挥的重力,即所述左右波幅放大杠杆组重力平衡吊索或链条用以和所述浮力动能发电装置A的波幅放大X形等比例力矩杠杆组、所述浮力动能发电装置B的波幅放大X形等比例力矩杠杆组相互抵消彼此自身的重力,以消除部件本身重力对设备发生动能的影响。其中,“左右波幅放大杠杆组重力平衡吊索”中“左”、“右”分别指浮力动能发电装置A与浮力动能发电装置B。
可选的,上述进、出水控制阀优选为类似通/断快开管阀敞开涌道式结构,但是它有一组分叉90°的进出水涌道口,周向间隔90°旋转开闭阀门,上述进、出水控制阀镜像设置在所述波动水池组的两端,上述进、出水控制阀同步联动设置,在落差水流环境下,当进水控制阀开启(通)的同时出水控制阀关闭(断),反之亦然,以此控制左右相邻水池的水位升降。水池组两端的进、出水控制阀的联动控制可通过机械或智能电控形式实现,在此不再赘述。
可选的,所述立柱发电机安装搁板的上方用于安装所述发电机,所述双向合一动能整合缓释装置则安装于所述立柱发电机安装搁板的下方。其中,所述立柱发电机安装搁板、所述发电机和所述双向合一动能整合缓释装置的设置位置是可以变动的,具体设置位置根据实际应用情况而定。
可选的,所述浮力动能发电装置A的承重立柱与所述浮力动能发电装置B的承重立柱下端牢固安装于各自波动水池的底部,同时设置一组立柱稳定横梁与两组承重立柱螺栓固定连接,所述立柱稳定横梁优选固定于所述波动水池组的上方。
可选的,所述立柱发电机安装搁板的下方可设置立柱双向合一动能整合缓释装置安装搁板,所述立柱双向合一动能整合缓释装置安装搁板的两端分别固定于两承重立柱上,所述双向合一动能整合缓释装置安装于所述立柱双向合一动能整合缓释装置安装搁板上。
可选的,所述动能输入链轮的两侧分别设置有限位轮A和限位轮B,所述限位轮A靠近所述浮力动能发电装置A设置,所述限位轮B靠近所述浮力动能发电装置B设置;所述传动链设置时绕经所述限位轮A和所述限位轮B。所述传动链两端的传动链固定端A与传动链固定端B固定连接在立柱发电机安装搁板的两端,所述传动链从浮力动能发电装置A侧的立柱发电机安装搁板上的传动链固定端A开始向上绕经波幅放大X形等比例力矩杠杆组顶端的波幅放大杠杆组链轮A(即所述浮力动能发电装置A的波幅放大杠杆组链轮)后,向下经所述限位轮A后绕经所述双向合一动能整合缓释装置的所述动能输入链轮后,向上经浮力动能发电装置B侧的所述限位轮B后继续向上绕经波幅放大X形等比例力矩杠杆组顶端的波幅放大杠杆组链轮B(即所述浮力动能发电装置B的波幅放大杠杆组链轮)后,向下固定到立柱发电机安装搁板的传动链固定端B上。其中限位轮A和B均为限位链轮。
可选的,所述传动链以及与所述传动链配合的链轮均可设置成单组或双组。
作为并列方案,设置浮力动能发电装置A'和浮力动能发电装置B'以分别替换所述浮力动能发电装置A和所述浮力动能发电装置B,所述浮力动能发电装置A'和所述浮力动能发电装置B'固定相邻且同步反向波动运行;
所述浮力动能发电装置A'包括承重立柱A'以及自下而上安装于所述承重立柱A'上的浮力动能发生装置与动能传导装置,所述浮力动能发电装置A'的浮力动能发生装置与所述浮力动能发电装置A的浮力动能发生装置结构相同;所述动能传导装置由驱动装置和传动装置构成,所述驱动装置由滚轴传动齿条、和所述滚轴传动齿条啮合的滚轴齿轮以及与所述滚轴齿轮同轴连接一体运转的驱动链轮构成,所述滚轴传动齿条的下端通过浮筒连接轴栓连接于波动浮筒的顶端,所述滚轴传动齿条的下方被设置在 所述承重立柱A'上的限位轴承组定向限位固定;所述滚轴传动齿条的上方被安装在所述承重立柱A'上的固定轴安装支架上的中心设有轴承的,与所述驱动链轮相配合的限位轴承A单向限位固定,所述滚轴齿轮与所述滚轴传动齿条啮合;所述浮力动能发电装置B'与所述浮力动能发电装置A'的结构相同,且所述浮力动能发电装置B'与所述浮力动能发电装置A'并列或镜像设置,所述浮力动能发电装置A'的承重立柱A'和所述浮力动能发电装置B'的承重立柱B'上分别设有一组与浮力动能发生装置相连的所述驱动装置;
所述承重立柱A'和所述承重立柱B'之间连接所述立柱发电机安装搁板、立柱固定横梁或部件,用以安装所述发电机和所述双向合一动能整合缓释装置。
所述传动装置包括环形传动链,所述环形传动链同时连接所述浮力动能发电装置B'的所述驱动链轮、所述浮力动能发电装置A'的所述驱动链轮以及所述双向合一动能整合缓释装置的所述动能输入链轮;所述双向合一动能整合缓释装置的所述动能输出链轮通过连接皮带或齿轮与所述发电机的皮带轮或齿轮相配合。
作为并列方案,设置浮力动能发电装置A”和浮力动能发电装置B”以分别替换所述浮力动能发电装置A和所述浮力动能发电装置B,所述浮力动能发电装置A”和所述浮力动能发电装置B”固定相邻且同步反向波动运行;
所述浮力动能发电装置A”包括承重立柱A”以及自下而上安装于所述承重立柱A”上的浮力动能发生装置与动能传导装置,所述浮力动能发电装置A”的浮力动能发生装置与所述浮力动能发电装置A的浮力动能发生装置结构相同;所述浮力动能发电装置B”与所述浮力动能发电装置A”的结构相同,且所述浮力动能发电装置B”与所述浮力动能发电装置A”并列或镜像设置;所述动能传导装置由驱动装置和传动装置构成,所述驱动装置由传动杆、杠杆和半月链轮构成,所述浮力动能发电装置A”和所述浮力动能发电装置B”的波动浮筒的顶部分别设置一根所述传动杆,且所述传动杆的下端铰接在波动浮筒的浮筒连接轴栓上,两所述传动杆的上端分别与所述杠杆的两端铰接形成杠杆施力点;所述浮力动能发电装置 B”与所述浮力动能发电装置A”的承重立柱之间连接立柱固定横梁,所述立柱固定横梁的中心安装杠杆中心固定支架,所述半月链轮和所述杠杆固定连接,且所述半月链轮和所述杠杆的中心轴支点设置在同一轴心,所述半月链轮和所述杠杆的中心轴支点设置在所述杠杆中心固定支架上;
所述传动装置由两端固定于所述半月链轮两侧的传动链二和所述双向合一动能整合缓释装置的所述动能输入链轮组成,所述传动链二闭环传动绕经所述半月链轮和所述双向合一动能整合缓释装置的所述动能输入链轮;所述双向合一动能整合缓释装置的所述动能输出链轮通过连接皮带或齿轮与所述发电机的皮带轮或齿轮相配合。
可选的,可设置驱动齿轮替换所述半月链轮,所述驱动齿轮安装在所述杠杆中部,并与所述杠杆同轴设置,所述驱动齿轮直接与所述双向合一动能整合缓释装置的所述动能输入链轮配合时,所述动能输入链轮也同时改为动能输入齿轮与所述驱动齿轮啮合传递动力,无需再设置所述传动链二。
作为并列方案,设置浮力动能发电装置A”'和浮力动能发电装置B”'以分别替换所述浮力动能发电装置A和所述浮力动能发电装置B,所述浮力动能发电装置A”'和所述浮力动能发电装置B”'固定相邻且同步反向波动运行;
所述浮力动能发电装置A”'包括承重立柱A”'以及自下而上安装于所述承重立柱A”'上的浮力动能发生装置与动能传导装置,所述浮力动能发电装置A”'的浮力动能发生装置与所述浮力动能发电装置A的浮力动能发生装置结构相同;所述浮力动能发电装置B”'与所述浮力动能发电装置A”'的结构相同,且所述浮力动能发电装置B”'与所述浮力动能发电装置A”'并列或镜像设置;所述动能传导装置由驱动装置和传动装置构成,所述驱动装置由传动杆和杠杆构成,所述浮力动能发电装置A”'和所述浮力动能发电装置B”'的波动浮筒的顶部分别设置一根所述传动杆,且所述传动杆的下端铰接在波动浮筒的浮筒连接轴栓上,两所述传动杆的上端分别与所述杠杆的两端铰接形成杠杆施力点;所述浮力动能发电装置B”'与所述浮力动能发电装置A”'的承重立柱之间连接立柱固定横梁,所述立柱固定横梁的中心安装轴承座,所述杠杆的中心轴支点设置在所述轴承座上;
所述传动装置由传动链三构成,所述传动链三的中间与所述双向合一动能整合缓释装置的所述动能输入链轮传动配合,所述传动链三的两端分别绕经定位链轮A与定位链轮B后再分别与所述杠杆两端的杠杆施力点铰接;所述定位链轮A与所述定位链轮B分别通过定位链轮支架固定设置在所述浮力动能发电装置A”'和所述浮力动能发电装置B”'的承重立柱上;所述双向合一动能整合缓释装置的所述动能输出链轮通过连接皮带或齿轮与所述发电机的皮带轮或齿轮相配合。
作为并列方案,设置浮力动能发电装置A””和浮力动能发电装置B””以分别替换所述浮力动能发电装置A和所述浮力动能发电装置B,所述浮力动能发电装置A””和所述浮力动能发电装置B””固定相邻且同步反向波动运行;
所述浮力动能发电装置A””包括承重立柱A””以及自下而上安装于所述承重立柱A””上的浮力动能发生装置与动能传导装置,所述浮力动能发电装置A””的浮力动能发生装置与所述浮力动能发电装置A的浮力动能发生装置结构相同;所述浮力动能发电装置B””与所述浮力动能发电装置A””的结构相同,且所述浮力动能发电装置B””与所述浮力动能发电装置A””并列或镜像设置;
所述动能传导装置由驱动装置和传动装置构成;所述驱动装置由螺旋凹槽推杆、与所述螺旋凹槽推杆啮合的螺旋推杆啮合凸齿环以及与所述螺旋推杆啮合凸齿环水平固定连接成一体的驱动链轮组成,所述螺旋凹槽推杆的下端通过浮筒连接轴栓连接在波动浮筒的顶端,所述螺旋凹槽推杆的上端与所述螺旋推杆啮合凸齿环啮合;所述浮力动能发电装置A””的承重立柱和所述浮力动能发电装置B””的承重立柱上分别设置一组所述驱动装置,所述浮力动能发电装置A””的承重立柱和所述浮力动能发电装置B””的承重立柱之间连接有换向定位轮横梁,两所述螺旋推杆啮合凸齿环分别被一组锥形轴承组安装在所述换向定位轮横梁上,且两组所述锥形轴承组被轴承组压条固定于所述换向定位轮横梁上;
所述传动装置由换向定位轮和封闭的多向传动链或传动皮带组成;所述双向合一动能整合缓释装置的所述动能输入链轮的两侧分别设置一所述换向定位轮,两所述换向定位轮安装于所述换向定位轮横梁上,且所述 换向定位轮与水平设置的所述驱动链轮垂直转向设置;所述多向传动链或传动皮带自上而下绕经两所述驱动链轮、两所述换向定位轮和所述动能输入链轮形成闭环传动连接;所述双向合一动能整合缓释装置的所述动能输出链轮通过连接皮带或齿轮与所述发电机的皮带轮或齿轮相配合。
本发明浮力摆动重力自平衡组发电装置的积极效果是:
本发明提供了一种采用浮力动能发生装置、浮力动能放大和增效装置,通过一套动能传导装置对双向合一动能整合和缓释装置起作用的浮力摆动重力自平衡组发电装置,具有如下实际利用意义:
可在江河下游人口密集的沿海发达地区直接大规模利用自然能量发电,避免长距离输电带来的能量损耗和线路架设投资浪费。所述发电方式资源分布广泛,不受时间、天气的影响,是一种无需储能设备、不间断发电、产能稳定、技术简单可靠、实用性强、寿命长、成本低,投入产出能效比高的发电方法:
(1)可以利用山涧恒流落差和江河中下游一般性的自然水位落差大规模发电;
(2)可结合即将要开发的红旗河工程,在适合布局的水文地形河段预设浮力摆动重力自平衡组发电场的切入接口,或考虑设置蓄水胡泊蓄水发电、在不发展水路通航河段或支流出水口设置利用贯穿式水流发电(也可以利用主渠直接过水发电)和水利工程综合利用的长远宏观发展布局,造福后代;
(3)中国有18000km漫长的海岸,如果以该方式利用潮汐发电,可利用的潮汐资源是巨大的:中国沿海大陆架普遍水浅,通常只有10多米至30多米水深,利用我国强大的吹填造陆能力圈海围堰蓄积潮汐能量,将是取之不尽用之不竭的动能资源,可改变目前依靠严重污染的矿产燃烧“西电东送”格局为利用潮汐发电的“东电西送”新格局;
(4)吹填圈海潮汐蓄能围堰的人工湖可同时发展海产品养殖,满足改善人民的巨大生存需求。
(5)低成本无限资源的发电方法可发展海水淡化,解决缺水地区的水资源需求,在北方建设与未来西北的红旗河工程相互配合的工程,更广泛均衡布局中国西北部大发展;
(6)可逐步推动我国居民生活燃气及北方冬季取暖向电加热转变,提高人民生活品质,减少雾霾;
(7)通配化的构件设计、标准化的工厂化预制,施工简便高效,成本低见效快,便于快速规模化推广,密集阵布设;
(8)密集阵布设可大大节约集并线电路成本;
(9)适用于解决我国众多岛屿能源紧缺的状况,提供永久清洁稳定的能源;
(10)价廉的能源有利于制造业和农业生产的发展;
(11)避免核能发电潜在的不可预知的风险和核废料后处理;
(12)可利用该技术开展对外工程技术投资承包。
(13)优于风能、太阳能(水的动能密度远高于风能和太阳能)以及开发出不同于传统水力资源发电的新模式,实现全天候大规模不间断、清洁理想稳定可控的发电方式。
本发明对浮力摆动重力自平衡组发电装置进行了进一步深入研究和创新,对传动方式、生产效率、运输方式、便捷环保施工、快速安装、降低成本、优化投入产出比等各方面做了进一步的研究改进和发展,可在不同的环境选用更合适的发电方式,有利于为人类社会的可持续发展提供清洁环保的能源,保护资源和生态环境。
附图说明
图1为本发明实施例一和实施例二中浮力摆动重力自平衡组发电装置的主视示意图;
图2为图1浮力摆动重力自平衡组发电装置的侧视示意图;
图3为本发明浮力摆动重力自平衡组发电装置的利用山涧恒流或江河小落差水流以及海洋潮汐发电的工作原理和布置方法主视示意图;
图4为本发明浮力摆动重力自平衡组发电装置的利用山涧恒流或江河小落差水流以及海洋潮汐发电的工作原理和布置方法俯视示意图;
图5为本发明浮力摆动重力自平衡组发电装置利用江河小落差水流发电的布置方法示意图;
图6为本发明浮力摆动重力自平衡组发电装置利用江河小落差水流地形布置发电场址的方法示意图;
图7为本发明浮力摆动重力自平衡组发电装置利用海洋潮汐发电的围堰方法示意图;
图8为本发明实施例三中浮力摆动齿条传动式发电装置的主视示意图;
图9为图8浮力摆动齿条传动式发电装置的侧视示意图;
图10为图8浮力摆动齿条传动式发电装置的另一布置方式主视示意图;
图11为本发明实施例四中浮力摆动杠杆传动链式发电装置的主视示意图;
图12为本发明实施例五中浮力摆动杠杆与齿轮传动式发电装置的主视示意图;
图13为本发明实施例五中浮力摆动杠杆与齿轮传动式发电装置的另一形式主视示意图;
图14为本发明实施例六中浮力摆动螺旋凹槽推杆式发电装置的主视示意图;
图15为本发明实施例六中浮力摆动螺旋凹槽推杆式发电装置的侧视示意图;
图16为本发明浮力动能发电装置多组阵列工作原理示意图;
图中的标号分别为:
A01.浮力动能发电装置A,A100'.波动水池A,A130.波动浮筒A,A223'.波幅放大杠杆组重力平衡索挂耳A,A224.波幅放大杠杆组链轮A,A224'.限位轮A,A225'.传动链固定端A,A225″.传动链弹紧轮A,A226.波幅放大杠杆组重力平衡吊索滑轮A,A02.承重立柱A;
B01.浮力动能发电装置B,B100'.波动水池B,B130.波动浮筒B,B223'.波幅放大杠杆组重力平衡索挂耳B,B224.波幅放大杠杆组链轮B,B224'.限位轮B,B225'.传动链固定端B,B225″.传动链弹紧轮B,B226.波幅放大杠杆组重力平衡吊索滑轮B,B02.承重立柱B;
X.浮力动能放大装置,
+.浮力动能增效装置,
101.配重物,114.水池高水位,115.水池低水位,120'.进水控制阀, 120″.出水控制阀,131.浮筒立柱滑动管腔,132.波动浮筒杠杆组连接耳;
200.立柱X形比例力矩杠杆承力铰接点,201.X形等比例力矩杠杆组,200'.浮筒连杆浮筒铰接点,200”.波幅放大杠杆组链轮轮轴,X形杠杆组铰接点升降滑槽,212.立柱顶端横梁,213.立柱发电机安装搁板,214.立柱双向合一齿轮组安装搁板,215.立柱固定横梁,215'.立柱稳定横梁,221.X形比例力矩杠杆组,222.比例力矩杠杆浮筒连杆,225.传动链,226'平衡索轮吊架;227.左右波幅放大杠杆组重力平衡吊索,227'.平衡索吊钩;
300.双向合一动能整合缓释装置,301.动能输入链轮,303.动能输出链轮,304.连接皮带,305.发电机;
B00.浮筒连接轴栓A,B00'.浮筒连接轴栓B,B03.滚轴传动齿条A,B03'.滚轴传动齿条B,B04.传动杆A,B04'.传动杆B,B05.螺旋凹槽推杆A,B05'.螺旋凹槽推杆B,B05-.螺旋凹槽A,B05-'.螺旋凹槽B,B05+.螺旋推杆啮合凸齿环A,B05+'.螺旋推杆啮合凸齿环B,B06.锥形轴承组A,B06'.锥形轴承组B,B07-.换向定位轮横梁,B07+.轴承组压条;
C01.滚轴齿轮A,C01'.滚轴齿轮B,C02.驱动链轮A,C02'.驱动链轮B,C02-.半月链轮,C02+.驱动齿轮,C03.定位链轮A,C03'.定位链轮B,C04.轴承A,C04'.轴承B,C05.限位轴承A,C05'.限位轴承B,C06.限位轴承组A,C06'.限位轴承组B,C07.固定轴安装支架A,C07'.固定轴安装支架B,C08.环形传动链,C08'多向传动链或传动皮带,C09换向定位轮A,C09'换向定位轮B;
D01'.齿轮;
E02.传动带;
O00.中心轴支点,O01.杠杆中心固定支架,O02.杠杆,O03.杠杆施力点A,O03'.杠杆施力点B;
注:滚轴传动齿条:即与带滚轴的齿轮配合的齿条,也可以用普通齿条替代;
滚轴齿轮:即每一个齿位都设有滚轴,特点阻力小,也可以用普通齿轮替代;
螺旋凹槽推杆:即推杆外表面有类似枪管膛线状的传动凹槽;
螺旋推杆啮合凸齿环:即与螺旋凹槽推杆啮合的环形配套传动构件。
具体实施方式
以下介绍本发明浮力动能发电装置的具体实施方式,但需指出,本发明的实施不仅限于以下方式。
实施例一:
如图1-6所示,本实施例提出一种浮力摆动重力自平衡组发电装置,由两台相同的反向交替波动配合运行的浮力动能发电装置A A01与浮力动能发电装置B B01并列或镜像设置构成;浮力动能发电装置A A01与浮力动能发电装置B B01均含有独自的承重立柱,即承重立柱A A02、承重立柱B B02,承重立柱AA02和承重立柱B B02上均自下而上安装浮力动能发生装置、浮力动能放大装置X和浮力动能增效装置+;浮力动能发电装置A A01与浮力动能发电装置B B01的浮力动能发生装置由固定相邻的波动水池A A100'与波动水池B B100'、以及安装于该两波动水池内的波动浮筒A A130与波动浮筒B B130、以及开闭联动的进水控制阀120'与出水控制阀120″组成;进水控制阀120'与出水控制阀120″之间设有固定相邻的波动水池组,即波动水池A A100'与波动水池B B100'可以根据来水流量单组设置,也可以多组阵列设置于交替联动的进水控制阀120'与出水控制阀120″之间,如图3和4所示。波动浮筒A A130与波动浮筒B B130中央的两个浮筒立柱滑动管腔131分别与各自的承重立柱滑动配合;浮力动能发电装置A A01与浮力动能发电装置B B01的浮力动能放大装置X由X形比例力矩杠杆组221和比例力矩杠杆浮筒连杆222组成,比例力矩杠杆浮筒连杆222的下端和波动浮筒A A130与波动浮筒B B130顶端的波动浮筒杠杆组连接耳132铰接,X形比例力矩杠杆组221的立柱X形比例力矩杠杆承力铰接点200铰接安装于承重立柱下半部,且位于波动浮筒上方;浮力动能发电装置A A01与浮力动能发电装置B B01的浮力动能增效装置+由多组X形等比例力矩杠杆组201阵列叠加铰接构成,每个单组X形等比例力矩杠杆组201的铰接点(轴结构)均与承重立柱X形杠杆组铰接点升降滑槽211'滑动配合,承重立柱X形杠杆组铰接点升降滑槽211'轴向开设于承重立柱的中心;叠加的波幅放大X形等比例力矩杠杆组的顶端,即两组浮力动能增效装置+的顶端分别通过波幅放大杠杆组链轮轮轴200”铰接有 波幅放大杠杆组链轮A A224与波幅放大杠杆组链轮B B224。其中,比例力矩杠杆浮筒连杆222与波动浮筒杠杆组连接耳132的浮筒连杆浮筒铰接点200’也与上述承重立柱X形杠杆组铰接点升降滑槽211'滑动配合。
上述的浮力摆动重力自平衡组发电装置,在浮力动能发电装置A A01与浮力动能发电装置B B01之间通过传动链225共用链接驱动一套双向合一动能整合缓释装置300,传动链225两端的传动链固定端A A225'与传动链固定端B B225'固定连接在立柱发电机安装搁板213的两端;传动链225从浮力动能发电装置A A01侧的立柱发电机安装搁板213上的传动链固定端AA225'开始向上绕经波幅放大X形等比例力矩杠杆组顶端的波幅放大杠杆组链轮A A224后,向下经限位轮A A224'后绕经双向合一动能整合缓释装置300上的动能输入链轮301后,向上经浮力动能发电装置B B01侧的限位轮B B224'后继续向上绕经波幅放大X形等比例力矩杠杆组顶端的波幅放大杠杆组链轮B B224后,向下固定到立柱发电机安装搁板213的传动链固定端B B225'上;传动链225以及与该传动链225配合的不同功能的链轮均可以是单组设置,也可以是双组并行对称同步设置(见图2);双向合一动能整合缓释装置300上的动能输出链轮303通过连接皮带304或齿轮与发电机305相连。其中,立柱发电机安装搁板213的两端之间分别设置有传动链弹紧轮A A225”和传动链弹紧轮B B225″,以配合连接传动链225的两端。
上述传动链225既替代了中国专利(201810382037.3)中的浮筒的平衡配重块,又能通过浮力动能发电装置A与浮力动能发电装置B的动能叠加配合获得更大的驱动动能,还可以省去一系列费钱又费力多余的麻烦。
上述浮力摆动重力自平衡组发电装置的两组浮力动能发电装置,通过一条左右波幅放大杠杆组重力平衡吊索227或链条通过平衡索吊钩227'滑动悬挂在立柱顶端横梁212两端的波幅放大杠杆组重力平衡吊索滑轮A A226和波幅放大杠杆组重力平衡吊索滑轮B B226上,它的一端连接在浮力动能发电装置A A01侧的浮力动能增效装置+顶端的波幅放大杠杆组重力平衡索挂耳A A223'上,它的另一端则连接在浮力动能发电装置B B01的浮力动能增效装置+顶端的波幅放大杠杆组重力平衡索挂耳B B223'上,用以抵消或平衡浮力动能发电装置A A01与浮力动能 发电装置B B01两者的波幅放大X形等比例力矩杠杆组自身影响动能发挥的重力,并且与传动链225配合联动,在浮力动能发电装置A A01与浮力动能发电装置B B01两者的升降摆动中相互助力驱动双向合一动能整合缓释装置300起作用。其中,立柱顶端横梁212上设置有平衡索轮吊架226',平衡索轮吊架226'用于固定安装波幅放大杠杆组重力平衡吊索滑轮A A226和波幅放大杠杆组重力平衡吊索滑轮B B226。
上述左右波幅放大杠杆组重力平衡吊索227与传动链225相互配合,形成浮力动能发电装置A A01与浮力动能发电装置B B01之间的闭合叠加联动式动力传动,二者缺一不可,既增强动能又可省去多余的配重设置。
本实施例中,如图1所示,承重立柱AA02和承重立柱B B02之间还连接有立柱双向合一齿轮组安装搁板214和立柱稳定横梁215',立柱双向合一齿轮组安装搁板214位于立柱发电机安装搁板213的下方,用于安装双向合一动能整合缓释装置300;立柱稳定横梁215'位于立柱双向合一齿轮组安装搁板214的下方,且位于浮筒组上方,固定于波动水池组两侧顶端,用于固定承重立柱。
本实施例中,如图1所示,波动浮筒A A130与波动浮筒B B130均为封闭式浮筒结构,内部设配重物101,如图1所示,波动浮筒A A130所在的波动水池内正处于水池高水位114,而与之联动的波动浮筒B B130所在的波动水池内正处于水池低水位115。其中,配重物101可为注水配重或混凝土配重等。
本实施例中,浮力摆动重力自平衡组发电装置运行的外部条件可为:符合设计要求的落差水流,进水口水位----水池高水位114高于出水口水位----水池低水位115约0.5-2.5米。
本实施例中,如图1-2所示,承重立柱即两组穿过波动浮筒A与波动浮筒B中央的浮筒立柱滑动管腔131后下端固定于水池底部的立柱;承重立柱中间位置,通过立柱稳定横梁215'与水池两侧顶部固定,从而使承重立柱稳定矗立。承重立柱的作用如下:
1.在波动水池中通过与浮筒立柱滑动管腔131配合,限制波动浮筒A A130与波动浮筒B B130在水池中的位置和波动升降轨迹;
2.作为安装其它构件的承重立柱;
本实施例中,是由两套结构相同、镜像设置的浮力动能发电装置A A01与浮力动能发电装置B B01的波动水池A A100'与波动水池B B100'水池内的波动浮筒A A130与波动浮筒B B130,通过进水控制阀120'与出水控制阀120”在落差水流的作用下构成;落差水流在进水控制阀120'与出水控制阀120”同步旋转开闭作用下(即进水控制阀120'开启的同时出水控制阀120”关闭,反之亦然如图4所示),相邻的波动水池A A100'与波动水池B B100'内的水位错频升降波动,水的浮力势能驱动设有配重的波动浮筒A A130与波动浮筒B B130同步反向波动(错频)起伏,使铰接于波动浮筒A A130与B B130顶端的浮筒连杆浮筒铰接点200'上的比例力矩杠杆浮筒连杆222驱动X形比例力矩杠杆组221,即浮力动能放大装置X运行。
本实施例中,浮力动能放大装置X即指两杠杆力矩大于1:1的交叉杠杆组成的X形比例力矩杠杆组221,如杠杆力矩比例为3:1,即以3倍力矩的力臂去撬动1倍力矩的重力,这样力量就放大了3倍,而这一垂直工作面上的杠杆作业段就是浮力动能放大装置X;该X形比例力矩杠杆组221的立柱X形比例力矩杠杆承力铰接点200固定安装于承重立柱的立柱X形比例力矩杠杆承力铰接点;而比例力矩杠杆浮筒连杆222是连接浮力动能发生装置波动浮筒A A130与波动浮筒B B130和X形比例力矩杠杆组221长力臂端的传动连杆。
本实施例中,浮力动能增效装置+指的是由波幅放大X形等比例力矩杠杆组阵列叠加构成的浮力动能增效装置+;“等比例力矩杠杆”即杠杆力矩比例为1:1,阵列叠加指的是同一单元垂直重复叠加,即多组力矩比例为1:1的杠杆单元组垂直重复叠加铰接组合。阵列叠加的目的:
如果单组X形等比例力矩杠杆组201的垂直工作行程为0.2m,那么用10组X形等比例力矩杠杆组201垂直重复铰接叠加(阵列)以后,它们的垂直工作行程就会增加到2m,工作行程提高了10倍。
本实施例中,左右波幅放大杠杆组重力平衡吊索227,由于上述波幅放大X形等比例力矩杠杆组阵列叠加后其自身重量急剧增加,抵消了相当部分波动浮筒A A130与B B130的浮力或重力的动能(水位升起一 侧为浮力状态,水位下降一侧为重力状态),输出动能受到折损;为解决这一问题,将两套结构相同的浮力动能发电装置A A01与浮力动能发电装置B 0B设置成镜像组合的固定搭配,并且在两组浮力动能发电装置两侧各自阵列的波幅放大X形等比例力矩杠杆组之间顶端连接一条左右波幅放大杠杆组重力平衡吊索227,平衡悬吊于立柱顶端横梁212两侧的波幅放大杠杆组重力平衡吊索滑轮A A226和波幅放大杠杆组重力平衡吊索滑轮B B226上,如图1-3所示,其工作原理如下:浮力摆动重力自平衡组发电装置A侧阵列的波幅放大X形等比例力矩杠杆组的重力-B侧阵列的波幅放大X形等比例力矩杠杆组的重力=0,用这种自我平衡的方法来互相(A与B两侧)抵消彼此受到折损的输出动能,而这在单组的“浮力动能发电装置”(CN201810382037.3)方案里是必须另外配置“增效段平衡配重块b4”来解决的;另外左右波幅放大杠杆组重力平衡吊索227与传动链225形成的闭环配合运行起到了关联浮力动能发电装置A A01与浮力动能发电装置B B01两侧协调一致同步运行的作用,可使两侧的动能合二为一同时起作用。
本实施例中,传动链225以左右波幅放大杠杆组重力平衡吊索227作配合,将浮力动能发电装置A A01与浮力动能发电装置B B01两侧输出的动能关联相加起来输出给双向合一动能整合缓释装置300的动能输入链轮301,这在单组的“浮力动能发电装置”(CN201810382037.3)方案里是必须专门配置“抽拉动力索平衡配重块c4”来作为绷紧抽拉动力索往复运行的响应重力的,而且它会损耗一半的波动浮筒A与波动浮筒B配重的重力动能;(另外,如果没有左右波幅放大杠杆组重力平衡吊索227做配合,传动链225对双向合一动能整合缓释装置300的动能输入链轮301的驱动是A与B两侧轮流作用的,只有两者形成闭环配合,才能相互关联同时起作用)。上述传动链225与左右波幅放大杠杆组重力平衡吊索227相互配合的结构将大幅提高单位工作效率和降低制造、运输、安装、维护成本。
本实施例中,由于浮力摆动重力自平衡组发电装置是利用浮力动能发电装置A A01与浮力动能发电装置B B01两侧波动水池A A100'和B B100'水池里的波动浮筒A A130与B B130错频上下波动运行来产生 动能的,错频上下波动传导的机械动能是双向往复摆动且不是均匀连贯的,而双向合一动能整合缓释装置300的作用是将双向运转的机械动能通过齿轮组的重构变成单向运转的力,并通过储力缓释装置使其输出为单向且连续均匀的动能。上述双向合一动能整合缓释装置300为一种现有技术,可参见申请号为201810382037.3的专利申请。
本实施例中,浮力摆动重力自平衡组发电装置的整机工作原理如下:
利用两套结构相同、镜像设置的浮力动能发电装置A A01与浮力动能发电装置B B01的两个波动水池A A100'与B B100'两端的进水控制阀120'和出水控制阀120”同步交替向相邻一体的两个波动水池A A100'与B B100'注水和泄水,使双组联动的波动浮筒A A130与波动浮筒B B130反向错频同步升降,驱动浮力动能放大装置X和浮力动能增效装置+上下波动,并通过一组连接浮力动能发电装置A A01与浮力动能发电装置B B01的传动链225关联浮力动能发电装置A A01与浮力动能发电装置B B01的升降动能,让对应各部利用自身相同的重力和反向运行规律取代原有技术中必须专门配置的抽拉动力索平衡配重块c4,使两侧共同配合(一侧的浮力+另一侧的重力)对双向合一动能整合缓释装置300的动能输入链轮301起作用;同时又通过一条左右波幅放大杠杆组重力平衡吊索227平衡滑动悬吊在浮力动能发电装置A A01与浮力动能发电装置B B01顶端的波幅放大杠杆组重力平衡吊索滑轮A A226和B B226上,通过这样的配合,不但省去了原有技术中浮力动能发电装置不可或缺的波动浮筒的平衡配重块,即抽拉动力索平衡配重块,同时也省去了浮力动能发电装置中配置的两设置于立柱内的增效段平衡配重块,既实现了更合理简洁高效的水动能转换,又降低了成本。
如图5和6所示,自然环境中,一般江河下游水流的自然流淌落差,不具备建造传统水力发电所需的水资源条件,但只要有一定的流速,说明相应的落差是存在的,如果具备了一定的流量,那么只需将蓄水池的进水口与排水池的出水口设置成相距一定的距离使之产生足够的水位差,再通过定频切换浮力摆动重力自平衡组发电装置的进水控制阀120'与出水控制阀120″调节水位升降频率(见图3,图4),使水位在浮力动能发电装置A A01与浮力动能发电装置B B01之间交替对摆升降,驱动波动水池 A A100'与波动水池B B100'内的波动浮筒A A130与波动浮筒B B130上下波动(见图1),进而带动传动链225传递动能到双向合一动能整合缓释装置300的动能输入链轮301,驱动发电机305发电。
实施例二:
如图1-7所示,本实施例提出一种浮力摆动重力自平衡组发电装置,由两台相同的反向交替波动配合运行的浮力动能发电装置A A01与浮力动能发电装置B B01并列或镜像设置构成;浮力动能发电装置A A01与浮力动能发电装置B B01均含有独自的承重立柱,即承重立柱A A02、承重立柱B B02,承重立柱AA02和承重立柱B B02上均自下而上安装浮力动能发生装置、浮力动能放大装置X和浮力动能增效装置+;浮力动能发电装置A A01与浮力动能发电装置B B01的浮力动能发生装置由固定相邻的波动水池A A100'与波动水池B B100'、以及安装于该两波动水池内的波动浮筒A A130与波动浮筒B B130、以及开闭联动的进水控制阀120'与出水控制阀120″组成;进水控制阀120'与出水控制阀120″之间设有固定相邻的波动水池组,即波动水池A A100'与波动水池B B100'可以根据来水流量单组设置,也可以多组阵列设置于交替联动的进水控制阀120'与出水控制阀120″之间,如图3和4所示。波动浮筒A A130与波动浮筒B B130中央的两个浮筒立柱滑动管腔131分别与各自的承重立柱滑动配合;浮力动能发电装置A A01与浮力动能发电装置B B01的浮力动能放大装置X由X形比例力矩杠杆组221和比例力矩杠杆浮筒连杆222组成,比例力矩杠杆浮筒连杆222的下端和波动浮筒A A130与波动浮筒B B130顶端的波动浮筒杠杆组连接耳132铰接,X形比例力矩杠杆组221的立柱X形比例力矩杠杆承力铰接点200铰接安装于承重立柱下半部,且位于波动浮筒上方;浮力动能发电装置A A01与浮力动能发电装置B B01的浮力动能增效装置+由多组X形等比例力矩杠杆组201阵列叠加铰接构成,每个单组X形等比例力矩杠杆组201的铰接点(轴结构)均与承重立柱X形杠杆组铰接点升降滑槽211'滑动配合,承重立柱X形杠杆组铰接点升降滑槽211'轴向开设于承重立柱的中心;叠加的波幅放大X形等比例力矩杠杆组的顶端,即两组浮力动能增效装置+的顶端分别设有波幅放大杠杆组链轮A A224与波幅 放大杠杆组链轮B B224。
上述的浮力摆动重力自平衡组发电装置,在浮力动能发电装置A A01与浮力动能发电装置B B01之间通过传动链225共用链接驱动一套双向合一动能整合缓释装置300,传动链225两端的传动链固定端A A225'与传动链固定端B B225'固定连接在立柱发电机安装搁板213的两端;传动链225从浮力动能发电装置A A01侧的立柱发电机安装搁板213上的传动链固定端AA225'开始向上绕经波幅放大X形等比例力矩杠杆组顶端的波幅放大杠杆组链轮A A224后,向下经限位轮A A224'后绕经双向合一动能整合缓释装置300上的动能输入链轮301后,向上经浮力动能发电装置B B01侧的限位轮B B224'后继续向上绕经波幅放大X形等比例力矩杠杆组顶端的波幅放大杠杆组链轮B B224后,向下固定到立柱发电机安装搁板213的传动链固定端B B225'上;传动链225以及与该传动链225配合的不同功能的链轮均可以是单组设置,也可以是双组并行对称同步设置(见图2);双向合一动能整合缓释装置300上的动能输出链轮303通过连接皮带304或齿轮与发电机305相连。
上述传动链225既替代了中国专利(201810382037.3)中的浮筒的平衡配重块,又能获得更大的驱动动能,还可以省去一系列费钱又费力多余的麻烦,且更加安全。
上述浮力摆动重力自平衡组发电装置的两组浮力动能发电装置,通过一条左右波幅放大杠杆组重力平衡吊索227或链条滑动悬挂在立柱顶端横梁212两端的波幅放大杠杆组重力平衡吊索滑轮A A226和波幅放大杠杆组重力平衡吊索滑轮B B226上,它的一端连接在浮力动能发电装置A A01侧的浮力动能增效装置+顶端的波幅放大杠杆组重力平衡索挂耳A A223'上,它的另一端则连接在浮力动能发电装置B B01的浮力动能增效装置+顶端的波幅放大杠杆组重力平衡索挂耳B B223'上,用以抵消或平衡浮力动能发电装置A A01与浮力动能发电装置B B01两者的波幅放大X形等比例力矩杠杆组自身影响动能发挥的重力,并且在浮力动能发电装置A A01与浮力动能发电装置B B01两者的升降摆动中相互助力驱动双向合一动能整合缓释装置300起作用,同样省去一系列生产运输安装维护等多余的麻烦。
中国海岸潮汐最高落差为8.93m米,以浙江福建落差最大,而本发电方法在0.5-2m范围内即可发电。利用海洋潮汐发电的具体方法是:
潮汐落差的高低与海岸形态有密切的关系,所以同一海岸上不同的两个地方潮汐落差相差甚远。利用相邻或背向的两个海湾或在近海人工吹填营造蓄水海湾或蓄水池(湖),组成高水位蓄水池(湖)和低水位泄水池(湖),如图7所示,高水位蓄水池(湖)面朝大海方向设有聚浪坝和迎浪坡、单向进水阀,聚浪坝和迎浪坡可在高潮位时更多的提高潮位和蓄水量;低水位泄水池(湖)设有单向泄水阀门,水流只能在落潮时单向泄出,尽可能使水池保持最低水位,利用高低水池的水位差,通过浮力摆动重力自平衡组发电装置的进水和出水阀门定频交替切换波动水池A A100'和波动水池B B100'的升降水位产生浮力动能发电;高水位蓄水池与低水位蓄水池的库容量比例可以设置为3∶2或2∶1的关系,高水位蓄水池的部分发电过流泄水可以利用退潮时的水位差直接排入低水位泄水池外的大海;寻找具有喇叭口形态的海湾加以形态修正将可以获得更高的潮汐落差。
关于固定相邻的波动水池A A100'和波动水池B B100'可以混凝土浇注的模块化装配结构,连接隼采用通配化结构,即波动水池A A100'和波动水池B B100'与进水控制阀120'之间,波动水池A A100'与波动水池B B100'与另一组固定相邻同样的波动水池A A100'和波动水池B之间,以及波动水池A A100'和波动水池B B100'与出水控制阀120″之间,均以统一两方连续式通配的隼接加锚固密水装配;进水控制阀120'与出水控制阀120″外形、结构、尺寸、配合连接隼完全相同,也和固定相邻的波动水池A A100'与波动水池B B100'的配合连接隼完全相同,采用对半阴阳的通用一种形状的接口,这样总共只有两个构件,即:
1.固定相邻的波动水池A A100'和波动水池B B100'模块;
2.进水控制阀120'或出水控制阀120″通用模块。
本实施例便于工厂化生产、运输、装配施工,可最大程度的提高效率、缩短施工周期、降低成本。
本实施例中波动浮筒A A130与波动浮筒B B130同样可以采用混凝土浇注,因为该构件本来就需要加注配重水或装填配重物才能正常工作,在此基础上,波动浮筒A A130与波动浮筒B B130优选为内置配 重结构的封闭筒结构。
本实施例中以上浮力摆动重力自平衡组发电装置与现有的传统水力发电设施可同时发挥作用,也可以进一步结合水利整治目的综合利用,可以根据不同的地形、气候和水资源条件因地制宜的创造出许多不同形式的利用方式,更进一步的利用方法将根据具体地形和水资源条件在后续的研究中逐步创造出来。
实施例三:
如图8和9所示,本实施例提出另一种浮力摆动重力自平衡组发电装置,实质为一种浮力摆动齿条传动式发电装置,由两套结构相同、固定相邻、同步错频反向波动运行的浮力动能发电装置A A01与浮力动能发电装置B B01镜像设置构成(当两套结构相同的浮力动能发电装置相向设置,落差水流在进、出水控制阀同步开闭交替作用下,相邻的波动水池内水位升降波动,水的浮力势能推动设有配重的波动浮筒同步交替起伏波动,带动包含双向合一动能整合缓释装置300的发电装置驱动发电机305发电,传动链结构连接两套单独的浮力动能发电装置同步工作,使其一侧波动浮筒的浮力+另一侧波动浮筒的重力同时起作用,以获得更强的动能);浮力动能发电装置A A01与浮力动能发电装置B B01均含有各自的浮力动能发生装置与动能传导装置;该浮力动能发生装置与实施例一和二中的浮力动能发生装置结构基本相同,均包括波动水池A、波动水池B、波动浮筒A、波动浮筒B、设置于波动浮筒中央的浮筒立柱滑动管腔131、承重立柱A A02、承重立柱B B02、进水控制阀120'、出水控制阀120″等,且上述各部件的连接关系以及结构布置形式均与实施例一和二的相同,在此不再赘述。其中,承重立柱的作用:1.在波动水池中通过波动浮筒的浮筒立柱滑动管腔131在波动水池中的位置,限制其升降轨迹;2.作为安装发电装置所有构件的承载构架。如图16所示,进水控制阀120'和出水控制阀120″之间的固定相邻的浮力动能发电装置A A01与浮力动能发电装置B B01可根据落差水位的来水流量选择单组设置,或者多组阵列设置;动能传导装置分别由对称设置于浮力动能发电装置A A01与浮力动能发电装置B B01上的驱动装置和传动装置构成;驱动装置是指对应设置在浮力动能发电装置A A01与浮力动能发电装置B  B01两侧的波动水池A与波动水池B水池内的波动浮筒A与波动浮筒B上的浮筒连接轴栓A B00和浮筒连接轴栓B B00'上的滚轴传动齿条A B03与滚轴传动齿条B B03',以及和滚轴传动齿条A B03和滚轴传动齿条B B03'啮合的滚轴齿轮A C01和滚轴齿轮B C01',以及与滚轴齿轮A C01和滚轴齿轮B C01'同步固定一体运转的驱动链轮A C02和驱动链轮B C02'构成(此处的滚轴齿轮与驱动链轮是固定一体,且同轴设置的);滚轴传动齿条A B03与滚轴传动齿条B B03'的下方被设置在承重立柱A A02与承重立柱B B02上的限位轴承组A C06与限位轴承组B C06'定向限位固定,滚轴传动齿条AB03与滚轴传动齿条B B03'的上方被安装在承重立柱A A02与承重立柱B B02上的固定轴安装支架A C07与固定轴安装支架B C07'上的中心设有轴承A C04和轴承B C04'的,与滚轴齿轮A C01滚轴齿轮B C01'一体的驱动链轮A C02与驱动链轮B C02'相配合的限位轴承A C05与限位轴承B C05'定向限位固定;当浮力动能发电装置A A01与浮力动能发电装置B B01的进水控制阀120'与出水控制阀120”(如图16所示)按照设定的时间频率同步联动错位开闭时(进水控制阀120'打开时出水控制阀120”关闭,反之相同),波动浮筒A与波动浮筒B随着波动水池A A01与波动水池B B01内的水位反向同步摆动,滚轴传动齿条A B03与滚轴传动齿条B B03'上下单向往复运行,带动与滚轴传动齿条A B03与滚轴传动齿条B B03'啮合的滚轴齿轮A C01与滚轴齿轮B C01'一体的驱动链轮A C02驱动链轮B C02'正反往复运转,同时通过绕经驱动链轮A C02与驱动链轮B C02'的环形传动链C08驱动双向合一动能整合缓释装置300的动能输入链轮301运转,然后由双向合一动能整合缓释装置300的动能输出链轮303通过传动带E02带动发电机305发电;传动装置为闭环绕经驱动链轮A C02与驱动链轮B C02'以及被驱动链轮A C02与驱动链轮B C02'带动正反往复运转的双向合一动能整合缓释装置300的动能输入链轮301(双向合一动能整合缓释装置300的作用是将动能整合成单向连续旋转的动能)的环形传动链C08。
如图10所示的结构与上述发电装置的结构相同,布置结构稍有换位,即双向合一动能整合缓释装置300同时连接两发电机305,优点是更节约 材料成本和空间。实际操作中,采用一台或两台发电机则视情况而定。
实施例四:
如图11所示,本实施例提出另一种浮力摆动重力自平衡组发电装置,实质为一种浮力摆动杠杆传动链式发电装置,由两套结构相同、固定相邻、同步错频反向波动运行的浮力动能发电装置A A01与浮力动能发电装置B B01镜像设置构成(当两套结构相同的浮力动能发电装置相向设置,落差水流在进、出水控制阀同步开闭交替作用下,相邻的波动水池内水位升降波动,水的浮力势能推动设有配重的波动浮筒同步交替起伏波动,带动包含双向合一动能整合缓释装置300的发电装置驱动发电机305发电,传动链结构连接两套单独的浮力动能发电装置同步工作,使其一侧波动浮筒的浮力+另一侧波动浮筒的重力同时起作用,以获得更强的动能);浮力动能发电装置A A01与浮力动能发电装置B B01均含有各自的浮力动能发生装置与动能传导装置;该浮力动能发生装置与实施例一和二中的浮力动能发生装置结构基本相同,均包括波动水池A、波动水池B、波动浮筒A、波动浮筒B、设置于波动浮筒中央的浮筒立柱滑动管腔131、承重立柱A A02、承重立柱B B02、进水控制阀120'、出水控制阀120″等,且上述各部件的连接关系以及结构布置形式均与实施例一和二的相同,在此不再赘述。其中,承重立柱的作用:1.在波动水池中通过波动浮筒的浮筒立柱滑动管腔131在波动水池中的位置,限制其升降轨迹;2.作为安装发电装置所有构件的承载构架。如图16所示,进水控制阀120'和出水控制阀120″之间的固定相邻的浮力动能发电装置A A01与浮力动能发电装置B B01可根据落差水位的来水流量选择单组设置,或者多组阵列设置。动能传导装置分别由对称设置于浮力动能发电装置A A01与浮力动能发电装置B B01上的驱动装置和传动装置构成;本实施例的驱动装置包括对应设置在浮力动能发电装置A A01与浮力动能发电装置B B01两侧的,波动水池A与波动水池B水池内的波动浮筒A与波动浮筒B上的,下端铰接在浮筒连接轴栓A B00和浮筒连接轴栓B B00'上的传动杆A B04和传动杆B B04',以及和传动杆A B04和传动杆B B04'上端铰接的杠杆施力点A O03和杠杆施力点B O03'的杠杆O02(此杠杆连接了两套单独的浮力动能发电装置同步工作,使其 一侧波动浮筒的浮力+另一侧波动浮筒的重力同时起作用,以获得更强的动能),以及和杠杆O02的中心轴支点O00固定设置在同一轴心的半月链轮C02-(此处半月链轮与杠杆为固定连接一体同步运行);半月链轮C02-与杠杆O02的中心轴支点O00设置在立柱固定横梁215中央的杠杆中心固定支架O01上;当浮力动能发电装置A A01与浮力动能发电装置B B01的进水控制阀120'与出水控制阀120”(图16)按照设定的时间频率同步联动错位开闭(进水控制阀120'打开时,出水控制阀120”关闭,反之相同),使波动水池A与波动水池B内的水位反向同步摆动,水的浮力势能带动波动浮筒A与波动浮筒B上端铰接在浮筒连接轴栓A B00和浮筒连接轴栓B B00'上的传动杆A B04和传动杆B B04'随着浮筒上下往复运行,并通过杠杆O02上的杠杆施力点A O03和杠杆施力点B O03'驱动固定设置在杠杆O02同一轴心的半月链轮C02-驱动双向合一动能整合缓释装置300的动能输入链轮301正反往复运转,再通过双向合一动能整合缓释装置300将动能整合成单向连续的旋转动能带动发电机305发电;本实施例的传动装置是由两端铰接于半月链轮C02-两侧的传动链与形成闭环传动连接的双向合一动能整合缓释装置300的动能输入链轮301组成。此处的半月链轮C02-与传动链也可以由驱动齿轮C02+替代,如图12所示,双向合一动能整合缓释装置300的动能输入链轮301则改为与驱动齿轮C02+啮合的齿轮D01',驱动齿轮C02+与该齿轮D01'直接啮合传动,无需再设置传动链,相比上述半月链轮C02-与动能输入链轮301之间的链轮、链条传动方案,仅改变了传动方式。
实施例五:
如图13所示,本实施例提出另一种浮力摆动重力自平衡组发电装置,实质为一种浮力摆动杠杆传动链式发电装置,由两套结构相同、固定相邻、同步错频反向波动运行的浮力动能发电装置A A01与浮力动能发电装置B B01镜像设置构成(当两套结构相同的浮力动能发电装置相向设置,落差水流在进、出水控制阀同步开闭交替作用下,相邻的波动水池内水位升降波动,水的浮力势能推动设有配重的波动浮筒同步交替起伏波动,带动包含双向合一动能整合缓释装置300的发电装置驱动发电机305发电,传动链结构连接两套单独的浮力动能发电装置同步工作,使其一侧 波动浮筒的浮力+另一侧波动浮筒的重力同时起作用,以获得更强的动能);浮力动能发电装置A A01与浮力动能发电装置B B01均含有各自的浮力动能发生装置与动能传导装置;该浮力动能发生装置与实施例一和二中的浮力动能发生装置结构基本相同,均包括波动水池A、波动水池B、波动浮筒A、波动浮筒B、设置于波动浮筒中央的浮筒立柱滑动管腔131、承重立柱A A02、承重立柱B B02、进水控制阀120'、出水控制阀120″等,且上述各部件的连接关系以及结构布置形式均与实施例一和二的相同,在此不再赘述。其中,承重立柱的作用:1.在波动水池中通过波动浮筒的浮筒立柱滑动管腔131在波动水池中的位置,限制其升降轨迹;2.作为安装发电装置所有构件的承载构架。如图16所示,进水控制阀120'和出水控制阀120″之间的固定相邻的浮力动能发电装置A A01与浮力动能发电装置B B01可根据落差水位的来水流量选择单组设置,或者多组阵列设置。动能传导装置由驱动装置和传动装置构成,本实施例的驱动装置包括对应设置在浮力动能发电装置A A01与浮力动能发电装置B B01两侧的,波动水池A与波动水池B水池内的波动浮筒A与波动浮筒B上的,下端铰接在浮筒连接轴栓A B00和浮筒连接轴栓B B00'上的传动杆A B04和传动杆B B04',以及与传动杆A B04和传动杆B B04'上端杠杆施力点A O03和杠杆施力点B O03'铰接的杠杆O02,该杠杆O02的中心轴支点O00设置在立柱固定横梁215中央的轴承座上;本实施例的传动装置由一条传动链中间与双向合一动能整合缓释装置300的动能输入链轮301传动配合后,其两端分别绕经定位链轮A C03与定位链轮B C03'后再分别与杠杆O02两端的杠杆施力点A O03和杠杆施力点B O03'铰接,如图13所示,定位链轮A C03与定位链轮B C03'分别通过定位链轮支架对应固定设置在承重立柱A和承重立柱B上。
如图13所示,本实施例的发电装置结构与实施例四的基本相同,只是具体运用时需在传动链合适位置增加一个或一组传动链弹紧轮,即定位链轮A C03与定位链轮B C03',以使传动链与动能输入链轮301始终配合密切,但具体运行效果实施例四将更优于本方案。
实施例六:
如图14-15所示,本实施例提出另一种浮力摆动重力自平衡组发电装置,实质为一种浮力摆动螺旋凹槽推杆式发电装置,由两套结构相同、固定相邻、同步错频反向波动运行的浮力动能发电装置A A01与浮力动能发电装置B B01镜像设置构成(当两套结构相同的浮力动能发电装置相向设置,落差水流在进、出水控制阀同步开闭交替作用下,相邻的波动水池内水位升降波动,水的浮力势能推动设有配重的波动浮筒同步交替起伏波动,带动包含双向合一动能整合缓释装置300的发电装置驱动发电机305发电,传动链结构连接两套单独的浮力动能发电装置同步工作,使其一侧波动浮筒的浮力+另一侧波动浮筒的重力同时起作用,以获得更强的动能);浮力动能发电装置A A01与浮力动能发电装置B B01均含有各自的浮力动能发生装置与动能传导装置;该浮力动能发生装置与实施例一和二中的浮力动能发生装置结构基本相同,均包括波动水池A、波动水池B、波动浮筒A、波动浮筒B、设置于波动浮筒中央的浮筒立柱滑动管腔131、承重立柱A A02、承重立柱B B02、进水控制阀120'、出水控制阀120″等,且上述各部件的连接关系以及结构布置形式均与实施例一和二的相同,在此不再赘述。其中,承重立柱的作用:1.在波动水池中通过波动浮筒的浮筒立柱滑动管腔131在波动水池中的位置,限制其升降轨迹;2.作为安装发电装置所有构件的承载构架。如图16所示,进水控制阀120'和出水控制阀120″之间的固定相邻的浮力动能发电装置A A01与浮力动能发电装置B B01可根据落差水位的来水流量选择单组设置,或者多组阵列设置。本实施例的动能传导装置由对称设置于浮力动能发电装置A A01与浮力动能发电装置B B01上的驱动装置和传动装置构成。本实施例的驱动装置包括对应设置在浮力动能发电装置A A01与浮力动能发电装置B B01两侧的波动水池A与波动水池B内的波动浮筒A与波动浮筒B上的,与浮筒连接轴栓A B00和浮筒连接轴栓B B00'铰接的螺旋凹槽推杆A B05与螺旋凹槽推杆B B05',以及分别与螺旋凹槽推杆A B05与螺旋凹槽推杆B B05'啮合的螺旋推杆啮合凸齿环A B05+与螺旋推杆啮合凸齿环B B05+',以及分别与螺旋推杆啮合凸齿环AB05+与螺旋推杆啮合凸齿环B B05+'水平固定连接一体的驱动链轮A C02与驱动链轮B C02'(此处螺旋推杆啮合凸齿环与驱动链轮为一体同步 固定,运行时螺旋凹槽推杆只做上下运动,带动与之啮合的螺旋推杆啮合凸齿环和水平设置的驱动链轮来回转动);螺旋推杆啮合凸齿环A B05+与螺旋推杆啮合凸齿环B B05+'分别被两组锥形轴承组AB06和锥形轴承组B B06'安装在承重立柱A和承重立柱B上的换向定位轮横梁B07-两端,(以锥形轴承组约束定位螺旋推杆啮合凸齿环上下空间位置,使之只能在该位置水平旋转)锥形轴承组A B06和锥形轴承组B B06'上方被轴承组压条B07+固定于换向定位轮横梁B07-上。当浮力动能发电装置A A01与浮力动能发电装置B B01的进水控制阀120'与出水控制阀120”(如图16所示)按照设定的时间频率同步联动错位开闭(进水控制阀120'打开时,出水控制阀120”关闭,反之相同),波动水池A与波动水池B内的水位反向同步摆动,水的浮力势能带动波动浮筒A与波动浮筒B以及下端铰接在浮筒连接轴栓A B00和浮筒连接轴栓B B00'上的螺旋凹槽推杆A B05与螺旋凹槽推杆B B05'随着浮筒上下往复运行,螺旋凹槽推杆A B05与螺旋凹槽推杆B B05'上的螺旋凹槽AB05-和螺旋凹槽B B05-'分别驱动与之啮合的螺旋推杆啮合凸齿环A B05+与螺旋推杆啮合凸齿环B B05+'正反往复旋转。本实施例的传动装置由多向传动链或传动皮带C08'(带齿橡胶皮带可自由转向)、换向定位轮A C09,换向定位轮B C09'组成;换向定位轮A C09、换向定位轮B C09'安装于换向定位轮横梁B07-上的双向合一动能整合缓释装置300的动能输入链轮301一侧,与驱动链轮A C02、驱动链轮B C02'的边缘呈90度垂直转向设置(换向定位轮与多向传动链或传动皮带配合起改变传动链传动方向的作用);闭环的多向传动链或传动皮带C08'分别自上而下绕经驱动链轮A C02和驱动链轮B C02'、换向定位轮A C09和换向定位轮B C09',再与双向合一动能整合缓释装置300的动能输入链轮301形成闭环传动连接,驱动双向合一动能整合缓释装置300的动能输入链轮301运转(双向合一动能整合缓释装置300的功能是将正反两个方向的动能转变为单一方向的动能,并将两个方向停顿断续的力储存转变为单方向连续的动能),再通过双向合一动能整合缓释装置300将动能整合成单向连续的旋转动能输出,带动发电机305发电。
以上浮力摆动发电装置最适合我国沿海的潮汐资源利用,与现有的传 统水力发电设施可同时发挥作用,也可以进一步结合水利整治目的综合利用,可以根据不同的地形、气候和水资源条件因地制宜的创造出许多不同形式的利用方式,与其配套的“浮力摆动重力自平衡组发电装置的模块化水池构件”已递交发明专利申请(202011408562.1),更进一步的优化利用方法将根据具体地形和水资源条件在后续的研究中逐步创造出来。

Claims (8)

  1. 一种浮力摆动重力自平衡组发电装置,其特征在于,由发电机、双向合一动能整合缓释装置、浮力动能发电装置A和浮力动能发电装置B构成;所述浮力动能发电装置A与所述浮力动能发电装置B并列或镜像设置,且所述浮力动能发电装置A与所述浮力动能发电装置B反向交替波动运行;
    所述浮力动能发电装置A包括承重立柱以及自下而上安装于所述承重立柱上的浮力动能发生装置、浮力动能放大装置和浮力动能增效装置,所述浮力动能发生装置由波动水池、安装于所述波动水池内的波动浮筒以及开闭联动的进水控制阀和出水控制阀组成,所述波动浮筒的中央设置有与所述承重立柱滑动配合的浮筒立柱滑动管腔;所述浮力动能放大装置由X形比例力矩杠杆组和比例力矩杠杆浮筒连杆组成,所述比例力矩杠杆浮筒连杆的下端和安装于所述波动浮筒顶端的波动浮筒杠杆组连接耳铰接,所述X形比例力矩杠杆组的立柱X形比例力矩杠杆承力铰接点铰接安装于所述承重立柱的下半部的所述波动浮筒上方;所述浮力动能增效装置由多组波幅放大X形等比例力矩杠杆组阵列叠加铰接构成,每个所述波幅放大X形等比例力矩杠杆组的铰接点均与所述承重立柱上设置的X形杠杆组铰接点升降滑槽滑动配合,所述浮力动能增效装置的顶端设有波幅放大杠杆组链轮;所述浮力动能发电装置B的结构组成与所述浮力动能发电装置A的结构组成完全相同;
    所述浮力动能发电装置B的波动水池与所述浮力动能发电装置A的波动水池固定相邻形成波动水池组,所述进水控制阀和所述出水控制阀同步联动错位开闭,所述进水控制阀和所述出水控制阀之间设置单组所述波动水池组或设置多组所述波动水池组阵列布置;
    所述浮力动能发电装置A与所述浮力动能发电装置B之间通过一条或一组传动链共用啮合链接驱动一套所述双向合一动能整合缓释装置,所述浮力动能发电装置A的承重立柱与所述浮力动能发电装置B的承重立柱之间连接有立柱发电机安装搁板,所述立柱发电机安装搁板用于安装所述发电机;所述传动链的两端分别固定连接在所述立柱发电机安装搁板的两端,将所述传动链的一端固定在所述立柱发电机安装搁板的靠近所述浮 力动能发电装置A的一端后,所述传动链的另一端依次绕经所述浮力动能发电装置A的所述波幅放大杠杆组链轮、所述双向合一动能整合缓释装置的动能输入链轮、所述浮力动能发电装置B的所述波幅放大杠杆组链轮后,固定在所述立柱发电机安装搁板的靠近所述浮力动能发电装置B的一端;所述双向合一动能整合缓释装置的动能输出链轮通过连接皮带或齿轮与所述发电机的皮带轮或齿轮相配合;
    所述浮力动能发电装置A与所述浮力动能发电装置B之间还连接有一条左右波幅放大杠杆组重力平衡吊索或链条,所述浮力动能发电装置A的承重立柱与所述浮力动能发电装置B的承重立柱之间连接有立柱顶端横梁,所述立柱顶端横梁的两端分别设置波幅放大杠杆组重力平衡吊索滑轮A和波幅放大杠杆组重力平衡吊索滑轮B,所述浮力动能发电装置A的所述浮力动能增效装置的顶端设置有波幅放大杠杆组重力平衡索挂耳A,所述浮力动能发电装置B的所述浮力动能增效装置的顶端设置有波幅放大杠杆组重力平衡索挂耳B;所述左右波幅放大杠杆组重力平衡吊索或链条绕过所述波幅放大杠杆组重力平衡吊索滑轮A和所述波幅放大杠杆组重力平衡吊索滑轮B后,两端分别连接在所述波幅放大杠杆组重力平衡索挂耳A和所述波幅放大杠杆组重力平衡索挂耳B上,用以抵消所述浮力动能发电装置A与所述浮力动能发电装置B两者的波幅放大X形等比例力矩杠杆组自身的影响动能发挥的重力。
  2. 根据权利要求1所述的浮力摆动重力自平衡组发电装置,其特征在于,所述动能输入链轮的两侧分别设置有限位轮A和限位轮B,所述限位轮A靠近所述浮力动能发电装置A设置,所述限位轮B靠近所述浮力动能发电装置B设置;所述传动链设置时绕经所述限位轮A和所述限位轮B。
  3. 根据权利要求2所述的浮力摆动重力自平衡组发电装置,其特征在于,所述传动链以及与所述传动链配合的链轮均设置单组或双组。
  4. 根据权利要求1所述的浮力摆动重力自平衡组发电装置,其特征在于,设置浮力动能发电装置A'和浮力动能发电装置B'以分别替换所述浮力动能发电装置A和所述浮力动能发电装置B,所述浮力动能发电装置A'和所述浮力动能发电装置B'固定相邻且同步反向波动运行;
    所述浮力动能发电装置A'包括承重立柱A'以及自下而上安装于所述承重立柱A'上的浮力动能发生装置与动能传导装置,所述浮力动能发电装置A'的浮力动能发生装置与所述浮力动能发电装置A的浮力动能发生装置结构相同;所述动能传导装置由驱动装置和传动装置构成,所述驱动装置由滚轴传动齿条、和所述滚轴传动齿条啮合的滚轴齿轮以及与所述滚轴齿轮同轴连接一体运转的驱动链轮构成,所述滚轴传动齿条的下端通过浮筒连接轴栓连接于波动浮筒的顶端,所述滚轴传动齿条的下方被设置在所述承重立柱A'上的限位轴承组定向限位固定;所述滚轴传动齿条的上方被安装在所述承重立柱A'上的固定轴安装支架上的中心设有轴承的,
    与所述驱动链轮相配合的限位轴承A单向限位固定,所述滚轴齿轮与所述滚轴传动齿条啮合;所述浮力动能发电装置B'与所述浮力动能发电装置A'的结构相同,且所述浮力动能发电装置B'与所述浮力动能发电装置A'并列或镜像设置,所述承重立柱A'和所述浮力动能发电装置B'的承重立柱B'上分别安装一组所述驱动装置;
    所述传动装置包括环形传动链,所述环形传动链同时连接所述浮力动能发电装置B'的所述驱动链轮、所述浮力动能发电装置A'的所述驱动链轮以及所述双向合一动能整合缓释装置的所述动能输入链轮;所述双向合一动能整合缓释装置的所述动能输出链轮通过连接皮带或齿轮与所述发电机的皮带轮或齿轮相配合。
  5. 根据权利要求1所述的浮力摆动重力自平衡组发电装置,其特征在于,设置浮力动能发电装置A”和浮力动能发电装置B”以分别替换所述浮力动能发电装置A和所述浮力动能发电装置B,所述浮力动能发电装置A”和所述浮力动能发电装置B”固定相邻且同步反向波动运行;
    所述浮力动能发电装置A”包括承重立柱A”以及自下而上安装于所述承重立柱A”上的浮力动能发生装置与动能传导装置,所述浮力动能发电装置A”的浮力动能发生装置与所述浮力动能发电装置A的浮力动能发生装置结构相同;所述浮力动能发电装置B”与所述浮力动能发电装置A”的结构相同,且所述浮力动能发电装置B”与所述浮力动能发电装置A”并列或镜像设置;所述动能传导装置由驱动装置和传动装置构成,所述驱动装置由传动杆、杠杆和半月链轮构成,所述浮力动能发电装置A”和所 述浮力动能发电装置B”的波动浮筒的顶部分别设置一根所述传动杆,且所述传动杆的下端铰接在波动浮筒的浮筒连接轴栓上,两所述传动杆的上端分别与所述杠杆的两端铰接形成杠杆施力点;所述浮力动能发电装置B”与所述浮力动能发电装置A”的承重立柱之间连接立柱固定横梁,所述立柱固定横梁的中心安装杠杆中心固定支架,所述半月链轮和所述杠杆固定连接,且所述半月链轮和所述杠杆的中心轴支点设置在同一轴心,所述半月链轮和所述杠杆的中心轴支点设置在所述杠杆中心固定支架上;
    所述传动装置由两端固定于所述半月链轮两侧的传动链二和所述双向合一动能整合缓释装置的所述动能输入链轮组成,所述传动链二闭环传动绕经所述半月链轮和所述双向合一动能整合缓释装置的所述动能输入链轮;所述双向合一动能整合缓释装置的所述动能输出链轮通过连接皮带或齿轮与所述发电机的皮带轮或齿轮相配合。
  6. 根据权利要求5所述的浮力摆动重力自平衡组发电装置,其特征在于,设置驱动齿轮替换所述半月链轮,同时设置动能输入齿轮替换所述双向合一动能整合缓释装置的所述动能输入链轮,所述驱动齿轮直接与所述动能输入齿轮啮合传递动力。
  7. 根据权利要求1所述的浮力摆动重力自平衡组发电装置,其特征在于,设置浮力动能发电装置A”'和浮力动能发电装置B”'以分别替换所述浮力动能发电装置A和所述浮力动能发电装置B,所述浮力动能发电装置A”'和所述浮力动能发电装置B”'固定相邻且同步反向波动运行;
    所述浮力动能发电装置A”'包括承重立柱A”'以及自下而上安装于所述承重立柱A”'上的浮力动能发生装置与动能传导装置,所述浮力动能发电装置A”'的浮力动能发生装置与所述浮力动能发电装置A的浮力动能发生装置结构相同;所述浮力动能发电装置B”'与所述浮力动能发电装置A”'的结构相同,且所述浮力动能发电装置B”'与所述浮力动能发电装置A”'并列或镜像设置;所述动能传导装置由驱动装置和传动装置构成,所述驱动装置由传动杆和杠杆构成,所述浮力动能发电装置A”'和所述浮力动能发电装置B”'的波动浮筒的顶部分别设置一根所述传动杆,且所述传动杆的下端铰接在波动浮筒的浮筒连接轴栓上,两所述传动杆的上端分别与所述杠杆的两端铰接形成杠杆施力点;所述浮力动能发电装置B”'与所述浮 力动能发电装置A”'的承重立柱之间连接立柱固定横梁,所述立柱固定横梁的中心安装轴承座,所述杠杆的中心轴支点设置在所述轴承座上;
    所述传动装置由传动链三构成,所述传动链三的中间与所述双向合一动能整合缓释装置的所述动能输入链轮传动配合,所述传动链三的两端分别绕经定位链轮A与定位链轮B后再分别与所述杠杆两端的杠杆施力点铰接;所述定位链轮A与所述定位链轮B分别通过定位链轮支架固定设置在所述浮力动能发电装置A”'和所述浮力动能发电装置B”'的承重立柱上;所述双向合一动能整合缓释装置的所述动能输出链轮通过连接皮带或齿轮与所述发电机的皮带轮或齿轮相配合。
  8. 根据权利要求1所述的浮力摆动重力自平衡组发电装置,其特征在于,设置浮力动能发电装置A””和浮力动能发电装置B””以分别替换所述浮力动能发电装置A和所述浮力动能发电装置B,所述浮力动能发电装置A””和所述浮力动能发电装置B””固定相邻且同步反向波动运行;
    所述浮力动能发电装置A””包括承重立柱A””以及自下而上安装于所述承重立柱A””上的浮力动能发生装置与动能传导装置,所述浮力动能发电装置A””的浮力动能发生装置与所述浮力动能发电装置A的浮力动能发生装置结构相同;所述浮力动能发电装置B””与所述浮力动能发电装置A””的结构相同,且所述浮力动能发电装置B””与所述浮力动能发电装置A””并列或镜像设置;
    所述动能传导装置由驱动装置和传动装置构成;所述驱动装置由螺旋凹槽推杆、与所述螺旋凹槽推杆啮合的螺旋推杆啮合凸齿环以及与所述螺旋推杆啮合凸齿环水平固定连接成一体的驱动链轮组成,所述螺旋凹槽推杆的下端通过浮筒连接轴栓连接在波动浮筒的顶端,所述螺旋凹槽推杆的上端与所述螺旋推杆啮合凸齿环啮合;所述浮力动能发电装置A””的承重立柱和所述浮力动能发电装置B””的承重立柱上分别设置一组所述驱动装置,所述浮力动能发电装置A””的承重立柱和所述浮力动能发电装置B””的承重立柱之间连接有换向定位轮横梁,两所述螺旋推杆啮合凸齿环分别被一组锥形轴承组安装在所述换向定位轮横梁上,且两组所述锥形轴承组被轴承组压条固定于所述换向定位轮横梁上;
    所述传动装置由换向定位轮和封闭的多向传动链或传动皮带组成;所 述双向合一动能整合缓释装置的所述动能输入链轮的两侧分别设置一所述换向定位轮,两所述换向定位轮安装于所述换向定位轮横梁上,且所述换向定位轮与水平设置的所述驱动链轮垂直转向设置;所述多向传动链或传动皮带自上而下绕经两所述驱动链轮、两所述换向定位轮和所述动能输入链轮形成闭环传动连接;所述双向合一动能整合缓释装置的所述动能输出链轮通过连接皮带或齿轮与所述发电机的皮带轮或齿轮相配合。
PCT/CN2021/080355 2020-03-12 2021-03-12 浮力摆动重力自平衡组发电装置 WO2021180192A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010172916.0A CN111550360A (zh) 2020-03-12 2020-03-12 浮力摆动重力自平衡组发电装置
CN202010172916.0 2020-03-12
CN202110175630.2 2021-02-06
CN202110175630 2021-02-06

Publications (1)

Publication Number Publication Date
WO2021180192A1 true WO2021180192A1 (zh) 2021-09-16

Family

ID=77671198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080355 WO2021180192A1 (zh) 2020-03-12 2021-03-12 浮力摆动重力自平衡组发电装置

Country Status (1)

Country Link
WO (1) WO2021180192A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856889A (zh) * 2022-06-16 2022-08-05 山东省红森林新材料科技有限公司 一种势能发电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113063A (en) * 1980-02-12 1981-09-05 Osamichi Kawarada Securing method of precision and smoothness of rotary power transmuted from vertical motion
CN2191293Y (zh) * 1993-12-28 1995-03-08 祝天镇 浮力发电装置
CN101135291A (zh) * 2006-09-01 2008-03-05 童瑞祺 动能装置
WO2014106550A1 (en) * 2013-01-03 2014-07-10 Gnani Otello Energy conversion apparatus
GB2527195A (en) * 2014-05-07 2015-12-16 Julia Ann Fothergill Method and apparatus for generating clean renewable energy through the application of hydrostatic pressure gradients associated with liquid reservoirs
US9957018B1 (en) * 2017-02-07 2018-05-01 Cvetan Angeliev System for wave amplifying, wave energy harnessing, and energy storage
CN110397549A (zh) * 2018-04-25 2019-11-01 封晏 浮力动能发电装置
CN111550360A (zh) * 2020-03-12 2020-08-18 封晏 浮力摆动重力自平衡组发电装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113063A (en) * 1980-02-12 1981-09-05 Osamichi Kawarada Securing method of precision and smoothness of rotary power transmuted from vertical motion
CN2191293Y (zh) * 1993-12-28 1995-03-08 祝天镇 浮力发电装置
CN101135291A (zh) * 2006-09-01 2008-03-05 童瑞祺 动能装置
WO2014106550A1 (en) * 2013-01-03 2014-07-10 Gnani Otello Energy conversion apparatus
GB2527195A (en) * 2014-05-07 2015-12-16 Julia Ann Fothergill Method and apparatus for generating clean renewable energy through the application of hydrostatic pressure gradients associated with liquid reservoirs
US9957018B1 (en) * 2017-02-07 2018-05-01 Cvetan Angeliev System for wave amplifying, wave energy harnessing, and energy storage
CN110397549A (zh) * 2018-04-25 2019-11-01 封晏 浮力动能发电装置
CN111550360A (zh) * 2020-03-12 2020-08-18 封晏 浮力摆动重力自平衡组发电装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856889A (zh) * 2022-06-16 2022-08-05 山东省红森林新材料科技有限公司 一种势能发电装置
CN114856889B (zh) * 2022-06-16 2024-05-07 山东省红森林新材料科技有限公司 一种势能发电装置

Similar Documents

Publication Publication Date Title
US7855468B2 (en) Hinged blade device to convert the natural flow or ocean or river current or ocean waves to rotational mechanical motion for power generation
CN100562659C (zh) 无坝水能发电系统
CN103939269B (zh) 大型活塞增压式波浪能发电装置
CN101608594B (zh) 水流能发电机
CN101790638A (zh) 马格努斯力流体流能量采集机
WO2012016415A1 (zh) 双反向折叠式横轴潮流能水轮机
CN101223319A (zh) 利用水流例如潮汐、河流等发电的装置
CN101344060B (zh) 链轮水车
WO2021180192A1 (zh) 浮力摆动重力自平衡组发电装置
KR101503727B1 (ko) 소수력발전장치
CN1869435A (zh) 无轴水轮机及其使用方法与调速调能装置
CN201582042U (zh) 一种流水叶轮发电装置
CN206144701U (zh) 环保型水面水力发电站
KR20050055634A (ko) 구조물 외부의 수위변화에 의한 구조물 내·외부 물과 공기의 압력차이를 발전에 사용하는 조력에의한 청정에너지 생산용 고효율 복합발전장치
CN111550360A (zh) 浮力摆动重力自平衡组发电装置
CN2674138Y (zh) 水平轴桨叶式流水发电装置
CN111120194B (zh) 一种基于多级特斯拉阀的海水冲击发电设备
CN203230517U (zh) 一种利用自然能发电的装置
CN201443459U (zh) 浮桥式发电装置
CN114909250A (zh) 浮力摆动发电装置
CN109505722B (zh) 膜结构斗式水力发电
CN204627887U (zh) 循环升降式动力转换发电装置
CN108561267A (zh) 潮汐能发电装置
CN217462402U (zh) 一种模块型小型通用水力发电机及再生能源发电系统
CN207420773U (zh) 一种小型水利发电水车设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767324

Country of ref document: EP

Kind code of ref document: A1