WO2021180099A1 - 检测x射线光电子能谱仪稳定性的方法 - Google Patents

检测x射线光电子能谱仪稳定性的方法 Download PDF

Info

Publication number
WO2021180099A1
WO2021180099A1 PCT/CN2021/079864 CN2021079864W WO2021180099A1 WO 2021180099 A1 WO2021180099 A1 WO 2021180099A1 CN 2021079864 W CN2021079864 W CN 2021079864W WO 2021180099 A1 WO2021180099 A1 WO 2021180099A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
oxygen
nitrogen content
ratio
limit value
Prior art date
Application number
PCT/CN2021/079864
Other languages
English (en)
French (fr)
Inventor
陆朋朋
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/431,771 priority Critical patent/US11327033B1/en
Publication of WO2021180099A1 publication Critical patent/WO2021180099A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • G01N23/2273Measuring photoelectron spectrum, e.g. electron spectroscopy for chemical analysis [ESCA] or X-ray photoelectron spectroscopy [XPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/303Accessories, mechanical or electrical features calibrating, standardising
    • G01N2223/3037Accessories, mechanical or electrical features calibrating, standardising standards (constitution)

Definitions

  • the invention relates to the field of semiconductor technology, in particular to a method for detecting the stability of an X-ray photoelectron spectrometer.
  • the silicon oxynitride film has good photoelectric properties, mechanical properties and chemical stability.
  • the nitrogen content of the silicon oxynitride film directly affects the performance of the silicon oxynitride film; therefore, the monitoring of the nitrogen content of the silicon oxynitride film is very important, typical
  • the nitrogen content of the silicon oxynitride film is obtained by an X-ray photoelectron spectrometer (XPS). If the X-ray photoelectron spectrometer is unstable, the nitrogen content test of the silicon oxynitride film will cause an indication error .
  • XPS X-ray photoelectron spectrometer
  • This application provides a method for detecting the stability of an X-ray photoelectron spectrometer.
  • a method for detecting the stability of an X-ray photoelectron spectrometer including:
  • the thickness of the silicon oxynitride film is less than 10 nanometers; the sum of the oxygen content value, the nitrogen content value, and the silicon oxygen content value of the silicon oxynitride film measured by the X-ray photoelectron spectrometer is 100%, The value of the oxygen content, the value of the nitrogen content, and the value of the silicon-oxygen content are all percentage values, and the ratio of the oxygen-nitrogen content refers to the sum of the oxygen content and the nitrogen content corresponding to the calibration patch and the value The ratio of the thickness of the silicon oxynitride film.
  • Figure 1 is a graph showing the change in nitrogen content obtained by using an X-ray photoelectron spectrometer to test the process monitoring film as a function of the test time;
  • Figure 2 is a graph showing changes in the value of nitrogen content obtained by using an X-ray photoelectron spectrometer to test the calibration sheet as a function of the test time;
  • Fig. 3 is a flowchart of a method for detecting the stability of an X-ray photoelectron spectrometer in the first embodiment
  • Fig. 5 is a flowchart of obtaining the first upper limit value and the first lower limit value according to the ratio of N oxygen and nitrogen contents in an embodiment
  • FIG. 6 is a flowchart of obtaining the first upper limit value and the first lower limit value according to the first target value and the standard deviation in an embodiment
  • FIG. 7 is a flowchart of a method for detecting the stability of an X-ray photoelectron spectrometer in the second embodiment
  • FIG. 8 is a schematic diagram of a first curve obtained in an embodiment
  • FIG. 9 is a flowchart of a method for detecting the stability of an X-ray photoelectron spectrometer in the third embodiment
  • Fig. 10 is a flowchart of a method for detecting the stability of an X-ray photoelectron spectrometer in the fourth embodiment.
  • first element, component, region, layer or section discussed below may be represented as a second element, component, region, layer or section.
  • Spatial relationship terms such as “under”, “below”, “below”, “below”, “above”, “above”, etc., in It can be used here for the convenience of description to describe the relationship between one element or feature shown in the figure and other elements or features. It should be understood that in addition to the orientations shown in the figures, the spatial relationship terms are intended to include different orientations of devices in use and operation. For example, if the device in the figure is turned over, then elements or features described as “under” or “below” or “under” other elements will be oriented “on” the other elements or features. Therefore, the exemplary terms “below” and “below” can include both an orientation of above and below. The device can be otherwise oriented (rotated by 90 degrees or other orientation) and the spatial descriptors used here are interpreted accordingly.
  • the embodiments of the invention are described here with reference to cross-sectional views which are schematic diagrams of ideal embodiments (and intermediate structures) of the invention. In this way, changes from the shown shape due to, for example, manufacturing technology and/or tolerances can be expected. Therefore, the embodiments of the present invention should not be limited to the specific shapes of the regions shown here, but include shape deviations due to, for example, manufacturing. For example, an implanted area shown as a rectangle usually has rounded or curved features and/or an implanted concentration gradient at its edges, rather than a binary change from an implanted area to a non-implanted area. Likewise, the buried region formed by the implantation can result in some implantation in the region between the buried region and the surface through which the implantation proceeds. Therefore, the regions shown in the figure are schematic in nature, and their shapes are not intended to show the actual shape of the regions of the device and are not intended to limit the scope of the present invention.
  • the photoelectrons of different elements have specific kinetic energy and can be used as the basis for determining the composition of the elements on the surface of the material.
  • X-ray photoelectron spectrometer is one of the important surface analysis techniques. It is an analytical instrument that is very sensitive to the surface of the test piece.
  • the photoelectron generation process of the X-ray photoelectron spectrometer involves only one electron, so all of the periodic table All elements can generate photoelectrons, so it can measure all elements.
  • X-ray photoelectron spectrometer photoelectron generation mechanism is simple, and its energy spectrum signal peak is simple and easy to distinguish. When the chemical environment of the atom changes, such as oxidation state, the change of its photoelectron signal peak will not be very complicated.
  • the X-ray photoelectron spectrometer can analyze the surface elements of the object to be measured.
  • the element composition, element content and film thickness of ultra-thin films with a thickness of less than 10 nanometers can be analyzed.
  • Silicon oxynitride (SiOxNy) film is a new thin film material with good photoelectric properties, mechanical properties and chemical stability. It is a material mixed with silicon oxide (SiO2) and silicon nitride (Si3N4) in different proportions. By changing the mixing ratio (x/y) of oxygen and nitrogen, the photoelectric and mechanical properties of the silicon oxynitride (SiOxNy) film can be changed differently.
  • the nitrogen content of a typical silicon oxynitride film is obtained by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • testers will use X-ray photoelectron spectroscopy (XPS) to measure the same
  • the nitrogen content of a calibration wafer (Tool Monitor Wafer) with a silicon oxynitride film formed on the surface, and the obtained nitrogen content value is used to determine whether the X-ray photoelectron spectrometer is stable, and then determine the use of the X-ray photoelectron spectrometer Whether it can accurately test the value of the nitrogen content of the process monitoring chip made with the product in the silicon oxynitride film process.
  • the tester found that for the same X-ray photoelectron spectrometer, there was no abnormality in the silicon oxynitride film process.
  • the X-ray photoelectron spectrometer was used to test the process monitoring film, and the obtained nitrogen content value was within the normal fluctuation range (such as Figure 1, the abscissa is the test time, the ordinate is the value of the nitrogen content of the process monitoring film), using the X-ray photoelectron spectrometer to test the same calibration film, the value of the nitrogen content obtained gradually decreases with the increase of time ( Referring to Figure 2, the abscissa is the test time, and the ordinate is the value of the nitrogen content). Therefore, it is impossible to judge whether the X-ray photoelectron spectrometer is stable through the range of the nitrogen content of the fixed calibration sheet. It can be known by other means that the number of nitrogen atoms on the calibration chip has not disappeared over time.
  • a method for detecting the stability of an X-ray photoelectron spectrometer includes:
  • S102 Acquire a first upper limit value and a first lower limit value of the ratio of oxygen to nitrogen content corresponding to the calibration patch.
  • the sum of the oxygen content value, the nitrogen content value and the silicon oxygen content value of the silicon oxynitride film measured by the photoelectron spectrometer is 100%, the oxygen content value, the nitrogen content value, and the silicon oxygen content
  • the values of are all percentage values, and the oxygen-nitrogen content ratio refers to the ratio of the sum of the oxygen content and the nitrogen content corresponding to the calibration plate to the thickness of the silicon oxynitride film.
  • the thickness of the silicon oxynitride film is greater than or equal to 6.5 nanometers and less than or equal to 9.78 nanometers.
  • step S102 includes:
  • S202 Perform N measurements on the calibration patch, and obtain test values of the N measurements.
  • the unit of the first time interval is days, and the N is 30. In other embodiments, different first time intervals and different values of N are selected according to actual needs.
  • the ratio of the sum of the value of the oxygen content and the value of the nitrogen content obtained in each measurement to the film thickness value of the silicon oxynitride film is obtained.
  • the first upper limit value and the first lower limit value of the ratio of oxygen and nitrogen content corresponding to the calibration strip are obtained according to the ratio of the N oxygen and nitrogen contents of the calibration strips corresponding to the N measurements.
  • step S206 includes:
  • the standard deviation of the ratio of oxygen and nitrogen content is obtained.
  • S306 Obtain a first upper limit value and a first lower limit value according to the first target value and the standard deviation.
  • step S306 includes:
  • S402 Obtain a first upper limit value according to the sum of the first target value and 3 times the standard deviation.
  • the X-ray photoelectron spectrometer is used to measure the calibration patch to obtain a first test value of the ratio of oxygen and nitrogen content corresponding to the calibration patch.
  • S106 Determine whether the X-ray photoelectron spectrometer is stable according to the first test value, the first upper limit value, and the first lower limit value.
  • step S106 further includes:
  • the X-ray photoelectron spectrometer is unstable.
  • step S106 further includes:
  • the X-ray photoelectron spectroscopy is determined
  • the instrument is unstable.
  • the method further includes:
  • S502 Perform a linear fitting on the ratio of the N oxygen and nitrogen contents and the test time corresponding to the N measurements to obtain a first curve.
  • S504 Acquire a calibration period of the X-ray photoelectron spectrometer according to the first curve, the first upper limit value, and the first lower limit value.
  • the method further includes:
  • S602 Perform M measurements on the calibration patch, and obtain the ratio of oxygen and nitrogen content corresponding to the M measurements.
  • M is an integer greater than or equal to 2.
  • S604 Obtain a second upper limit value and a second lower limit value according to the ratio of the oxygen and nitrogen content corresponding to the M measurements.
  • the second upper limit value and the second lower limit value of the ratio of oxygen and nitrogen content corresponding to the calibration patch are obtained.
  • the X-ray photoelectron spectrometer is used to measure the calibration sheet to obtain a second test value of the ratio of oxygen and nitrogen content corresponding to the calibration sheet.
  • S608 Determine whether the X-ray photoelectron spectrometer is stable through the second test value, the second upper limit value, and the second lower limit value.
  • Steps S602-S608 are the periodic calibration of the X-ray photoelectron spectrometer.
  • the second target value, the second upper limit value and the second lower limit value of the ratio of oxygen and nitrogen content obtained by the periodic calibration are The second test value of the ratio of content is between the second upper limit and the second lower limit, it is determined that the X-ray photoelectron spectrometer is stable, and the second test value of the ratio of oxygen and nitrogen is passed at the same time
  • the second target value of the ratio of oxygen and nitrogen content can obtain the test accuracy when the nitrogen content of the process monitoring chip is tested using an X-ray photoelectron spectrometer, and the test accuracy obtained at this time is closer to the true accuracy during the test.
  • the method further includes:
  • S702 Obtain a process monitoring chip with a first silicon oxynitride film formed on the surface.
  • S704 Obtain a first numerical value of the nitrogen content of the process monitoring chip and a third upper limit value and a third lower limit value of the nitrogen content.
  • S706 Use the X-ray photoelectron spectrometer to test the process monitoring chip to obtain a second value of the nitrogen content of the process monitoring chip.
  • the method for detecting the stability of an X-ray photoelectron spectrometer includes obtaining the first upper limit value and the first lower limit value of the ratio of oxygen and nitrogen content corresponding to the calibration plate with a silicon oxynitride film formed on the surface; using the X-ray The photoelectron spectrometer measures the calibration patch to obtain the first test value of the ratio of oxygen to nitrogen content corresponding to the calibration patch; when the first test value of the ratio of oxygen to nitrogen content is within the first upper limit value Between the first lower limit value, it is determined that the X-ray photoelectron spectrometer is stable; wherein the thickness of the silicon oxynitride film is less than 10 nanometers; and the ratio of oxygen to nitrogen content refers to the ratio corresponding to the calibration plate The ratio of the sum of oxygen content and nitrogen content to the thickness of the silicon oxynitride film.
  • the calibration plate After obtaining the first upper limit value and the first lower limit value of the ratio of oxygen to nitrogen content corresponding to the calibration plate with the silicon oxynitride film formed on the surface, the calibration plate is measured using the X-ray photoelectron spectrometer, When the first test value of the ratio of oxygen and nitrogen content corresponding to the calibration sheet is between the first upper limit and the first lower limit, use the silicon oxynitride film obtained by the X-ray photoelectron spectrometer The value of the nitrogen content of the process monitoring chip is within the normal fluctuation range.
  • the X-ray photoelectron spectrometer can accurately test the nitrogen content of the silicon oxynitride film process monitoring chip, and then determine that the X-ray photoelectron spectrometer is in a stable state It can eliminate the interference caused by the further oxidation of the silicon oxynitride film of the calibration plate, accurately judge the stability of the X-ray photoelectron spectrometer, avoid production errors caused by the abnormal test of the X-ray photoelectron spectrometer, and reduce the production cost .

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种检测X射线光电子能谱仪稳定性的方法,包括获取表面形成有氮氧化硅薄膜的校准片对应的氧氮含量的比率的第一上限值和第一下限值,氧氮含量的比率是指校准片对应的氧含量和氮含量之和与氮氧化硅薄膜厚度的比值(S102);使用X射线光电子能谱仪对校准片进行测量,获取校准片对应的氧氮含量的比率的第一测试值(S104);通过第一测试值、第一上限值和第一下限值,判定X射线光电子能谱仪是否稳定(S106)。

Description

检测X射线光电子能谱仪稳定性的方法
本申请要求于2020年3月10日提交的申请号为202010160621.1、名称为“检测X射线光电子能谱仪稳定性的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及半导体技术领域,特别是涉及一种检测X射线光电子能谱仪稳定性的方法。
背景技术
氮氧化硅薄膜具有良好的光电性能、机械性质和化学稳定,氮氧化硅薄膜的含氮量直接影响到氮氧化硅薄膜性能;因此,对氮氧化硅薄膜的含氮量的监控十分重要,典型的氮氧化硅薄膜的含氮量是通过X射线光电子能谱仪(XPS)获取的,如果X射线光电子能谱仪工作不稳定,则对氮氧化硅薄膜的含氮量测试会产生示值误差。
发明内容
本申请提供一种检测X射线光电子能谱仪稳定性的方法。
一种检测X射线光电子能谱仪稳定性的方法,包括:
获取表面形成有氮氧化硅薄膜的校准片对应的氧氮含量的比率的第一上限值和第一下限值;
使用所述X射线光电子能谱仪对所述校准片进行测量,获取所述校准片对 应的氧氮含量的比率的第一测试值;
当氧氮含量的比率的第一测试值在所述第一上限值与所述第一下限值之间,判定所述X射线光电子能谱仪稳定;
其中,所述氮氧化硅薄膜的厚度小于10纳米;通过所述X射线光电子能谱仪测量的氮氧化硅薄膜的氧含量的值、氮含量的值、硅氧含量的值之和为百分之百,所述氧含量的值、所述氮含量的值、所述硅氧含量的值均为百分数值,所述氧氮含量的比率是指所述校准片对应的氧含量和氮含量之和与所述氮氧化硅薄膜厚度的比值。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明本申请的实施例,可参考一幅或多幅附图,但用于描述附图的附加细节或示例不应当被认为是对本申请的发明创造、目前所描述的实施例或优选方式中任何一者的范围的限制。
图1为使用X射线光电子能谱仪测试制程监控片获取的氮含量的值随测试时间变化的曲线图;
图2为使用X射线光电子能谱仪测试校准片获取的氮含量的值随测试时间变化的曲线图;
图3为第一实施例中检测X射线光电子能谱仪稳定性的方法的流程图;
图4为一实施例中获取校准片对应的氧氮含量的比率的第一上限值和第一下限值的流程图;
图5为一实施例中根据N个氧氮含量的比率获取第一上限值和第一下限值 的流程图;
图6为一实施例中根据第一目标值、标准偏差,获取第一上限值和第一下限值的流程图;
图7为第二实施例中检测X射线光电子能谱仪稳定性的方法的流程图;
图8为一实施例中获取的第一曲线的示意图;
图9为第三实施例中检测X射线光电子能谱仪稳定性的方法的流程图;
图10为第四实施例中检测X射线光电子能谱仪稳定性的方法的流程图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的首选实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
应当明白,当元件或层被称为“在...上”、“与...相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在...上”、“与...直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或 部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本发明教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。
空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
这里参考作为本发明的理想实施例(和中间结构)的示意图的横截面图来描述发明的实施例。这样,可以预期由于例如制造技术和/或容差导致的从所示形状的变化。因此,本发明的实施例不应当局限于在此所示的区的特定形状,而是包括由于例如制造导致的形状偏差。例如,显示为矩形的注入区在其边缘通常具有圆的或弯曲特征和/或注入浓度梯度,而不是从注入区到非注入区的二元 改变。同样,通过注入形成的埋藏区可导致该埋藏区和注入进行时所经过的表面之间的区中的一些注入。因此,图中显示的区实质上是示意性的,它们的形状并不意图显示器件的区的实际形状且并不意图限定本发明的范围。
当原子受到X射线照射,若X射线能量大于内层Z轨道电子束缚能Eb,则Z电子可被游离成为自由电子即光电子。由能量守恒原理知,电子动能Ek=hν–Eb,其中,Ek为光电子动能,h为普朗克常数,v为X射线的频率。光电子发射自固态表面,因此,考虑电子脱离固体表面位能束缚的功函数ψ后,电子动能Ek=hν–Eb–ψ。不同元素具有不同的特定电子束缚能,电子束缚能Eb因元素种类的变化而不同,因此,检测光电子的动能可以获取测试片的元素种类。不同元素的光电子,具有特定动能而可作为判定材料表面元素成份的根据。
X射线光电子能谱仪是重要的表面分析技术之一,是一种对测试片表面非常灵敏的分析仪器,X射线光电子能谱仪的光电子发生过程只牵涉到一个电子,因此周期表上的所有元素均可产生光电子,故其可测量所有的元素。X射线光电子能谱仪光电子的产生机构简单,其能谱讯号峰简单易辨,当原子的化学环境产生了变化,例如氧化态,其光电子讯号峰的改变不会很复杂。X射线光电子能谱仪可分析被测物的表面元素,若有充分数据也可分析化合物的化学态及其价数,也可分析导体与非导体材料。使用X射线光电子能谱仪,可以分析厚度在10纳米以内的超薄薄膜的元素组成、元素含量和薄膜厚度。
氮氧化硅(SiOxNy)薄膜是一种新兴薄膜材料,具有良好的光电性能、机械性质和化学稳定性能,它由氧化硅(SiO2)及氮化硅(Si3N4)以不同比例混合而成的材料,藉由改变氧与氮的混合比例(x/y),可使得氮氧化硅(SiOxNy)薄膜的光电性质以及机械性质有不同的变化。
在半导体工艺制程中,典型的氮氧化硅薄膜的含氮量是通过X射线光电子能谱仪(XPS)获取的,在生产过程中,测试人员会使用X射线光电子能谱仪(XPS)测量同一片表面形成有氮氧化硅薄膜的校准片(Tool Monitor Wafer)的氮含量,并通过获取的氮含量的值来判断该X射线光电子能谱仪是否稳定,进而确定使用该X射线光电子能谱仪能否准确测试出氮氧化硅薄膜制程中随产品制作的制程监控片的氮含量的值。测试人员发现,对于同一台X射线光电子能谱仪,在氮氧化硅薄膜制程无异常,使用X射线光电子能谱仪测试制程监控片,获取的氮含量的值在正常波动范围的情况下(如图1,横坐标为测试时间,纵坐标为制程监控片的氮含量的值),使用该X射线光电子能谱仪测试同一片校准片,获取的氮含量的值随时间的增加而逐渐降低(参见图2,横坐标为测试时间,纵坐标为氮含量的值),因此,不能通过固定的校准片的氮含量的范围,来判断该X射线光电子能谱仪是否稳定。通过其他方式可知,校准片上的氮原子数量没有随时间的增加而有所消失。
如图3所示,在一个实施例中,提供一种检测X射线光电子能谱仪稳定性的方法,该方法包括:
S102,获取校准片对应的氧氮含量的比率的第一上限值和第一下限值。
获取表面形成有氮氧化硅薄膜的校准片对应的氧氮含量的比率的第一上限值和第一下限值,其中,所述氮氧化硅薄膜的厚度小于10纳米,通过所述X射线光电子能谱仪测量的氮氧化硅薄膜的氧含量的值、氮含量的值、硅氧含量的值之和为百分之百,所述氧含量的值、所述氮含量的值、所述硅氧含量的值均为百分数值,所述氧氮含量的比率是指所述校准片对应的氧含量和氮含量之和与所述氮氧化硅薄膜厚度的比值。
在一个实施例中,所述氮氧化硅薄膜的厚度大于等于6.5纳米且小于等于 9.78纳米。
如图4所示,在一个实施例中,步骤S102包括:
S202,对所述校准片进行N次测量,并获取N次测量的测试值。
分别使用所述X射线光电子能谱仪对所述校准片进行N次测量,相邻两次测量的测试时间之差为第一时间间隔,获取每次测量对应的氧含量的值、氮含量的值、硅氧含量的值、氮氧化硅薄膜的薄膜厚度值,其中,N为大于等于2的整数。
在一个实施例中,所述第一时间间隔的单位为天,所述N为30。在其他实施例中,根据实际需要选择不同的第一时间间隔和不同的N的数值。
S204,获取每次测量对应的氧氮含量的比率。
根据每次测量获取的所述氧含量的值和所述氮含量的值之和与所述氮氧化硅薄膜的薄膜厚度值的比值,获取每次测量对应的氧氮含量的比率。
S206,根据N个氧氮含量的比率获取第一上限值和第一下限值。
根据所述N次测量对应的校准片的N个氧氮含量的比率,获取所述校准片对应的氧氮含量的比率的第一上限值和第一下限值。
如图5所示,在一个实施例中,步骤S206包括:
S302,获取所述校准片对应的氧氮含量的比率的第一目标值。
对所述N个氧氮含量的比率取平均值,获取所述校准片对应的氧氮含量的比率的第一目标值。
S304,获取所述校准片对应的氧氮含量的比率的标准偏差。
根据所述N个氧氮含量的比率和所述第一目标值,获取所述氧氮含量的比率的标准偏差。
S306,根据第一目标值、标准偏差,获取第一上限值和第一下限值。
如图6所示,在一个实施例中,步骤S306包括:
S402,根据第一目标值与3倍所述标准偏差之和,获取第一上限值。
S404,根据第一目标值与3倍所述标准偏差之差,获取第一下限值。
S104,获取所述校准片对应的氧氮含量的比率的第一测试值。
使用所述X射线光电子能谱仪对所述校准片进行测量,获取所述校准片对应的氧氮含量的比率的第一测试值。
S106,通过第一测试值、第一上限值和第一下限值,判定所述X射线光电子能谱仪是否稳定。
具体为,比较氧氮含量的比率的第一测试值、第一上限值和第一下限值,当氧氮含量的比率的第一测试值在所述第一上限值与所述第一下限值之间,判定所述X射线光电子能谱仪稳定。
在一个实施例中,步骤S106还包括:
当氧氮含量的比率的第一测试值大于所述第一上限值或小于所述第一下限值时,判定所述X射线光电子能谱仪不稳定。
在一个实施例中,步骤S106还包括:
当氧氮含量的比率的第一测试值与10的乘积大于所述第一上限值与10的乘积或小于所述第一下限值与10的乘积时,判定所述X射线光电子能谱仪不稳定。
如图7所示,在一个实施例中,所述方法还包括:
S502,对所述N个氧氮含量的比率和所述N次测量对应的测试时间进行一次线性拟合,获取第一曲线。
S504,根据第一曲线、第一上限值和第一下限值,获取所述X射线光电子能谱仪的校准周期。
图8为一实施例中获取的第一曲线的示意图,其中,氧氮含量的比率与测试时间之间的第一曲线为:y=3E-05x+9.2603,第一曲线的斜率为0.00003,对N次测量获取的氮含量和对应的测试时间进行线性拟合,获取的拟合曲线的斜率为-0.0025,两者约有80倍的差异,假设校准片的总厚度永远不会超过10纳米,即可推算假设氮含量每四个月需要重新定义X射线光电子能谱仪对应的校准片的上限值和下限值,才能通过测试校准片的氮含量来准确判定所述X射线光电子能谱仪是否稳定,则通过使用所述校准片的氧氮含量的比率来判定所述X射线光电子能谱仪是否稳定时,可以使重新定义X射线光电子能谱仪对应的校准片的氧氮含量的比率的上限值和下限值的时间延缓80倍,就是4*80=320个月(26年),如此就可以消除校准片的氮氧化硅薄膜被自氧化后,带来的判定所述X射线光电子能谱仪是否稳定的干扰。
如图9所示,在一个实施例中,所述方法还包括:
S602,对所述校准片进行M次测量,并获取所述M次测量对应的氧氮含量的比率。
分别使用所述X射线光电子能谱仪对所述校准片进行M次测量,相邻两次测量的测试时间之差为第二时间间隔,获取所述M次测量对应的氧氮含量的比率,其中,M为大于等于2的整数。
S604,根据M次测量对应的氧氮含量的比率获取第二上限值和第二下限值。
根据所述M次测量获取的氧氮含量的比率,获取所述校准片对应的氧氮含量的比率的第二上限值和第二下限值。
S606,获取所述校准片对应的氧氮含量的比率的第二测试值。
使用所述X射线光电子能谱仪对所述校准片进行测量,获取所述校准片对应的氧氮含量的比率的第二测试值。
S608,通过第二测试值、第二上限值和第二下限值,判定所述X射线光电子能谱仪是否稳定。
当氧氮含量的比率的第二测试值在所述第二上限值与所述第二下限值之间,判定所述X射线光电子能谱仪稳定。
步骤S602-S608是对所述X射线光电子能谱仪进行的定期校准,通过定期校准得到的氧氮含量的比率的第二目标值、第二上限值和第二下限值,当氧氮含量的比率的第二测试值在所述第二上限值与所述第二下限值之间,判定所述X射线光电子能谱仪稳定,同时通过氧氮含量的比率的第二测试值与氧氮含量的比率的第二目标值可以获取使用X射线光电子能谱仪进行制程监控片的氮含量的测试时的测试精度,此时获取的测试精度更接近测试时的真实精度。
如图10所示,在一个实施例中,所述方法还包括:
S702,获取表面形成有第一氮氧化硅薄膜的制程监控片。
S704,获取所述制程监控片的氮含量的第一数值及所述氮含量的第三上限值和第三下限值。
S706,使用所述X射线光电子能谱仪测试所述制程监控片,获取所述制程监控片的氮含量的第二数值。
S708,当第二数值大于第三上限值或小于第三下限值时,判定所述X射线光电子能谱仪不稳定。
上述检测X射线光电子能谱仪稳定性的方法,包括获取表面形成有氮氧化硅薄膜的校准片对应的氧氮含量的比率的第一上限值和第一下限值;使用所述X射线光电子能谱仪对所述校准片进行测量,获取所述校准片对应的氧氮含量的比率的第一测试值;当氧氮含量的比率的第一测试值在所述第一上限值与所述第一下限值之间,判定所述X射线光电子能谱仪稳定;其中,所述氮氧化硅薄 膜的厚度小于10纳米;所述氧氮含量的比率是指所述校准片对应的氧含量和氮含量之和与所述氮氧化硅薄膜厚度的比值。通过获取表面形成有氮氧化硅薄膜的校准片对应的氧氮含量的比率的第一上限值和第一下限值后,使用所述X射线光电子能谱仪对所述校准片进行测量,当校准片对应的氧氮含量的比率的第一测试值在所述第一上限值和所述第一下限值之间时,使用所述X射线光电子能谱仪获取的氮氧化硅薄膜制程监控片的氮含量的值在正常波动范围内,可以认为X射线光电子能谱仪能准确测试出氮氧化硅薄膜制程监控片的氮含量,进而判定所述X射线光电子能谱仪处于稳定状态,能够排除校准片的氮氧化硅薄膜被进一步氧化带来的干扰,准确判断X射线光电子能谱仪的稳定性,避免了因X射线光电子能谱仪测试异常引起的生产失误,降低了生产成本。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种检测X射线光电子能谱仪稳定性的方法,所述方法包括:
    获取表面形成有氮氧化硅薄膜的校准片对应的氧氮含量的比率的第一上限值和第一下限值;
    使用所述X射线光电子能谱仪对所述校准片进行测量,获取所述校准片对应的氧氮含量的比率的第一测试值;
    当所述氧氮含量的比率的第一测试值在所述第一上限值与所述第一下限值之间,判定所述X射线光电子能谱仪稳定;
    其中,所述氮氧化硅薄膜的厚度小于10纳米;通过所述X射线光电子能谱仪测量的氮氧化硅薄膜的氧含量的值、氮含量的值、硅氧含量的值之和为百分之百,所述氧含量的值、所述氮含量的值、所述硅氧含量的值均为百分数值,所述氧氮含量的比率是指所述校准片对应的氧含量和氮含量之和与所述氮氧化硅薄膜厚度的比值。
  2. 根据权利要求1所述的方法,其中,所述获取表面形成有氮氧化硅薄膜的校准片对应的氧氮含量的比率的第一上限值和第一下限值的步骤包括:
    分别使用所述X射线光电子能谱仪对所述校准片进行N次测量,相邻两次测量的测试时间之差为第一时间间隔,获取每次测量对应的氧含量的值、氮含量的值、硅氧含量的值、氮氧化硅薄膜的薄膜厚度值;
    根据每次测量获取的所述氧含量的值和所述氮含量的值之和与所述氮氧化硅薄膜的薄膜厚度值的比值,获取每次测量对应的氧氮含量的比率;
    根据所述N次测量对应的校准片的N个氧氮含量的比率,获取所述校准片对应的氧氮含量的比率的第一上限值和第一下限值;
    其中,N为大于等于2的整数。
  3. 根据权利要求2所述的方法,其中,所述根据所述N次测量对应的校准片的N个氧氮含量的比率,获取所述校准片对应的氧氮含量的比率的第一上限值和第一下限值的步骤包括:
    对所述N个氧氮含量的比率取平均值,获取所述校准片对应的氧氮含量的比率的第一目标值;
    根据所述N个氧氮含量的比率和所述第一目标值,获取所述氧氮含量的比率的标准偏差;
    根据所述第一目标值、所述标准偏差,获取所述第一上限值和所述第一下限值。
  4. 根据权利要求3所述的方法,其中,所述根据所述第一目标值、所述标准偏差,获取所述第一上限值和所述第一下限值的步骤包括:
    根据所述第一目标值与3倍所述标准偏差之和,获取所述第一上限值;
    根据所述第一目标值与3倍所述标准偏差之差,获取所述第一下限值。
  5. 根据权利要求2所述的方法,其中,所述第一时间间隔的单位为天,所述N为30。
  6. 根据权利要求2所述的方法,其中,所述方法还包括:
    对所述N个氧氮含量的比率和所述N次测量对应的测试时间进行一次线性拟合,获取第一曲线;
    根据所述第一曲线、所述第一上限值和所述第一下限值,获取所述X射线光电子能谱仪的校准周期。
  7. 根据权利要求1所述的方法,其中,所述方法还包括:
    分别使用所述X射线光电子能谱仪对所述校准片进行M次测量,相邻两次 测量的测试时间之差为第二时间间隔,获取所述M次测量对应的氧氮含量的比率;
    根据所述M次测量获取的氧氮含量的比率,获取所述校准片对应的氧氮含量的比率的第二上限值和第二下限值;
    使用所述X射线光电子能谱仪对所述校准片进行测量,获取所述校准片对应的氧氮含量的比率的第二测试值;
    当所述氧氮含量的比率的第二测试值在所述第二上限值与所述第二下限值之间,判定所述X射线光电子能谱仪稳定;
    其中,M为大于等于2的整数。
  8. 根据权利要求1所述的方法,其中,所述当所述氧氮含量的比率的第一测试值在所述第一上限值与所述第一下限值之间,判定所述X射线光电子能谱仪稳定的步骤还包括:
    当所述氧氮含量的比率的第一测试值大于所述第一上限值或小于所述第一下限值时,判定所述X射线光电子能谱仪不稳定。
  9. 根据权利要求1所述的方法,其中,所述当所述氧氮含量的比率的第一测试值在所述第一上限值与所述第一下限值之间,判定所述X射线光电子能谱仪稳定的步骤还包括:
    当所述氧氮含量的比率的第一测试值与10的乘积大于所述第一上限值与10的乘积或小于所述第一下限值与10的乘积时,判定所述X射线光电子能谱仪不稳定。
  10. 根据权利要求1所述的方法,其中,所述方法还包括:
    获取表面形成有第一氮氧化硅薄膜的制程监控片;
    获取所述制程监控片的氮含量的第一数值及所述氮含量的第三上限值和第 三下限值;
    使用所述X射线光电子能谱仪测试所述制程监控片,获取所述制程监控片的氮含量的第二数值;
    当所述第二数值大于所述第三上限值或小于所述第三下限值时,判定所述X射线光电子能谱仪不稳定。
  11. 根据权利要求1所述的方法,其中,所述氮氧化硅薄膜的厚度大于等于6.5纳米且小于等于9.78纳米。
PCT/CN2021/079864 2020-03-10 2021-03-10 检测x射线光电子能谱仪稳定性的方法 WO2021180099A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/431,771 US11327033B1 (en) 2020-03-10 2021-03-10 Methods for detecting stability of X-ray photoelectron spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010160621.1 2020-03-10
CN202010160621.1A CN113376196B (zh) 2020-03-10 2020-03-10 检测x射线光电子能谱仪稳定性的方法

Publications (1)

Publication Number Publication Date
WO2021180099A1 true WO2021180099A1 (zh) 2021-09-16

Family

ID=77568648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079864 WO2021180099A1 (zh) 2020-03-10 2021-03-10 检测x射线光电子能谱仪稳定性的方法

Country Status (3)

Country Link
US (1) US11327033B1 (zh)
CN (1) CN113376196B (zh)
WO (1) WO2021180099A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1774611A (zh) * 2002-12-27 2006-05-17 物理电子公司 使用被测的主要成分光谱和/或基于获得的光谱对薄膜的非破坏性表征
CN1832123A (zh) * 2002-09-17 2006-09-13 富士通株式会社 半导体器件及其评估方法和处理条件评估方法
JP2007189083A (ja) * 2006-01-13 2007-07-26 Toppan Printing Co Ltd 窒化酸化シリコン膜の組成評価方法及び物性評価方法
US9425109B2 (en) * 2014-05-30 2016-08-23 Taiwan Semiconductor Manufacturing Co., Ltd. Planarization method, method for polishing wafer, and CMP system
US9460974B1 (en) * 2007-08-09 2016-10-04 Cypress Semiconductor Corporation Oxide formation in a plasma process
US20170194465A1 (en) * 2008-12-19 2017-07-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing transistor
CN108475617A (zh) * 2015-11-02 2018-08-31 诺威量测设备公司 用于薄层的非破坏性测量的方法与系统
CN108538738A (zh) * 2017-03-06 2018-09-14 中芯国际集成电路制造(上海)有限公司 用于检测氮浓度的结构及方法
CN108966674A (zh) * 2015-08-04 2018-12-07 诺威量测设备股份有限公司 用于薄膜中测量的混合测量系统及方法
CN209991941U (zh) * 2019-06-26 2020-01-24 长鑫存储技术有限公司 薄膜厚度的测量装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449682B2 (en) * 2001-10-26 2008-11-11 Revera Incorporated System and method for depth profiling and characterization of thin films
US6800852B2 (en) * 2002-12-27 2004-10-05 Revera Incorporated Nondestructive characterization of thin films using measured basis spectra
US8011830B2 (en) * 2008-04-29 2011-09-06 Revera Incorporated Method and system for calibrating an X-ray photoelectron spectroscopy measurement
CN102044459B (zh) * 2009-10-15 2014-04-02 中芯国际集成电路制造(上海)有限公司 检测掺氮氧化硅薄膜含氮量的方法
US9240254B2 (en) * 2011-09-27 2016-01-19 Revera, Incorporated System and method for characterizing a film by X-ray photoelectron and low-energy X-ray fluorescence spectroscopy
CN103426784B (zh) * 2012-05-24 2017-02-08 上海华虹宏力半导体制造有限公司 超薄栅极氮氧化硅薄膜的氮含量测量方法
CN107703172A (zh) * 2017-09-14 2018-02-16 泰州赛宝工业技术研究院有限公司 一种能量色散x射线荧光光谱仪的校准方法
CN110596157A (zh) * 2019-09-20 2019-12-20 长江存储科技有限责任公司 半导体结构中氮含量的测量方法及装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1832123A (zh) * 2002-09-17 2006-09-13 富士通株式会社 半导体器件及其评估方法和处理条件评估方法
CN1774611A (zh) * 2002-12-27 2006-05-17 物理电子公司 使用被测的主要成分光谱和/或基于获得的光谱对薄膜的非破坏性表征
JP2007189083A (ja) * 2006-01-13 2007-07-26 Toppan Printing Co Ltd 窒化酸化シリコン膜の組成評価方法及び物性評価方法
US9460974B1 (en) * 2007-08-09 2016-10-04 Cypress Semiconductor Corporation Oxide formation in a plasma process
US20170194465A1 (en) * 2008-12-19 2017-07-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing transistor
US9425109B2 (en) * 2014-05-30 2016-08-23 Taiwan Semiconductor Manufacturing Co., Ltd. Planarization method, method for polishing wafer, and CMP system
CN108966674A (zh) * 2015-08-04 2018-12-07 诺威量测设备股份有限公司 用于薄膜中测量的混合测量系统及方法
CN108475617A (zh) * 2015-11-02 2018-08-31 诺威量测设备公司 用于薄层的非破坏性测量的方法与系统
CN108538738A (zh) * 2017-03-06 2018-09-14 中芯国际集成电路制造(上海)有限公司 用于检测氮浓度的结构及方法
CN209991941U (zh) * 2019-06-26 2020-01-24 长鑫存储技术有限公司 薄膜厚度的测量装置

Also Published As

Publication number Publication date
CN113376196A (zh) 2021-09-10
US11327033B1 (en) 2022-05-10
CN113376196B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
Brundle et al. XPS and angle resolved XPS, in the semiconductor industry: Characterization and metrology control of ultra-thin films
Kraut et al. Semiconductor core-level to valence-band maximum binding-energy differences: Precise determination by x-ray photoelectron spectroscopy
Meyer et al. Analysis of amorphous layers on silicon by backscattering and channeling effect measurements
US7821627B2 (en) Fabrication and test methods and systems
EP3845893A1 (en) Device and method applicable for measuring thickness of ultrathin film on substrate
Wilson et al. The present status and recent advancements in corona-Kelvin non-contact electrical metrology of dielectrics for IC-manufacturing
WO2021180099A1 (zh) 检测x射线光电子能谱仪稳定性的方法
TWI291023B (en) Method of monitoring film characteristics
EP2708846B1 (en) Method for determining film thickness of soi layer of soi wafer
Conard et al. Achieving reproducible data: Examples from surface analysis in semiconductor technology
US5242831A (en) Method for evaluating roughness on silicon substrate surface
US5521377A (en) Measurement of trace element concentration distribution, and evaluation of carriers, in semiconductors, and preparation of standard samples
US7966142B2 (en) Multi-variable regression for metrology
US6781126B2 (en) Auger-based thin film metrology
Nieveen High Precision XPS Measurement of SiON Thickness and N Dose
CN100461362C (zh) 提高超薄等离子体氮氧化硅电性测试准确性的方法
US7459913B2 (en) Methods for the determination of film continuity and growth modes in thin dielectric films
Komin et al. Status of Non‐contact Electrical Measurements
Song et al. High-k metal gate inline measurement technique using XPS
Wang et al. Application of SIMS for the characterization of Nitrogen in TaN film
US6690009B1 (en) Method of determining the charge carrier concentration in materials, notably semiconductors
Liao et al. Statistical CD Measurements Based on Analytical TEM Techniques and DM Scripting and its Application on PFA Analysis of IC Devices
CN115754358A (zh) 一种检测晶圆表面金属污染的装置及方法
Du et al. Ultra-thin SiON and high-k HfO/sub 2/gate dielectric metrology using transmission electron microscopy
Nieveen Distribution Correction for Rapid, High Precision XPS Measurements of Thickness and Dose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767841

Country of ref document: EP

Kind code of ref document: A1