WO2021179981A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2021179981A1
WO2021179981A1 PCT/CN2021/079021 CN2021079021W WO2021179981A1 WO 2021179981 A1 WO2021179981 A1 WO 2021179981A1 CN 2021079021 W CN2021079021 W CN 2021079021W WO 2021179981 A1 WO2021179981 A1 WO 2021179981A1
Authority
WO
WIPO (PCT)
Prior art keywords
uav
information
electronic device
subset
base station
Prior art date
Application number
PCT/CN2021/079021
Other languages
English (en)
French (fr)
Inventor
盛彬
吴志坤
孙晨
Original Assignee
索尼集团公司
盛彬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 盛彬 filed Critical 索尼集团公司
Priority to CN202180017937.8A priority Critical patent/CN115211069A/zh
Priority to US17/798,083 priority patent/US20230155764A1/en
Publication of WO2021179981A1 publication Critical patent/WO2021179981A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/328Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by altitude
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This application relates to the field of wireless communication technology, and specifically relates to pilot multiplexing technology in a large-scale Multiple In Multiple Out (MIMO) communication system. More specifically, it relates to an electronic device and method for wireless communication and a computer-readable storage medium.
  • MIMO Multiple In Multiple Out
  • channel information needs to be known in advance to detect and decode received data.
  • a pilot assisted channel estimation method can be used to perform channel estimation.
  • different user equipment User Equipment
  • pilots are assigned mutually orthogonal pilots.
  • the length of the pilot frequency is limited by the channel coherence length, the number of orthogonal pilots is limited, and pilot reuse will inevitably occur between different cells.
  • the pilot signals sent by them may be received by the base station of the neighboring cell, but the base station cannot effectively distinguish these pilot signals, resulting in uplink channel estimation at the base station. Be disturbed.
  • the base station uses the interfered channel estimation for uplink data detection, in addition to the data sent by the UE in its own cell, it will also receive data from UEs in other cells, causing uplink inter-cell interference;
  • the base station uses the interfered channel estimation to generate the precoding matrix and send downlink data, in addition to the UE in the cell, UEs in other cells will also receive the data, which causes inter-cell interference on the downlink. This situation is called pilot contamination (pilot contaminatoin), which significantly reduces the transmission data rate.
  • ground UE ground user equipment
  • UAVs unmanned aerial vehicles
  • LOS line of sight
  • an electronic device for wireless communication including: a processing circuit configured to: divide available pilots into a plurality of orthogonal subsets; and allocate a first subset for UAV devices The first subset is different from the second subset allocated to other UAV devices in adjacent sectors of different cells, and the first subset is allocated to the ground that is located in the same sector as the UAV device
  • the third subset of UEs is different.
  • a method for wireless communication which includes: dividing available pilots into multiple orthogonal subsets; allocating pilots in the first subset to UAV devices, where the first A subset is different from the second subset allocated to other UAV devices in adjacent sectors of different cells, and the first subset is different from the third subset allocated to terrestrial UEs located in the same sector as the UAV device .
  • an electronic device for wireless communication including: a processing circuit configured to: report information about the three-dimensional space position of the UAV device to a base station; and determine that the base station allocates the UAV device based on the information Pilots, where the assigned pilots belong to the first subset of available pilots, the first subset is different from the second subset of other UAV devices in adjacent sectors assigned to different cells, and the first The subset is different from the third subset allocated to terrestrial UEs located in the same sector as the UAV device.
  • a method for wireless communication including: reporting information about the three-dimensional space position of the UAV device to a base station; and determining the pilot frequency allocated by the base station to the UAV device based on the information, wherein The assigned pilots belong to the first subset of available pilots.
  • the first subset is different from the second subset of other UAV devices in adjacent sectors of different cells, and the first subset is different from that assigned to and UAV
  • the third subset of terrestrial UEs whose devices are located in the same sector is different.
  • computer program codes and computer program products for implementing the above-mentioned method for wireless communication and a computer on which the computer program codes for implementing the above-mentioned method for wireless communication are recorded are also provided.
  • the electronic device and method according to the embodiments of the application minimize the interference between the UAV and the terrestrial UE by distinguishing the UAV and the terrestrial UE and adopting the pilot allocation strategy for the UAV.
  • Fig. 1 is a block diagram showing functional modules of an electronic device for wireless communication according to an embodiment of the present application
  • Figure 2 shows an example of a scenario of a massive MIMO communication system
  • Figure 3 shows an example of pilot subset division
  • Figure 4 shows an example of pilot subset allocation in the same sector
  • Figure 5 shows an example of the allocation of pilot subsets of UAVs in each sector
  • Fig. 6 is a block diagram showing functional modules of an electronic device for wireless communication according to an embodiment of the present application.
  • Figure 7 shows a schematic example of the angle of arrival
  • Fig. 8 shows a schematic example of the difference in the angle of arrival
  • Figure 9 shows a schematic diagram of calculating the difference between two angles of arrival information
  • Figure 10 shows a graph of all possible calculation results of the difference in the angle of arrival
  • Figure 11 shows a schematic diagram of the information flow between the UAV and the base station
  • Figure 12 shows a schematic diagram of transmission under the M-Msg.1 scheme
  • FIG. 13 shows an example of the location of the first information
  • Fig. 14 shows an example of the time-frequency resource position of NR PUCCH
  • Figure 15 shows an example of the newly added MAC CE type
  • Fig. 16 shows a schematic diagram of a comb structure of a sounding reference signal
  • Figure 17 shows a schematic diagram of a sparse comb structure of sounding reference signals
  • FIG. 18 shows a schematic diagram of an example in which multiple UAVs simultaneously transmit sounding reference signals
  • FIG. 19 shows an example of the time-frequency resource position of the pre-demodulation reference signal
  • FIG. 20 shows a schematic diagram of a demodulation reference signal mode with reduced frequency domain density
  • FIG. 21 shows another schematic diagram of a demodulation reference signal mode with reduced frequency domain density
  • FIG. 22 is a block diagram showing functional modules of an electronic device for wireless communication according to another embodiment of the present application.
  • Figure 23 shows a schematic example of a virtual air cell and a virtual base station
  • FIG. 24 shows a schematic diagram of an example in which a base station of a ground cell simultaneously serves UAV and GUE in the upper air;
  • Fig. 25 shows a schematic example of virtual vertical handover
  • FIG. 26 shows a schematic diagram of an example of a handover of a UAV to an air base station
  • Figure 27 shows an example in which a flying UAV will traverse multiple cells
  • FIG. 28 is a block diagram showing functional modules of an electronic device for wireless communication according to another embodiment of the present application.
  • Fig. 29 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • FIG. 30 is a diagram showing an example of the flow of step S12 in FIG. 29;
  • FIG. 31 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • FIG. 32 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • FIG. 33 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • FIG. 34 is a block diagram showing an example of a schematic configuration of a smart phone to which the technology of the present disclosure can be applied;
  • FIG. 35 is a block diagram showing an example of a schematic configuration of a navigation device to which the technology of the present disclosure can be applied.
  • FIG. 36 is a block diagram of an exemplary structure of a general personal computer in which the method and/or apparatus and/or system according to the embodiments of the present disclosure can be implemented.
  • FIG. 1 shows a block diagram of functional modules of an electronic device 100 for wireless communication according to an embodiment of the present application.
  • the electronic device 100 includes a dividing unit 101 configured to divide the available pilots into A plurality of orthogonal subsets; and the allocation unit 102 is configured to allocate pilots in the first subset by the UAV device, where the first subset and the first subset allocated to other UAV devices in adjacent sectors of different cells The two subsets are different, and the first subset is different from the third subset allocated to terrestrial UEs located in the same sector as the UAV device.
  • the dividing unit 101 and the distributing unit 102 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip or a processor, for example.
  • the processing circuit may be implemented as a chip or a processor, for example.
  • each functional unit in the electronic device shown in FIG. 1 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner.
  • the electronic device 100 may, for example, be provided on the side of the base station or be communicably connected to the base station.
  • the base station described in this application may also be a Transmit Receive Point (TRP) or an Access Point (Access Point, AP).
  • TRP Transmit Receive Point
  • AP Access Point
  • the electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 100 may work as a base station itself, and may also include external devices such as a memory, a transceiver (not shown), and the like.
  • the memory can be used to store programs and related data information that the base station needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, UE, other base stations, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the dividing unit 101 may divide the available pilots into multiple orthogonal subsets through the network. In other words, the pilots in different subsets are orthogonal to each other.
  • the division unit 101 may determine the division scheme of the subset through interaction with other base stations or interaction with a central management device.
  • the allocation unit 102 performs pilot allocation for UAV devices in this cell (also referred to as a serving cell) according to the rules proposed in this embodiment.
  • the allocation unit 102 may also perform pilot allocation for terrestrial UEs in the serving cell. For example, the allocation unit 102 allocates pilots in the first subset to UAV devices, and allocates pilots in the third subset to terrestrial UEs.
  • Other UAV devices in adjacent sectors of different cells adjacent to the sector where the UAV device is located are allocated pilots in the second subset, where the first, second, and third subsets are not same. In other words, UAV devices in adjacent sectors will use mutually orthogonal pilots, and UAV devices and ground UEs in the same sector will use mutually orthogonal pilots.
  • the division of subsets may be static.
  • the allocating unit 102 is configured to reserve one or more subsets for UAV devices in each sector after the dividing unit 101 divides the subsets in advance.
  • the division of subsets may be dynamic.
  • the dividing unit 101 is configured to perform the division of the subset in response to the access of the UAV device, and then the allocating unit 102 performs the allocation of pilots.
  • the dynamic division of subsets helps to improve flexibility and pilot utilization efficiency.
  • Fig. 2 shows an example of a scenario of a massive MIMO communication system.
  • the system has 3 cells, namely cell 1, cell 2, and cell 3.
  • Each cell is divided into three sectors, namely sector A, sector B, and sector C.
  • the base station's three-sided large-scale antenna array provides coverage. It can be seen that sector A of cell 1, sector B of cell 2, and sector C of cell 3 are adjacent to each other, which is prone to pilot pollution.
  • Fig. 2 schematically shows a situation where the UAV in cell 3 causes pilot interference to ground UEs (GUE) in cell 1 and cell 2.
  • GUE ground UEs
  • the system has 6 orthogonal pilots, denoted as P1, P2, P3, P4, P5, and P6. According to this embodiment, it can be divided into multiple orthogonal subsets.
  • Figure 3 shows an example of the pilot subset division, where P1 to P6 are divided into three subsets, each of which contains two Orthogonal pilot frequency.
  • Fig. 4 shows an example of pilot subset allocation in the same sector. It can be seen that in each sector, one subset is allocated to UAV, and the other two subsets are allocated to GUE.
  • FIG. 5 shows an example of the pilot subset allocation of UAV of each sector. It can be seen that the subset allocated to the UAV is orthogonal between adjacent sectors to avoid mutual interference.
  • the base station After the UAV accesses the serving cell, the base station must allocate pilots in the first subset to it. If there are pilots of GUEs that are not allocated to adjacent sectors in the first subset, the pilots can be directly allocated to UVA without considering the problem of pilot interference. On the other hand, if all pilots in the first subset have been allocated to GUEs in adjacent sectors, it is desirable to use an allocation method to minimize the UAV's pilot interference to GUEs in adjacent sectors.
  • the pilot P1 in the first subset is allocated to UAV x and P2 is allocated to UAV y P2 is still allocated to UAV x, and P1 is allocated to UAV y, which will cause different interference between UAV and GUE.
  • This embodiment proposes a pilot allocation method that minimizes this interference. The example is described in detail as follows .
  • the electronic device 100 further includes an acquiring unit 103 configured to acquire first information, the first information indicating the three-dimensional space position of the UAV device; and acquiring second information, the second information indicating each phase
  • the angle of arrival (AOA) of the signal received by the base station of the neighboring cell from each ground UE (GUE) of the neighboring cell, and the arrival angle includes the horizontal incidence angle and the vertical incidence angle.
  • the allocating unit 102 is configured to determine, based on at least a part of the first information and the second information, that when the same pilot is used, the angle of arrival of the signal received by the base station of the neighboring cell from the UAV device is equal to that of the neighboring cell.
  • the base station receives the difference between the angle of arrival of the signal received from its terrestrial UE, and allocates the pilot in the first subset to the UAV device that makes the difference the largest.
  • the allocation unit 102 allocates the available pilot frequencies to the UAV device so that the clip The pilot with the largest angle is used to minimize the pilot interference caused by the UAV to the GUE of the neighboring cell.
  • the AOA of the signal can be estimated. Since the GUE of the neighboring cell has been assigned a pilot, the base station of the neighboring cell can estimate the AOA of their arrival signal.
  • the obtaining unit 103 obtains the information of the angle of arrival of each GUE in the neighboring cell, that is, the second information from the neighboring base station.
  • the first information obtained by the obtaining unit 103 indicates the three-dimensional space position of the UAV device, for example, includes the two-dimensional position and flying height of the UAV device.
  • the base station of the serving cell is based on the two-dimensional position and flying height of the UAV device and the direction and position of the antenna array of the base station of the neighboring cell (due to the base station antenna array The position and direction of the BS remain unchanged, so the serving base station can know in advance), and can calculate the AOA of the interference signal received by the neighboring base station from the UAV.
  • the allocation unit 102 can calculate the difference between the AOA of the interference signal received by the base station of the neighboring cell from the UAV of the serving cell and the AOA of the signal received from the GUE of the neighboring cell when the same pilot is used. , And select pilots in the first subset to maximize the difference.
  • AOA includes horizontal incident angle AOA_H and vertical incident angle AOA_V.
  • Figure 7 shows a schematic example of AOA, where the XOY plane is a horizontal plane, the positive direction of the X axis is the reference direction, and the angle between the projection of the arriving signal (received signal) on the XOY plane and the positive direction of the X axis It is the horizontal incident angle AOA_H, the angle of counterclockwise rotation is positive, and the angle of clockwise rotation is negative.
  • the YOZ plane is a vertical plane, and the negative direction of the Z axis is the reference direction.
  • the angle between the projection of the arriving signal on the YOZ plane and the negative direction of the Z axis is the vertical incidence angle AOA_V.
  • the angle of counterclockwise rotation is positive, and the rotation is clockwise.
  • the angle is negative.
  • the angle range of AOA_H and AOA_V are both 0 to 360 degrees.
  • the difference in AOA is defined as the three-dimensional angular difference between the AOAs of two received signals.
  • Fig. 8 shows a schematic example of the difference of AOA.
  • the two received signals are signal 1 and signal 2
  • the difference in AOA is expressed as ⁇ 1 and ⁇ 1 are the AOA_H and AOA_V of signal 1 on the base station antenna
  • ⁇ 2 and ⁇ 2 are the AOA_H and AOA_V of signal 2 on the base station antenna.
  • ⁇ 1 , ⁇ 1 , ⁇ 2 and ⁇ 2 can be measured by the base station.
  • Figure 9 shows the calculation of the difference between the two AOAs based on the information ( ⁇ 1 , ⁇ 1 , ⁇ 2 and ⁇ 2) of the two AOAs Schematic diagram.
  • First make a plane with an included angle of ⁇ 2 with the XOY plane. This plane intersects the plane formed by the Z axis and the signal 1 at the ray OP. Take a point A from the direction of signal 1, draw a perpendicular line AP to the plane containing signal 2, and make a vertical foot P, then draw a perpendicular line from P to signal 2 and intersect at point B. Since the plane OPB is perpendicular to OPA, AP is perpendicular to BP. According to the three-ray theorem,
  • the base station can calculate the difference of AOA according to the AOA_H and AOA_V of signal 1 and signal 2.
  • the base station of the serving cell (cell 3) needs to allocate pilots for UAV x and UAV y in sector C. Since the UAV in the sector C is allocated to the subset I, UAV x and UAV y can be allocated to the pilots in the subset I, that is, P1 and P2.
  • the base station of the serving cell has learned the AOA_H and AOA_V of the received signals received from the neighboring base stations when the GUEs in the cell 1 and cell 2 use P1 and P2.
  • formula (3) Indicates the difference between the AOA of the interference signal received by the neighboring cell 1 from the UAV and the AOA of the signal received from the GUE that uses the pilot P1 when the pilot P1 is allocated for the UAV ; ⁇ UAV represents the reception from the UAV The AOA_V of the received interference signal, ⁇ UAV represents the AOA_H of the interference signal received from the UAV; ⁇ 1A and ⁇ 1A are the AOA_V and AOA_H of the signal received from the GUE of cell 1 using P1, respectively. As an approximation, it can also be considered that the AOA_V of GUE is 0.
  • formula (4) Indicates the difference between the AOA of the interference signal received by the neighboring cell 2 from the UAV and the AOA of the signal received from the GUE that uses the pilot P1 when the pilot P1 is allocated for the UAV ; ⁇ UAV represents the reception from the UAV The AOA_V of the received interference signal, ⁇ UAV represents the AOA_H of the interference signal received from the UAV; ⁇ 2A and ⁇ 2A are the AOA_V and AOA_H of the signal received from the GUE of cell 2 using P1, respectively.
  • the allocation unit 102 can calculate the average AOA difference as:
  • the allocation unit 102 can calculate the average AOA difference as:
  • sector C includes two UAVs, namely UAV x and UAV y.
  • the two UAVs need to be assigned different pilots. Therefore, it is necessary to perform calculations for all possible situations, and Figure 10 shows a graph of all possible calculation results for AOA differences.
  • the allocation unit 102 can optimize the pilot allocation scheme by using only the difference of AOA without using channel parameters.
  • the optimization can be carried out in advance before the UAV sends the signal, and on the other hand, the calculation is simple.
  • the optimization speed is fast, and because the AOA difference is relatively stable, the amount of information exchange is small.
  • the acquiring unit 103 may acquire the second information for the corresponding neighboring cell from the neighboring base station.
  • the second information may indicate the AOA of all GUEs in neighboring cells.
  • the second information may only indicate the AOA of the GUEs in the neighboring sectors that are allocated the pilots in the first subset.
  • the acquiring unit 103 may acquire the second information in one or more of the following ways: periodically; when the angle of arrival of the GUE changes by a predetermined degree. In other words, the acquiring unit 103 updates the second information when necessary.
  • the period for acquiring the second information may be determined based on the moving speed of the GUE. If the GUE moves faster, the AOA may change faster, so in order to maintain accuracy, the period can be set to be shorter. In addition, the setting of the period also depends on the accuracy requirements.
  • the second information may be included in the angle of arrival interference indicator (AOA Interference Indicator, AII), which is used to report the AOA measurement result on each resource block (corresponding to the pilot) to the neighboring base station.
  • AOA Interference Indicator AII
  • AII angle of arrival interference indicator
  • the acquiring unit 103 is also configured to acquire the first information from the UAV device in one or more of the following ways: periodically; when the three-dimensional space position of the UAV device changes to a predetermined degree.
  • the setting of the period and the setting of the predetermined degree depend on the flying speed of the UAV and/or the accuracy requirements of the calculation.
  • the obtaining unit 103 may obtain the first information via one or more of the following: Physical Random Access Channel (PRACH), Physical Uplink Control Channel (PUCCH), and Physical Uplink Shared Channel (PRACH) Physical Uplink Shared Channel, PUSCH), MAC Control Element (MAC CE).
  • PRACH Physical Random Access Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • MAC CE MAC Control Element
  • the UAV may report the first information indicating its three-dimensional spatial position to the base station of the serving cell through PRACH.
  • the first information may include, for example, the location of the UAV and the predetermined flying altitude.
  • FIG 11 shows a schematic diagram of the information flow between a base station (such as a gNB) and a UAV.
  • a base station such as a gNB
  • UAV randomly accesses gNB.
  • a random access (Random Access, RA) procedure can be used for uplink synchronization, channel switching, or scheduling request.
  • the gNB sends basic configuration information to the UAV through the NR-PBCH (Physical Broadcast Channel), and configures PRACH resources for the UAV, which also includes the configuration of NR-PDCCH and NR-PDSCH.
  • the UAV then sends a random access preamble to the gNB via NR-PRACH.
  • NR-PBCH Physical Broadcast Channel
  • UAV selects a random access preamble (Msg.1) from all available preambles and sends it to gNB.
  • the preamble part is a Zadoff-Chu sequence generated by cyclic shifting a common root sequence with ideal autocorrelation properties.
  • the first information may be included in the piece of signaling sent via PRACH.
  • the M-Msg.1 scheme can be used, that is, the UE is allowed to try to send multiple preambles in one random access, thereby increasing the probability of successful access and reducing the access delay. If the UE does not receive any information from the gNB in the random access response (RAR) window, it will resend the preamble after the random back-off delay.
  • Figure 12 shows a schematic diagram of transmission under the M-Msg.1 scheme, where the UE sends 4 preambles in one RA and waits for the response of the base station in the RAR window. Since the response of the base station is not received, the random backoff delay After that, it was retransmitted twice, and finally a valid RAR was detected in the third RAR window.
  • the first information of the UAV may be located at a part of the random access preamble sent.
  • FIG. 13 shows an example of the position of the first information. Among them, replace the first two leading positions with the first information.
  • the base station receives the first information while receiving the preamble, thereby determining the pilot to be used by the UAV based on the first information and the second information obtained from the neighboring base station, and assigns the UAV to the UAV in the RAR sent subsequently Pilot, as shown in Figure 11, RAR can be sent through PDSCH, which can also allocate other radio resources for UAV.
  • the pilot interference can be reduced as quickly as possible.
  • the first information is included in the uplink control information (Uplink Control Information, UCI) transmitted via the PDCCH.
  • UCI includes, for example, Hybrid Automatic Retransmission Request (HARQ) feedback, Channel State Information (CSI), Scheduling Request (SR), and so on.
  • HARQ Hybrid Automatic Retransmission Request
  • CSI Channel State Information
  • SR Scheduling Request
  • NR PUCCH has flexibility in time and frequency allocation, which allows the use of a smaller bandwidth on the NR carrier to support the UE, and effectively utilize available resources in terms of coverage and capacity, as shown in Figure 14.
  • a new UCI can be defined for reporting the first information.
  • the first information may also be sent in the RRC connection request during the radio resource control (Radio Resource Control, RRC) connection process.
  • RRC Radio Resource Control
  • the RRC connection request signaling is allocated after the Pilot signals and other radio resources are performed on the PUSCH.
  • the first information can be transmitted through PUSCH.
  • PUSCH is used to transmit uplink shared channel (UL-sch) and layer 1/2 control information.
  • UL-sch is a transmission channel used to transmit uplink transport blocks.
  • the UAV can report the first information through PUSCH, such as its location and predetermined flying height.
  • the first information may be included in the flightPathInfoReport message. For example, you can add information about the flight height to the existing flightPathInfoReport message. In the case of changes in the UAV's flight path and scheduled flight altitude, the change can be reported immediately through PUSCH.
  • the first information may be transmitted using MAC CE.
  • MAC CE is used for MAC layer control signaling between gNB and UE.
  • LCID Logical Channel identifier
  • a new LCID can be defined.
  • Figure 15 shows an example of a newly added MAC CE type. Among them, the index represents the value of the newly defined LCID that uniquely identifies the newly added MAC CE. It should be understood that FIG. 15 is only an example, and the definition of LCID is not limited to this.
  • the electronic device 100 may also report the AOA information of the GUE of the serving cell to the base station of the neighboring cell, where the AOA includes the horizontal incident angle and the vertical incident angle.
  • the AOA includes the horizontal incident angle and the vertical incident angle.
  • the electronic device 100 may report the above-mentioned information in one or more of the following ways: periodically; when the AOA of the GUE changes to a predetermined degree.
  • the base station of the neighboring cell can update the AOA information of the GUE of the serving cell in time.
  • the period of reporting information may be determined based on the moving speed of the GUE.
  • the determination of the period can also consider the requirements of calculation accuracy.
  • the electronic device 100 can minimize the interference between the UAV and the terrestrial UE by distinguishing the UAV and the terrestrial UE and adopting the pilot allocation strategy for the UAV.
  • a pilot allocation method based on maximizing the difference in the angle of arrival is also used, which reduces the computational complexity and improves the pilot allocation efficiency.
  • the allocation unit 102 is further configured to change the mode of the pilot allocated to the UAV device according to the flying height of the UAV device.
  • 5G NR there are four kinds of physical reference signals. Among them, sounding reference signal (Sounding Reference Signal, SRS) and demodulation reference signal (Demodulation Reference Signal, DMRS) are uplink reference signals, SRS is used for uplink channel estimation, and DMRS is used for uplink channel estimation. Perform channel estimation on demodulation related channels.
  • the pilot mentioned here can include SRS or DMRS.
  • the distribution unit 102 may be configured to adopt a more sparse comb structure for the SRS when the flying height of the UAV device increases.
  • the SRS is transmitted in the last few symbols of the subframe and has a comb structure, as shown.
  • the probability of the transmitted signal reaching the base station through the LOS path increases.
  • the frequency response of the channel becomes flatter, so that a more sparse comb can be used.
  • Shaped structure as shown in Figure 17. Among them, the comb structure of SRS becomes more sparse as the flying height increases.
  • FIG. 18 shows a schematic diagram of an example in which multiple UAVs transmit SRS at the same time. .
  • the allocating unit 102 may reduce the frequency domain density of the DMRS when the flying height of the UAV device increases.
  • the pre-DMRS is located after the control domain and before the data domain.
  • the black filled part represents DMRS.
  • the allocation unit 102 can reduce the frequency domain density of the DMRS without significantly reducing the channel estimation accuracy, thereby reducing the overhead caused by the DMRS, and the saved subcarriers can be reused in the data domain or the control domain. Exemplarily, FIG.
  • FIG. 20 shows a schematic diagram of a DMRS pattern in which the DMRS occupies 3 subcarriers in each resource block, in which the saved subcarriers are reused by the data domain.
  • FIG. 21 shows a schematic diagram of a DMRS pattern in which the DMRS occupies 2 subcarriers in each resource block, in which the saved subcarriers are reused by the control domain.
  • the electronic device 100 can increase the system capacity by increasing the number of UEs that simultaneously transmit SRS, and/or increase the spectrum utilization rate by reducing the overhead of DMRS.
  • the electronic device 100 may further include a switching unit 104 for performing vertical switching, as shown in FIG. 22.
  • the switching unit 104 is configured to perform virtual vertical switching when the flying height of the UAV device increases to a predetermined level, so as to switch the UAV device to a virtual base station at a corresponding height, wherein the function of the virtual base station is changed from the corresponding horizontal
  • the ground base station in the area is realized.
  • Fig. 23 shows a schematic example of a virtual air cell and a virtual base station.
  • the base station of the ground cell corresponding to the central part of the horizontal coverage area may be designated as the virtual base station of Mcell 1, for example, the base station of ground cell cell 2 may be designated as the virtual base station of Mcell 1.
  • the base station of ground cell cell 2 may be designated as the virtual base station of Mcell 1.
  • the base station of ground cell cell 8 serves both the UAV located in the high-altitude coverage area of the Hcell 1 and the GUE in the cell cell 8, as shown in FIG. 24.
  • the UAV signal can reach more base stations, and the UAV can fly faster in the high air, and will quickly cross multiple ground cells in the horizontal direction. Therefore, when the flying height of the UVA reaches a certain altitude, the UAV can be vertically switched from the original ground cell to the corresponding virtual air cell to avoid frequent switching between ground cells and reduce signaling overhead. In addition, when the UAV's flying height is further increased, virtual vertical switching between different levels can also be performed.
  • FIG. 25 shows a schematic example of virtual vertical switching.
  • a virtual vertical handover will occur from cell 10 to Mcell 3.
  • the virtual base station of Mcell 3 is the base station of cell 9, so UAV will switch from the base station of cell 10 to cell 9 Base station.
  • a virtual vertical handover from Mcell 3 to Hcell 1 will occur, and the UAV will switch from the base station of cell 9 to the base station of cell 8, where the base station of cell 8 is the virtual base station of Hcell 1.
  • FIG. 23 is only an example showing one level in the vertical direction, but the present application is not limited to this, and more levels of virtual air cells can be divided.
  • the switching unit 104 is configured to perform a vertical handover when the flying height of the UAV device increases to a predetermined level, so as to switch the UAV device to an aerial base station.
  • the aerial base station may be located on a high altitude platform (High Altitude Platform Station, HAPS) on.
  • HAPS such as airships, satellites or large UAVs covering air cells.
  • air base stations or corresponding air cells may also have a hierarchical structure, that is, air base stations of different levels are set at different heights.
  • ground base station control is no longer required. At this point, you can perform a vertical handover to switch the UAV from a ground base station to an air base station. Further, when the flying height changes, it is also possible to switch between air base stations.
  • FIG. 26 shows a schematic diagram of an example of a handover of a UAV to an air base station.
  • a vertical handover from cell 10 to Mcell 2 will occur.
  • the air base station of Mcell 2 is on the airship, so the UAV will switch from the base station of cell 10 to the air base station on the airship.
  • a vertical handover from Mcell 2 to Hcell 1 will occur, and the UAV will switch from the air base station on the airship to the air base station of Hcell 1 on the satellite.
  • the purpose of defining air cells is to centrally manage UAVs, so as to optimize system configuration according to the movement characteristics of UAVs. In addition, it can also reduce the huge signaling overhead generated by UAVs during handover between terrestrial cells.
  • the density of 5G system base stations is about 40-50 per square kilometer, that is, the cell radius is about 80 meters.
  • the flying UAV will be in a short time It traverses multiple cells, such as cell 14, cell 12, cell 9, and cell 6, as shown in FIG. 27, which generates a large amount of handover signaling.
  • the UAV is vertically handed over to the air cell, which obviously greatly reduces this type of signaling overhead.
  • FIG. 28 shows a block diagram of functional modules of an electronic device 200 according to another embodiment of the present application.
  • the electronic device 200 includes: a reporting unit 201 configured to report information about the three-dimensional space position of the UAV to the base station And the determining unit 202, configured to determine the pilot assigned by the base station to the UAV device based on the information, wherein the assigned pilot belongs to a first subset of available pilots, and the first subset is different from those assigned to different cells The second subset of other UAV devices in adjacent sectors is different, and the first subset is different from the third subset allocated to GUEs located in the same sector as the UAV device.
  • the reporting unit 201 and the determining unit 202 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip or a processor, for example. Moreover, it should be understood that each functional unit in the electronic device shown in FIG. 28 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner.
  • the electronic device 200 may be provided on the UAV side or communicably connected to the UAV, for example.
  • the electronic device 200 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 200 may work as a UAV itself, and may also include external devices such as a memory, a transceiver (not shown in the figure), and the like.
  • the memory can be used to store the programs and related data information that the UAV device needs to execute to realize various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, base stations, other user equipment, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the three-dimensional location of the UAV device may include the two-dimensional location and flying height of the UAV device.
  • the information of the three-dimensional space position of the UAV device in this embodiment is equivalent to the first information described in the first embodiment, and reference may be made to the detailed description in the first embodiment, which will not be repeated here.
  • the reporting unit 201 may report the above-mentioned information in one or more of the following ways: periodically; when the three-dimensional space position of the UAV device changes to a predetermined degree.
  • the reporting unit 201 may be configured to report the above-mentioned information via one or more of the following: PRACH, PUCCH, PUSCH, MAC CE.
  • the information may be placed in a part of the random access preamble sent by the UAV device via PRACH.
  • the information may also be included in the uplink control information transmitted via the PUCCH.
  • the information may also be included in the radio resource control connection request, or included in the flightPathInfoReport during the radio resource control connection. These examples have been described in detail with reference to FIG. 11 in the first embodiment, and will not be repeated here.
  • the information can also be transmitted by MAC CE. In order to realize this method, a new type of MAC CE can be added, and a new LCID can be defined to uniquely represent the newly added MAC CE.
  • the base station may allocate a pilot to the UAV based on the information and send an instruction to the UAV, and the determining unit 202 determines the allocated pilot based on the instruction. Subsequently, the UAV can use the pilot to transmit. Since the pilot is orthogonal to the GUE pilot of the current sector and the UAV pilot of the adjacent sector, the pilot interference is effectively reduced.
  • pilot mode can be changed based on the change of the flying height, as described in the second embodiment, which will not be repeated here.
  • the UAV can be switched to a virtual air cell or vertically to a cell in the air to reduce signaling overhead.
  • the related description has been given in the third embodiment and will not be repeated here.
  • the electronic device 200 uses a distinction between UAV and terrestrial UE and adopts a pilot allocation strategy for UAV to minimize the interference between UAV and terrestrial UE.
  • FIG. 29 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • the method includes: dividing available pilots into a plurality of orthogonal subsets (S11); allocating first Pilots in the subset (S12), where the first subset is different from the second subset allocated to other UAV devices in adjacent sectors of different cells, and the first subset is different from the second subset allocated to and UAV devices in the same sector.
  • the third subset of terrestrial UEs in the zone is different. This method can be executed on the base station side, for example.
  • one or more subsets may be reserved for UAV devices in each sector after sub-sets are divided in advance.
  • the steps of the above method can also be executed in response to the access of the UAV device.
  • step S12 includes: obtaining first information (S121), the first information indicating the three-dimensional space position of the UAV device; obtaining second information (S122), the second information indicating each neighbor
  • the pilot with the largest difference in the first subset S124.
  • the three-dimensional space position of the UAV device includes the two-dimensional position and flying height of the UAV device.
  • the first information can be obtained from the UAV device in one or more of the following ways: periodically; When the spatial position has changed by a predetermined degree.
  • the first information may be obtained through one or more of the following: physical random access channel, physical uplink control channel, physical uplink shared channel, MAC control unit.
  • the first information is located at a part of the random access preamble sent by the UAV device via the physical random access channel.
  • the first information may be included in the uplink control information transmitted via the physical uplink control channel.
  • the first information may be included in the filghtPathInfoReport message during the radio resource control connection.
  • the MAC control unit for transmitting the first information can be uniquely identified by the newly defined logical channel identification LCID.
  • the second information for the corresponding neighboring cell may be obtained from the neighboring base station, where the second information is included in the angle of arrival interference indicator, for example.
  • the second information may indicate the angle of arrival of terrestrial UEs in neighboring sectors that are allocated pilots in the first subset.
  • the second information may be acquired in one or more of the following ways: periodically; when the arrival angle of the terrestrial UE changes by a predetermined degree.
  • the period of acquiring the second information may be determined based on the moving speed of the terrestrial UE.
  • the above method may further include: changing the mode of the pilot assigned to the UAV device according to the flying height of the UAV device. For example, when the flying height of the UAV device increases, a more sparse comb structure can be adopted for the SRS, and/or the frequency domain density of the DMRS can be reduced.
  • a virtual vertical handover can be performed to switch the UAV device to a virtual base station at a corresponding height, where the function of the virtual base station is implemented by the ground base station in the corresponding horizontal area.
  • a vertical handover can be performed to switch the UAV device to an aerial base station, where the aerial base station is located on a high-altitude platform.
  • the above method may further include: reporting the angle of arrival information of the terrestrial UE of the serving cell to the base station of the neighboring cell.
  • This information can be reported in one or more of the following ways: periodically; when the angle of arrival of the terrestrial UE changes by a predetermined degree. The period of reporting this information can be determined based on the moving speed of the terrestrial UE.
  • FIG. 31 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • the method includes: reporting information of the three-dimensional space position of the UAV device to the base station (S21); and determining that the base station is based on the information Pilots allocated to UAV devices (S22), where the allocated pilots belong to the first subset of available pilots, and the first subset is the same as the second allocated to other UAV devices in adjacent sectors of different cells.
  • the subset is different, and the first subset is different from the third subset allocated to terrestrial UEs located in the same sector as the UAV device.
  • This method can be executed on the UAV side, for example.
  • the three-dimensional location of the UAV device includes the two-dimensional location and flying height of the UAV device.
  • the information may be reported via one or more of the following: physical random access channel, physical uplink control channel, physical uplink shared channel, MAC control unit.
  • the information may be placed at a part of the random access preamble sent by the UAV device via the physical random access channel.
  • the information may be included in the uplink control information transmitted via the physical uplink control channel.
  • the information may be included in the radio resource control connection request.
  • the information may be included in the filghtPathInfoReport message during the radio resource control connection.
  • the MAC control unit used to transmit the information is uniquely identified with the newly defined logical channel identification LCID.
  • the technology of the present disclosure can be applied to various products.
  • the electronic device 100 may be implemented as various base stations.
  • the base station can be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • a similar situation can also be used for gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • BTS base transceiver station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a place different from the main body.
  • a main body also referred to as a base station device
  • RRH remote radio heads
  • various types of user equipment can work as a base station by temporarily or semi-persistently performing base station functions.
  • the electronic device 200 may be implemented as various user devices.
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or an in-vehicle terminal (such as a navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • FIG. 32 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 820 to transmit and receive wireless signals.
  • the eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 32 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 820. For example, the controller 821 generates a data packet based on the data in the signal processed by the wireless communication interface 825, and transmits the generated packet via the network interface 823. The controller 821 may bundle data from multiple baseband processors to generate a bundled packet, and deliver the generated bundled packet. The controller 821 may have a logic function to perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or another eNB via the network interface 823.
  • the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 823 is a wireless communication interface, the network interface 823 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in a cell of the eNB 800 via an antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and an RF circuit 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • layers such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)
  • the BB processor 826 may have a part or all of the above-mentioned logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 826.
  • the module may be a card or a blade inserted into the slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810.
  • the wireless communication interface 825 may include a plurality of BB processors 826.
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827.
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 32 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the acquiring unit 103 and the transceiver of the electronic device 100 may be implemented by a wireless communication interface 825. At least part of the functions may also be implemented by the controller 821.
  • the controller 821 can implement the division of pilot subsets and the allocation of pilots for UAVs by executing the functions of the division unit 101, the allocation unit 102, and the acquisition unit 103, and can also execute the functions of the switching unit 104 to execute the UAV. Virtual vertical switching or vertical switching.
  • FIG. 33 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that similarly, the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 33 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station equipment 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG. 32.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 32 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include a plurality of BB processors 856.
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 33 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module used to connect the base station device 850 (wireless communication interface 855) to the communication in the above-mentioned high-speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may generally include an RF circuit 864, for example.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 840.
  • the wireless communication interface 863 may include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 33 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the acquiring unit 103 and the transceiver of the electronic device 100 may be implemented by the wireless communication interface 855 and/or the wireless communication interface 863. At least a part of the functions may also be implemented by the controller 851.
  • the controller 851 can implement the division of pilot subsets and the allocation of pilots for UAVs by executing the functions of the division unit 101, the allocation unit 102, and the acquisition unit 103, and can also execute the functions of the switching unit 104 to perform UAV Virtual vertical switching or vertical switching.
  • FIG. 34 is a block diagram showing an example of a schematic configuration of a smart phone 900 to which the technology of the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smart phone 900.
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 907 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts the sound input to the smart phone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from the user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced), and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914.
  • the BB processor 913 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 916.
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 34, the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914. Although FIG. 34 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • the smart phone 900 may include a plurality of antennas 916.
  • FIG. 34 shows an example in which the smart phone 900 includes a plurality of antennas 916, the smart phone 900 may also include a single antenna 916.
  • the smart phone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connect.
  • the battery 918 supplies power to each block of the smart phone 900 shown in FIG. 34 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode, for example.
  • the reporting unit 201 and the transceiver of the electronic device 200 may be implemented by a wireless communication interface 912. At least part of the function may also be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 may report the three-dimensional location information of the UAV where the smart phone is located and determine the pilot assigned by the base station by executing the functions of the reporting unit 201 and the determining unit 202.
  • FIG. 35 is a block diagram showing an example of a schematic configuration of a navigation device 920 to which the technology of the present disclosure can be applied.
  • the navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication An interface 933, one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or SoC, and controls the navigation function of the navigation device 920 and other functions.
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 uses GPS signals received from GPS satellites to measure the position of the navigation device 920 (such as latitude, longitude, and altitude).
  • the sensor 925 may include a group of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, the onboard network 941 via a terminal not shown, and acquires data (such as speed data) generated by the UAV.
  • the content player 927 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935.
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 937.
  • the wireless communication interface 933 may also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 35 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the navigation device 920 may include a plurality of antennas 937.
  • FIG. 35 shows an example in which the navigation device 920 includes a plurality of antennas 937, the navigation device 920 may also include a single antenna 937.
  • the navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the navigation device 920.
  • the battery 938 supplies power to each block of the navigation device 920 shown in FIG. 35 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 938 accumulates electric power supplied from the vehicle.
  • the reporting unit 201 and the transceiver of the electronic device 200 may be implemented by a wireless communication interface 933. At least part of the functions may also be implemented by the processor 921.
  • the processor 921 may report the three-dimensional position information of the UAV where the navigation device is located and determine the pilot assigned by the base station by executing the functions of the reporting unit 201 and the determining unit 202.
  • the technology of the present disclosure may also be implemented as an airborne system (or UAV) 940 including one or more blocks of the navigation device 920, the airborne network 941, and the UAV module 942.
  • the UAV module 942 generates UAV data (such as speed, engine speed, and fault information), and outputs the generated data to the onboard network 941.
  • the present disclosure also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above-mentioned method according to the embodiment of the present disclosure can be executed.
  • a storage medium for carrying the above-mentioned program product storing machine-readable instruction codes is also included in the disclosure of the present disclosure.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and so on.
  • a computer with a dedicated hardware structure (such as a general-purpose computer 3600 shown in FIG. 36) is installed from a storage medium or a network to the program constituting the software, and various programs are installed on the computer. When, it can perform various functions and so on.
  • a central processing unit (CPU) 3601 performs various processes in accordance with a program stored in a read only memory (ROM) 3602 or a program loaded from a storage part 3608 to a random access memory (RAM) 3603.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 3601 executes various processes and the like is also stored as needed.
  • the CPU 3601, ROM 3602, and RAM 3603 are connected to each other via a bus 3604.
  • the input/output interface 3605 is also connected to the bus 3604.
  • input part 3606 including keyboard, mouse, etc.
  • output part 3607 including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.
  • Storage part 3608 including hard disk, etc.
  • communication part 3609 including network interface card such as LAN card, modem, etc.
  • the communication section 3609 performs communication processing via a network such as the Internet.
  • the driver 3610 can also be connected to the input/output interface 3605 according to needs.
  • Removable media 3611 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memory, etc. are mounted on the drive 3610 as needed, so that the computer programs read out therefrom are installed into the storage portion 3608 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 3611.
  • this storage medium is not limited to the removable medium 3611 shown in FIG. 36 which stores the program and is distributed separately from the device to provide the program to the user.
  • removable media 3611 include magnetic disks (including floppy disks (registered trademarks)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including mini disks (MD) (registered Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 3602, a hard disk included in the storage portion 3608, etc., in which programs are stored and distributed to users together with the devices containing them.
  • each component or each step can be decomposed and/or recombined.
  • decomposition and/or recombination should be regarded as equivalent solutions of the present disclosure.
  • the steps of performing the above-mentioned series of processing can naturally be performed in chronological order in the order of description, but do not necessarily need to be performed in chronological order. Some steps can be performed in parallel or independently of each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种用于无线通信的电子设备、方法和计算机可读存储介质,该电子设备包括:处理电路,被配置为:将可用导频划分为多个正交的子集;为无人机(UAV)设备分配第一子集中的导频,其中,第一子集与分配给不同小区的相邻扇区中的其他UAV设备的第二子集不同,以及第一子集与分配给和UAV设备位于同一扇区中的地面UE的第三子集不同。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2020年3月11日提交中国专利局、申请号为202010165600.9、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及大规模多输入多输出(Multiple In Multiple Out,MIMO)通信系统中的导频复用技术。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
在5G蜂窝网络中,每个基站都装备了大量的MIMO阵列,从而提供了数字波束成形和空间复用的功能。在多用户情况下,基站可以通过波束成形在同一物理资源块(Physical Resource Block,PRB)上为多个用户服务,从而提高了系统容量和频谱利用率。
在移动通信系统中,需要预先知道信道信息来进行接收数据的检测和解码,例如可以使用导频(pilot)辅助信道估计方法来进行信道估计。理想情况下,为不同的用户设备(User Equipment)分配相互正交的导频。然而,由于导频长度受限于信道相干长度,因此正交导频的个数是有限的,不同小区间不可避免的会出现导频重复利用的情况。此时,不同小区中采用相同的导频序列的UE,其发送的导频信号可能会被相邻小区的基站接收到,而基站却无法有效区分这些导频信号,导致基站处的上行信道估计受到干扰。当基站使用受到干扰的信道估计进行上行数据检测时,除了会接收到本小区的UE所发送的数据外,还会接收到其他小区UE的数据,从而造成了上行链路的小区间干扰;当基站使用受到干扰的信道估计生成预编码矩阵并发送下行数据时,除本小区UE外,其他小区的UE也会接收到数据,从而造成了下行链路的小区间干扰。这种情况被称为导频污染(pilot contaminatoin),其显著降低了传输数 据速率。
此外,随着UE的多样化,小区中的用户除了地面用户设备(地面UE)之外,还存在在一定高度处工作的空中用户终端比如无人机(Unmanned Aerial Vehicle,UAV)。随着UAV飞行高度的增加,从UAV发射的无线信号通常会经历视距(Line Of Sight,LOS)信号传播,从而更容易对地面UE造成干扰。在这种情况下,导频污染所带来的影响更加显著。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图确定本公开的关键或重要部分,也不是意图限定本公开的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:将可用导频划分为多个正交的子集;为UAV设备分配第一子集中的导频,其中,第一子集与分配给不同小区的相邻扇区中的其他UAV设备的第二子集不同,以及第一子集与分配给和UAV设备位于同一扇区中的地面UE的第三子集不同。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:将可用导频划分为多个正交的子集;为UAV设备分配第一子集中的导频,其中,第一子集与分配给不同小区的相邻扇区中的其他UAV设备的第二子集不同,以及第一子集与分配给和UAV设备位于同一扇区中的地面UE的第三子集不同。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:向基站报告UAV设备的三维空间位置的信息;以及确定基站基于该信息为UAV设备分配的导频,其中,所分配的导频属于可用导频的第一子集,第一子集与分配给不同小区的相邻扇区中的其他UAV设备的第二子集不同,以及第一子集与分配给和UAV设备位于同一扇区中的地面UE的第三子集不同。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:向基站报告UAV设备的三维空间位置的信息;以及确定基站基于该信息为UAV设备分配的导频,其中,所分配的导频属于可用导频的第一子集,第一子集与分配给不同小区的相邻扇区中的其他UAV设备的第二子集不同,以及第一子集与分配给和UAV设备位于同一扇区中的地面UE的第三子集不同。
根据本公开的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
根据本申请的实施例的电子设备和方法通过对UAV和地面UE进行区分并采用针对UAV的导频分配策略,最小化了UAV与地面UE之间的干扰。
通过以下结合附图对本公开的优选实施例的详细说明,本公开的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本公开的以上和其它优点和特征,下面结合附图对本公开的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本公开的典型示例,而不应看作是对本公开的范围的限定。在附图中:
图1是示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图2示出了大规模MIMO通信系统的场景的一个示例;
图3示出了导频子集划分的一个示例;
图4示出了同一扇区中导频子集分配的一个示例;
图5示出了各个扇区的UAV的导频子集分配的一个示例;
图6是示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图7示出了到达角的一个示意性示例;
图8示出了到达角的差异的一个示意性示例;
图9示出了基于两个到达角的信息来计算其差异的示意图;
图10示出了到达角的差异的所有可能计算结果的图;
图11示出了UAV与基站之间的信息流程的示意图;
图12示出了M-Msg.1方案下的传输示意图;
图13示出了第一信息的位置的一个示例;
图14示出了NR PUCCH的时频资源位置的示例;
图15示出了新增的MAC CE类型的一个示例;
图16示出了探测参考信号的梳状结构的示意图;
图17示出了探测参考信号的稀疏的梳状结构的示意图;
图18示出了多个UAV同时发送探测参考信号的一个示例的示意图;
图19示出了前置解调参考信号的时频资源位置的一个示例;
图20示出了频域密度降低的解调参考信号模式的一个示意图;
图21示出了频域密度降低的解调参考信号模式的另一个示意图;
图22是示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图23示出了虚拟空中小区和虚拟基站的一个示意性示例;
图24示出了地面小区的基站同时为高空中的UAV和GUE服务的示例的示意图;
图25示出了虚拟垂直切换的一个示意性示例;
图26示出了UAV进行到空中基站的切换的一个示例的示意图;
图27示出了飞行的UAV将穿越多个小区的示例;
图28是示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图29示出了根据本申请的一个实施例的用于无线通信的方法的流 程图;
图30是示出了图29中的步骤S12的流程的示例的图;
图31示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图32是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图33是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图34是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图35是示出可以应用本公开内容的技术的导航设备的示意性配置的示例的框图;以及
图36是其中可以实现根据本公开的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
图1示出了根据本申请的一个实施例的用于无线通信的电子设备100的功能模块框图,如图1所示,电子设备100包括:划分单元101,被配置为将可用导频划分为多个正交的子集;以及分配单元102,被配置成为UAV设备分配第一子集中的导频,其中,第一子集与分配给不同小区的相邻扇区中的其他UAV设备的第二子集不同,以及第一子集与分配给和所述UAV设备位于同一扇区中的地面UE的第三子集不同。
其中,划分单元101和分配单元102可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片、处理器。并且,应该理解,图1中所示的电子设备中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备100例如可以设置在基站侧或者可通信地连接到基站。本申请中所述的基站也可以是收发点(Transmit Receive Point,TRP)或者接入点(Access Point,AP)。这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为基站本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储基站实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,UE、其他基站等等)间的通信,这里不具体限制收发器的实现形式。
例如,划分单元101可以通过网络将可用导频划分为多个正交的子集,换言之,不同子集中的导频相互之间是正交的。示例性地,划分单元101可以通过与其他基站的交互或者与中央管理装置的交互来确定子集的划分方案。
分配单元102按照本实施例所提出的规则为本小区(也称为服务小区)中的UAV设备进行导频分配。此外,分配单元102也可以为服务小区中的地面UE进行导频分配。例如,分配单元102为UAV设备分配第一子集中的导频,为地面UE分配第三子集中的导频。与UAV设备所在的扇区相邻的不同小区的相邻扇区中的其他UAV设备被分配第二子集中的导频,其中,第一子集、第二子集和第三子集均不相同。换言之,相邻的扇区中的各个UAV设备将使用相互正交的导频,同一扇区中的UAV设备与地面UE将使用相互正交的导频。
在一个示例中,子集的划分可以是静态的。分配单元102被配置为 在划分单元101预先进行子集的划分后,为每个扇区中的UAV设备预留一个或多个子集。
在另一个示例中,子集的划分可以是动态的。划分单元101被配置为响应于UAV设备的接入来执行子集的划分,进而分配单元102执行导频的分配。动态划分子集有助于提高灵活性和导频的利用效率。
为了便于理解,以下参照图2给出导频划分和分配的一个具体示例。图2示出了大规模MIMO通信系统的场景的一个示例。在图2的场景中,假设系统有3个小区,分别为小区1、小区2和小区3,每个小区划分为三个扇区,分别为扇区A、扇区B和扇区C,由基站的三面大规模天线阵列提供覆盖。可以看出,小区1的扇区A、小区2的扇区B和小区3的扇区C彼此相邻,容易产生导频污染。图2中示意性地示出了小区3中的UAV对小区1和小区2中的地面UE(GUE)产生导频干扰的情形。
假设系统共有6个正交的导频,分别表示为P1、P2、P3、P4、P5和P6。根据本实施例,可以将其划分为多个正交的子集,图3示出了导频子集划分的一个示例,其中,将P1至P6划分为三个子集,每个子集包含两个正交的导频。
在图3的基础上,图4示出了同一扇区中导频子集分配的一个示例。可以看出,在每个扇区中,一个子集分配给UAV,其他两个子集分配给GUE。图5示出了各个扇区的UAV的导频子集分配的一个示例。可以看出,分配给UAV的子集在相邻扇区之间是正交的,以避免相互干扰。
应该理解,以上指示给出了子集划分和分配的一个示意性示例,其中个,可用导频的数目、UAV设备和GUE设备的数目、子集划分和分配的方式都不是限制性的。
在UAV接入服务小区后,基站要为其分配第一子集中的导频。如果第一子集中存在未被分配给相邻扇区的GUE的导频,则可以直接将该导频分配给UVA而不必考虑导频干扰的问题。另一方面,如果第一子集中的所有导频均已经分配给相邻扇区的GUE,则期望使用一种分配方式使得UAV对相邻扇区的GUE的导频干扰最小化。
以图2的场景为例,在每个扇区中有多个UAV比如小区3中的UAV x和UAV y的情况下,将第一子集中的导频P1分配给UAV x、P2分配给UAV y还是将P2分配给UAV x、P1分配给UAV y,将在UAV和GUE 之间产生不同的干扰,本实施例提出了一种最小化这种干扰的导频分配方式,其示例具体描述如下。
如图6所示,电子设备100还包括获取单元103,被配置为:获取第一信息,该第一信息指示UAV设备的三维空间位置;以及获取第二信息,该第二信息指示每个相邻小区的基站从该相邻小区的各个地面UE(GUE)接收到的信号的到达角(Angle of Arrival,AOA),该到达角包括水平入射角和垂直入射角。
分配单元102被配置为基于第一信息和第二信息的至少一部分,确定在使用相同的导频的情况下,相邻小区的基站从UAV设备接收到的信号的到达角与该相邻小区的基站从其地面UE接收到的信号的到达角之间的差异,并为UAV设备分配第一子集中使得该差异最大的导频。
由于同一基站接收的两个信号的到达方向(例如,用AOA表示)之间的夹角能够反映这两个信号相互干扰的强弱,因此分配单元102为UAV设备分配可用导频中使得该夹角最大的导频,以尽可能减小UAV对相邻小区的GUE产生的导频干扰。
由于基站采用大规模MIMO技术,因此可以估计出信号的AOA。由于相邻小区的GUE已经被分配了导频,因此相邻小区的基站能够估计它们的到达信号的AOA。获取单元103从相邻基站获取相邻小区中的各个GUE的到达角的信息,即第二信息。
此外,获取单元103获取的第一信息指示UAV设备的三维空间位置,例如包括UAV设备的二维位置和飞行高度。在假设为UAV分配第一子集中的某一导频的情况下,服务小区的基站基于UAV设备的二维位置和飞行高度以及相邻小区的基站的天线阵列的方向和位置(由于基站天线阵列的位置和方向不变,因此服务基站可以预先知道),能够计算该相邻基站从UAV接收到的干扰信号的AOA。这样,分配单元102能够计算在使用同一导频的情况下,相邻小区的基站从服务小区的UAV接收到的干扰信号的AOA与从相邻小区的GUE接收到的信号的AOA之间的差异,并通过在第一子集内选择导频,以使得该差异最大。
其中,AOA包括水平入射角AOA_H和垂直入射角AOA_V。图7示出了AOA的一个示意性示例,其中,XOY平面为水平面,X轴的正方向为参考方向,到达的信号(接收信号)在XOY平面上的投影与X 轴的正方向的夹角为水平入射角AOA_H,逆时针旋转的角度为正,顺时针旋转的角度为负。YOZ平面为垂直面,Z轴的负方向为参考方向,到达的信号在YOZ平面上的投影与Z轴的负方向的夹角为垂直入射角AOA_V,逆时针旋转的角度为正,顺时针旋转的角度为负。其中,AOA_H和AOA_V的角度范围均为0至360度。
在本实施例中,AOA的差异定义为两个接收信号的AOA的三维角度差。图8示出了AOA的差异的一个示意性示例。在图8中,两个接收信号分别为信号1和信号2,其AOA的差异表示为
Figure PCTCN2021079021-appb-000001
α 1和θ 1是信号1在基站天线上的AOA_H和AOA_V,α 2和θ 2是信号2在基站天线上的AOA_H和AOA_V。α 1、θ 1、α 2和θ 2可以由基站测得。
图9示出了基于两个AOA的信息(α 1、θ 1、α 2和θ 2)来计算这两个AOA的差异
Figure PCTCN2021079021-appb-000002
的示意图。首先,做一个与XOY平面夹角为θ 2的平面,该平面与Z轴和信号1形成的平面相交于射线OP。从信号1的方向上取一点A,向包含信号2的平面做垂线AP,垂足为P,再从P向信号2的方向做垂线,交于点B。由于平面OPB垂直于OPA,所以AP垂直于BP。根据三射线定理,
cos(∠AOB)=cos(∠AOP)cos(∠POB)+sin(∠AOP)sin(∠POB)cos(∠APB)       (1)其中,∠AOP=θ 21,∠POB=α 21
Figure PCTCN2021079021-appb-000003
又因为AP垂直BP,所以∠APB=90°,公式(1)变为:
Figure PCTCN2021079021-appb-000004
因此,基站根据信号1和信号2的AOA_H和AOA_V能够计算出 AOA的差异
Figure PCTCN2021079021-appb-000005
仍以图2所示的场景和图3至图5所示的导频划分和分配方案为例,来描述分配单元103的具体操作。
例如,服务小区(小区3)的基站要为扇区C中的UAV x和UAV y分配导频。由于该扇区C中的UAV被分配了子集I,因此UAV x和UAV y可以被分配子集I中的导频,即,P1和P2。通过第二信息,服务小区的基站已经获知小区1和小区2中的GUE在使用P1和P2时,相邻基站从其接收到的接收信号的AOA_H和AOA_V。根据式(2),可以计算出为UAV(UAV x或者UAV y)分配导频P1时,相邻小区1和2从该UAV接收到的干扰信号的AOA与从相应小区的GUE接收到的信号的AOA之间的差异,如下所示。
Figure PCTCN2021079021-appb-000006
Figure PCTCN2021079021-appb-000007
在式(3)中,
Figure PCTCN2021079021-appb-000008
表示当为UAV分配导频P1时,相邻小区1从该UAV接收到的干扰信号的AOA与从其使用导频P1的GUE接收到的信号的AOA之间的差异;θ UAV表示从UAV接收到的干扰信号的AOA_V,α UAV表示从UAV接收到的干扰信号的AOA_H;θ 1A和α 1A分别为从小区1的使用P1的GUE接收到的信号的AOA_V和AOA_H。作为一种近似,也可以认为GUE的AOA_V为0。
类似地,在式(4)中,
Figure PCTCN2021079021-appb-000009
表示当为UAV分配导频P1时,相邻小区2从该UAV接收到的干扰信号的AOA与从其使用导频P1的GUE接 收到的信号的AOA之间的差异;θ UAV表示从UAV接收到的干扰信号的AOA_V,α UAV表示从UAV接收到的干扰信号的AOA_H;θ 2A和α 2A分别为从小区2的使用P1的GUE接收到的信号的AOA_V和AOA_H。
同样地,还可以计算出假设为UAV分配P2时,相邻小区1和相邻小区2从该UAV接收到的干扰信号的AOA与从其使用导频P2的GUE接收到的信号的AOA之间的差异,分别记为
Figure PCTCN2021079021-appb-000010
Figure PCTCN2021079021-appb-000011
针对导频P1,分配单元102可以计算平均AOA差异为:
Figure PCTCN2021079021-appb-000012
类似地,针对导频P2,分配单元102可以计算平均AOA差异为:
Figure PCTCN2021079021-appb-000013
由于扇区C中包括两个UAV,即UAV x和UAV y。需要为这两个UAV分配不同的导频。因此,需要针对所有可能的情况进行计算,图10示出了AOA差异的所有可能计算结果的图。其中,
Figure PCTCN2021079021-appb-000014
表示UAV x被分配导频P1时,其AOA与小区1和2中使用相同导频P1的GUE的AOA差异之和(即上式(5)所示,其中,UAV为UAV x);
Figure PCTCN2021079021-appb-000015
表示UAV x被分配导频P2时,其AOA与小区1和2中使用相同导频P2的GUE的AOA差异之和(即上式(6)所示,其中,UAV为UAV x)。同理,
Figure PCTCN2021079021-appb-000016
Figure PCTCN2021079021-appb-000017
分别表示UAV y被分配P1和P2时其 AOA与小区1和2中使用相同导频的GUE的AOA差异之和。
因此,当将导频P1分配给UAV x而将导频P2分配给UAV y时,AOA差异的总和为
Figure PCTCN2021079021-appb-000018
当将导频P2分配给UAV x而将导频P1分配给UAV y时,AOA差异的总和为
Figure PCTCN2021079021-appb-000019
分配单元102选择使得AOA差异的总和最大的导频分配方案。
应该理解,上述示例仅是为了便于说明分配单元102的操作,但是并不是限制性的。
可以看出,分配单元102可以在不使用信道参数的情况下,仅使用AOA的差异来进行导频分配方案的优化,一方面该优化可以在UAV发送信号之前提前进行,另一方面计算简单,优化速度快,并且由于AOA差异相对稳定,因此信息交互量较小。
如上所述,获取单元103可以从相邻基站获取针对相应相邻小区的第二信息。其中,第二信息可以指示相邻小区中所有GUE的AOA。或者,第二信息可以仅指示相邻扇区中的被分配了第一子集中的导频的GUE的AOA。
例如,获取单元103可以用以下方式中的一种或多种获取第二信息:周期性地;在GUE的到达角发生预定程度的改变时。换言之,获取单元103在必要时更新第二信息。
例如,如果以周期性的方式获取第二信息,则获取第二信息的周期可以基于GUE的运动速度确定。如果GUE的运动速度较快,则AOA可能变化较快,从而为了保持准确度,可以将周期设置地较短。另外,周期的设置还取决于精度要求。
第二信息可以包括在到达角干扰指示器(AOA Interference Indicator,AII)中,AII用于向相邻基站报告在每个资源块(对应于导频)上的AOA测量结果。
此外,获取单元103还被配置为以下述方式中的一种或多种从UAV设备获取第一信息:周期性地;在UAV设备的三维空间位置发生预定程 度的改变时。类似地,周期的设置和预定程度的设置取决于UAV的飞行速度和/或计算的精度要求。
获取单元103可以经由如下中的一个或多个来获取第一信息:物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、MAC控制单元(MAC Control Element,MAC CE)。
例如,为了尽可能快地减少导频干扰,UAV可以通过PRACH向服务小区的基站报告指示其三维空间位置的第一信息。第一信息例如可以包括UAV的位置和预定飞行高度。
图11示出了基站(比如gNB)与UAV之间的信息流程的一个示意图。通过该信息流程,UAV随机接入到gNB。通常,随机接入(Random Access,RA)过程可以用于上行同步、信道切换或调度请求。其中,gNB通过NR-PBCH(物理广播信道)向UAV发送基本配置信息,并且为UAV配置PRACH资源,其中还包括NR-PDCCH和NR-PDSCH的配置。UAV随后经由NR-PRACH向gNB发出随机接入前导(Preamble)。例如,UAV从所有可用的前导中选择一个随机接入前导(Msg.1)发送给gNB,前导部分是一个具有理想自相关性质的共根序列进行循环移位而生成的Zadoff-Chu序列。第一信息可以包括在该条经由PRACH发送的信令中。
在NR中,可以使用M-Msg.1方案,即,允许UE在一次随机接入中尝试发送多个前导,从而提高了接入成功的可能性,减小了接入时延。如果UE在随机接入响应(RAR)窗中没有收到来自gNB的任何信息,则在随机退避延迟后,重新发送前导。图12示出了M-Msg.1方案下的传输示意图,其中,UE在一次RA中发送4个前导,并且在RAR窗中等待基站的响应,由于没有收到基站的响应,因此随机退避延迟后重发了2次,最终在第3个RAR窗中检测到有效的RAR。
在采用这种方案的情况下,UAV的第一信息可以位于所发送的随机接入前导的部分位置处。图13示出了第一信息的位置的一个示例。其中,将后两个前导的位置处替换为第一信息。这样,基站在接收到前导的同时就接收到了第一信息,从而基于第一信息和从相邻基站获取的第二信 息确定UAV要使用的导频,并在随后发送的RAR中为UAV分配该导频,如图11所示,RAR可以通过PDSCH发送,其还可以为UAV分配其他无线资源。通过这种方案,可以尽快地减小导频干扰。
在另一个示例中,第一信息包含在经由PDCCH传输的上行控制信息(Uplink Control Information,UCI)中。UCI例如包括混合自动重传请求(Hybrid Automatic Retransmission Request,HARQ)反馈、信道状态信息(Channel State Information,CSI)、调度请求(Scheduling Request,SR)等。NR PUCCH在时间和频率分配上具有灵活性,这允许在NR载波上使用更小的带宽支持UE,并在覆盖率和容量方面有效地利用可用资源,如图14所示。示例性地,可以定义一个新的UCI来用于上报第一信息。
在另一个示例中,还可以在无线资源控制(Radio Resource Control,RRC)连接的过程中比如在RRC连接请求中发送第一信息,如图11所示,RRC连接请求信令是在已经分配了导频信号和其他无线电资源的PUSCH上执行的。换言之,第一信息可以通过PUSCH传输。
PUSCH用于传输上行共享信道(UL-sch)和层1/2控制信息。UL-sch是用于传输上行传输块的传输通道。UAV可以通过PUSCH来上报第一信息,例如其位置与预定的飞行高度。在RRC连接期间,第一信息可以包含在flightPathInfoReport消息中。例如,可以在已有的flightPathInfoReport消息中增加关于飞行高度的信息。在UAV的飞行路径和预定飞行高度发生变化的情况下,可以通过PUSCH立即上报该变化。
在又一个示例中,第一信息可以用MAC CE来传输。MAC CE是用于gNB与UE之间的MAC层控制信令。对于每种类型的MAC CE,都有一个特殊的逻辑通道标识(Logical Channel identifier,LCID)值来唯一地标识。为了实现使用MAC CE来传输第一信息,可以定义一个新的LCID,图15示出了新增的MAC CE类型的一个示例。其中,索引代表唯一地标识新增的MAC CE的新定义的LCID的值。应该理解,图15仅是一个示例,LCID的定义不限于此。
此外,电子设备100还可以向相邻小区的基站报告服务小区的GUE的AOA的信息,其中,AOA包括水平入射角和垂直入射角。这样,相 邻小区的基站能够基于这些信息以上述方式为相邻小区中的UAV分配导频。
例如,电子设备100可以用以下方式中的一种或多种报告上述信息:周期性地;在GUE的AOA发生预定程度的改变时。这样,相邻小区的基站能够及时地更新服务小区地GUE的AOA的信息。例如,报告信息的周期可以基于GUE的运动速度确定。此外,周期的确定还可以考虑计算精度的要求。
综上所述,根据本实施例的电子设备100能够通过对UAV和地面UE进行区分并采用针对UAV的导频分配策略,最小化了UAV与地面UE之间的干扰。在本实施例中,还使用了基于到达角的差异最大化的导频分配方式,减小了计算复杂度,提高了导频分配效率。
<第二实施例>
在本实施例中,分配单元102还被配置为根据UAV设备的飞行高度来改变分配给UAV设备的导频的模式。在5G NR中,有四种物理参考信号,其中探测参考信号(Sounding Reference Signal,SRS)和解调参考信号(Demodulation Reference Signal,DMRS)为上行参考信号,SRS用于上行信道估计,DMRS用于对解调相关信道进行信道估计。这里所说的导频可以包括SRS或DMRS。
例如,分配单元102可以被配置为在UAV设备的飞行高度增加时,针对SRS采用更加稀疏的梳状结构。根据3GPP TS 38.211的规定,SRS在子帧的最后几个符号中传输,具有梳状结构,如所示。随着UAV飞行高度的增加,发送信号经过LOS径到达基站的概率增加,在这种情况下,由于信道的相干带宽增大,信道的频率响应变得更加平坦,从而可以采用更为稀疏的梳状结构,如图17所示。其中,SRS的梳状结构随着飞行高度的增加而变得更加稀疏。通过使用该配置,不仅可以提高信道探测性能(提高功率谱密度),而且可以增加利用空的子载波同时发送SRS的UE的数量,图18示出了多个UAV同时发送SRS的一个示例的示意图。
作为另一个示例,分配单元102可以在UAV设备的飞行高度增加时降低DMRS的频域密度。在时域资源网格中,前置DMRS位于控制域 之后,数据域之前,如图19所示,黑色填充部分代表DMRS。如前所述,随着飞行高度的增加,UAV的发送信号很可能会经过LOS径到达基站。在这种情况下,延迟扩展会变短(等同于信道的相干带宽增大)。分配单元102可以在不显著降低信道估计精度的情况下降低DMRS的频域密度,从而可以减小DMRS带来的开销,节省出来的子载波可以被数据域或控制域重用。示例性地,图20示出了每个资源块中DMRS占用3个子载波的DMRS模式的示意图,其中,节省出来的子载波被数据域重用。图21示出了每个资源块中DMRS占用2个子载波的DMRS模式的示意图,其中,节省出来的子载波被控制域重用。
综上所述,根据本实施例的电子设备100能够通过增加同时发送SRS的UE的数量来提高系统容量,以及/或者通过减小DMRS的开销来提高频谱利用率。
<第三实施例>
在UAV的飞行过程中可能会飞越多个小区,为了减小这个过程中的小区切换次数,本实施例提出了垂直切换的解决方案。相应地,电子设备100还可以包括切换单元104,用于执行垂直切换,如图22所示。
在一个示例中,切换单元104被配置为在UAV设备的飞行高度增加到预定程度时,执行虚拟垂直切换,以将UAV设备切换到相应高度处的虚拟基站,其中,虚拟基站的功能由对应水平区域中的地面基站实现。在该示例中,假设存在虚拟空中小区和虚拟基站。图23示出了虚拟空中小区和虚拟基站的一个示意性示例。
在图23的示例中,将空间在垂直方向上分为高、中、地面三个层级,其中,在地面上布置有多个小区比如cell 1至cell 16,这些小区是真实的小区,每个小区中有相应的真实基站。在中部空间和高空部分,假设存在多个虚拟空中小区和相应的虚拟基站。在与所示出的地面部分对应的中部空间中,存在虚拟空中小区Mcell 1至Mcell 4,以Mcell 1为例,其水平覆盖区域为地面小区cell 1、cell 2、cell 3和cell 5的覆盖区域的总和,可以指定其水平覆盖区域的中央部分对应的地面小区的基站作为Mcell 1的虚拟基站,例如可以指定地面小区cell 2的基站作为Mcell 1的虚拟基站。类似地,在与所示出的地面部分对应的高空部分中,存在虚拟空中 小区Hcell 1,其水平覆盖区域为虚拟空中小区Mcell 1至Mcell 4的水平覆盖区域的总和,可以指定其水平覆盖区域的中央部分对应的地面小区的基站作为Hcell 1的虚拟基站,例如可以指定地面小区cell 8的基站作为Hcell 1的虚拟基站。在这种情况下,地面小区cell 8的基站同时为位于Hcell 1的高空覆盖范围内的UAV和小区cell 8中的GUE服务,如图24所示。
可以看出,随着高度的增加,虚拟空中小区的覆盖区域变大。相应地,随着飞行高度地增加,UAV的信号可以到达更多的基站,并且UAV在高空中可以飞得更快,在水平方向上将快速跨越多个地面小区。因此,当UVA的飞行高度达到某个高度后,可以将UAV从原来的地面小区垂直切换到相应的虚拟空中小区,以避免在地面小区间的频繁切换,减小信令开销。此外,当UAV的飞行高度进一步提升时,还可以进行不同层级间的虚拟垂直切换。
图25示出了虚拟垂直切换的一个示意性示例。其中,UAV在cell 10中起飞并到达中部空间时,将发生从cell 10到Mcell 3的虚拟垂直切换,Mcell 3的虚拟基站为cell 9的基站,因此UAV将从cell 10的基站切换至cell 9的基站。进一步地,当UAV进入高空飞行后,例如将发生Mcell 3至Hcell 1的虚拟垂直切换,UAV将从cell 9的基站切换至cell 8的基站,其中cell 8的基站为Hcell 1的虚拟基站。
应该理解,图23仅是示出了垂直方向的一种层级的示例,但是本申请并不限于此,而是可以划分更多层级的虚拟空中小区。
在另一个示例中,切换单元104被配置为在UAV设备的飞行高度增加到预定程度时,执行垂直切换,以将UAV设备切换到空中基站,例如空中基站可以位于高空平台(High Altitude Platform Station,HAPS)上。
在该示例中,存在HAPS比如飞艇、卫星或大型UAV覆盖空中小区。类似地,空中基站或相应的空中小区也可以存在层级结构,即,不同高度处设置有不同层级的空中基站。
当UAV飞到空中时,不再需要地面基站控制。此时,可以进行垂直切换,将UAV由地面基站切换到空中基站。进一步地,当飞行高度改变时,还可以在空中基站间进行切换。
图26示出了UAV进行到空中基站的切换的一个示例的示意图。其中,UAV在cell 10中起飞并到达中部空间时,将发生从cell 10到Mcell 2的垂直切换,Mcell 2的空中基站在飞艇上,因此UAV将从cell 10的基站切换至飞艇上的空中基站。进一步地,当UAV进入高空飞行后,例如将发生Mcell 2至Hcell 1的垂直切换,UAV将从飞艇上的空中基站切换至位于卫星上的Hcell 1的空中基站。
在本实施例中,定义空中小区的目的是集中管理UAV,以便于根据UAV的运动特点优化系统配置,此外,还可以降低UAV在地面小区间越区切换时产生的巨大信令开销。例如,由于大规模天线和毫米波技术,5G系统基站的密度大约为每平方公里40-50个,即,小区半径大约为80米,在这种情况下,飞行的UAV将在较短的时间内穿越多个小区,如图27所示的cell 14、cell 12、cell9和cell 6,产生大量的越区切换信令。本实施例通过定义面积较大的空中小区,将UAV垂直切换到该空中小区,显然会大大减小这类信令开销。
<第四实施例>
图28示出了根据本申请的另一个实施例的电子设备200的功能模块框图,如图28所示,电子设备200包括:报告单元201,被配置为向基站报告UAV的三维空间位置的信息;以及确定单元202,被配置为确定基站基于所述信息为UAV设备分配的导频,其中,所分配的导频属于可用导频的第一子集,第一子集与分配给不同小区的相邻扇区中的其他UAV设备的第二子集不同,以及第一子集与分配给与UAV设备位于同一扇区中的GUE的第三子集不同。
其中,报告单元201和确定单元202可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片、处理器。并且,应该理解,图28中所示的电子设备中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备200例如可以设置在UAV侧或者可通信地连接到UAV。这里,还应指出,电子设备200可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备200可以工作为UAV本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存 储UAV设备实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他用户设备等等)间的通信,这里不具体限制收发器的实现形式。
例如,UAV设备的三维空间位置可以包括UAV设备的二维位置和飞行高度。本实施例中的UAV设备的三维空间位置的信息相当于第一实施例中所述的第一信息,可参见第一实施例中的详细描述,在此不再重复。
报告单元201可以以如下方式中的一种或多种来上报上述信息:周期性地;在UAV设备的三维空间位置发生预定程度的改变时。
报告单元201可以被配置为经由如下中的一个或多个来报告上述信息:PRACH,PUCCH,PUSCH,MAC CE。
例如,所述信息可以放置在UAV设备经由PRACH发送的随机接入前导的部分位置处,该示例已经在第一实施例中参照图12和图13给出了详细描述,在此不再重复。所述信息还可以包含在经由PUCCH传输的上行控制信息中,该示例已经在第一实施例中参照图14给出了详细描述,在此不再重复。所述信息还可以包含在无线资源控制连接请求中,或者包含在无线资源控制连接期间的flightPathInfoReport中,这些示例已经在第一实施例中参照图11给出了详细描述,在此不再重复。此外,所述信息还可以用MAC CE来传输,为了实现这一方式,可以新增加一种类型的MAC CE,并且新定义一个LCID来唯一地表示新增加的MAC CE。
基站接收到上述信息后,可以基于该信息为UAV分配导频并向UAV发送指示,确定单元202基于该指示确定被分配的导频。随后,UAV可以使用该导频进行传输。由于该导频与本扇区的GUE的导频和相邻扇区的UAV的导频均是正交的,因此有效地降低了导频干扰。
此外,该导频的模式可以基于飞行高度的变化而改变,如第二实施例中所述,在此不再重复。
随着飞行高度的增加,UAV可以虚拟垂直切换至虚拟空中小区或者垂直切换至空中小区,以减小信令开销。相关的描述在第三实施例中已经给出,在此不再重复。
综上所述,根据本实施例的电子设备200通过利用对UAV和地面UE进行区分并采用针对UAV的导频分配策略,最小化了UAV与地面UE之间的干扰。
<第五实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图29示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括:将可用导频划分为多个正交的子集(S11);为UAV设备分配第一子集中的导频(S12),其中,第一子集与分配给不同小区的相邻扇区中的其他UAV设备的第二子集不同,第一子集与分配给和UAV设备位于同一扇区中的地面UE的第三子集不同。该方法例如可以在基站侧执行。
例如,可以在预先进行子集的划分后,为每个扇区中的UAV设备预留一个或多个子集。也可以响应于UAV设备的接入来执行上述方法的各个步骤。
如图30所示,在一个示例中,步骤S12包括:获取第一信息(S121),第一信息指示UAV设备的三维空间位置;获取第二信息(S122),第二信息指示每个相邻小区的基站从该相邻小区的的各个地面UE接收到的信号的AOA,到达角包括水平入射角和垂直入射角;基于第一信息和第二信息的至少一部分,确定在使用相同的导频的情况下,相邻小区的基站从UAV设备接收到的信号的到达角与该相邻小区的基站从其地面UE接收到的信号的到达角之间的差异(S123);以及为UAV设备分配第一子集中使得差异最大的导频(S124)。
例如,UAV设备的三维空间位置包括UAV设备的二维位置和飞行 高度,在步骤S121中可以以下方式中的一种或多种从UAV设备获取第一信息:周期性地;在UAV设备的三维空间位置发生预定程度的改变时。
可以经由如下中的一个或多个来获取第一信息:物理随机接入信道,物理上行控制信道,物理上行共享信道,MAC控制单元。例如,第一信息位于UAV设备经由物理随机接入信道发送的随机接入前导的部分位置处。此外,第一信息可以包含在经由物理上行控制信道传输的上行控制信息中。第一信息可以包含在无线资源控制连接期间的filghtPathInfoReport消息中。用于传输第一信息的MAC控制单元可以用新定义的逻辑通道标识LCID来唯一地标识。
在步骤S122中,可以从相邻基站获取针对相应相邻小区的第二信息,其中,第二信息例如包括在到达角干扰指示器中。第二信息可以指示相邻扇区中的被分配了第一子集中的导频的地面UE的到达角。
可以按以下方式中的一种或多种获取第二信息:周期性地;在地面UE的到达角发生预定程度的改变时。获取第二信息的周期可以基于地面UE的运动速度确定。
此外,虽然图中未示出,上述方法还可以包括:根据UAV设备的飞行高度来改变分配给UAV设备的导频的模式。例如,在UAV设备的飞行高度增加时,可以针对SRS采用更加稀疏的梳状结构,以及/或者降低DMRS的频域密度。
另外,在UAV设备的飞行高度增加到预定程度时,可以执行虚拟垂直切换,以将UAV设备切换到相应高度处的虚拟基站,其中,虚拟基站的功能由对应水平区域中的地面基站实现。
或者,在UAV设备的飞行高度增加到预定程度时,可以执行垂直切换,以将UAV设备切换到空中基站,其中,空中基站位于高空平台上。
另外,上述方法还可以包括:向相邻小区的基站报告服务小区的地面UE的到达角的信息。可以以以下方式中的一种或多种报告该信息:周期性地;在地面UE的到达角发生预定程度的改变时。报告该信息的周期可以基于地面UE的运动速度确定。
图31示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括:向基站报告UAV设备的三维空间位置的信息 (S21);以及确定基站基于所述信息为UAV设备分配的导频(S22),其中,所分配的导频属于可用导频的第一子集,第一子集与分配给不同小区的相邻扇区中的其他UAV设备的第二子集不同,以及第一子集与分配给和UAV设备位于同一扇区中的地面UE的第三子集不同。该方法例如可以在UAV侧执行。
例如,UAV设备的三维空间位置包括UAV设备的二维位置和飞行高度。在步骤S21中可以经由如下中的一个或多个来报告所述信息:物理随机接入信道,物理上行控制信道,物理上行共享信道,MAC控制单元。
例如,所述信息可以放置在UAV设备经由物理随机接入信道发送的随机接入前导的部分位置处。所述信息可以包含在经由物理上行控制信道传输的上行控制信息中。所述信息可以包含在无线资源控制连接请求中。所述信息可以包含在无线资源控制连接期间的filghtPathInfoReport消息中。用于传输所述信息的MAC控制单元用新定义的逻辑通道标识LCID来唯一地标识。
注意,上述各个方法可以结合或单独使用,其细节在第一至第四实施例中已经进行了详细描述,在此不再重复。
本公开内容的技术能够应用于各种产品。
例如,电子设备100可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备200可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终 端(诸如导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图32是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图32所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图32示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通 信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图32所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图32所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图32示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图32所示的eNB 800中,电子设备100的获取单元103、收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行划分单元101、分配单元102和获取单元103的功能实现导频子集的划分与针对UAV的导频的分配,还可以通过执行切换单元104的功能来执行UAV的虚拟垂直切换或垂直切换。
(第二应用示例)
图33是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图33所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图33示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图32描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图32描述的BB处理器826相同。如图33所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图33示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信 接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图33所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图33示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图33所示的eNB 830中,电子设备100的获取单元103、收发器可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器851实现。例如,控制器851可以通过执行划分单元101、分配单元102和获取单元103的功能实现导频子集的划分与针对UAV的导频的分配,还可以通过执行切换单元104的功能来执行UAV的虚拟垂直切换或垂直切换。
[关于用户设备的应用示例]
(第一应用示例)
图34是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸 传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图34所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图34示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图34所示,智能电话900可以包括多个天线916。虽然图34示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图34所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图34所示的智能电话900中,电子设备200的报告单元201、收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行报告单元201和确定单元202的功能来上报智能电话所在的UAV的三维位置信息以及确定基站为其分配的导频。
(第二应用示例)
图35是示出可以应用本公开内容的技术的导航设备920的示意性配置的示例的框图。导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如机载网络941,并且获取由UAV生成的数据(诸如速度数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图35所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图35示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图35所示,导航设备920可以包括多个天线937。虽然图35示出其中导航设备920包括多个天线937的示例,但是导航设备920也可以包括单个天线937。
此外,导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从导航设备920的配置中省略。
电池938经由馈线向图35所示的导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图35示出的导航设备920中,电子设备200的报告单元201、收发器可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行报告单元201和确定单元202的功能来上报导航设备所在的UAV的三维位置信息以及确定基站为其 分配的导频。
本公开内容的技术也可以被实现为包括导航设备920、机载网络941以及UAV模块942中的一个或多个块的机载系统(或UAV)940。UAV模块942生成UAV数据(诸如速度、发动机速度和故障信息),并且将所生成的数据输出至机载网络941。
以上结合具体实施例描述了本公开的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本公开的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本公开还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本公开实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本公开的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本公开的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图36所示的通用计算机3600)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图36中,中央处理单元(CPU)3601根据只读存储器(ROM)3602中存储的程序或从存储部分3608加载到随机存取存储器(RAM)3603的程序执行各种处理。在RAM 3603中,也根据需要存储当CPU 3601执行各种处理等等时所需的数据。CPU 3601、ROM 3602和RAM 3603经由总线3604彼此连接。输入/输出接口3605也连接到总线3604。
下述部件连接到输入/输出接口3605:输入部分3606(包括键盘、鼠标等等)、输出部分3607(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分3608(包括硬盘等)、通信部分3609(包括网络接口卡比如LAN卡、调制解调器等)。通信部分 3609经由网络比如因特网执行通信处理。根据需要,驱动器3610也可连接到输入/输出接口3605。可移除介质3611比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器3610上,使得从中读出的计算机程序根据需要被安装到存储部分3608中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质3611安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图36所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质3611。可移除介质3611的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 3602、存储部分3608中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本公开的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (34)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    将可用导频划分为多个正交的子集;
    为无人机UAV设备分配第一子集中的导频,其中所述第一子集与分配给不同小区的相邻扇区中的其他UAV设备的第二子集不同,以及所述第一子集与分配给和所述UAV设备位于同一扇区中的地面UE的第三子集不同。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为预先进行子集的划分后,为每个扇区中的所述UAV设备预留一个或多个子集。
  3. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为响应于UAV设备的接入来执行所述子集的划分和导频的分配。
  4. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    获取第一信息,所述第一信息指示所述UAV设备的三维空间位置;
    获取第二信息,所述第二信息指示每个相邻小区的基站从该相邻小区的的各个地面UE接收到的信号的到达角,所述到达角包括水平入射角和垂直入射角;
    基于所述第一信息和所述第二信息的至少一部分,确定在使用相同的导频的情况下,相邻小区的基站从所述UAV设备接收到的信号的到达角与该相邻小区的基站从其地面UE接收到的信号的到达角之间的差异;以及
    为所述UAV设备分配所述第一子集中使得所述差异最大的导频。
  5. 根据权利要求4所述的电子设备,其中,所述处理电路被配置为以以下方式中的一种或多种从所述UAV设备获取所述第一信息:周期性地;在所述UAV设备的所述三维空间位置发生预定程度的改变时。
  6. 根据权利要求4所述的电子设备,其中,所述UAV设备的三维 空间位置包括所述UAV设备的二维位置和飞行高度。
  7. 根据权利要求5所述的电子设备,其中,所述处理电路被配置为经由如下中的一个或多个来获取所述第一信息:物理随机接入信道,物理上行控制信道,物理上行共享信道,MAC控制单元。
  8. 根据权利要求7所述的电子设备,其中,所述第一信息位于所述UAV设备经由所述物理随机接入信道发送的随机接入前导的部分位置处。
  9. 根据权利要求7所述的电子设备,其中,所述第一信息包含在经由所述物理上行控制信道传输的上行控制信息中。
  10. 根据权利要求7所述的电子设备,其中,所述第一信息包含在无线资源控制连接期间的filghtPathInfoReport消息中。
  11. 根据权利要求7所述的电子设备,其中,用于传输所述第一信息的MAC控制单元用新定义的逻辑通道标识LCID来唯一地标识。
  12. 根据权利要求4所述的电子设备,其中,所述处理电路被配置为从相邻基站获取针对相应相邻小区的第二信息,其中,所述第二信息包括在到达角干扰指示器中。
  13. 根据权利要求4所述的电子设备,其中,所述第二信息指示相邻扇区中的被分配了所述第一子集中的导频的地面UE的到达角。
  14. 根据权利要求12所述的电子设备,其中,所述处理电路被配置为以以下方式中的一种或多种获取所述第二信息:周期性地;在所述地面UE的到达角发生预定程度的改变时。
  15. 根据权利要求14所述的电子设备,其中,获取所述第二信息的周期基于所述地面UE的运动速度确定。
  16. 根据权利要求6所述的电子设备,其中,所述处理电路还被配置为根据所述UAV设备的飞行高度来改变分配给所述UAV设备的导频的模式。
  17. 根据权利要求16所述的电子设备,其中,所述处理电路被配置为在所述UAV设备的飞行高度增加时,针对探测参考信号采用更加稀疏的梳状结构。
  18. 根据权利要求16所述的电子设备,其中,所述处理电路被配置为在所述UAV设备的飞行高度增加时降低解调参考信号的频域密度。
  19. 根据权利要求6所述的电子设备,其中,所述处理电路被配置为在所述UAV设备的飞行高度增加到预定程度时,执行虚拟垂直切换,以将所述UAV设备切换到相应高度处的虚拟基站,其中,所述虚拟基站的功能由对应水平区域中的地面基站实现。
  20. 根据权利要求6所述的电子设备,其中,所述处理电路被配置为在所述UAV设备的飞行高度增加到预定程度时,执行垂直切换,以将所述UAV设备切换到空中基站,其中,所述空中基站位于高空平台上。
  21. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为向相邻小区的基站报告服务小区的地面UE的到达角的信息,其中,所述到达角包括水平入射角和垂直入射角。
  22. 根据权利要求21所述的电子设备,其中,所述处理电路被配置为以以下方式中的一种或多种报告所述信息:周期性地;在所述地面UE的到达角发生预定程度的改变时。
  23. 根据权利要求22所述的电子设备,其中,报告所述信息的周期基于所述地面UE的运动速度确定。
  24. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    向基站报告UAV设备的三维空间位置的信息;以及
    确定所述基站基于所述信息为所述UAV设备分配的导频,其中,所分配的导频属于可用导频的第一子集,所述第一子集与分配给不同小区的相邻扇区中的其他UAV设备的第二子集不同,以及所述第一子集与分配给和所述UAV设备位于同一扇区中的地面UE的第三子集不同。
  25. 根据权利要求24所述的电子设备,其中,所述UAV设备的三维空间位置包括所述UAV设备的二维位置和飞行高度。
  26. 根据权利要求24所述的电子设备,其中,所述处理电路被配置为经由如下中的一个或多个来报告所述信息:物理随机接入信道,物理上行控制信道,物理上行共享信道,MAC控制单元。
  27. 根据权利要求26所述的电子设备,其中,所述处理电路被配置为将所述信息放置在所述UAV设备经由所述物理随机接入信道发送的随机接入前导的部分位置处。
  28. 根据权利要求26所述的电子设备,其中,所述处理电路被配置为将所述信息包含在经由所述物理上行控制信道传输的上行控制信息中。
  29. 根据权利要求28所述的电子设备,其中,所述处理电路被配置为将所述信息包含在无线资源控制连接请求中。
  30. 根据权利要求26所述的电子设备,其中,所述处理电路被配置为将所述信息包含在无线资源控制连接期间的filghtPathInfoReport消息中。
  31. 根据权利要求26所述的电子设备,其中,用于传输所述信息的MAC控制单元用新定义的逻辑通道标识LCID来唯一地标识。
  32. 一种用于无线通信的方法,包括:
    将可用导频划分为多个正交的子集;
    为无人机UAV设备分配第一子集中的导频,其中,所述第一子集与分配给不同小区的相邻扇区中的其他UAV设备的第二子集不同,以及所述第一子集与分配给和所述UAV设备位于同一扇区中的地面UE的第三子集不同。
  33. 一种用于无线通信的方法,包括:
    向基站报告UAV设备的三维空间位置的信息;以及
    确定所述基站基于所述信息为所述UAV设备分配的导频,其中,所分配的导频属于可用导频的第一子集,所述第一子集与分配给不同小区的相邻扇区中的其他UAV设备的第二子集不同,以及所述第一子集与分配给和所述UAV设备位于同一扇区中的地面UE的第三子集不同。
  34. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求32或33所述的用于无线通信的方法。
PCT/CN2021/079021 2020-03-11 2021-03-04 用于无线通信的电子设备和方法、计算机可读存储介质 WO2021179981A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180017937.8A CN115211069A (zh) 2020-03-11 2021-03-04 用于无线通信的电子设备和方法、计算机可读存储介质
US17/798,083 US20230155764A1 (en) 2020-03-11 2021-03-04 Electronic device and method for wireless communications, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010165600.9 2020-03-11
CN202010165600.9A CN113395141A (zh) 2020-03-11 2020-03-11 用于无线通信的电子设备和方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021179981A1 true WO2021179981A1 (zh) 2021-09-16

Family

ID=77615341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079021 WO2021179981A1 (zh) 2020-03-11 2021-03-04 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (3)

Country Link
US (1) US20230155764A1 (zh)
CN (2) CN113395141A (zh)
WO (1) WO2021179981A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101199148A (zh) * 2005-06-15 2008-06-11 华为技术有限公司 二维导频图案
US20160105233A1 (en) * 2014-02-17 2016-04-14 Ubiqomm, LLC Broadband access system via drone/uav platforms
US20170126309A1 (en) * 2015-10-30 2017-05-04 The Florida International University Board Of Trustees Cooperative clustering for enhancing mu-massive-miso-based uav communication
CN107980239A (zh) * 2017-09-27 2018-05-01 深圳前海达闼云端智能科技有限公司 资源配置方法和装置,网络设备和存储介质
CN110535524A (zh) * 2019-08-27 2019-12-03 中科芯(苏州)微电子科技有限公司 一种激光卫星中继通信方法与装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101199148A (zh) * 2005-06-15 2008-06-11 华为技术有限公司 二维导频图案
US20160105233A1 (en) * 2014-02-17 2016-04-14 Ubiqomm, LLC Broadband access system via drone/uav platforms
US20170126309A1 (en) * 2015-10-30 2017-05-04 The Florida International University Board Of Trustees Cooperative clustering for enhancing mu-massive-miso-based uav communication
CN107980239A (zh) * 2017-09-27 2018-05-01 深圳前海达闼云端智能科技有限公司 资源配置方法和装置,网络设备和存储介质
CN110535524A (zh) * 2019-08-27 2019-12-03 中科芯(苏州)微电子科技有限公司 一种激光卫星中继通信方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL: "Review of UAS service requirements", 3GPP DRAFT; S6-200262, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG6, no. Hyderabad, India; 20200113 - 20200117, 19 January 2020 (2020-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051844483 *

Also Published As

Publication number Publication date
CN113395141A (zh) 2021-09-14
CN115211069A (zh) 2022-10-18
US20230155764A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
US10531281B2 (en) Apparatus and method in wireless communication system
US11824806B2 (en) Apparatus and method in wireless communication system and computer readable storage medium
US20200235887A1 (en) Apparatus and method in wireless communication system, and computer-readable storage medium
WO2017028664A1 (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
CN106162885B (zh) 无线通信的装置和方法、基站、用户设备侧的装置
CN112237025A (zh) 电子设备、通信方法和存储介质
CN113678381B (zh) 基站设备、通信方法和存储介质
US11425640B2 (en) Communication device, base station apparatus, method, and program
US20210281301A1 (en) Communication device, communication control method and recording medium
US20200382263A1 (en) Electronic device, user equipment, method and computer readable storage medium
KR20210108960A (ko) 무선 통신에 이용되는 전자 디바이스 및 방법, 및 컴퓨터 판독가능 저장 매체
WO2021179981A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768743

Country of ref document: EP

Kind code of ref document: A1