WO2021179771A1 - 一种基于车间数字孪生模型的泛化封装方法和系统 - Google Patents

一种基于车间数字孪生模型的泛化封装方法和系统 Download PDF

Info

Publication number
WO2021179771A1
WO2021179771A1 PCT/CN2020/142188 CN2020142188W WO2021179771A1 WO 2021179771 A1 WO2021179771 A1 WO 2021179771A1 CN 2020142188 W CN2020142188 W CN 2020142188W WO 2021179771 A1 WO2021179771 A1 WO 2021179771A1
Authority
WO
WIPO (PCT)
Prior art keywords
packaging
generalized
module
equipment
classified
Prior art date
Application number
PCT/CN2020/142188
Other languages
English (en)
French (fr)
Inventor
刘强
严都喜
陈新
冷杰武
张定
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Priority to US17/155,012 priority Critical patent/US11086306B1/en
Publication of WO2021179771A1 publication Critical patent/WO2021179771A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction

Definitions

  • the invention relates to the technical field of industrial automation, in particular to a generalized packaging method and system based on a workshop digital twin model.
  • the purpose of the present invention is to propose a generalized packaging method based on the workshop digital twin model, which optimizes the modeling process, the packaging body can be built more conveniently, and the error rate of modeling is reduced, and the modeling efficiency is improved.
  • the present invention also proposes a generalized packaging system based on the workshop digital twin model, which includes: an abstract process packaging module, a continuous process packaging module, a process motion packaging module, a process algorithm packaging module, a database and a quick calling module.
  • the present invention adopts the following technical solutions:
  • a generalized packaging method based on a workshop digital twin model including the following steps:
  • step (1) according to the basic operation and functional characteristics of the process, it is divided into cutting type, drilling type, shearing type, installation type, heat treatment type, electrochemical type and detection type.
  • step (1) the processes similar to laser cutting, knife cutting and water jet cutting are classified as cutting;
  • the product testing is classified as testing.
  • step (3) two or more continuous flow processes are subjected to generalized packaging processing.
  • the process movement includes: preparation movement, processing movement, and ending movement.
  • the simulation modeling software is Demo3D.
  • step (1) to step (7) editable setting parameters are reserved for setting and modification when the process package is later called.
  • a generalized packaging system based on the workshop digital twin model including: abstract process packaging module, continuous process packaging module, process motion packaging module, process algorithm packaging module, database and fast calling module;
  • the abstract process packaging module is used to divide the process into categories according to the basic operation and functional characteristics of the process; and to abstract the commonalities based on the process movement mode, the process algorithm, and the action trigger mechanism;
  • the continuous process packaging module is used to package the continuous process flow that meets the conditions according to the sequence characteristics of the process flow and considering the layout of the equipment on the production line;
  • the process motion packaging module is used to compare the same and/or similar processes, analyze the movement of the workpiece in the process flow, and perform generalized packaging processing between the process motion and the corresponding process;
  • the process algorithm packaging module is used for packaging the applied algorithm and corresponding process according to the time sequence, spatial sequence and logic characteristics of the specific process;
  • the database is used to store packaged process generalized packages
  • the quick call module is used to quickly call the generalized package from the database to the required equipment or the required process according to the requirements of the customized production line.
  • the abstract process packaging modules are classified into cutting, drilling, shearing, installation, heat treatment, electrochemical, and detection based on the basic operations and functional characteristics of the process.
  • This generalized packaging method is used to optimize the modeling process, which can be easily built for the packaging body, reduce the error rate of modeling, improve modeling efficiency, effectively reduce the repetition of workshop work, and improve the fault tolerance of later changes in the workshop sex.
  • Figure 1 is a flowchart of a generalized encapsulation method.
  • the present invention is based on the following premises:
  • the three-dimensional digital modeling work of the equipment has been completed, and the digital model of the stand-alone equipment has been established, and it is a general three-dimensional CAD model with a clear product structure.
  • the moving parts of the stand-alone equipment can be independently expressed and marked.
  • a generalized packaging method based on a workshop digital twin model including the following steps:
  • the basic operation of the equipment corresponds to the processing type of the production line, such as cutting, drilling, shearing, installation, heat treatment, electrochemistry, and testing; while the functional characteristics of the equipment continue to distinguish the equipment in the basic operations, such as the type of cutting Its functions are divided into laser cutting, knife cutting and waterjet cutting;
  • the equipment in each category will have similar attributes in terms of process movement mode, process algorithm and action trigger mechanism, and this step is to have the common characteristics of the equipment
  • the process is generalized and packaged based on such commonalities; for example, in the process of laser cutting and waterjet cutting, there are commonalities in properties such as motion mode, motion algorithm, and action trigger (that is, when to trigger the cutting).
  • the commonality of laser cutting and waterjet cutting can generalize and encapsulate the process; abstract processing is to strip out useful information from the actual process in reality, such as the movement of workpieces and components, the basic structure of the equipment, etc. ; And discard the useless information that has no significant effect on the process characteristics, such as the wiring layout of wires, air pipes, etc.
  • the equipment of the production line is arranged in the order of processing.
  • a single processing equipment or multiple processing equipment may be required to process at the same time, or processed in sequence; this step is based on the sequence of equipment and the layout of the production line.
  • Continuous process flow for packaging for example, the two processes of TP dispensing and TP pressing in the mobile phone assembly line process are mostly continuous, so two or more continuous process processes similar to this situation can be generalized Encapsulation processing;
  • the process motion and the corresponding process are generalized and packaged, which is more convenient in subsequent calls; in the same process, in a certain equipment If the preparation action, processing action or finishing action of the process is the same, the process motion and the corresponding process will be generalized and packaged;
  • the two processes of TP dispensing and TP pressing are generally carried out successively, which means that the time sequence of the two processes is fixed; in addition, in most cases, the two processes
  • the spatial sequence of the process is also fixed, that is, the placement sequence of the two production equipment for the two processes is installed next to each other; therefore, the action algorithms and spatial algorithms of the two processes can be packaged to achieve a complete The purpose of the call;
  • This generalized packaging method is used to optimize the modeling process, which can be easily built for the packaging body, reduce the error rate of modeling, improve modeling efficiency, effectively reduce the repetition of workshop work, and improve the fault tolerance of later changes in the workshop sex.
  • the invention can not only carry out generalized packaging technology for intermediate equipment, but also carry out generalized packaging treatment for all processing equipment and processing techniques on the production line.
  • the technical solution is to optimize the modeling process, the package body can be built more conveniently, and the error rate of modeling is reduced, and the modeling efficiency is improved.
  • step (1) according to the basic operation and functional characteristics of the process, it is divided into cutting type, drilling type, shearing type, installation type, heat treatment type, electrochemical type and detection type.
  • step (1) the processes similar to laser cutting, knife cutting and water jet cutting are classified as cutting;
  • the product testing is classified as testing.
  • step (3) two or more continuous flow processes are subjected to generalized packaging processing.
  • the process movement includes: preparation movement, processing movement, and ending movement.
  • the simulation modeling software is Demo3D.
  • step (1) to step (7) during the packaging process, editable setting parameters are reserved for setting and modification when the process package is later called.
  • step (1)-step (7) the preliminary design optimization is completed; however, it is preferable to reserve editable setting parameters during the packaging process. In the later use process, you only need to directly adjust the setting parameters to simplify the design. R&D process, avoid repeated design of the same or similar process, shorten the design cycle.
  • a generalized packaging system based on the workshop digital twin model including: abstract process packaging module, continuous process packaging module, process motion packaging module, process algorithm packaging module, database and fast calling module;
  • the abstract process packaging module is used to divide the process into categories according to the basic operation and functional characteristics of the process; and to abstract the commonalities based on the process movement mode, the process algorithm, and the action trigger mechanism;
  • the continuous process packaging module is used to package the continuous process flow that meets the conditions according to the sequence characteristics of the process flow and considering the layout of the equipment on the production line;
  • the process motion packaging module is used to compare the same and/or similar processes, analyze the movement of the workpiece in the process flow, and perform generalized packaging processing between the process motion and the corresponding process;
  • the process algorithm packaging module is used for packaging the applied algorithm and corresponding process according to the time sequence, spatial sequence and logic characteristics of the specific process;
  • the database is used to store packaged process generalized packages
  • the quick call module is used to quickly call the generalized package from the database to the required equipment or the required process according to the requirements of the customized production line.
  • the abstract process packaging modules are classified into cutting, drilling, shearing, installation, heat treatment, electrochemical, and testing based on the basic operations and functional characteristics of the process.

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Factory Administration (AREA)

Abstract

一种基于车间数字孪生模型的泛化封装方法和系统,泛化封装方法为:根据生产线中设备在工艺的基本操作与功能特性;根据工艺运动方式、工艺算法和动作触发机制的共性;依据工艺的顺序特性进行封装;将工艺之间进行比较,进行泛化封装处理;根据具体工艺的时间顺序、空间顺序和逻辑特性,进行封装处理;存放封装体于数据库中;从数据库调用泛化封装体至设备或流程;泛化封装系统包括:抽象工艺封装模块、连续工艺封装模块、工艺运动封装模块、工艺算法封装模块、数据库和快速调用模块;本泛化封装方法用于优化建模过程,对于封装体能很方便地建好,降低建模的错误率,提高建模效率,有效地减少了车间工作的重复度,提高了车间后期变更的容错性。

Description

一种基于车间数字孪生模型的泛化封装方法和系统 技术领域
本发明涉及工业自动化技术领域,尤其涉及一种基于车间数字孪生模型的泛化封装方法和系统。
背景技术
现有技术聚焦在车间建模与配置设计方面,侧重于以模块化为基础,形成配置空间,结合推理与优化等技术,形成满足个性化需求的设计方案,再配合离线仿真与分析,这些技术更接近于静态设计,最大的缺点在:(1)现有设计方法形成的设计方案没有将多种加工工艺进行集成考虑,因而在建立相似生产线的数字化模型运行系统时需要大量重复建立其建模及其算法操作,降低工作效率;(2)大量重复建立其建模及其算法操作会引起工程师的疲劳,因而导致潜在发生的模型或算法错误出现的可能性大幅上升,重复调试过程将浪费大量时间,甚至可能拖延工期;(3)现有设计过程的串行化导致了过长的设计周期,现有的车间定制设计过程中车间布局、设备集成、控制系统研发、管理系统开发串行化进行,特别是前一阶段的重大变更,可直接导致后续过程推倒重来,变更成本高,周期长。
技术问题
本发明的目的在于提出一种基于车间数字孪生模型的泛化封装方法,其优化建模过程,封装体可以被更方便的被建好,而且降低建模的错误率,提高建模效率。
本发明还提出一种基于车间数字孪生模型的泛化封装系统,其包括:抽象工艺封装模块、连续工艺封装模块、工艺运动封装模块、工艺算法封装模块、数据库和快速调用模块。
技术解决方案
为达此目的,本发明采用以下技术方案:
一种基于车间数字孪生模型的泛化封装方法,包括:以下步骤:
(1)根据生产线中设备在工艺的基本操作与功能特性,将设备分类;
(2)基于生产线中工艺运动方式、工艺算法和动作触发机制方面对其共性进行抽象处理,根据此类共性对工艺进行泛化封装处理;
(3)依据工艺流程的顺序特性,考虑设备在生产线的布局,对符合条件的连续工艺流程进行封装;
(4)将同种和/或同类工艺之间进行比较,分析设备在工艺流程中的动作,将工艺运动与对应工艺进行泛化封装处理;
(5)根据具体工艺的时间顺序、空间顺序和逻辑特性,对所应用的算法与对应工艺进行封装处理;
(6)存放已封装的工艺泛化封装体于仿真建模软件的数据库中;
(7)根据定制生产线的需求,从数据库调用泛化封装体至所需设备或所需流程。
更进一步说明,所述步骤(1)中,根据工艺的基本操作与功能特性,将其分为切割类、钻孔类、剪切类、安装类、热处理类、电化学类和检测类。
更进一步说明,所述步骤(1)中,将与激光切割、刀具切割和水刀切割相似的工艺归为切割类;
将与钻孔、镗孔和攻螺纹相似的工艺归为钻孔类;
将与冲压和冲孔相似的工艺归为剪切类;
将与贴合、扣合、压合和锁螺丝相似的工艺归为安装类;
将与正火、退火、淬火、回火和电热风加热相似的工艺归为热处理类;
将与电镀和电化学蚀刻相似的工艺归为电化学类;
将产品检测归为检测类。
更进一步说明,所述步骤(3)中,将两种或两种以上的连续流程工艺进行泛化封装处理。
更进一步说明,所述步骤(4)中,工艺运动包括:准备动作、加工动作和结束动作。
更进一步说明,所述步骤(6)中,仿真建模软件为Demo3D。
更进一步说明,其特征在于,步骤(1)-步骤(7)中,封装处理时,预留可编辑的设置参数,用于工艺封装体后期调用时进行设置与修改。
一种基于车间数字孪生模型的泛化封装系统,包括:抽象工艺封装模块、连续工艺封装模块、工艺运动封装模块、工艺算法封装模块、数据库和快速调用模块;
所述抽象工艺封装模块,用于根据工艺的基本操作与功能特性,将其分为类;并基于工艺运动方式、工艺算法和动作触发机制方面对其共性进行抽象处理;
所述连续工艺封装模块,用于依据工艺流程的顺序特性,考虑设备在生产线的布局,对符合条件的连续工艺流程进行封装;
所述工艺运动封装模块,用于将同种和/或同类工艺之间进行比较,分析工件在工艺流程中的动作,将工艺运动与对应工艺进行泛化封装处理;
所述工艺算法封装模块,用于根据具体工艺的时间顺序、空间顺序和逻辑特性,对所应用的算法与对应工艺进行封装处理;
所述数据库,用于存放已封装的工艺泛化封装体;
所述快速调用模块,用于根据定制生产线的需求,快速从所述数据库调用泛化封装体至所需设备或所需流程。
更进一步说明,所述抽象工艺封装模块,根据工艺的基本操作与功能特性,将其分为切割类、钻孔类、剪切类、安装类、热处理类、电化学类和检测类。
有益效果
本泛化封装方法用于优化建模过程,对于封装体能很方便地建好,降低建模的错误率,提高建模效率,有效地减少了车间工作的重复度,提高了车间后期变更的容错性。
附图说明
图1是泛化封装方法的流程图。
本发明的实施方式
下面结合附图通过具体实施方式来进一步说明本发明的技术方案。
本发明立足于如下前提:
(1)完成了设备的三维数字化建模工作,建立了单机设备的数字化模型,且为通用三维CAD模型,具有清晰的产品结构,单机设备的运动部件可独立表示与标识。
(2)具有可进行三维虚拟设计的开放式平台,可以进行单机设备的虚拟装备,可以通过脚本控制设备的动作或在制品的运动,并具备软PLC功能。
(3)已有上层MES系统或其执行引擎。
一种基于车间数字孪生模型的泛化封装方法,包括:以下步骤:
(1)根据生产线中设备在工艺的基本操作与功能特性,将设备分类;
设备的基本操作即对应生产线的加工类型,如切割、钻孔、剪切、安装、热处理、电化学和检测;而设备的功能特性则继续将设备在基本操作中区分,如切割类型的可按其功能不同分成激光切割、刀具切割和水刀切割;
将工艺的整体分类后,能有效地提高后续步骤的泛化封装的方便性;
(2)基于生产线中工艺运动方式、工艺算法和动作触发机制方面对其共性进行抽象处理,根据此类共性对工艺进行泛化封装处理;
一般地,步骤(1)中将设备分类后,每个类中所带的设备都会在工艺运动方式、工艺算法和动作触发机制方面有相似的属性,而本步骤就是将带有设备中的共性进行抽象处理后,根据此类共性对工艺进行泛化封装处理;如激光切割与水刀切割的工艺过程中,其运动方式、运动算法和动作触发(即什么时候触发切割)等属性存在共性,可激光切割与水刀切割两者的共性对工艺进行泛化封装处理;抽象处理,就是从现实中实际的工艺里面,剥离出有用的信息,如工件、构件的运动,设备的基本结构等等;而抛弃没有对工艺特性有很大说明作用的无用的信息,如电线、气管等的走线布置等等。
(3)依据工艺流程的顺序特性,考虑设备在生产线的布局,对符合条件的连续工艺流程进行封装;
一般生产线的设备是按加工顺序来布置的,对于加工的某一步骤可能需要单个加工设备或者多个加工设备同时加工,或者依次加工;本步骤就是将设备的顺序和生产线的布局为依据,将连续工艺流程进行封装;如手机装配线工艺流程中的TP点胶和TP压合这两种工序大多情况是连续发生的,因而可以将类似这种情况的两种或多种连续流程工艺进行泛化封装处理;
(4)将同种和/或同类工艺之间进行比较,分析设备在工艺流程中的动作,将工艺运动与对应工艺进行泛化封装处理;
同种和/或同类工艺之间中的设备,若其工艺运动是相似的,则将工艺运动与对应工艺进行泛化封装处理,在后续调用时更方便;如同类工艺中,某一设备中的准备动作、加工动作或完工动作相同的,则将工艺运动与对应工艺进行泛化封装处理;
(5)根据具体工艺的时间顺序、空间顺序和逻辑特性,对所应用的算法与对应工艺进行封装处理;
如对于不同的手机屏幕生产线,TP点胶与TP压合这两个工艺一般都是先后连着进行的,也就是说该两个工艺的时间顺序是固定的;此外,大多情况下该两种工艺的空间顺序也是固定的,即进行该两种工艺的两台生产设备的摆放顺序的紧靠着安装的;因此可以将该两个工艺的动作算法、空间算法封装起来,以达到可整体调用的目的;
如对于多种类型的车床,都有上料夹紧、工件旋转、进刀等动作,即使工件具体放置的姿态不同(轴心水平或竖直),其逻辑是一致的,即上料夹紧,因此可以对这些逻辑与该工艺方法进行泛化封装处理包装起来,以达到可整体调用的目的;
(6)存放已封装的工艺泛化封装体于仿真建模软件的数据库中;
(7)根据定制生产线的需求,从数据库调用泛化封装体至所需设备或所需流程。
使用者在设计不同生产线的三维数字孪生模型时,可以快速调用所需的工艺方法封装体,根据实际所需调整封装体参数和脚本,以此对于相似产品生产线的设计可实现简化其研发流程,避免重复设计相同或相似的工艺过程,缩短设计周期。
本泛化封装方法用于优化建模过程,对于封装体能很方便地建好,降低建模的错误率,提高建模效率,有效地减少了车间工作的重复度,提高了车间后期变更的容错性。
本发明不仅能针对中间设备进行泛化封装技术,还能对生产线上所有的加工设备及其加工工艺进行泛化封装处理。本技术方案在于优化建模过程,封装体可以被更方便的被建好,而且降低建模的错误率,提高建模效率。
更进一步说明,所述步骤(1)中,根据工艺的基本操作与功能特性,将其分为切割类、钻孔类、剪切类、安装类、热处理类、电化学类和检测类。
更进一步说明,所述步骤(1)中,将与激光切割、刀具切割和水刀切割相似的工艺归为切割类;
将与钻孔、镗孔和攻螺纹相似的工艺归为钻孔类;
将与冲压和冲孔相似的工艺归为剪切类;
将与贴合、扣合、压合和锁螺丝相似的工艺归为安装类;
将与正火、退火、淬火、回火和电热风加热相似的工艺归为热处理类;
将与电镀和电化学蚀刻相似的工艺归为电化学类;
将产品检测归为检测类。
更进一步说明,所述步骤(3)中,将两种或两种以上的连续流程工艺进行泛化封装处理。
更进一步说明,所述步骤(4)中,工艺运动包括:准备动作、加工动作和结束动作。
更进一步说明,所述步骤(6)中,仿真建模软件为Demo3D。
更进一步说明,步骤(1)-步骤(7)中,封装处理时,预留可编辑的设置参数,用于工艺封装体后期调用时进行设置与修改。
经步骤(1)-步骤(7),完成了初步的设计优化;而在封装处理时优选预留可编辑的设置参数,在后期的使用过程中,只需直接调节设置参数即可实现简化其研发流程,避免重复设计相同或相似的工艺过程,缩短设计周期。
一种基于车间数字孪生模型的泛化封装系统,包括:抽象工艺封装模块、连续工艺封装模块、工艺运动封装模块、工艺算法封装模块、数据库和快速调用模块;
所述抽象工艺封装模块,用于根据工艺的基本操作与功能特性,将其分为类;并基于工艺运动方式、工艺算法和动作触发机制方面对其共性进行抽象处理;
所述连续工艺封装模块,用于依据工艺流程的顺序特性,考虑设备在生产线的布局,对符合条件的连续工艺流程进行封装;
所述工艺运动封装模块,用于将同种和/或同类工艺之间进行比较,分析工件在工艺流程中的动作,将工艺运动与对应工艺进行泛化封装处理;
所述工艺算法封装模块,用于根据具体工艺的时间顺序、空间顺序和逻辑特性,对所应用的算法与对应工艺进行封装处理;
所述数据库,用于存放已封装的工艺泛化封装体;
所述快速调用模块,用于根据定制生产线的需求,快速从所述数据库调用泛化封装体至所需设备或所需流程。
更进一步说明,所述抽象工艺封装模块,根据工艺的基本操作与功能特性,将其分为切割类、钻孔类、剪切类、安装类、热处理类、电化学类和检测类。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (9)

  1. 一种基于车间数字孪生模型的泛化封装方法,其特征在于,包括:以下步骤:
    (1)根据生产线中设备在工艺的基本操作与功能特性,将设备分类;
    (2)基于生产线中工艺运动方式、工艺算法和动作触发机制方面对其共性进行抽象处理,根据此类共性对工艺进行泛化封装处理;
    (3)依据工艺流程的顺序特性,考虑设备在生产线的布局,对符合条件的连续工艺流程进行封装;
    (4)将同种和/或同类工艺之间进行比较,分析设备在工艺流程中的动作,将工艺运动与对应工艺进行泛化封装处理;
    (5)根据具体工艺的时间顺序、空间顺序和逻辑特性,对所应用的算法与对应工艺进行封装处理;
    (6)存放已封装的工艺泛化封装体于仿真建模软件的数据库中;
    (7)根据定制生产线的需求,从数据库调用泛化封装体至所需设备或所需流程。
  2. 根据权利要求1所述的一种基于车间数字孪生模型的泛化封装方法,其特征在于,所述步骤(1)中,根据工艺的基本操作与功能特性,将其分为切割类、钻孔类、剪切类、安装类、热处理类、电化学类和检测类。
  3. 根据权利要求2所述的一种基于车间数字孪生模型的泛化封装方法,其特征在于,所述步骤(1)中,将与激光切割、刀具切割和水刀切割相似的工艺归为切割类;
    将与钻孔、镗孔和攻螺纹相似的工艺归为钻孔类;
    将与冲压和冲孔相似的工艺归为剪切类;
    将与贴合、扣合、压合和锁螺丝相似的工艺归为安装类;
    将与正火、退火、淬火、回火和电热风加热相似的工艺归为热处理类;
    将与电镀和电化学蚀刻相似的工艺归为电化学类;
    将产品检测归为检测类。
  4. 根据权利要求1所述的一种基于车间数字孪生模型的泛化封装方法,其特征在于,所述步骤(3)中,将两种或两种以上的连续工艺流程进行泛化封装处理。
  5. 根据权利要求1所述的一种基于车间数字孪生模型的泛化封装方法,其特征在于,所述步骤(4)中,工艺运动包括:准备动作、加工动作和结束动作。
  6. 根据权利要求1所述的一种基于车间数字孪生模型的泛化封装方法,其特征在于,所述步骤(6)中,仿真建模软件为Demo3D。
  7. 根据权利要求1-6任意一项所述的一种基于车间数字孪生模型的泛化封装方法,其特征在于,步骤(1)-步骤(7)中,封装处理时,预留可编辑的设置参数,用于工艺封装体后期调用时进行设置与修改。
  8. 一种基于车间数字孪生模型的泛化封装系统,其特征在于,包括:抽象工艺封装模块、连续工艺封装模块、工艺运动封装模块、工艺算法封装模块、数据库和快速调用模块;
    所述抽象工艺封装模块,用于根据工艺的基本操作与功能特性,将其分为类;并基于工艺运动方式、工艺算法和动作触发机制方面对其共性进行抽象处理;
    所述连续工艺封装模块,用于依据工艺流程的顺序特性,考虑设备在生产线的布局,对符合条件的连续工艺流程进行封装;
    所述工艺运动封装模块,用于将同种和/或同类工艺之间进行比较,分析工件在工艺流程中的动作,将工艺运动与对应工艺进行泛化封装处理;
    所述工艺算法封装模块,用于根据具体工艺的时间顺序、空间顺序和逻辑特性,对所应用的算法与对应工艺进行封装处理;
    所述数据库,用于存放已封装的工艺泛化封装体;
    所述快速调用模块,用于根据定制生产线的需求,快速从所述数据库调用泛化封装体至所需设备或所需流程。
  9. 根据权利要求8所述的一种基于车间数字孪生模型的泛化封装系统,其特征在于,所述抽象工艺封装模块,根据工艺的基本操作与功能特性,将其分为切割类、钻孔类、剪切类、安装类、热处理类、电化学类和检测类。
PCT/CN2020/142188 2020-03-12 2020-12-31 一种基于车间数字孪生模型的泛化封装方法和系统 WO2021179771A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/155,012 US11086306B1 (en) 2020-03-12 2021-01-21 Generalization and encapsulation method and system based on digital twin model of workshop

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010172579.5 2020-03-12
CN202010172579.5A CN111400897B (zh) 2020-03-12 2020-03-12 一种基于车间数字孪生模型的泛化封装方法和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/155,012 Continuation US11086306B1 (en) 2020-03-12 2021-01-21 Generalization and encapsulation method and system based on digital twin model of workshop

Publications (1)

Publication Number Publication Date
WO2021179771A1 true WO2021179771A1 (zh) 2021-09-16

Family

ID=71430736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142188 WO2021179771A1 (zh) 2020-03-12 2020-12-31 一种基于车间数字孪生模型的泛化封装方法和系统

Country Status (2)

Country Link
CN (1) CN111400897B (zh)
WO (1) WO2021179771A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115062478A (zh) * 2022-06-23 2022-09-16 珠海市长陆工业自动控制系统股份有限公司 基于数字孪生的动态车间生产排程调度方法、系统及介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111400897B (zh) * 2020-03-12 2021-01-15 广东工业大学 一种基于车间数字孪生模型的泛化封装方法和系统
CN112487668B (zh) * 2020-12-21 2021-07-13 广东工业大学 一种基于数字孪生的近物理仿真集成调试方法及其系统
CN115564889A (zh) * 2022-09-02 2023-01-03 湖北纽睿德防务科技有限公司 基于激光切割机数字孪生体的激光切割同步模拟方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090055156A1 (en) * 2007-08-24 2009-02-26 Rockwell Automation Technologies, Inc. Using commercial computing package models to generate motor control code
CN108629138A (zh) * 2018-05-14 2018-10-09 广东工业大学 装备动作库的建立方法、装备知识库和产品数据管理系统
CN109977335A (zh) * 2019-03-29 2019-07-05 江苏极熵物联科技有限公司 一种面向工业设备的Web组态方法
CN110020484A (zh) * 2019-04-10 2019-07-16 广东工业大学 基于泛化封装技术的智能车间快速定制设计方法
CN111400897A (zh) * 2020-03-12 2020-07-10 广东工业大学 一种基于车间数字孪生模型的泛化封装方法和系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107832497B (zh) * 2017-10-17 2018-08-28 广东工业大学 一种智能车间快速定制设计方法及系统
JP2021523504A (ja) * 2018-05-06 2021-09-02 ストロング フォース ティエクス ポートフォリオ 2018,エルエルシーStrong Force Tx Portfolio 2018,Llc エネルギー、コンピュータ、ストレージ、及びその他のリソースの、スポット市場及び先物市場における分散型元帳及びその他のトランザクションの実行を自動化する、機械及びシステムを改善するための方法及びシステム
CN109116751B (zh) * 2018-07-24 2022-03-08 西安西电电气研究院有限责任公司 基于数字孪生技术的数字化系统及其构建方法
CN109375595B (zh) * 2018-10-25 2020-11-10 北京理工大学 一种车间可视化监控方法、装置及设备
CN109343496A (zh) * 2018-11-14 2019-02-15 中国电子工程设计院有限公司 应用于工业生产的数字孪生系统及其形成方法
CN110222450B (zh) * 2019-06-14 2022-12-02 中国电子科技集团公司第三十八研究所 一种物理行为仿真系统的构建方法及运动机构的控制方法
CN110276147B (zh) * 2019-06-24 2020-02-11 广东工业大学 一种基于数字孪生模型的制造系统故障溯源方法、系统
CN110705117B (zh) * 2019-10-12 2020-10-09 北京航空航天大学 一种数字孪生系统复杂任务可配置高效求解方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090055156A1 (en) * 2007-08-24 2009-02-26 Rockwell Automation Technologies, Inc. Using commercial computing package models to generate motor control code
CN108629138A (zh) * 2018-05-14 2018-10-09 广东工业大学 装备动作库的建立方法、装备知识库和产品数据管理系统
CN109977335A (zh) * 2019-03-29 2019-07-05 江苏极熵物联科技有限公司 一种面向工业设备的Web组态方法
CN110020484A (zh) * 2019-04-10 2019-07-16 广东工业大学 基于泛化封装技术的智能车间快速定制设计方法
CN111400897A (zh) * 2020-03-12 2020-07-10 广东工业大学 一种基于车间数字孪生模型的泛化封装方法和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115062478A (zh) * 2022-06-23 2022-09-16 珠海市长陆工业自动控制系统股份有限公司 基于数字孪生的动态车间生产排程调度方法、系统及介质

Also Published As

Publication number Publication date
CN111400897A (zh) 2020-07-10
CN111400897B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2021179771A1 (zh) 一种基于车间数字孪生模型的泛化封装方法和系统
Mahmood et al. Performance analysis of a flexible manufacturing system (FMS)
CN111061232A (zh) 基于数字孪生的生产线设计与优化方法
WO2020007016A1 (zh) 一种基于数字孪生的智能车间自治生产过程动态联动控制方法
Yusof et al. Survey on computer-aided process planning
WO2019076231A1 (zh) 一种电子产品生产线虚拟换产方法
Pires et al. Advances in robotics for additive/hybrid manufacturing: robot control, speech interface and path planning
Ma et al. Artificial intelligence enhanced interaction in digital twin shop-floor
CN108710362A (zh) 一种基于工业互联网平台的数控机床联网诊断方法
Qiu et al. A structured adaptive supervisory control methodology for modeling the control of a discrete event manufacturing system
Mourtzis et al. A framework for adaptive scheduling in cellular manufacturing systems
KR20230032675A (ko) Cnc 공작기계를 이용한 데이터 수집 시스템
Zheng et al. KBE-based stamping process paths generated for automobile panels
US11086306B1 (en) Generalization and encapsulation method and system based on digital twin model of workshop
CN109508953B (zh) 一种表格模板生成方法
KR20230081136A (ko) 용도에 따른 절삭공구 추천 플랫폼 시스템
CN114418418A (zh) 基于工序换算比的工单信息流转方法、系统、设备及介质
CN114722623A (zh) 一种智能工厂设计仿真快速布局系统及方法
Chan The development of smart manufacturing and cases study in Taiwan
Morisawa et al. Modular Cell Design Technology for CPF Production Line
Pandian et al. Investigation of maintenance assumptions for an automotive production line using simulation modeling
CN118352000B (zh) 一种生产制造过程中智能管控数据处理方法及系统
Menexis et al. Toward Design and Implementation of Intelligent Manufacturing in Semiconductor Production Industry with Wafer Chamber Faults
Mourtzis et al. Check for updates A Conceptual Framework for the Improvement of Robotic System Reliability Through Industry 4.0
BLAGA et al. EVALUATION OF THE PERFORMANCE OF A ROBOTIZED MANUFACTURING CELL THROUGH MODELING AND SIMULATION WITH PETRI NETS.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923828

Country of ref document: EP

Kind code of ref document: A1