WO2021179738A1 - 一种信号的发送及处理方法、装置 - Google Patents

一种信号的发送及处理方法、装置 Download PDF

Info

Publication number
WO2021179738A1
WO2021179738A1 PCT/CN2020/138953 CN2020138953W WO2021179738A1 WO 2021179738 A1 WO2021179738 A1 WO 2021179738A1 CN 2020138953 W CN2020138953 W CN 2020138953W WO 2021179738 A1 WO2021179738 A1 WO 2021179738A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
sequence unit
downlink
terminal
uplink
Prior art date
Application number
PCT/CN2020/138953
Other languages
English (en)
French (fr)
Inventor
王新玲
李长庚
李华栋
高珂增
杨芸霞
鲁志兵
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Publication of WO2021179738A1 publication Critical patent/WO2021179738A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of electronic information, and in particular to a method and device for sending and processing signals.
  • FIG. 1a illustrates a satellite communication system, including a terminal 101, a base station 102, and a satellite 103.
  • the satellite is used for communication transfer between the terminal and the base station, that is, in the uplink communication (as shown in the solid arrow in Figure 1a), the terminal sends uplink data to the satellite, and after the transfer, the uplink data is sent to the base station.
  • the base station In downlink communication (as shown by the dashed arrow in Figure 1a), the base station sends downlink data to the satellite, and after transit, sends the downlink data to the terminal.
  • Satellite relay long-distance transmission brings a large RTT (Round-Trip time), and the RTT will change with the movement of the satellite.
  • the base station downlink sequence is used for the base station to send downlink data.
  • the base station uplink sequence is used for the base station's uplink data (aligned with the downlink sequence).
  • the base station uplink receiving time sequence is used for the base station to receive the uplink data sent by the terminal.
  • the terminal uplink sequence is used for the terminal to send uplink data.
  • the terminal downlink sequence is used for the terminal to receive downlink data.
  • the number is the number of the sequence unit in each sequence.
  • the distance between the satellite and the base station (d0_F shown in Fig. 1a) and the distance between the satellite and the terminal (d0 shown in Fig. 1a) are relatively long, so a larger RTT will be generated during the above-mentioned data communication process. This will cause a delay RTT in the data exchange between the base station and the terminal.
  • the base station sends downlink data in the downlink time sequence unit numbered K, due to the presence of RTT
  • the terminal receives the downlink data after time TX, TX is the downlink reception delay, and the terminal uses the time sequence unit K to send uplink data.
  • the base station receives the uplink data after TY due to the presence of RTT.
  • the time sequence unit of the uplink data received by the base station cannot be aligned with the time sequence unit of the downlink data sent by the base station, which increases the complexity of demodulating the uplink data of the base station.
  • the present application provides a method and device for sending and processing signals, with the purpose of realizing the alignment of the uplink time sequence and the downlink time sequence of the base station.
  • a signal transmission method, applied to a terminal includes:
  • the downlink time sequence unit N estimate the start time of the downlink time sequence unit X of the terminal, and the downlink time sequence unit X is the downlink time sequence unit after the absolute time of the downlink time sequence unit N;
  • the uplink time sequence unit X is sent.
  • the obtaining the start time of the uplink time sequence unit X of the terminal based on the start time of the downlink time sequence unit X includes:
  • the start time of the uplink time sequence unit X of the terminal is calculated.
  • the acquiring the first moment according to the start moment of the downlink time sequence unit X includes:
  • the first duration is the duration of signal transmission from the first location to the location of the terminal
  • the first time is obtained by calculating the difference between the start time of the downlink time sequence unit X and the first time length.
  • the method further includes:
  • the position of the satellite at the first moment is taken as the corrected first position, the first time length is recalculated according to the corrected first position, and the corrected first time length is obtained, and passed Calculate the difference between the start time of the downlink time sequence unit X and the corrected first time length to obtain the corrected first time.
  • the acquiring the second moment according to the first moment includes:
  • the second duration is the duration of the signal transmission from the base station to the position of the satellite at the first moment ;
  • the time at which the base station sends the downlink time sequence unit X to the satellite is taken as the second time.
  • the acquiring the third time according to the second time includes:
  • the third time is acquired, and the third time is corrected.
  • the calculating the starting time of the uplink time sequence unit X of the terminal according to the third time includes:
  • a third time length is calculated, where the third time length is the signal transmission from the position of the terminal to the position of the satellite at the third time.
  • the difference between the third time and the third time length is taken as the starting time of the uplink time sequence unit X of the terminal.
  • estimating the start time of the downlink time sequence unit X of the terminal includes:
  • the start time of the downlink time sequence unit N is postponed by a first target time length to obtain the start time of the downlink time sequence unit X.
  • the first target time length is based on the difference between the downlink time sequence unit X and the downlink time sequence unit N
  • the interval duration and the CRS time delay change rate of the downlink timing unit N are determined.
  • the difference between the X and the N is greater than or equal to m, where m is a value obtained by rounding up the ratio of a preset duration to the length of a time sequence unit.
  • the method further includes: sending PUCCH feedback data in the uplink time sequence unit X+K1, where K1 satisfies: K1*Tslot>RTTm+k1*Tslot, where RTTm is the maximum time delay of the system, Tslot is the time sequence unit, and k1 is The number of time sequence units occupied by the terminal processing time;
  • the method also includes:
  • PUSCH data is sent in the uplink time sequence unit X+K2, where K2 satisfies: K2*Tslot>RTTm+k2*Tslot, where k2 is the number of time sequence units occupied by the terminal processing time.
  • the K1 and the K2 are sent to the terminal by the base station.
  • a signal transmission method, applied to a terminal includes:
  • the uplink reception delay time delay is Z times the length of the timing unit, and the Z is greater than or equal to a preset value, and the preset value is based on the maximum transmission round-trip RRTm of the system and the processing of the terminal Ability determination
  • the uplink time sequence unit X is sent.
  • the calculation of the start time of sending the uplink time sequence unit X according to the uplink reception delay time delay and the start time of the downlink time sequence unit X includes:
  • the first time is the signal received by the terminal at the start of the downlink time sequence unit X and transmitted from the base station to the satellite. time;
  • the third time is the time when the base station receives the uplink timing unit X sent by the satellite;
  • the fourth time is the time when the uplink timing unit X sent by the terminal arrives at the satellite;
  • the start time of the sending uplink time sequence unit X is acquired.
  • the acquiring the first moment according to the start moment of the terminal in the downlink time sequence unit X includes:
  • the first time is obtained by calculating the difference between the start time of the downlink time sequence unit X and the first time length.
  • the method further includes:
  • the position of the satellite at the first moment is taken as the corrected first position, the first time length is recalculated according to the corrected first position, the revised first time length is obtained, and the downlink is calculated.
  • the difference between the starting time of the time sequence unit X and the corrected first time length is the corrected first time.
  • the acquiring the fourth time according to the third time includes:
  • the fourth time is acquired, and the fourth time is corrected.
  • the acquiring the starting time of the sending uplink time sequence unit X according to the fourth time includes:
  • the starting time of the sending uplink time sequence unit X is obtained.
  • a signal processing method applied to a base station including:
  • the uplink reception delay time delay is delayed, and the uplink time sequence unit X is received, where the uplink reception delay time is Z times the length of the time sequence unit, and the Z is greater than or equal to the preset value, and the preset value
  • the value is determined according to the maximum round-trip RRTm of the system and the processing capability of the terminal.
  • a terminal including:
  • the memory is used to store an application program, and the processor is used to run the application program to implement the above-mentioned signal sending method.
  • a terminal including:
  • the memory is used to store an application program, and the processor is used to run the application program to implement the above-mentioned signal sending method.
  • a base station including:
  • the memory is used to store an application program, and the processor is used to run the application program to implement the above-mentioned signal processing method.
  • the terminal estimates the start time of the downlink time sequence unit X in the downlink time sequence unit N, further estimates the start time of the uplink time sequence unit X, and sends the uplink time sequence unit at the start time of the uplink time sequence unit X X, or, in the case of receiving the downlink time sequence unit X, calculate the starting time of sending the uplink time sequence unit X based on the uplink reception delay time delay and the starting time of the downlink time sequence unit X, and then calculate the starting time of sending the uplink time sequence unit X.
  • the uplink time sequence unit X is sent, so as to achieve the purpose of aligning the uplink and downlink time sequences.
  • Figure 1a is an example diagram of a satellite communication system
  • Figure 1b is an example diagram of the sequence of a satellite communication system
  • Fig. 2 is a flowchart of a signal sending method disclosed in an embodiment of the application
  • FIG. 3 is an example diagram of the principle for the terminal to obtain the starting time of the uplink time sequence unit X according to the embodiment of the application;
  • FIG. 4 is an exemplary diagram of the beneficial effects of the signal sending method disclosed in the embodiment of the application.
  • FIG. 5 is another example diagram of the beneficial effects of the signal sending method disclosed in the embodiment of the application.
  • FIG. 6 is another example diagram of the beneficial effects of the signal sending method disclosed in the embodiment of the application.
  • FIG. 7 is a flowchart of another signal sending method disclosed in an embodiment of this application.
  • FIG. 8 is a flowchart of another signal sending method disclosed in an embodiment of this application.
  • FIG. 9 is a diagram showing another example of the beneficial effects of the signal sending method disclosed in the embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a device disclosed in an embodiment of this application.
  • the terminal and the base station send and receive data according to a time sequence, where the time sequence unit may be a slot (time slot) or a subframe, and the time sequence is a plurality of time sequence units arranged in sequence.
  • the serial number of the unit can be represented by natural numbers: 1, 2, ..., K, ... K+1.
  • the sequence unit number can also be expressed in the traditional 5G cycle numbering method, that is, the cycle number includes three levels of system frame, subframe, and time slot. Each system frame is 10ms, and the number range of system frames is 0 ⁇ 1024, one system frame It contains 10 subframes, and the number range of subframes is 0-9.
  • the number of time slots contained in a subframe depends on the subcarrier interval. As shown in Table 1, suppose the subcarrier interval is 120KHz and the number range of time slots is 0 ⁇ 79. The addition and subtraction of the serial number of the time series unit also follows the cyclic numbering method. For example, the time series unit N is: system frame 1023 time slot 79, then the time series unit N+1 is: system frame 0 time slot 0, and the time series unit N-1 is: system Frame 1023, time slot 78, and so on.
  • the serial number of the sequence unit described in the following example can be any of the above.
  • the terminal in the embodiment of the present application may be a mobile phone or other communication equipment.
  • Fig. 2 is a flowchart of a signal sending method provided by an embodiment of the application, which may specifically include the following steps:
  • the terminal is in the downlink time sequence unit N, and the start time T1 of the downlink time sequence unit X of the terminal is estimated.
  • the downlink time sequence unit X is the downlink time sequence unit after the absolute time of the downlink time sequence unit N.
  • the start time of the downlink time sequence unit X is obtained by delaying the start time of the downlink time sequence unit N by the first target duration.
  • the terminal determines the first target duration according to the interval duration between the downlink time sequence unit X and the downlink time sequence unit N, and the CRS (cell reference signal, cell reference signal) time delay change rate of the downlink time sequence unit N.
  • the starting time T1 of the downlink sequence X the starting time of the downlink sequence unit N + (X-N)*Tslot*(1+aCRS) (1)
  • the terminal measures the downlink signal sent by the base station to obtain the start time of the downlink sequence unit N; Tslot is the length of the sequence unit, then (XN)*Tslot is the interval between the downlink sequence unit X and the downlink sequence unit N, and aCRS is the downlink The rate of change of the CRS delay in the time sequence unit N.
  • Tslot is the length of the sequence unit
  • (XN)*Tslot is the interval between the downlink sequence unit X and the downlink sequence unit N
  • aCRS is the downlink The rate of change of the CRS delay in the time sequence unit N.
  • aCRS may be the average value of the CRS delay change rate within the preset time length range before the time sequence unit N.
  • the terminal obtains the start time of the uplink time sequence unit X based on the start time of the downlink time sequence unit X of the terminal.
  • the satellite’s position (referred to as T1 position) can be estimated at the start time T1 of the terminal’s downlink time sequence unit X based on the ephemeris information of the satellite. ).
  • T1 position the satellite’s position
  • S1-S1 the distance between the position of T1 and the position of the terminal. This distance divided by the speed of light is the length of time the signal is transmitted from the position of T1 to the position of the terminal, denoted as S1.
  • T1-S1 Calculate T1-S1, and get the signal received by the terminal at time T1.
  • the time when the signal is transmitted from the base station to the satellite is recorded as t1.
  • t1 can be further iteratively corrected:
  • A2 Calculate the time t0 when the base station sends the downlink time sequence unit X to the satellite and the time t3 when the base station receives the uplink time sequence unit X sent by the satellite.
  • t1 position the position of the satellite at time t1 (referred to as t1 position for short), the distance between the position of the base station and the position t1, divided by the speed of light, is the length of time the signal is transmitted from the base station to the position t1 , Marked as S2.
  • t1-S2 is t0.
  • t3 is equal to t0.
  • the position of the satellite at t3 (referred to as t3 position for short) is estimated based on the ephemeris information. Calculate the distance ss1 between the position of t3 and the position of the base station. Divide ss1 by the speed of light to obtain the time length S2 for the signal to be transmitted from the position of the satellite t3 to the base station. Calculate t3-S2 to obtain t2.
  • t2 can be further iteratively corrected:
  • the distance ss2 between the position of the satellite t2 and the position of the terminal is calculated, and ss2 is divided by the speed of light to obtain the time length S3 for the signal to be transmitted from the position of the terminal to the position t2, and t2-S3 is calculated to obtain T2.
  • T2 is the starting time of the terminal's uplink sequence X. It can be seen from A1-A4 that, according to the generation principle of RTT, in this embodiment, the communication delays between the uplink and downlink base stations and satellites, and satellites and terminals are calculated respectively to obtain the starting time of the uplink timing unit X. Under the condition that the position of the satellite is constantly changing, the accuracy of the RTT obtained in this way is higher.
  • S203 The terminal sends the uplink time sequence unit X at time T2.
  • the base station receives the uplink time sequence unit K at the beginning of sending the downlink time sequence unit K. , To achieve the alignment of the upstream and downstream timing.
  • the process shown in Figure 2 is applicable to the situation where the RTT is increased or decreased.
  • the terminal downlink timing K and K+1 is greater than the fixed timing Tslot, assuming For TSlot+TA, the uplink timing K needs to be advanced by TB on the basis of the downlink timing K, and the uplink timing K+1 needs to be advanced by TC on the basis of K+1. Since the actual RTT changes are considered in the calculation of TB and TC, The uplink K and uplink K+1 of the base station are aligned with the downlink K and K+1 respectively, and the fixed timing Tslot is maintained between the uplink K and the uplink K+1 of the base station. Downstream timing is aligned.
  • the terminal downlink timing K and K+1 is less than the fixed timing Tslot, assuming it is TSlot-TD, the uplink timing K needs to be advanced by TE on the basis of the downlink timing K, and the uplink timing K+1 needs to advance TF on the basis of K+1. Because the actual RTT changes are considered in the calculation of T2 and T5, the base station uplink K and uplink K+1 are aligned with the downlink K and K+1 respectively, and the base station is uplink A fixed time sequence Tslot is maintained between K and uplink K+1. It can be seen that using the process shown in Fig. 2 can still align the uplink and downlink time sequences of the base station.
  • Fig. 7 is a flow chart of another signal sending method disclosed in an embodiment of the application. Compared with the process shown in Fig. 2, it focuses on the way in which N determines X, the sending timing of the feedback data of the downlink data, and the uplink Scheduled PUSCH data transmission timing.
  • Figure 7 includes the following steps:
  • S701 The terminal determines that in the downlink time sequence unit N, the number X of the target downlink time sequence unit that needs to be estimated.
  • the difference between X and N is greater than or equal to m, where m is the ratio of the preset duration (for example, the sum of the maximum transmission round-trip delay RTTm of the system and the processing delay of the terminal) to the length of the timing unit, The value obtained by rounding up.
  • the terminal estimates the number X of a target downlink time sequence unit in the downlink time sequence unit N according to the fixed difference between X and N. For example, the calculated value of m is 5. Assuming that the difference between X and N is equal to m, then in the timing unit 0, the timing unit 5 needs to be estimated, and in the timing unit 1, the timing unit 6 needs to be estimated... and so on.
  • the number X of at least one target downlink time sequence unit is estimated.
  • the calculated value of m is 5, assuming that the difference between X and N is equal to m.
  • the difference between X and N of different terminals may be the same or different.
  • S702 The terminal obtains the starting time T2 of the uplink time sequence unit X.
  • the terminal receives uplink scheduling data PDCCH data in the downlink time sequence unit X, it sends PUSCH data in the uplink time sequence unit X+K2.
  • FIG. 8 is a flowchart of another signal sending method disclosed in an embodiment of the application. Compared with the process shown in FIG. 2 or FIG. 7, the alignment standard is reduced to achieve "quasi-alignment", thereby achieving easier implementation. Purpose.
  • Figure 8 includes the following steps:
  • the terminal obtains the uplink reception delay time delay Z*Tslot, the time delay is an integer multiple of Tslot, and Tslot is the length of a time sequence unit.
  • Z is greater than or equal to a preset value, and the preset value is determined according to the maximum transmission round-trip RRTm of the system and the processing capability of the terminal.
  • Z satisfies: K is the number of time sequence units occupied by the processing time of the terminal.
  • the way for the terminal to obtain the Z*Tslot can be to receive the base station broadcast or the value manually input by the user.
  • the terminal When receiving the downlink time sequence unit X, the terminal calculates the start time of the uplink time sequence unit X according to the uplink reception delay time delay and the start time of the downlink time sequence unit X.
  • the uplink timing unit X of all terminals in the cell must be aligned to the same time when they arrive at the base station, and terminals in different locations in the cell have different transmission RTTs, they need to calculate the uplink X transmission time of their own terminal separately to achieve the purpose of base station uplink reception alignment.
  • the principle of calculating the starting time of the upstream time sequence unit X is shown in Figure 8. The specific steps are as follows:
  • the satellite's position (referred to as T3 position) at the starting time T3 of the terminal's downlink timing unit X can be estimated based on the ephemeris information of the satellite. Calculate the distance between the location of T3 and the location of the terminal. This distance divided by the speed of light is the length of time the signal is transmitted from the location of T3 to the location of the terminal, denoted as S1. Calculate T3-S1, and get the signal received by the terminal at time T3. The time when the signal is transmitted from the base station to the satellite is recorded as t4.
  • t4 can be further iteratively corrected:
  • t4 position the position of the satellite at time t4 (referred to as t4 position), the distance between the base station position and the t4 position, divided by the speed of light, is the length of time the signal is transmitted from the base station to the t4 position. Denoted as S2. t4-S2 is t5.
  • t6 is equal to t5+Z*Tslot.
  • the position of the satellite at t6 (referred to as t6 position for short) is estimated based on the ephemeris information. Calculate the distance ss1 between the position of t6 and the position of the base station. Divide ss1 by the speed of light to obtain the time length S2 for the signal to be transmitted from the position of the satellite t6 to the base station. Calculate t6-S2 to obtain t7.
  • t7 can be further iteratively corrected:
  • the distance ss2 between the position of the satellite t7 and the position of the terminal is calculated, and ss2 is divided by the speed of light to obtain the signal transmission time S3 from the position of the terminal to the position t7, and t7-S3 is calculated to obtain T4.
  • S803 The terminal sends the uplink time sequence unit X at time T4.
  • FIG. 9 After the terminal receives a downlink time sequence unit, the terminal delays sending the uplink time sequence unit X, so that the starting positions of the uplink and downlink time sequence units are aligned on the base station side.
  • FIG. 10 is a schematic structural diagram of a device provided by an embodiment of the application.
  • the device may include: at least one processor 1001, at least one communication interface 1002, at least one memory 1003, and at least one communication bus 1004. It should be noted that the device may be a terminal device or a base station device.
  • the number of the processor 1001, the communication interface 1002, the memory 1003, and the communication bus 1004 is at least one, and the processor 1001, the communication interface 1002, and the memory 1003 communicate with each other through the communication bus 1004;
  • the processor 1001 may be a central processing unit CPU, or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention, etc.;
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • the memory 1003 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), for example, at least one disk memory;
  • the memory stores a program
  • the processor can execute the program stored in the memory to implement the process in the foregoing embodiment.
  • the functions described in the methods of the embodiments of the present application are implemented in the form of software functional units and sold or used as independent products, they can be stored in a storage medium readable by a computing device.
  • a computing device which may be a personal computer, a server, a mobile computing device, or a network device, etc.
  • a computing device which may be a personal computer, a server, a mobile computing device, or a network device, etc.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供的信号的发送及处理方法、装置,终端在下行时序单位N,估计出下行时序单位X的起始时刻,进一步估算上行时序单位X的起始时刻,在上行时序单位X的起始时刻发送上行时序单位X,或者,在接收到下行时序单位X的情况下,依据上行接收延迟时延和下行时序单位X的起始时刻,计算发送上行时序单位X的起始时刻,在发送上行时序单位X的起始时刻,发送所述上行时序单位X,从而实现上行和下行时序对齐的目的。

Description

一种信号的发送及处理方法、装置
本申请要求于2020年03月11日提交中国专利局、申请号为202010165824.X、发明名称为“一种信号的发送及处理方法、装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中
技术领域
本申请涉及电子信息领域,尤其涉及一种信号的发送及处理方法、装置。
背景技术
图1a示例了一种卫星通信系统,包括终端101、基站102、以及卫星103。其中,卫星用于终端以及基站之间的通信中转,即,在上行通信中(如图1a实线箭头),终端发送上行数据至卫星,经中转后,再发送该上行数据至基站。在下行通信中(如图1a虚线箭头),基站发送下行数据至卫星,经中转后,再发送该下行数据至终端。由此,完成终端与基站之间的数据通信。卫星中继远距离传输带来较大的RTT(Round-Trip time,往返时延),并且随着卫星运动RTT会产生变化。
具体的,如图1b所示,基站下行时序,用于基站发送下行数据。基站上行时序,用于基站上行数据(与下行时序对齐)。基站上行接收时序,用于基站接收终端发送的上行数据。终端上行时序,用于终端发送上行数据。终端下行时序,用于终端接收下行数据。图1b中,编号为各个时序中的时序单位的编号。
卫星至基站之间的距离(图1a中示出的d0_F)以及卫星和终端之间距离(图1a中示出的d0)较远,所以在上述数据通信过程中会产生较大的RTT。这会导致基站和终端之间的数据交互存在延迟RTT。如图1b所 示,当基站在编号为K的下行时序单位发送下行数据,由于存在RTT,终端在时间TX后接收到该下行数据,TX即为下行接收时延,终端使用时序单位K发送上行数据至基站,则由于存在RTT,基站在TY之后接收到该上行数据。显然,此时基站接收到上行数据的时序单位与发送下行数据的时序单位不能对齐,增加了基站上行数据解调的复杂度。
发明内容
本申请提供了一种信号的发送及处理方法及装置,目的在于实现基站上行时序和下行时序的对齐。
为了实现上述目的,本申请提供了以下技术方案:
一种信号的发送方法,应用于终端,包括:
在下行时序单位N,估计所述终端的下行时序单位X的起始时刻,所述下行时序单位X为下行时序单位N的绝对时间之后的下行时序单位;
基于所述下行时序单位X的起始时刻,获取所述终端的上行时序单位X的起始时刻;
在所述上行时序单位X的起始时刻,发送所述上行时序单位X。
可选的,所述基于所述下行时序单位X的起始时刻,获取所述终端的上行时序单位X的起始时刻,包括:
依据所述下行时序单位X的起始时刻,获取第一时刻,所述第一时刻为所述终端在所述下行时序单位X的起始时刻接收到的信号,从基站传输至卫星的时刻;
依据所述第一时刻,获取第二时刻,所述第二时刻为所述基站接收所述卫星发送的所述上行时序单位X的时刻;
依据所述第二时刻,获取第三时刻,所述第三时刻为所述终端发送的 所述上行时序单位X到达所述卫星的时刻;
依据所述第三时刻,计算所述终端的上行时序单位X的起始时刻。
可选的,所述依据所述下行时序单位X的起始时刻,获取第一时刻,包括:
依据卫星的星历信息,估算第一位置,所述第一位置为在所述终端的下行时序单位X的起始时刻,所述卫星的位置;
计算第一时长,所述第一时长为信号从所述第一位置传输至所述终端的位置的时长;
通过计算所述下行时序单位X的起始时刻与所述第一时长的差值,得到所述第一时刻。
可选的,在所述得到所述第一时刻之后,还包括:
通过以下迭代过程,修正所述第一时刻:
将所述卫星在所述第一时刻所处位置的位置,作为修正后的第一位置,依据所述修正后的第一位置,重新计算第一时长,得到修正后的第一时长,并通过计算所述下行时序单位X的起始时刻与所述修正后的第一时长的差值,得到修正后的所述第一时刻。
可选的,所述依据所述第一时刻,获取第二时刻,包括:
依据卫星的星历信息,估算所述卫星在所述第一时刻的位置;
依据所述卫星在所述第一时刻的位置和所述基站的位置,计算第二时长,所述第二时长为信号从所述基站传输至所述卫星在所述第一时刻的位置的时长;
将所述第一时刻与所述第二时长之差,作为所述基站向所述卫星发送 所述下行时序单位X的时刻;
将所述基站向所述卫星发送所述下行时序单位X的时刻,作为所述第二时刻。
可选的,所述依据所述第二时刻,获取第三时刻,包括:
依据所述第二时刻,获取第三时刻,并修正所述第三时刻。
可选的,所述依据所述第三时刻,计算所述终端的上行时序单位X的起始时刻,包括:
依据卫星的星历信息,估算所述卫星在所述第三时刻的位置;
依据所述卫星在所述第三时刻的位置与所述终端的位置,计算第三时长,所述第三时长为信号从所述终端的位置传输至所述卫星在所述第三时刻的位置的时长;
将所述第三时刻与所述第三时长之差,作为所述终端的上行时序单位X的起始时刻。
可选的,在下行时序单位N,估计所述终端的下行时序单位X的起始时刻,包括:
将所述下行时序单位N的起始时刻推迟第一目标时长,得到所述下行时序单位X的起始时刻,所述第一目标时长依据所述下行时序单位X与所述下行时序单位N的间隔时长、以及所述下行时序单位N的CRS时延变化率确定。
可选的,所述X与所述N的差值大于或等于m,其中,m为预设的时长与时序单位的长度的比值,向上取整得到的数值。
可选的,在下行时序单位X接收下行调度数据PDSCH数据;
所述方法还包括:在上行时序单位X+K1发送PUCCH反馈数据,所述K1满足:K1*Tslot>RTTm+k1*Tslot,所述RTTm为系统的最大时延,Tslot为时序单位,k1为所述终端处理时长所占时序单位的数量;
或者,
在所述下行时序单位X接收上行调度数据PDCCH数据;
所述方法还包括:
在上行时序单位X+K2发送PUSCH数据,所述K2满足:K2*Tslot>RTTm+k2*Tslot,k2为所述终端处理时长所占时序单位的数量。
可选的,所述K1和所述K2由基站发给所述终端。
一种信号的发送方法,应用于终端,包括:
获取上行接收延迟时延,所述上行接收延迟时延为时序单位的长度的Z倍,所述Z大于或等于预设数值,所述预设数值依据系统最大传输往返RRTm以及所述终端的处理能力确定;
在接收到下行时序单位X的情况下,依据所述上行接收延迟时延和所述下行时序单位X的起始时刻,计算发送上行时序单位X的起始时刻;
在所述发送上行时序单位X的起始时刻,发送所述上行时序单位X。
可选的,所述依据所述上行接收延迟时延和所述下行时序单位X的起始时刻,计算发送上行时序单位X的起始时刻,包括:
依据所述终端在所述下行时序单位X的起始时刻,获取第一时刻,所述第一时刻为所述终端在下行时序单位X的起始时接收到的信号,从基站传输至卫星的时刻;
依据所述第一时刻,获取第二时刻,所述第二时刻为所述基站向所述 卫星发送所述下行时序单位X的时刻;
将所述第二时刻与所述上行接收延迟时延之和,作为第三时刻,所述第三时刻为所述基站接收所述卫星发送的所述上行时序单位X的时刻;
依据所述第三时刻,获取第四时刻,所述第四时刻为所述终端发送的所述上行时序单位X到达所述卫星的时刻;
依据所述第四时刻,获取所述发送上行时序单位X的起始时刻。
可选的,所述依据所述终端在所述下行时序单位X的起始时刻,获取第一时刻,包括:
依据卫星的星历信息,计算第一位置,所述第一位置为所述卫星在所述下行时序单位X的起始时刻的位置;
依据所述第一位置和所述终端的位置,计算第一时长,所述第一时长为信号从所述第一位置传输至所述终端的位置的时长;
通过计算所述下行时序单位X的起始时刻与所述第一时长之差,得到所述第一时刻。
可选的,在所述得到所述第一时刻之后,还包括:
通过以下迭代过程,修正所述第一时刻:
将所述卫星在所述第一时刻的位置作为修正后的第一位置,依据所述修正后的第一位置,重新计算第一时长,得到修正后的第一时长,并通过计算所述下行时序单位X的起始时刻与所述修正后的第一时长的差值,得到修正后的所述第一时刻。
可选的,所述依据所述第三时刻,获取第四时刻,包括:
依据所述第三时刻,获取所述第四时刻,并修正所述第四时刻。
可选的,所述依据所述第四时刻,获取所述发送上行时序单位X的起始时刻,包括:
依据卫星的星历信息,计算所述卫星在所述第四时刻的位置;
依据所述卫星在所述第四时刻的位置以及所述终端的位置,计算第二时长,所述第二时长为信号从所述终端的位置传输至卫星在所述第四时刻的位置的时长;
通过计算所述第四时刻与所述第二时长之差,得到所述发送上行时序单位X的起始时刻。
一种信号的处理方法,应用于基站,包括:
发送下行时序单位X后,延迟上行接收延迟时延,接收上行时序单位X,其中,所述上行接收延迟时延为时序单位的长度的Z倍,所述Z大于或等于预设数值,预设数值依据系统最大传输往返RRTm以及所述终端的处理能力确定。
一种终端,包括:
处理器和存储器;
所述存储器用于存储应用程序,所述处理器用于运行所述应用程序,以实现上述的信号的发送方法。
一种终端,包括:
处理器和存储器;
所述存储器用于存储应用程序,所述处理器用于运行所述应用程序,以实现上述的信号的发送方法。
一种基站,包括:
处理器和存储器;
所述存储器用于存储应用程序,所述处理器用于运行所述应用程序,以实现上述的信号的处理方法。
本申请所述的技术方案,终端在下行时序单位N,估计出下行时序单位X的起始时刻,进一步估算上行时序单位X的起始时刻,在上行时序单位X的起始时刻发送上行时序单位X,或者,在接收到下行时序单位X的情况下,依据上行接收延迟时延和下行时序单位X的起始时刻,计算发送上行时序单位X的起始时刻,在发送上行时序单位X的起始时刻,发送所述上行时序单位X,从而实现上行和下行时序对齐的目的。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为一种卫星通信系统的示例图;
图1b为卫星通信系统的时序的示例图;
图2为本申请实施例公开的一种信号的发送方法的流程图;
图3为本申请实施例公开的终端获取上行时序单位X的起始时刻的原理示例图;
图4为本申请实施例公开的信号的发送方法的有益效果的示例图;
图5为本申请实施例公开的信号的发送方法的有益效果的又一示例图;
图6为本申请实施例公开的信号的发送方法的有益效果的又一示例图;
图7为本申请实施例公开的又一种信号的发送方法的流程图;
图8为本申请实施例公开的又一种信号的发送方法的流程图;
图9为本申请实施例公开的信号的发送方法的有益效果的又一示例图;
图10为本申请实施例公开的一种设备的结构示意图。
具体实施方式
本申请可以应用在图1a示例的应用场景中。在本申请的以下实施例中,终端和基站按照时序发送以及接收数据,其中,时序单位可以为slot(时隙)或子帧,则时序为按序排列的多个时序单位。时序单位编号可以用自然数表示:1、2、…、K、…K+1。时序单位编号也可以按传统5G的循环编号方式表示,即循环编号包含系统帧、子帧、时隙三个级别,每个系统帧为10ms,系统帧的编号范围是0~1024,一个系统帧包含10个子帧,子帧的编号范围0-9,一个子帧包含的时隙个数取决于子载波间隔,如表1,假设子载波间隔是120KHz,时隙的编号范围是0~79。时序单位的编号的加减也按照循环编号的方式,如时序单位N为:系统帧1023时隙79,则时序单位N+1为:系统帧0时隙0,时序单位N-1为:系统帧1023时隙78,依次类推。以下举例中所述的时序单位的编号,可以为以上任意一种。
表1
子载波间隔 时隙数/系统帧 时隙数/子帧 时长/时隙
15KHz 10 1 1ms
30KHz 20 2 0.5ms
60KHz 40 4 0.25ms
120KHz 80 8 0.125ms
240KHz 160 16 0.625ms
需要说明的是,本申请实施例中的终端可以为手机或其他通信设备。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图2为本申请实施例提供的一种信号的发送方法的流程图,具体可以包括以下步骤:
S201:终端在下行时序单位N,估计终端的下行时序单位X的起始时刻T1。
其中,下行时序单位X为下行时序单位N的绝对时间之后的下行时序单位。
具体的,下行时序单位X的起始时刻由下行时序单位N的起始时刻推迟第一目标时长得到。
进一步的,终端依据下行时序单位X与下行时序单位N的间隔时长、以及下行时序单位N的CRS(cell reference signal,小区参考信号)时延变化率,确定第一目标时长。
如公式1所示:
下行时序X的起始时刻T1=下行时序单位N的起始时刻+(X-N)*Tslot*(1+aCRS)  (1)
其中,终端测量基站发送的下行信号,获得下行时序单位N的起始时刻;Tslot为时序单位的长度,则(X-N)*Tslot为下行时序单位X和下行时序单位N的间隔时长,aCRS为下行时序单位N的CRS时延变化率。aCRS的估计方法有以下三种:
1)在粗略估计下行时序X的启示时刻的情况下,可以忽略CRS的影响,即aCRS=0。
2)计算第一差值,第一差值为下行时序单位N与之前相邻的下行时序单位的起始时刻的差值。计算第二差值,第二差值为第一差值与时序单位长度的差值。计算第二差值与时序单位的长度之商,得到aCRS。
3)aCRS可以是时序单位N之前的预设时长范围内的CRS时延变化率的平均值。
S202:终端基于终端的下行时序单位X的起始时刻,获取上行时序单位X的起始时刻。
本实施例中,考虑到产生RTT的主要原因为终端与卫星之间的距离,以及卫星与基站之间的距离,所以本步骤终端获取上行时序单位X的起始时刻的原理可以参见图3所示,图3中,D_X表示下行时序单位X,U_X表示上行时序单位X。
具体计算流程如下:
A1、计算终端在时刻T1接收到的信号,从基站传输至卫星的时刻,记为t1。
具体的,因为S201中已经得到下行时序单位X的起始时刻T1,所以,可以依据卫星的星历信息,估算在终端的下行时序单位X的起始时刻T1,卫星的位置(简称为T1位置)。计算T1位置与终端的位置之间的距离,此距离除以光速,即为信号从T1位置传输至终端的位置的时长,记为S1。计算T1-S1,得到终端在时刻T1接收到的信号,从基站传输至卫星的时刻,记为t1。
可选地,可以进一步迭代修正t1:
1)依据卫星的星历信息,计算最新(即最后一次计算得到的)t1时刻卫星的位置(简称为更新后的t1位置)。
2)计算t1位置与终端的位置之间的距离,此距离除以光速,即为信号从t1位置传输至终端的位置的时长,记为S1’。
3)计算T1-S1’,得到终端在T1接收到的信号,从基站传输至卫星的时刻,记为最新t1。
重复1)-3),直到t1的精度满足基站上行接收同步要求。在实际中,可以依据需求,预先设置迭代的次数。
A2、计算基站向卫星发送下行时序单位X的时刻t0和基站接收卫星发送的上行时序单位X的时刻t3。
具体的,依据卫星的星历信息,确定卫星在t1时刻的位置(简称为t1位置),基站的位置与t1位置之间的距离,除以光速,即为信号从基站传输至t1位置的时长,记为S2。t1-S2即为t0。
因为目的为实现基站上行时序和下行时序的对齐,所以,t3等于t0。
A3、计算终端发送的上行时序单位X到达卫星的时刻t2。
具体的,依据星历信息,估计卫星在t3的位置(简称为t3位置)。计算t3位置与基站的位置之间的距离ss1,ss1除以光速,得到信号从卫星的t3位置传输至基站的时长S2,计算t3-S2,得到t2。
可选地,可以进一步迭代修正t2:
1)依据星历信息,计算最新的t2时刻卫星的位置(简称为t2位置)。
2)计算t2位置与基站的位置之间的距离ss1’,此距离除以光速,即为信号从t3位置传输至卫星的位置的时长,记为S2’。
3)计算t3-S2’,得到最新t2。
重复1)-3),直到t2的精度满足基站上行接收同步要求。
A4、计算终端向卫星发送上行时序X的时刻T2。
具体的,计算卫星的t2位置与终端的位置之间的距离ss2,ss2除以光速,得到信号从终端的位置传输至t2位置的时长S3,计算t2-S3,得到T2。
T2即为终端的上行时序X的起始时刻。从A1-A4可以看出,依据RTT的产生原理,本实施例中,分别计算上行和下行基站与卫星、卫星与终端之间的通信时延,获取上行时序单位X起始时刻。在卫星的位置不断变化的情况下,这种方式得到的RTT的准确性较高。
S203:终端在T2时刻,发送上行时序单位X。
从图2所示的流程可以看出,终端估计出下行时序单位X的起始时刻后,进一步估算上行时序单位X的起始时刻,在估算得到的上行时序单位X的起始时刻发送上行时序单位X,从而实现上行和下行时序对齐的目的。
如图4所示,在X为K的情况下,由于终端比下行时序单位K提前 了RTT发送上行时序单位K,所以,使得基站在发送下行时序单位K的起始时刻,接收上行时序单位K,实现了上行和下行时序的对齐。
需要说明的是,图2所示的流程,适用于RTT增加或减小的情况,如图5所示,在RTT增加的情况下,终端下行时序K和K+1间大于固定时序Tslot,假设为TSlot+TA,上行时序K需要在下行时序K的基础上提前TB,上行时序K+1需要在K+1的基础上提前TC,由于TB和TC计算过程中考虑了实际的RTT的变化,基站上行K和上行K+1分别和下行K和K+1对齐,并且基站上行K和上行K+1间维持固定时序Tslot,可见,使用图2所示的流程,仍能使得基站的上行和下行时序对齐。
如图6所示,在RTT减小的情况下,终端下行时序K和K+1间小于固定时序Tslot,假设为TSlot-TD,上行时序K需要在下行时序K的基础上提前TE,上行时序K+1需要在K+1的基础上提前TF,由于T2和T5计算过程中考虑了实际的RTT的变化,基站上行K和上行K+1分别和下行K和K+1对齐,并且基站上行K和上行K+1间维持固定时序Tslot,可见,使用图2所示的流程,仍能使得基站的上行和下行时序对齐。
图7为本申请实施例公开的又一种信号的发送方法的流程图,与图2所示的流程相比,重点说明由N确定X的方式、下行数据的反馈数据的发送时机、以及上行调度的PUSCH数据的发送时机。
图7中包括以下步骤:
S701:终端确定在下行时序单位N,需要估算的目标下行时序单位的编号X。
具体的,X与N的差值大于或等于m,其中,m为预设的时长(例如,系统的最大传输往返时延RTTm与终端的处理时延之和)与时序单位的长度的比值,向上取整得到的数值。
需要说明的是,在一个具体的实施例中,一个通信系统中,终端按照X与N的固定差值,在下行时序单位N估算一个目标下行时序单位的编号X,。例如,计算得到的m的值为5,假设X与N的差值等于m,则,在时序单位0,需要估算时序单位5,在时序单位1,需要估算时序单位6……以此类推。
在一个具体的实施例中,一个通信系统中,在时序单位N,估算至少一个目标下行时序单位的编号X,例如,计算得到的m的值为5,假设X与N的差值等于m,则,在时序单位0需要估算时序单位5和/或6,在时序单位2,需要估算时序单位7和/或8,以此类推。
在另一个具体实施例中,一个通信系统中,不同终端的X与N的差值可以是一样的,也可以是不同的。
S702:终端获取上行时序单位X的起始时刻T2。
获取的方式如A1~A4,这里不再赘述。
S703:如果终端在下行时序单位X接收下行调度数据PDSCH数据,则在上行时序单位X+K1,发送PUCCH反馈数据。
其中,K1为时序单位的数量,且满足:K1*Tslot>=RTTm+k1*Tslot,RTTm为系统的最大RTT,Tslot为时序单位时长,k1是终端处理时长所占时序单位的数量。可见,上行时序单位X+K1在下行时序单位X之后,且绝对时间也在下行时序单位X的绝对时间之后。
如果终端在下行时序单位X接收上行调度数据PDCCH数据,则在上行时序单位X+K2,发送PUSCH数据。
其中,K2为时序单位的数量,且满足:K2*Tslot>=RTTm+k2*Tslot,k2是终端的处理时间所占时序单位的数量。可见,上行时序单位X+K2在下行时序单位X之后,且绝对时间也在下行时序单位X的绝对时间之后。
从图7所示的流程可以看出,基站调度上行数据时,考虑了系统的最大RTT和终端的处理时延,并且,考虑到上行数据与下行数据之间的时序关系,如X+K1或X+K2,需要保证足够的处理时间,所以,在下行时序单位X之后的某个下行时序单位M估计上行时序单位X+K1的起始时刻,在某个下行时序单位W估计上行时序单位X+K2的起始时刻,其中M与X+K1的关系、W与X+K2的关系与N和X的关系相同,见步骤S701,上行时序X+K1和X+K2的起始时刻计算见S201~S203,不再赘述。以上两点,能够在保证基站的上行和下行时序对齐的情况下,保证通信的正确性。
图8为本申请实施例公开的又一种信号的发送方法的流程图,与图2或图7所示的流程相比,通过降低对齐的标准,实现“准对齐”,从而实现更易实施的目的。
图8中包括以下步骤:
S801:终端获取上行接收延迟时延Z*Tslot,该时延是Tslot的整数倍,Tslot是一个时序单位的长度。
Z大于或等于预设数值,预设数值依据系统最大传输往返RRTm以及 所述终端的处理能力确定,例如Z满足:
Figure PCTCN2020138953-appb-000001
K为终端的处理时长所占的时序单位的数量。
终端获取Z*Tslot的方式可以为接收基站广播,或者用户手动输入的数值。
S802:终端在接收到下行时序单位X的情况下,依据上行接收延迟时延和下行时序单位X的起始时刻,计算上行时序单位X的起始时刻。
因为小区中所有终端上行时序单位X到达基站时刻要对齐到同一时刻,而小区中不同位置的终端由于传输RTT不同,需要单独计算本终端的上行X发送时刻,来达到基站上行接收对齐的目的。计算上行时序单位X的起始时刻的原理如图8所示,具体步骤如下:
B1、计算终端在下行时序单位X的起始时刻T3接收到的信号,从基站传输至卫星的时刻,记为t4。
具体的,因为S803中已经接收到下行时序单位X,所以,可以依据卫星的星历信息,估算在终端的下行时序单位X的起始时刻T3,卫星的位置(简称为T3位置)。计算T3位置与终端的位置之间的距离,此距离除以光速,即为信号从T3位置传输至终端的位置的时长,记为S1。计算T3-S1,得到终端在T3时刻接收到的信号,从基站传输至卫星的时刻,记为t4。
可选地,可以进一步迭代修正t4:
1)依据星历信息,计算t4时刻,卫星的位置(简称为t4位置)。
2)计算t4位置与终端的位置之间的距离,此距离除以光速,即为信号从t4位置传输至终端的位置的时长,记为S1’。
3)计算T3-S1’,得到终端在T3时刻接收到的信号,从基站传输至卫星的时刻,记为最新t4。
重复1)-3),直到t4的精度满足基站上行接收同步要求。
B2、计算基站向卫星发送下行时序单位X的时刻t5和基站接收卫星发送的上行时序单位X的时刻t6。
具体的,依据卫星的星历信息,确定卫星在t4时刻的位置(简称为t4位置),基站位置与t4位置之间的距离,除以光速,即为信号从基站传输至t4位置的时长,记为S2。t4-S2即为t5。
因为目的为实现基站上行时序相对下行时序有一个固定延迟Z*Tslot,所以,t6等于t5+Z*Tslot。
B3、计算终端发送的上行时序单位X到达卫星的时刻t7。
具体的,依据星历信息,估计卫星在t6的位置(简称为t6位置)。计算t6位置与基站的位置之间的距离ss1,ss1除以光速,得到信号从卫星的t6位置传输至基站的时长S2,计算t6-S2,得到t7。
可选地,可以进一步迭代修正t7:
1)以及星历信息,计算卫星在t7的位置(简称t7位置)。
2)计算t7位置与基站的位置之间的距离ss1’,此距离除以光速,即为信号从t7位置传输至卫星的位置的时长,记为S2’。
3)计算t6-S2’,得到最新t7。
重复1)-3),直到t7的精度满足基站上行接收同步要求。
B4、计算终端向卫星发送上行时序X的起始时刻T4。
具体的,计算卫星的t7位置与终端的位置之间的距离ss2,ss2除以光 速,得到信号从终端的位置传输至t7位置的时长S3,计算t7-S3,得到T4。
从B1-B4可以看出,本实施例中,分别计算上行和下行基站与卫星、卫星与终端之间的通信时延,获取上行时序X起始时刻。在卫星的位置不断变化的情况下,这种方式得到的T4的达到的上行同步准确性较高。
S803:终端在T4时刻,发送上行时序单位X。
S804:基站在发送下行时序单位X后,延迟Z*Tslot,接收上行时序单位X。
图8所示的流程实现的效果如图9所示:在终端接收到一个下行时序单位后,终端推迟发送上行时序单位X,使得在基站侧,上行和下行时序单位的起始位置对齐。
图10为本申请实施例提供的一种设备的结构示意图,设备可以包括:至少一个处理器1001,至少一个通信接口1002,至少一个存储器1003和至少一个通信总线1004。需要说明的是,该设备可以为终端设备,也可以为基站设备。
在本申请实施例中,处理器1001、通信接口1002、存储器1003、通信总线1004的数量为至少一个,且处理器1001、通信接口1002、存储器1003通过通信总线1004完成相互间的通信;
处理器1001可能是一个中央处理器CPU,或者是特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路等;
存储器1003可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory)等,例如至少一个磁盘存储器;
其中,存储器存储有程序,处理器可执行存储器存储的程序,实现上述实施例中的流程。
本申请实施例方法所述的功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算设备可读取存储介质中。基于这样的理解,本申请实施例对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一台计算设备(可以是个人计算机,服务器,移动计算设备或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (21)

  1. 一种信号的发送方法,应用于终端,其特征在于,包括:
    在下行时序单位N,估计所述终端的下行时序单位X的起始时刻,所述下行时序单位X为下行时序单位N的绝对时间之后的下行时序单位;
    基于所述下行时序单位X的起始时刻,获取所述终端的上行时序单位X的起始时刻;
    在所述上行时序单位X的起始时刻,发送所述上行时序单位X。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述下行时序单位X的起始时刻,获取所述终端的上行时序单位X的起始时刻,包括:
    依据所述下行时序单位X的起始时刻,获取第一时刻,所述第一时刻为所述终端在所述下行时序单位X的起始时刻接收到的信号,从基站传输至卫星的时刻;
    依据所述第一时刻,获取第二时刻,所述第二时刻为所述基站接收所述卫星发送的所述上行时序单位X的时刻;
    依据所述第二时刻,获取第三时刻,所述第三时刻为所述终端发送的所述上行时序单位X到达所述卫星的时刻;
    依据所述第三时刻,计算所述终端的上行时序单位X的起始时刻。
  3. 根据权利要求2所述的方法,其特征在于,所述依据所述下行时序单位X的起始时刻,获取第一时刻,包括:
    依据卫星的星历信息,估算第一位置,所述第一位置为在所述终端的下行时序单位X的起始时刻,所述卫星的位置;
    计算第一时长,所述第一时长为信号从所述第一位置传输至所述终端 的位置的时长;
    通过计算所述下行时序单位X的起始时刻与所述第一时长的差值,得到所述第一时刻。
  4. 根据权利要求3所述的方法,其特征在于,在所述得到所述第一时刻之后,还包括:
    通过以下迭代过程,修正所述第一时刻:
    将所述卫星在所述第一时刻所处位置的位置,作为修正后的第一位置,依据所述修正后的第一位置,重新计算第一时长,得到修正后的第一时长,并通过计算所述下行时序单位X的起始时刻与所述修正后的第一时长的差值,得到修正后的所述第一时刻。
  5. 根据权利要求2所述的方法,其特征在于,所述依据所述第一时刻,获取第二时刻,包括:
    依据卫星的星历信息,估算所述卫星在所述第一时刻的位置;
    依据所述卫星在所述第一时刻的位置和所述基站的位置,计算第二时长,所述第二时长为信号从所述基站传输至所述卫星在所述第一时刻的位置的时长;
    将所述第一时刻与所述第二时长之差,作为所述基站向所述卫星发送所述下行时序单位X的时刻;
    将所述基站向所述卫星发送所述下行时序单位X的时刻,作为所述第二时刻。
  6. 根据权利要求2所述的方法,其特征在于,所述依据所述第二时刻,获取第三时刻,包括:
    依据所述第二时刻,获取第三时刻,并修正所述第三时刻。
  7. 根据权利要求2所述的方法,其特征在于,所述依据所述第三时刻,计算所述终端的上行时序单位X的起始时刻,包括:
    依据卫星的星历信息,估算所述卫星在所述第三时刻的位置;
    依据所述卫星在所述第三时刻的位置与所述终端的位置,计算第三时长,所述第三时长为信号从所述终端的位置传输至所述卫星在所述第三时刻的位置的时长;
    将所述第三时刻与所述第三时长之差,作为所述终端的上行时序单位X的起始时刻。
  8. 根据权利要求1所述的方法,其特征在于,在下行时序单位N,估计所述终端的下行时序单位X的起始时刻,包括:
    将所述下行时序单位N的起始时刻推迟第一目标时长,得到所述下行时序单位X的起始时刻,所述第一目标时长依据所述下行时序单位X与所述下行时序单位N的间隔时长、以及所述下行时序单位N的CRS时延变化率确定。
  9. 根据权利要求1或7所述的方法,其特征在于,所述X与所述N的差值大于或等于m,其中,m为预设的时长与时序单位的长度的比值,向上取整得到的数值。
  10. 根据权利要求1所述的方法,其特征在于,在下行时序单位X接收下行调度数据PDSCH数据;
    所述方法还包括:在上行时序单位X+K1发送PUCCH反馈数据,所述K1满足:K1*Tslot>RTTm+k1*Tslot,所述RTTm为系统的最大时延, Tslot为时序单位,k1为所述终端处理时长所占时序单位的数量;
    或者,
    在所述下行时序单位X接收上行调度数据PDCCH数据;
    所述方法还包括:
    在上行时序单位X+K2发送PUSCH数据,所述K2满足:K2*Tslot>RTTm+k2*Tslot,k2为所述终端处理时长所占时序单位的数量。
  11. 根据权利要求9所述的方法,其特征在于,所述K1和所述K2由基站发给所述终端。
  12. 一种信号的发送方法,应用于终端,其特征在于,包括:
    获取上行接收延迟时延,所述上行接收延迟时延为时序单位的长度的Z倍,所述Z大于或等于预设数值,所述预设数值依据系统最大传输往返RRTm以及所述终端的处理能力确定;
    在接收到下行时序单位X的情况下,依据所述上行接收延迟时延和所述下行时序单位X的起始时刻,计算发送上行时序单位X的起始时刻;
    在所述发送上行时序单位X的起始时刻,发送所述上行时序单位X。
  13. 根据权利要求12所述的方法,其特征在于,所述依据所述上行接收延迟时延和所述下行时序单位X的起始时刻,计算发送上行时序单位X的起始时刻,包括:
    依据所述终端在所述下行时序单位X的起始时刻,获取第一时刻,所述第一时刻为所述终端在下行时序单位X的起始时接收到的信号,从基站传输至卫星的时刻;
    依据所述第一时刻,获取第二时刻,所述第二时刻为所述基站向所述 卫星发送所述下行时序单位X的时刻;
    将所述第二时刻与所述上行接收延迟时延之和,作为第三时刻,所述第三时刻为所述基站接收所述卫星发送的所述上行时序单位X的时刻;
    依据所述第三时刻,获取第四时刻,所述第四时刻为所述终端发送的所述上行时序单位X到达所述卫星的时刻;
    依据所述第四时刻,获取所述发送上行时序单位X的起始时刻。
  14. 根据权利要求13所述的方法,其特征在于,所述依据所述终端在所述下行时序单位X的起始时刻,获取第一时刻,包括:
    依据卫星的星历信息,计算第一位置,所述第一位置为所述卫星在所述下行时序单位X的起始时刻的位置;
    依据所述第一位置和所述终端的位置,计算第一时长,所述第一时长为信号从所述第一位置传输至所述终端的位置的时长;
    通过计算所述下行时序单位X的起始时刻与所述第一时长之差,得到所述第一时刻。
  15. 根据权利要求14所述的方法,其特征在于,在所述得到所述第一时刻之后,还包括:
    通过以下迭代过程,修正所述第一时刻:
    将所述卫星在所述第一时刻的位置作为修正后的第一位置,依据所述修正后的第一位置,重新计算第一时长,得到修正后的第一时长,并通过计算所述下行时序单位X的起始时刻与所述修正后的第一时长的差值,得到修正后的所述第一时刻。
  16. 根据权利要求13所述的方法,其特征在于,所述依据所述第三时 刻,获取第四时刻,包括:
    依据所述第三时刻,获取所述第四时刻,并修正所述第四时刻。
  17. 根据权利要求13所述的方法,其特征在于,所述依据所述第四时刻,获取所述发送上行时序单位X的起始时刻,包括:
    依据卫星的星历信息,计算所述卫星在所述第四时刻的位置;
    依据所述卫星在所述第四时刻的位置以及所述终端的位置,计算第二时长,所述第二时长为信号从所述终端的位置传输至卫星在所述第四时刻的位置的时长;
    通过计算所述第四时刻与所述第二时长之差,得到所述发送上行时序单位X的起始时刻。
  18. 一种信号的处理方法,应用于基站,其特征在于,包括:
    发送下行时序单位X后,延迟上行接收延迟时延,接收上行时序单位X,其中,所述上行接收延迟时延为时序单位的长度的Z倍,所述Z大于或等于预设数值,预设数值依据系统最大传输往返RRTm以及所述终端的处理能力确定。
  19. 一种终端,其特征在于,包括:
    处理器和存储器;
    所述存储器用于存储应用程序,所述处理器用于运行所述应用程序,以实现权利要求1-11任一项所述的信号的发送方法。
  20. 一种终端,其特征在于,包括:
    处理器和存储器;
    所述存储器用于存储应用程序,所述处理器用于运行所述应用程序, 以实现权利要求12-17任一项所述的信号的发送方法。
  21. 一种基站,其特征在于,包括:
    处理器和存储器;
    所述存储器用于存储应用程序,所述处理器用于运行所述应用程序,以实现权利要求18所述的信号的处理方法。
PCT/CN2020/138953 2020-03-11 2020-12-24 一种信号的发送及处理方法、装置 WO2021179738A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010165824.XA CN111491363B (zh) 2020-03-11 2020-03-11 一种信号的发送及处理方法、装置
CN202010165824.X 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021179738A1 true WO2021179738A1 (zh) 2021-09-16

Family

ID=71812449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138953 WO2021179738A1 (zh) 2020-03-11 2020-12-24 一种信号的发送及处理方法、装置

Country Status (2)

Country Link
CN (2) CN111491363B (zh)
WO (1) WO2021179738A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111491363B (zh) * 2020-03-11 2022-05-17 海能达通信股份有限公司 一种信号的发送及处理方法、装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076058A (zh) * 2011-02-23 2011-05-25 电信科学技术研究院 一种大时延下的随机接入方法及终端
CN102104978A (zh) * 2011-02-23 2011-06-22 电信科学技术研究院 大时延下具有定位功能终端的随机接入方法和终端及基站
CN103517401A (zh) * 2012-06-29 2014-01-15 中兴通讯股份有限公司 无线传输方法、装置及系统
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN111491363A (zh) * 2020-03-11 2020-08-04 海能达通信股份有限公司 一种信号的发送及处理方法、装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228200A (ja) * 2007-03-15 2008-09-25 Toshiba Corp 通信装置及びアクセス制御方法
EP2515590A1 (en) * 2009-12-18 2012-10-24 NTT DoCoMo, Inc. Wireless base station, and relay device
CN103906222B (zh) * 2012-12-27 2018-09-25 中兴通讯股份有限公司 一种上行链路数据同步方法、系统及设备
CN107528628B (zh) * 2017-09-28 2020-01-10 中国电子科技集团公司第七研究所 卫星通信系统的信号同步方法、装置和系统
CN110505636A (zh) * 2018-11-29 2019-11-26 中国电子科技集团公司第七研究所 一种用于中继通信的同步控制方法
CN110602779B (zh) * 2019-09-12 2021-08-17 成都天奥集团有限公司 一种基于同步帧的卫星通信上行闭环定时同步方法
CN110446254B (zh) * 2019-09-12 2021-11-23 上海众睿通信科技有限公司 一种用于卫星通信系统的上行定时提前量终端预测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076058A (zh) * 2011-02-23 2011-05-25 电信科学技术研究院 一种大时延下的随机接入方法及终端
CN102104978A (zh) * 2011-02-23 2011-06-22 电信科学技术研究院 大时延下具有定位功能终端的随机接入方法和终端及基站
CN103517401A (zh) * 2012-06-29 2014-01-15 中兴通讯股份有限公司 无线传输方法、装置及系统
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN111491363A (zh) * 2020-03-11 2020-08-04 海能达通信股份有限公司 一种信号的发送及处理方法、装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THALES, IDC: "NR-NTN: solution principles for NR to support non-terrestrial networks", 3GPP DRAFT; R1-1807864 NR SUPPORT NTN - SOLUTION PRINCIPLES_V5, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, Korea; 20180521 - 20180525, 29 May 2018 (2018-05-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051463528 *

Also Published As

Publication number Publication date
CN111491363B (zh) 2022-05-17
CN111491363A (zh) 2020-08-04
CN113766627B (zh) 2023-07-18
CN113766627A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
US10848257B2 (en) Apparatus and method for timestamping of data packets
WO2021129633A1 (zh) 一种上行数据的同步方法及装置
EP2481173B1 (en) Method for multi-point cooperation considering delay in wireless communication system
US9756153B2 (en) Method for improving accuracy in computation of one-way transfer time for network time synchronization
CN105450559B (zh) 一种自干扰信道估计方法和设备
WO2010025743A1 (en) A method for synchronizing clocks in a communication network
WO2021179738A1 (zh) 一种信号的发送及处理方法、装置
CN101346961B (zh) 在无线通信系统中确定定时的方法及设备
KR101716630B1 (ko) 통신 장치 및 통신 방법 및 프로그램을 기록한 컴퓨터 판독가능한 기록 매체
US20120191878A1 (en) Synchronization system and method
CN107636627B (zh) 时刻同步装置、时刻同步系统及时刻同步方法
CN111918380B (zh) 电子设备与无线网络中的参考节点同步的方法及电子设备
US10142150B2 (en) Pilot signal generating apparatus, method thereof, and transmitting apparatus
CN102387547B (zh) 一种基站时隙aloha的控制方法
US9442511B2 (en) Method and a device for maintaining a synchronized local timer using a periodic signal
WO2018082053A1 (zh) 一种资源配置方法、终端设备及基站
CN114731205A (zh) 一种时钟同步方法及装置
CN114245454B (zh) 数据发送装置、时间调整量的确定方法及装置、电子设备
CN113543297B (zh) 上行功率控制方法及相关装置
CN117998561A (zh) 时钟调整方法、装置、设备、介质及车辆
CN103181104B (zh) 用于在接入网中将时间准确分配给接收器节点的方法
CN104253781A (zh) 用于接收器的时序恢复的修正装置与方法
CN116938374A (zh) 时间同步方法、装置、设备、存储介质及车辆
CN116887390A (zh) 一种基带芯片和射频芯片的同步方法及系统
CN117375791A (zh) 一种定时器调整方法、装置、存储介质及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924173

Country of ref document: EP

Kind code of ref document: A1