WO2021179723A1 - 一种燃料电池作为电站使用的发电系统 - Google Patents
一种燃料电池作为电站使用的发电系统 Download PDFInfo
- Publication number
- WO2021179723A1 WO2021179723A1 PCT/CN2020/136844 CN2020136844W WO2021179723A1 WO 2021179723 A1 WO2021179723 A1 WO 2021179723A1 CN 2020136844 W CN2020136844 W CN 2020136844W WO 2021179723 A1 WO2021179723 A1 WO 2021179723A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen
- fuel cell
- power generation
- cell stack
- air
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0444—Concentration; Density
- H01M8/04462—Concentration; Density of anode exhausts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04492—Humidity; Ambient humidity; Water content
- H01M8/045—Humidity; Ambient humidity; Water content of anode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04828—Humidity; Water content
- H01M8/04835—Humidity; Water content of fuel cell reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to the technical field of fuel cell power stations, in particular to a power generation system using a fuel cell as a power station.
- the patent application number CN201910276898.8 discloses a power station system based on solid hydrogen technology, which uses solid hydrogen as a raw material for power generation, and its final products are water, heat and electricity. It has good environmental sustainability and resource utilization. However, it is not combined with the by-product hydrogen to be used as a power station, and there are still the defects of waste of resources and high cost.
- the present invention proposes a fuel cell as a power generation system used in a power station, which is suitable for enterprises with by-product hydrogen production.
- a fuel cell is used as a power generation system for a power station, including:
- Fuel cell stack module used to generate electricity through the chemical reaction of hydrogen
- the humidification system is respectively connected to the hydrogen inlet end and the air inlet end of the fuel cell stack module for adjusting the humidity of hydrogen and air;
- a hydrogen pressure adjustment system connected to the hydrogen inlet end of the humidification system, for adjusting the pressure of hydrogen
- Purification equipment connected to the hydrogen inlet end of the hydrogen pressure regulation system, for hydrogen purification
- Air filtration system used to filter air
- An air compressor system connected to the air outlet end of the air filter system, for providing sufficient oxygen
- An intercooling system connected to the air outlet end of the air compressor system, for intercooling air
- a flow monitoring system connected to the air outlet end of the intercooling system, and connected to the air inlet end of the humidification system, for monitoring the air flow;
- the main console is connected with the fuel cell stack module, humidification system, hydrogen pressure regulation system, stack temperature detection system, cooling circulating water temperature detection system, pressure detection system, purification equipment, flow monitoring system, and intercooling system .
- it also includes
- the hydrogen circulation pump is connected to the hydrogen outlet end of the fuel cell stack module and is connected to the hydrogen inlet end of the fuel cell stack module, and is used to return incompletely reacted hydrogen to the fuel cell stack module To react again.
- it also includes
- a gas-water separation system connected to the by-product outlet end of the fuel cell stack module, for separating water and gas in the by-product;
- a cooling pool connected to the water outlet end of the gas-water separation system, for storing cooling water
- the water pump is connected to the water outlet end of the cooling pool and is used to provide power to the cooling water.
- the heat generated during the fuel cell power generation process is replaced by the continuously circulating cooling water to keep the fuel cell operating temperature at 68-72 Degrees Celsius;
- a deionization device connected in parallel with the cooling water pipeline between the outlet end of the water pump and the cooling water inlet end of the fuel cell stack module, for removing ions in the cooling water;
- the hydrogen concentration detector is used to detect the hydrogen concentration in the internal space of the fuel cell stack module and send the detection signal to the main console at an interval of 60 seconds;
- An exhaust device connected to the master console; when the detection signal received by the master console indicates that the hydrogen concentration is greater than or equal to 20,000 ppm, the master console controls the exhaust device to start until the hydrogen concentration is lower than 10,000 ppm;
- An infrared combustible gas combustion detector is connected to the main console for detecting hydrogen combustion.
- it further includes a DC/AC converter connected to the direct current output end of the fuel cell stack module and used to convert the direct current generated by the fuel cell stack module into alternating current.
- a DC/AC converter connected to the direct current output end of the fuel cell stack module and used to convert the direct current generated by the fuel cell stack module into alternating current.
- it also includes
- the waste heat circulation system is connected with the waste heat outlet end of the fuel cell stack module for recycling waste heat.
- the purification equipment includes
- Chlorine removal device equipped with by-product hydrogen inlet, used to remove chloride and sulfide in by-product hydrogen
- a deoxygenation furnace connected to the outlet of the dechlorination device, for removing oxygen from the by-product hydrogen
- a medium-pressure compressor connected to the outlet end of the deoxidizer, and used to compress the by-product hydrogen to 1.4-1.5 MPa;
- the hydrogen purification device is connected with the outlet end of the medium pressure compressor and is used to purify the by-product hydrogen.
- the hydrogen purification device includes
- the adsorbent accommodating cavity is sleeved with the rotating shaft and includes
- top plate and the plate body are provided with vents;
- the top plate is provided with a track around the rotating shaft, and the track is arranged with self-fitting sealing parts arranged along the rotation direction of the rotating shaft, and the track is also installed with the self-fitting sealing Feeding pipe sleeves used in conjunction with parts;
- a bottom plate, the plate body is provided with ventilation holes; the bottom plate is provided with a plurality of discharge ports at equal intervals around the rotating shaft;
- the cavity wall is assembled and connected with the top plate and the bottom plate;
- the cylinder is connected with the rotating shaft through a bearing, and includes
- the top support plate is provided with an air outlet and a feed butt joint used in conjunction with the feed pipe sleeve;
- the bottom support plate is provided with an air inlet and a discharging interface used in conjunction with the discharging port;
- the cylinder wall is assembled and connected with the top support plate and the bottom support plate.
- the feed butt joint includes
- the feed sleeve rail is connected with the feed port of the top support plate
- Feeding sliding sleeve the outer peripheral side of which is axially slidingly connected with the inner peripheral side of the feed sleeve rail;
- the sealing cover is detachably connected with the axial top end of the feed sliding sleeve
- the axial bottom end of the feed sleeve rail is provided with an adsorption sheet, an iron core connected with the adsorption sheet and a coil arranged around the iron core are arranged inside, and the coil is connected to a power source through a switch;
- the feeding tube sleeve includes a sleeve body, a flaring part arranged at the axial bottom end of the sleeve body, and a magnetic docking body arranged around the outer circumference of the sleeve body and used in conjunction with the adsorption sheet.
- the bottom plate is provided with a recessed portion above the discharge port, and two adjacent recessed portions are partially overlapped.
- an iron ball is embedded in the radially corresponding position of the bottom end of the cavity wall and the discharge port; the radially corresponding position of the bottom support plate and the discharge port is provided with a hoop used in conjunction with the iron ball. ⁇ sensor.
- the power generation system of the present application can use the company’s by-product hydrogen in conjunction with fuel cells to generate electricity.
- the efficient and reasonable use of the by-product hydrogen not only reduces the cost of electricity production, reduces the burden on the company, but also reduces polluting gas emissions and improves In addition to improving the environment, it can effectively solve the gap in the annual peak of electricity consumption and improve the phenomenon of national power shortage; the purification equipment of this application can effectively purify the by-product hydrogen to meet the electricity production needs of fuel cell stack modules; this application
- the hydrogen purification device has good purification effect, and the operation of adsorbent discharge and feed is simple.
- Figure 1 is a system block diagram of a power generation system using a fuel cell as a power station in this application;
- Figure 2 is a schematic diagram of the structure of the hydrogen purification device of the application.
- Figure 3 is a partial enlarged view of the feed butt joint in Figure 2;
- Figure 4 is a top view of the top plate in Figure 2;
- Fig. 5 is a top view of the bottom plate in Fig. 2.
- a fuel cell power generation system used as a power station includes a fuel cell stack module, humidification system, hydrogen pressure regulation system, purification equipment, air filtration system, air compressor system, intercooling system, and flow monitoring System, main console, hydrogen circulation pump, gas-water separation system, cooling pool, water pump, deionization device, exhaust device, infrared combustible gas combustion detector, DC/AC converter and waste heat circulation system.
- the fuel cell stack module is used to generate electricity through the chemical reaction of hydrogen.
- the humidification system is respectively connected with the hydrogen inlet end and the air inlet end of the fuel cell stack module for adjusting the humidity of hydrogen and air.
- the hydrogen pressure adjustment system is connected to the hydrogen inlet end of the humidification system and is used to adjust the pressure of hydrogen.
- the purification equipment is connected with the hydrogen inlet end of the hydrogen pressure regulating system for hydrogen purification.
- the air filtration system is used to filter the air.
- the air compressor system is connected with the air outlet end of the air filter system for providing sufficient oxygen.
- the intercooling system is connected with the air outlet end of the air compressor system for intercooling air.
- the flow monitoring system is connected with the air outlet end of the intercooling system and connected with the air inlet end of the humidification system for monitoring the air flow.
- the main console is connected with the fuel cell stack module, humidification system, hydrogen pressure regulation system, purification equipment, flow monitoring system, and intercooling system.
- the hydrogen circulation pump is connected to the hydrogen outlet end of the fuel cell stack module, and is connected to the hydrogen inlet end of the fuel cell stack module, and is used to return the incompletely reacted hydrogen to the fuel cell stack module. React again.
- the gas-water separation system is connected to the by-product outlet end of the fuel cell stack module, and is used to separate water and gas in the by-product.
- the cooling pool is connected with the water outlet end of the gas-water separation system and is used for storing cooling water.
- the water pump is connected to the water outlet end of the cooling pool to provide power to the cooling water, and the heat generated during the fuel cell power generation process is replaced by the continuously circulating cooling water to keep the fuel cell operating temperature at 68-72 degrees Celsius .
- the deionization device is connected in parallel with the cooling water pipeline between the outlet end of the water pump and the cooling water inlet end of the fuel cell stack module for removing ions in the cooling water.
- the deionization device is equipped with a cooling water ion concentration detector. When the conductivity is higher than 5 ⁇ s/cm, it prompts to replace the deionization device.
- the DC/AC converter is connected to the direct current output end of the fuel cell stack module, and is used to convert the direct current generated by the fuel cell stack module into alternating current.
- the waste heat circulation system is connected with the waste heat outlet end of the fuel cell stack module for recycling waste heat.
- the hydrogen concentration detector is used to detect the hydrogen concentration in the internal space of the fuel cell stack module and send the detection signal to the main console at an interval of 60 seconds.
- the exhaust device is connected to the master console, and when the detection signal received by the master console is that the hydrogen concentration is greater than or equal to 20000 ppm, the master console controls the exhaust device to start to pump out the mixed gas in the space After the hydrogen concentration is lower than 10000 ppm, the exhaust device is closed. If within 60 seconds, the hydrogen concentration cannot be lower than 10000ppm, the main console will issue an order to shut down the entire system.
- An infrared combustible gas combustion detector is connected to the main console for detecting hydrogen combustion.
- the hydrogen concentration explosion is 40000ppm-750000ppm.
- Hydrogen is colorless and odorless when burning under light conditions.
- Infrared combustible gas scanning equipment can detect hydrogen combustion. If combustible gas combustion occurs, the main console will order the entire system to shut down.
- the specific working principle is that by-product hydrogen companies purify the by-product gas containing a large amount of hydrogen to 99.99% hydrogen purity through purification equipment, and then send it to the hydrogen pressure regulation system through pipelines to ensure that the pressure and flow rate of hydrogen entering each unit are the same.
- the pressure is set according to the number of fuel cell stack modules).
- the fuel cell stack module is composed of multiple fuel cells with a single stack of 10kw as a unit, combined in series and parallel.
- the air compressor system compresses the filtered air and sequentially passes through the intercooling, flow monitoring and humidification systems to supply air to the fuel cell stack module.
- the unreacted and complete hydrogen gas flows back into the fuel cell stack module through the hydrogen circulation pump and reacts again.
- the fuel cell stack module is water-cooled to dissipate heat and remove ions in the cooling circulating water through a deionization device, thereby increasing the service life of the fuel.
- the waste heat in the process of fuel cell power generation can be used for heating and other purposes through the waste heat circulation system.
- the by-products produced by the fuel cell stack module—water, steam, and unreacted air are separated by a gas-water separation system.
- the water produced by the reaction enters the cooling pool for reuse, and the unreacted gas is directly emptied.
- the main console controls the hydrogen purity, hydrogen temperature and humidity, hydrogen pressure, air temperature and humidity, air pressure, temperature and pressure of cold decirculated water, ion concentration of cold decirculated water, and monitors the fuel cell of the entire power generation system.
- the power generation system of the present application can use the company’s by-product hydrogen in conjunction with fuel cells to generate electricity.
- the efficient and reasonable use of the by-product hydrogen not only reduces the cost of electricity production, reduces the burden on the company, but also reduces polluting gas emissions and improves In addition to improving the environment, it can effectively solve the gap in the annual peak of electricity consumption and improve the phenomenon of national electricity shortage.
- Purification equipment includes dechlorination device, deoxidizer, medium pressure compressor and hydrogen purification device.
- the chlorine removal device is equipped with a by-product hydrogen inlet to remove chlorine and sulfur in the by-product hydrogen.
- the deoxygenation furnace is connected to the outlet of the dechlorination device and is used to remove oxygen in the by-product hydrogen.
- the medium-pressure compressor is connected to the outlet end of the deoxidizer, and is used to compress the by-product hydrogen to 1.4-1.5 MPa.
- the hydrogen purification device is connected with the outlet end of the medium pressure compressor and is used for purifying the by-product hydrogen.
- the hydrogen purification device includes a rotating shaft 1, an adsorbent accommodating cavity and a cylinder.
- the rotating shaft 1 is connected with the driving mechanism.
- the adsorbent accommodating cavity is sleeved with the rotating shaft 1 and rotates with the rotating shaft 1, and specifically includes a top plate 21, a bottom plate 22 and a cavity wall 23.
- the plate body of the top plate 21 is provided with ventilation holes, and hydrogen gas can pass through the plate body.
- the top plate 21 is provided with a circle of rails 24 around the rotating shaft 1, and the rails 24 are arranged with self-closing sealing members arranged along the rotation direction of the rotating shaft 1, and the rails 24 are also installed to cooperate with the self-closing sealing members.
- the plate body of the bottom plate 22 is provided with ventilation holes through which hydrogen can pass.
- the bottom plate 22 is provided with a plurality of discharge ports 26 at equal intervals around the rotating shaft 1, and the discharge ports 26 are provided with electromagnetic valves.
- the cavity wall 23 is assembled and connected with the top plate 21 and the bottom plate 22.
- the cylinder body is connected with the rotating shaft 1 through a bearing.
- the cylinder body does not move, and specifically includes a top support plate 31, a bottom support plate 32 and a cylinder wall 33.
- the top support plate 31 is provided with an air outlet 35 through which purified hydrogen is discharged, and a feed docking member 36 used in conjunction with the feed pipe sleeve 25.
- the bottom support plate 32 is provided with an air inlet 34 through which unpurified hydrogen enters the adsorbent accommodating cavity, and a discharge port 27 used in conjunction with the outlet 26.
- the cylinder wall 33 is assembled and connected with the top support plate 31 and the bottom support plate 32.
- the feed butt joint 36 includes a feed sleeve rail 361 connected to the feed opening of the top support plate 31, and a feed slide sleeve axially slidingly connected to the inner peripheral side of the feed sleeve rail 361 on the outer peripheral side 362, a sealing cover 363 detachably connected to the axial top end of the feed sliding sleeve 362.
- the bottom end of the feed sleeve rail 361 axially is provided with a suction sheet, an iron core connected with the suction sheet and a coil arranged around the iron core are arranged inside, and the coil is connected to a power supply 364 through a switch.
- the feeding tube sleeve 25 includes a sleeve body 251, a flared portion 252 provided at the axial bottom end of the sleeve body 251, and a magnetic butt joint provided around the outer circumference of the sleeve body 251 and used in conjunction with the suction sheet. ⁇ 253.
- the operator presses the feeding button on the control cabinet, and the control host sends a stop command to the drive mechanism to stop the rotation axis 1.
- the rotation axis 1 will gradually rotate slowly due to inertia, and the control host will simultaneously Send a closing command to the switch.
- the coil is energized. The cooperation between the coil and the iron core will cause the adsorption sheet to generate magnetic attraction.
- the feed tube sleeve 25 rotates below the feed sliding sleeve 362
- the adsorption sheet will be connected to the magnetic attraction body. 253 attracts magnetically.
- the feeding sliding sleeve 362 will slide down the feeding sleeve rail 361 to connect with the top of the feeding sleeve 25.
- the feeding sleeve 25 The position of the relative feeding docking member 36 is fixed.
- the control host sends a slow rotation instruction to the drive mechanism, and the rotation speed can be set according to actual needs.
- the sealing cover 363 is opened to add the adsorbent in the conventional adsorbent accommodating cavity.
- the flared portion 252 is provided with a contact sensor. When a certain amount of adsorbent is added and contacts the flared portion 252, the contact sensor will send out a prompt signal.
- the control host After receiving the prompt signal, stop the addition of adsorbent, and at the same time, the control host sends a stop command to the drive mechanism to stop the rotating shaft 1, and then the control host sends an open command to the switch. After the switch is turned on, the coil loses power and the adsorption sheet loses its magnetic attraction. , The feeding sliding sleeve 362 is pulled up along the feeding sleeve rail 361 to the initial position, and the feeding sliding sleeve 362 is separated from the feeding pipe sleeve 25.
- the bottom plate 22 is provided with a recessed portion above the discharge port 26, and two adjacent recessed portions are partially overlapped, which is beneficial for the adsorbent to automatically slide down to the discharge port 26.
- the bottom end of the cavity wall 23 and the discharge port 26 are embedded with iron balls 41 in the radially corresponding positions, and the bottom support plate 32 and the discharge pairing interface 27 are provided at radially corresponding positions with the iron balls. 41 with the use of the Hall sensor 42.
- the control host When discharging is required, the operator presses the discharging button on the control cabinet, and the control host sends a slow rotation instruction to the drive mechanism.
- the rotation speed can be set according to actual needs.
- the control host sends a power supply instruction to power the Hall sensor 42.
- the Hall sensor 42 When the iron ball corresponding to a certain discharge port 26 rotates above the Hall sensor 42, the Hall sensor 42 will detect the corresponding signal and send it to the control host, and the control host will control the driving mechanism to stop rotating.
- the discharge port 26 is just above the discharge pair interface 27.
- the control host sends a signal to the electromagnetic valve to open for several seconds, thereby completing the discharge operation of the discharge port 26.
- the control host will control the rotating shaft 1 to continue to rotate slowly, and complete the discharging operation of all the discharging ports 26 in the same process.
- the by-product hydrogen enters the adsorbent accommodating cavity through the air inlet 34, and then is discharged from the air outlet 35 of the sorbent accommodating cavity.
- the by-product hydrogen is purified by the continuously rotating adsorbent, and the purification effect is good, which can achieve the fuel of the application. Requirements for the use of battery stack modules.
- the adsorption effect of the bottom layer of the adsorbent in the adsorbent housing is the first to fail. Therefore, it is necessary to promptly drain the bottom layer of the adsorbent and add a new adsorbent to the top layer to keep the hydrogen purification device of the present application Efficient and stable purification state.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
一种燃料电池作为电站使用的发电系统,涉及燃料电池发电站技术领域,所述发电系统包括燃料电池栈模组,用于通过氢氧化学反应产生电能;加湿系统,分别与所述燃料电池栈模组的氢气进口端、空气进口端连接,用于调节氢气、空气的湿度;氢气压力调节系统,与所述加湿系统的氢气进口端连接,用于调节氢气的压力;纯化设备,与所述氢气压力调节系统的氢气进口端连接,用于氢气提纯。所述发电系统可将企业的副产氢与燃料电池配合使用以产生电能,对副产氢的高效合理使用,不仅降低了制电成本,减轻了企业负担,还减少了污染气体排放,改善了环境;氢气提纯装置提纯效果好、吸附剂排料进料操作简便。
Description
本发明涉及燃料电池发电站技术领域,具体为一种燃料电池作为电站使用的发电系统。
目前燃料电池已广泛应用于各个技术领域及人们的生活之中,而电力在各行各业中是不可缺少的能源,且工业用电较为昂贵。另外,许多企业将副产氢直接排空或是燃烧,造成了大量的资源浪费。因此,如何将燃料电池与副产氢结合作为电站使用是亟需解决的技术难题。
申请号为CN201910276898.8的专利公开了一种基于固体氢技术的发电站系统,以固体氢为原料进行发电,其最终产物为水、热能和电能,具有良好的环境发展可持续性、资源利用率及安全可控性,但是其并没有与副产氢结合作为电站使用,仍然存在资源浪费、成本高的缺陷。
本发明针对现有技术存在的问题,提出了一种燃料电池作为电站使用的发电系统,适用于具有副产氢产生的企业。
本发明解决其技术问题所采用的技术方案是:一种燃料电池作为电站使用的发电系统,包括
燃料电池栈模组,用于通过氢氧化学反应产生电能;
加湿系统,分别与所述燃料电池栈模组的氢气进口端、空气进口端连接,用于调节氢气、空气的湿度;
氢气压力调节系统,与所述加湿系统的氢气进口端连接,用于调节氢气的压力;
纯化设备,与所述氢气压力调节系统的氢气进口端连接,用于氢气提纯;
空气过滤系统,用于过滤空气;
空压机系统,与所述空气过滤系统的空气出口端连接,用于提供充足氧气;
中冷系统,与所述空压机系统的空气出口端连接,用于中冷空气;
流量监控系统,与所述中冷系统的的空气出口端连接,且与所述加湿系统的空气进口端连接,用于监控空气的流量;
总控制台,与所述燃料电池栈模组、加湿系统、氢气压力调节系统、电堆温度检测系统、冷却循环水的温度检测系统、压力检测系统、纯化设备、流量监控系统、中冷系统连接。
作为优选,还包括
氢气循环泵,与所述燃料电池栈模组的氢气出口端连接,且与所述燃料电池栈模组的氢气进口端连接,用于使反应未完全的氢气回流至所述燃料电池栈模组以再次反应。
作为优选,还包括
气水分离系统,与所述燃料电池栈模组的副产品出口端连接,用于将副产品中的水与气体分离;
冷却水池,与所述气水分离系统的水出口端连接,用于存储冷却水;
水泵,与所述冷却水池的水出口端连接,用于给冷却水提供动力,通过不断循环的冷却水将燃料电池发电过程中产生的热量置换出来以使燃料电池的工作温度保持在68~72摄氏度;
去离子装置,与所述水泵的出口端及所述燃料电池栈模组的冷却水进口端之间的冷却水管路并联,用于去除冷却水中的离子;
氢气浓度检测仪,用于检测燃料电池栈模组内部空间的氢气浓度并以60秒的间隔频率将检测信号发送给总控制台;
排气装置,与所述总控制台连接;当所述总控制台接收到的检测信号为氢气浓度大于等于20000ppm,所述总控制台控制所述排气装置启动直至氢气浓度低于10000ppm;
红外线可燃气体燃烧探测仪,与所述总控制台连接,用于检测氢气燃烧情况。
作为优选,还包括DC/AC转换器,与所述燃料电池栈模组的直流电输出端连接,用于将燃料电池栈模组产生的直流电转换成交流电。
作为优选,还包括
废热循环系统,与所述燃料电池栈模组的废热出口端连接,用于循环利用废热。
作为优选,所述纯化设备包括
除氯装置,设有副产氢进口,用于除去副产氢中的氯化物、硫化物;
脱氧炉,与所述除氯装置的出口连接,用于除去副产氢中的氧;
中压压缩机,与所述脱氧炉的出口端连接,用于将副产氢压缩至1.4~1.5MPa;
氢气提纯装置,与所述中压压缩机的出口端连接,用于对副产氢进行纯化。
作为优选,所述氢气提纯装置包括
转轴;
吸附剂容置腔,与所述转轴套接,包括
顶板,板体设有透气孔;所述顶板围绕所述转轴设有一圈轨道,所述轨道沿所述转轴转动方向排列设有自合式封口件,所述轨道还安装有与所述自合式封口件配合使用的进料管套;
底板,板体设有透气孔;所述底板围绕所述转轴等间隔设有若干出料口;
腔壁,与所述顶板和所述底板装配连接;
筒体,与所述转轴通过轴承连接,包括
顶部支撑板,设有出气口,以及与所述进料管套配合使用的进料对接件;
底部支撑板,设有进气口,以及与所述出料口配合使用的出料对接口;
筒壁,与所述顶部支撑板和所述底部支撑板装配连接。
作为优选,所述进料对接件包括
进料套轨,与所述顶部支撑板的进料口连接;
进料滑套,其外周侧与所述进料套轨的内周侧轴向滑动连接;
封口盖,与所述进料滑套的轴向顶端拆卸式连接;
所述进料套轨轴向底端设有吸附片、内部设有与所述吸附片连接的铁芯和缠绕所述铁芯设置的线圈,所述线圈通过开关与电源连接;
所述进料管套包括套体,设于所述套体轴向底端的扩口部,以及围绕所述套体外周侧设置且与所述吸附片配合使用的磁吸对接体。
作为优选,所述底板位于所述出料口上方设有凹陷部,相邻两所述凹陷部部分重合设置。
作为优选,所述腔壁底端与所述出料口径向对应位置嵌设有铁珠;所述底部支撑板与所述出料对接口径向对应位置设有与所述铁珠配合使用的霍尔传感器。
本申请的发电系统可将企业的副产氢与燃料电池配合使用以产生电能,对副产氢的高效合理使用,不仅降低了制电成本,减轻了企业负担,还减少了污染气体排放,改善了环境,另外可有效解决每年用电高峰的缺口,改善国家电能紧缺的现象;本申请的纯化设备能够有效地对副产氢进行提纯操作以满足燃料电池栈模组的制电需求;本申请的氢气提纯装置提纯效果好、吸附剂排料进料操作简便。
图1为本申请燃料电池作为电站使用的发电系统的系统框图;
图2为本申请氢气提纯装置的结构示意图;
图3为图2中进料对接件的局部放大图;
图4为图2中顶板的俯视图;
图5为图2中底板的俯视图。
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
如图1所示,一种燃料电池作为电站使用的发电系统,包括燃料电池栈模组,加湿系统,氢气压力调节系统,纯化设备,空气过滤系统,空压机系统,中冷系统,流量监控系统,总控制台,氢气循环泵,气水分离系统,冷却水池,水泵,去离子装置,排气装置,红外线可燃气体燃烧探测仪,DC/AC转换器和废热循环系统。
燃料电池栈模组用于通过氢氧化学反应产生电能。加湿系统分别与所述燃料电池栈模组的氢气进口端、空气进口端连接,用于调节氢气、空气的湿度。氢气压力调节系统与所述加湿系统的氢气进口端连接,用于调节氢气的压力。纯化设备与所述氢气压力调节系统的氢气进口端连接,用于氢气提纯。空气过滤系统用于过滤空气。空压机系统与所述空气过滤系统的空气出口端连接,用于提供充足氧气。中冷系统与所述空压机系统的空气出口端连接,用于中冷空气。流量监控系统与所述中冷系统的的空气出口端连接,且与所述加湿系统的空气进口端连接,用于监控空气的流量。总控制台与所述燃料电池栈模组、加湿系统、氢气压力调节系统、纯化设备、流量监控系统、中冷系统连接。氢气循环泵与所述燃料电池栈模组的氢气出口端连接,且与所述燃料电池栈模组的氢气进口端连接,用于使反应未完全的氢气回流至所述燃料电池栈模组以再次反应。气水分离系统与所述燃料电池栈模组的副产品出口端连接,用于将副产品中的水与气体分离。冷却水池与所述气水分离系统的水出口端连接,用于存储冷却水。水泵与所述冷却水池的水出口端连接,用于给冷却水提供动力,通过不断循环的冷却水将燃料电池发电过程中产生的热量置换出来以使燃料电池的工作温度保持在68~72摄氏度。去离子装置与所述水泵的出口端及所述燃料电池栈模组的冷却水进口端之间的冷却水管路并联,用于去除冷却水中的离子。去离子装置配设有冷却水离子浓度检测仪,当导电率高于5μs/cm,提示更换去离子装置。DC/AC转换器与所述燃料电池栈模组的直流电输出端连接,用于将燃料电池栈模组产生的直流电转换成交流电。废热循环系统与所述燃料电池栈模组的废热出口端连接,用于循环利用废热。氢气浓度检测仪用于检测燃料电池栈模组内部空间的氢气浓度并以60秒的间隔频率将检测信号发送给总控制台。排气装置与所述总控制台连接,当所述总控制台接收到的检测信号为氢气浓度大于等于20000ppm,所述总控制台控制所述排气装置启动将空间内的混合气体抽离出去直至氢气浓度低于10000ppm后,关闭排气装置。如果60秒内,氢气浓度都不能低于10000ppm,则总控制台下达全系统关闭指令。红外线可燃气体燃烧探测仪与所述总控制台连接,用于检测氢气燃烧情况。氢气浓度爆炸为40000ppm-750000ppm,氢气在光照条件下燃烧,是无色无味的,红外线可燃气体扫描设备可以检测氢气燃烧情况,若发生可燃气体燃烧,则总控制台下达全系统关闭。
具体工作原理,副产氢企业将含有大量氢气的副产气体通过纯化设备提纯至99.99%氢气纯度后,通过管路输送至氢气压力调节系统,确保进入每一个单位的氢气压力、流量都是相同的(压力根据燃料电池栈模组数量设定)。燃料电池电栈模组由单堆为10kw为单位的多个燃料电池通过串并联组合起来。通过空压机系统使过滤后的空气压缩并依次经过中冷、流量监控和加湿系统以给燃料电池栈模组供给空气。未反应的完全的氢气通过氢气循环泵回流入燃料电池栈模组中再次反应。燃料电池栈模组经过水冷散热并通过去离子装置去除冷却循环水中的离子,增加燃料的使用寿命。燃料电池发电过程中的废热可以通过废热循环系统进行供暖等用途。燃料电池电栈模组所产生的副产品--水、水蒸气、未反应的空气通过气水分离系统进行分离,反应产生的水进入冷却水池再次利用,未反应的气体直接排空。总控制台控制整个发电系统的氢气纯度、氢气温度及湿度、氢气的压力、空气的温度及湿度、空气的压力、冷去循环水的温度及压力、冷去循环水的离子浓度、监控燃料电池栈的每个模组的电压电流、每片单电池的电压电流、控制及检测电站的输出功率等等工作情况,以确保燃料电池栈模组处于一个稳定的发电状态,其中,各部件的响应时间均小于1s。
本申请的发电系统可将企业的副产氢与燃料电池配合使用以产生电能,对副产氢的高效合理使用,不仅降低了制电成本,减轻了企业负担,还减少了污染气体排放,改善了环境,另外可有效解决每年用电高峰的缺口,改善国家电能紧缺的现象。
纯化设备包括除氯装置,脱氧炉,中压压缩机和氢气提纯装置。除氯装置设有副产氢进口,用于除去副产氢中的氯、硫。脱氧炉与所述除氯装置的出口连接,用于除去副产氢中的氧。中压压缩机与所述脱氧炉的出口端连接,用于将副产氢压缩至1.4~1.5MPa。氢气提纯装置与所述中压压缩机的出口端连接,用于对副产氢进行纯化。
如图2至图5所示,所述氢气提纯装置包括转轴1,吸附剂容置腔和筒体。转轴1与驱动机构连接。
吸附剂容置腔与所述转轴1套接,随转轴1一起转动,具体包括顶板21,底板22和腔壁23。顶板21的板体设有透气孔,氢气可从板体穿过。所述顶板21围绕所述转轴1设有一圈轨道24,所述轨道24沿所述转轴1转动方向排列设有自合式封口件,所述轨道24还安装有与所述自合式封口件配合使用的进料管套25,进料管套25将自合式封口件撑开,当进料管套25沿轨道24移动时,对应位置的自合式封口件会顺势被进料管套25撑开,进料管套25移走时,自合式封口件会自动闭合。底板22的板体设有透气孔,氢气可从板体穿过。所述底板22围绕所述转轴1等间隔设有若干出料口26,出料口26设有电磁阀门。腔壁23与顶板21 、底板22装配连接。
筒体与所述转轴1通过轴承连接,转轴1转动时,筒体不动,具体包括顶部支撑板31,底部支撑板32和筒壁33。顶部支撑板31设有出气口35,纯化后的氢气由出气口35排出,以及与所述进料管套25配合使用的进料对接件36。底部支撑板32设有进气口34,未纯化的氢气由进气口34进入吸附剂容置腔,以及与所述出料口26配合使用的出料对接口27。筒壁33与所述顶部支撑板31、底部支撑板32装配连接。
其中,进料对接件36包括与所述顶部支撑板31的进料口连接的进料套轨361,外周侧与所述进料套轨361的内周侧轴向滑动连接的进料滑套362,与所述进料滑套362的轴向顶端拆卸式连接的封口盖363。所述进料套轨361轴向底端设有吸附片、内部设有与所述吸附片连接的铁芯和缠绕所述铁芯设置的线圈,所述线圈通过开关与电源364连接。所述进料管套25包括套体251,设于所述套体251轴向底端的扩口部252,以及围绕所述套体251外周侧设置且与所述吸附片配合使用的磁吸对接体253。
当需要进料时,操作工人按下控制柜上的进料按钮,控制主机给驱动机构发送停止指令以使转轴1停止转动,驱动机构停止后,转轴1会因惯性逐渐缓慢转动,控制主机同时会给开关发送闭合指令,开关闭合后,线圈通电,线圈与铁芯配合会使吸附片产生磁吸力,当进料管套25转动至进料滑套362下方后,吸附片会与磁吸对接体253磁性相吸,由于进料管套25的轴向位置是固定的,进料滑套362会沿进料套轨361下滑至与进料管套25顶端连接,此时,进料管套25相对进料对接件36的位置固定。然后通过控制主机给驱动机构发送缓慢转动的指令,转动速度可根据实际需求设置。最后,将封口盖363打开以往吸附剂容置腔中添加吸附剂。扩口部252上设有接触传感器,当吸附剂添加一定量并与扩口部252接触时,接触传感器会发出提示信号。收到提示信号后,停止吸附剂的添加,同时控制主机给驱动机构发送停止指令以使转轴1停止转动,接着控制主机给开关发送打开指令,开关打开后,线圈失电,吸附片失去磁吸力,将进料滑套362沿进料套轨361上拔至初始位置,进料滑套362与进料管套25分离。
所述底板22位于所述出料口26上方设有凹陷部,相邻两所述凹陷部部分重合设置,有利于吸附剂自动下滑至出料口26。所述腔壁23底端与所述出料口26径向对应位置嵌设有铁珠41,所述底部支撑板32与所述出料对接口27径向对应位置设有与所述铁珠41配合使用的霍尔传感器42。
当需要出料时,操作工人按下控制柜上的出料按钮,控制主机给驱动机构发送缓慢转动的指令,转动速度可根据实际需求设置,同时控制主机发送供电指令以给霍尔传感器42供电。当某一出料口26对应的铁珠转动至霍尔传感器42上方时,霍尔传感器42会检测到相应信号并发送给控制主机,控制主机会控制驱动机构停止转动,此时,出料口26正好位于出料对接口27上方。接着,控制主机给电磁阀门发送信号使其打开数秒,从而完成该出料口26的出料操作。然后,控制主机会控制转轴1继续缓慢转动,以相同的过程完成所有出料口26的出料操作。
副产氢由进气口34进入吸附剂容置腔,再由吸附剂容置腔的出气口35排出,副产氢通过不断转动的吸附剂进行纯化处理,纯化效果好,可达到本申请燃料电池栈模组的使用需求。吸附剂容置中的吸附剂其底部层的吸附效果最先失效,因此,需要及时将底部层的吸附剂排出,并在其顶部层添加新的吸附剂以使本申请的氢气提纯装置一直保持高效、稳定的提纯状态。
上面所述的实施例仅是对本发明的优选实施方式进行描述,并非对本发明的构思和范围进行限定。在不脱离本发明设计构思的前提下,本领域普通人员对本发明的技术方案做出的各种变型和改进,均应落入到本发明的保护范围,本发明请求保护的技术内容,已经全部记载在权利要求书中。
Claims (10)
- 一种燃料电池作为电站使用的发电系统,其特征在于:包括燃料电池栈模组,用于通过氢氧化学反应产生电能;加湿系统,分别与所述燃料电池栈模组的氢气进口端、空气进口端连接,用于调节氢气、空气的湿度;氢气压力调节系统,与所述加湿系统的氢气进口端连接,用于调节氢气的压力;纯化设备,与所述氢气压力调节系统的氢气进口端连接,用于氢气提纯;空气过滤系统,用于过滤空气;空压机系统,与所述空气过滤系统的空气出口端连接,用于提供充足氧气;中冷系统,与所述空压机系统的空气出口端连接,用于中冷空气;流量监控系统,与所述中冷系统的的空气出口端连接,且与所述加湿系统的空气进口端连接,用于监控空气的流量;总控制台,与燃料电池栈模组、加湿系统、氢气压力调节系统、电堆温度检测系统、冷却循环水的温度检测系统、压力检测系统、纯化设备、流量监控系统、中冷系统连接。
- 根据权利要求1所述的一种燃料电池作为电站使用的发电系统,其特征在于:还包括氢气循环泵,与所述燃料电池栈模组的氢气出口端连接,且与所述燃料电池栈模组的氢气进口端连接,用于使反应未完全的氢气回流至所述燃料电池栈模组以再次反应。
- 根据权利要求1所述的一种燃料电池作为电站使用的发电系统,其特征在于:还包括气水分离系统,与所述燃料电池栈模组的副产品出口端连接,用于将副产品中的水与气体分离;冷却水池,与所述气水分离系统的水出口端连接,用于存储冷却水;水泵,与所述冷却水池的水出口端连接,用于给冷却水提供动力,通过不断循环的冷却水将燃料电池发电过程中产生的热量置换出来以使燃料电池的工作温度保持在68~72摄氏度;去离子装置,与所述水泵的出口端及所述燃料电池栈模组的冷却水进口端之间的冷却水管路并联,用于去除冷却水中的离子;氢气浓度检测仪,用于检测燃料电池栈模组内部空间的氢气浓度并以60秒的间隔频率将检测信号发送给总控制台;排气装置,与所述总控制台连接;当所述总控制台接收到的检测信号为氢气浓度大于等于20000ppm,所述总控制台控制所述排气装置启动直至氢气浓度低于10000ppm;红外线可燃气体燃烧探测仪,与所述总控制台连接,用于检测氢气燃烧情况。
- 根据权利要求1所述的一种燃料电池作为电站使用的发电系统,其特征在于:还包括DC/AC转换器,与所述燃料电池栈模组的直流电输出端连接,用于将燃料电池栈模组产生的直流电转换成交流电。
- 根据权利要求1所述的一种燃料电池作为电站使用的发电系统,其特征在于:还包括废热循环系统,与所述燃料电池栈模组的废热出口端连接,用于循环利用废热。
- 根据权利要求1所述的一种燃料电池作为电站使用的发电系统,其特征在于:所述纯化设备包括除氯与脱硫装置,设有副产氢进口,用于除去副产氢中的氯化物、硫化物;脱氧炉,与所述除氯装置的出口连接,用于除去副产氢中的氧;中压压缩机,与所述脱氧炉的出口端连接,用于将副产氢压缩至1.4~1.5MPa;氢气提纯装置,与所述中压压缩机的出口端连接,用于对副产氢进行纯化。
- 根据权利要求6所述的一种燃料电池作为电站使用的发电系统,其特征在于:所述氢气提纯装置包括转轴(1);吸附剂容置腔,与所述转轴(1)套接,包括顶板(21),板体设有透气孔;所述顶板(21)围绕所述转轴(1)设有一圈轨道(24),所述轨道(24)沿所述转轴(1)转动方向排列设有自合式封口件,所述轨道(24)还安装有与所述自合式封口件配合使用的进料管套(25);底板(22),板体设有透气孔;所述底板(22)围绕所述转轴(1)等间隔设有若干出料口(26);腔壁(23),与所述顶板(21) 和所述底板(22)装配连接;筒体,与所述转轴(1)通过轴承连接,包括顶部支撑板(31),设有出气口(35),以及与所述进料管套(25)配合使用的进料对接件(36);底部支撑板(32),设有进气口(34),以及与所述出料口(26)配合使用的出料对接口(27);筒壁(33),与所述顶部支撑板(31)和所述底部支撑板(32)装配连接。
- 根据权利要求7所述的一种燃料电池作为电站使用的发电系统,其特征在于:所述进料对接件(36)包括进料套轨(361),与所述顶部支撑板(31)的进料口连接;进料滑套(362),其外周侧与所述进料套轨(361)的内周侧轴向滑动连接;封口盖(363),与所述进料滑套(362)的轴向顶端拆卸式连接;所述进料套轨(361)轴向底端设有吸附片、内部设有与所述吸附片连接的铁芯和缠绕所述铁芯设置的线圈,所述线圈通过开关与电源(364)连接;所述进料管套(25)包括套体(251),设于所述套体(251)轴向底端的扩口部(252),以及围绕所述套体(251)外周侧设置且与所述吸附片配合使用的磁吸对接体(253)。
- 根据权利要求7所述的一种燃料电池作为电站使用的发电系统,其特征在于:所述底板(22)位于所述出料口(26)上方设有凹陷部,相邻两所述凹陷部部分重合设置。
- 根据权利要求7所述的一种燃料电池作为电站使用的发电系统,其特征在于:所述腔壁(23)底端与所述出料口(26)径向对应位置嵌设有铁珠(41);所述底部支撑板(32)与所述出料对接口(27)径向对应位置设有与所述铁珠(41)配合使用的霍尔传感器(42)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010175141.2A CN111430761B (zh) | 2020-03-13 | 2020-03-13 | 一种燃料电池作为电站使用的发电系统 |
CN202010175141.2 | 2020-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021179723A1 true WO2021179723A1 (zh) | 2021-09-16 |
Family
ID=71547804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/136844 WO2021179723A1 (zh) | 2020-03-13 | 2020-12-16 | 一种燃料电池作为电站使用的发电系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111430761B (zh) |
WO (1) | WO2021179723A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114844198A (zh) * | 2022-04-19 | 2022-08-02 | 海南天宇科技集团有限公司 | 一种不断电系统与固态储氢瓶组合的电力架构 |
CN115395036A (zh) * | 2022-08-08 | 2022-11-25 | 武汉船用电力推进装置研究所(中国船舶集团有限公司第七一二研究所) | 一种多燃料电池模块介质分配装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111430761B (zh) * | 2020-03-13 | 2022-12-30 | 浙江华熔科技有限公司 | 一种燃料电池作为电站使用的发电系统 |
CN116960396B (zh) * | 2023-09-20 | 2023-12-05 | 武汉海亿新能源科技有限公司 | 一种化工生产用氢燃料电池发电供热系统及其控制方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102173382A (zh) * | 2010-12-20 | 2011-09-07 | 苏州竞立制氢设备有限公司 | 氯碱工业副产氢净化回收系统及其方法 |
WO2015070802A1 (zh) * | 2013-11-18 | 2015-05-21 | 上海合既得动氢机器有限公司 | 利用即时制得的氢气进行发电的系统及方法 |
CN106848347A (zh) * | 2017-02-14 | 2017-06-13 | 北京东方华氢科技有限公司 | 一种供电系统及电力供应的控制方法 |
CN206322787U (zh) * | 2016-12-08 | 2017-07-11 | 北京神雾环境能源科技集团股份有限公司 | 垃圾热解发电系统 |
CN207896212U (zh) * | 2017-12-11 | 2018-09-21 | 西安华江环保科技股份有限公司 | 一种基于氢燃料电池的不间断电源系统 |
CN109818012A (zh) * | 2019-02-21 | 2019-05-28 | 山东大学 | 一种燃料电池发动机系统的水热管理系统 |
CN111430761A (zh) * | 2020-03-13 | 2020-07-17 | 浙江华熔科技有限公司 | 一种燃料电池作为电站使用的发电系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110600764A (zh) * | 2019-08-08 | 2019-12-20 | 广东工业大学 | 一种太阳能水热循环式磁流体发电供热一体机及其发电供热方法 |
CN110682803A (zh) * | 2019-11-11 | 2020-01-14 | 北京佳安氢源科技股份有限公司 | 一种燃料电池车的氢气品质保障系统 |
-
2020
- 2020-03-13 CN CN202010175141.2A patent/CN111430761B/zh active Active
- 2020-12-16 WO PCT/CN2020/136844 patent/WO2021179723A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102173382A (zh) * | 2010-12-20 | 2011-09-07 | 苏州竞立制氢设备有限公司 | 氯碱工业副产氢净化回收系统及其方法 |
WO2015070802A1 (zh) * | 2013-11-18 | 2015-05-21 | 上海合既得动氢机器有限公司 | 利用即时制得的氢气进行发电的系统及方法 |
CN206322787U (zh) * | 2016-12-08 | 2017-07-11 | 北京神雾环境能源科技集团股份有限公司 | 垃圾热解发电系统 |
CN106848347A (zh) * | 2017-02-14 | 2017-06-13 | 北京东方华氢科技有限公司 | 一种供电系统及电力供应的控制方法 |
CN207896212U (zh) * | 2017-12-11 | 2018-09-21 | 西安华江环保科技股份有限公司 | 一种基于氢燃料电池的不间断电源系统 |
CN109818012A (zh) * | 2019-02-21 | 2019-05-28 | 山东大学 | 一种燃料电池发动机系统的水热管理系统 |
CN111430761A (zh) * | 2020-03-13 | 2020-07-17 | 浙江华熔科技有限公司 | 一种燃料电池作为电站使用的发电系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114844198A (zh) * | 2022-04-19 | 2022-08-02 | 海南天宇科技集团有限公司 | 一种不断电系统与固态储氢瓶组合的电力架构 |
CN115395036A (zh) * | 2022-08-08 | 2022-11-25 | 武汉船用电力推进装置研究所(中国船舶集团有限公司第七一二研究所) | 一种多燃料电池模块介质分配装置 |
Also Published As
Publication number | Publication date |
---|---|
CN111430761B (zh) | 2022-12-30 |
CN111430761A (zh) | 2020-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021179723A1 (zh) | 一种燃料电池作为电站使用的发电系统 | |
CN210631904U (zh) | 一种沸石转轮吸附浓缩加催化燃烧治理系统 | |
CN104107618A (zh) | 低浓度大风量废气浓缩及减风系统 | |
CN110935294A (zh) | 一种VOCs废气处理系统 | |
CN110567263A (zh) | 一种挥发性有机物源头控制及末端治理系统 | |
CN207254070U (zh) | 一种具有多重净化功能的等离子光催化复合装置 | |
CN112856373A (zh) | 一种绿色生产用高效低排节能设备及其操作方法 | |
CN201885242U (zh) | 有机废气蓄热式热力燃烧净化装置 | |
CN201954569U (zh) | 两室切换式废气焚烧处理装置 | |
CN101940869B (zh) | 精对苯二甲酸氧化装置尾气的净化方法和装置 | |
CN209378713U (zh) | 一种避免催化燃烧反应器过热的挥发性有机废气处理系统 | |
CN208839242U (zh) | 一种火力发电用工业废气处理装置 | |
CN108048619B (zh) | 一种转炉干法除尘和余热回收装置及方法 | |
CN202139252U (zh) | 一种火花捕集式转炉煤气干法布袋净化回收装置 | |
CN204051374U (zh) | 低浓度大风量废气浓缩及减风系统 | |
CN102778010A (zh) | 空气净化装置的自控系统 | |
CN216764808U (zh) | 一种煤气脱氯催化水解一体化反应器 | |
CN212663132U (zh) | 250℃高温连续再生双区冷却增效voc浓缩系统 | |
CN212178910U (zh) | 有机废气处理控制系统 | |
CN114165802A (zh) | 一种生物质锅炉余热利用装置及其使用方法 | |
CN114321946A (zh) | 废气处理装置 | |
CN111558281A (zh) | 250℃高温连续再生双区冷却增效voc浓缩系统 | |
CN220071253U (zh) | 补气提浓系统及橡胶废气净化装置 | |
CN212618364U (zh) | 一种rto联用的废气处理装置 | |
CN111467926A (zh) | 一种应用于有机废气行业的节能型处理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20924007 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20924007 Country of ref document: EP Kind code of ref document: A1 |