WO2021179550A1 - 无人机集群的任务派遣决策方法及系统 - Google Patents
无人机集群的任务派遣决策方法及系统 Download PDFInfo
- Publication number
- WO2021179550A1 WO2021179550A1 PCT/CN2020/112539 CN2020112539W WO2021179550A1 WO 2021179550 A1 WO2021179550 A1 WO 2021179550A1 CN 2020112539 W CN2020112539 W CN 2020112539W WO 2021179550 A1 WO2021179550 A1 WO 2021179550A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- task
- drone
- mission
- distance
- location
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000010191 image analysis Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000013135 deep learning Methods 0.000 claims description 3
- 230000001502 supplementing effect Effects 0.000 claims description 2
- 238000004891 communication Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000013589 supplement Substances 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
- G05D1/104—Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
Definitions
- the invention relates to the technical field of unmanned aerial vehicles, in particular to a task dispatching decision-making method and system for an unmanned aerial vehicle cluster.
- UAVs are unmanned aircraft operated by radio remote control equipment and self-provided program control devices, or operated completely or intermittently autonomously by onboard computers.
- UAV technology has been widely used in many aspects, such as aerial photography, agriculture, plant protection, micro selfies, express transportation, disaster relief, monitoring of infectious diseases, surveying and mapping, news reports, power inspections, disaster relief, film and television shooting, etc. Application, which greatly expands the use of drones themselves.
- the purpose of the present invention is to solve at least one of the technical problems existing in the prior art, to provide a method and system for decision-making of mission dispatching for drone clusters, and to realize flexible mission dispatching decision-making.
- the task dispatch decision-making method of the UAV cluster includes the following steps:
- the drones that meet the requirements are sorted according to the distance from the mission location from near to far, and then added to the task queue, where the drones that meet the requirements are equipped with resources that can complete the new task and are in a no-task state Drone
- the task dispatch decision-making method of the UAV cluster further includes the following steps:
- the UAV that has received the return signal is made to return to the ground control station closest to it.
- the initialization parameter includes the following steps:
- the completion of the judgment task includes the following steps:
- the resources include fire extinguishing bombs and power; the resource parameters include maximum flight distance and maximum flight time calculated according to the power, and fire extinguishing bomb flag parameters used to mark whether to carry fire extinguishing bombs.
- the UAV equipped with resources capable of completing the new task satisfies the following conditions: the flag parameter of the fire extinguishing bomb is set to 1, and the maximum flight distance is greater than that of reaching the task location.
- the sum of the distances from the mission location to the nearest ground control station, and the maximum flight time is greater than the flight time to reach the mission location and the flight time from the mission location to the nearest ground control station.
- the unmanned aerial vehicle in the no-mission state satisfies the following conditions: the mission parameter is set to 0.
- the ordering of the drones that meet the requirements in order according to the distance from the task location to the task queue and then adding them to the task queue specifically includes the following steps: equipping them with resources that can complete the new task And the drones in the non-mission state are arranged from near to far according to their distance from the task location; the arranged drones are added to the task queue according to the group of n units to form a drone group;
- the sending an execution instruction to the drones in the task queue at a set time interval specifically includes: sending an execution instruction to the drone group in the task queue at a set time interval.
- the task dispatch decision-making method of the UAV cluster further includes the following steps:
- the drone that is already in the task queue corresponding to the first task meets the following conditions: the distance between it and the task location of the second task is less than the distance between it and the task location of the first task, then the drone will be removed from the first task.
- the task queue corresponding to the task is migrated to the task queue corresponding to the second task;
- the task dispatch decision-making method of the UAV cluster further includes the following steps:
- a task dispatch decision-making system for an unmanned aerial vehicle cluster is characterized in that it is used to execute the task dispatch decision-making method for an unmanned aerial vehicle cluster according to the first aspect of the present invention, and the system includes:
- a drone cluster where the drone cluster includes multiple drones
- control background includes:
- Initialization module used to initialize parameters
- Task receiving module used to receive new tasks
- the first calculation module is used to calculate the distance and flight time of each drone to the mission location of the new mission
- the queue arrangement module is used to sequentially sort the drones that meet the requirements according to the distance from the mission location from short to far, and then add them to the task queue.
- the drones that meet the requirements are those equipped with the new task.
- the command sending module is used to send execution instructions to the drones in the task queue at a set time interval
- the task judgment module is used to judge whether the task is completed.
- the above technical solution has at least the following beneficial effects: due to the large number of drone clusters and complicated tasks, it is easy to cause control confusion.
- the task dispatch decision can accurately control multiple drones to perform tasks until the task is completed, flexible and changeable, rational use of resources, and improve the efficiency of task completion.
- FIG. 1 is a flowchart of a task dispatch decision method of an unmanned aerial vehicle cluster according to an embodiment of the present invention
- Figure 2 is a schematic diagram of the task dispatch decision of the UAV cluster in the multi-task situation
- Figure 3 is a schematic diagram of the mission dispatch decision of the UAV cluster in the case of returning home
- Fig. 4 is a structural diagram of an unmanned aerial vehicle cluster task dispatch decision device according to an embodiment of the present invention.
- an embodiment of the present invention provides a task dispatch decision-making method for a UAV cluster, which includes the following steps:
- Step S10 initialize parameters
- Step S20 Receive a new task, and calculate the distance and flight time of each drone to reach the task location of the new task.
- Step S30 The drones that meet the requirements are sequentially added to the task queue, where the drones that meet the requirements are those that are equipped with resources that can complete the new task, are in a non-task state, and are the closest to the task location.
- Step S40 Send execution instructions to the drones in the task queue at a set time interval until it is determined that the task is completed.
- the task dispatch decision can accurately control multiple UAVs to perform tasks until the task is completed. It is flexible and changeable, uses resources rationally, and improves the efficiency of task completion.
- step S10 includes the following steps:
- Step S11 Label each drone in the drone cluster and determine the coordinate position; for example, if there are x drones in total, then the x drones are labeled U1, U2...Ux, respectively.
- the coordinates are U1_local, U2_local...Ux_local;
- Step S12 Label each ground control station 200 and determine the coordinate position; for example, if there are y ground control stations 200 in total, then the y ground control stations 200 are labeled S1, S2...Sx, and their coordinates are S1_local, S2_local. ...Sx_local;
- Step S13 Initialize resource parameters; specifically, the resources include fire extinguishing bombs and power; correspondingly, the resource parameters include the maximum flight distance D i max and the maximum flight time T i max calculated according to the power, and
- Step S14 Initialize the task parameters; specifically, the task parameter TA i of the drone that receives the execution instruction is set to 1; the task parameter TA i of the drone that has completed the task is set to 0.
- step S10 the control by the background 100 will receive new tasks, are calculated from each of the arrival of the new task station UAV mission location D i and the time of flight T i;
- D i is the coordinate task UAV linear distance coordinate locations;
- T i D i / v i, v i is the index for the conventional i UAV flight speed.
- step S30 specifically includes the following steps:
- the unmanned drones equipped with resources that can complete the new task Arrange the drones equipped with the resources that can complete the new task and are in a non-task state according to their distance from the task location from short to far; the unmanned drones equipped with resources that can complete the new task
- the task parameter TA i 0; prioritize the drone closest to the task location to perform the task, reduce resource consumption, and reduce task execution time to improve task execution efficiency;
- the arranged drones are grouped into a group of n drones and added to the task queue; multiple drones are allowed to complete the task in batches, which further improves the efficiency of task execution.
- the task queue of the drone cluster in the multi-task situation is rearranged and executed according to the following method:
- the drone that is already in the task queue corresponding to the first task meets the following conditions: the distance between it and the task location of the second task is less than the distance between it and the task location of the first task, then the drone will be removed from the first task.
- the task queue corresponding to the task is migrated to the task queue corresponding to the second task;
- the distance between the mission location and the nearest ground control station 200 is the linear distance between the coordinates of the mission location and the coordinates of the closest ground control station 200.
- n is 4.
- n can also take other numbers, and the number of drone groups performing tasks can be allocated according to actual task requirements.
- step S40 an execution instruction is sent to the drone group in the task queue at a set time interval until it is determined that the task is completed.
- the task parameter TA i of each drone in the drone group that receives the execution instruction is set to 1, and the drone group that receives the execution instruction goes out to perform the task. Remove the group of drones from the task queue.
- the mission parameter TA i of the UAV that has performed the mission is set to 0, and it returns to the ground control station 200 that is closest to the mission location.
- the set time is 1 minute.
- the set time can also take other numbers, and the interval time can be arranged according to actual task requirements.
- the completion of the judgment task includes the following steps:
- the fire situation is calculated to determine whether the task is completed; when the task is completed, the task queue corresponding to the task is eliminated.
- the image analysis result uses the mask RCNN algorithm.
- the mask RCNN algorithm analyzes the returned images to obtain flames and smokes. When the flames and smokes are lower than the set threshold, the fire is extinguished and the task is completed.
- the task dispatch decision-making method of the UAV cluster also includes the following steps:
- the UAV that has received the return signal returns to the ground control station 200 closest to it.
- the drone on the way back will continue to send its coordinate position and resource information to the control background 100.
- the control background 100 receives the coordinate position and resource information of the drone on the way back.
- the control background 100 calculates whether the drone on the way back is equipped with resources that can complete the new task, specifically: the maximum flight distance that the current battery can provide is greater than the straight line between the current coordinate position of the drone and the task location of the new task The sum of the linear distance between the mission location of the new mission and the nearest ground control station 200, then the drone is equipped with resources that can complete the new mission; otherwise, the drone is not equipped to complete the new mission H.
- the control background 100 directly sends execution instructions to the drone on the way back that is equipped with resources capable of completing the new task; there is no need to add the drone to the task queue to wait for the execution instruction.
- the drone on the way back receives the execution instruction sent by the control background 100, it sets the task parameter TA i to 1, and sails to the new task location. In this way, a complete new task dispatch decision for the returning drone can be realized, reducing resource consumption, and reducing task execution time to improve task execution efficiency.
- a task dispatch decision-making system for a UAV cluster is used to execute the above-mentioned task dispatch decision-making method for a UAV cluster, and the system includes:
- a drone cluster where the drone cluster includes multiple drones
- Multiple ground control stations 200 are used to relay control signals and supplement resources for the drone; multiple ground control stations 200 are connected to each other and transmit information to realize information interaction between the drone cluster and the control backend 100;
- the control background 100 includes:
- the initialization module 110 is used to initialize parameters
- the task receiving module 120 is used to receive new tasks
- the first calculation module 130 is used to calculate the distance and flight time of each drone to the mission location of the new mission
- the queue arrangement module 140 is used to sequentially sort the drones that meet the requirements according to the distance from the mission location from short to far and then add them to the task queue, wherein the drones that meet the requirements are equipped to complete the new task UAVs that have sufficient resources and are in a non-mission state;
- the command sending module 150 is configured to send execution instructions to the drones in the task queue at a set time interval
- the task judgment module 160 is used to judge whether the task is completed.
- the drone is equipped with a battery, a power monitoring module, a fire-extinguishing bomb delivery device, a camera module, a secondary communication module, and a GPS positioning module.
- the power monitoring module is connected to the battery.
- the camera module takes images of the fire situation at the mission location.
- the GPS positioning module is used for the drone to determine its own coordinate position information.
- the secondary communication module combines power information, fire extinguishing bomb equipment information, and fire images Related information such as coordinate position information is transmitted to the ground control station 200.
- control background 100 further includes a parameter setting module, a parameter storage module, and a main communication module.
- the parameter setting module is used to set relevant parameters
- the parameter storage module is used to store relevant parameters.
- the relevant parameters include the coordinate position information and resource information of the drone, the maximum flight distance, the maximum flight time and the mission parameter TA of each drone. i etc.
- the control background 100 communicates with the ground control station 200 through the main communication module.
- control background 100 of the task dispatch decision-making system of the UAV cluster further includes: a return signal sending module 170, which is used for receiving the confirmation signal from the task judging module 160, to the destination that is flying to the task location.
- the drone sends a return signal to make the drone that has received the return signal return to the ground control station 200 closest to it.
- control background 100 of the task dispatch decision-making system of the drone cluster further includes: a multi-task decision module 180 for re-arranging the task queue of the drone cluster in the multi-task situation.
- control background 100 of the task dispatch decision-making system of the drone cluster further includes: a return-to-home decision-making module 190, which is used to decide the new task dispatch of the return-to-home drone.
- the task dispatch decision-making system of the drone cluster is used to implement the task dispatch decision method of the drone cluster as described above.
- Each module in the system corresponds to each step in the method, and will not be detailed here. .
- Another embodiment of the present invention provides a storage medium storing executable instructions, which are executed by a computer, and command and command the drone cluster according to the above-mentioned task dispatch decision-making method.
- Examples of storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM) ), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technologies, CD-ROM, digital versatile disc (DVD) or other optical storage, magnetic cartridges Type magnetic tape, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by computing devices.
- PRAM phase change memory
- SRAM static random access memory
- DRAM dynamic random access memory
- RAM random access memory
- ROM read-only memory
- EEPROM electrically erasable programmable read-only memory
- flash memory or other memory technologies
- CD-ROM compact disc
- DVD digital versatile disc
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Traffic Control Systems (AREA)
Abstract
无人机集群的任务派遣决策方法及系统,其中方法包括:初始化参数(S10);接收新任务,分别计算各台无人机抵达新任务的任务地点的距离和飞行时间(S20);依次将符合要求的无人机按照与任务地点距离由近至远排序后加入任务队列(S30);按照设定时间间隔地向任务队列中的无人机发送执行指令,直至判断任务完成(S40)。其能精准地控制多台无人机执行任务直至任务完成,灵活多变,合理利用资源,提高任务完成效率。
Description
本发明涉及无人机技术领域,特别是无人机集群的任务派遣决策方法及系统。
无人机是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,或者由机载计算机完全地或间歇地自主地操作。无人机技术在诸多方面得到了广泛的应用,例如在航拍、农业、植保、微型自拍、快递运输、灾难救援、监控传染病、测绘、新闻报道、电力巡检、救灾、影视拍摄等领域的应用,这大大的拓展了无人机本身的用途。
由于无人机技术的发展,无人机应用的情景越来越多样化,往往需要包含多台无人机的无人机集群协同合作来完成任务。但是对于无人机集群的控制决策往往不灵活,导致了无人机集群的资源浪费严重,任务完成效率低下。
发明内容
本发明的目的在于至少解决现有技术中存在的技术问题之一,提供无人机集群的任务派遣决策方法及系统,实现了灵活的任务派遣决策。
本发明解决其问题所采用的技术方案是:
本发明的第一方面,无人机集群的任务派遣决策方法,包括以下步骤:
初始化参数;
接收新任务,分别计算各台无人机抵达所述新任务的任务地点的距离和飞行时间;
依次将符合要求的无人机按照与所述任务地点距离由近至远排序后加入任务队列,其中所述符合要求的无人机为装备有能完成所述新任务的资源且处于无任务状态的无人机;
按照设定时间间隔地向所述任务队列中的无人机发送执行指令,直至判断任务完成。
根据本发明的第一方面,无人机集群的任务派遣决策方法,还包括以下步骤:
当判断得到任务完成,向正飞往所述任务地点的所述无人机发送返航信号;
使接收到所述返航信号的所述无人机向距离其最近的地面控制站返航。
根据本发明的第一方面,所述初始化参数包括以下步骤:
对所述无人机集群中的各台无人机进行标号并确定坐标位置;
对各个地面控制站进行标号并确定坐标位置;
初始化资源参数;
初始化任务参数。
根据本发明的第一方面,所述判断任务完成包括以下步骤:
接收执行完任务的无人机回传的图像;
利用深度学习算法分析回传的图像;
根据图像分析结果计算火势情况以判断任务是否完成。
根据本发明的第一方面,所述资源包括灭火弹和电量;所述资源参数包括根据所述电量计算的最大飞行距离和最大飞行时间以及用于标记是否携带灭火弹的灭火弹标记参数。
根据本发明的第一方面,所述装备有能完成所述新任务的资源的无人机满足以下条件:所述灭火弹标记参数设置为1,所述最大飞行距离大于抵达所述任务地点的距离与所述任务地点离最近的所述地面控制站的距离之和,所述最大飞行时间大于抵达所述任务地点的飞行时间与从所述任务地点至最近的所述地面控制站的飞行时间之和;所述处于无任务状态的无人机满足以下条件:所述任务参数设置为0。
根据本发明的第一方面,所述依次将符合要求的无人机按照与所述任务地点距离由近至远排序后加入任务队列具体包括以下步骤:将装备有能完成所述新任务的资源且处于无任务状态的无人机根据其与所述任务地点的距离由近至远排列;将排列的无人机按照每n台为一组组成无人机组加入任务队列;
所述按照设定时间间隔地向所述任务队列中的无人机发送执行指令具体为:按照设定时间间隔地向所述任务队列中的所述无人机组发送执行指令。
根据本发明的第一方面,无人机集群的任务派遣决策方法,还包括以下步骤:
根据不同的新任务建立不同的任务队列;
当已经处于第一任务对应的任务队列中的无人机满足以下条件:其与第二任 务的任务地点的距离小于其与第一任务的任务地点的距离,则将该无人机从第一任务对应的任务队列迁移至第二任务对应的任务队列中;
对第一任务对应的任务队列和第二任务对应的任务队列重新编排无人机组。
根据本发明的第一方面,无人机集群的任务派遣决策方法,还包括以下步骤:
接收返航途中的无人机的坐标位置和资源信息;
计算返航途中的无人机是否装备有能完成所述新任务的资源;
对装备有能完成所述新任务的资源的返航途中的无人机发送执行指令。
本发明的第二方面,无人机集群的任务派遣决策系统,其特征在于,用于执行如本发明的第一方面所述的无人机集群的任务派遣决策方法,所述系统包括:
无人机集群,所述无人机集群包括多台无人机;
多个地面控制站,用于中继控制信号以及供所述无人机补充资源;
控制后台,所述控制后台包括:
初始化模块,用于初始化参数;
任务接收模块,用于接收新任务;
第一计算模块,用于计算各台无人机抵达所述新任务的任务地点的距离和飞行时间;
队列编排模块,用于依次将符合要求的无人机按照与所述任务地点距离由近至远排序后加入任务队列,其中所述符合要求的无人机为装备有能完成所述新任务的资源且处于无任务状态的无人机;
命令发送模块,用于按照设定时间间隔地向所述任务队列中的无人机发送执行指令;
任务判断模块,用于判断任务是否完成。
上述技术方案至少具有以下的有益效果:由于无人机集群数量众多,任务繁杂,容易造成控制混乱。该任务派遣决策能精准地控制多台无人机执行任务直至任务完成,灵活多变,合理利用资源,提高任务完成效率。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
下面结合附图和实例对本发明作进一步说明。
图1是本发明实施例无人机集群的任务派遣决策方法的流程图;
图2是多任务情况下的无人机集群的任务派遣决策的示意图;
图3是返航情况下的无人机集群的任务派遣决策的示意图;
图4是本发明实施例无人机集群的任务派遣决策装置的结构图。
本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
参照图1,本发明的实施例,提供了无人机集群的任务派遣决策方法,包括以下步骤:
步骤S10、初始化参数;
步骤S20、接收新任务,分别计算各台无人机抵达所述新任务的任务地点的距离和飞行时间;
步骤S30、依次将符合要求的无人机加入任务队列,其中所述符合要求的无人机为装备有能完成所述新任务的资源、处于无任务状态且与所述任务地点距离最近的无人机;
步骤S40、照设定时间间隔地向所述任务队列中的无人机发送执行指令,直至判断任务完成。
在该实施例中,由于无人机集群数量众多,任务繁杂,容易造成控制混乱。该任务派遣决策能精准地控制多台无人机执行任务直至任务完成,灵活多变,合 理利用资源,提高任务完成效率。
进一步,步骤S10包括以下步骤:
步骤S11、对所述无人机集群中的各台无人机进行标号并确定坐标位置;例如,共有x台无人机,则对x台无人机分别标号为U1、U2…Ux,其坐标分别为U1_local、U2_local…Ux_local;
步骤S12、对各个地面控制站200进行标号并确定坐标位置;例如,共有y个地面控制站200,则对y个地面控制站200分别标号为S1、S2…Sx,其坐标分别为S1_local、S2_local…Sx_local;
步骤S13、初始化资源参数;具体地,所述资源包括灭火弹和电量;则对应地,所述资源参数包括根据所述电量计算的最大飞行距离D
i
max和最大飞行时间T
i
max以及用于标记是否携带灭火弹的灭火弹标记参数B
i;B
i=1表示标号为i的无人机携带有灭火弹,B
i=0表示标号为i的无人机无携带灭火弹;
步骤S14、初始化任务参数;具体地,接收到执行指令的无人机的任务参数TA
i设置为1;执行完任务的无人机的任务参数TA
i设置为0。
在步骤S10完成后,控制后台100会由接收新任务,分别计算各台无人机抵达所述新任务的任务地点的距离D
i和飞行时间T
i;D
i为无人机的坐标与任务地点的坐标的直线距离;T
i=D
i/v
i,v
i是标号为i的无人机的常规飞行速度。
进一步,步骤S30具体包括以下步骤:
将装备有能完成所述新任务的资源且处于无任务状态的无人机根据其与所述任务地点的距离由近至远排列;所述装备有能完成所述新任务的资源的无人机满足以下条件:所述灭火弹标记参数B
i=1,所述最大飞行距离D
i
max大于抵达所述任务地点的距离与所述任务地点离最近的所述地面控制站200的距离之和,所述最大飞行时间T
i
max大于抵达所述任务地点的飞行时间与从所述任务地点至最近的所述地面控制站200的飞行时间之和;所述处于无任务状态的无人机满足以下条件:所述任务参数TA
i=0;优先安排距离任务地点最近的无人机去执行任务,减少资源的消耗,同时减少任务执行时间以提高任务执行效率;
将排列的无人机按照每n台为一组组成无人机组加入任务队列;使多台无人机分批去完成任务,进一步提高任务执行效率。
参照图2,另外,对于多任务情况下的无人机集群的任务队列重新编排,按 照以下方法执行:
根据不同的新任务建立不同的任务队列;
当已经处于第一任务对应的任务队列中的无人机满足以下条件:其与第二任务的任务地点的距离小于其与第一任务的任务地点的距离,则将该无人机从第一任务对应的任务队列迁移至第二任务对应的任务队列中;
对第一任务对应的任务队列和第二任务对应的任务队列重新编排无人机组。
提供了多任务情况下的无人机集群的任务派遣决策,即始终遵循无人机离任务地点最近为最优的决策,将该无人机加入到最近的任务地点对应的任务队列中,减少资源的消耗,同时减少任务执行时间以提高任务执行效率。
需要说明的是,所述任务地点离最近的所述地面控制站200的距离为任务地点的坐标与离其最近的地面控制站200的坐标的直线距离。
具体地,在该实施例中,n为4。当然在其他实施例中,n也可以取其他数量,可以根据实际任务需求分配执行任务的无人机组的数量。
进一步,在步骤S40中,按照设定时间间隔地向所述任务队列中的所述无人机组发送执行指令,直至判断任务完成。接收到执行指令的无人机组中的各台无人机的任务参数TA
i设置为1,接收到执行指令的无人机组出队执行任务。将该组无人机组从任务队列中消除。
执行完任务的无人机的任务参数TA
i设置为0,并返航至距离任务地点最近的地面控制站200。
需要说明的是,在该实施例中,设定时间为1分钟。当然在其他实施例中,设定时间也可以取其他数量,可以根据实际任务需求安排间隔时间。
进一步,所述判断任务完成包括以下步骤:
控制后台100接收执行完任务的无人机回传的图像;
利用深度学习算法分析回传的图像;
根据图像分析结果计算火势情况以判断任务是否完成;当任务完成,对应该任务的任务队列消除。
具体地,在该实施例中,所述图像分析结果采用mask RCNN算法。当然在其他实施例中,也可以采用其他图像处理算法。通过mask RCNN算法分析回传的图像得到火焰类和烟雾类,当火焰类和烟雾类低于设定阈值,则火灾被扑灭,任务 完成。
进一步,无人机集群的任务派遣决策方法,还包括以下步骤:
当判断得到任务完成,向正飞往所述任务地点的所述无人机发送返航信号;接收到返航信号的无人机的任务参数TA
i设置为0;
接收到所述返航信号的所述无人机向距离其最近的地面控制站200返航。
参照图3,另一个实施例,在返航途中的无人机会持续向控制后台100发送其坐标位置和资源信息。控制后台100接收返航途中的无人机的坐标位置和资源信息。控制后台100计算返航途中的无人机是否装备有能完成所述新任务的资源,具体为:当前电量能提供的最大飞行距离大于该无人机当前的坐标位置离新任务的任务地点的直线距离与新任务的任务地点离最近的地面控制站200的直线距离之和,则该无人机装备有能完成所述新任务的资源;否则该无人机没装备有能完成所述新任务的资源。
控制后台100对装备有能完成所述新任务的资源的返航途中的无人机直接发送执行指令;无需将该无人机加入任务队列等待执行指令。当返航途中的无人机接收到控制后台100发送的执行指令,将任务参数TA
i设置为1,并向新的任务地点航行。从而实现完善的返航无人机的新任务派遣决策,减少资源的消耗,同时减少任务执行时间以提高任务执行效率。
参照图4,本发明的另一个实施例,无人机集群的任务派遣决策系统,用于执行如上所述的无人机集群的任务派遣决策方法,所述系统包括:
无人机集群,所述无人机集群包括多台无人机;
多个地面控制站200,用于中继控制信号以及供所述无人机补充资源;多个地面控制站200相互连接并传递信息,实现无人机集群与控制后台100间的信息交互;
控制后台100,所述控制后台100包括:
初始化模块110,用于初始化参数;
任务接收模块120,用于接收新任务;
第一计算模块130,用于计算各台无人机抵达所述新任务的任务地点的距离和飞行时间;
队列编排模块140,用于依次将符合要求的无人机按照与所述任务地点距离 由近至远排序后加入任务队列,其中所述符合要求的无人机为装备有能完成所述新任务的资源且处于无任务状态的无人机;
命令发送模块150,用于按照设定时间间隔地向所述任务队列中的无人机发送执行指令;
任务判断模块160,用于判断任务是否完成。
进一步,无人机设置有电池、电量监控模块、灭火弹投放装置、摄像模块、次通信模块与GPS定位模块。电量监控模块与电池连接,摄像模块拍摄任务地点的火灾情况的图像,GPS定位模块用于无人机确定自身的坐标位置信息,次通信模块将电量信息、灭火弹装备信息、火灾情况的图像和坐标位置信息等相关信息传送至地面控制站200。
进一步,所述控制后台100还包括参数设置模块、参数存储模块以及主通信模块。参数设置模块用于设置相关参数,参数存储模块用于存储相关参数,相关参数包括无人机的坐标位置信息和资源信息、对应各台无人机的最大飞行距离、最大飞行时间以及任务参数TA
i等。控制后台100通过主通信模块与地面控制站200进行信息交互。
另一个实施例,无人机集群的任务派遣决策系统的控制后台100还包括:返航信号发送模块170,用于接收到任务判断模块160的确认信号后,向正飞往所述任务地点的所述无人机发送返航信号,使接收到所述返航信号的所述无人机向距离其最近的地面控制站200返航。
另一个实施例,无人机集群的任务派遣决策系统的控制后台100还包括:多任务决策模块180,用于决策多任务情况下的无人机集群的任务队列重新编排。
另一个实施例,无人机集群的任务派遣决策系统的控制后台100还包括:返航决策模块190,用于决策返航无人机的新任务派遣。
需要说明的是,无人机集群的任务派遣决策系统,用于执行如上所述的无人机集群的任务派遣决策方法,系统中的各模块对应于方法中的各步骤,在此不在详述。
本发明的另一个实施例,提供了存储介质,该存储介质存储有可执行指令,可执行指令被计算机执行,对无人机集群按照如上所述的任务派遣决策方法进行命令指挥。
存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
以上所述,只是本发明的较佳实施例而已,本发明并不局限于上述实施方式,只要其以相同的手段达到本发明的技术效果,都应属于本发明的保护范围。
Claims (10)
- 无人机集群的任务派遣决策方法,其特征在于,包括以下步骤:初始化参数;接收新任务,分别计算各台无人机抵达所述新任务的任务地点的距离和飞行时间;依次将符合要求的无人机按照与所述任务地点距离由近至远排序后加入任务队列,其中所述符合要求的无人机为装备有能完成所述新任务的资源且处于无任务状态的无人机;按照设定时间间隔地向所述任务队列中的无人机发送执行指令,直至判断任务完成。
- 根据权利要求1所述的无人机集群的任务派遣决策方法,其特征在于,还包括以下步骤:当判断得到任务完成,向正飞往所述任务地点的所述无人机发送返航信号;使接收到所述返航信号的所述无人机向距离其最近的地面控制站返航。
- 根据权利要求1所述的无人机集群的任务派遣决策方法,其特征在于,所述初始化参数包括以下步骤:对所述无人机集群中的各台无人机进行标号并确定坐标位置;对各个地面控制站进行标号并确定坐标位置;初始化资源参数;初始化任务参数。
- 根据权利要求1所述的无人机集群的任务派遣决策方法,其特征在于,所述判断任务完成包括以下步骤:接收执行完任务的无人机回传的图像;利用深度学习算法分析回传的图像;根据图像分析结果计算火势情况以判断任务是否完成。
- 根据权利要求1所述的无人机集群的任务派遣决策方法,其特征在于,所述资源包括灭火弹和电量;所述资源参数包括根据所述电量计算的最大飞行距离和最大飞行时间以及用于标记是否携带灭火弹的灭火弹标记参数。
- 根据权利要求5所述的无人机集群的任务派遣决策方法,其特征在于,所述 装备有能完成所述新任务的资源的无人机满足以下条件:所述灭火弹标记参数设置为1,所述最大飞行距离大于抵达所述任务地点的距离与所述任务地点离最近的所述地面控制站的距离之和,所述最大飞行时间大于抵达所述任务地点的飞行时间与从所述任务地点至最近的所述地面控制站的飞行时间之和;所述处于无任务状态的无人机满足以下条件:所述任务参数设置为0。
- 根据权利要求1所述的无人机集群的任务派遣决策方法,其特征在于,所述依次将符合要求的无人机按照与所述任务地点距离由近至远排序后加入任务队列具体包括以下步骤:将装备有能完成所述新任务的资源且处于无任务状态的无人机根据其与所述任务地点的距离由近至远排列;将排列的无人机按照每n台为一组组成无人机组加入任务队列;所述按照设定时间间隔地向所述任务队列中的无人机发送执行指令具体为:按照设定时间间隔地向所述任务队列中的所述无人机组发送执行指令。
- 根据权利要求1所述的无人机集群的任务派遣决策方法,其特征在于,还包括以下步骤:根据不同的新任务建立不同的任务队列;当已经处于第一任务对应的任务队列中的无人机满足以下条件:其与第二任务的任务地点的距离小于其与第一任务的任务地点的距离,则将该无人机从第一任务对应的任务队列迁移至第二任务对应的任务队列中;对第一任务对应的任务队列和第二任务对应的任务队列重新编排无人机组。
- 根据权利要求2所述的无人机集群的任务派遣决策方法,其特征在于,还包括以下步骤:接收返航途中的无人机的坐标位置和资源信息;计算返航途中的无人机是否装备有能完成所述新任务的资源;对装备有能完成所述新任务的资源的返航途中的无人机发送执行指令。
- 无人机集群的任务派遣决策系统,其特征在于,用于执行如权利要求1至9任一项所述的无人机集群的任务派遣决策方法,所述系统包括:无人机集群,所述无人机集群包括多台无人机;多个地面控制站,用于中继控制信号以及供所述无人机补充资源;控制后台,所述控制后台包括:初始化模块,用于初始化参数;任务接收模块,用于接收新任务;第一计算模块,用于计算各台无人机抵达所述新任务的任务地点的距离和飞行时间;队列编排模块,用于依次将符合要求的无人机按照与所述任务地点距离由近至远排序后加入任务队列,其中所述符合要求的无人机为装备有能完成所述新任务的资源且处于无任务状态的无人机;命令发送模块,用于按照设定时间间隔地向所述任务队列中的无人机发送执行指令;任务判断模块,用于判断任务是否完成。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010164605.XA CN111414005A (zh) | 2020-03-11 | 2020-03-11 | 无人机集群的任务派遣决策方法及系统 |
CN202010164605.X | 2020-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021179550A1 true WO2021179550A1 (zh) | 2021-09-16 |
Family
ID=71491010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/112539 WO2021179550A1 (zh) | 2020-03-11 | 2020-08-31 | 无人机集群的任务派遣决策方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111414005A (zh) |
WO (1) | WO2021179550A1 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113933871A (zh) * | 2021-10-15 | 2022-01-14 | 贵州师范学院 | 基于无人机和北斗定位的洪水灾情检测系统 |
CN114326827A (zh) * | 2022-01-12 | 2022-04-12 | 北方工业大学 | 一种无人机集群多任务动态分配方法及系统 |
CN115281063A (zh) * | 2022-08-26 | 2022-11-04 | 吉林省佰强科技有限责任公司 | 一种智能灌溉控制系统及操作方法 |
CN115619064A (zh) * | 2022-12-16 | 2023-01-17 | 南方科技大学 | 救援计划制定方法、装置、设备和存储介质 |
CN115617073A (zh) * | 2022-10-10 | 2023-01-17 | 北京捷翔天地信息技术有限公司 | 一种基于自组网的无人设备集群指挥和控制方法 |
CN115963852A (zh) * | 2022-11-21 | 2023-04-14 | 北京航空航天大学 | 一种基于协商机制的无人机集群构建方法 |
CN116320984A (zh) * | 2023-03-22 | 2023-06-23 | 扬州宇安电子科技有限公司 | 一种基于协作干扰的无人机安全通信系统及方法 |
CN117131706A (zh) * | 2023-10-24 | 2023-11-28 | 中国人民解放军国防科技大学 | 面向计算机生成兵力的决策控制装置及行为控制方法 |
CN118134218A (zh) * | 2024-05-08 | 2024-06-04 | 杭州牧星科技有限公司 | 智能多无人机协同任务执行系统 |
CN118394106A (zh) * | 2024-06-24 | 2024-07-26 | 天津渤海职业技术学院 | 一种无人机返航路径确定方法和系统 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111414005A (zh) * | 2020-03-11 | 2020-07-14 | 五邑大学 | 无人机集群的任务派遣决策方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104867357A (zh) * | 2015-01-21 | 2015-08-26 | 中南大学 | 面向地震应急响应的多无人机调度与任务规划方法 |
US9749894B1 (en) * | 2015-01-07 | 2017-08-29 | Amdocs Development Limited | System, method, and computer program for performing mobile network related tasks based on performance data acquired by an unmanned vehicle |
CN109190985A (zh) * | 2018-09-07 | 2019-01-11 | 江苏师范大学 | 一种多机器人救援任务分配方法 |
CN109635991A (zh) * | 2018-10-19 | 2019-04-16 | 北京邮电大学 | 一种森林火灾中规划无人机群救援的优化方法及系统 |
CN110147870A (zh) * | 2019-04-08 | 2019-08-20 | 合肥工业大学 | 一种用于地震灾后多无人机任务分配的优化方法 |
CN111414005A (zh) * | 2020-03-11 | 2020-07-14 | 五邑大学 | 无人机集群的任务派遣决策方法及系统 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105302153B (zh) * | 2015-10-19 | 2018-04-17 | 南京航空航天大学 | 异构多无人机协同察打任务的规划方法 |
CN106681358A (zh) * | 2017-03-03 | 2017-05-17 | 合肥工业大学 | 集中式无人机编队任务分配方法和装置 |
CN107728643B (zh) * | 2017-11-10 | 2019-10-25 | 西安电子科技大学 | 一种动态环境下的无人机群分布式任务调度方法 |
CN109814589A (zh) * | 2017-11-20 | 2019-05-28 | 南京模幻天空航空科技有限公司 | 基于无人机航摄技术航道事故处理系统及方法 |
CN108171315B (zh) * | 2017-12-27 | 2021-11-19 | 南京邮电大学 | 基于smc粒子群算法的多无人机任务分配方法 |
CN108241349B (zh) * | 2018-01-15 | 2020-08-21 | 梁晓龙 | 消防无人机集群系统及消防方法 |
CN108647770A (zh) * | 2018-04-19 | 2018-10-12 | 东华大学 | 一种基于粒子群算法的多无人机救灾搜索路径的优化方法 |
CN108594854A (zh) * | 2018-04-28 | 2018-09-28 | 广州亿航智能技术有限公司 | 一种无人机集群及其飞行方法 |
CN110362107A (zh) * | 2019-06-17 | 2019-10-22 | 杭州电子科技大学 | 基于免疫优化算法的多无人机任务分配问题的求解方法 |
-
2020
- 2020-03-11 CN CN202010164605.XA patent/CN111414005A/zh active Pending
- 2020-08-31 WO PCT/CN2020/112539 patent/WO2021179550A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9749894B1 (en) * | 2015-01-07 | 2017-08-29 | Amdocs Development Limited | System, method, and computer program for performing mobile network related tasks based on performance data acquired by an unmanned vehicle |
CN104867357A (zh) * | 2015-01-21 | 2015-08-26 | 中南大学 | 面向地震应急响应的多无人机调度与任务规划方法 |
CN109190985A (zh) * | 2018-09-07 | 2019-01-11 | 江苏师范大学 | 一种多机器人救援任务分配方法 |
CN109635991A (zh) * | 2018-10-19 | 2019-04-16 | 北京邮电大学 | 一种森林火灾中规划无人机群救援的优化方法及系统 |
CN110147870A (zh) * | 2019-04-08 | 2019-08-20 | 合肥工业大学 | 一种用于地震灾后多无人机任务分配的优化方法 |
CN111414005A (zh) * | 2020-03-11 | 2020-07-14 | 五邑大学 | 无人机集群的任务派遣决策方法及系统 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113933871B (zh) * | 2021-10-15 | 2023-01-24 | 贵州师范学院 | 基于无人机和北斗定位的洪水灾情检测系统 |
CN113933871A (zh) * | 2021-10-15 | 2022-01-14 | 贵州师范学院 | 基于无人机和北斗定位的洪水灾情检测系统 |
CN114326827A (zh) * | 2022-01-12 | 2022-04-12 | 北方工业大学 | 一种无人机集群多任务动态分配方法及系统 |
CN114326827B (zh) * | 2022-01-12 | 2023-06-09 | 北方工业大学 | 一种无人机集群多任务动态分配方法及系统 |
CN115281063B (zh) * | 2022-08-26 | 2023-11-24 | 吉林省佰强科技有限责任公司 | 一种智能灌溉控制系统及操作方法 |
CN115281063A (zh) * | 2022-08-26 | 2022-11-04 | 吉林省佰强科技有限责任公司 | 一种智能灌溉控制系统及操作方法 |
CN115617073A (zh) * | 2022-10-10 | 2023-01-17 | 北京捷翔天地信息技术有限公司 | 一种基于自组网的无人设备集群指挥和控制方法 |
CN115963852A (zh) * | 2022-11-21 | 2023-04-14 | 北京航空航天大学 | 一种基于协商机制的无人机集群构建方法 |
CN115963852B (zh) * | 2022-11-21 | 2023-09-12 | 北京航空航天大学 | 一种基于协商机制的无人机集群构建方法 |
CN115619064A (zh) * | 2022-12-16 | 2023-01-17 | 南方科技大学 | 救援计划制定方法、装置、设备和存储介质 |
CN116320984A (zh) * | 2023-03-22 | 2023-06-23 | 扬州宇安电子科技有限公司 | 一种基于协作干扰的无人机安全通信系统及方法 |
CN116320984B (zh) * | 2023-03-22 | 2023-10-03 | 扬州宇安电子科技有限公司 | 一种基于协作干扰的无人机安全通信系统及方法 |
CN117131706A (zh) * | 2023-10-24 | 2023-11-28 | 中国人民解放军国防科技大学 | 面向计算机生成兵力的决策控制装置及行为控制方法 |
CN117131706B (zh) * | 2023-10-24 | 2024-01-30 | 中国人民解放军国防科技大学 | 面向计算机生成兵力的决策控制装置及行为控制方法 |
CN118134218A (zh) * | 2024-05-08 | 2024-06-04 | 杭州牧星科技有限公司 | 智能多无人机协同任务执行系统 |
CN118394106A (zh) * | 2024-06-24 | 2024-07-26 | 天津渤海职业技术学院 | 一种无人机返航路径确定方法和系统 |
Also Published As
Publication number | Publication date |
---|---|
CN111414005A (zh) | 2020-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021179550A1 (zh) | 无人机集群的任务派遣决策方法及系统 | |
Brunner et al. | The urban last mile problem: Autonomous drone delivery to your balcony | |
US11887488B2 (en) | Computer aided dispatch of drones | |
JP6727269B2 (ja) | 航空機認識表示 | |
Fu et al. | Secure multi-UAV collaborative task allocation | |
Bupe et al. | Relief and emergency communication network based on an autonomous decentralized UAV clustering network | |
Ho et al. | Improved conflict detection and resolution for service UAVs in shared airspace | |
CN106406327A (zh) | 一种无人机任务架构快速验证平台 | |
CN108830448A (zh) | 无人机集群任务分解发送方法及系统 | |
CN113220030A (zh) | 无人机电力巡检航线的生成方法、装置、存储介质及电子设备 | |
CN115187005A (zh) | 调度方法、装置、设备及存储介质 | |
Chen et al. | Autonomous planning of optimal four-dimensional trajectory for real-time en-route airspace operation with solution space visualisation | |
CN115145796A (zh) | 一种码头操作系统效能的评估方法和码头数字仿真平台 | |
CN112634662B (zh) | 电子围栏、控制系统、方法、介质、无人机编队及终端 | |
Kopeikin et al. | Flight testing a heterogeneous multi-UAV system with human supervision | |
Lorenz et al. | Design and flight testing of a gyrocopter drone technology demonstrator | |
CN108828516A (zh) | 一种无人机的定位设备 | |
CN113962015B (zh) | 一种采用规则控制的空域使用过程仿真模拟系统及方法 | |
CN115438063A (zh) | 机群系统的数据处理方法、数据处理装置及其电子设备 | |
US20230035476A1 (en) | Information processing apparatus, information processing method, program, and information processing system | |
US20230074633A1 (en) | Aircraft management system and method of use | |
Grote et al. | FlyPaw: Optimized Route Planning for Scientific UAVMissions | |
US20210082290A1 (en) | Determining an airport for landing an aircraft | |
CN112149467A (zh) | 飞机集群执行任务的方法和长机 | |
Lunlong et al. | Analysis of requirements and architecture of the next generation flight management system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20924389 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20924389 Country of ref document: EP Kind code of ref document: A1 |