WO2021179350A1 - Method of damage detection for decks of girder bridges using an actively excited vehicle - Google Patents

Method of damage detection for decks of girder bridges using an actively excited vehicle Download PDF

Info

Publication number
WO2021179350A1
WO2021179350A1 PCT/CN2020/080989 CN2020080989W WO2021179350A1 WO 2021179350 A1 WO2021179350 A1 WO 2021179350A1 CN 2020080989 W CN2020080989 W CN 2020080989W WO 2021179350 A1 WO2021179350 A1 WO 2021179350A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
detection
excitation
deck
bridge
Prior art date
Application number
PCT/CN2020/080989
Other languages
French (fr)
Inventor
Tinghua YI
Jian Zhang
Chunxu QU
Hongnan LI
Original Assignee
Dalian University Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University Of Technology filed Critical Dalian University Of Technology
Publication of WO2021179350A1 publication Critical patent/WO2021179350A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0008Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0075Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by means of external apparatus, e.g. test benches or portable test systems
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • E01D19/125Grating or flooring for bridges

Definitions

  • the present invention belongs to the technical field of damage detection for the bridge, and relates to a method of vibration-based damage detection for the deck of the concrete girder bridge.
  • the mode shape square could be extracted from the acceleration response of the vehicle. Then, by comparing the mode shape square before and after damage, the local damage could be located.
  • the above studies are aimed at simply supported beams and focus on the low-order global modes of vibration.
  • a large number of concrete girder bridges were constructed, which the reinforced concrete deck is supported by several concrete girders.
  • the ratio of the width to the length of the bridge is large, and the bridge cannot be regarded as a simply supported beam. Therefore, the above detection methods are not applicable.
  • the vibration modes of the concrete girder bridge can be divided into two types: the global modes of vibration and local modes of vibration in the deck slab. In summary, it is important to quickly detect the bridge deck by exciting the local vibration of the bridge deck.
  • the objective of the present invention is to provide a new method for deck of girder bridge using an actively excited vehicle, which can solve the problem of quickly locating the damage of the deck during the bridge detection.
  • the procedure of damage detection for the bridge deck is proposed.
  • the algorithm includes following five steps: the measured acceleration signal is divided into equal segments according to the excitation period; the auto power spectrum is computed for the segmented acceleration response; the amplitude of each auto power spectrum is sampled at equal intervals to form the vector; the similarity coefficient Q of any two vectors are calculated to form a matrix; visual results of the deck is generated by combining the matrix with location data of test vehicle.
  • Step 1 Set excitation parameters before the detection.
  • Excitation parameters including frequency bandwidth, period and amplitude of excitation.
  • the test vehicle is parked in the middle of the deck of two adjacent girders, and then the vehicle is excited by the shaker mounted on it.
  • the acceleration response of the vehicle is collected.
  • the frequency f vd of the deck with a test vehicle is obtained from the peak of the auto power spectrum of the acceleration response.
  • the upper limit of the bandwidth be taken as f vd plus 15%-20%, and the lower limit of the bandwidth be taken as f vd minus 15%-20%.
  • the distance traveled by the vehicle on the deck during a period of the excitation is considered as a detection segment.
  • the excitation period is taken as 0.2 s-0.6 s.
  • the amplitude of the excitation depends on the range of the excitation force provided by the type of the shaker.
  • Step 2 Determine the detection path.
  • the span of bridge, number of girders and spacing of two adjacent girders are acquired.
  • the center line of every two adjacent girders is used as the detection path, and the test vehicle can go back and forth to complete the detection of all paths.
  • Step 3 Test vehicle moves across the bridge.
  • the test vehicle travels along the centerline of two adjacent girders from the left to the right end of the bridge according to the detection path set by Step 2.
  • the speed of the vehicle is 0.5 m/s-1.5 m/s.
  • the excitation is applied to the vehicle by the shaker according to the parameters set by Step 1.
  • the acceleration response of the vehicle is synchronously collected by the accelerometer is mounted on the test vehicle.
  • Step 4 Get visual results of the damage detection.
  • the acceleration response of the vehicle contains damage information of the deck.
  • the response is processed by the damage detection algorithm, and the visual results of the damage detection are shown.
  • the algorithm comprises the following steps.
  • the measured acceleration signal is divided into equal segments and each data segment represents a detection segment.
  • the length of each segment is the same as the period of the excitation during the test to ensure that the excitation force is the same in each segment.
  • the signal in the time domain is divided into n segments.
  • the auto power spectrum is computed for the segmented acceleration response. N number of the auto power spectrum will be obtained by n segments.
  • the amplitude of each auto power spectrum is sampled at equal intervals to form a vector, and a total of n vectors are obtained.
  • the value of Q is used to indicate the degree of similarity between the two vectors.
  • a square matrix of order n is obtained by n vectors, The values in the square matrix represent the differences in the vibration of the bridge deck between any two detection segments.
  • the visualization of results is performed.
  • the square matrix obtained in the previous step is integrated with positioning data to generate the contour plot of the scanned deck.
  • the advantage of the invention is that the vibration of the bridge deck is excited by the actively excited vehicle, and the damage response algorithm is used to process the acceleration response of the vehicle to determine the location of the damage.
  • the structure of the actively excited vehicle is simple, and the acceleration response is convenient to obtain.
  • Figure 1 is the determined detection path.
  • Figure 2 is the model of the actively excited vehicle.
  • Figure 3 is the cross section of the bridge.
  • Figure 4 is the acceleration response measured from the vehicle in the step 1.
  • Figure 5 is the auto power spectrum of the response measured from the vehicle in the step 1.
  • Figure 6 is the damage scenarios of delamination and section loss are set in each lane.
  • Figure 7 is the typical acceleration response measured from the vehicle as the vehicle travels across the bridge.
  • Figure 8 is the Visual results for delamination (Lane 1, Lane 2) and section loss (Lane 4, Lane 5) (a) plot of Lane 1 (b) plot of Lane 2 (c) plot of Lane 4 (d) plot of Lane 5.
  • the bridge has a roadway width of 13.30 m and a bridge deck thickness of 0.20m, as shown in Figure 3.
  • the span of the bridge is 20m.
  • the number of crossbeams is three, and the crossbeams are located at the end and middle of the bridge.
  • the test vehicle is simplified to the spring mass damping system.
  • the mass of the car body is 400 kg
  • the mass of the wheel is 100 kg
  • spring stiffness is 1e6 kN/m
  • damping ratio is 0.02. Damage scenarios of the delamination and section loss are set in each lane, as shown in Figure 7. The procedures are described as follows:
  • the excitation parameters are set before the detection.
  • the frequency f vd of the deck with a test vehicle is obtained by swept sine excitation in the step 1 of damage detection.
  • the parameters of excitation are as follows: the total time of excitation is 5s, the frequency bandwidth is 50 Hz-150 Hz, and the amplitude is 0.1 kN.
  • the acceleration response of the vehicle is measured, as shown in Figure 4. Auto power spectrum of the response is given in Figure 5.
  • the frequency corresponding to the highest peak in the spectrum is 99.71 Hz, which is the f vd .
  • the periodic swept sine excitation is applied to the vehicle to continuously excite the bridge deck during the vehicle traveling across the bridge.
  • the parameters of excitation are as follows: the period of excitation is 0.4 s, the frequency bandwidth is 80 Hz -120 Hz, and the amplitude is 0.1 kN.
  • the speed of the test vehicle is 1 m/s.
  • test vehicle moves from the left to the right end of the bridge according to the detection path set by Step 2.
  • the acceleration response of the vehicle is shown in Figure 7.
  • the proposed invention method can determine the location of the damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

A method of vibration-based damage detection for a deck of a concrete girder bridge is provided. First, a test vehicle is parked on the deck to perform the swept sine excitation, and the excitation frequency bandwidth, period and amplitude during the detection process are determined according to test results. Second, according to the design drawings or on-site measurement, the span of bridge, number of girders and spacing of two adjacent girders are acquired. And then, the detection path of the test vehicle can be determined. Third, the test vehicle moves from left end to right end of the bridge according to the detection path. The acceleration of the vehicle is collected. At last, the acceleration is processed by the damage detection algorithm. The algorithm includes following five steps: the measured acceleration is divided into equal segments according to the excitation period; the auto power spectrum is computed for the segmented acceleration response; the amplitude of each auto power spectrum is sampled at equal intervals to form the vector; the similarity coefficient Q of any two vectors are calculated to form a matrix; visual results of the deck are generated by combining the matrix with location data of the test vehicle.

Description

METHOD OF DAMAGE DETECTION FOR DECKS OF GIRDER BRIDGES USING AN ACTIVELY EXCITED VEHICLE Technical Field
The present invention belongs to the technical field of damage detection for the bridge, and relates to a method of vibration-based damage detection for the deck of the concrete girder bridge.
Background
Because of material degradation and higher traffic loads, concrete bridge decks may suffer the local damage such as delamination, crack, reinforcement corrosion and spalling. Visual inspection is most extensively used for monitoring the damages in concrete structures. The main disadvantage of visual inspection is that it detects the cracks, deterioration and damage only when it begins to affect the life of the structure or in some cases it has badly affected the internal layers of the structure while only minor cracks appear on the surface. Meanwhile, inspection at bottom of bridge deck on the stream or river is very difficult. Furthermore, non-destructive testing technology can also be used to detect the damage of the bridge deck. For example: Ground penetrating radar (GPR) , Impact echo (IE) , Ultrasonic pulse echo (UPE) , Electrical Resistivity (ER) and so on. For small and regular structures, such as the local damage detection of pressure vessels. Non-destructive testing technology is very effective. However, they are found to be difficult to implement in large civil engineering structures.
In addition to above non-destructive testing methods, the vibration-based damage detection method has already been widely studied for many years. In  dynamic test, the natural frequency, mode shapes and modal damping values are measured during testing. The values of these modal parameters change whenever a structure deteriorates. Traditional vibration tests aimed at measuring the modal parameters often require on-site installation of the measurement equipment, which is not only costly, but also inconvenient. Yang et al. got an idea of extracting natural frequencies and mode shapes of bridge structures from the acceleration of a passing vehicle. This method needs only one sensor installed on the vehicle, which greatly facilitates its implementation. Inspired by Yang’s work, Zhang et al. proposed a damage detection approach by joining sinusoidal tapping force on the vehicle passing across the structure. The mode shape square could be extracted from the acceleration response of the vehicle. Then, by comparing the mode shape square before and after damage, the local damage could be located. The above studies are aimed at simply supported beams and focus on the low-order global modes of vibration. Among the small and medium span bridges, a large number of concrete girder bridges were constructed, which the reinforced concrete deck is supported by several concrete girders. The ratio of the width to the length of the bridge is large, and the bridge cannot be regarded as a simply supported beam. Therefore, the above detection methods are not applicable. According to the structural characteristics of the concrete girder bridge, the vibration modes of the concrete girder bridge can be divided into two types: the global modes of vibration and local modes of vibration in the deck slab. In summary, it is important to quickly detect the bridge deck by exciting the local vibration of the bridge deck.
Summary
The objective of the present invention is to provide a new method for deck of girder bridge using an actively excited vehicle, which can solve the problem of quickly locating the damage of the deck during the bridge detection.
The technical solution of the present invention is as follows:
The procedure of damage detection for the bridge deck is proposed. First, the test vehicle is parked on the deck to perform the swept sine excitation, and the excitation frequency bandwidth, period and amplitude during the detection process are determined according to test results. Second, according to the design drawings or on-site measurement, the span of bridge, number of girders and spacing of two adjacent girders are acquired. And then, the detection path of the test vehicle can be determined. Third, the test vehicle moves from the left to the right end of the bridge according to the detection path. The acceleration of the vehicle is collected. At last, the acceleration is processed by the damage detection algorithm. The algorithm includes following five steps: the measured acceleration signal is divided into equal segments according to the excitation period; the auto power spectrum is computed for the segmented acceleration response; the amplitude of each auto power spectrum is sampled at equal intervals to form the vector; the similarity coefficient Q of any two vectors are calculated to form a matrix; visual results of the deck is generated by combining the matrix with location data of test vehicle.
The procedures of the damage detection for the bridge deck are as follows:
Step 1: Set excitation parameters before the detection.
Excitation parameters including frequency bandwidth, period and amplitude of excitation. The test vehicle is parked in the middle of the deck of two adjacent girders,  and then the vehicle is excited by the shaker mounted on it. At the same time, the acceleration response of the vehicle is collected. The frequency f vd of the deck with a test vehicle is obtained from the peak of the auto power spectrum of the acceleration response. The upper limit of the bandwidth be taken as f vd plus 15%-20%, and the lower limit of the bandwidth be taken as f vd minus 15%-20%. The distance traveled by the vehicle on the deck during a period of the excitation is considered as a detection segment. The excitation period is taken as 0.2 s-0.6 s. The amplitude of the excitation depends on the range of the excitation force provided by the type of the shaker.
Step 2: Determine the detection path.
According to the design drawings or on-site measurement, the span of bridge, number of girders and spacing of two adjacent girders are acquired. The center line of every two adjacent girders is used as the detection path, and the test vehicle can go back and forth to complete the detection of all paths.
Step 3: Test vehicle moves across the bridge.
The test vehicle travels along the centerline of two adjacent girders from the left to the right end of the bridge according to the detection path set by Step 2. The speed of the vehicle is 0.5 m/s-1.5 m/s. At the same time, the excitation is applied to the vehicle by the shaker according to the parameters set by Step 1. The acceleration response of the vehicle is synchronously collected by the accelerometer is mounted on the test vehicle.
Step 4: Get visual results of the damage detection.
The acceleration response of the vehicle contains damage information of the  deck. The response is processed by the damage detection algorithm, and the visual results of the damage detection are shown. The algorithm comprises the following steps.
In the first step, the measured acceleration signal is divided into equal segments and each data segment represents a detection segment. The length of each segment is the same as the period of the excitation during the test to ensure that the excitation force is the same in each segment. For example, the signal in the time domain is divided into n segments.
In the second step, the auto power spectrum is computed for the segmented acceleration response. N number of the auto power spectrum will be obtained by n segments.
In the third step, the amplitude of each auto power spectrum is sampled at equal intervals to form a vector, and a total of n vectors are obtained.
In the fourth step, for any two vectors V i and V j, the value of Q is calculated as follow:
Figure PCTCN2020080989-appb-000001
The value of Q is used to indicate the degree of similarity between the two vectors. A square matrix of order n is obtained by n vectors, The values in the square matrix represent the differences in the vibration of the bridge deck between any two detection segments.
In the fifth step, the visualization of results is performed. The square matrix obtained in the previous step is integrated with positioning data to generate the  contour plot of the scanned deck.
The advantage of the invention is that the vibration of the bridge deck is excited by the actively excited vehicle, and the damage response algorithm is used to process the acceleration response of the vehicle to determine the location of the damage. The structure of the actively excited vehicle is simple, and the acceleration response is convenient to obtain.
Description of Drawings
Figure 1 is the determined detection path.
Figure 2 is the model of the actively excited vehicle.
Figure 3 is the cross section of the bridge.
Figure 4 is the acceleration response measured from the vehicle in the step 1.
Figure 5 is the auto power spectrum of the response measured from the vehicle in the step 1.
Figure 6 is the damage scenarios of delamination and section loss are set in each lane.
Figure 7 is the typical acceleration response measured from the vehicle as the vehicle travels across the bridge.
Figure 8 is the Visual results for delamination (Lane 1, Lane 2) and section loss (Lane 4, Lane 5) (a) plot of Lane 1 (b) plot of Lane 2 (c) plot of Lane 4 (d) plot of Lane 5.
Detailed Description
The present invention is further described below in combination with the technical solution and figures.
This embodiment uses numerical simulations to verify the validity of the method proposed. The bridge has a roadway width of 13.30 m and a bridge deck thickness of 0.20m, as shown in Figure 3. The span of the bridge is 20m. The number of crossbeams is three, and the crossbeams are located at the end and middle of the bridge. The test vehicle is simplified to the spring mass damping system. The mass of the car body is 400 kg, the mass of the wheel is 100 kg, spring stiffness is 1e6 kN/m and damping ratio is 0.02. Damage scenarios of the delamination and section loss are set in each lane, as shown in Figure 7. The procedures are described as follows:
(1) The excitation parameters are set before the detection. The frequency f vd of the deck with a test vehicle is obtained by swept sine excitation in the step 1 of damage detection. The parameters of excitation are as follows: the total time of excitation is 5s, the frequency bandwidth is 50 Hz-150 Hz, and the amplitude is 0.1 kN.The acceleration response of the vehicle is measured, as shown in Figure 4. Auto power spectrum of the response is given in Figure 5. The frequency corresponding to the highest peak in the spectrum is 99.71 Hz, which is the f vd. The periodic swept sine excitation is applied to the vehicle to continuously excite the bridge deck during the vehicle traveling across the bridge. The parameters of excitation are as follows: the period of excitation is 0.4 s, the frequency bandwidth is 80 Hz -120 Hz, and the amplitude is 0.1 kN. The speed of the test vehicle is 1 m/s.
(2) The vehicle travels along the centerline of two adjacent girders during the test, which is the direction pointed by the arrow in Figure 1. The detection of all lanes is performed in the order marked in Figure 1.
(3) The test vehicle moves from the left to the right end of the bridge according  to the detection path set by Step 2. The acceleration response of the vehicle is shown in Figure 7.
(4) The acceleration response of the vehicle collected in each lane is processed by the damage detection algorithm. Visual results for damage scenarios of delamination and section loss are shown in Figure 8.
For various degrees and forms of the damage, Visual results for damage scenarios appear abnormal at the corresponding position of the damage. As the degree of damage decreases, the degree of abnormality also decreases. Therefore, the proposed invention method can determine the location of the damage.

Claims (1)

  1. A method of damage detection for decks of girder bridges using an actively excited vehicle, wherein, comprising the following steps:
    step 1: set excitation parameters before the detection:
    excitation parameters including frequency bandwidth, period and amplitude of excitation; a test vehicle is parked in the middle of the deck of two adjacent girders, and then the vehicle is excited by the shaker mounted on it; at the same time, the acceleration response of the vehicle is collected; the frequency f vd of the deck with a test vehicle is obtained from the peak of the auto power spectrum of the acceleration response; the upper limit of the bandwidth be taken as f vd plus 15%-20%, and the lower limit of the bandwidth be taken as f vd minus 15%-20%; the distance traveled by the vehicle on the deck during a period of the excitation is considered as a detection segment; the excitation period is taken as 0.2s-0.6s; the amplitude of the excitation depends on the range of the excitation force provided by the type of the exciter;
    step 2: determine the detection path:
    according to the design drawings or on-site measurement, the span of bridge, number of girders and spacing of two adjacent girders are acquired; the center line of every two adjacent girders is used as the detection path, and the test vehicle can go back and forth to complete the detection of all paths;
    step 3: test vehicle moves across the bridge:
    the test vehicle travels along the centerline of two adjacent girders from the left to the right end of the bridge according to the detection path set by step 2; the speed of the vehicle is 0.5m/s-1.5m/s; at the same time, the excitation is applied to the  vehicle by the shaker according to the parameters set by step 1; the acceleration response of the vehicle is synchronously collected by the accelerometer is mounted on the test vehicle;
    step 4: get visual results of the damage detection:
    the acceleration response of the vehicle contains damage information of the deck; the response is processed by the damage detection algorithm, and the visual results of the damage detection are shown; the algorithm comprises the following steps:
    first step, the measured acceleration signal is divided into equal segments and each data segment represents a detection segment; the length of each segment is the same as the period of the excitation during the test to ensure that the excitation force is the same in each segment; the signal in the time domain is divided into n segments;
    second step, the auto power spectrum is computed for the segmented acceleration response; N number of the auto power spectrum will be obtained by n segments;
    third step, the amplitude of each auto power spectrum is sampled at equal intervals to form a vector, and a total of n vectors are obtained;
    fourth step, for any two vectors V i and V j, the value of Q is calculated as follow:
    Figure PCTCN2020080989-appb-100001
    the value of Q is used to indicate the degree of similarity between the two vectors; a square matrix of order n is obtained by n vectors, the values in the square matrix represent the differences in the vibration of the bridge deck between any two  detection segments;
    fifth step, the visualization of results is performed; the square matrix obtained in the previous step is integrated with positioning data to generate the contour plot of the scanned deck.
PCT/CN2020/080989 2020-03-13 2020-03-25 Method of damage detection for decks of girder bridges using an actively excited vehicle WO2021179350A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010173038.4 2020-03-13
CN202010173038.4A CN111366317B (en) 2020-03-13 2020-03-13 Method for detecting damage of beam type bridge deck by using actively-excited vehicle

Publications (1)

Publication Number Publication Date
WO2021179350A1 true WO2021179350A1 (en) 2021-09-16

Family

ID=71208948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080989 WO2021179350A1 (en) 2020-03-13 2020-03-25 Method of damage detection for decks of girder bridges using an actively excited vehicle

Country Status (2)

Country Link
CN (1) CN111366317B (en)
WO (1) WO2021179350A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114756936A (en) * 2022-04-20 2022-07-15 嘉兴南湖学院 Bridge dynamic characteristic identification method based on machine vision
CN115510724A (en) * 2022-10-27 2022-12-23 安徽省交通控股集团有限公司 Bridge damage identification method based on mobile vehicle test
CN116561875A (en) * 2023-07-07 2023-08-08 合肥工业大学 Bridge network vulnerability analysis method considering bridge seismic response correlation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111855245B (en) * 2020-07-06 2021-09-24 大连理工大学 Vehicle-mounted movable type measuring point scanning sensing device for bridge vibration displacement measurement and measuring method
CN112629652A (en) * 2020-12-14 2021-04-09 湖南大学 Bridge space modal shape obtaining method and system based on vehicle response
CN113252777B (en) * 2021-04-01 2022-04-29 河海大学 Detection device and detection method for cracks of underwater concrete panel of rock-fill dam
CN113960165B (en) * 2021-10-09 2023-02-14 大连理工大学 Method for detecting damage of hinge joint of plate girder bridge by using vibration mode extracted from response of moving vehicle
CN114091160B (en) * 2021-11-25 2023-09-05 中铁二院工程集团有限责任公司 Intelligent detection method and system for bridge structure damage
CN114166943A (en) * 2021-12-03 2022-03-11 四川西南交大铁路发展股份有限公司 Active rail damage monitoring method and terminal based on nonlinear ultrasonic waves
CN114444983B (en) * 2022-04-08 2022-08-23 深圳市城市交通规划设计研究中心股份有限公司 Urban bridge group state evaluation method based on axle coupling and digital twinning

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349628A (en) * 2005-06-20 2006-12-28 Rik Co Ltd Quality evaluation device for concrete structure and quality evaluation method for concrete structure
CN101561379A (en) * 2009-05-13 2009-10-21 清华大学 Tap-scanning method for detecting structural damages
CN101923027A (en) * 2010-05-28 2010-12-22 清华大学 System, equipment and method for detecting structural damages
CN103076393A (en) * 2012-12-28 2013-05-01 清华大学 Knocking scan type bridge damage detecting system
CN106441748A (en) * 2016-09-28 2017-02-22 中国电力科学研究院 Method for determining dynamic characteristic of large turbine engine base
CN206883678U (en) * 2016-12-30 2018-01-16 成都圭目机器人有限公司 A kind of road damage check robot system
US20180149555A1 (en) * 2016-11-30 2018-05-31 Fujitsu Limited Estimating method, information processing device, and non-transitory computer-readable recording medium storing estimating program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621225B (en) * 2012-03-30 2014-04-16 东南大学 Method for testing damping characteristic parameter of road surface and bridge deck pavement material
CN105064420A (en) * 2015-08-06 2015-11-18 交通运输部天津水运工程科学研究所 High-pile wharf foundation pile damage diagnosis method based on structural residual modal force
CN106802222A (en) * 2017-01-13 2017-06-06 重庆大学 A kind of bridge damnification diagnostic method based on Vehicle-Bridge Coupling System
CN109855823B (en) * 2019-01-25 2020-06-30 重庆大学 Method for identifying damage of bridge structure by using test vehicle
CN110568069B (en) * 2019-09-11 2021-09-14 重庆大学 Beam bridge damage identification method based on average value of acceleration ratio and GPSA (general purpose analysis System) algorithm

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349628A (en) * 2005-06-20 2006-12-28 Rik Co Ltd Quality evaluation device for concrete structure and quality evaluation method for concrete structure
CN101561379A (en) * 2009-05-13 2009-10-21 清华大学 Tap-scanning method for detecting structural damages
CN101923027A (en) * 2010-05-28 2010-12-22 清华大学 System, equipment and method for detecting structural damages
CN103076393A (en) * 2012-12-28 2013-05-01 清华大学 Knocking scan type bridge damage detecting system
CN106441748A (en) * 2016-09-28 2017-02-22 中国电力科学研究院 Method for determining dynamic characteristic of large turbine engine base
US20180149555A1 (en) * 2016-11-30 2018-05-31 Fujitsu Limited Estimating method, information processing device, and non-transitory computer-readable recording medium storing estimating program
CN206883678U (en) * 2016-12-30 2018-01-16 成都圭目机器人有限公司 A kind of road damage check robot system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIANG ZHIHAI, DAI, XIAOWEI; ZHANG, YAO; LU, QIUHAI: "The Tap-Scan Damage Detection Method for Beam Structures", CHINESE JOURNAL OF SOLID MECHANICS, vol. 32, no. S, 15 October 2011 (2011-10-15), pages 225 - 228, XP055845786, ISSN: 0254-7805, DOI: 10.19636/j.cnki.cjsm42-1250/o3.2011.s1.037 *
XIANG ZHIHAI, ZHANG CHENGHAO; LU QIUHAI; LI LIANYOU; SHEN ZHAOPU: "The Tap-Scan Detection Vehicle for Bridges,", PROCEEDINGS OF THE 19TH ANNUAL CONFERENCE OF THE BEIJING SOCIETY OF MECHANIC, 12 January 2013 (2013-01-12), CN, pages 368 - 369, XP055846324 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114756936A (en) * 2022-04-20 2022-07-15 嘉兴南湖学院 Bridge dynamic characteristic identification method based on machine vision
CN115510724A (en) * 2022-10-27 2022-12-23 安徽省交通控股集团有限公司 Bridge damage identification method based on mobile vehicle test
CN116561875A (en) * 2023-07-07 2023-08-08 合肥工业大学 Bridge network vulnerability analysis method considering bridge seismic response correlation
CN116561875B (en) * 2023-07-07 2023-09-15 合肥工业大学 Bridge network vulnerability analysis method considering bridge seismic response correlation

Also Published As

Publication number Publication date
CN111366317A (en) 2020-07-03
CN111366317B (en) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2021179350A1 (en) Method of damage detection for decks of girder bridges using an actively excited vehicle
Gatti Structural health monitoring of an operational bridge: A case study
O’Brien et al. Bridge weigh-in-motion—Latest developments and applications world wide
Chen et al. 3D LiDAR scans for bridge damage evaluations
CN111060270A (en) Movable rapid monitoring and intelligent evaluation method for urban viaduct
JP6120186B2 (en) Nondestructive inspection method for reinforced concrete floor slabs
Świt et al. A prototype system for acoustic emission-based structural health monitoring of My Thuan bridge
CN110489919A (en) The girder construction damnification recognition method of Suo Li influence line curvature
CN115713020A (en) Rapid test and evaluation method for bearing rigidity of simply supported beam bridge based on local vibration mode
JP2017096803A (en) Inspection method, soundness evaluation method, and inspection result display system of synthetic concrete structure
Zolghadri et al. Identification of truck types using strain sensors include co-located strain gauges
Hernandez et al. Strength evaluation of prestressed concrete bridges by load testing
Erdenebat et al. Static load deflection experiment on a beam for damage detection using the Deformation Area Difference Method
RU2250444C2 (en) Method of monitoring bridge during use
Nagai et al. Recent topics on steel bridge engineering in Japan-design and maintenance
Baxter et al. Vertical electrical impedance evaluation of asphalt overlays on concrete bridge decks
Biondi et al. A new paradigm to observe early warning faults of critical infrastructures by micro-motion estimation from satellite SAR observations. Application to pre-collapse damage assessment of the Morandi bridge in Genoa (Italy)
Swit Diagnostics of prestressed concrete structures by means of acoustic emission
Mahowald et al. Dynamic damage identification using linear and nonlinear testing methods on a two-span prestressed concrete bridge
Sun et al. Dynamic and Static Load Tests on a Large-span Rigid-frame Bridge.
Catbas et al. Static and dynamic testing of a concrete T-beam bridge before and after carbon fiber–reinforced polymer retrofit
Dieng et al. Bridge assessment using Weigh-In-Motion and acoustic emission methods
Ohtsu et al. AE Applied to Superstructure
孫震 Estimation of Load Carrying Capacity for Girder Bridges under a Moving Vehicle by Radar-based Displacement Measurements
Nguyen et al. Damage detection for bridge structures based on dynamic and static measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924127

Country of ref document: EP

Kind code of ref document: A1