WO2021179104A1 - Disable new radio (nr) response - Google Patents

Disable new radio (nr) response Download PDF

Info

Publication number
WO2021179104A1
WO2021179104A1 PCT/CN2020/078324 CN2020078324W WO2021179104A1 WO 2021179104 A1 WO2021179104 A1 WO 2021179104A1 CN 2020078324 W CN2020078324 W CN 2020078324W WO 2021179104 A1 WO2021179104 A1 WO 2021179104A1
Authority
WO
WIPO (PCT)
Prior art keywords
request message
message
mode
network entity
tau
Prior art date
Application number
PCT/CN2020/078324
Other languages
French (fr)
Inventor
Hao Zhang
Jian Li
Tianya LIN
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/078324 priority Critical patent/WO2021179104A1/en
Publication of WO2021179104A1 publication Critical patent/WO2021179104A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, but without limitation, to UEs responding to the disabling of a new radio (NR) mode.
  • NR new radio
  • Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
  • UTRAN Universal Terrestrial Radio Access Network
  • the UTRAN is the radio access network (RAN) defined as a part of the Universal Mobile Telecommunications System (UMTS) , a third generation (3G) mobile phone technology supported by the third (3 rd ) Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Third Generation Partnership Project
  • multiple-access network formats include Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, and Single-Carrier FDMA (SC-FDMA) networks.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal FDMA
  • SC-FDMA Single-Carrier FDMA
  • a wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) .
  • a UE may communicate with a base station via downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the base station to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the base station.
  • a base station may transmit data and control information on the downlink to a UE or may receive data and control information on the uplink from the UE.
  • a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters.
  • RF radio frequency
  • a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
  • Wireless devices such as mobile phones, tablets, laptop computers, etc. can communicate using a variety of different types of wireless communication technology.
  • a mobile device operating in a non-standalone (NSA) mode may be configured to perform wireless communications with a fifth generation (5G) new radio (NR) network and a long-term evolution (LTE) network.
  • 5GNR is disabled at a UE operating in the NSA mode, there may be a loss of connection with a network entity. This loss of connection can take up to 10-13 seconds before connection is re-established. Such loss of connection may degrade a user experience.
  • the systems, methods and devices of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.
  • One innovative aspect of the subject matter described in this disclosure can be implemented in a method of wireless communication.
  • the method includes sending, from a user equipment (UE) , a first attach request message or a first tracking area update (TAU) request message to a network entity.
  • Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE.
  • the method further includes, in response to a determination that the 5G NR mode is disabled at the UE, sending a second attach request message from the UE to the network entity.
  • the second attach request message indicates that the 5G NR mode is disabled.
  • the apparatus includes at least one processor and a memory coupled to the at least one processor.
  • the at least one processor is configured to initiate sending, from a user equipment (UE) , of a first attach request message or a first tracking area update (TAU) request message to a network entity.
  • Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE.
  • the at least one processor is further configured to, in response to a determination that the 5G NR mode is disabled at the UE, initiate sending of a second attach request message from the UE to the network entity.
  • the second attach request message indicates that the 5G NR mode is disabled.
  • the apparatus includes means for means for sending, from a user equipment (UE) , a first attach request message or a first tracking area update (TAU) request message to a network entity.
  • Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE.
  • the apparatus further includes means for means for sending, in response to a determination that the 5G NR mode is disabled at the UE, a second attach request message from the UE to the network entity. The second attach request message indicates that the 5G NR mode is disabled.
  • Another innovative aspect of the subject matter described in this disclosure can be implemented in a non-transitory computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations including initiating sending, from a user equipment (UE) , of a first attach request message or a first tracking area update (TAU) request message to a network entity.
  • Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE.
  • the operations further include, in response to a determination that the 5G NR mode is disabled at the UE, initiating sending of a second attach request message from the UE to the network entity.
  • the second attach request message indicates that the 5G NR mode is disabled.
  • the method includes sending, from a user equipment (UE) , a first attach request message or a first tracking area update (TAU) request message to a network entity.
  • Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE.
  • the method also includes, in response to a determination that the 5G NR mode is disabled at the UE, determining whether to send one of a second message or a third message to the network entity based on a location of the UE.
  • Each of the second message and the third message indicate that the 5G NR mode is disabled at the UE.
  • the method further includes sending either the second message or the third message from the UE to the network entity.
  • the apparatus includes at least one processor and a memory coupled to the at least one processor.
  • the at least one processor is configured to initiate sending, from a user equipment (UE) , of a first attach request message or a first tracking area update (TAU) request message to a network entity.
  • Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE.
  • the at least one processor is also configured to, in response to a determination that the 5G NR mode is disabled at the UE, determine whether to send one of a second message or a third message to the network entity based on a location of the UE.
  • Each of the second message and the third message indicate that the 5G NR mode is disabled at the UE.
  • the at least one processor is further configured to initiate sending of either the second message or the third message from the UE to the network entity.
  • the apparatus includes means for sending, from a user equipment (UE) , a first attach request message or a first tracking area update (TAU) request message to a network entity.
  • Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE.
  • the apparatus further includes means for determining, in response to a determination that the 5G NR mode is disabled at the UE, whether to send one of a second message or a third message to the network entity based on a location of the UE.
  • Each of the second message and the third message indicate that the 5G NR mode is disabled at the UE.
  • the apparatus also includes means for sending either the second message or the third message from the UE to the network entity.
  • Another innovative aspect of the subject matter described in this disclosure can be implemented in a non-transitory computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations including initiating sending, from a user equipment (UE) , of a first attach request message or a first tracking area update (TAU) request message to a network entity.
  • Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE.
  • the operations further include, in response to a determination that the 5G NR mode is disabled at the UE, determining whether to send one of a second message or a third message to the network entity based on a location of the UE.
  • Each of the second message and the third message indicate that the 5G NR mode is disabled at the UE.
  • the operations also include initiating sending of either the second message or the third message from the UE to the network entity.
  • Figure 1 is a block diagram illustrating details of an example wireless communication system.
  • Figure 2 is a block diagram conceptually illustrating an example design of a base station and a user equipment (UE) .
  • UE user equipment
  • Figure 3 is a block diagram illustrating an example wireless communication system configured to enable user equipments (UEs) to more quickly re-establish connection in a non-standalone (NSA) mode when a fifth generation (5G) new radio (NR) mode is disabled.
  • UEs user equipments
  • NSA non-standalone
  • NR new radio
  • Figure 4 is a ladder diagram illustrating an example wireless communication system for quickly re-establishing a connection between a UE in a NSA mode and a network entity when a 5G NR mode at the UE is disabled.
  • Figure 5 is a ladder diagram illustrating an example wireless communication system for selectively responding to disablement of a 5G NR mode at a UE operating in a NSA mode.
  • Figure 6 is a flow diagram illustrating an example process of UE operations for communication.
  • Figure 7 is a flow diagram illustrating an example process of UE operations for communication.
  • Figure 8 is a block diagram conceptually illustrating a design of a UE.
  • Figure 9 is a block diagram conceptually illustrating a design of a network entity.
  • the described implementations may be implemented in any device, system or network that is capable of transmitting and receiving RF signals according to any of the wireless communication standards, including any of the IEEE 802.11 standards, the standard, code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV-DO) , 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High Speed Uplink Packet Access (HSUPA) , Evolved High Speed Packet Access (HSPA+) , Long Term Evolution (LTE) , AMPS, or other known signals that are used
  • the present disclosure provides systems, apparatus, methods, and computer-readable media for enabling user equipments (UEs) operating in a non-standalone (NSA) mode to quickly compensate when a fifth generation (5G) new radio (NR) mode at the UE is disabled.
  • UEs user equipments
  • NSA non-standalone
  • NR new radio
  • the UE may instead send an attach request message to the network entity.
  • the attach request message indicates that the 5G NR mode at the UE is disabled.
  • the network entity may process the attach request message and confirm the change to the operating mode of the UE (e.g., via an attach accept message) more quickly than the network entity may process and respond to the TAU request message.
  • use of the attach request message may reduce (or eliminate) a disconnection time when the 5G NR mode is disabled at the UE, which improves a user experience.
  • the UE may track various locations that are associated with slow TAU request message processing and, if the UE determines that it is in one of the “slow locations, ” the UE may use the attach request message instead of the TAU request message. Otherwise (e.g., if the UE is not in a slow location) , the UE may use the TAU request message.
  • the UE may store location information that indicates one or more locations at which a duration of a TAU message exchange process satisfies a threshold.
  • the locations may correspond to public land mobile networks (PLMNs) .
  • the UE determines if its current location is the same as the one or more locations indicated by the stored location information (e.g., stored PLMN data) . If the current location matches one of the one or more locations (identified as being slow/responding late) , the UE sends an attach request message to a network entity to indicate that the 5G NR mode has been disabled at the UE. If the current location does not match one of the one or more locations, the UE sends a TAU request message to the network entity to indicate that the 5G NR mode has been disabled at the UE.
  • the stored location information e.g., stored PLMN data
  • the current location is added to the location information stored at the UE such that next time, the UE uses the attach request message instead of the TAU request message. In this manner, the UE may use the TAU request message when the disconnection time is not significant, and the UE may use the attach request message when the disconnection time associated with the TAU message exchange is significant.
  • the present disclosure provides a process and techniques for UEs operating in a NSA mode to more quickly indicate to a network entity that a 5G NR mode has been disabled at the UE.
  • the UE may use an attach request message instead of a TAU request message to convey the information to the network entity.
  • Increasing the speed with which the network is informed of the UE’s change in operating mode reduces (or eliminates) disconnection time at the UE, which improves a user experience.
  • This disclosure relates generally to providing or participating in authorized shared access between two or more wireless communications systems, also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks/systems/devices) , as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE long-term evolution
  • GSM Global System for Mobile communications
  • 5G 5 th Generation
  • NR new radio
  • a CDMA network may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like.
  • UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) .
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • 3GPP defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN.
  • GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (Ainterfaces, etc. ) .
  • the radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) .
  • PSTN public switched telephone network
  • UEs subscriber handsets
  • a mobile phone operator's network may include one or more GERANs, which may be coupled with UTRANs in the case of a UMTS/GSM network. Additionally, an operator network may include one or more LTE networks, or one or more other networks. The various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
  • RATs radio access technologies
  • RANs radio access networks
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • GSM Global System for Mobile communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification.
  • 3GPP long term evolution (LTE) is a 3GPP project aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard.
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure may describe certain aspects with reference to LTE, 4G, 5G, or NR technologies; however, the description is not intended to be limited to a specific technology or application, and one or more aspects described with reference to one technology may be understood to be applicable to another technology. Indeed, one or more aspects the present disclosure are related to shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-Aare considered in addition to development of the new radio technology for 5G NR networks.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (such as ⁇ 1M nodes/km 2 ) , ultra-low complexity (such as ⁇ 10s of bits/sec) , ultra-low energy (such as ⁇ 10+years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (such as ⁇ 99.9999%reliability) , ultra-low latency (such as ⁇ 1 millisecond (ms) ) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (such as ⁇ 10 Tbps/km 2 ) , extreme data rates (such as multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • ultra-high density such as ⁇ 1M nodes/km 2
  • 5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTIs transmission time intervals
  • TDD dynamic, low-latency time division duplex
  • FDD frequency division duplex
  • advanced wireless technologies such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth.
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth.
  • subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
  • the scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
  • wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to a person having ordinary skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
  • FIG. 1 is a block diagram illustrating details of an example wireless communication system.
  • the wireless communication system may include wireless network 100.
  • the wireless network 100 may, for example, include a 5G wireless network.
  • components appearing in Figure 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style- network arrangements, such as device to device or peer to peer or ad hoc network arrangements, etc.
  • the wireless network 100 illustrated in Figure 1 includes a number of base stations 105 and other network entities.
  • a base station may be a station that communicates with the UEs and may be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each base station 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a base station or a base station subsystem serving the coverage area, depending on the context in which the term is used.
  • the base stations 105 may be associated with a same operator or different operators, such as the wireless network 100 may include a plurality of operator wireless networks.
  • the base stations 105 may provide wireless communications using one or more of the same frequencies, such as one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof, as a neighboring cell.
  • an individual base station 105 or UE 115 may be operated by more than one network operating entity.
  • each base station 105 and UE 115 may be operated by a single network operating entity.
  • a base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, or other types of cell.
  • a macro cell generally covers a relatively large geographic area, such as several kilometers in radius, and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell, such as a pico cell would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area, such as a home, and, in addition to unrestricted access, may provide restricted access by UEs having an association with the femto cell, such as UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like.
  • a base station for a macro cell may be referred to as a macro base station.
  • a base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station.
  • base stations 105d and 105e are regular macro base stations, while base stations 105a–105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO.
  • Base stations 105a–105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • Base station 105f is a small cell base station which may be a home node or portable access point.
  • a base station may support one or multiple cells, such as two cells, three cells, four cells, and the like.
  • the wireless network 100 may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
  • the UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3rd Generation Partnership Project (3GPP)
  • UE user equipment
  • 3GPP 3rd Generation Partnership Project
  • such apparatus may additionally or otherwise be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology.
  • UE user equipment
  • 3GPP 3rd Generation Partnership Project
  • a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary.
  • Some non-limiting examples of a mobile apparatus such as may include implementations of one or more of the UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • a mobile such as may include implementations of one or more of the UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • PDA personal digital assistant
  • a mobile apparatus may additionally be an “Internet of things” (IoT) or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (such as MP3 player) , a camera, a game console, etc.; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, a smart meter, etc.
  • IoT Internet of things
  • IoE Internet of everything
  • a UE may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UEs that do not include UICCs may be referred to as IoE devices.
  • the UEs 115a–115d of the implementation illustrated in Figure 1 are examples of mobile smart phone-type devices accessing the wireless network 100.
  • a UE may be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • the UEs 115e–115k illustrated in Figure 1 are examples of various machines configured for communication that access 5G network 100.
  • a mobile apparatus such as UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like.
  • a communication link (represented as a lightning bolt) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink or uplink, or desired transmission between base stations, and backhaul transmissions between base stations.
  • Backhaul communication between base stations of the wireless network 100 may occur using wired or wireless communication links.
  • the base stations 105a–105c serve the UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • Macro base station 105d performs backhaul communications with the base stations 105a–105c, as well as small cell, the base station 105f.
  • Macro base station 105d also transmits multicast services which are subscribed to and received by the UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • the wireless network 100 of implementations supports mission critical communications with ultra-reliable and redundant links for mission critical devices, such the UE 115e, which is a drone. Redundant communication links with the UE 115e include from the macro base stations 105d and 105e, as well as small cell base station 105f.
  • UE 115f thermometer
  • UE 115g smart meter
  • UE 115h wearable device
  • UE 115f thermometer
  • UE 115g smart meter
  • UE 115h wearable device
  • the 5G network 100 may provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between the UEs 115i–115k communicating with the macro base station 105e.
  • V2V vehicle-to-vehicle
  • FIG 2 is a block diagram conceptually illustrating an example design of a base station 105 and a UE 115.
  • the base station 105 and the UE 115 may be one of the base stations and one of the UEs in Figure 1.
  • the base station 105 may be the small cell base station 105f in Figure 1
  • the UE 115 may be the UE 115c or 115d operating in a service area of the base station 105f, which in order to access the small cell base station 105f, would be included in a list of accessible UEs for the small cell base station 105f.
  • the base station 105 may be a base station of some other type.
  • the base station 105 may be equipped with antennas 234a through 234t
  • the UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
  • a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc.
  • the data may be for the PDSCH, etc.
  • the transmit processor 220 may process, such as encode and symbol map, the data and control information to obtain data symbols and control symbols, respectively.
  • the transmit processor 220 may generate reference symbols, such as for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal.
  • Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing on the data symbols, the control symbols, or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream, such as for OFDM, etc., to obtain an output sample stream.
  • Each modulator 232 may additionally or alternatively process the output sample stream to obtain a downlink signal.
  • each modulator 232 may convert to analog, amplify, filter, and upconvert the output sample stream to obtain the downlink signal.
  • Downlink signals from modulators 232a through 232t may be transmitted via the antennas 234a through 234t, respectively.
  • the antennas 252a through 252r may receive the downlink signals from the base station 105 and may provide received signals to the demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition a respective received signal to obtain input samples. For example, to condition the respective received signal, each demodulator 254 may filter, amplify, downconvert, and digitize the respective received signal to obtain the input samples.
  • Each demodulator 254 may further process the input samples, such as for OFDM, etc., to obtain received symbols.
  • MIMO detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • Receive processor 258 may process the detected symbols, provide decoded data for the UE 115 to a data sink 260, and provide decoded control information to a controller/processor 280. For example, to process the detected symbols, the receive processor 258 may demodulate, deinterleave, and decode the detected symbols.
  • a transmit processor 264 may receive and process data (such as for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (such as for the physical uplink control channel (PUCCH) ) from the controller/processor 280. Additionally, the transmit processor 264 may generate reference symbols for a reference signal. The symbols from the transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by the modulators 254a through 254r (such as for SC-FDM, etc. ) , and transmitted to the base station 105.
  • data such as for the physical uplink shared channel (PUSCH)
  • control information such as for the physical uplink control channel (PUCCH)
  • the transmit processor 264 may generate reference symbols for a reference signal.
  • the symbols from the transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by the modulators 254a through 254r (such as for SC-FDM, etc. ) , and transmitted to the base station
  • the uplink signals from the UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by the UE 115.
  • the receive processor 238 may provide the decoded data to data sink 239 and the decoded control information to the controller/processor 240.
  • the controllers/processors 240 and 280 may direct the operation at the base station 105 and the UE 115, respectively.
  • the controller/processor 240 or other processors and modules at the base station 105 or the controller/processor 280 or other processors and modules at the UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the execution illustrated in Figures 3-7, or other processes for the techniques described herein.
  • the memories 242 and 282 may store data and program codes for the base station 105 and The UE 115, respectively.
  • Scheduler 244 may schedule UEs for data transmission on the downlink or uplink.
  • the UE 115 and the base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed, such as contention-based, frequency spectrum.
  • the UEs 115 or the base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum.
  • the UE 115 or base station 105 may perform a listen-before-talk or listen-before-transmitting (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available.
  • LBT listen-before-talk or listen-before-transmitting
  • a CCA may include an energy detection procedure to determine whether there are any other active transmissions.
  • a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied.
  • RSSI received signal strength indicator
  • signal power that is concentrated in a certain bandwidth and exceeds a predetermined noise floor may indicate another wireless transmitter.
  • a CCA may include detection of specific sequences that indicate use of the channel.
  • another device may transmit a specific preamble prior to transmitting a data sequence.
  • an LBT procedure may include a wireless node adjusting its own back off window based on the amount of energy detected on a channel or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
  • ACK/NACK acknowledge/negative-acknowledge
  • Some wireless networks are configured to operate in a NSA mode.
  • Wireless networks operating in a NSA mode may depend on a control plane of an existing LTE network for control functions, while 5G NR is exclusively focused on the user plane.
  • 5G NR is exclusively focused on the user plane.
  • the UE may suffer disconnection from a network entity for upwards of 10-13 seconds. Such disconnection time may degrade a user experience. Implementations described herein improve (e.g., reduce or eliminate) the disconnection time by enable UEs to more quickly respond to disablement of a 5G NR mode.
  • FIG. 3 is a block diagram illustrating an example wireless communications system 300 for enabling a UE to more quickly re-establish connection in a NSA mode when a 5G NR mode at the UE is disabled.
  • the wireless communications system 300 may implement aspects of the wireless network 100.
  • the wireless communications system 300 includes the UE 115 and a network entity 350.
  • the network entity 350 may include or correspond to the base station 105, a network, a network core, or another network device, as illustrative, non-limiting examples. Although one UE and one network entity are illustrated, in some other implementations, the wireless communications system 300 may include more than one UE, more than one network entity, or a combination thereof.
  • the UE 115 can include a variety of components (such as structural, hardware components) used for carrying out one or more functions described herein.
  • these components can include a processor 302, a memory 304, a transmitter 316, a receiver 318, a NR enabler/disabler 320, and a timer 322.
  • the processor 302 may be configured to execute instructions stored at the memory 304 to perform the operations described herein.
  • the processor 302 includes or corresponds to the controller/processor 280, and the memory 304 includes or corresponds to the memory 282.
  • the memory 304 may include a list 306 (e.g., location information) and one or more thresholds 310.
  • the list 306 may include or indicate one or more locations in which an amount of time of exchanging TAU messages between UE 115 and network entity 350 satisfies (e.g., is greater than or equal to) a threshold of one or more thresholds 310.
  • the one or more locations indicated by list 306 may include or correspond to one or more public land mobile networks (PLMNs) .
  • List 306 may be entirely generated by UE 115 or at least one entry of list 306 may be received from another source, as further described herein. Although described as a list, in other implementations, the location information may be stored in any format.
  • the transmitter 316 is configured to transmit data to one or more other devices, and the receiver 318 is configured to receive data from one or more other devices.
  • the transmitter 316 may transmit data, and the receiver 318 may receive data, via a network, such as a wired network, a wireless network, or a combination thereof.
  • the UE 115 may be configured to transmit or receive data via a direct device-to-device connection, a local area network (LAN) , a wide area network (WAN) , a modem-to-modem connection, the Internet, intranet, extranet, cable transmission system, cellular communication network, any combination of the above, or any other communications network now known or later developed within which permits two or more electronic devices to communicate.
  • LAN local area network
  • WAN wide area network
  • modem-to-modem connection the Internet, intranet, extranet, cable transmission system, cellular communication network, any combination of the above, or any other communications network now known or later developed within which permits two or more electronic devices to communicate.
  • the transmitter 316 and the receiver 318 may be replaced with a transceiver. Additionally, or alternatively, the transmitter 316, the receiver 318, or both may include and correspond to one or more components of the UE 115 described with reference to Figure 2.
  • the NR enabler/disabler 320 may be configured to enable and/or disable a 5G NR operating mode at the UE 115. For example, responsive to a power on operation, the NR enabler/disabler 320 may enable the 5G NR mode. Additionally, or alternatively, in certain circumstances, the NR enabler/disabler 320 may be configured to disable the 5G NR mode at UE 115.
  • the NR enabler/disabler 320 may be configured to disable the 5G NR mode based on a battery level of the UE 115 failing to satisfy a threshold of the thresholds 310, based on a user input received at the UE 115, based on a signal strength of a 5G NR signal received at the UE 115 failing to satisfy a threshold of the thresholds 310, based on receipt of a message from the network entity 350 or another network entity, based on another condition, or any combination thereof.
  • the timer 322 is configured to count an amount of time since storage of a first entry in the list 306 at the memory 304.
  • the timer 322 may be used by the processor 302 to determine when to delete one or more entries of the list 306, as further described herein.
  • the timer 322 represents a plurality of timers. In such implementations, each timer corresponds to an entry of the list 306, and entries may be deleted on an entry-by-entry basis, as further described herein.
  • the network entity 350 can include a variety of components (such as structural, hardware components) used for carrying out one or more functions described herein.
  • these components can include a processor 352, a memory 354, a transmitter 356, and a receiver 358.
  • the processor 352 may be configured to execute instructions stored at the memory 354 to perform the operations described herein.
  • the processor 352 includes or corresponds to the controller/processor 240, and the memory 354 includes or corresponds to the memory 242.
  • the transmitter 356 is configured to transmit data to one or more other devices, and the receiver 358 is configured to receive data from one or more other devices.
  • the transmitter 356 may transmit data, and the receiver 358 may receive data, via a network, such as a wired network, a wireless network, or a combination thereof.
  • the network entity 350 may be configured to transmit or receive data via a direct device-to-device connection, a LAN, a WAN, a modem-to-modem connection, the Internet, intranet, extranet, cable transmission system, cellular communication network, any combination of the above, or any other communications network now known or later developed within which permits two or more electronic devices to communicate.
  • the transmitter 356 and the receiver 368 may be replaced with a transceiver.
  • the transmitter 356, the receiver 358 or both may include and correspond to one or more components of base station 105 described with reference to Figure 2.
  • the wireless communications system 300 includes a 5G network.
  • the UE 115 may include a 5G UE, such as a UE configured to operate in accordance with a 5G network.
  • the network entity 350 may include a 5G base station (or other network component) , such as a base station (or other network component) configured to operate in accordance with a 5G network.
  • the network entity 350 may include a LTE base station (or other network component) , such as a base station (or other network component) configured to operate in accordance with a LTE network.
  • the UE 115 and the network entity 350 are configured to operate in a NSA mode.
  • the techniques described herein may apply to any dual-connectivity mode.
  • the techniques described herein may apply to any types of wireless communications technologies.
  • the UE 115 may begin operating in a 5G NR mode. For example, based on detecting a power up operation, the NR enabler/disabler 320 may enable the 5G NR mode. Alternatively, the 5G NR mode may be enabled based on a user input. For example, based on receiving a user input indicating to enable the 5G NR mode, the NR enabler/disabler 320 may enable the 5G NR mode.
  • the UE 115 may generate and send a first request message 370 to the network entity 350.
  • the first request message 370 may include or correspond to a first attach request message or a first tracking area update (TAU) request message.
  • An attach request message is typically sent by a UE as part of a radio resource control (RRC) connection establishment and authentication procedure, and, in some implementations, may be included in a payload of another message.
  • RRC radio resource control
  • a TAU request message is typically sent by a UE to update the network of a tracking area change and potentially a serving gateway change.
  • the first request message 370 may indicate that the 5G NR mode is enabled at the UE 115.
  • the first request message 370 may include a particular field or bit (e.g., a DCNR field) having a first value (e.g., a logical 1 value) to indicate that the 5G NR mode is enabled at the UE 115.
  • the network entity 350 may receive the first request message 370 and may process the first request message 370. Responsive to the first request message 370, the network entity 350 may generate and send a first accept message 372 to the UE 115.
  • the first accept message 372 may include or correspond to a first attach accept message (e.g., a message indicating successful completion of an attachment process) or a first TAU accept message (e.g., a message indicating successful completion of a tracking area update process) , depending on the first request message 370.
  • the UE 115 may receive the first accept message 372 from the network entity 350, thereby completing a first attachment process or a first TAU message exchange process between the UE 115 and the network entity 350.
  • the UE 115 determines that the 5G NR mode is disabled at the UE 115.
  • the NR enabler/disabler 320 may determine that the 5G NR mode has been disabled.
  • a determination that the 5G NR mode is disabled is based on a battery level of the UE 115 failing to satisfy one of the thresholds 310. For example, if the battery level becomes too low, the UE may operate in a single mode of wireless communications (e.g., an LTE mode, as a non-limiting example) to conserve power at the UE 115.
  • a determination that the 5G NR mode is disabled is based on a user input received at the UE 115.
  • a user may input a user input indicating that the 5G NR mode is to be disabled, and NR enabler/disabler 320 disables the 5G NR mode.
  • a determination that the 5G NR mode is disabled is based on a signal strength of a 5G NR signal received at the UE 115 failing to satisfy one of the thresholds 310. For example, if the signal strength of 5G NR signals is too low (or an error rate too high) to support 5G NR communications, NR enabler/disabler 320 disables the 5G NR mode.
  • a determination that the 5G NR mode is disabled is based on receipt of a message from the network entity 350 or another network entity.
  • a network entity of wireless communications system 300 may disable 5G NR communications within wireless communications system 300, and based on a message received at UE 115, NR enabler/disabler 320 disables the 5G NR mode.
  • the 5G NR mode may be disabled based on other conditions.
  • the UE 115 in response to a determination that the 5G NR mode is disabled at the UE 115, the UE 115 generates and sends a second attach request message 374 to the network entity 350.
  • the second attach request message 374 may indicate that the 5G NR mode is disabled at the UE 115.
  • the second attach request message 374 may include a particular field or bit (e.g., a DCNR field) having a second value (e.g., a logical 0 value) to indicate that the 5G NR mode is disabled at the UE 115.
  • the network entity 350 may receive the second attach request message 374 and may process the second attach request message 374.
  • the network entity 350 may generate and send a second attach accept message 376 to the UE 115.
  • the UE 115 may receive the second attach accept message 376 from the network entity 350, thereby completing a second attachment process between the UE 115 and the network entity 350.
  • Using the second attach request message 374 e.g., performing the second attachment process
  • a disconnection time may be reduced (or eliminated) as compared to using the second TAU message, which improves a user experience.
  • performing the second attachment process (instead of performing a second TAU message exchange process) may not be in accordance with a wireless communication standard (e.g., a 3GPP standard) .
  • the UE 115 after receiving the second attach accept message 376 from the network entity 350, the UE 115 generates and sends a second TAU request message 378 to the network entity 350.
  • the second TAU request message 378 may indicate that the 5G NR mode is disabled at the UE 115.
  • the second TAU request message 378 may include a particular field or bit (e.g., a DCNR field) having a second value (e.g., a logical 0 value) to indicate that the 5G NR mode is disabled at the UE 115.
  • the network entity 350 may receive the second TAU request message 378 and may process the second TAU request message 378.
  • the network entity 350 may generate and send a second TAU accept message 380 to the UE 115.
  • the UE 115 may receive the second TAU accept message 380 from the network entity 350, thereby completing a second TAU message exchange process between the UE 115 and the network entity 350.
  • the second TAU message exchange process may take more time than the second attachment process.
  • the UE 115 determines whether to send one of a second message or a third message to the network entity 350 based on a location of the UE 115. The determination may be based on the list 306, with indicates locations that are designated as “slow” (e.g., locations associated with a time period to complete a TAU message exchange process that satisfies one of thresholds 310) . To illustrate, the UE 115 determines a current location and compares the current location to the locations indicated by the list 306. In some implementations, the current location and the locations indicated by the list 306 include or correspond to PLMNs.
  • the second message includes the second attach request message 374. For example, if the current location matches one of the locations indicated by the list 306, the UE 115 generates and sends the second attach request message 374 to the network entity 350. Responsive to receipt of the second attach request message 374, the network entity 350 generates and sends the second attach accept message 376 to the UE 115.
  • the third message includes the second TAU request message 378. For example, if the current location fails to match any of the locations indicated by the list 306, the UE 115 generates and sends the second TAU request message 378 to the network entity 350. Responsive to receipt of the second TAU request message 378, the network entity 350 generates and sends the second TAU accept message 380 to the UE 115.
  • An example of performance of the selection between sending the second message and the third message is further described with reference to Figure 5.
  • the UE 115 may add location information to the list 306 based on an amount of time associated with performing a TAU message exchange.
  • the UE 115 may determine an amount of time between sending the second TAU request message 378 and receive the second TAU accept message 380 (e.g., performing the second TAU message exchange) and, responsive to the amount of time satisfying (e.g., being greater than or equal to) one of the thresholds 310, the UE 115 may add additional location information indicating the current location (e.g., a current PLMN) of the UE 115 to the list 306.
  • the current location e.g., a current PLMN
  • the list 306 is generated by the UE 115 over time as the UE determines the amount of time associated with performing TAU message exchanges at various locations (e.g., various PLMNs) .
  • the location information e.g., one or more entries of the list 306
  • the peer UE may determine its own list and share the list with the UE 115.
  • at least some of the location information e.g., one or more entries of the list 306) may be received by the UE 115 from the network entity 350.
  • the network entity 350 may be configured to determine the amount of time associated with performing a TAU message exchange with the UE 115 at various locations, and the network entity 350 may generate a list of locations designated as “slow” for sharing with the UE 115.
  • the list 306 is not maintained indefinitely at the UE 115.
  • the list 306 may be deleted in response to a power off command.
  • the UE 115 may detect a power off command and, in response to detection of the power off command, the UE 115 may delete the list 306 from the memory 304.
  • at least some of the entries in the list 306 are deleted responsive to expiration of the timer 322.
  • the timer 322 may be started when a first entry is stored in the list 306 and, when the UE 115 detects expiration of the timer 322, at least a portion (or an entirety) of the list 306 may be deleted from the memory 304.
  • the timer 322 may have a duration of an hour, a day, a week, or a month, as non-limiting examples.
  • the timer 322 includes a plurality of timers, where each timer corresponds to one of the entries of the list 306 (e.g., each timer is started upon storage of the corresponding entry in the list 306) .
  • the UE 115 deletes an entry of the list 306 (e.g., a portion of the location information) in response to detecting expiration of the corresponding timer.
  • the list 306 may be deleted on an entry-by-entry basis.
  • Figure 3 describes techniques for enabling a UE operating in a NSA mode to more quickly re-establish connection with a network entity when a 5G NR mode at the UE is disabled.
  • the UE 115 transmits the second attach request message 374 to the network entity 350 in response to determining that the 5G NR mode at the UE 115 is disabled. Exchanging attach messages between the UE 115 and the network entity 350 may be quicker, and thus re-establish a connection quicker, than exchanging TAU messages.
  • the UE 115 may not operate in accordance with a wireless communication standard (which designates to exchange TAU messages in response to determining that the 5G NR mode is disabled) , the UE 115 may reduce (or eliminate) disconnection time, thereby improving a user experience. Additionally, in some implementations, the UE 115 maintains the list 306 at the memory 304 and only performs the attach message exchange instead of the TAU message exchange is a current location of the UE 115 matches one of the locations indicated by the list 306.
  • Figure 4 is a ladder diagram illustrating an example wireless communication system for quickly re-establishing a connection between a UE in a NSA mode and a network entity when a 5G NR mode at the UE is disabled
  • Figure 5 is a ladder diagram illustrating an example wireless communication system for selectively responding to disablement of a 5G NR mode at a UE operating in a NSA mode.
  • Figures 4 and 5 include the UE 115 and the network entity 350.
  • the wireless communication systems of Figures 4 and 5 may implement aspects of wireless communications system 100 or 300.
  • Alternative examples of Figures 4 and 5 are contemplated, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • the network entity 350 is enabled.
  • the network entity 350 may begin supporting a wireless network and communicating with wireless devices, such as UEs or other network entities.
  • the UE 115 may be powered on. Responsive to being powered on, the UE 115 may being operating in a NSA mode. For example, based on a configuration of the UE 115 and/or a configuration of a wireless network that the UE 115 is connected to (or attempting to connect to) , the UE 115 may operate in the NSA mode. Operating in the NSA mode may include operating in a 5G NR mode at the UE 115. For example, wireless communication circuitry configured to communicate via a 5G NR network may be powered on by the UE 115.
  • the UE 115 generates and sends a first request message to the network entity 350.
  • the first request message may include a first attach request message or a first TAU request message.
  • the first request message indicates that the 5G NR mode is enabled at the UE 115.
  • the first request message may include a particular field or bit (e.g., a DCNR field) having a first value (e.g., a logical 1 value) that indicates that the 5G NR mode is enabled at the UE 115.
  • the network entity 350 responsive to receipt and processing of the first request message, generates and sends a first accept message to the UE 115.
  • the first accept message may include a first attach accept message or a first TAU accept message. For example, if the first request message includes the first attach request message, the first accept message includes the first attach accept message. Alternatively, if the first request message includes the first TAU request message, the first accept message includes the first TAU accept message.
  • the UE 115 receives the first accept message from the network entity 350.
  • the 5G NR mode is disabled at the UE 115.
  • the 5G NR mode may be disabled based on a battery level of the UE 115 failing to satisfy a threshold, based on a user input received by the UE 115, based on a signal strength of a 5G NR signal received at the UE 115 failing to satisfy a threshold, based on receipt of a message from the network entity 350 or another network entity, or based on another condition.
  • the UE 115 detects disablement of the 5G NR mode when the 5G NR mode is disabled.
  • an ATTACH mode is enabled at the UE 115 (e.g., if the UE 115 is configured to perform an attach process in response to disablement of the 5G NR mode at the UE 115) , at 422, the process flow continues to 430, and, at 430, the UE 115 generates and sends a second attach request message to the network entity 350.
  • the second attach request message indicates that the 5G NR mode is disabled at the UE 115.
  • the second attach request message may include a particular field or bit (e.g., a DCNR field) having a second value (e.g., a logical 0 value) that indicates that the 5G NR mode is disabled at the UE 115.
  • the network entity 350 responsive to receipt and processing of the second attach request message, generates and sends a second attach accept message to the UE 115.
  • the UE 115 may receive and process the second attach accept message from the network entity 350.
  • the process flow continues from 432 to 440.
  • the UE 115 generates and sends a second TAU request message to the network entity 350.
  • the second TAU request message indicates that the 5G NR mode is disabled at the UE 115.
  • the second TAU request message may include a particular field or bit (e.g., a DCNR field) having a second value (e.g., a logical 0 value) that indicates that the 5G NR mode is disabled at the UE 115.
  • the network entity 350 responsive to receipt and processing of the second TAU request message, generates and sends a second TAU accept message to the UE 115.
  • the UE 115 may receive and process the second TAU accept message from the network entity 350.
  • the process flow proceeds from 424 to 440, where the UE 115 generates and sends the second TAU request message to the network entity 350, and then to 442, where the network entity 350 generates and sends the second TAU accept message to the UE 115.
  • Figure 4 describes that the UE 115 can perform an attachment process (e.g., the UE 115 and the network entity 350 can exchange a second attach request message and a second attach accept message) responsive to a determination that the 5G NR mode is disabled at the UE 115.
  • Performing the attachment process may be quicker than performing a TAU message exchange process, which may reduce (or eliminate) a disconnection time at the UE 115, thereby improving a user experience.
  • the UE 115 and the network entity 350 perform operations at 410–418 as described with reference to Figure 4.
  • the UE 115 determines whether location information corresponding to a current location of the UE 115 matches location information stored in a list (e.g., the list 306) stored at the UE 115.
  • the UE 115 may determine whether a current PLMN corresponding to the UE 115 matches any of the PLMNs stored in the list.
  • the PLMNs (e.g., the location information) stored in the list may correspond to PLMNs that are designated as “slow” with reference to performance of a TAU message exchange.
  • the process flow continues to 530, where the UE 115 generates and sends a second TAU request message to the network entity 350.
  • the second TAU request message indicates that the 5G NR mode is disabled at the UE 115.
  • the second TAU request message may include a particular field or bit (e.g., a DCNR field) having a second value (e.g., a logical 0 value) that indicates that the 5G NR mode is disabled at the UE 115.
  • the network entity 350 responsive to receipt and processing of the second TAU request message, generates and sends a second TAU accept message to the UE 115.
  • the UE 115 receives and processes the second TAU accept message from the network entity 350.
  • a determination is made whether a TAU response time (e.g., a time between sending the second TAU request message and receiving the second TAU accept message) satisfies (e.g., is greater than or equal to) a threshold.
  • the threshold may be 5 seconds, 10 seconds, or 13 seconds, as non-limiting examples. If the TAU response time satisfies the threshold, the process flow proceeds to 538, and the current location information (e.g., the current PLMN) is added to the list of location information (e.g., the list of PLMNs) . In this manner, additional slow locations (e.g., PLMNs) may be added to the list during operation of the UE 115.
  • portions of, or an entirety of, the list may be deleted, as described with reference to Figure 3.
  • the process flow then ends at 540 (e.g., the UE 115 is connected to the network entity 350 via a LTE connection) . If the TAU response time does not satisfy (e.g., is less than) the threshold, at 536, the current location information (e.g., the current PLMN) is not added to the list of location information (e.g., the list of PLMNs) , and the process flow ends at 540.
  • the current location information e.g., the current PLMN
  • the list of location information e.g., the list of PLMNs
  • the process flow proceeds to 560.
  • the UE 115 generates and sends a second attach request message to the network entity 350.
  • the second attach request message indicates that the 5G NR mode is disabled at the UE 115.
  • the second attach request message may include a particular field or bit (e.g., a DCNR field) having a second value (e.g., a logical 0 value) that indicates that the 5G NR mode is disabled at the UE 115.
  • the network entity 350 responsive to receipt and processing of the second attach request message, generates and sends a second attach accept message to the UE 115.
  • the UE 115 receives and processes the second attach accept message from the network entity 350.
  • the process flow then ends at 564 (e.g., the UE 115 is connected to the network entity 350 via a LTE connection) .
  • Figure 5 describes how a UE can selectively respond to disablement of a 5G NR mode at the UE. For example, if the UE is in a current location (e.g., a current PLMN) that matches location information (e.g., PLMNs) stored in a list (e.g., a list of “slow” locations) , the UE may use an attach request message to connect to a network entity and inform the network entity that the 5G NR mode is disabled at the UE.
  • a current location e.g., a current PLMN
  • location information e.g., PLMNs
  • a list e.g., a list of “slow” locations
  • the UE may use a TAU request message in accordance with a wireless communications standard to connect to the network entity and inform the network entity that the 5G NR mode is disabled at the UE.
  • a current location e.g., a current PLMN
  • location information e.g., PLMNs
  • Figure 6 is a flow diagram illustrating an example process performed by a UE for communication.
  • example blocks of the process may cause the UE in a NSA mode to use an attach request message in response to detecting that a 5G NR mode is disabled at the UE according to some aspects of the present disclosure.
  • the example blocks will also be described with respect to the UE 115 as illustrated in Figure 8.
  • Figure 8 is a block diagram conceptually illustrating a design of a UE.
  • the UE of Figure 8 may be configured to use an attach request message in response to detecting that a 5G NR mode is disabled according to one aspect of the present disclosure.
  • the UE 115 includes the structure, hardware, and components as illustrated for the UE 115 of Figures 2 or 3.
  • the UE 115 includes the controller/processor 280, which operates to execute logic or computer instructions stored in the memory 282, as well as controlling the components of the UE 115 that provide the features and functionality of the UE 115.
  • the UE 115 under control of the controller/processor 280, transmits and receives signals via wireless radios 801a-r and the antennas 252a-r.
  • the wireless radios 801a-r include various components and hardware, as illustrated in Figure 2 for the UE 115, including the modulator/demodulators 254a-r, the MIMO detector 256, the receive processor 258, the transmit processor 264, and the TX MIMO processor 266.
  • the memory 282 may include message transmission (TX) logic 802, a 5G NR mode determiner 803, and location information 804 (e.g., a list) .
  • TX message transmission
  • the message TX logic 802, the 5G NR mode determiner 803, or a combination thereof may include or correspond to the processor (s) 302.
  • the location information 804 may include or correspond to the list 306.
  • the UE 115 may receive signals from or transmit signals to one or more network entities, such as the base station 105, the network entity, a core network, a core network device, or a network entity as illustrated in Figure 9.
  • the process 600 may be performed by the UE 115.
  • the process 600 may be performed by an apparatus configured for wireless communication.
  • the apparatus may include at least one processor, and a memory coupled to the processor.
  • the processor may be configured to perform operations of the process 600.
  • the process 600 may be performed or executed using a non-transitory computer-readable medium having program code recorded thereon.
  • the program code may be program code executable by a computer for causing the computer to perform operations of the process 600.
  • a user equipment sends a first attach request message or a first tracking area update (TAU) message to a network entity.
  • Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE.
  • the UE 115 may transmit a first attach request message or a first TAU message using wireless radios 801a-r and antennas 252a-r.
  • the UE 115 may execute, under control of the controller/processor 280, the message TX logic 802 stored in the memory 282.
  • the execution environment of the message TX logic 802 provides the functionality to send a first attach request message or a first TAU request message to a network entity.
  • Each of the first attach request message and the first TAU request message indicate that a 5G NR mode is enabled at the UE 115.
  • the UE in response to a determination that the 5G NR mode is disabled at the UE, sends a second attach request message from the UE to the network entity.
  • the second attach request message indicates that the 5G NR mode is disabled.
  • the UE 115 may transmit a second attach request message using wireless radios 801a-r and antennas 252a-r.
  • the UE 115 may execute, under control of controller/processor 280, 5G NR mode determiner 803 stored in memory 282.
  • the execution environment of 5G NR mode determiner 803 provides the functionality to determine that the 5G NR mode is disabled at the UE 115.
  • the UE 115 may also execute, under control of controller/processor 280, message TX logic 802 stored in memory 282.
  • the execution environment of message TX logic 802 provides the functionality to send a second attach request message to the network entity.
  • the second attach request message indicates that the 5G NR mode is disabled at the UE 115.
  • the process 600 may include that the UE operates in a non-standalone (NSA) mode during at least sending of the first attach request message or the first TAU request message.
  • the NSA mode may correspond to 5G NR and to long-term evolution (LTE) .
  • the network entity may include a long-term evolution (LTE) network entity.
  • the process 600 further includes receiving a first attach accept message at the UE from the network entity responsive to the first attach request message.
  • the process 600 further includes determining, at the UE, that the 5G NR mode is disabled.
  • the determination that the 5G NR mode is disabled is based on a battery level of the UE failing to satisfy a threshold. Additionally, or alternatively, the determination that the 5G NR mode is disabled is based on a user input received at the UE. Additionally, or alternatively, the determination that the 5G NR mode is disabled is based on a signal strength of a 5G NR signal received at the UE failing to satisfy a threshold. Additionally, or alternatively, the determination that the 5G NR mode is disabled is based on receipt of a message from the network entity or another network entity.
  • the process 600 further includes, after sending the second attach request message, sending a second TAU request message from the UE to the network entity.
  • the second TAU request message indicates that the 5G NR mode is disabled.
  • the process 600 also includes receiving, at the UE from the network entity, a second TAU accept message responsive to the second TAU request message.
  • the process 600 enables the UE 115 to use an attach request message to connect with a network entity and inform the network entity that a 5G NR mode at the UE 115 is disabled.
  • the UE 115 may send an attach request message indicating that the 5G NR mode is disabled at the UE 115 instead of sending a TAU request message.
  • Sending the attach request message (e.g., performing an attach process) may be quicker and reduce (or eliminate) a disconnection time as compared to sending the TAU request message (e.g., performing a TAU message exchange process) , thereby improving a user experience.
  • the process 700 may be performed by the UE 115.
  • the process 700 may be performed by an apparatus configured for wireless communication.
  • the apparatus may include at least one processor, and a memory coupled to the processor.
  • the processor may be configured to perform operations of the process 700.
  • the process 700 may be performed or executed using a non-transitory computer-readable medium having program code recorded thereon.
  • the program code may be program code executable by a computer for causing the computer to perform operations of the process 700.
  • a user equipment sends a first attach request message or a first tracking area update (TAU) request message to a network entity.
  • Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE.
  • the UE 115 may transmit a first attach request message or a first TAU message using wireless radios 801a-r and antennas 252a-r.
  • the UE 115 may execute, under control of the controller/processor 280, the message TX logic 802 stored in the memory 282.
  • the execution environment of the message TX logic 802 provides the functionality to send a first attach request message or a first TAU request message to a network entity.
  • Each of the first attach request message and the first TAU request message indicate that a 5G NR mode is enabled at the UE 115.
  • the UE determines whether to send one of a second message or a third message to the network entity based on a location of the UE.
  • Each of the second message and the third message indicate that the 5G NR mode is disabled at the UE.
  • the UE 115 may determine that a 5G NR mode is disabled.
  • the UE 115 may execute, under control of the controller/processor 280, the 5G NR mode determiner 803 stored in the memory 282.
  • the execution environment of the 5G NR mode determiner 803 provides the functionality to determine that the 5G NR mode is disabled at the UE 113.
  • the UE 115 may also determine whether to send a second message or a third message to the network entity based on a location of the UE 115. For example, the UE 115 may compare location information corresponding to a current location of the UE 115 to the location information 804 stored in the memory 282 to determine whether to send the second message or the third message.
  • the UE sends either the second message or the third message from the UE to the network entity.
  • the UE 115 may transmit a second message or a third message using wireless radios 801a-r and antennas 252a-r.
  • the UE 115 may execute, under control of the controller/processor 280, the message TX logic 802 stored in the memory 282.
  • the execution environment of the message TX logic 802 provides the functionality to send either the second message or the third message to the network entity.
  • the process 700 may include that the UE operates in a non-standalone (NSA) mode during at least sending of the first attach request or the first TAU request message.
  • the NSA mode corresponds to 5G NR and to long-term evolution (LTE) .
  • the second message includes a message distinct from a second TAU request message and the third message includes the second TAU request message.
  • the second message includes a second attach request message.
  • the location corresponds to a public land mobile network (PLMN) .
  • the process 700 may further include comparing the location of the UE to location information stored at the UE, the location information indicating one or more stored locations. In some such implementations, determining whether to send one of the second message or the third message includes determining to send the second message based on the location of the UE matching one of the one or more stored locations. In some such implementations, the second message includes a second attach request message indicating that the 5G NR mode is disabled. In some such implementations, the process 700 may also include receiving a second attach accept message at the UE from the network entity responsive to the second attach request message.
  • determining whether to send one of the second message or the third message includes determining to send the third message based on the location of the UE failing to match any of the one or more stored locations.
  • the third message includes a second TAU request message indicating that the 5G NR mode is disabled.
  • the process 700 further includes receiving a second TAU accept message at the UE from the network entity responsive to the second TAU request message.
  • the process 700 also includes determining an amount of time between sending the second TAU request message and receiving the second TAU accept message, and, responsive to the amount of time satisfying a threshold, adding additional location information indicating the location of the UE to the location information stored at the UE.
  • the process 700 may further include deleting the location information stored at the UE based on a power off command. Additionally, or alternatively, the process 700 may further include deleting at least some of the location information stored at the UE responsive to expiration of a timer. The timer is started when a first portion of the location information is stored at the UE. Additionally, or alternatively, location information corresponding to each of the one or more stored locations is associated with a corresponding timer. In some such implementations, the process 700 further includes deleting a portion of the location information corresponding to a first location of the one or more stored locations responsive to expiration of a corresponding timer.
  • the network entity includes a long-term evolution (LTE) network entity.
  • the process 700 further includes receiving a first attach accept message at the UE from the network entity responsive to the first attach request message.
  • LTE long-term evolution
  • the process 700 enables the UE 115 to how to respond to disablement of a 5G NR mode at the UE.
  • the UE 115 may send an attach request message indicating that the 5G NR mode is disabled at the UE 115 instead of sending a TAU request message if a current location (e.g., PLMN) of the UE 115 matches location information (e.g., PLMNs) stored at the UE 115.
  • a current location e.g., PLMN
  • location information e.g., PLMNs
  • the UE 115 may send a TAU attach request message indicating that the 5G NR mode is disabled at the UE 115.
  • the UE 115 may operate in accordance with a wireless communication standard unless such performance is expected to cause undue delay/disconnection.
  • one or more blocks (or operations) described with reference to Figure 6 or Figure 7 may be combined with one or more blocks (or operations) of another Figure.
  • one or more blocks (or operations) of Figure 6 may be combined with one or more blocks (or operations) of Figure 7.
  • one or more blocks of Figure 6 or Figure 7 may be combined with one or more blocks (or operations) of another of Figures 2–5.
  • one or more operations described above with reference to Figures 1–8 may be combined with one or more operations described with reference to Figure 9.
  • FIG 9 is a block diagram conceptually illustrating a design of a network entity 350.
  • the network entity 350 may include the base station 105, a network, or a core network, as illustrative, non-limiting examples.
  • the network entity 350 includes the structure, hardware, and components as illustrated for the base station 105 of Figures 1 and 2, the network entity 350 of Figures 3–5, or a combination thereof.
  • the network entity 350 may include the controller/processor 240, which operates to execute logic or computer instructions stored in the memory 242, as well as controlling the components of the network entity 350 that provide the features and functionality of the network entity 350.
  • the network entity 350 under control of the controller/processor 240, transmits and receives signals via wireless radios 901a-t and the antennas 234a-t.
  • the wireless radios 901a-t includes various components and hardware, as illustrated in Figure 2 for the network entity 350 (such as the base station 105) , including the modulator/demodulators 232a-t, the transmit processor 220, the TX MIMO processor 230, the MIMO detector 236, and the receive processor 238.
  • the memory 242 may include message receive (RX) logic 902 and message transmission (TX) logic 903.
  • the message RX logic 902 may be configured to enable reception of one of more messages via the wireless radios 901a-t and the antennas 234a-t.
  • the network entity 350 may execute, under control of the controller/processor 240, the message RX logic 902 stored in the memory 242.
  • the execution environment of the message RX logic 902 provides the functionality to receive one or more attach request messages, receive one or more TAU request messages, or both.
  • the message TX logic 903 may be configured to enable transmission of one or more messages via the wireless radios 901a-t and the antennas 234a-t.
  • the network entity 350 may execute, under control of the controller/processor 240, the message TX logic 903.
  • the execution environment of the message TX logic 903 provides the functionality to transmit one or more attach accept messages, transmit one or more TAU accept messages, or both.
  • one or more blocks (or operations) described with reference to Figure 9 may be combined with one or more blocks (or operations) of another Figure.
  • one or more blocks of Figure 9 may be combined with one or more blocks (or operations) of another of Figures 2–5.
  • one or more operations described above with reference to Figures 1–5 and 9 may be combined with one or more operations described with reference to Figure 8.
  • an apparatus configured for wireless communication such as a user equipment (UE) may include at least one processor, and a memory coupled to the at least one processor.
  • the at least one processor may be configured to perform operations described herein with respect to a wireless device. For example, the at least one processor may be configured to initiate sending, from a user equipment (UE) , of a first attach request message or a first tracking area update (TAU) request message to a network entity.
  • UE user equipment
  • TAU tracking area update
  • Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE.
  • the at least one processor may also be configured to, in response to a determination that the 5G NR mode is disabled at the UE, initiate sending of a second attach request message from the UE to the network entity.
  • the second attach request message indicates that the 5G NR mode is disabled.
  • the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device.
  • the apparatus may include one or more means configured to perform operations described herein.
  • the UE operates in a non-standalone (NSA) mode during at least sending of the first attach request message or the first TAU request message.
  • the NSA mode corresponds to 5G NR and to long-term evolution (LTE) .
  • the network entity includes a long-term evolution (LTE) network entity.
  • LTE long-term evolution
  • the UE receives a first attach accept message from the network entity responsive to the first attach request message.
  • the UE determines that the 5G NR mode is disabled.
  • the determination that the 5G NR mode is disabled is based on a battery level of the UE failing to satisfy a threshold.
  • the determination that the 5G NR mode is disabled is based on a user input received at the UE.
  • the determination that the 5G NR mode is disabled is based on a signal strength of a 5G NR signal received at the UE failing to satisfy a threshold.
  • the determination that the 5G NR mode is disabled is based on receipt of a message from the network entity or another network entity.
  • the UE receives a second attach accept message from the network entity responsive to the second attach request message.
  • the UE after sending the second attach request message, sends a second TAU request message to the network entity.
  • the second TAU request message indicates that the 5G NR mode is disabled.
  • the UE receives, from the network entity, a second TAU accept message responsive to the second TAU request message.
  • an apparatus configured for wireless communication such as a user equipment (UE) may include at least one processor, and a memory coupled to the at least one processor.
  • the at least one processor may be configured to perform operations described herein with respect to a wireless device.
  • the at least one processor may be configured to initiate sending, from a user equipment (UE) , of a first attach request message or a first tracking area update (TAU) request message to a network entity.
  • Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE.
  • 5G fifth generation
  • NR new radio
  • the at least one processor may also be configured to, in response to a determination that the 5G NR mode is disabled at the UE, determine whether to send one of a second message or a third message to the network entity based on a location of the UE. Each of the second message and the third message indicate that the 5G NR mode is disabled at the UE.
  • the at least one processor may be further configured to initiate sending of either the second message or the third message from the UE to the network entity.
  • the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device.
  • the apparatus may include one or more means configured to perform operations described herein.
  • the UE operates in a non-standalone (NSA) mode during at least sending of the first attach request message or the first TAU request message.
  • the NSA mode corresponds to 5G NR and to long-term evolution (LTE) .
  • the second message includes a message distinct from a second TAU request message.
  • the third message includes the second TAU request message.
  • the second message includes a second attach request message.
  • the location corresponds to a public land mobile network (PLMN) .
  • PLMN public land mobile network
  • the UE compares the location of the UE to location information stored at the UE.
  • the location information indicates one or more stored locations.
  • determining whether to send one of the second message or the third message includes determining to send the second message based on the location of the UE matching one of the one or more stored locations.
  • the second message includes a second attach request message indicating that the 5G NR mode is disabled.
  • the UE receives a second attach accept message from the network entity responsive to the second attach request message.
  • determining whether to send one of the second message or the third message includes determining to send the third message based on the location of the UE failing to match any of the one or more stored locations.
  • the third message includes a second TAU request message indicating that the 5G NR mode is disabled.
  • the UE receives a second TAU accept message from the network entity responsive to the second TAU request message.
  • the UE determines an amount of time between sending the second TAU request message and receiving the second TAU accept message, and, responsive to the amount of time satisfying a threshold, adds additional location information indicating the location of the UE to the location information stored at the UE.
  • At least some of the location information stored at the UE is received from a peer UE.
  • At least some of the location information stored at the UE is received from the network entity.
  • the UE deletes the location information stored at the UE based on a power off command.
  • the UE deletes at least some of the location information stored at the UE responsive to expiration of a timer.
  • the timer starts when a first portion of the location information is stored at the UE.
  • location information corresponding to each of the one or more stored locations is associated with a corresponding timer.
  • the UE deletes a portion of the location information corresponding to a first location of the one or more stored locations responsive to expiration of a corresponding timer.
  • the network entity comprises a long-term evolution (LTE) network entity.
  • LTE long-term evolution
  • the UE receives a first attach accept message from the network entity responsive to the first attach request message.
  • Components, the functional blocks, and the modules described herein with respect to Figures 1-9 include processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
  • features discussed herein may be implemented via specialized processor circuitry, via executable instructions, or combinations thereof.
  • Components, the functional blocks, and the modules described herein may include processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
  • processors electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
  • features discussed herein relating to components, the functional blocks, and the modules described herein may be implemented via specialized processor circuitry, via executable instructions, or combinations thereof.
  • the hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein.
  • a general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine.
  • a processor may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • particular processes and methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, that is one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another.
  • a storage media may be any available media that may be accessed by a computer.
  • such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.
  • the term “or, ” when used in a list of two or more items means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This disclosure provides systems, methods, and apparatuses, including computer programs encoded on computer storage media, for wireless communication. In one aspect of the disclosure, a method for wireless communication includes sending, from a user equipment (UE), a first attach request message or a first tracking area update (TAU) request message to a network entity. Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE. The method further includes, in response to a determination that the 5G NR mode is disabled at the UE, sending a second attach request message from the UE to the network entity. The second attach request message indicates that the 5G NR mode is disabled. Other aspects and features are also claimed and described.

Description

DISABLE NEW RADIO (NR) RESPONSE TECHNICAL FIELD
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, but without limitation, to UEs responding to the disabling of a new radio (NR) mode.
DESCRIPTION OF THE RELATED TECHNOLOGY
Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources. One example of such a network is the Universal Terrestrial Radio Access Network (UTRAN) . The UTRAN is the radio access network (RAN) defined as a part of the Universal Mobile Telecommunications System (UMTS) , a third generation (3G) mobile phone technology supported by the third (3 rd) Generation Partnership Project (3GPP) . Examples of multiple-access network formats include Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, and Single-Carrier FDMA (SC-FDMA) networks.
A wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) . A UE may communicate with a base station via downlink and uplink. The downlink (or forward link) refers to the communication link from the base station to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the base station.
A base station may transmit data and control information on the downlink to a UE or may receive data and control information on the uplink from the UE. On the downlink, a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters. On the uplink, a transmission from the UE may encounter interference from uplink transmissions of other UEs  communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
As the demand for mobile broadband access continues to increase, the possibilities of interference and congested networks grows with more UEs accessing the long-range wireless communication networks and more short-range wireless systems being deployed in communities. Research and development continue to advance wireless technologies not only to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications.
Wireless devices, such as mobile phones, tablets, laptop computers, etc. can communicate using a variety of different types of wireless communication technology. For example, a mobile device operating in a non-standalone (NSA) mode may be configured to perform wireless communications with a fifth generation (5G) new radio (NR) network and a long-term evolution (LTE) network. When 5GNR is disabled at a UE operating in the NSA mode, there may be a loss of connection with a network entity. This loss of connection can take up to 10-13 seconds before connection is re-established. Such loss of connection may degrade a user experience.
SUMMARY
The systems, methods and devices of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein. One innovative aspect of the subject matter described in this disclosure can be implemented in a method of wireless communication. The method includes sending, from a user equipment (UE) , a first attach request message or a first tracking area update (TAU) request message to a network entity. Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE. The method further includes, in response to a determination that the 5G NR mode is disabled at the UE, sending a second attach request message from the UE to the network entity. The second attach request message indicates that the 5G NR mode is disabled.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus configured for wireless communication. The apparatus includes at least one processor and a memory coupled to the at least one processor. The at least one processor is configured to initiate sending, from a user equipment (UE) , of a first attach request message or a  first tracking area update (TAU) request message to a network entity. Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE. The at least one processor is further configured to, in response to a determination that the 5G NR mode is disabled at the UE, initiate sending of a second attach request message from the UE to the network entity. The second attach request message indicates that the 5G NR mode is disabled.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus configured for wireless communication. The apparatus includes means for means for sending, from a user equipment (UE) , a first attach request message or a first tracking area update (TAU) request message to a network entity. Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE. The apparatus further includes means for means for sending, in response to a determination that the 5G NR mode is disabled at the UE, a second attach request message from the UE to the network entity. The second attach request message indicates that the 5G NR mode is disabled.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a non-transitory computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations including initiating sending, from a user equipment (UE) , of a first attach request message or a first tracking area update (TAU) request message to a network entity. Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE. The operations further include, in response to a determination that the 5G NR mode is disabled at the UE, initiating sending of a second attach request message from the UE to the network entity. The second attach request message indicates that the 5G NR mode is disabled.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a method of wireless communication. The method includes sending, from a user equipment (UE) , a first attach request message or a first tracking area update (TAU) request message to a network entity. Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE. The method also includes, in response to a determination that the 5G NR mode is disabled at the UE, determining whether to send one of a second message or a third message to the network entity based on a  location of the UE. Each of the second message and the third message indicate that the 5G NR mode is disabled at the UE. The method further includes sending either the second message or the third message from the UE to the network entity.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus configured for wireless communication. The apparatus includes at least one processor and a memory coupled to the at least one processor. The at least one processor is configured to initiate sending, from a user equipment (UE) , of a first attach request message or a first tracking area update (TAU) request message to a network entity. Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE. The at least one processor is also configured to, in response to a determination that the 5G NR mode is disabled at the UE, determine whether to send one of a second message or a third message to the network entity based on a location of the UE. Each of the second message and the third message indicate that the 5G NR mode is disabled at the UE. The at least one processor is further configured to initiate sending of either the second message or the third message from the UE to the network entity.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus configured for wireless communication. The apparatus includes means for sending, from a user equipment (UE) , a first attach request message or a first tracking area update (TAU) request message to a network entity. Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE. The apparatus further includes means for determining, in response to a determination that the 5G NR mode is disabled at the UE, whether to send one of a second message or a third message to the network entity based on a location of the UE. Each of the second message and the third message indicate that the 5G NR mode is disabled at the UE. The apparatus also includes means for sending either the second message or the third message from the UE to the network entity.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a non-transitory computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations including initiating sending, from a user equipment (UE) , of a first attach request message or a first tracking area update (TAU) request message to a network entity. Each of the first attach request message and the first TAU request  message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE. The operations further include, in response to a determination that the 5G NR mode is disabled at the UE, determining whether to send one of a second message or a third message to the network entity based on a location of the UE. Each of the second message and the third message indicate that the 5G NR mode is disabled at the UE. The operations also include initiating sending of either the second message or the third message from the UE to the network entity.
Details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a block diagram illustrating details of an example wireless communication system.
Figure 2 is a block diagram conceptually illustrating an example design of a base station and a user equipment (UE) .
Figure 3 is a block diagram illustrating an example wireless communication system configured to enable user equipments (UEs) to more quickly re-establish connection in a non-standalone (NSA) mode when a fifth generation (5G) new radio (NR) mode is disabled.
Figure 4 is a ladder diagram illustrating an example wireless communication system for quickly re-establishing a connection between a UE in a NSA mode and a network entity when a 5G NR mode at the UE is disabled.
Figure 5 is a ladder diagram illustrating an example wireless communication system for selectively responding to disablement of a 5G NR mode at a UE operating in a NSA mode.
Figure 6 is a flow diagram illustrating an example process of UE operations for communication.
Figure 7 is a flow diagram illustrating an example process of UE operations for communication.
Figure 8 is a block diagram conceptually illustrating a design of a UE.
Figure 9 is a block diagram conceptually illustrating a design of a network entity.
Like reference numbers and designations in the various drawings indicate like elements.
DETAILED DESCRIPTION
The following description is directed to certain implementations for the purposes of describing the innovative aspects of this disclosure. However, a person having ordinary skill in the art will readily recognize that the teachings herein can be applied in a multitude of different ways. Some of the examples in this disclosure are based on wireless and wired local area network (LAN) communication according to the Institute of Electrical and Electronics Engineers (IEEE) 802.11 wireless standards, the IEEE 802.3 Ethernet standards, and the IEEE 1901 Powerline communication (PLC) standards. However, the described implementations may be implemented in any device, system or network that is capable of transmitting and receiving RF signals according to any of the wireless communication standards, including any of the IEEE 802.11 standards, the
Figure PCTCN2020078324-appb-000001
standard, code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV-DO) , 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High Speed Uplink Packet Access (HSUPA) , Evolved High Speed Packet Access (HSPA+) , Long Term Evolution (LTE) , AMPS, or other known signals that are used to communicate within a wireless, cellular or internet of things (IOT) network, such as a system utilizing 3G, 4G or 5G, or further implementations thereof, technology.
The present disclosure provides systems, apparatus, methods, and computer-readable media for enabling user equipments (UEs) operating in a non-standalone (NSA) mode to quickly compensate when a fifth generation (5G) new radio (NR) mode at the UE is disabled. For example, instead of the UE sending a tracking area update (TAU) request message to a network entity, as may be described in a wireless communication standard, the UE may instead send an attach request message to the network entity. The attach request message indicates that the 5G NR mode at the UE is disabled. The network entity may process the attach request message and confirm the change to the operating mode of the UE (e.g., via an attach accept message) more quickly than the network entity may process and respond to the TAU request message. Thus, use of the attach request message may reduce (or eliminate) a disconnection time when the 5G NR mode is disabled at the UE, which improves a user experience.
In some implementations, the UE may track various locations that are associated with slow TAU request message processing and, if the UE determines that it is in one of the “slow locations, ” the UE may use the attach request message instead of the TAU request message. Otherwise (e.g., if the UE is not in a slow location) , the UE may use the TAU request message. To illustrate, the UE may store location information that indicates one or more locations at which a duration of a TAU message exchange process satisfies a threshold. In some implementations, the locations may correspond to public land mobile networks (PLMNs) . When the UE detects that the 5G NR mode has been disabled, the UE determines if its current location is the same as the one or more locations indicated by the stored location information (e.g., stored PLMN data) . If the current location matches one of the one or more locations (identified as being slow/responding late) , the UE sends an attach request message to a network entity to indicate that the 5G NR mode has been disabled at the UE. If the current location does not match one of the one or more locations, the UE sends a TAU request message to the network entity to indicate that the 5G NR mode has been disabled at the UE. If a time period associated with performance of TAU message exchange satisfies a threshold, the current location is added to the location information stored at the UE such that next time, the UE uses the attach request message instead of the TAU request message. In this manner, the UE may use the TAU request message when the disconnection time is not significant, and the UE may use the attach request message when the disconnection time associated with the TAU message exchange is significant.
Particular implementations of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. In some aspects, the present disclosure provides a process and techniques for UEs operating in a NSA mode to more quickly indicate to a network entity that a 5G NR mode has been disabled at the UE. For example, the UE may use an attach request message instead of a TAU request message to convey the information to the network entity. Increasing the speed with which the network is informed of the UE’s change in operating mode reduces (or eliminates) disconnection time at the UE, which improves a user experience.
This disclosure relates generally to providing or participating in authorized shared access between two or more wireless communications systems, also referred to as wireless communications networks. In various implementations, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA)  networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks/systems/devices) , as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
A CDMA network may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like. UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) . CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . 3GPP defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN. GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (Ainterfaces, etc. ) . The radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) . A mobile phone operator's network may include one or more GERANs, which may be coupled with UTRANs in the case of a UMTS/GSM network. Additionally, an operator network may include one or more LTE networks, or one or more other networks. The various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and GSM are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims  to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure may describe certain aspects with reference to LTE, 4G, 5G, or NR technologies; however, the description is not intended to be limited to a specific technology or application, and one or more aspects described with reference to one technology may be understood to be applicable to another technology. Indeed, one or more aspects the present disclosure are related to shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces.
5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-Aare considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (such as ~1M nodes/km 2) , ultra-low complexity (such as ~10s of bits/sec) , ultra-low energy (such as ~10+years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (such as ~99.9999%reliability) , ultra-low latency (such as ~ 1 millisecond (ms) ) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (such as ~ 10 Tbps/km 2) , extreme data rates (such as multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse  deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth. For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
The scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
For clarity, certain aspects of the apparatus and techniques may be described below with reference to example 5G NR implementations or in a 5G-centric way, and 5G terminology may be used as illustrative examples in portions of the description below; however, the description is not intended to be limited to 5G applications.
Moreover, it should be understood that, in operation, wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to a person having ordinary skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
Figure 1 is a block diagram illustrating details of an example wireless communication system. The wireless communication system may include wireless network 100. The wireless network 100 may, for example, include a 5G wireless network. As appreciated by those skilled in the art, components appearing in Figure 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style- network arrangements, such as device to device or peer to peer or ad hoc network arrangements, etc.
The wireless network 100 illustrated in Figure 1 includes a number of base stations 105 and other network entities. A base station may be a station that communicates with the UEs and may be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each base station 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a base station or a base station subsystem serving the coverage area, depending on the context in which the term is used. In implementations of the wireless network 100 herein, the base stations 105 may be associated with a same operator or different operators, such as the wireless network 100 may include a plurality of operator wireless networks. Additionally, in implementations of the wireless network 100 herein, the base stations 105 may provide wireless communications using one or more of the same frequencies, such as one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof, as a neighboring cell. In some examples, an individual base station 105 or UE 115 may be operated by more than one network operating entity. In some other examples, each base station 105 and UE 115 may be operated by a single network operating entity.
A base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, or other types of cell. A macro cell generally covers a relatively large geographic area, such as several kilometers in radius, and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area, such as a home, and, in addition to unrestricted access, may provide restricted access by UEs having an association with the femto cell, such as UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like. A base station for a macro cell may be referred to as a macro base station. A base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in Figure 1,  base stations  105d and 105e are regular macro base stations, while base stations 105a–105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO. Base stations 105a–105c take  advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. Base station 105f is a small cell base station which may be a home node or portable access point. A base station may support one or multiple cells, such as two cells, three cells, four cells, and the like.
The wireless network 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. In some scenarios, networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
The UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile. It should be appreciated that, although a mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3rd Generation Partnership Project (3GPP) , such apparatus may additionally or otherwise be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology. Within the present document, a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary. Some non-limiting examples of a mobile apparatus, such as may include implementations of one or more of the UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) . A mobile apparatus may additionally be an “Internet of things” (IoT) or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (such as MP3 player) , a camera, a game console,  etc.; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, a smart meter, etc. In one aspect, a UE may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, UEs that do not include UICCs may be referred to as IoE devices. The UEs 115a–115d of the implementation illustrated in Figure 1 are examples of mobile smart phone-type devices accessing the wireless network 100. A UE may be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. The UEs 115e–115k illustrated in Figure 1 are examples of various machines configured for communication that access 5G network 100.
A mobile apparatus, such as UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like. In Figure 1, a communication link (represented as a lightning bolt) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink or uplink, or desired transmission between base stations, and backhaul transmissions between base stations. Backhaul communication between base stations of the wireless network 100 may occur using wired or wireless communication links.
In operation at the 5G network 100, the base stations 105a–105c serve the  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. Macro base station 105d performs backhaul communications with the base stations 105a–105c, as well as small cell, the base station 105f. Macro base station 105d also transmits multicast services which are subscribed to and received by the  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
The wireless network 100 of implementations supports mission critical communications with ultra-reliable and redundant links for mission critical devices, such the UE 115e, which is a drone. Redundant communication links with the UE 115e include from the  macro base stations  105d and 105e, as well as small cell base station 105f. Other machine type devices, such as UE 115f (thermometer) , the UE 115g (smart meter) , and the UE 115h (wearable device) may communicate through the wireless network 100 either directly with base stations, such as the  small cell base station 105f, and the macro base station 105e, or in multi-hop configurations by communicating with another user device which relays its information to the network, such as the UE 115f communicating temperature measurement information to the smart meter, the UE 115g, which is then reported to the network through the small cell base station 105f. The 5G network 100 may provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between the UEs 115i–115k communicating with the macro base station 105e.
Figure 2 is a block diagram conceptually illustrating an example design of a base station 105 and a UE 115. The base station 105 and the UE 115 may be one of the base stations and one of the UEs in Figure 1. For a restricted association scenario (as mentioned above) , the base station 105 may be the small cell base station 105f in Figure 1, and the UE 115 may be the  UE  115c or 115d operating in a service area of the base station 105f, which in order to access the small cell base station 105f, would be included in a list of accessible UEs for the small cell base station 105f. Additionally, the base station 105 may be a base station of some other type. As shown in Figure 2, the base station 105 may be equipped with antennas 234a through 234t, and the UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
At the base station 105, a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc. The data may be for the PDSCH, etc. The transmit processor 220 may process, such as encode and symbol map, the data and control information to obtain data symbols and control symbols, respectively. Additionally, the transmit processor 220 may generate reference symbols, such as for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal. Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing on the data symbols, the control symbols, or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t. For example, spatial processing performed on the data symbols, the control symbols, or the reference symbols may include precoding. Each modulator 232 may process a respective output symbol stream, such as  for OFDM, etc., to obtain an output sample stream. Each modulator 232 may additionally or alternatively process the output sample stream to obtain a downlink signal. For example, to process the output sample stream, each modulator 232 may convert to analog, amplify, filter, and upconvert the output sample stream to obtain the downlink signal. Downlink signals from modulators 232a through 232t may be transmitted via the antennas 234a through 234t, respectively.
At the UE 115, the antennas 252a through 252r may receive the downlink signals from the base station 105 and may provide received signals to the demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition a respective received signal to obtain input samples. For example, to condition the respective received signal, each demodulator 254 may filter, amplify, downconvert, and digitize the respective received signal to obtain the input samples. Each demodulator 254 may further process the input samples, such as for OFDM, etc., to obtain received symbols. MIMO detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. Receive processor 258 may process the detected symbols, provide decoded data for the UE 115 to a data sink 260, and provide decoded control information to a controller/processor 280. For example, to process the detected symbols, the receive processor 258 may demodulate, deinterleave, and decode the detected symbols.
On the uplink, at the UE 115, a transmit processor 264 may receive and process data (such as for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (such as for the physical uplink control channel (PUCCH) ) from the controller/processor 280. Additionally, the transmit processor 264 may generate reference symbols for a reference signal. The symbols from the transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by the modulators 254a through 254r (such as for SC-FDM, etc. ) , and transmitted to the base station 105. At base station 105, the uplink signals from the UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by the UE 115. The receive processor 238 may provide the decoded data to data sink 239 and the decoded control information to the controller/processor 240.
The controllers/ processors  240 and 280 may direct the operation at the base station 105 and the UE 115, respectively. The controller/processor 240 or other processors and modules at the base  station 105 or the controller/processor 280 or other processors and modules at the UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the execution illustrated in Figures 3-7, or other processes for the techniques described herein. The  memories  242 and 282 may store data and program codes for the base station 105 and The UE 115, respectively. Scheduler 244 may schedule UEs for data transmission on the downlink or uplink.
In some cases, the UE 115 and the base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed, such as contention-based, frequency spectrum. In an unlicensed frequency portion of the shared radio frequency spectrum band, the UEs 115 or the base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum. For example, the UE 115 or base station 105 may perform a listen-before-talk or listen-before-transmitting (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available. A CCA may include an energy detection procedure to determine whether there are any other active transmissions. For example, a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied. Specifically, signal power that is concentrated in a certain bandwidth and exceeds a predetermined noise floor may indicate another wireless transmitter. In some implementations, a CCA may include detection of specific sequences that indicate use of the channel. For example, another device may transmit a specific preamble prior to transmitting a data sequence. In some cases, an LBT procedure may include a wireless node adjusting its own back off window based on the amount of energy detected on a channel or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
Some wireless networks are configured to operate in a NSA mode. Wireless networks operating in a NSA mode may depend on a control plane of an existing LTE network for control functions, while 5G NR is exclusively focused on the user plane. When a 5G NR mode at a UE is disabled, the UE may suffer disconnection from a network entity for upwards of 10-13 seconds. Such disconnection time may degrade a user experience. Implementations described herein improve (e.g., reduce or eliminate) the disconnection time by enable UEs to more quickly respond to disablement of a 5G NR mode.
Figure 3 is a block diagram illustrating an example wireless communications system 300 for enabling a UE to more quickly re-establish connection in a NSA mode when a 5G NR mode at the UE is disabled. In some examples, the wireless communications system 300 may implement aspects of the wireless network 100. The wireless communications system 300 includes the UE 115 and a network entity 350. The network entity 350 may include or correspond to the base station 105, a network, a network core, or another network device, as illustrative, non-limiting examples. Although one UE and one network entity are illustrated, in some other implementations, the wireless communications system 300 may include more than one UE, more than one network entity, or a combination thereof.
The UE 115 can include a variety of components (such as structural, hardware components) used for carrying out one or more functions described herein. For example, these components can include a processor 302, a memory 304, a transmitter 316, a receiver 318, a NR enabler/disabler 320, and a timer 322. The processor 302 may be configured to execute instructions stored at the memory 304 to perform the operations described herein. In some implementations, the processor 302 includes or corresponds to the controller/processor 280, and the memory 304 includes or corresponds to the memory 282.
The memory 304 may include a list 306 (e.g., location information) and one or more thresholds 310. The list 306 may include or indicate one or more locations in which an amount of time of exchanging TAU messages between UE 115 and network entity 350 satisfies (e.g., is greater than or equal to) a threshold of one or more thresholds 310. In some implementations, the one or more locations indicated by list 306 may include or correspond to one or more public land mobile networks (PLMNs) . List 306 may be entirely generated by UE 115 or at least one entry of list 306 may be received from another source, as further described herein. Although described as a list, in other implementations, the location information may be stored in any format.
The transmitter 316 is configured to transmit data to one or more other devices, and the receiver 318 is configured to receive data from one or more other devices. For example, the transmitter 316 may transmit data, and the receiver 318 may receive data, via a network, such as a wired network, a wireless network, or a combination thereof. For example, the UE 115 may be configured to transmit or receive data via a direct device-to-device connection, a local area network (LAN) , a wide area network (WAN) , a modem-to-modem connection, the Internet, intranet, extranet, cable transmission system, cellular communication network, any combination  of the above, or any other communications network now known or later developed within which permits two or more electronic devices to communicate. In some implementations, the transmitter 316 and the receiver 318 may be replaced with a transceiver. Additionally, or alternatively, the transmitter 316, the receiver 318, or both may include and correspond to one or more components of the UE 115 described with reference to Figure 2.
The NR enabler/disabler 320 may be configured to enable and/or disable a 5G NR operating mode at the UE 115. For example, responsive to a power on operation, the NR enabler/disabler 320 may enable the 5G NR mode. Additionally, or alternatively, in certain circumstances, the NR enabler/disabler 320 may be configured to disable the 5G NR mode at UE 115. For example, the NR enabler/disabler 320 may be configured to disable the 5G NR mode based on a battery level of the UE 115 failing to satisfy a threshold of the thresholds 310, based on a user input received at the UE 115, based on a signal strength of a 5G NR signal received at the UE 115 failing to satisfy a threshold of the thresholds 310, based on receipt of a message from the network entity 350 or another network entity, based on another condition, or any combination thereof.
The timer 322 is configured to count an amount of time since storage of a first entry in the list 306 at the memory 304. The timer 322 may be used by the processor 302 to determine when to delete one or more entries of the list 306, as further described herein. In some implementations, the timer 322 represents a plurality of timers. In such implementations, each timer corresponds to an entry of the list 306, and entries may be deleted on an entry-by-entry basis, as further described herein.
The network entity 350 can include a variety of components (such as structural, hardware components) used for carrying out one or more functions described herein. For example, these components can include a processor 352, a memory 354, a transmitter 356, and a receiver 358. The processor 352 may be configured to execute instructions stored at the memory 354 to perform the operations described herein. In some implementations, the processor 352 includes or corresponds to the controller/processor 240, and the memory 354 includes or corresponds to the memory 242.
The transmitter 356 is configured to transmit data to one or more other devices, and the receiver 358 is configured to receive data from one or more other devices. For example, the transmitter 356 may transmit data, and the receiver 358 may receive data, via a network, such as a wired  network, a wireless network, or a combination thereof. For example, the network entity 350 may be configured to transmit or receive data via a direct device-to-device connection, a LAN, a WAN, a modem-to-modem connection, the Internet, intranet, extranet, cable transmission system, cellular communication network, any combination of the above, or any other communications network now known or later developed within which permits two or more electronic devices to communicate. In some implementations, the transmitter 356 and the receiver 368 may be replaced with a transceiver. Additionally, or alternatively, the transmitter 356, the receiver 358 or both may include and correspond to one or more components of base station 105 described with reference to Figure 2.
In some implementations, the wireless communications system 300 includes a 5G network. For example, the UE 115 may include a 5G UE, such as a UE configured to operate in accordance with a 5G network. The network entity 350 may include a 5G base station (or other network component) , such as a base station (or other network component) configured to operate in accordance with a 5G network. Alternatively, the network entity 350 may include a LTE base station (or other network component) , such as a base station (or other network component) configured to operate in accordance with a LTE network.
During operation of the wireless communications system 300, the UE 115 and the network entity 350 are configured to operate in a NSA mode. Although described herein as the NSA mode, the techniques described herein may apply to any dual-connectivity mode. Additionally, although described herein as operating in accordance with 5G NR and LTE, the techniques described herein may apply to any types of wireless communications technologies.
Upon a power up operation at the UE 115, the UE 115 may begin operating in a 5G NR mode. For example, based on detecting a power up operation, the NR enabler/disabler 320 may enable the 5G NR mode. Alternatively, the 5G NR mode may be enabled based on a user input. For example, based on receiving a user input indicating to enable the 5G NR mode, the NR enabler/disabler 320 may enable the 5G NR mode.
Additionally, upon the power up operation, the UE 115 may generate and send a first request message 370 to the network entity 350. The first request message 370 may include or correspond to a first attach request message or a first tracking area update (TAU) request message. An attach request message is typically sent by a UE as part of a radio resource control (RRC) connection establishment and authentication procedure, and, in some implementations,  may be included in a payload of another message. A TAU request message is typically sent by a UE to update the network of a tracking area change and potentially a serving gateway change.
The first request message 370 may indicate that the 5G NR mode is enabled at the UE 115. For example, the first request message 370 may include a particular field or bit (e.g., a DCNR field) having a first value (e.g., a logical 1 value) to indicate that the 5G NR mode is enabled at the UE 115. The network entity 350 may receive the first request message 370 and may process the first request message 370. Responsive to the first request message 370, the network entity 350 may generate and send a first accept message 372 to the UE 115. The first accept message 372 may include or correspond to a first attach accept message (e.g., a message indicating successful completion of an attachment process) or a first TAU accept message (e.g., a message indicating successful completion of a tracking area update process) , depending on the first request message 370. The UE 115 may receive the first accept message 372 from the network entity 350, thereby completing a first attachment process or a first TAU message exchange process between the UE 115 and the network entity 350.
At a later point in time, the UE 115 determines that the 5G NR mode is disabled at the UE 115. For example, the NR enabler/disabler 320 may determine that the 5G NR mode has been disabled. In some implementations, a determination that the 5G NR mode is disabled is based on a battery level of the UE 115 failing to satisfy one of the thresholds 310. For example, if the battery level becomes too low, the UE may operate in a single mode of wireless communications (e.g., an LTE mode, as a non-limiting example) to conserve power at the UE 115. In some implementations, a determination that the 5G NR mode is disabled is based on a user input received at the UE 115. For example, a user may input a user input indicating that the 5G NR mode is to be disabled, and NR enabler/disabler 320 disables the 5G NR mode. In some implementations, a determination that the 5G NR mode is disabled is based on a signal strength of a 5G NR signal received at the UE 115 failing to satisfy one of the thresholds 310. For example, if the signal strength of 5G NR signals is too low (or an error rate too high) to support 5G NR communications, NR enabler/disabler 320 disables the 5G NR mode. In some implementations, a determination that the 5G NR mode is disabled is based on receipt of a message from the network entity 350 or another network entity. For example, a network entity of wireless communications system 300 may disable 5G NR communications within wireless communications system 300, and based on a message received at UE 115, NR enabler/disabler  320 disables the 5G NR mode. In other implementations, the 5G NR mode may be disabled based on other conditions.
In some implementations, in response to a determination that the 5G NR mode is disabled at the UE 115, the UE 115 generates and sends a second attach request message 374 to the network entity 350. The second attach request message 374 may indicate that the 5G NR mode is disabled at the UE 115. For example, the second attach request message 374 may include a particular field or bit (e.g., a DCNR field) having a second value (e.g., a logical 0 value) to indicate that the 5G NR mode is disabled at the UE 115. The network entity 350 may receive the second attach request message 374 and may process the second attach request message 374. Responsive to the second attach request message 374, the network entity 350 may generate and send a second attach accept message 376 to the UE 115. The UE 115 may receive the second attach accept message 376 from the network entity 350, thereby completing a second attachment process between the UE 115 and the network entity 350. Using the second attach request message 374 (e.g., performing the second attachment process) to indicate that the 5G NR mode is disabled at the UE 115 may be faster than using a second TAU request message to indicate that the 5G NR mode is disabled at the UE 115. Thus, a disconnection time may be reduced (or eliminated) as compared to using the second TAU message, which improves a user experience. In some implementations, performing the second attachment process (instead of performing a second TAU message exchange process) may not be in accordance with a wireless communication standard (e.g., a 3GPP standard) .
In some such implementations, after receiving the second attach accept message 376 from the network entity 350, the UE 115 generates and sends a second TAU request message 378 to the network entity 350. The second TAU request message 378 may indicate that the 5G NR mode is disabled at the UE 115. For example, the second TAU request message 378 may include a particular field or bit (e.g., a DCNR field) having a second value (e.g., a logical 0 value) to indicate that the 5G NR mode is disabled at the UE 115. The network entity 350 may receive the second TAU request message 378 and may process the second TAU request message 378. Responsive to the second TAU request message 378, the network entity 350 may generate and send a second TAU accept message 380 to the UE 115. The UE 115 may receive the second TAU accept message 380 from the network entity 350, thereby completing a second TAU message exchange process between the UE 115 and the network entity 350. The second TAU  message exchange process may take more time than the second attachment process. An example of performance of the second attachment process and the second TAU message exchange process is further described with reference to Figure 4.
In some other implementations, after performing the first attachment process, in response to a determination that the 5G NR mode is disabled, the UE 115 determines whether to send one of a second message or a third message to the network entity 350 based on a location of the UE 115. The determination may be based on the list 306, with indicates locations that are designated as “slow” (e.g., locations associated with a time period to complete a TAU message exchange process that satisfies one of thresholds 310) . To illustrate, the UE 115 determines a current location and compares the current location to the locations indicated by the list 306. In some implementations, the current location and the locations indicated by the list 306 include or correspond to PLMNs. If the current location matches one of the locations indicated by the list 306, the UE 115 determines to send the second message. The second message includes the second attach request message 374. For example, if the current location matches one of the locations indicated by the list 306, the UE 115 generates and sends the second attach request message 374 to the network entity 350. Responsive to receipt of the second attach request message 374, the network entity 350 generates and sends the second attach accept message 376 to the UE 115.
If the current location of the UE 115 fails to match any of the locations indicated by the list 306, the UE 115 determines to send the third message. The third message includes the second TAU request message 378. For example, if the current location fails to match any of the locations indicated by the list 306, the UE 115 generates and sends the second TAU request message 378 to the network entity 350. Responsive to receipt of the second TAU request message 378, the network entity 350 generates and sends the second TAU accept message 380 to the UE 115. An example of performance of the selection between sending the second message and the third message is further described with reference to Figure 5.
In some such implementations, the UE 115 may add location information to the list 306 based on an amount of time associated with performing a TAU message exchange. To illustrate, the UE 115 may determine an amount of time between sending the second TAU request message 378 and receive the second TAU accept message 380 (e.g., performing the second TAU message exchange) and, responsive to the amount of time satisfying (e.g., being greater than or equal to)  one of the thresholds 310, the UE 115 may add additional location information indicating the current location (e.g., a current PLMN) of the UE 115 to the list 306. Thus, in some such implementations, the list 306 is generated by the UE 115 over time as the UE determines the amount of time associated with performing TAU message exchanges at various locations (e.g., various PLMNs) . Additionally, or alternatively, at least some of the location information (e.g., one or more entries of the list 306) may be received by the UE 115 from a peer UE. For example, the peer UE may determine its own list and share the list with the UE 115. Additionally, or alternatively, at least some of the location information (e.g., one or more entries of the list 306) may be received by the UE 115 from the network entity 350. For example, the network entity 350 may be configured to determine the amount of time associated with performing a TAU message exchange with the UE 115 at various locations, and the network entity 350 may generate a list of locations designated as “slow” for sharing with the UE 115.
In some such implementations, the list 306 is not maintained indefinitely at the UE 115. In some such implementations, the list 306 may be deleted in response to a power off command. For example, the UE 115 may detect a power off command and, in response to detection of the power off command, the UE 115 may delete the list 306 from the memory 304. In some other implementations, at least some of the entries in the list 306 are deleted responsive to expiration of the timer 322. For example, the timer 322 may be started when a first entry is stored in the list 306 and, when the UE 115 detects expiration of the timer 322, at least a portion (or an entirety) of the list 306 may be deleted from the memory 304. The timer 322 may have a duration of an hour, a day, a week, or a month, as non-limiting examples. In some implementations, the timer 322 includes a plurality of timers, where each timer corresponds to one of the entries of the list 306 (e.g., each timer is started upon storage of the corresponding entry in the list 306) . In such implementations, the UE 115 deletes an entry of the list 306 (e.g., a portion of the location information) in response to detecting expiration of the corresponding timer. Thus, in some implementations, the list 306 may be deleted on an entry-by-entry basis.
. Thus, Figure 3 describes techniques for enabling a UE operating in a NSA mode to more quickly re-establish connection with a network entity when a 5G NR mode at the UE is disabled. To illustrate, in some implementations, the UE 115 transmits the second attach request message 374 to the network entity 350 in response to determining that the 5G NR mode at the UE 115 is disabled. Exchanging attach messages between the UE 115 and the network entity 350 may be  quicker, and thus re-establish a connection quicker, than exchanging TAU messages. Thus, although the UE 115 may not operate in accordance with a wireless communication standard (which designates to exchange TAU messages in response to determining that the 5G NR mode is disabled) , the UE 115 may reduce (or eliminate) disconnection time, thereby improving a user experience. Additionally, in some implementations, the UE 115 maintains the list 306 at the memory 304 and only performs the attach message exchange instead of the TAU message exchange is a current location of the UE 115 matches one of the locations indicated by the list 306.
Figure 4 is a ladder diagram illustrating an example wireless communication system for quickly re-establishing a connection between a UE in a NSA mode and a network entity when a 5G NR mode at the UE is disabled, and Figure 5 is a ladder diagram illustrating an example wireless communication system for selectively responding to disablement of a 5G NR mode at a UE operating in a NSA mode. Figures 4 and 5 include the UE 115 and the network entity 350. In some examples, the wireless communication systems of Figures 4 and 5 may implement aspects of  wireless communications system  100 or 300. Alternative examples of Figures 4 and 5 are contemplated, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
Referring to Figure 4, at 410, the network entity 350 is enabled. For example, the network entity 350 may begin supporting a wireless network and communicating with wireless devices, such as UEs or other network entities.
At 412, the UE 115 may be powered on. Responsive to being powered on, the UE 115 may being operating in a NSA mode. For example, based on a configuration of the UE 115 and/or a configuration of a wireless network that the UE 115 is connected to (or attempting to connect to) , the UE 115 may operate in the NSA mode. Operating in the NSA mode may include operating in a 5G NR mode at the UE 115. For example, wireless communication circuitry configured to communicate via a 5G NR network may be powered on by the UE 115.
At 414, the UE 115 generates and sends a first request message to the network entity 350. The first request message may include a first attach request message or a first TAU request message. The first request message indicates that the 5G NR mode is enabled at the UE 115. For example,  the first request message may include a particular field or bit (e.g., a DCNR field) having a first value (e.g., a logical 1 value) that indicates that the 5G NR mode is enabled at the UE 115.
At 416, the network entity 350, responsive to receipt and processing of the first request message, generates and sends a first accept message to the UE 115. The first accept message may include a first attach accept message or a first TAU accept message. For example, if the first request message includes the first attach request message, the first accept message includes the first attach accept message. Alternatively, if the first request message includes the first TAU request message, the first accept message includes the first TAU accept message. The UE 115 receives the first accept message from the network entity 350.
At 418, the 5G NR mode is disabled at the UE 115. The 5G NR mode may be disabled based on a battery level of the UE 115 failing to satisfy a threshold, based on a user input received by the UE 115, based on a signal strength of a 5G NR signal received at the UE 115 failing to satisfy a threshold, based on receipt of a message from the network entity 350 or another network entity, or based on another condition. The UE 115 detects disablement of the 5G NR mode when the 5G NR mode is disabled.
If an ATTACH mode is enabled at the UE 115 (e.g., if the UE 115 is configured to perform an attach process in response to disablement of the 5G NR mode at the UE 115) , at 422, the process flow continues to 430, and, at 430, the UE 115 generates and sends a second attach request message to the network entity 350. The second attach request message indicates that the 5G NR mode is disabled at the UE 115. For example, the second attach request message may include a particular field or bit (e.g., a DCNR field) having a second value (e.g., a logical 0 value) that indicates that the 5G NR mode is disabled at the UE 115.
At 432, the network entity 350, responsive to receipt and processing of the second attach request message, generates and sends a second attach accept message to the UE 115. The UE 115 may receive and process the second attach accept message from the network entity 350.
In some implementations, the process flow continues from 432 to 440. At 440, the UE 115 generates and sends a second TAU request message to the network entity 350. The second TAU request message indicates that the 5G NR mode is disabled at the UE 115. For example, the second TAU request message may include a particular field or bit (e.g., a DCNR field) having a  second value (e.g., a logical 0 value) that indicates that the 5G NR mode is disabled at the UE 115.
At 442, the network entity 350, responsive to receipt and processing of the second TAU request message, generates and sends a second TAU accept message to the UE 115. The UE 115 may receive and process the second TAU accept message from the network entity 350.
Returning to 422, if the ATTACH mode is not enabled at the UE 115, at 424, the process flow proceeds from 424 to 440, where the UE 115 generates and sends the second TAU request message to the network entity 350, and then to 442, where the network entity 350 generates and sends the second TAU accept message to the UE 115.
Thus, Figure 4 describes that the UE 115 can perform an attachment process (e.g., the UE 115 and the network entity 350 can exchange a second attach request message and a second attach accept message) responsive to a determination that the 5G NR mode is disabled at the UE 115. Performing the attachment process may be quicker than performing a TAU message exchange process, which may reduce (or eliminate) a disconnection time at the UE 115, thereby improving a user experience.
Referring to Figure 5, the UE 115 and the network entity 350 perform operations at 410–418 as described with reference to Figure 4. At 522, the UE 115 determines whether location information corresponding to a current location of the UE 115 matches location information stored in a list (e.g., the list 306) stored at the UE 115. For example, the UE 115 may determine whether a current PLMN corresponding to the UE 115 matches any of the PLMNs stored in the list. The PLMNs (e.g., the location information) stored in the list may correspond to PLMNs that are designated as “slow” with reference to performance of a TAU message exchange.
If the current location information (e.g., the current PLMN) is not a match to any location information (e.g., PLMNs) stored in the list, the process flow continues to 530, where the UE 115 generates and sends a second TAU request message to the network entity 350. The second TAU request message indicates that the 5G NR mode is disabled at the UE 115. For example, the second TAU request message may include a particular field or bit (e.g., a DCNR field) having a second value (e.g., a logical 0 value) that indicates that the 5G NR mode is disabled at the UE 115.
At 532, the network entity 350, responsive to receipt and processing of the second TAU request message, generates and sends a second TAU accept message to the UE 115. The UE 115 receives and processes the second TAU accept message from the network entity 350.
At 534, a determination is made whether a TAU response time (e.g., a time between sending the second TAU request message and receiving the second TAU accept message) satisfies (e.g., is greater than or equal to) a threshold. The threshold may be 5 seconds, 10 seconds, or 13 seconds, as non-limiting examples. If the TAU response time satisfies the threshold, the process flow proceeds to 538, and the current location information (e.g., the current PLMN) is added to the list of location information (e.g., the list of PLMNs) . In this manner, additional slow locations (e.g., PLMNs) may be added to the list during operation of the UE 115. In some implementations, portions of, or an entirety of, the list may be deleted, as described with reference to Figure 3. The process flow then ends at 540 (e.g., the UE 115 is connected to the network entity 350 via a LTE connection) . If the TAU response time does not satisfy (e.g., is less than) the threshold, at 536, the current location information (e.g., the current PLMN) is not added to the list of location information (e.g., the list of PLMNs) , and the process flow ends at 540.
Returning to 522, if the current location information (e.g., the current PLMN) matches location information (e.g., a PLMN) stored in the list, at 524, then the process flow proceeds to 560. At 560, the UE 115 generates and sends a second attach request message to the network entity 350. The second attach request message indicates that the 5G NR mode is disabled at the UE 115. For example, the second attach request message may include a particular field or bit (e.g., a DCNR field) having a second value (e.g., a logical 0 value) that indicates that the 5G NR mode is disabled at the UE 115.
At 562, the network entity 350, responsive to receipt and processing of the second attach request message, generates and sends a second attach accept message to the UE 115. The UE 115 receives and processes the second attach accept message from the network entity 350. The process flow then ends at 564 (e.g., the UE 115 is connected to the network entity 350 via a LTE connection) .
Thus, Figure 5 describes how a UE can selectively respond to disablement of a 5G NR mode at the UE. For example, if the UE is in a current location (e.g., a current PLMN) that matches location information (e.g., PLMNs) stored in a list (e.g., a list of “slow” locations) , the UE may use an attach request message to connect to a network entity and inform the network entity that  the 5G NR mode is disabled at the UE. Alternatively, if the UE is in a current location (e.g., a current PLMN) that does not match location information (e.g., PLMNs) stored in the list, the UE may use a TAU request message in accordance with a wireless communications standard to connect to the network entity and inform the network entity that the 5G NR mode is disabled at the UE.
Figure 6 is a flow diagram illustrating an example process performed by a UE for communication. For example, example blocks of the process may cause the UE in a NSA mode to use an attach request message in response to detecting that a 5G NR mode is disabled at the UE according to some aspects of the present disclosure. The example blocks will also be described with respect to the UE 115 as illustrated in Figure 8. Figure 8 is a block diagram conceptually illustrating a design of a UE. The UE of Figure 8 may be configured to use an attach request message in response to detecting that a 5G NR mode is disabled according to one aspect of the present disclosure. The UE 115 includes the structure, hardware, and components as illustrated for the UE 115 of Figures 2 or 3. For example, the UE 115 includes the controller/processor 280, which operates to execute logic or computer instructions stored in the memory 282, as well as controlling the components of the UE 115 that provide the features and functionality of the UE 115. The UE 115, under control of the controller/processor 280, transmits and receives signals via wireless radios 801a-r and the antennas 252a-r. The wireless radios 801a-r include various components and hardware, as illustrated in Figure 2 for the UE 115, including the modulator/demodulators 254a-r, the MIMO detector 256, the receive processor 258, the transmit processor 264, and the TX MIMO processor 266.
As shown, the memory 282 may include message transmission (TX) logic 802, a 5G NR mode determiner 803, and location information 804 (e.g., a list) . In some aspects, the message TX logic 802, the 5G NR mode determiner 803, or a combination thereof, may include or correspond to the processor (s) 302. In some aspects, the location information 804 may include or correspond to the list 306. The UE 115 may receive signals from or transmit signals to one or more network entities, such as the base station 105, the network entity, a core network, a core network device, or a network entity as illustrated in Figure 9.
Referring to Figure 6, a flow diagram illustrating an example process 600 of UE operations for communication is shown. In some implementations, the process 600 may be performed by the  UE 115. In some other implementations, the process 600 may be performed by an apparatus configured for wireless communication. For example, the apparatus may include at least one processor, and a memory coupled to the processor. The processor may be configured to perform operations of the process 600. In some other implementations, the process 600 may be performed or executed using a non-transitory computer-readable medium having program code recorded thereon. The program code may be program code executable by a computer for causing the computer to perform operations of the process 600.
As illustrated at block 602, a user equipment (UE) sends a first attach request message or a first tracking area update (TAU) message to a network entity. Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE. As an example of the block 602, the UE 115 may transmit a first attach request message or a first TAU message using wireless radios 801a-r and antennas 252a-r. To further illustrate, the UE 115 may execute, under control of the controller/processor 280, the message TX logic 802 stored in the memory 282. The execution environment of the message TX logic 802 provides the functionality to send a first attach request message or a first TAU request message to a network entity. Each of the first attach request message and the first TAU request message indicate that a 5G NR mode is enabled at the UE 115.
At 604, the UE, in response to a determination that the 5G NR mode is disabled at the UE, sends a second attach request message from the UE to the network entity. The second attach request message indicates that the 5G NR mode is disabled. As an example of the block 604, the UE 115 may transmit a second attach request message using wireless radios 801a-r and antennas 252a-r. To further illustrate, the UE 115 may execute, under control of controller/ processor  280, 5G NR mode determiner 803 stored in memory 282. The execution environment of 5G NR mode determiner 803 provides the functionality to determine that the 5G NR mode is disabled at the UE 115. The UE 115 may also execute, under control of controller/processor 280, message TX logic 802 stored in memory 282. The execution environment of message TX logic 802 provides the functionality to send a second attach request message to the network entity. The second attach request message indicates that the 5G NR mode is disabled at the UE 115.
In some implementations, the process 600 may include that the UE operates in a non-standalone (NSA) mode during at least sending of the first attach request message or the first TAU request message. The NSA mode may correspond to 5G NR and to long-term evolution (LTE) .  Additionally, or alternatively, the network entity may include a long-term evolution (LTE) network entity. In some such implementations, the process 600 further includes receiving a first attach accept message at the UE from the network entity responsive to the first attach request message.
In some implementations, the process 600 further includes determining, at the UE, that the 5G NR mode is disabled. In some such implementations, the determination that the 5G NR mode is disabled is based on a battery level of the UE failing to satisfy a threshold. Additionally, or alternatively, the determination that the 5G NR mode is disabled is based on a user input received at the UE. Additionally, or alternatively, the determination that the 5G NR mode is disabled is based on a signal strength of a 5G NR signal received at the UE failing to satisfy a threshold. Additionally, or alternatively, the determination that the 5G NR mode is disabled is based on receipt of a message from the network entity or another network entity.
In some implementations, the process 600 further includes, after sending the second attach request message, sending a second TAU request message from the UE to the network entity. The second TAU request message indicates that the 5G NR mode is disabled. In some such implementations, the process 600 also includes receiving, at the UE from the network entity, a second TAU accept message responsive to the second TAU request message.
Thus, the process 600 enables the UE 115 to use an attach request message to connect with a network entity and inform the network entity that a 5G NR mode at the UE 115 is disabled. To illustrate, the UE 115 may send an attach request message indicating that the 5G NR mode is disabled at the UE 115 instead of sending a TAU request message. Sending the attach request message (e.g., performing an attach process) may be quicker and reduce (or eliminate) a disconnection time as compared to sending the TAU request message (e.g., performing a TAU message exchange process) , thereby improving a user experience.
Referring to Figure 7, a flow diagram illustrating an example process 700 of UE operations for communication is shown. In some implementations, the process 700 may be performed by the UE 115. In some other implementations, the process 700 may be performed by an apparatus configured for wireless communication. For example, the apparatus may include at least one processor, and a memory coupled to the processor. The processor may be configured to perform operations of the process 700. In some other implementations, the process 700 may be performed or executed using a non-transitory computer-readable medium having program code  recorded thereon. The program code may be program code executable by a computer for causing the computer to perform operations of the process 700.
At 702, a user equipment (UE) sends a first attach request message or a first tracking area update (TAU) request message to a network entity. Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE. As an example of the block 702, the UE 115 may transmit a first attach request message or a first TAU message using wireless radios 801a-r and antennas 252a-r. To further illustrate, the UE 115 may execute, under control of the controller/processor 280, the message TX logic 802 stored in the memory 282. The execution environment of the message TX logic 802 provides the functionality to send a first attach request message or a first TAU request message to a network entity. Each of the first attach request message and the first TAU request message indicate that a 5G NR mode is enabled at the UE 115.
At 704, in response to a determination that the 5G NR mode is disabled at the UE, the UE determines whether to send one of a second message or a third message to the network entity based on a location of the UE. Each of the second message and the third message indicate that the 5G NR mode is disabled at the UE. As an example of the block 704, the UE 115 may determine that a 5G NR mode is disabled. To further illustrate, the UE 115 may execute, under control of the controller/processor 280, the 5G NR mode determiner 803 stored in the memory 282. The execution environment of the 5G NR mode determiner 803 provides the functionality to determine that the 5G NR mode is disabled at the UE 113. The UE 115 may also determine whether to send a second message or a third message to the network entity based on a location of the UE 115. For example, the UE 115 may compare location information corresponding to a current location of the UE 115 to the location information 804 stored in the memory 282 to determine whether to send the second message or the third message.
At 706, the UE sends either the second message or the third message from the UE to the network entity. As an example of the block 706, the UE 115 may transmit a second message or a third message using wireless radios 801a-r and antennas 252a-r. To further illustrate, the UE 115 may execute, under control of the controller/processor 280, the message TX logic 802 stored in the memory 282. The execution environment of the message TX logic 802 provides the functionality to send either the second message or the third message to the network entity.
In some implementations, the process 700 may include that the UE operates in a non-standalone (NSA) mode during at least sending of the first attach request or the first TAU request message. The NSA mode corresponds to 5G NR and to long-term evolution (LTE) . Additionally, or alternatively, the second message includes a message distinct from a second TAU request message and the third message includes the second TAU request message. In some such implementations, the second message includes a second attach request message.
In some implementations, the location corresponds to a public land mobile network (PLMN) . Additionally, or alternatively, the process 700 may further include comparing the location of the UE to location information stored at the UE, the location information indicating one or more stored locations. In some such implementations, determining whether to send one of the second message or the third message includes determining to send the second message based on the location of the UE matching one of the one or more stored locations. In some such implementations, the second message includes a second attach request message indicating that the 5G NR mode is disabled. In some such implementations, the process 700 may also include receiving a second attach accept message at the UE from the network entity responsive to the second attach request message. Alternatively, determining whether to send one of the second message or the third message includes determining to send the third message based on the location of the UE failing to match any of the one or more stored locations. In some such implementations, the third message includes a second TAU request message indicating that the 5G NR mode is disabled. In some such implementations, the process 700 further includes receiving a second TAU accept message at the UE from the network entity responsive to the second TAU request message. In some such implementations, the process 700 also includes determining an amount of time between sending the second TAU request message and receiving the second TAU accept message, and, responsive to the amount of time satisfying a threshold, adding additional location information indicating the location of the UE to the location information stored at the UE.
Additionally, or alternatively, at least some of the location information stored at the UE is received from a peer UE. Additionally, or alternatively, at least some of the location information stored at the UE is received from the network entity. Additionally, or alternatively, the process 700 may further include deleting the location information stored at the UE based on a power off command. Additionally, or alternatively, the process 700 may further include deleting at least  some of the location information stored at the UE responsive to expiration of a timer. The timer is started when a first portion of the location information is stored at the UE. Additionally, or alternatively, location information corresponding to each of the one or more stored locations is associated with a corresponding timer. In some such implementations, the process 700 further includes deleting a portion of the location information corresponding to a first location of the one or more stored locations responsive to expiration of a corresponding timer.
In some implementations, the network entity includes a long-term evolution (LTE) network entity. In some such implementations, the process 700 further includes receiving a first attach accept message at the UE from the network entity responsive to the first attach request message.
Thus, the process 700 enables the UE 115 to how to respond to disablement of a 5G NR mode at the UE. To illustrate, the UE 115 may send an attach request message indicating that the 5G NR mode is disabled at the UE 115 instead of sending a TAU request message if a current location (e.g., PLMN) of the UE 115 matches location information (e.g., PLMNs) stored at the UE 115. Alternatively, if the current location (e.g., PLMN) of the UE 115 does not match location information (e.g., PLMNs) stored at the UE 115, the UE 115 may send a TAU attach request message indicating that the 5G NR mode is disabled at the UE 115. Thus, the UE 115 may operate in accordance with a wireless communication standard unless such performance is expected to cause undue delay/disconnection.
It is noted that one or more blocks (or operations) described with reference to Figure 6 or Figure 7 may be combined with one or more blocks (or operations) of another Figure. For example, one or more blocks (or operations) of Figure 6 may be combined with one or more blocks (or operations) of Figure 7. As another example, one or more blocks of Figure 6 or Figure 7 may be combined with one or more blocks (or operations) of another of Figures 2–5. Additionally, or alternatively, one or more operations described above with reference to Figures 1–8 may be combined with one or more operations described with reference to Figure 9.
Figure 9 is a block diagram conceptually illustrating a design of a network entity 350. The network entity 350 may include the base station 105, a network, or a core network, as illustrative, non-limiting examples. The network entity 350 includes the structure, hardware, and components as illustrated for the base station 105 of Figures 1 and 2, the network entity 350 of Figures 3–5, or a combination thereof. For example, the network entity 350 may include the controller/processor 240, which operates to execute logic or computer instructions stored in the  memory 242, as well as controlling the components of the network entity 350 that provide the features and functionality of the network entity 350. The network entity 350, under control of the controller/processor 240, transmits and receives signals via wireless radios 901a-t and the antennas 234a-t. The wireless radios 901a-t includes various components and hardware, as illustrated in Figure 2 for the network entity 350 (such as the base station 105) , including the modulator/demodulators 232a-t, the transmit processor 220, the TX MIMO processor 230, the MIMO detector 236, and the receive processor 238. As shown, the memory 242 may include message receive (RX) logic 902 and message transmission (TX) logic 903.
The message RX logic 902 may be configured to enable reception of one of more messages via the wireless radios 901a-t and the antennas 234a-t. To illustrate, the network entity 350 may execute, under control of the controller/processor 240, the message RX logic 902 stored in the memory 242. The execution environment of the message RX logic 902 provides the functionality to receive one or more attach request messages, receive one or more TAU request messages, or both. The message TX logic 903 may be configured to enable transmission of one or more messages via the wireless radios 901a-t and the antennas 234a-t. To illustrate, the network entity 350 may execute, under control of the controller/processor 240, the message TX logic 903. The execution environment of the message TX logic 903 provides the functionality to transmit one or more attach accept messages, transmit one or more TAU accept messages, or both.
It is noted that one or more blocks (or operations) described with reference to Figure 9 may be combined with one or more blocks (or operations) of another Figure. For example, one or more blocks of Figure 9 may be combined with one or more blocks (or operations) of another of Figures 2–5. Additionally, or alternatively, one or more operations described above with reference to Figures 1–5 and 9 may be combined with one or more operations described with reference to Figure 8.
In some aspects, enabling techniques for UEs to respond to disablement of a 5G NR mode may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes or devices described elsewhere herein. In some aspects, an apparatus configured for wireless communication, such as a user equipment (UE) , may include at least one processor, and a memory coupled to the at least one processor. The at least one processor may be configured to perform operations described herein  with respect to a wireless device. For example, the at least one processor may be configured to initiate sending, from a user equipment (UE) , of a first attach request message or a first tracking area update (TAU) request message to a network entity. Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE. The at least one processor may also be configured to, in response to a determination that the 5G NR mode is disabled at the UE, initiate sending of a second attach request message from the UE to the network entity. The second attach request message indicates that the 5G NR mode is disabled. In some other implementations, the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device. In some implementations, the apparatus may include one or more means configured to perform operations described herein.
In a first aspect, the UE operates in a non-standalone (NSA) mode during at least sending of the first attach request message or the first TAU request message. The NSA mode corresponds to 5G NR and to long-term evolution (LTE) .
In a second aspect, alone or in combination with the first aspect, the network entity includes a long-term evolution (LTE) network entity.
In a third aspect, alone or in combination with the second aspect, the UE receives a first attach accept message from the network entity responsive to the first attach request message.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the UE determines that the 5G NR mode is disabled.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the determination that the 5G NR mode is disabled is based on a battery level of the UE failing to satisfy a threshold.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the determination that the 5G NR mode is disabled is based on a user input received at the UE.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the determination that the 5G NR mode is disabled is based on a signal strength of a 5G NR signal received at the UE failing to satisfy a threshold.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the determination that the 5G NR mode is disabled is based on receipt of a message from the network entity or another network entity.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the UE receives a second attach accept message from the network entity responsive to the second attach request message.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the UE, after sending the second attach request message, sends a second TAU request message to the network entity. The second TAU request message indicates that the 5G NR mode is disabled.
In an eleventh aspect, alone or in combination with the tenth aspect, the UE receives, from the network entity, a second TAU accept message responsive to the second TAU request message.
In some aspects, an apparatus configured for wireless communication, such as a user equipment (UE) , may include at least one processor, and a memory coupled to the at least one processor. The at least one processor may be configured to perform operations described herein with respect to a wireless device. For example, the at least one processor may be configured to initiate sending, from a user equipment (UE) , of a first attach request message or a first tracking area update (TAU) request message to a network entity. Each of the first attach request message and the first TAU request message indicate that a fifth generation (5G) new radio (NR) mode is enabled at the UE. The at least one processor may also be configured to, in response to a determination that the 5G NR mode is disabled at the UE, determine whether to send one of a second message or a third message to the network entity based on a location of the UE. Each of the second message and the third message indicate that the 5G NR mode is disabled at the UE. The at least one processor may be further configured to initiate sending of either the second message or the third message from the UE to the network entity. In some other implementations, the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device. In some implementations, the apparatus may include one or more means configured to perform operations described herein.
In a twelfth aspect, the UE operates in a non-standalone (NSA) mode during at least sending of the first attach request message or the first TAU request message. The NSA mode corresponds to 5G NR and to long-term evolution (LTE) .
In a thirteenth aspect, alone or in combination with the twelfth aspect, the second message includes a message distinct from a second TAU request message.
In a fourteenth aspect, alone or in combination with one or more of the twelfth through thirteenth aspects, the third message includes the second TAU request message.
In a fifteenth aspect, alone or in combination with the fourteenth aspect, the second message includes a second attach request message.
In a sixteenth aspect, alone or in combination with one or more of the twelfth through fifteenth aspects, the location corresponds to a public land mobile network (PLMN) .
In a seventeenth aspect, alone or in combination with one or more of the twelfth through sixteenth aspect, the UE compares the location of the UE to location information stored at the UE. The location information indicates one or more stored locations.
In an eighteenth aspect, alone or in combination with the seventeenth aspect, determining whether to send one of the second message or the third message includes determining to send the second message based on the location of the UE matching one of the one or more stored locations.
In a nineteenth aspect, alone or in combination with the eighteenth aspect, the second message includes a second attach request message indicating that the 5G NR mode is disabled.
In a twentieth aspect, alone or in combination with the nineteenth aspect, the UE receives a second attach accept message from the network entity responsive to the second attach request message.
In a twenty-first aspect, alone or in combination with one or more of the seventeenth through twentieth aspects, determining whether to send one of the second message or the third message includes determining to send the third message based on the location of the UE failing to match any of the one or more stored locations.
In a twenty-second aspect, alone or in combination with the twenty-first aspect, the third message includes a second TAU request message indicating that the 5G NR mode is disabled.
In a twenty-third aspect, alone or in combination with the twenty-second aspect, the UE receives a second TAU accept message from the network entity responsive to the second TAU request message.
In a twenty-fourth aspect, alone or in combination with the twenty-third aspect, the UE determines an amount of time between sending the second TAU request message and receiving the second TAU accept message, and, responsive to the amount of time satisfying a threshold, adds additional location information indicating the location of the UE to the location information stored at the UE.
In a twenty-fifth aspect, alone or in combination with one or more of the seventeenth through twenty-fourth aspects, at least some of the location information stored at the UE is received from a peer UE.
In a twenty-sixth aspect, alone or in combination with one or more of the seventeenth through twenty-fifth aspects, at least some of the location information stored at the UE is received from the network entity.
In a twenty-seventh aspect, alone or in combination with one or more of the seventeenth through twenty-sixth aspects, the UE deletes the location information stored at the UE based on a power off command.
In a twenty-eighth aspect, alone or in combination with one or more of the seventeenth through twenty-seventh aspects, the UE deletes at least some of the location information stored at the UE responsive to expiration of a timer. The timer starts when a first portion of the location information is stored at the UE.
In a twenty-ninth aspect, alone or in combination with one or more of the seventeenth through twenty-eighth aspects, location information corresponding to each of the one or more stored locations is associated with a corresponding timer.
In a thirtieth aspect, alone or in combination with the twenty-ninth aspect, the UE deletes a portion of the location information corresponding to a first location of the one or more stored locations responsive to expiration of a corresponding timer.
In a thirty-first aspect, alone or in combination with one or more of the twelfth through thirtieth aspects, the network entity comprises a long-term evolution (LTE) network entity.
In a thirty-second aspect, alone or in combination with the thirty-first aspect, the UE receives a first attach accept message from the network entity responsive to the first attach request message.
Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Components, the functional blocks, and the modules described herein with respect to Figures 1-9 include processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof. In addition, features discussed herein may be implemented via specialized processor circuitry, via executable instructions, or combinations thereof.
Components, the functional blocks, and the modules described herein (such as components of Figures 2-5, 8, and 9) may include processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof. In addition, features discussed herein relating to components, the functional blocks, and the modules described herein (such as components of Figures 2-5, 8, and 9) may be implemented via specialized processor circuitry, via executable instructions, or combinations thereof.
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure. Skilled artisans will also readily recognize that the order or combination of components, methods, or interactions that are described herein are merely examples and that  the components, methods, or interactions of the various aspects of the present disclosure may be combined or performed in ways other than those illustrated and described herein.
The various illustrative logics, logical blocks, modules, circuits and algorithm processes described in connection with the implementations disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. The interchangeability of hardware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and processes described above. Whether such functionality is implemented in hardware or software depends upon the particular application and design constraints imposed on the overall system.
The hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. In some implementations, a processor may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some implementations, particular processes and methods may be performed by circuitry that is specific to a given function.
In one or more aspects, the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, that is one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. The processes of a method or algorithm  disclosed herein may be implemented in a processor-executable software module which may reside on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another. A storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Also, any connection can be properly termed a computer-readable medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.
Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein, but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein.
Additionally, a person having ordinary skill in the art will readily appreciate, the terms “upper” and “lower” are sometimes used for ease of describing the figures, and indicate relative positions corresponding to the orientation of the figure on a properly oriented page, and may not reflect the proper orientation of any device as implemented.
Certain features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as  such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one more example processes in the form of a flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Additionally, other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.
As used herein, including in the claims, the term “or, ” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. Also, as used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (that is A and B and C) or any of these in any combination thereof.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not  intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (70)

  1. A method of wireless communication, the method comprising:
    sending, from a user equipment (UE) , a first attach request message or a first tracking area update (TAU) request message to a network entity, each of the first attach request message and the first TAU request message indicating that a fifth generation (5G) new radio (NR) mode is enabled at the UE; and
    in response to a determination that the 5G NR mode is disabled at the UE, sending a second attach request message from the UE to the network entity, the second attach request message indicating that the 5G NR mode is disabled.
  2. The method of claim 1, wherein the UE operates in a non-standalone (NSA) mode during at least sending of the first attach request message or the first TAU request message, the NSA mode corresponding to 5G NR and to long-term evolution (LTE) .
  3. The method of any of claims 1 and 2, wherein the network entity comprises a long-term evolution (LTE) network entity.
  4. The method of claim 3, further comprising receiving a first attach accept message at the UE from the network entity responsive to the first attach request message.
  5. The method of any of claims 1-4, further comprising determining, at the UE, that the 5G NR mode is disabled.
  6. The method of any of claims 1-5, wherein the determination that the 5G NR mode is disabled is based on a battery level of the UE failing to satisfy a threshold.
  7. The method of any of claims 1-6, wherein the determination that the 5G NR mode is disabled is based on a user input received at the UE.
  8. The method of any of claims 1-7, wherein the determination that the 5G NR mode is disabled is based on a signal strength of a 5G NR signal received at the UE failing to satisfy a threshold.
  9. The method of any of claims 1-8, wherein the determination that the 5G NR mode is disabled is based on receipt of a message from the network entity or another network entity.
  10. The method of any of claims 1-9, further comprising receiving a second attach accept message at the UE from the network entity responsive to the second attach request message.
  11. The method of any of claims 1-10, further comprising, after sending the second attach request message, sending a second TAU request message from the UE to the network entity, the second TAU request message indicating that the 5G NR mode is disabled.
  12. The method of claim 11, further comprising receiving, at the UE from the network entity, a second TAU accept message responsive to the second TAU request message.
  13. An apparatus configured for wireless communication, comprising:
    at least one processor; and
    a memory coupled to the at least one processor,
    wherein the at least one processor is configured to:
    initiate sending, from a user equipment (UE) , of a first attach request message or a first tracking area update (TAU) request message to a network entity, each of the first attach request message and the first TAU request message indicating that a fifth generation (5G) new radio (NR) mode is enabled at the UE; and
    in response to a determination that the 5G NR mode is disabled at the UE, initiate sending of a second attach request message from the UE to the network entity, the second attach request message indicating that the 5G NR mode is disabled.
  14. The apparatus of claim 13, wherein the UE operates in a non-standalone (NSA) mode during at least sending of the first attach request message or the first TAU request message, the NSA mode corresponding to 5G NR and to long-term evolution (LTE) .
  15. The apparatus of any of claims 13 and 14, wherein the network entity comprises a long-term evolution (LTE) network entity.
  16. The apparatus of claim 15, wherein the at least one processor is further configured to receive a first attach accept message at the UE from the network entity responsive to the first attach request message.
  17. The apparatus of any of claims 13-16, wherein the at least one processor is further configured to determine, at the UE, that the 5G NR mode is disabled.
  18. The apparatus of any of claims 13-17, wherein the determination that the 5G NR mode is disabled is based on a battery level of the UE failing to satisfy a threshold.
  19. The apparatus of any of claims 13-18, wherein the determination that the 5G NR mode is disabled is based on a user input received at the UE.
  20. The apparatus of any of claims 13-19, wherein the determination that the 5G NR mode is disabled is based on a signal strength of a 5G NR signal received at the UE failing to satisfy a threshold.
  21. The apparatus of any of claims 13-20, wherein the determination that the 5G NR mode is disabled is based on receipt of a message from the network entity or another network entity.
  22. The apparatus of any of claims 13-21, wherein the at least one processor is further configured to receive a second attach accept message at the UE from the network entity responsive to the second attach request message.
  23. The apparatus of any of claims 13-21, wherein the at least one processor is further configured to, after initiating sending of the second attach request message, initiate sending of a second TAU request message from the UE to the network entity, the second TAU request message indicating that the 5G NR mode is disabled.
  24. The apparatus of claim 23, wherein the at least one processor is further configured to receive, at the UE from the network entity, a second TAU accept message responsive to the second TAU request message.
  25. An apparatus configured for wireless communication, comprising:
    means for sending, from a user equipment (UE) , a first attach request message or a first tracking area update (TAU) request message to a network entity, each of the first attach request message and the first TAU request message indicating that a fifth generation (5G) new radio (NR) mode is enabled at the UE; and
    means for sending, in response to a determination that the 5G NR mode is disabled at the UE, a second attach request message from the UE to the network entity, the second attach request message indicating that the 5G NR mode is disabled.
  26. A non-transitory computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations comprising:
    initiating sending, from a user equipment (UE) , of a first attach request message or a first tracking area update (TAU) request message to a network entity, each of the first attach request message and the first TAU request message indicating that a fifth generation (5G) new radio (NR) mode is enabled at the UE; and
    in response to a determination that the 5G NR mode is disabled at the UE, initiating sending of a second attach request message from the UE to the network entity, the second attach request message indicating that the 5G NR mode is disabled.
  27. A method of wireless communication, the method comprising:
    sending, from a user equipment (UE) , a first attach request message or a first tracking area update (TAU) request message to a network entity, each of the first attach request message and the first TAU request message indicating that a fifth generation (5G) new radio (NR) mode is enabled at the UE;
    in response to a determination that the 5G NR mode is disabled at the UE, determining whether to send one of a second message or a third message to the network entity based on a location of the UE, each of the second message and the third message indicating that the 5G NR mode is disabled at the UE; and
    sending either the second message or the third message from the UE to the network entity.
  28. The method of claim 27, wherein the UE operates in a non-standalone (NSA) mode during at least sending of the first attach request message or the first TAU request message, the NSA mode corresponding to 5G NR and to long-term evolution (LTE) .
  29. The method of any of claims 27 and 28, wherein the second message comprises a message distinct from a second TAU request message and the third message comprises the second TAU request message.
  30. The method of claim 29, wherein the second message comprises a second attach request message.
  31. The method of any of claims 27-30, wherein the location corresponds to a public land mobile network (PLMN) .
  32. The method of any of claims 27-31, further comprising comparing the location of the UE to location information stored at the UE, the location information indicating one or more stored locations.
  33. The method of claim 32, wherein determining whether to send one of the second message or the third message comprises determining to send the second message based on the location of the UE matching one of the one or more stored locations.
  34. The method of claim 33, wherein the second message comprises a second attach request message indicating that the 5G NR mode is disabled.
  35. The method of claim 34, further comprising receiving a second attach accept message at the UE from the network entity responsive to the second attach request message.
  36. The method of any of claims 32-36, wherein determining whether to send one of the second message or the third message comprises determining to send the third message based on the location of the UE failing to match any of the one or more stored locations.
  37. The method of claim 36, wherein the third message comprises a second TAU request message indicating that the 5G NR mode is disabled.
  38. The method of claim 37, further comprising receiving a second TAU accept message at the UE from the network entity responsive to the second TAU request message.
  39. The method of claim 38, further comprising:
    determining an amount of time between sending the second TAU request message and receiving the second TAU accept message; and
    responsive to the amount of time satisfying a threshold, adding additional location information indicating the location of the UE to the location information stored at the UE.
  40. The method of any of claims 32-39, wherein at least some of the location information stored at the UE is received from a peer UE.
  41. The method of any of claims 32-40, wherein at least some of the location information stored at the UE is received from the network entity.
  42. The method of any of claims 32-41, further comprising deleting the location information stored at the UE based on a power off command.
  43. The method of any of claims 32-42, further comprising deleting at least some of the location information stored at the UE responsive to expiration of a timer, the timer started when a first portion of the location information is stored at the UE.
  44. The method of any of claims 32-43, wherein location information corresponding to each of the one or more stored locations is associated with a corresponding timer.
  45. The method of claim 44, further comprising deleting a portion of the location information corresponding to a first location of the one or more stored locations responsive to expiration of a corresponding timer.
  46. The method of any of claims 27-45, wherein the network entity comprises a long-term evolution (LTE) network entity.
  47. The method of claim 46, further comprising receiving a first attach accept message at the UE from the network entity responsive to the first attach request message.
  48. An apparatus configured for wireless communication, comprising:
    at least one processor; and
    a memory coupled to the at least one processor,
    wherein the at least one processor is configured to:
    initiate sending, from a user equipment (UE) , of a first attach request message or a first tracking area update (TAU) request message to a network entity, each of the first attach request message and the first TAU request message indicating that a fifth generation (5G) new radio (NR) mode is enabled at the UE;
    in response to a determination that the 5G NR mode is disabled at the UE, determine whether to send one of a second message or a third message to the network entity based on a location of the UE, each of the second message and the third message indicating that the 5G NR mode is disabled at the UE; and
    initiate sending of either the second message or the third message from the UE to the network entity.
  49. The apparatus of claim 48, wherein the UE operates in a non-standalone (NSA) mode during at least sending of the first attach request message or the first TAU request message, the NSA mode corresponding to 5G NR and to long-term evolution (LTE) .
  50. The apparatus of any of claims 48 and 49, wherein the second message comprises a message distinct from a second TAU request message and the third message comprises the second TAU request message.
  51. The apparatus of claim 50, wherein the second message comprises a second attach request message.
  52. The apparatus of any of claims 48-51, wherein the location corresponds to a public land mobile network (PLMN) .
  53. The apparatus of any of claims 48-52, wherein the at least one processor is further configured to compare the location of the UE to location information stored at the UE, the location information indicating one or more stored locations.
  54. The apparatus of claim 53, wherein determining whether to send one of the second message or the third message comprises determining to send the second message based on the location of the UE matching one of the one or more stored locations.
  55. The apparatus of claim 54, wherein the second message comprises a second attach request message indicating that the 5G NR mode is disabled.
  56. The apparatus of claim 55, wherein the at least one processor is further configured to receive a second attach accept message at the UE from the network entity responsive to the second attach request message.
  57. The apparatus of any of claims 53-56, wherein determining whether to send one of the second message or the third message comprises determining to send the third message based on the location of the UE failing to match any of the one or more stored locations.
  58. The apparatus of claim 57, wherein the third message comprises a second TAU request message indicating that the 5G NR mode is disabled.
  59. The apparatus of claim 58, wherein the at least one processor is further configured to receive a second TAU accept message at the UE from the network entity responsive to the second TAU request message.
  60. The apparatus of claim 59, wherein the at least one processor is further configured to:
    determine an amount of time between sending the second TAU request message and receiving the second TAU accept message; and
    responsive to the amount of time satisfying a threshold, add additional location information indicating the location of the UE to the location information stored at the UE.
  61. The apparatus of any of claims 53-60, wherein at least some of the location information stored at the UE is received from a peer UE.
  62. The apparatus of any of claims 53-61, wherein at least some of the location information stored at the UE is received from the network entity.
  63. The apparatus of any of claims 53-62, wherein the at least one processor is further configured to delete the location information stored at the UE based on a power off command.
  64. The apparatus of any of claims 53-63, wherein the at least one processor is further configured to delete at least some of the location information stored at the UE responsive to expiration of a timer, the timer started when a first portion of the location information is stored at the UE.
  65. The apparatus of any of claims 53-64, wherein location information corresponding to each of the one or more stored locations is associated with a corresponding timer.
  66. The apparatus of claim 65, wherein the at least one processor is further configured to delete a portion of the location information corresponding to a first location of the one or more stored locations responsive to expiration of a corresponding timer.
  67. The apparatus of any of claims 48-66, wherein the network entity comprises a long-term evolution (LTE) network entity.
  68. The apparatus of claim 67, wherein the at least one processor is further configured to receive a first attach accept message at the UE from the network entity responsive to the first attach request message.
  69. An apparatus configured for wireless communication, comprising:
    means for sending, from a user equipment (UE) , a first attach request message or a first tracking area update (TAU) request message to a network entity, each of the first attach request message and the first TAU request message indicating that a fifth generation (5G) new radio (NR) mode is enabled at the UE;
    means for determining, in response to a determination that the 5G NR mode is disabled at the UE, whether to send one of a second message or a third message to the network entity based on a location of the UE, each of the second message and the third message indicating that the 5G NR mode is disabled at the UE; and
    means for sending either the second message or the third message from the UE to the network entity.
  70. A non-transitory computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations comprising:
    initiating sending, from a user equipment (UE) , of a first attach request message or a first tracking area update (TAU) request message to a network entity, each of the first attach request message and the first TAU request message indicating that a fifth generation (5G) new radio (NR) mode is enabled at the UE;
    in response to a determination that the 5G NR mode is disabled at the UE, determining whether to send one of a second message or a third message to the network entity based on a location of the UE, each of the second message and the third message indicating that the 5G NR mode is disabled at the UE; and
    initiating sending of either the second message or the third message from the UE to the network entity.
PCT/CN2020/078324 2020-03-07 2020-03-07 Disable new radio (nr) response WO2021179104A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078324 WO2021179104A1 (en) 2020-03-07 2020-03-07 Disable new radio (nr) response

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078324 WO2021179104A1 (en) 2020-03-07 2020-03-07 Disable new radio (nr) response

Publications (1)

Publication Number Publication Date
WO2021179104A1 true WO2021179104A1 (en) 2021-09-16

Family

ID=77671164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078324 WO2021179104A1 (en) 2020-03-07 2020-03-07 Disable new radio (nr) response

Country Status (1)

Country Link
WO (1) WO2021179104A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201944818A (en) * 2018-04-05 2019-11-16 美商高通公司 Optimization of user equipment radio capability signaling
WO2019220210A1 (en) * 2018-05-18 2019-11-21 Lenovo (Singapore) Pte. Ltd. Ue radio capability update in 5g system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201944818A (en) * 2018-04-05 2019-11-16 美商高通公司 Optimization of user equipment radio capability signaling
WO2019220210A1 (en) * 2018-05-18 2019-11-21 Lenovo (Singapore) Pte. Ltd. Ue radio capability update in 5g system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON, NTT DOCOMO: "CIoT optimisations redirection betwee EPC and 5GC", 3GPP DRAFT; C1-193588(REV OF 3309)_5G_CIOT_24.501_CIOT OPTIMISATIONS REDIRECTION, vol. CT WG1, 16 May 2019 (2019-05-16), Reno (NV), USA, pages 1 - 12, XP051726858 *
QUALCOMM INCORPORATED: "eLTE AS Capability enabling and disabling due to N1 Mode Capability Change", 3GPP DRAFT; R2-1811708_ELTE AS CAPABILITY AND CHANGE BASED ON N1 MODE CHANGE_V4, vol. RAN WG2, 24 August 2018 (2018-08-24), Gothenburg, Sweden, pages 1 - 31, XP051521347 *

Similar Documents

Publication Publication Date Title
US11924906B2 (en) Aligning DRX cycles using system level configuration
US11849396B2 (en) Discontinuous reception (DRX) with sidelink (SL)
WO2021030970A1 (en) Ul transmission method for endc dual connection device
US11395190B2 (en) Full configuration handover techniques
US11412426B2 (en) Access check optimization for handover from wireless local area network (WLAN) and other inter radio access technology (IRAT)
US11825446B2 (en) UE aided fast carrier selection
US11653358B2 (en) Downlink control information transmission within a physical downlink shared channel
US11101871B1 (en) Beam selection for multi-subscriber identity module (MSIM) devices
WO2021179284A1 (en) Reference signal transmission by full-duplex user equipment
US11382057B2 (en) UE optimization to move between wireless communication networks based on SUCI support
WO2021243551A1 (en) Techniques for handover or redirection of ue from 4g to 5g (sa)
US11115990B2 (en) UE autonomous beam selection
WO2021179104A1 (en) Disable new radio (nr) response
WO2021026908A1 (en) User equipment behavior on obtaining new radio early measurement configuration
WO2021248507A1 (en) Stand alone (sa) 5g idle mobility extension
US11956849B2 (en) Discontinuous reception (DRX) configuration for a user equipment (UE)
US20230198317A1 (en) Base station (gnb)-assisting-energy harvesting (eh) from nearby user equipments (ues)
WO2021237566A1 (en) Network service recovery from abnormal 5g (sa) networks
US11963172B2 (en) Sidelink resource allocation and communication
WO2021237576A1 (en) Network service recovery from abnormal 5g (sa) networks for a dual sim ue
WO2021208075A1 (en) Transmission of repetitions of a transport block based on uplink configured grants
US20240160887A1 (en) Radio frequency integrated circuit (rfic) selection
US20220330223A1 (en) Configuration of sidelink resources for transmission of a sidelink message
WO2021237589A1 (en) A method to accelerate ue return 5g from 4g
WO2021159455A1 (en) Data transfer latency reduction for a mobile device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924647

Country of ref document: EP

Kind code of ref document: A1