WO2021208075A1 - Transmission of repetitions of a transport block based on uplink configured grants - Google Patents

Transmission of repetitions of a transport block based on uplink configured grants Download PDF

Info

Publication number
WO2021208075A1
WO2021208075A1 PCT/CN2020/085349 CN2020085349W WO2021208075A1 WO 2021208075 A1 WO2021208075 A1 WO 2021208075A1 CN 2020085349 W CN2020085349 W CN 2020085349W WO 2021208075 A1 WO2021208075 A1 WO 2021208075A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
occasion
timer
repetition
determining
Prior art date
Application number
PCT/CN2020/085349
Other languages
French (fr)
Inventor
Mostafa KHOSHNEVISAN
Peter Gaal
Xiaoxia Zhang
Tao Luo
Yan Zhou
Jing Sun
Ozcan Ozturk
Fang Yuan
Juan Montojo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/085349 priority Critical patent/WO2021208075A1/en
Publication of WO2021208075A1 publication Critical patent/WO2021208075A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • H04L1/1883Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to transmission of repetitions of a transport block based on linking uplink configured grants.
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) . These systems may be capable of supporting communication with multiple UEs by sharing the available system resources (such as time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G fourth generation
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • NR New Radio
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • DFT-S-OFDM discrete Fourier transform spread orthogonal frequency division multiplexing
  • Wireless communication devices may transmit repetitions of a communication to increase reliability.
  • a UE may transmit multiple repetitions of a transport block to a base station. Transmission of the multiple repetitions may increase a probability that the base station is able to receive and successfully decode the communication.
  • the transmission of repetitions generally reduces flexibility because each repetition may be associated with the same transmit parameters. As a result, some UEs may transmit new transport blocks rather than transmitting repetitions of the same transport block.
  • the method includes receiving, from a base station, a first uplink configured grant (UL-CG) associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions.
  • the method further includes receiving, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • UL-CG uplink configured grant
  • the method further includes, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, determining that a transport block (TB) transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
  • TB transport block
  • the method includes determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions
  • the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the first UL-CG occasion and the second UL-CG occasion are associated with a common hybrid automatic repeat request (HARQ) process identifier.
  • HARQ hybrid automatic repeat request
  • the method further includes transmitting a TB during the first UL-CG occasion and, based on transmitting the TB, initiating a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier.
  • the method further includes, based on determining that the first timer is unexpired, transmitting a repetition of the TB during the second UL-CG occasion.
  • the method includes determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions
  • the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier.
  • the method further includes selecting, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration and transmitting a TB during the first UL-CG occasion.
  • the method further includes, based on transmitting the TB, initiating a timer that is associated with the common HARQ process identifier.
  • the method further includes, based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, transmitting a repetition of the TB during the second UL-CG occasion.
  • the method includes transmitting a first TB in a physical uplink shared channel (PUSCH) transmission to a base station.
  • the method further includes receiving, from the base station, a first UL-CG associated with a first UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions.
  • the method further includes determining one or more parameters for a repetition of the first TB.
  • the method further includes, based on the one or more parameters, transmitting one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
  • the UE includes at least one processor and a memory coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor, is configured to receive, from a base station, a first UL-CG associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions.
  • the at least one processor is further configured to receive, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the at least one processor is further configured to determine, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, that a TB transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
  • the apparatus includes means for receiving, from a base station, a first UL-CG associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions.
  • the apparatus further includes means for receiving, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the apparatus further includes means for determining, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, that a TB transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
  • the operations include receiving, from a base station, a first UL-CG associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions.
  • the operations further include receiving, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the operations further include, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, determining that a TB transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
  • the UE includes at least one processor and a memory coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor, is configured to receive, from a base station, a first UL-CG associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions.
  • the at least one processor is further configured to receive, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the at least one processor is further configured to determine, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, that a TB transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
  • the apparatus includes means for determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions
  • the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier.
  • the apparatus further includes means for transmitting a TB during the first UL-CG occasion.
  • the apparatus further includes means for initiating, based on transmitting the TB, a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier.
  • the apparatus further includes means for transmitting, based on determining that the first timer is unexpired, a repetition of the TB during the second UL-CG occasion.
  • the operations include determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions
  • the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier.
  • the operations further include transmitting a TB during the first UL-CG occasion.
  • the operations further include, based on transmitting the TB, initiating a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier.
  • the operations further include, based on determining that the first timer is unexpired, transmitting a repetition of the TB during the second UL-CG occasion.
  • the UE includes at least one processor and a memory coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor, is configured to determine that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions
  • the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier.
  • the at least one processor is further configured to select, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration.
  • the at least processor is further configured to transmit a TB during the first UL-CG occasion and to initiate, based on transmitting the TB, a timer that is associated with the common HARQ process identifier.
  • the at least one processor is further configured to transmit, based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, a repetition of the TB during the second UL-CG occasion.
  • the apparatus includes means for determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions
  • the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions, the first UL-CG occasion and the second UL-CG occasion being associated with a common HARQ process identifier.
  • the apparatus further includes means for selecting, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration.
  • the apparatus further includes means for transmitting a TB during the first UL-CG occasion and means for initiating, based on transmitting the TB, a timer that is associated with the common HARQ process identifier.
  • the apparatus further includes means for transmitting, based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, a repetition of the TB during the second UL-CG occasion.
  • the operations include determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions
  • the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier.
  • the operations further include selecting, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration and transmitting a TB during the first UL-CG occasion.
  • the operations further include, based on transmitting the TB, initiating a timer that is associated with the common HARQ process identifier.
  • the operations further include, based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, transmitting a repetition of the TB during the second UL-CG occasion.
  • the UE includes at least one processor and a memory coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor, is configured to transmit a first TB in a PUSCH transmission to a base station.
  • the at least one processor is further configured to receive, from the base station, a first UL-CG associated with a first UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions.
  • the at least one processor is further configured to determine one or more parameters for a repetition of the first TB and to transmit, based on the one or more parameters, one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
  • the apparatus includes means for transmitting a first TB in a PUSCH transmission to a base station.
  • the apparatus further includes means for receiving, from the base station, a first UL-CG associated with a first UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions.
  • the apparatus further includes means for determining one or more parameters for a repetition of the first TB.
  • the apparatus further includes means for transmitting, based on the one or more parameters, one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
  • the operations include transmitting a first TB in a PUSCH transmission to a base station.
  • the operations further include receiving, from the base station, a first UL-CG associated with a first UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions.
  • the operations further include determining one or more parameters for a repetition of the first TB.
  • the operations further include, based on the one or more parameters, transmitting one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
  • Figure 1 is a block diagram illustrating details of an example wireless communication system.
  • Figure 2 is a block diagram conceptually illustrating an example design of a base station and a user equipment (UE) .
  • UE user equipment
  • Figure 3 is a block diagram illustrating an example wireless communication system that supports transmission of repetitions of a transport block (TB) based on one or more uplink configured grants (UL-CGs) according to some aspects.
  • TB transport block
  • UL-CGs uplink configured grants
  • Figure 4 is a block diagram illustrating examples of UL-CG occasions associated with UL-CG configurations that support transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • Figure 5 is a block diagram illustrating additional examples of UL-CG occasions associated with UL-CG configurations that support transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • Figure 6 is a block diagram illustrating examples of timing of UL-CG occasions supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • Figure 7 is a block diagram illustrating examples of timer reset operations supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • Figure 8 is a block diagram illustrating additional examples of timing of UL-CG occasions supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • Figure 9 is a block diagram illustrating additional examples of timing of UL-CG occasions supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • Figure 10 is a block diagram illustrating examples of parameters that support transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • Figure 11 is a flow diagram illustrating an example process that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • Figure 12 is a flow diagram illustrating another example process that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • Figure 13 is a flow diagram illustrating another example process that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • Figure 14 is a flow diagram illustrating another example process that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • Figure 15 is a block diagram of an example UE that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • Various aspects generally relate to linking uplink configured grant (UL-CG) configurations based on determining that the UL-CG configurations satisfy a linking condition.
  • a user equipment may detect that at least two UL-CG configurations satisfy a linking condition based on a group identifier indicated by a configuration message, based on one or more common hybrid automatic repeat request (HARQ) process identifiers associated with the UL-CG configurations, based on control resource set (CORESET) pool index values associated with the UL-CG configurations, or a combination thereof.
  • HARQ hybrid automatic repeat request
  • CORESET control resource set
  • the UE may determine whether to transmit a repetition of a transport block (TB) in one or more of the linked UL-CG configurations.
  • the UE may initially transmit a TB during a first UL-CG occasion of a first UL-CG configuration.
  • the UE may initiate a first timer that is associated with the first UL-CG configuration and associated with a common HARQ process identifier. Based on determining that the first timer is unexpired, the UE may transmit a repetition of the TB during a second UL-CG occasion of a second UL-CG configuration that is linked to the first UL-CG configuration.
  • the first UL-CG configuration may correspond to a reference UL-CG configuration (also referred to herein as an anchor or master UL-CG configuration) , and the UE may transmit a repetition of the TB during the second UL-CG occasion based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration.
  • the UE may determine one or more parameters for transmitting a repetition of a first TB during an occasion of a linked UL-CG.
  • the one or more parameters include a transport block size (TBS) or a redundancy version associated with the first TB.
  • the UE is configured to determine, based on the one or more parameters, whether to transmit the repetition of the TB during the occasion or to transmit a second, different TB during the occasion.
  • a wireless communication system in accordance with aspects of the disclosure may realize one or more of the following potential advantages.
  • a UE may link a first UL-CG configuration associated with a first set of transmission parameters and a second UL-CG configuration associated with a second set of transmission parameters different than the first set
  • the UE may dynamically adjust the transmission parameters for a repetition of a TB by selecting a particular UL-CG configuration for the repetition of the TB, and as a result, improve the likelihood of successful reception of the TB by the base station.
  • supporting multiple sets of transmission parameters for repetitions of a TB enables the UE to transmit repetitions of the TB to different destinations, such as to different panels or to different transmission and reception points (TRPs) .
  • TRPs transmission and reception points
  • a panel or a TRP may be configured to receive repetitions that use a common set of transmission parameters.
  • the UE may transmit repetitions of the TB to multiple destinations, such as to different panels or to different TRPs.
  • a UE may be determine a transmission start time for a repetition of a TB by selecting a particular UL-CG configuration. For example, different UL-CG configurations may be associated with different UL-CG occasions having different transmission start times. In some examples, the UE may prioritize transmission of a repetition by selecting an UL-CG configuration with an UL-CG occasion having an earlier transmission start time as compared to an UL-CG of another UL-CG configuration. In some other examples, the UE may deprioritize transmission of a repetition by selecting an UL-CG configuration with a UL-CG occasion having a later transmission start time as compared to another UL-CG configuration. Such examples may increase flexibility.
  • This disclosure relates generally to providing or participating in authorized shared access between two or more wireless communications systems, also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks, systems, or devices) , as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE long-term evolution
  • GSM Global System for Mobile communications
  • 5G 5th Generation
  • NR new radio
  • a CDMA network may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like.
  • UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) .
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • 3GPP defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN.
  • GERAN is the radio component of GSM or GSM EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces, among other examples) and the base station controllers (for example, A interfaces, among other examples) .
  • the radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) .
  • PSTN public switched telephone network
  • UEs subscriber handsets
  • a mobile phone operator's network may include one or more GERANs, which may be coupled with UTRANs in the case of a UMTS or GSM network. Additionally, an operator network may include one or more LTE networks, or one or more other networks. The various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
  • RATs radio access technologies
  • RANs radio access networks
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • GSM Global System for Mobile communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named the “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the 3GPP is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification.
  • 3GPP long term evolution (LTE) is a 3GPP project aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard.
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • LTE long term evolution
  • UMTS universal mobile telecommunications system
  • the present disclosure may describe certain aspects with reference to LTE, 4G, 5G, or NR technologies; however, the description is not intended to be limited to a specific technology or application, and one or more aspects described with reference to one technology may be understood to be applicable to another technology.
  • one or more aspects the present disclosure are related to shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (such as ⁇ 1M nodes per km ⁇ 2) , ultra-low complexity (such as ⁇ 10s of bits per sec) , ultra-low energy (such as ⁇ 10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (such as ⁇ 99.9999%reliability) , ultra-low latency (such as ⁇ 1 millisecond (ms) ) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (such as ⁇ 10 Tbps per km ⁇ 2) , extreme data rates (such as multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • ultra-high density such as ⁇ 1M nodes per km ⁇ 2
  • 5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) or frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTIs transmission time intervals
  • TDD dynamic, low-latency time division duplex
  • FDD frequency division duplex
  • advanced wireless technologies such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth.
  • subcarrier spacing may occur with 30 kHz over 80 or 100 MHz bandwidth.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth.
  • subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
  • the scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with uplink or downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink or downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
  • wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to a person having ordinary skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
  • FIG. 1 is a block diagram illustrating details of an example wireless communication system.
  • the wireless communication system may include wireless network 100.
  • the wireless network 100 may, for example, include a 5G wireless network.
  • components appearing in Figure 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements, such as device-to-device, peer-to-peer or ad hoc network arrangements, among other examples.
  • the wireless network 100 illustrated in Figure 1 includes a number of base stations 105 and other network entities.
  • a base station may be a station that communicates with the UEs and may be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each base station 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a base station or a base station subsystem serving the coverage area, depending on the context in which the term is used.
  • the base stations 105 may be associated with a same operator or different operators, such as the wireless network 100 may include a plurality of operator wireless networks.
  • the base stations 105 may provide wireless communications using one or more of the same frequencies, such as one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof, as a neighboring cell.
  • an individual base station 105 or UE 115 may be operated by more than one network operating entity.
  • each base station 105 and UE 115 may be operated by a single network operating entity.
  • a base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, or other types of cell.
  • a macro cell generally covers a relatively large geographic area, such as several kilometers in radius, and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell, such as a pico cell would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area, such as a home, and, in addition to unrestricted access, may provide restricted access by UEs having an association with the femto cell, such as UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like.
  • a base station for a macro cell may be referred to as a macro base station.
  • a base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station.
  • base stations 105d and 105e are regular macro base stations, while base stations 105a–105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO.
  • Base stations 105a–105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • Base station 105f is a small cell base station which may be a home node or portable access point.
  • a base station may support one or multiple cells, such as two cells, three cells, four cells, and the like.
  • the wireless network 100 may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
  • the UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3GPP, such apparatus may additionally or otherwise be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology.
  • MS mobile station
  • AT access terminal
  • a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary.
  • Some non-limiting examples of a mobile apparatus such as may include implementations of one or more of the UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • a mobile such as may include implementations of one or more of the UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • PDA personal digital assistant
  • a mobile apparatus may additionally be an “Internet of things” (IoT) or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, a gesture tracking device, a medical device, a digital audio player (such as MP3 player) , a camera or a game console, among other examples; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, or a smart meter, among other examples.
  • IoT Internet of things
  • IoE Internet of everything
  • a UE may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UEs that do not include UICCs may be referred to as IoE devices.
  • the UEs 115a–115d of the implementation illustrated in Figure 1 are examples of mobile smart phone-type devices accessing the wireless network 100.
  • a UE may be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • the UEs 115e–115k illustrated in Figure 1 are examples of various machines configured for communication that access 5G network 100.
  • a mobile apparatus such as the UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like.
  • a communication link (represented as a lightning bolt) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink or uplink, or desired transmission between base stations, and backhaul transmissions between base stations.
  • Backhaul communication between base stations of the wireless network 100 may occur using wired or wireless communication links.
  • the base stations 105a–105c serve the UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • Macro base station 105d performs backhaul communications with the base stations 105a–105c, as well as small cell, the base station 105f.
  • Macro base station 105d also transmits multicast services which are subscribed to and received by the UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • the wireless network 100 of implementations supports mission critical communications with ultra-reliable and redundant links for mission critical devices, such the UE 115e, which is a drone. Redundant communication links with the UE 115e include from the macro base stations 105d and 105e, as well as small cell base station 105f.
  • UE 115f thermometer
  • UE 115g smart meter
  • UE 115h wearable device
  • UE 115f thermometer
  • UE 115g smart meter
  • UE 115h wearable device
  • the 5G network 100 may provide additional network efficiency through dynamic, low-latency TDD or FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between the UEs 115i–115k communicating with the macro base station 105e.
  • V2V vehicle-to-vehicle
  • FIG 2 is a block diagram conceptually illustrating an example design of a base station 105 and a UE 115.
  • the base station 105 and the UE 115 may be one of the base stations and one of the UEs in Figure 1.
  • the base station 105 may be the small cell base station 105f in Figure 1
  • the UE 115 may be the UE 115c or 115d operating in a service area of the base station 105f, which in order to access the small cell base station 105f, would be included in a list of accessible UEs for the small cell base station 105f.
  • the base station 105 may be a base station of some other type.
  • the base station 105 may be equipped with antennas 234a through 234t
  • the UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
  • a transmit processor 220 may receive data from a data source 212 and control information from a controller 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , or MTC physical downlink control channel (MPDCCH) , among other examples.
  • the data may be for the PDSCH, among other examples.
  • the transmit processor 220 may process, such as encode and symbol map, the data and control information to obtain data symbols and control symbols, respectively.
  • the transmit processor 220 may generate reference symbols, such as for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal.
  • Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing on the data symbols, the control symbols, or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream, such as for OFDM, among other examples, to obtain an output sample stream.
  • Each modulator 232 may additionally or alternatively process the output sample stream to obtain a downlink signal.
  • each modulator 232 may convert to analog, amplify, filter, and upconvert the output sample stream to obtain the downlink signal.
  • Downlink signals from modulators 232a through 232t may be transmitted via the antennas 234a through 234t, respectively.
  • the antennas 252a through 252r may receive the downlink signals from the base station 105 and may provide received signals to the demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition a respective received signal to obtain input samples. For example, to condition the respective received signal, each demodulator 254 may filter, amplify, downconvert, and digitize the respective received signal to obtain the input samples.
  • Each demodulator 254 may further process the input samples, such as for OFDM, among other examples, to obtain received symbols.
  • MIMO detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • Receive processor 258 may process the detected symbols, provide decoded data for the UE 115 to a data sink 260, and provide decoded control information to a controller 280. For example, to process the detected symbols, the receive processor 258 may demodulate, deinterleave, and decode the detected symbols.
  • a transmit processor 264 may receive and process data (such as for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (such as for the physical uplink control channel (PUCCH) ) from the controller 280. Additionally, the transmit processor 264 may generate reference symbols for a reference signal. The symbols from the transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by the modulators 254a through 254r (such as for SC-FDM, among other examples) , and transmitted to the base station 105.
  • data such as for the physical uplink shared channel (PUSCH)
  • control information such as for the physical uplink control channel (PUCCH)
  • the transmit processor 264 may generate reference symbols for a reference signal.
  • the symbols from the transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by the modulators 254a through 254r (such as for SC-FDM, among other examples) , and transmitted to the base station 105.
  • the uplink signals from the UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by the UE 115.
  • the receive processor 238 may provide the decoded data to data sink 239 and the decoded control information to the controller 240.
  • the controllers 240 and 280 may direct the operation at the base station 105 and the UE 115, respectively.
  • the controller 240 or other processors and modules at the base station 105 or the controller 280 or other processors and modules at the UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the execution illustrated in Figures 11-14, or other processes for the techniques described herein.
  • the memories 242 and 282 may store data and program codes for the base station 105 and The UE 115, respectively.
  • Scheduler 244 may schedule UEs for data transmission on the downlink or uplink.
  • the UE 115 and the base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed, such as contention-based, frequency spectrum.
  • the UEs 115 or the base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum.
  • the UE 115 or base station 105 may perform a listen-before-talk or listen-before-transmitting (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available.
  • LBT listen-before-talk or listen-before-transmitting
  • a CCA may include an energy detection procedure to determine whether there are any other active transmissions.
  • a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied.
  • RSSI received signal strength indicator
  • a CCA may include detection of specific sequences that indicate use of the channel.
  • another device may transmit a specific preamble prior to transmitting a data sequence.
  • an LBT procedure may include a wireless node adjusting its own back off window based on the amount of energy detected on a channel or the acknowledge or negative-acknowledge (ACK or NACK) feedback for its own transmitted packets as a proxy for collisions.
  • ACK or NACK acknowledge or negative-acknowledge
  • Various aspects generally relate to linking UL-CG configurations based on determining that the UL-CG configurations satisfy a linking condition.
  • a UE may detect that at least two UL-CG configurations satisfy a linking condition based on a group identifier indicated by a configuration message, based on one or more common HARQ process identifiers associated with the UL-CG configurations, based on CORESET pool index values associated with the UL-CG configurations, or a combination thereof.
  • the UE may determine whether to transmit a repetition of a TB in one or more of the linked UL-CG configurations.
  • the UE may initially transmit a TB during a first UL-CG occasion of a first UL-CG configuration.
  • the UE may initiate a first timer that is associated with the first UL-CG configuration and associated with a common HARQ process identifier. Based on determining that the first timer is unexpired, the UE may transmit a repetition of the TB during a second UL-CG occasion of a second UL-CG configuration that is linked to the first UL-CG configuration.
  • the first UL-CG configuration may correspond to a reference UL-CG configuration (also referred to herein as an anchor or master UL-CG configuration) , and the UE may transmit a repetition of the TB during the second UL-CG occasion based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration.
  • the UE may determine one or more parameters for transmitting a repetition of a first TB during an occasion of a linked UL-CG.
  • the one or more parameters include a TBS or a redundancy version associated with the first TB.
  • the UE is configured to determine, based on the one or more parameters, whether to transmit the repetition of the TB during the occasion or to transmit a second, different TB during the occasion.
  • a wireless communication system in accordance with aspects of the disclosure may realize one or more of the following potential advantages.
  • a UE may link a first UL-CG configuration associated with a first set of transmission parameters and a second UL-CG configuration associated with a second set of transmission parameters different than the first set
  • the UE may dynamically adjust the transmission parameters for a repetition of a TB by selecting a particular UL-CG configuration for the repetition of the TB, and as a result, improve the likelihood of successful reception of the TB by the base station.
  • supporting multiple sets of transmission parameters for repetitions of a TB enables the UE to transmit repetitions of the TB to different destinations, such as to different panels or to different TRPs.
  • a panel or a TRP may be configured to receive repetitions that use a common set of transmission parameters.
  • the UE may transmit repetitions of the TB to multiple destinations, such as to different panels or to different TRPs.
  • a UE may be determine a transmission start time for a repetition of a TB by selecting a particular UL-CG configuration. For example, different UL-CG configurations may be associated with different UL-CG occasions having different transmission start times. In some examples, the UE may prioritize transmission of a repetition by selecting an UL-CG configuration with an UL-CG occasion having an earlier transmission start time as compared to an UL-CG of another UL-CG configuration. In some other examples, the UE may deprioritize transmission of a repetition by selecting an UL-CG configuration with a UL-CG occasion having a later transmission start time as compared to another UL-CG configuration. Such examples may increase flexibility.
  • FIG 3 is a block diagram of an example wireless communications system 300 that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • the wireless communications system 300 may implement aspects of the wireless network 100.
  • the wireless communications system 300 includes the UE 115 and the base station 105. Although one UE 115 and one base station 105 are illustrated, in some other implementations, the wireless communications system 300 may generally include multiple UEs 115, and may include more than one base station 105.
  • the UE 115 can include a variety of components (such as structural, hardware components) used for carrying out one or more functions described herein.
  • these components can include one or more processors 302 (hereinafter referred to collectively as “the processor 302” ) , one or more memory devices 304 (hereinafter referred to collectively as “the memory 304” ) , one or more transmitters 316 (hereinafter referred to collectively as “the transmitter 316” ) , and one or more receivers 318 (hereinafter referred to collectively as “the receiver 318” ) .
  • the processor 302 may be configured to execute instructions stored in the memory 304 to perform the operations described herein.
  • the processor 302 includes or corresponds to one or more of the receive processor 258, the transmit processor 264, and the controller 280
  • the memory 304 includes or corresponds to the memory 282.
  • the transmitter 316 is configured to transmit reference signals, control information and data to one or more other devices
  • the receiver 318 is configured to receive references signals, synchronization signals, control information and data from one or more other devices.
  • the transmitter 316 may transmit signaling, control information and data to, and the receiver 318 may receive signaling, control information and data from, the base station 105.
  • the transmitter 316 and the receiver 318 may be integrated in one or more transceivers.
  • the transmitter 316 or the receiver 318 may include or correspond to one or more components of the UE 115 described with reference to Figure 2.
  • the base station 105 can include a variety of components (such as structural, hardware components) used for carrying out one or more functions described herein.
  • these components can include one or more processors 352 (hereinafter referred to collectively as “the processor 352” ) , one or more memory devices 354 (hereinafter referred to collectively as “the memory 354” ) , one or more transmitters 356 (hereinafter referred to collectively as “the transmitter 356” ) , and one or more receivers 358 (hereinafter referred to collectively as “the receiver 358” ) .
  • the processor 352 may be configured to execute instructions stored in the memory 354 to perform the operations described herein.
  • the processor 352 includes or corresponds to one or more of the receive processor 238, the transmit processor 220, and the controller 240, and the memory 354 includes or corresponds to the memory 242.
  • the transmitter 356 is configured to transmit reference signals, synchronization signals, control information and data to one or more other devices
  • the receiver 358 is configured to receive reference signals, control information and data from one or more other devices.
  • the transmitter 356 may transmit signaling, control information and data to, and the receiver 358 may receive signaling, control information and data from, the UE 115.
  • the transmitter 356 and the receiver 358 may be integrated in one or more transceivers.
  • the transmitter 356 or the receiver 358 may include or correspond to one or more components of base station 105 described with reference to Figure 2.
  • the wireless communications system 300 implements a 5G New Radio (NR) network.
  • the wireless communications system 300 may include multiple 5G-capable UEs 115 and multiple 5G-capable base stations 105, such as UEs and base stations configured to operate in accordance with a 5G NR network protocol such as that defined by the 3GPP.
  • NR 5G New Radio
  • the base station 105 and the UE 115 may store and access data 306 indicating a linking condition 308 for association of uplink configured grants (UL-CGs) .
  • the UE 115 receives the data 306 from the base station 105 or from another base station, such as via a configuration message.
  • An example of a configuration message is a radio resource control (RRC) configuration message.
  • RRC radio resource control
  • one or both of the UE 115 and the base station 105 may receive the data 306 from a server.
  • the UE 115 is configured to receive a first UL-CG 310 from the base station 105.
  • the first UL-CG 310 is associated with a first UL-CG configuration 312 that indicates at least a first UL-CG occasion 314.
  • the first UL-CG occasion 314 includes time and frequency resources for uplink transmissions.
  • the UE 115 is configured to receive a second UL-CG 320 from the base station 105.
  • the second UL-CG 320 is associated with a second UL-CG configuration 322 that indicates at least a second UL-CG occasion 324.
  • the second UL-CG occasion 324 includes time and frequency resources for uplink transmissions.
  • the UE 115 may determine whether the first UL-CG configuration 312 and the second UL-CG occasion 324 satisfy the linking condition 308.
  • the UE 115 is configured to receive a configuration message 346 from the base station 105.
  • the configuration message 346 may indicate a group identifier 348 associated with both the first UL-CG 310 and the second UL-CG 320.
  • the group identifier may indicate that UL-CGs having UL-CG configurations that match the group identifier are eligible to be linked to one another.
  • the first UL-CG configuration 312 and the second UL-CG configuration 322 indicate the group identifier 348
  • the UE 115 is configured to determine that the first UL-CG configuration 312 and the second UL-CG configuration 322 satisfy the linking condition 308 based on the group identifier 348.
  • the UE 115 is configured to determine whether the first UL-CG configuration 312 and the second UL-CG occasion 324 satisfy the linking condition 308 based on hybrid automatic repeat request (HARQ) processes associated with the first UL-CG configuration 312 and the second UL-CG configuration 322.
  • Figure 4 is a block diagram illustrating examples of UL-CG occasions associated with UL-CG configurations that support transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • the first UL-CG configuration 312 may be associated with UL-CG occasions 402a-e
  • the second UL-CG configuration 322 may be associated with UL-CG occasions 404a-e.
  • the UL-CG occasions 402a-e may be associated with a periodicity 406, and the UL-CG occasions 404a-e may be associated with a periodicity 408.
  • the first UL-CG occasion 314 of Figure 3 corresponds to one of the UL-CG occasions 402a-e
  • the second UL-CG occasion 324 of Figure 3 corresponds to one of the UL-CG occasions 404a-e.
  • the first UL-CG configuration 312 is associated with a first plurality of HARQ processes.
  • the first plurality of HARQ processes may include HARQ processes 0, 1, and 2.
  • the example of Figure 4 also illustrates that the second UL-CG configuration 322 is associated with a second plurality of HARQ processes.
  • the second plurality of HARQ processes include HARQ processes 0, 1, and 2.
  • the UE 115 may determine that the first UL-CG configuration 312 and the second UL-CG configuration 322 satisfy the linking condition 308 based on determining that the first plurality of HARQ processes and the second plurality of HARQ processes associated include at least one HARQ process identifier.
  • the first UL-CG configuration 312 and the second UL-CG occasion 324 satisfy the linking condition 308 if the first plurality of HARQ processes is the same as the second plurality of HARQ processes, such as if each HARQ process identifier associated with the first plurality of HARQ processes is further associated with the second plurality of HARQ processes, and if each HARQ process identifier associated with the second plurality of HARQ processes is further associated with the first plurality of HARQ processes.
  • each HARQ process identifier (0, 1, and 2) associated with the first plurality of HARQ processes is further associated with the second plurality of HARQ processes
  • each HARQ process identifier (0, 1, and 2) associated with the second plurality of HARQ processes is further associated with the first plurality of HARQ processes.
  • the first UL-CG configuration 312 and the second UL-CG occasion 324 satisfy the linking condition 308 if at least one of the first plurality of HARQ processes and the second plurality of HARQ processes are associated with at least one common HARQ process identifier.
  • Figure 5 is a block diagram illustrating additional examples of UL-CG occasions associated with UL-CG configurations that support transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • the first plurality of HARQ processes is associated with HARQ identifiers 0, 1, and 2
  • the second plurality of HARQ processes is associated with HARQ identifiers 2, 3, and 4.
  • the first plurality of HARQ processes may “partially overlap” the second plurality of HARQ processes (because both the first plurality of HARQ processes and the second plurality of HARQ processes are associated with the HARQ process identifier 2) .
  • the UE 115 is configured to determine whether the first UL-CG configuration 312 and the second UL-CG occasion 324 satisfy the linking condition 308 based on one or more control resource set (CORESET) pool index values.
  • CORESET pool index value is associated with a respective panel or transmission and reception point (TRP) .
  • TRP transmission and reception point
  • the UE 115 may receive, from the base station 105, a first indication of a first control resource set (CORESET) pool index value 360 associated with the first UL-CG configuration 312.
  • the UE 115 may receive, from the base station 105, a second indication of a second CORESET pool index value 362 associated with the second UL-CG configuration 322. The UE 115 may determine that the first UL-CG configuration 312 and the second UL-CG configuration 322 satisfy the linking condition 308 based on the first CORESET pool index value 360 being different than the second CORESET pool index value 362.
  • each of the first CORESET pool index value 360 and the second CORESET pool index value 362 correspond to either a “0” value or a “1” value.
  • the first CORESET pool index value 360 is different than the second CORESET pool index value 362 if the first CORESET pool index value 360 corresponds to the “0” value and the second CORESET pool index value 362 corresponds to the “1” value.
  • the first CORESET pool index value 360 is different than the second CORESET pool index value 362 if the first CORESET pool index value 360 corresponds to the “1” value and the second CORESET pool index value 362 corresponds to the “0” value.
  • the UE 115 is configured to determine, based on the first UL-CG configuration 312 and the second UL-CG configuration 322 satisfying a linking condition for association of UL-CGs, that a first transport block (TB) 332 transmitted during the first UL-CG occasion 314 is eligible to be retransmitted during the second UL-CG occasion 324.
  • the UE 115 may transmit the first TB 332 to the base station 105 via a transmission 330 during the first UL-CG occasion 314 and may retransmit the first TB 332 via a transmission 340 during the second UL-CG occasion 324.
  • the UE 115 may determine that the first UL-CG configuration 312 and the second UL-CG configuration 322 fail to satisfy the linking condition 308. In such instances, the UE 115 may determine that the first TB 332 is ineligible for retransmission during the second UL-CG occasion 324. As a result, the UE 115 may transmit another TB to the base station 105 during the second UL-CG occasion 324 via the transmission 340, such as by transmitting a second TB 334 that is different than the first TB 332.
  • the first UL-CG configuration 312 and the second UL-CG configuration 322 are associated with different transmission parameters.
  • the first UL-CG configuration 312 may be associated with a first set of parameters and the second UL-CG configuration 322 may be associated with a second set of parameters different than the first set.
  • the first set includes one or more of a first sounding reference signal (SRS) resource indicator (SRI) , a first transmitted precoding matrix indicator (TPMI) , a first number of layers, a first modulation and coding scheme (MCS) , or a first transmission power level.
  • SRS sounding reference signal
  • TPMI transmitted precoding matrix indicator
  • MCS modulation and coding scheme
  • the second set may include one or more of a second SRI different than the first SRI, a second TPMI different than the first TPMI, a second number of layers different than the first number of layers, a second MCS different than the first MCS, or a second transmission power level different than the first transmission power level.
  • Figure 6 is a block diagram illustrating examples of timing of UL-CG occasions supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • the first UL-CG configuration 312 include UL-CG occasions 602a-c.
  • the second UL-CG configuration 322 may be associated with UL-CG occasions 604a-b.
  • the UL-CG occasion 602a corresponds to the first UL-CG occasion 314 of Figure 3
  • the UL-CG occasion 602b corresponds to the second UL-CG occasion 324 of Figure 3.
  • a third UL-CG configuration 632 may be associated with a third UL-CG of the UE 115 and including UL-CG occasions 606a-b.
  • the UE 115 is configured to determine that two or more of the UL-CG configurations 312, 322, and 632 are linked. For example, the UE 115 may determine that the UL-CG configurations 312, 322, and 632 satisfy the linking condition 308 using one or more techniques described with reference to Figure 3.
  • UL-CG occasions may be associated with a common HARQ process identifier.
  • the occasions 602-614 are associated with a common HARQ process identifier of “1” .
  • the HARQ process identifier may have a different value.
  • the UE 115 may perform an initial transmission (also referred to herein as a “new transmission” ) of the first TB 332 during the UL-CG occasion 602a.
  • the initial transmission of the first TB 332 corresponds to the transmission 330 of Figure 3.
  • the UE 115 may initiate a first timer 650a based on transmitting the first TB 332.
  • the first timer 650a is associated with the first UL-CG configuration 312 and associated with the common HARQ process identifier.
  • the UE 115 transmits a repetition of the first TB 332 during one or more UL-CG occasions associated with one or more UL-CG configurations linked to the first UL-CG configuration 312. For example, in the example illustrated in Figure 6, the UE 115 transmits a repetition of the first TB 332 during the UL-CG occasion 604a associated with the second UL-CG configuration 322 that is linked to the first UL-CG configuration 312. As another example, as also illustrated in Figure 6, the UE 115 transmits a repetition of the first TB 332 during the UL-CG occasion 606a associated with the third UL-CG configuration 632 that is linked to the first UL-CG configuration 312.
  • a determination by the UE 115 to perform a transmission of a repetition of the first TB 332 may further be based on detecting that one or more other timers (different than the first timer 650a) are expired.
  • the UE 115 may transmit a repetition of the first TB 332 during the UL-CG occasion 604a based on detecting that a second timer 650b is expired.
  • the second timer 650b may be associated with the second UL-CG configuration 322 and associated with the common HARQ process identifier (such as “1” in the example of Figure 6) .
  • the UE 115 may transmit the repetition of the first TB 332 during the UL-CG occasion 606a based on detecting that a third timer 650c is expired.
  • the third timer 650c may be associated with the third UL-CG configuration 632 and associated with the common HARQ process identifier (such as “1” in the example of Figure 6) .
  • the UE 115 is configured to initiate the second timer 650b based on transmitting the repetition of the first TB 332 during the UL-CG occasion 604a.
  • the UE 115 may initiate the third timer 650c in response to transmitting the repetition of the first TB 332 during the UL-CG occasion 606a.
  • a determination by the UE 115 to transmit a repetition of the first TB 332 may further be based on detecting that one or more of multiple timers are unexpired. For example, the UE 115 may transmit the repetition of the first TB 332 during the UL-CG occasion 604a based on detecting that one or both of the first timer 650a and the third timer 650c are unexpired. In some other examples, the UE 115 may determine to transmit a repetition of the first TB 332 based on detecting that each of multiple timers is unexpired. For example, the UE 115 may transmit the repetition of the first TB 332 during the UL-CG occasion 604a based on detecting that both the first timer 650a and the third timer 650c are unexpired.
  • the UE 115 may cancel an uplink transmission scheduled for a particular UL-CG occasion of the first UL-CG 310 based on detecting that the first timer 650a is unexpired.
  • the particular UL-CG occasion may correspond to the UL-CG occasion 602b, and the UE 115 may cancel an uplink transmission scheduled for the UL-CG occasion 602b based on detecting that the first timer 650a is unexpired.
  • the UE 115 may cancel an uplink transmission scheduled for a particular UL-CG occasion of the second UL-CG 320 based on determining that the second timer 650b is unexpired.
  • the particular UL-CG occasion may correspond to the UL-CG occasion 604b, and the UE 115 may cancel an uplink transmission scheduled for the UL-CG occasion 604b based on determining that the second timer 650b is unexpired.
  • the UE 115 may cancel an uplink transmission scheduled for a particular UL-CG occasion of the third UL-CG 632 based on determining that the third timer 650c is unexpired.
  • the particular UL-CG occasion may correspond to the UL-CG occasion 606b, and the UE 115 may cancel an uplink transmission scheduled for the UL-CG occasion 606b based on determining that the third timer 650c is unexpired.
  • the UE 115 may determine to transmit the second TB 334 of Figure 3 during a third UL-CG occasion of the first UL-CG 310.
  • the third UL-CG occasion may correspond to the UL-CG occasion 602c, and the UE 115 may transmit the second TB 334 during the UL-CG occasion 602c based on detecting that both the first timer 650a and the second timer 650b are expired.
  • the UE 115 may transmit the second TB 334 during the UL-CG occasion 602c based on detecting that the first timer 650a, the second timer 650b, and the third timer 650c are expired.
  • FIG. 7 is a block diagram illustrating examples of timer reset operations supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • an uplink (UL) grant 702 schedules a physical uplink shared channel (PUSCH) transmission.
  • the UL grant 702 may correspond to any of the UL-CGs 310, 320.
  • the UL grant 702 may indicate the HARQ process identifier described with reference to Figure 6.
  • the UE 115 may initiate timers associated with linked UL-CG configurations that are associated with the common HARQ process identifier. For example, the UE 115 may initiate the timers 650a-c.
  • the UE 115 is configured to receive, from the base station 105, downlink control information (DCI) indicating the common HARQ process identifier and scheduling a dynamic PUSCH transmission 704.
  • DCI downlink control information
  • the UE 115 is configured to reset, based on the common HARQ process identifier indicated by the DCI, a plurality of timers including the first timer 650a and the second timer 650b.
  • the plurality of timers further includes the third timer 650c.
  • “resetting” a timer may include starting or restarting the timer from an initial value.
  • the DCI further indicates the first UL-CG configuration 312 or the second UL-CG configuration 322, and the UE 115 is configured to reset, based on the DCI, the first timer 650a or the second timer 650b
  • the DCI may indicate the first UL-CG configuration 312, and the UE 115 may reset the first timer 650a without resetting the second timer 650b.
  • the DCI may indicate the second UL-CG configuration 322, and the UE 115 may reset the second timer 650b without resetting the first timer 650a.
  • the UE 115 may perform multiple resets of a timer based on receiving an UL-CG. For example, the UE 115 may perform a first reset of one or more timers based on receiving DCI indicating an UL-CG, such as based on receiving DCI indicating the UL grant 702. The UE 115 may perform a second reset of one or more timers based on performing a transmission based on the DCI, such as by performing the second reset at a start transmission time associated with the dynamic PUSCH transmission 704.
  • Figure 8 is a block diagram illustrating additional examples of timing of UL-CG occasions supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • the UL-CG configurations 312, 322, and 632 may be associated with a common timer, such as a timer 850, that is associated with the common HARQ process identifier described with reference to Figure 6.
  • the UE 115 is configured to select, from among the UL-CG configurations 312, 322, and 632, a reference UL-CG configuration (also referred to herein as an anchor UL-CG configuration or as a master UL-CG configuration) .
  • the UE 115 may select the first timer 650a as the timer 850.
  • the UE 115 selects one of the UL-CG configurations 312, 322, and 632 as the reference UL-CG configuration based on receiving a configuration message that identifies the first UL-CG configuration 312. For example, the UE 115 may receive an RRC configuration message from the base station 105 identifying the first UL-CG configuration 312 as the reference UL-CG configuration.
  • the UE 115 selects one of the UL-CG configurations 312, 322, and 632 as the reference UL-CG configuration based on a comparison of index values associated with UL-CG configurations, such as based on a comparison of a first index value associated with the first UL-CG configuration 312 and a second index value associated with the second UL-CG configuration 322. In one example, the UE 115 selects, as the reference UL-CG configuration, the UL-CG configuration having the lowest index value from among the index values.
  • the UL-CG configurations 312, 322, and 632 may be associated with index values of 0, 3, and 5, respectively, and the UE 115 may select the first UL-CG configuration 312 as the reference UL-CG configuration based on the index value of 0 being less than the index values of 3 and 5.
  • repetitions of a TB are enabled only for UL-CG occasions belonging to non-anchor UL-CG configurations that are linked to the reference UL-CG configuration.
  • the UE 115 may transmit a repetition of the first TB 332 during the UL-CG occasion 604a based on determining that the second UL-CG configuration 322 corresponds to a non-reference UL-CG configuration that is linked to the reference UL-CG configuration, which, in this example, is the first UL-CG configuration 312.
  • the UE 115 may transmit a repetition of the first TB 332 during the UL-CG occasion 606a based on determining that the third UL-CG configuration 632 corresponds to a non-reference UL-CG configuration that is linked to the reference UL-CG configuration.
  • the UE 115 may perform an initial transmission of a TB in a UL-CG occasion belonging to the reference UL-CG configuration based on determining that the timer for the reference UL-CG configuration is expired. For example, in response to detecting that the timer 850 is expired, the UE 115 may transmit the second TB 334 during a third UL-CG occasion of the first UL-CG 310. In some examples, third UL-CG occasion corresponds to the UL-CG occasion 602c.
  • the UE 115 may transmit a repetition of a TB based on determining that the timer 850 is unexpired. For example, the UE 115 may transmit the repetition of the first TB 332 during the UL-CG occasion 604a based on determining that the timer 850 is unexpired. As another example, the UE 115 may transmit the repetition of the first TB 332 during the UL-CG occasion 606a based on determining that the timer 850 is unexpired. In other cases, based on determining that the timer 850 is expired, the UE 115 may cancel UL-CG occasions associated with non-reference UL-CG configurations. For example, the UE 115 may cancel the UL-CG occasions 604b, 606b based on determining that the timer 850 is expired.
  • Figure 9 is a block diagram illustrating additional examples of timing of UL-CG occasions supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • the UE 115 may transmit repetitions during UL-CG occasions associated with non-reference UL-CG configurations irrespective of whether the timer 850 is expired or unexpired.
  • the UE 115 may transmit a second repetition of the first TB 332 during a third UL-CG occasion of the second UL-CG 320 irrespective of whether the timer 850 is expired or unexpired.
  • the third UL-CG occasion may correspond to the UL-CG occasion 604b.
  • the UE 115 may transmit a second repetition of the first TB 332 during the UL-CG occasion 606b irrespective of whether the timer 850 is expired or unexpired.
  • the UE 115 may transmit a repetition of a TB without restarting the timer 850.
  • the UE 115 may transmit repetitions of the first TB 332 during the occasions 604a and 606a without restarting the timer 850.
  • the UE 115 may transmit repetitions of the first TB 332 during the occasions 604a, 606a, 604b, and 606b without restarting the timer 850.
  • the UE 115 may restart the timer 850 based on transmitting a repetition of a TB.
  • the UE 115 may restart the timer 850 based on transmitting a repetition of the first TB 332 during the occasion 604a in Figure 8, based on transmitting a repetition of the first TB 332 during the occasion 606a in Figure 8, or both.
  • the UE 115 may restart the timer 850 based on transmitting a repetition of the first TB 332 during one or more of the occasions 604a, 606a, 604b, and 606b in Figure 9.
  • Figure 10 is a block diagram illustrating examples of parameters that support transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • parameters 1000 may include one or more parameters 1002 associated with a first TB of a PUSCH transmission.
  • the first TB corresponds to the first TB 332, and the PUSCH transmission corresponds to the transmission 330.
  • the parameters 1000 may further include one or more parameters 1052 associated with a repetition of the first TB.
  • the repetition of the first TB is performed using the transmission 340.
  • the PUSCH transmission corresponds to a transmission during a previous UL-CG occasion in another UL-CG configuration. In some other examples, the PUSCH transmission corresponds to a previous dynamic PUSCH scheduled via DCI, such as the dynamic PUSCH 704 of Figure 7.
  • the UE 115 is configured to transmit, based on the one or more parameters 1052, one of a second TB or a repetition of the first TB during an UL-CG occasion of a first UL-CG that is associated with a first UL-CG configuration. In some examples, the second TB corresponds to the second TB 334.
  • the one or more parameters 1052 include a transport block size (TBS) 1054 of the repetition of the first TB.
  • TBS transport block size
  • the UE 115 may determine the TBS 1054 of the repetition of the first TB based on another TBS, such as based on one or more operations performed to determine a TBS 1004 of the first TB.
  • the UE 115 may determine the TBS 1054 based on parameters associated with a RRC configuration of a UL-CG configuration or based on DCI associated with a UL-CG configuration, such as based on receiving DCI that activates the UL-CG configuration when the UL-CG configuration is of Type 2.
  • the UE 115 may transmit the first TB during the UL-CG occasion of the first UL-CG based on the TBS 1054 being associated with the first UL-CG configuration. For example, if the TBS 1054 corresponds to the TBS 1004, the UE 115 may transmit the repetition of first TB 332 during the UL-CG occasion based on determining that the TBS 1054 corresponds to the TBS 1004. In some other instances, the UE 115 may determine that the TBS 1054 differs from the TBS 1004. In such instances, the UE 115 may transmit the second TB 334 during the UL-CG occasion based on determining that the TBS 1054 differs from the TBS 1004.
  • the UE 115 may select the TBS 1054 from the one or more parameters 1002. For example, the UE 115 may identify that the first TB was transmitted based on the TBS 1004 and may set the TBS 1054 to correspond to the TBS 1004. In some other examples, the UE 115 may determine the TBS 1054 based on parameters associated with a second UL-CG configuration that is linked to the UL-CG configuration. For example, the first UL-CG configuration may correspond to the UL-CG configuration 312, and the second UL-CG configuration may correspond to the second UL-CG configuration 322 that is linked to the first UL-CG configuration 312. The UE 115 identify a TBS associated with a transmission of the second UL-CG configuration 322 and may set the TBS 1054 based on the TBS of the transmission of the second UL-CG configuration 322.
  • the UE 115 may select among the first UL-CG configuration 312 and the second UL-CG configuration 322 and may determine the TBS 1054 based on the selection. In some examples, the UE 115 may perform the selection using one or more operations described with reference to Figure 8, such as by selecting one of the first UL-CG configuration 312 and the second UL-CG configuration 322 as a reference UL-CG configuration. To further illustrate, in some examples, the UE 115 receives a configuration message (such as an RRC configuration message) that identifies a selected UL-CG configuration, such as the second UL-CG configuration 322.
  • a configuration message such as an RRC configuration message
  • the UE 115 may select a UL-CG configuration (such as the second UL-CG configuration 322) based on a comparison of a first index value associated with the first UL-CG configuration 312 and a second index value associated with the second UL-CG configuration 322, such as by selecting a UL-CG configuration associated with a lowest or highest index value.
  • a UL-CG configuration such as the second UL-CG configuration 322
  • the one or more parameters may include a redundancy version (RV) 1056 of the repetition of the first TB.
  • RV redundancy version
  • the UE 115 may set the RV 1056 to a default value.
  • the default value may correspond to a “0” value.
  • the default value may correspond to another value.
  • the UE 115 may transmit multiple repetitions of the repetition of the first TB during the UL-CG occasion of the first UL-CG.
  • the UL-CG occasion is associated with multiple repetitions of the repetition of the first TB.
  • the multiple repetitions of the repetition of the first TB are associated with a configured pattern of RVs that begins with the default value.
  • the UE 115 may identify a first RV value 1010 associated with the PUSCH transmission, where the first RV value 1010 is included in an RV sequence 1008.
  • the UE 115 may identify a second RV value 1012 that follows the first RV value 1010 in the RV sequence 1008 and to set the RV 1056 of the repetition of the first TB based on the second RV value 1012.
  • the RV sequence 1008 may include or correspond to a sequence of the values 0, 2, 3, and 1.
  • the first RV value 1010 corresponds to the value of 0, then the second value may correspond to the value of 2.
  • the first RV value 1010 corresponds to the value of 2
  • the second value may correspond to the value of 3.
  • the PUSCH transmission is associated with one or more repetitions of the PUSCH transmission
  • the UL-CG occasion is associated with multiple repetitions of the repetition of the first TB.
  • the UE 115 may transmit the PUSCH transmission twice (for two repetitions of the PUSCH transmission) and may transmit the first TB three times during the UL-CG occasion (for three repetitions of the first TB) .
  • the UE 115 may select one or more first values of the RV sequence 1008 for the one or more repetitions of the PUSCH transmission, where the first RV value 1010 is a last value of the first values in the RV sequence 1008.
  • the UE 115 may select second values for the multiple repetitions of the repetition of the first TB based on the first values.
  • the UE 115 transmits two repetitions of the PUSCH transmission and transmits three repetitions of the first TB during the UL-CG occasion.
  • the first RV value 1010 may correspond to the value of 2.
  • the second RV value 1012 may correspond to the value of 3 in the RV sequence 1008, and the three repetitions of the first TB during the UL-CG occasion may have the values of 3, 1, and 0.
  • the UE 115 may receive, from the base station 105, a configuration message (such as an RRC configuration message) indicating the RV 1056. In this case, if the UE 115 determines to transmit the repetition of the first TB during the UL-CG occasion, then the UE 115 may use the RV 1056 indicated by the configuration message. Alternatively, if the UE 115 determines to transmit the second TB during the UL-CG occasion, then the UE 115 may select a default RV for the second TB instead of the RV 1056 indicated by the configuration message. In some examples, the default RV corresponds to a 0 value.
  • a configuration message such as an RRC configuration message
  • the UL-CG occasion of the first UL-CG is associated with multiple repetitions of the repetition of the first TB.
  • the first UL-CG configuration may be associated with a first RV sequence and a second RV sequence
  • the second TB may be associated with the second RV sequence and the multiple repetitions of the repetition of the first TB associated with the first RV sequence.
  • the UE 115 may select the RV 1056 from the first RV sequence based on determining to transmit the second TB during the UL-CG occasion of the first UL-CG.
  • the UE 115 may select the RV 1056 from the second RV sequence based on determining to transmit the repetition of the first TB during the UL-CG occasion of the first UL-CG.
  • One or more aspects described with reference to one or more of Figures 3-10 may improve performance of a wireless communication system.
  • supporting multiple sets of parameters for repetitions of a TB enables the UE 115 to transmit repetitions of the first TB 332 to different destinations, such as to different panels or to different TRPs.
  • a panel or a TRP of the base station 105 may receive repetitions that use a common set of transmission parameters.
  • the UE may transmit repetitions of the TB to multiple destinations, such as to different panels of the base station 105 or to different TRPs of the base station 105.
  • the UE 115 may determine a transmission start time for a repetition of the first TB 332 by selecting a particular UL-CG configuration. For example, different UL-CG configurations may be associated with different UL-CG occasions having different transmission start times. In some cases, the UE 115 may prioritize transmission of a repetition by selecting an UL-CG configuration with a UL-CG occasion having an earlier transmission start time as compared to another UL-CG configuration. As an example, in Figures 4 and 5, UL-CG occasions of the first UL-CG configuration 312 may have an earlier transmission start time as compared to occasions of the second UL-CG configuration 322.
  • the UE 115 may deprioritize transmission of a repetition by selecting an UL-CG configuration with a UL-CG occasion having a later transmission start time as compared to another UL-CG configuration.
  • UL-CG occasions of the second UL-CG configuration 322 may have a later transmission start time as compared to occasions of the first UL-CG configuration 312. As a result, flexibility is increased.
  • Figure 11 is a flow diagram illustrating an example process 1100 that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. Operations of the process 1100 may be performed by a UE, such as the UE 115.
  • the UE receives, from a base station, a first UL-CG associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to detect UL-CGs from the base station 105.
  • the UE receives, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to detect UL-CGs from the base station 105.
  • the UE determines, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, determining that a TB transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to link UL-CGs from the base station 105.
  • Figure 12 is a flow diagram illustrating an example process 1200 that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. Operations of the process 1200 may be performed by a UE, such as the UE 115.
  • the UE determines that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions
  • the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to link UL-CGs from the base station 105.
  • the UE transmits a TB during the first UL-CG occasion.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to transmit the TB.
  • the UE initiates, based on transmitting the TB, a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to initiate the first timer.
  • the UE transmits, based on determining that the first timer is unexpired, a repetition of the TB during the second UL-CG occasion.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to transmit the repetition of the TB..
  • Figure 13 is a flow diagram illustrating an example process 1300 that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. Operations of the process 1300 may be performed by a UE, such as the UE 115.
  • the UE determines that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions
  • the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to link UL-CGs from the base station 105.
  • the UE selects, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to select the first UL-CG configuration as the reference UL-CG configuration.
  • the UE transmits a TB during the first UL-CG occasion.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to transmit the TB.
  • the UE initiates, based on transmitting the TB, a timer that is associated with the common HARQ process identifier.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to initiate the timer.
  • the UE transmits, based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, a repetition of the TB during the second UL-CG occasion.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to transmit the repetition of the TB.
  • Figure 14 is a flow diagram illustrating an example process 1400 that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. Operations of the process 1400 may be performed by a UE, such as the UE 115.
  • the UE transmits a first TB in a PUSCH transmission to a base station.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to transmit the first TB.
  • the UE receives, from the base station, a first UL-CG associated with a first UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to receive the first UL-CG.
  • the UE determines one or more parameters for a repetition of the first TB.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to determine the one or more parameters for the repetition of the first TB.
  • the UE transmits, based on the one or more parameters, one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
  • the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to transmit the second TB or the repetition of the first TB.
  • one or more blocks (or operations) described with reference to Figures 11-14 may be combined with one or more blocks (or operations) described with reference to another of the figures.
  • one or more blocks (or operations) of Figure 11 may be combined with one or more blocks (or operations) of Figure 12.
  • one or more blocks associated with Figures 11 or 12 may be combined with one or more blocks (or operations) associated with Figures 13 or 14.
  • one or more operations described above with reference to Figures 1-10 may be combined with one or more operations described with reference to Figure 15.
  • Figure 15 is a block diagram of an example UE 1500 that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
  • the UE 1500 may be configured to perform operations, including the blocks of the process 1100 described with reference to Figure 11.
  • the UE 1500 includes the structure, hardware, and components shown and described with reference to the UE 115 of Figures 2 or 3.
  • the UE 1500 includes the controller 280, which operates to execute logic or computer instructions stored in the memory 282, as well as controlling the components of the UE 1500 that provide the features and functionality of the UE 1500.
  • the UE 1500 under control of the controller 280, transmits and receives signals via wireless radios 1501a-r and the antennas 252a-r.
  • the wireless radios 1501a-r may include one or more components described with reference to Figure 2, such as the modulator and demodulators 254a-r, the MIMO detector 256, the receive processor 258, the transmit processor 264, and the TX MIMO processor 266.
  • the memory 282 stores UL-CG detection instructions 501.
  • the controller 280 may be configured to execute the UL-CG detection instructions 501 to receive and detect UL-CGs from the base station 105.
  • the memory 282 may store linking condition evaluation instructions 502.
  • the controller 280 may be configured to execute the linking condition evaluation instructions 502 to determine whether UL-CG configurations satisfy the linking condition 308 of Figure 3.
  • Figure 15 also illustrates that the memory 282 may be configured to store UL-CG linking instructions 504.
  • the controller 280 may be configured to execute the UL-CG linking instructions 504 to link UL-CG configurations that satisfy the linking condition 308 of Figure 3.
  • techniques supporting transmission of repetitions of a TB based on one or more UL-CGs may include additional aspects, such as any single aspect or any combination of aspects described below or in connection with one or more other processes or devices described elsewhere herein.
  • an apparatus supports transmission of repetitions of a TB based on one or more UL-CGs.
  • the apparatus includes a wireless device, such as a UE.
  • the apparatus may include at least one processor, and a memory coupled to the processor. The processor may be configured to perform operations described herein with respect to the wireless device.
  • the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device.
  • the apparatus may include one or more means configured to perform operations described herein.
  • a method of wireless communication performed by a UE includes receiving, from a base station, a first UL-CG associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions.
  • the method further includes receiving, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the method further includes, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, determining that a TB transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
  • the method includes receiving a configuration message from the base station indicating a group identifier associated with both the first UL-CG and the second UL-CG and further includes determining that the first UL-CG configuration and the second UL-CG configuration satisfy the linking condition based on the group identifier.
  • the method includes determining that a first plurality of HARQ processes associated with the first UL-CG configuration and a second plurality of HARQ processes associated with the second UL-CG configuration include at least one common HARQ process identifier. The method further includes determining that the first UL-CG configuration and the second UL-CG configuration satisfy the linking condition based on the at least one common HARQ process identifier.
  • the first plurality of HARQ processes is the same as the second plurality of HARQ processes.
  • the first plurality of HARQ processes and the second plurality of HARQ processes are associated with at least one common HARQ process identifier.
  • the method further includes receiving, from the base station, a first indication of a first CORESET pool index value associated with the first UL-CG configuration.
  • the method further includes receiving, from the base station, a second indication of a second CORESET pool index value associated with the second UL-CG configuration, the second CORESET pool index value being different than the first CORESET pool index value.
  • the method further includes determining that the first UL-CG configuration and the second UL-CG configuration satisfy the linking condition based on the first CORESET pool index value being different than the second CORESET pool index value.
  • an apparatus configured for wireless communication such as a UE, is configured to receive, from a base station, a first UL-CG associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions.
  • the apparatus is further configured to receive, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the apparatus is further configured to determine, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, that a TB transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
  • the apparatus may include at least one processor, and a memory coupled to the processor.
  • the processor may be configured to perform operations described herein with respect to the wireless device.
  • the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device.
  • the apparatus may include one or more means configured to perform operations described herein.
  • a method of wireless communication performed by a UE includes determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions
  • the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier.
  • the method further includes transmitting a TB during the first UL-CG occasion and, based on transmitting the TB, initiating a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier.
  • the method further includes, based on determining that the first timer is unexpired, transmitting a repetition of the TB during the second UL-CG occasion.
  • the transmission of the repetition of the TB is further based on detecting that a second timer is expired, and the second timer is associated with the second UL-CG configuration and associated with the common HARQ process identifier.
  • the transmission of the repetition of the TB is further based on determining that one or both of the first timer or a third timer are unexpired, and the third timer is associated with the common HARQ process identifier and with a third UL-CG configuration that is linked to the first UL-CG configuration and to the second UL-CG configuration.
  • the transmission of the repetition of the TB is further based on determining that both the first timer and a third timer are unexpired, and the third timer is associated with the common HARQ process identifier and with a third UL-CG configuration that is linked to the first UL-CG configuration and to the second UL-CG configuration.
  • the method further includes, based on determining that the first timer is unexpired, canceling an uplink transmission scheduled for a particular UL-CG occasion of the first UL-CG.
  • the method further includes initiating a second timer based on transmitting the repetition of the TB during the second UL-CG occasion, and the second timer is associated with the second UL-CG configuration and associated with the common HARQ process identifier.
  • the method further includes determining that the second timer is unexpired and canceling an uplink transmission scheduled for a particular UL-CG occasion of the second UL-CG based on determining that the second timer is unexpired.
  • the method further includes, based on detecting that both the first timer and the second timer have expired, transmitting a second TB that is different than the TB during a third UL-CG occasion of the first UL-CG.
  • the method further includes receiving, from a base station, DCI scheduling a dynamic PUSCH transmission, and the DCI indicates the common HARQ process identifier.
  • the method further includes, based on the common HARQ process identifier indicated by the DCI, resetting a plurality of timers including the first timer and a second timer associated with the second UL-CG configuration and associated with the common HARQ process identifier.
  • the DCI further indicates the first UL-CG configuration or the second UL-CG configuration
  • the method further includes resetting, based on the DCI, the first timer or a second timer associated with the second UL-CG configuration and associated with the common HARQ process identifier.
  • an apparatus configured for wireless communication such as a UE, is configured to determine that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions
  • the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier.
  • the apparatus is further configured to transmit a TB during the first UL-CG occasion and, based on transmitting the TB, initiate a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier.
  • the apparatus is further configured to transmit, based on determining that the first timer is unexpired, a repetition of the TB during the second UL-CG occasion.
  • the apparatus may include at least one processor, and a memory coupled to the processor.
  • the processor may be configured to perform operations described herein with respect to the wireless device.
  • the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device.
  • the apparatus may include one or more means configured to perform operations described herein.
  • a method of wireless communication performed at a UE includes determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions
  • the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the first UL-CG occasion and the second UL-CG occasion being associated with a common HARQ process identifier.
  • the method further includes selecting, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration.
  • the method further includes transmitting a TB during the first UL-CG occasion.
  • the method further includes, based on transmitting the TB, initiating a timer that is associated with the common HARQ process identifier and, based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, transmitting a repetition of the TB during the second UL-CG occasion.
  • the first UL-CG configuration is selected as the reference UL-CG configuration based on receiving a configuration message that identifies the first UL-CG configuration.
  • the first UL-CG configuration is selected as the reference UL-CG configuration based on a comparison of a first index value associated with the first UL-CG configuration and a second index value associated with the second UL-CG configuration.
  • the method further includes detecting that the timer has expired and, based on detecting that the timer has expired, transmitting a second TB that is different than the TB during a third UL-CG occasion of the first UL-CG.
  • the method further includes determining that the timer is unexpired, and the repetition of the TB is transmitted during the second UL-CG occasion further based on determining that the timer is unexpired.
  • the method further includes detecting that the timer has expired and, based on detecting that the timer has expired, canceling an uplink transmission scheduled for a third UL-CG occasion of the second UL-CG.
  • the method further includes transmitting a second repetition of the TB during a third UL-CG occasion of the second UL-CG irrespective of whether the timer is expired or unexpired.
  • the repetition of the TB is transmitted without restarting the timer.
  • the method further includes restarting the timer based on transmitting the repetition of the TB.
  • an apparatus configured for wireless communication such as a UE, is configured to determine that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions
  • the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions.
  • the first UL-CG occasion and the second UL-CG occasion being associated with a common HARQ process identifier.
  • the apparatus is further configured to select, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration.
  • the apparatus is further configured to transmit a TB during the first UL-CG occasion.
  • the apparatus is further configured to initiate, based on transmitting the TB, a timer that is associated with the common HARQ process identifier and, based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, to transmit a repetition of the TB during the second UL-CG occasion.
  • the apparatus may include at least one processor, and a memory coupled to the processor.
  • the processor may be configured to perform operations described herein with respect to the wireless device.
  • the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device.
  • the apparatus may include one or more means configured to perform operations described herein.
  • a method of wireless communication performed by a UE includes transmitting a first TB in a PUSCH transmission to a base station. The method further includes receiving, from the base station, a first UL-CG associated with a first UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions.
  • the method further includes determining one or more parameters for a repetition of the first TB and, based on the one or more parameters, transmitting one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
  • the one or more parameters include a TBS of the repetition of the first TB.
  • the method further includes determining the TBS based on parameters associated with an RRC configuration of the first UL-CG configuration or based on DCI associated with the first UL-CG configuration.
  • the repetition of the first TB is transmitted during the UL-CG occasion of the first UL-CG based on the TBS being associated with the first UL-CG configuration.
  • the method further includes determining that the TBS differs from a TBS of the first TB of the PUSCH transmission, and the second TB is transmitted during the UL-CG occasion.
  • the method further includes selecting the TBS of the repetition of the first TB from parameters associated with the PUSCH transmission.
  • the TBS is associated with a second UL-CG that is linked to the first UL-CG and associated with a second UL-CG configuration.
  • the method further includes selecting among the first UL-CG configuration and the second UL-CG configuration and determining the TBS based on the selection.
  • the second UL-CG configuration is selected based on receiving a configuration message that identifies the second UL-CG configuration.
  • the second UL-CG configuration is selected based on a comparison of a first index value associated with the first UL-CG configuration and a second index value associated with the second UL-CG configuration.
  • the one or more parameters include an RV of the repetition of the first TB.
  • the RV is set to a default value.
  • the UL-CG occasion of the first UL-CG is associated with multiple repetitions of the repetition of the first TB, and the multiple repetitions of the repetition of the first TB are associated with a configured pattern of RVs that begins with the default value.
  • the method further includes identifying a first RV value associated with the PUSCH transmission, and the first RV value is included in an RV sequence.
  • the method further includes identifying a second RV value that follows the first RV value in the RV sequence and setting the RV of the repetition of the first TB based on the second RV value.
  • the method further includes selecting one or more first values of the RV sequence for one or more repetitions of the PUSCH transmission, and the first RV value is a last value of the first values in the RV sequence.
  • the method further includes, based on the first values, selecting second values for multiple repetitions of the repetition of the first TB.
  • the method further includes receiving, from the base station, a configuration message indicating the RV, and the RV is associated with the first UL-CG configuration.
  • the method further includes, based on transmitting the second TB, selecting a default RV for the second TB instead of the RV indicated by the configuration message.
  • the UL-CG occasion of the first UL-CG is associated with multiple repetitions of the repetition of the first TB
  • the first UL-CG configuration is associated with a first RV sequence and a second RV sequence
  • the second TB is associated with the second RV sequence and the multiple repetitions of the repetition of the first TB associated with the first RV sequence.
  • the method further includes selecting the RV from the first RV sequence based on determining to transmit the second TB during the UL-CG occasion of the first UL-CG.
  • the method further includes selecting the RV from the second RV sequence based on determining to transmit the repetition of the first TB during the UL-CG occasion of the first UL-CG.
  • an apparatus configured for wireless communication such as a UE, is configured to transmit a first TB in a PUSCH transmission to a base station.
  • the method further includes receiving, from the base station, a first UL-CG associated with a first UL-CG configuration.
  • the first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions.
  • the apparatus is further configured to determine one or more parameters for a repetition of the first TB and, based on the one or more parameters, to transmit one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
  • the apparatus may include at least one processor, and a memory coupled to the processor.
  • the processor may be configured to perform operations described herein with respect to the wireless device.
  • the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device.
  • the apparatus may include one or more means configured to perform operations described herein.
  • Components, the functional blocks, and the modules described herein with respect to Figures 1-15 include processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, among other examples, or any combination thereof.
  • features discussed herein may be implemented via specialized processor circuitry, via executable instructions, or combinations thereof.
  • the hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein.
  • a general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine.
  • a processor may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • particular processes and methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, that is one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another.
  • a storage media may be any available media that may be accessed by a computer.
  • such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.
  • the term “or, ” when used in a list of two or more items means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
  • “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (that is A and B and C) or any of these in any combination thereof.
  • the term “substantially” is defined as largely but not necessarily wholly what is specified (and includes what is specified; for example, substantially 90 degrees includes 90 degrees and substantially parallel includes parallel) , as understood by a person of ordinary skill in the art. In any disclosed implementations, the term “substantially” may be substituted with “within [a percentage] of” what is specified, where the percentage includes . 1, 1, 5, or 10 percent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method of wireless communication performed at a user equipment (UE) includes receiving, from a base station, a first uplink configured grant (UL-CG) associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. The method further includes receiving, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The method further includes, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, determining that a transport block (TB) transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.

Description

TRANSMISSION OF REPETITIONS OF A TRANSPORT BLOCK BASED ON UPLINK CONFIGURED GRANTS TECHNICAL FIELD
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to transmission of repetitions of a transport block based on linking uplink configured grants.
DESCRIPTION OF THE RELATED TECHNOLOGY
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) . These systems may be capable of supporting communication with multiple UEs by sharing the available system resources (such as time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) .
Wireless communication devices may transmit repetitions of a communication to increase reliability. For example, a UE may transmit multiple repetitions of a transport block to a base station. Transmission of the multiple repetitions may increase a probability that the base station is able to receive and successfully decode the communication. However, the transmission of repetitions generally reduces flexibility because each repetition may be associated with the same transmit parameters. As a result, some UEs may transmit new transport blocks rather than transmitting repetitions of the same transport block.
SUMMARY
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all contemplated features of the disclosure, and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
One innovative aspect of the subject matter described in this disclosure can be implemented in a method of wireless communication performed by a user equipment (UE) . The method includes receiving, from a base station, a first uplink configured grant (UL-CG) associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. The method further includes receiving, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The method further includes, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, determining that a transport block (TB) transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a method of wireless communication performed by a UE. The method includes determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, and the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The first UL-CG occasion and the second UL-CG occasion are associated with a common hybrid automatic repeat request (HARQ) process identifier. The method further includes transmitting a TB during the first UL-CG occasion and, based on transmitting the TB, initiating a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier. The method further includes, based on determining that the  first timer is unexpired, transmitting a repetition of the TB during the second UL-CG occasion.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a method of wireless communication performed by a UE. The method includes determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, and the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier. The method further includes selecting, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration and transmitting a TB during the first UL-CG occasion. The method further includes, based on transmitting the TB, initiating a timer that is associated with the common HARQ process identifier. The method further includes, based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, transmitting a repetition of the TB during the second UL-CG occasion.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a method of wireless communication performed by a UE. The method includes transmitting a first TB in a physical uplink shared channel (PUSCH) transmission to a base station. The method further includes receiving, from the base station, a first UL-CG associated with a first UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. The method further includes determining one or more parameters for a repetition of the first TB. The method further includes, based on the one or more parameters, transmitting one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a UE. The UE includes at least one processor and a memory coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor, is configured to receive, from a base station, a first UL-CG  associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. The at least one processor is further configured to receive, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The at least one processor is further configured to determine, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, that a TB transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus configured for wireless communication. The apparatus includes means for receiving, from a base station, a first UL-CG associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. The apparatus further includes means for receiving, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The apparatus further includes means for determining, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, that a TB transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a non-transitory computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations. The operations include receiving, from a base station, a first UL-CG associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. The operations further include receiving, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The operations further include, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, determining that a TB transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a UE. The UE includes at least one processor and a memory coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor, is configured to receive, from a base station, a first UL-CG associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. The at least one processor is further configured to receive, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The at least one processor is further configured to determine, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, that a TB transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus configured for wireless communication. The apparatus includes means for determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, and the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier. The apparatus further includes means for transmitting a TB during the first UL-CG occasion. The apparatus further includes means for initiating, based on transmitting the TB, a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier. The apparatus further includes means for transmitting, based on determining that the first timer is unexpired, a repetition of the TB during the second UL-CG occasion.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a non-transitory computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations. The operations include determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that  includes time and frequency resources for uplink transmissions, and the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier. The operations further include transmitting a TB during the first UL-CG occasion. The operations further include, based on transmitting the TB, initiating a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier. The operations further include, based on determining that the first timer is unexpired, transmitting a repetition of the TB during the second UL-CG occasion.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a UE. The UE includes at least one processor and a memory coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor, is configured to determine that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, and the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier. The at least one processor is further configured to select, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration. The at least processor is further configured to transmit a TB during the first UL-CG occasion and to initiate, based on transmitting the TB, a timer that is associated with the common HARQ process identifier. The at least one processor is further configured to transmit, based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, a repetition of the TB during the second UL-CG occasion.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus configured for wireless communication. The apparatus includes means for determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of  the first UL-CG that includes time and frequency resources for uplink transmissions, and the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions, the first UL-CG occasion and the second UL-CG occasion being associated with a common HARQ process identifier. The apparatus further includes means for selecting, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration. The apparatus further includes means for transmitting a TB during the first UL-CG occasion and means for initiating, based on transmitting the TB, a timer that is associated with the common HARQ process identifier. The apparatus further includes means for transmitting, based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, a repetition of the TB during the second UL-CG occasion.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a non-transitory computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations. The operations include determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, and the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier. The operations further include selecting, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration and transmitting a TB during the first UL-CG occasion. The operations further include, based on transmitting the TB, initiating a timer that is associated with the common HARQ process identifier. The operations further include, based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, transmitting a repetition of the TB during the second UL-CG occasion.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a UE. The UE includes at least one processor and a memory coupled with the at least one processor and storing processor-readable code that, when executed  by the at least one processor, is configured to transmit a first TB in a PUSCH transmission to a base station. The at least one processor is further configured to receive, from the base station, a first UL-CG associated with a first UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. The at least one processor is further configured to determine one or more parameters for a repetition of the first TB and to transmit, based on the one or more parameters, one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus configured for wireless communication. The apparatus includes means for transmitting a first TB in a PUSCH transmission to a base station. The apparatus further includes means for receiving, from the base station, a first UL-CG associated with a first UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. The apparatus further includes means for determining one or more parameters for a repetition of the first TB. The apparatus further includes means for transmitting, based on the one or more parameters, one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a non-transitory computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations. The operations include transmitting a first TB in a PUSCH transmission to a base station. The operations further include receiving, from the base station, a first UL-CG associated with a first UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. The operations further include determining one or more parameters for a repetition of the first TB. The operations further include, based on the one or more parameters, transmitting one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
Other aspects, features, and implementations of the present disclosure will become apparent to a person having ordinary skill in the art, upon reviewing the following description of specific, example implementations of the present disclosure in conjunction  with the accompanying figures. While features of the present disclosure may be described relative to particular implementations and figures below, all implementations of the present disclosure can include one or more of the advantageous features described herein. In other words, while one or more implementations may be described as having particular advantageous features, one or more of such features may also be used in accordance with the various implementations of the disclosure described herein. In similar fashion, while example implementations may be described below as device, system, or method implementations, such example implementations can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
A further understanding of the nature and advantages of the present disclosure may be realized by reference to the following drawings. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
Figure 1 is a block diagram illustrating details of an example wireless communication system.
Figure 2 is a block diagram conceptually illustrating an example design of a base station and a user equipment (UE) .
Figure 3 is a block diagram illustrating an example wireless communication system that supports transmission of repetitions of a transport block (TB) based on one or more uplink configured grants (UL-CGs) according to some aspects.
Figure 4 is a block diagram illustrating examples of UL-CG occasions associated with UL-CG configurations that support transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
Figure 5 is a block diagram illustrating additional examples of UL-CG occasions associated with UL-CG configurations that support transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
Figure 6 is a block diagram illustrating examples of timing of UL-CG occasions supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
Figure 7 is a block diagram illustrating examples of timer reset operations supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
Figure 8 is a block diagram illustrating additional examples of timing of UL-CG occasions supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
Figure 9 is a block diagram illustrating additional examples of timing of UL-CG occasions supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
Figure 10 is a block diagram illustrating examples of parameters that support transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
Figure 11 is a flow diagram illustrating an example process that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
Figure 12 is a flow diagram illustrating another example process that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
Figure 13 is a flow diagram illustrating another example process that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
Figure 14 is a flow diagram illustrating another example process that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
Figure 15 is a block diagram of an example UE that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects.
Like reference numbers and designations in the various drawings indicate like elements.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and are not to be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art may appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any quantity of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. Any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Various aspects generally relate to linking uplink configured grant (UL-CG) configurations based on determining that the UL-CG configurations satisfy a linking condition. In some aspects, a user equipment (UE) may detect that at least two UL-CG configurations satisfy a linking condition based on a group identifier indicated by a configuration message, based on one or more common hybrid automatic repeat request (HARQ) process identifiers associated with the UL-CG configurations, based on control resource set (CORESET) pool index values associated with the UL-CG configurations, or a combination thereof. In some aspects, after linking the UL-CG configurations, the UE may determine whether to transmit a repetition of a transport block (TB) in one or more of the linked UL-CG configurations.
In some examples, the UE may initially transmit a TB during a first UL-CG occasion of a first UL-CG configuration. In some examples, the UE may initiate a first timer that is associated with the first UL-CG configuration and associated with a common HARQ process identifier. Based on determining that the first timer is unexpired, the UE may transmit a repetition of the TB during a second UL-CG occasion of a second UL-CG configuration that is linked to the first UL-CG configuration. In some other examples, the first UL-CG configuration may correspond to a reference UL-CG configuration (also referred to herein as an anchor or master UL-CG configuration) , and the UE may transmit  a repetition of the TB during the second UL-CG occasion based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration. In some other examples, the UE may determine one or more parameters for transmitting a repetition of a first TB during an occasion of a linked UL-CG. In some examples, the one or more parameters include a transport block size (TBS) or a redundancy version associated with the first TB. In some implementations, the UE is configured to determine, based on the one or more parameters, whether to transmit the repetition of the TB during the occasion or to transmit a second, different TB during the occasion.
A wireless communication system in accordance with aspects of the disclosure may realize one or more of the following potential advantages. In some aspects, because a UE may link a first UL-CG configuration associated with a first set of transmission parameters and a second UL-CG configuration associated with a second set of transmission parameters different than the first set, the UE may dynamically adjust the transmission parameters for a repetition of a TB by selecting a particular UL-CG configuration for the repetition of the TB, and as a result, improve the likelihood of successful reception of the TB by the base station. In some other aspects, supporting multiple sets of transmission parameters for repetitions of a TB enables the UE to transmit repetitions of the TB to different destinations, such as to different panels or to different transmission and reception points (TRPs) . For example, in some wireless communication protocols, a panel or a TRP may be configured to receive repetitions that use a common set of transmission parameters. As such, by adjusting transmission parameters of a repetition of the TB by selecting a particular UL-CG configuration for the repetition, the UE may transmit repetitions of the TB to multiple destinations, such as to different panels or to different TRPs.
Additionally or alternatively, in some aspects, a UE may be determine a transmission start time for a repetition of a TB by selecting a particular UL-CG configuration. For example, different UL-CG configurations may be associated with different UL-CG occasions having different transmission start times. In some examples, the UE may prioritize transmission of a repetition by selecting an UL-CG configuration with an UL-CG occasion having an earlier transmission start time as compared to an UL-CG of another UL-CG configuration. In some other examples, the UE may deprioritize transmission of a repetition by selecting an UL-CG configuration with a UL-CG occasion  having a later transmission start time as compared to another UL-CG configuration. Such examples may increase flexibility.
This disclosure relates generally to providing or participating in authorized shared access between two or more wireless communications systems, also referred to as wireless communications networks. In various implementations, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks, systems, or devices) , as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
A CDMA network may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like. UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) . CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . 3GPP defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN. GERAN is the radio component of GSM or GSM EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces, among other examples) and the base station controllers (for example, A interfaces, among other examples) . The radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) . A mobile phone operator's network may include one or more GERANs, which may be coupled with UTRANs in the case of a UMTS or GSM network. Additionally, an operator network may include one or more LTE networks, or one or more other networks. The various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and GSM are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA,  E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named the “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3GPP is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure may describe certain aspects with reference to LTE, 4G, 5G, or NR technologies; however, the description is not intended to be limited to a specific technology or application, and one or more aspects described with reference to one technology may be understood to be applicable to another technology. Indeed, one or more aspects the present disclosure are related to shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces.
5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (such as ~1M nodes per km^2) , ultra-low complexity (such as ~10s of bits per sec) , ultra-low energy (such as ~10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (such as ~99.9999%reliability) , ultra-low latency (such as ~ 1 millisecond (ms) ) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (such as ~ 10 Tbps per km^2) , extreme data rates (such as multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) or  frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD or TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth. For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80 or 100 MHz bandwidth. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
The scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with uplink or downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink or downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
For clarity, certain aspects of the apparatus and techniques may be described below with reference to example 5G NR implementations or in a 5G-centric way, and 5G terminology may be used as illustrative examples in portions of the description below; however, the description is not intended to be limited to 5G applications.
Moreover, it should be understood that, in operation, wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to a person having ordinary skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
Figure 1 is a block diagram illustrating details of an example wireless communication system. The wireless communication system may include wireless network 100. The wireless network 100 may, for example, include a 5G wireless network. As appreciated by those skilled in the art, components appearing in Figure 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements, such as device-to-device, peer-to-peer or ad hoc network arrangements, among other examples.
The wireless network 100 illustrated in Figure 1 includes a number of base stations 105 and other network entities. A base station may be a station that communicates with the UEs and may be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each base station 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a base station or a base station subsystem serving the coverage area, depending on the context in which the term is used. In implementations of the wireless network 100 herein, the base stations 105 may be associated with a same operator or different operators, such as the wireless network 100 may include a plurality of operator wireless networks. Additionally, in implementations of the wireless network 100 herein, the base stations 105 may provide wireless communications using one or more of the same frequencies, such as one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof, as a neighboring cell. In some examples, an individual base station 105 or UE 115 may be operated by more than one network operating entity. In some other examples, each base station 105 and UE 115 may be operated by a single network operating entity.
A base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, or other types of cell. A macro cell generally covers a relatively large geographic area, such as several kilometers in radius, and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area, such as a home, and, in addition to unrestricted access, may provide restricted access by UEs having an association with the femto cell, such as UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like. A base station for a macro cell may be referred to as a macro base station. A base station for a small cell  may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in Figure 1,  base stations  105d and 105e are regular macro base stations, while base stations 105a–105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO. Base stations 105a–105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. Base station 105f is a small cell base station which may be a home node or portable access point. A base station may support one or multiple cells, such as two cells, three cells, four cells, and the like.
The wireless network 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. In some scenarios, networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
The UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile. It should be appreciated that, although a mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3GPP, such apparatus may additionally or otherwise be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology. Within the present document, a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary. Some non-limiting examples of a mobile apparatus, such as may include implementations of one or more of the UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) . A mobile apparatus may additionally be an “Internet of things” (IoT) or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a  quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, a gesture tracking device, a medical device, a digital audio player (such as MP3 player) , a camera or a game console, among other examples; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, or a smart meter, among other examples. In one aspect, a UE may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, UEs that do not include UICCs may be referred to as IoE devices. The UEs 115a–115d of the implementation illustrated in Figure 1 are examples of mobile smart phone-type devices accessing the wireless network 100. A UE may be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. The UEs 115e–115k illustrated in Figure 1 are examples of various machines configured for communication that access 5G network 100.
A mobile apparatus, such as the UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like. In Figure 1, a communication link (represented as a lightning bolt) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink or uplink, or desired transmission between base stations, and backhaul transmissions between base stations. Backhaul communication between base stations of the wireless network 100 may occur using wired or wireless communication links.
In operation at the 5G network 100, the base stations 105a–105c serve the  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. Macro base station 105d performs backhaul communications with the base stations 105a–105c, as well as small cell, the base station 105f. Macro base station 105d also transmits multicast services which are subscribed to and received by the  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
The wireless network 100 of implementations supports mission critical communications with ultra-reliable and redundant links for mission critical devices, such the UE 115e, which is a drone. Redundant communication links with the UE 115e include from the  macro base stations  105d and 105e, as well as small cell base station 105f. Other machine type devices, such as UE 115f (thermometer) , the UE 115g (smart meter) , and the UE 115h (wearable device) may communicate through the wireless network 100 either directly with base stations, such as the small cell base station 105f, and the macro base station 105e, or in multi-hop configurations by communicating with another user device which relays its information to the network, such as the UE 115f communicating temperature measurement information to the smart meter, the UE 115g, which is then reported to the network through the small cell base station 105f. The 5G network 100 may provide additional network efficiency through dynamic, low-latency TDD or FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between the UEs 115i–115k communicating with the macro base station 105e.
Figure 2 is a block diagram conceptually illustrating an example design of a base station 105 and a UE 115. The base station 105 and the UE 115 may be one of the base stations and one of the UEs in Figure 1. For a restricted association scenario (as mentioned above) , the base station 105 may be the small cell base station 105f in Figure 1, and the UE 115 may be the  UE  115c or 115d operating in a service area of the base station 105f, which in order to access the small cell base station 105f, would be included in a list of accessible UEs for the small cell base station 105f. Additionally, the base station 105 may be a base station of some other type. As shown in Figure 2, the base station 105 may be equipped with antennas 234a through 234t, and the UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
At the base station 105, a transmit processor 220 may receive data from a data source 212 and control information from a controller 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , or MTC physical downlink control channel (MPDCCH) , among other examples. The data may be for the PDSCH, among other examples. The transmit processor 220 may process, such as encode and symbol map, the data and control information to obtain data symbols and control symbols, respectively. Additionally, the transmit processor 220 may generate reference symbols, such as for the primary  synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal. Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing on the data symbols, the control symbols, or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t. For example, spatial processing performed on the data symbols, the control symbols, or the reference symbols may include precoding. Each modulator 232 may process a respective output symbol stream, such as for OFDM, among other examples, to obtain an output sample stream. Each modulator 232 may additionally or alternatively process the output sample stream to obtain a downlink signal. For example, to process the output sample stream, each modulator 232 may convert to analog, amplify, filter, and upconvert the output sample stream to obtain the downlink signal. Downlink signals from modulators 232a through 232t may be transmitted via the antennas 234a through 234t, respectively.
At the UE 115, the antennas 252a through 252r may receive the downlink signals from the base station 105 and may provide received signals to the demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition a respective received signal to obtain input samples. For example, to condition the respective received signal, each demodulator 254 may filter, amplify, downconvert, and digitize the respective received signal to obtain the input samples. Each demodulator 254 may further process the input samples, such as for OFDM, among other examples, to obtain received symbols. MIMO detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. Receive processor 258 may process the detected symbols, provide decoded data for the UE 115 to a data sink 260, and provide decoded control information to a controller 280. For example, to process the detected symbols, the receive processor 258 may demodulate, deinterleave, and decode the detected symbols.
On the uplink, at the UE 115, a transmit processor 264 may receive and process data (such as for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (such as for the physical uplink control channel (PUCCH) ) from the controller 280. Additionally, the transmit processor 264 may generate reference symbols for a reference signal. The symbols from the transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by the modulators 254a through 254r (such as for SC-FDM, among other examples) , and transmitted to the  base station 105. At base station 105, the uplink signals from the UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by the UE 115. The receive processor 238 may provide the decoded data to data sink 239 and the decoded control information to the controller 240.
The  controllers  240 and 280 may direct the operation at the base station 105 and the UE 115, respectively. The controller 240 or other processors and modules at the base station 105 or the controller 280 or other processors and modules at the UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the execution illustrated in Figures 11-14, or other processes for the techniques described herein. The  memories  242 and 282 may store data and program codes for the base station 105 and The UE 115, respectively. Scheduler 244 may schedule UEs for data transmission on the downlink or uplink.
In some cases, the UE 115 and the base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed, such as contention-based, frequency spectrum. In an unlicensed frequency portion of the shared radio frequency spectrum band, the UEs 115 or the base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum. For example, the UE 115 or base station 105 may perform a listen-before-talk or listen-before-transmitting (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available. A CCA may include an energy detection procedure to determine whether there are any other active transmissions. For example, a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied. Specifically, signal power that is concentrated in a certain bandwidth and exceeds a predetermined noise floor may indicate another wireless transmitter. In some implementations, a CCA may include detection of specific sequences that indicate use of the channel. For example, another device may transmit a specific preamble prior to transmitting a data sequence. In some cases, an LBT procedure may include a wireless node adjusting its own back off window based on the amount of energy detected on a channel or the acknowledge or negative-acknowledge (ACK or NACK) feedback for its own transmitted packets as a proxy for collisions.
Various aspects generally relate to linking UL-CG configurations based on determining that the UL-CG configurations satisfy a linking condition. In some aspects, a  UE may detect that at least two UL-CG configurations satisfy a linking condition based on a group identifier indicated by a configuration message, based on one or more common HARQ process identifiers associated with the UL-CG configurations, based on CORESET pool index values associated with the UL-CG configurations, or a combination thereof. In some aspects, after linking the UL-CG configurations, the UE may determine whether to transmit a repetition of a TB in one or more of the linked UL-CG configurations.
In some examples, the UE may initially transmit a TB during a first UL-CG occasion of a first UL-CG configuration. In some examples, the UE may initiate a first timer that is associated with the first UL-CG configuration and associated with a common HARQ process identifier. Based on determining that the first timer is unexpired, the UE may transmit a repetition of the TB during a second UL-CG occasion of a second UL-CG configuration that is linked to the first UL-CG configuration. In some other examples, the first UL-CG configuration may correspond to a reference UL-CG configuration (also referred to herein as an anchor or master UL-CG configuration) , and the UE may transmit a repetition of the TB during the second UL-CG occasion based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration. In some other examples, the UE may determine one or more parameters for transmitting a repetition of a first TB during an occasion of a linked UL-CG. In some examples, the one or more parameters include a TBS or a redundancy version associated with the first TB. In some implementations, the UE is configured to determine, based on the one or more parameters, whether to transmit the repetition of the TB during the occasion or to transmit a second, different TB during the occasion.
A wireless communication system in accordance with aspects of the disclosure may realize one or more of the following potential advantages. In some aspects, because a UE may link a first UL-CG configuration associated with a first set of transmission parameters and a second UL-CG configuration associated with a second set of transmission parameters different than the first set, the UE may dynamically adjust the transmission parameters for a repetition of a TB by selecting a particular UL-CG configuration for the repetition of the TB, and as a result, improve the likelihood of successful reception of the TB by the base station. In some other aspects, supporting multiple sets of transmission parameters for repetitions of a TB enables the UE to transmit repetitions of the TB to different destinations, such as to different panels or to different TRPs. For example, in some wireless communication protocols, a panel or a  TRP may be configured to receive repetitions that use a common set of transmission parameters. As such, by adjusting transmission parameters of a repetition of the TB by selecting a particular UL-CG configuration for the repetition, the UE may transmit repetitions of the TB to multiple destinations, such as to different panels or to different TRPs.
Additionally or alternatively, in some aspects, a UE may be determine a transmission start time for a repetition of a TB by selecting a particular UL-CG configuration. For example, different UL-CG configurations may be associated with different UL-CG occasions having different transmission start times. In some examples, the UE may prioritize transmission of a repetition by selecting an UL-CG configuration with an UL-CG occasion having an earlier transmission start time as compared to an UL-CG of another UL-CG configuration. In some other examples, the UE may deprioritize transmission of a repetition by selecting an UL-CG configuration with a UL-CG occasion having a later transmission start time as compared to another UL-CG configuration. Such examples may increase flexibility.
Figure 3 is a block diagram of an example wireless communications system 300 that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. In some examples, the wireless communications system 300 may implement aspects of the wireless network 100. The wireless communications system 300 includes the UE 115 and the base station 105. Although one UE 115 and one base station 105 are illustrated, in some other implementations, the wireless communications system 300 may generally include multiple UEs 115, and may include more than one base station 105.
The UE 115 can include a variety of components (such as structural, hardware components) used for carrying out one or more functions described herein. For example, these components can include one or more processors 302 (hereinafter referred to collectively as “the processor 302” ) , one or more memory devices 304 (hereinafter referred to collectively as “the memory 304” ) , one or more transmitters 316 (hereinafter referred to collectively as “the transmitter 316” ) , and one or more receivers 318 (hereinafter referred to collectively as “the receiver 318” ) . The processor 302 may be configured to execute instructions stored in the memory 304 to perform the operations described herein. In some implementations, the processor 302 includes or corresponds to one or more of the receive processor 258, the transmit processor 264, and the controller 280, and the memory 304 includes or corresponds to the memory 282.
The transmitter 316 is configured to transmit reference signals, control information and data to one or more other devices, and the receiver 318 is configured to receive references signals, synchronization signals, control information and data from one or more other devices. For example, the transmitter 316 may transmit signaling, control information and data to, and the receiver 318 may receive signaling, control information and data from, the base station 105. In some implementations, the transmitter 316 and the receiver 318 may be integrated in one or more transceivers. Additionally or alternatively, the transmitter 316 or the receiver 318 may include or correspond to one or more components of the UE 115 described with reference to Figure 2.
The base station 105 can include a variety of components (such as structural, hardware components) used for carrying out one or more functions described herein. For example, these components can include one or more processors 352 (hereinafter referred to collectively as “the processor 352” ) , one or more memory devices 354 (hereinafter referred to collectively as “the memory 354” ) , one or more transmitters 356 (hereinafter referred to collectively as “the transmitter 356” ) , and one or more receivers 358 (hereinafter referred to collectively as “the receiver 358” ) . The processor 352 may be configured to execute instructions stored in the memory 354 to perform the operations described herein. In some implementations, the processor 352 includes or corresponds to one or more of the receive processor 238, the transmit processor 220, and the controller 240, and the memory 354 includes or corresponds to the memory 242.
The transmitter 356 is configured to transmit reference signals, synchronization signals, control information and data to one or more other devices, and the receiver 358 is configured to receive reference signals, control information and data from one or more other devices. For example, the transmitter 356 may transmit signaling, control information and data to, and the receiver 358 may receive signaling, control information and data from, the UE 115. In some implementations, the transmitter 356 and the receiver 358 may be integrated in one or more transceivers. Additionally or alternatively, the transmitter 356 or the receiver 358 may include or correspond to one or more components of base station 105 described with reference to Figure 2.
In some implementations, the wireless communications system 300 implements a 5G New Radio (NR) network. For example, the wireless communications system 300 may include multiple 5G-capable UEs 115 and multiple 5G-capable base stations 105, such as UEs and base stations configured to operate in accordance with a 5G NR network protocol such as that defined by the 3GPP.
During operation of the wireless communications system 300, the base station 105 and the UE 115 may store and access data 306 indicating a linking condition 308 for association of uplink configured grants (UL-CGs) . In some examples, the UE 115 receives the data 306 from the base station 105 or from another base station, such as via a configuration message. An example of a configuration message is a radio resource control (RRC) configuration message. In some examples, one or both of the UE 115 and the base station 105 may receive the data 306 from a server.
The UE 115 is configured to receive a first UL-CG 310 from the base station 105. The first UL-CG 310 is associated with a first UL-CG configuration 312 that indicates at least a first UL-CG occasion 314. The first UL-CG occasion 314 includes time and frequency resources for uplink transmissions.
The UE 115 is configured to receive a second UL-CG 320 from the base station 105. The second UL-CG 320 is associated with a second UL-CG configuration 322 that indicates at least a second UL-CG occasion 324. The second UL-CG occasion 324 includes time and frequency resources for uplink transmissions.
The UE 115 may determine whether the first UL-CG configuration 312 and the second UL-CG occasion 324 satisfy the linking condition 308. To illustrate, in a first example, the UE 115 is configured to receive a configuration message 346 from the base station 105. The configuration message 346 may indicate a group identifier 348 associated with both the first UL-CG 310 and the second UL-CG 320. The group identifier may indicate that UL-CGs having UL-CG configurations that match the group identifier are eligible to be linked to one another. For example, in some implementations, the first UL-CG configuration 312 and the second UL-CG configuration 322 indicate the group identifier 348, and the UE 115 is configured to determine that the first UL-CG configuration 312 and the second UL-CG configuration 322 satisfy the linking condition 308 based on the group identifier 348.
Alternatively or in addition to the first example, in a second example, the UE 115 is configured to determine whether the first UL-CG configuration 312 and the second UL-CG occasion 324 satisfy the linking condition 308 based on hybrid automatic repeat request (HARQ) processes associated with the first UL-CG configuration 312 and the second UL-CG configuration 322. To illustrate, Figure 4 is a block diagram illustrating examples of UL-CG occasions associated with UL-CG configurations that support transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. In Figure 4, the first UL-CG configuration 312 may be associated with UL-CG  occasions 402a-e, and the second UL-CG configuration 322 may be associated with UL-CG occasions 404a-e. The UL-CG occasions 402a-e may be associated with a periodicity 406, and the UL-CG occasions 404a-e may be associated with a periodicity 408. In some examples, the first UL-CG occasion 314 of Figure 3 corresponds to one of the UL-CG occasions 402a-e, and the second UL-CG occasion 324 of Figure 3 corresponds to one of the UL-CG occasions 404a-e. In the example of Figure 4, the first UL-CG configuration 312 is associated with a first plurality of HARQ processes. The first plurality of HARQ processes may include HARQ processes 0, 1, and 2. The example of Figure 4 also illustrates that the second UL-CG configuration 322 is associated with a second plurality of HARQ processes. In Figure 4, the second plurality of HARQ processes include HARQ processes 0, 1, and 2.
The UE 115 may determine that the first UL-CG configuration 312 and the second UL-CG configuration 322 satisfy the linking condition 308 based on determining that the first plurality of HARQ processes and the second plurality of HARQ processes associated include at least one HARQ process identifier. In some implementations, the first UL-CG configuration 312 and the second UL-CG occasion 324 satisfy the linking condition 308 if the first plurality of HARQ processes is the same as the second plurality of HARQ processes, such as if each HARQ process identifier associated with the first plurality of HARQ processes is further associated with the second plurality of HARQ processes, and if each HARQ process identifier associated with the second plurality of HARQ processes is further associated with the first plurality of HARQ processes. In Figure 4, each HARQ process identifier (0, 1, and 2) associated with the first plurality of HARQ processes is further associated with the second plurality of HARQ processes, and each HARQ process identifier (0, 1, and 2) associated with the second plurality of HARQ processes is further associated with the first plurality of HARQ processes.
In some other implementations, the first UL-CG configuration 312 and the second UL-CG occasion 324 satisfy the linking condition 308 if at least one of the first plurality of HARQ processes and the second plurality of HARQ processes are associated with at least one common HARQ process identifier. To illustrate, Figure 5 is a block diagram illustrating additional examples of UL-CG occasions associated with UL-CG configurations that support transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. In Figure 5, the first plurality of HARQ processes is associated with  HARQ identifiers  0, 1, and 2, and the second plurality of HARQ processes is associated with  HARQ identifiers  2, 3, and 4. In this case, the first plurality  of HARQ processes may “partially overlap” the second plurality of HARQ processes (because both the first plurality of HARQ processes and the second plurality of HARQ processes are associated with the HARQ process identifier 2) .
Alternatively or in addition to the first example or the second example, in a third example, the UE 115 is configured to determine whether the first UL-CG configuration 312 and the second UL-CG occasion 324 satisfy the linking condition 308 based on one or more control resource set (CORESET) pool index values. In some examples, a CORESET pool index value is associated with a respective panel or transmission and reception point (TRP) . To illustrate, referring again to Figure 3, the UE 115 may receive, from the base station 105, a first indication of a first control resource set (CORESET) pool index value 360 associated with the first UL-CG configuration 312. The UE 115 may receive, from the base station 105, a second indication of a second CORESET pool index value 362 associated with the second UL-CG configuration 322. The UE 115 may determine that the first UL-CG configuration 312 and the second UL-CG configuration 322 satisfy the linking condition 308 based on the first CORESET pool index value 360 being different than the second CORESET pool index value 362.
To further illustrate, in a non-limiting example, each of the first CORESET pool index value 360 and the second CORESET pool index value 362 correspond to either a “0” value or a “1” value. In one example, the first CORESET pool index value 360 is different than the second CORESET pool index value 362 if the first CORESET pool index value 360 corresponds to the “0” value and the second CORESET pool index value 362 corresponds to the “1” value. In another example, the first CORESET pool index value 360 is different than the second CORESET pool index value 362 if the first CORESET pool index value 360 corresponds to the “1” value and the second CORESET pool index value 362 corresponds to the “0” value.
In some aspects, the UE 115 is configured to determine, based on the first UL-CG configuration 312 and the second UL-CG configuration 322 satisfying a linking condition for association of UL-CGs, that a first transport block (TB) 332 transmitted during the first UL-CG occasion 314 is eligible to be retransmitted during the second UL-CG occasion 324. To illustrate, the UE 115 may transmit the first TB 332 to the base station 105 via a transmission 330 during the first UL-CG occasion 314 and may retransmit the first TB 332 via a transmission 340 during the second UL-CG occasion 324. In other instances, the UE 115 may determine that the first UL-CG configuration 312 and the second UL-CG configuration 322 fail to satisfy the linking condition 308. In such  instances, the UE 115 may determine that the first TB 332 is ineligible for retransmission during the second UL-CG occasion 324. As a result, the UE 115 may transmit another TB to the base station 105 during the second UL-CG occasion 324 via the transmission 340, such as by transmitting a second TB 334 that is different than the first TB 332.
In some examples, the first UL-CG configuration 312 and the second UL-CG configuration 322 are associated with different transmission parameters. For example, the first UL-CG configuration 312 may be associated with a first set of parameters and the second UL-CG configuration 322 may be associated with a second set of parameters different than the first set. In some examples, the first set includes one or more of a first sounding reference signal (SRS) resource indicator (SRI) , a first transmitted precoding matrix indicator (TPMI) , a first number of layers, a first modulation and coding scheme (MCS) , or a first transmission power level. The second set may include one or more of a second SRI different than the first SRI, a second TPMI different than the first TPMI, a second number of layers different than the first number of layers, a second MCS different than the first MCS, or a second transmission power level different than the first transmission power level.
Figure 6 is a block diagram illustrating examples of timing of UL-CG occasions supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. In Figure 6, the first UL-CG configuration 312 include UL-CG occasions 602a-c. The second UL-CG configuration 322 may be associated with UL-CG occasions 604a-b. In some examples, the UL-CG occasion 602a corresponds to the first UL-CG occasion 314 of Figure 3, and the UL-CG occasion 602b corresponds to the second UL-CG occasion 324 of Figure 3. In the illustrated example, a third UL-CG configuration 632 may be associated with a third UL-CG of the UE 115 and including UL-CG occasions 606a-b.
In some aspects, the UE 115 is configured to determine that two or more of the UL-CG configurations 312, 322, and 632 are linked. For example, the UE 115 may determine that the UL-CG configurations 312, 322, and 632 satisfy the linking condition 308 using one or more techniques described with reference to Figure 3. As described above, UL-CG occasions may be associated with a common HARQ process identifier. In the example of Figure 6, the occasions 602-614 are associated with a common HARQ process identifier of “1” . In other examples, the HARQ process identifier may have a different value.
The UE 115 may perform an initial transmission (also referred to herein as a “new transmission” ) of the first TB 332 during the UL-CG occasion 602a. In some examples, the initial transmission of the first TB 332 corresponds to the transmission 330 of Figure 3. The UE 115 may initiate a first timer 650a based on transmitting the first TB 332. The first timer 650a is associated with the first UL-CG configuration 312 and associated with the common HARQ process identifier.
In some aspects, based on determining that the first timer 650a is unexpired, the UE 115 transmits a repetition of the first TB 332 during one or more UL-CG occasions associated with one or more UL-CG configurations linked to the first UL-CG configuration 312. For example, in the example illustrated in Figure 6, the UE 115 transmits a repetition of the first TB 332 during the UL-CG occasion 604a associated with the second UL-CG configuration 322 that is linked to the first UL-CG configuration 312. As another example, as also illustrated in Figure 6, the UE 115 transmits a repetition of the first TB 332 during the UL-CG occasion 606a associated with the third UL-CG configuration 632 that is linked to the first UL-CG configuration 312.
In some examples, a determination by the UE 115 to perform a transmission of a repetition of the first TB 332 may further be based on detecting that one or more other timers (different than the first timer 650a) are expired. For example, the UE 115 may transmit a repetition of the first TB 332 during the UL-CG occasion 604a based on detecting that a second timer 650b is expired. The second timer 650b may be associated with the second UL-CG configuration 322 and associated with the common HARQ process identifier (such as “1” in the example of Figure 6) . As another example, the UE 115 may transmit the repetition of the first TB 332 during the UL-CG occasion 606a based on detecting that a third timer 650c is expired. The third timer 650c may be associated with the third UL-CG configuration 632 and associated with the common HARQ process identifier (such as “1” in the example of Figure 6) . In some examples, the UE 115 is configured to initiate the second timer 650b based on transmitting the repetition of the first TB 332 during the UL-CG occasion 604a. Similarly, the UE 115 may initiate the third timer 650c in response to transmitting the repetition of the first TB 332 during the UL-CG occasion 606a.
In some other examples, a determination by the UE 115 to transmit a repetition of the first TB 332 may further be based on detecting that one or more of multiple timers are unexpired. For example, the UE 115 may transmit the repetition of the first TB 332 during the UL-CG occasion 604a based on detecting that one or both of the first timer  650a and the third timer 650c are unexpired. In some other examples, the UE 115 may determine to transmit a repetition of the first TB 332 based on detecting that each of multiple timers is unexpired. For example, the UE 115 may transmit the repetition of the first TB 332 during the UL-CG occasion 604a based on detecting that both the first timer 650a and the third timer 650c are unexpired.
In some examples, the UE 115 may cancel an uplink transmission scheduled for a particular UL-CG occasion of the first UL-CG 310 based on detecting that the first timer 650a is unexpired. For example, the particular UL-CG occasion may correspond to the UL-CG occasion 602b, and the UE 115 may cancel an uplink transmission scheduled for the UL-CG occasion 602b based on detecting that the first timer 650a is unexpired.
In some implementations, the UE 115 may cancel an uplink transmission scheduled for a particular UL-CG occasion of the second UL-CG 320 based on determining that the second timer 650b is unexpired. For example, the particular UL-CG occasion may correspond to the UL-CG occasion 604b, and the UE 115 may cancel an uplink transmission scheduled for the UL-CG occasion 604b based on determining that the second timer 650b is unexpired. Additionally or alternatively, the UE 115 may cancel an uplink transmission scheduled for a particular UL-CG occasion of the third UL-CG 632 based on determining that the third timer 650c is unexpired. For example, the particular UL-CG occasion may correspond to the UL-CG occasion 606b, and the UE 115 may cancel an uplink transmission scheduled for the UL-CG occasion 606b based on determining that the third timer 650c is unexpired.
In some examples, the UE 115 may determine to transmit the second TB 334 of Figure 3 during a third UL-CG occasion of the first UL-CG 310. For example, the third UL-CG occasion may correspond to the UL-CG occasion 602c, and the UE 115 may transmit the second TB 334 during the UL-CG occasion 602c based on detecting that both the first timer 650a and the second timer 650b are expired. In examples that include the third timer 650c, the UE 115 may transmit the second TB 334 during the UL-CG occasion 602c based on detecting that the first timer 650a, the second timer 650b, and the third timer 650c are expired.
Figure 7 is a block diagram illustrating examples of timer reset operations supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. In Figure 7, an uplink (UL) grant 702 schedules a physical uplink shared channel (PUSCH) transmission. The UL grant 702 may correspond to any of the UL- CGs  310, 320. The UL grant 702 may indicate the HARQ process identifier described  with reference to Figure 6. Based on the UL grant 702, the UE 115 may initiate timers associated with linked UL-CG configurations that are associated with the common HARQ process identifier. For example, the UE 115 may initiate the timers 650a-c.
In some examples, the UE 115 is configured to receive, from the base station 105, downlink control information (DCI) indicating the common HARQ process identifier and scheduling a dynamic PUSCH transmission 704. In a first example, the UE 115 is configured to reset, based on the common HARQ process identifier indicated by the DCI, a plurality of timers including the first timer 650a and the second timer 650b. In some examples, the plurality of timers further includes the third timer 650c. As used herein, “resetting” a timer may include starting or restarting the timer from an initial value. In a second example, the DCI further indicates the first UL-CG configuration 312 or the second UL-CG configuration 322, and the UE 115 is configured to reset, based on the DCI, the first timer 650a or the second timer 650b For example, the DCI may indicate the first UL-CG configuration 312, and the UE 115 may reset the first timer 650a without resetting the second timer 650b. In some other examples, the DCI may indicate the second UL-CG configuration 322, and the UE 115 may reset the second timer 650b without resetting the first timer 650a.
In some aspects of both the first example and the second example, the UE 115 may perform multiple resets of a timer based on receiving an UL-CG. For example, the UE 115 may perform a first reset of one or more timers based on receiving DCI indicating an UL-CG, such as based on receiving DCI indicating the UL grant 702. The UE 115 may perform a second reset of one or more timers based on performing a transmission based on the DCI, such as by performing the second reset at a start transmission time associated with the dynamic PUSCH transmission 704.
Figure 8 is a block diagram illustrating additional examples of timing of UL-CG occasions supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. In Figure 8, the UL-CG configurations 312, 322, and 632 may be associated with a common timer, such as a timer 850, that is associated with the common HARQ process identifier described with reference to Figure 6. In some examples, the UE 115 is configured to select, from among the UL-CG configurations 312, 322, and 632, a reference UL-CG configuration (also referred to herein as an anchor UL-CG configuration or as a master UL-CG configuration) . For example, in response to selecting the first UL-CG configuration 312 as the reference UL-CG configuration, the UE 115 may select the first timer 650a as the timer 850.
In some examples, the UE 115 selects one of the UL-CG configurations 312, 322, and 632 as the reference UL-CG configuration based on receiving a configuration message that identifies the first UL-CG configuration 312. For example, the UE 115 may receive an RRC configuration message from the base station 105 identifying the first UL-CG configuration 312 as the reference UL-CG configuration. In some other examples, the UE 115 selects one of the UL-CG configurations 312, 322, and 632 as the reference UL-CG configuration based on a comparison of index values associated with UL-CG configurations, such as based on a comparison of a first index value associated with the first UL-CG configuration 312 and a second index value associated with the second UL-CG configuration 322. In one example, the UE 115 selects, as the reference UL-CG configuration, the UL-CG configuration having the lowest index value from among the index values. To illustrate, the UL-CG configurations 312, 322, and 632 may be associated with index values of 0, 3, and 5, respectively, and the UE 115 may select the first UL-CG configuration 312 as the reference UL-CG configuration based on the index value of 0 being less than the index values of 3 and 5.
In some aspects, repetitions of a TB are enabled only for UL-CG occasions belonging to non-anchor UL-CG configurations that are linked to the reference UL-CG configuration. For example, the UE 115 may transmit a repetition of the first TB 332 during the UL-CG occasion 604a based on determining that the second UL-CG configuration 322 corresponds to a non-reference UL-CG configuration that is linked to the reference UL-CG configuration, which, in this example, is the first UL-CG configuration 312. As another example, the UE 115 may transmit a repetition of the first TB 332 during the UL-CG occasion 606a based on determining that the third UL-CG configuration 632 corresponds to a non-reference UL-CG configuration that is linked to the reference UL-CG configuration.
In some aspects, the UE 115 may perform an initial transmission of a TB in a UL-CG occasion belonging to the reference UL-CG configuration based on determining that the timer for the reference UL-CG configuration is expired. For example, in response to detecting that the timer 850 is expired, the UE 115 may transmit the second TB 334 during a third UL-CG occasion of the first UL-CG 310. In some examples, third UL-CG occasion corresponds to the UL-CG occasion 602c.
In some examples, the UE 115 may transmit a repetition of a TB based on determining that the timer 850 is unexpired. For example, the UE 115 may transmit the repetition of the first TB 332 during the UL-CG occasion 604a based on determining that  the timer 850 is unexpired. As another example, the UE 115 may transmit the repetition of the first TB 332 during the UL-CG occasion 606a based on determining that the timer 850 is unexpired. In other cases, based on determining that the timer 850 is expired, the UE 115 may cancel UL-CG occasions associated with non-reference UL-CG configurations. For example, the UE 115 may cancel the UL- CG occasions  604b, 606b based on determining that the timer 850 is expired.
It is noted that Figure 8 is illustrative and that other implementations are also within the scope of the disclosure. For example, Figure 9 is a block diagram illustrating additional examples of timing of UL-CG occasions supporting transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. In Figure 9, the UE 115 may transmit repetitions during UL-CG occasions associated with non-reference UL-CG configurations irrespective of whether the timer 850 is expired or unexpired. To illustrate, the UE 115 may transmit a second repetition of the first TB 332 during a third UL-CG occasion of the second UL-CG 320 irrespective of whether the timer 850 is expired or unexpired. The third UL-CG occasion may correspond to the UL-CG occasion 604b. In some examples, the UE 115 may transmit a second repetition of the first TB 332 during the UL-CG occasion 606b irrespective of whether the timer 850 is expired or unexpired.
In some examples in accordance with Figures 8 and 9, the UE 115 may transmit a repetition of a TB without restarting the timer 850. For example, the UE 115 may transmit repetitions of the first TB 332 during the  occasions  604a and 606a without restarting the timer 850. As another example, the UE 115 may transmit repetitions of the first TB 332 during the  occasions  604a, 606a, 604b, and 606b without restarting the timer 850.
It is noted that Figures 8 and 9 are illustrative and that other examples are also within the scope of the disclosure. For example, in some other implementations, the UE 115 may restart the timer 850 based on transmitting a repetition of a TB. For example, the UE 115 may restart the timer 850 based on transmitting a repetition of the first TB 332 during the occasion 604a in Figure 8, based on transmitting a repetition of the first TB 332 during the occasion 606a in Figure 8, or both. As another example, the UE 115 may restart the timer 850 based on transmitting a repetition of the first TB 332 during one or more of the  occasions  604a, 606a, 604b, and 606b in Figure 9.
Figure 10 is a block diagram illustrating examples of parameters that support transmission of repetitions of a TB based on one or more UL-CGs according to some  aspects. In Figure 10, parameters 1000 may include one or more parameters 1002 associated with a first TB of a PUSCH transmission. In some examples, the first TB corresponds to the first TB 332, and the PUSCH transmission corresponds to the transmission 330. The parameters 1000 may further include one or more parameters 1052 associated with a repetition of the first TB. In some examples, the repetition of the first TB is performed using the transmission 340.
In some examples, the PUSCH transmission corresponds to a transmission during a previous UL-CG occasion in another UL-CG configuration. In some other examples, the PUSCH transmission corresponds to a previous dynamic PUSCH scheduled via DCI, such as the dynamic PUSCH 704 of Figure 7. In some examples, the UE 115 is configured to transmit, based on the one or more parameters 1052, one of a second TB or a repetition of the first TB during an UL-CG occasion of a first UL-CG that is associated with a first UL-CG configuration. In some examples, the second TB corresponds to the second TB 334.
In some examples, the one or more parameters 1052 include a transport block size (TBS) 1054 of the repetition of the first TB. In some such examples, the UE 115 may determine the TBS 1054 of the repetition of the first TB based on another TBS, such as based on one or more operations performed to determine a TBS 1004 of the first TB. For example, the UE 115 may determine the TBS 1054 based on parameters associated with a RRC configuration of a UL-CG configuration or based on DCI associated with a UL-CG configuration, such as based on receiving DCI that activates the UL-CG configuration when the UL-CG configuration is of Type 2. In some such examples, the UE 115 may transmit the first TB during the UL-CG occasion of the first UL-CG based on the TBS 1054 being associated with the first UL-CG configuration. For example, if the TBS 1054 corresponds to the TBS 1004, the UE 115 may transmit the repetition of first TB 332 during the UL-CG occasion based on determining that the TBS 1054 corresponds to the TBS 1004. In some other instances, the UE 115 may determine that the TBS 1054 differs from the TBS 1004. In such instances, the UE 115 may transmit the second TB 334 during the UL-CG occasion based on determining that the TBS 1054 differs from the TBS 1004.
In some other examples, the UE 115 may select the TBS 1054 from the one or more parameters 1002. For example, the UE 115 may identify that the first TB was transmitted based on the TBS 1004 and may set the TBS 1054 to correspond to the TBS 1004. In some other examples, the UE 115 may determine the TBS 1054 based on  parameters associated with a second UL-CG configuration that is linked to the UL-CG configuration. For example, the first UL-CG configuration may correspond to the UL-CG configuration 312, and the second UL-CG configuration may correspond to the second UL-CG configuration 322 that is linked to the first UL-CG configuration 312. The UE 115 identify a TBS associated with a transmission of the second UL-CG configuration 322 and may set the TBS 1054 based on the TBS of the transmission of the second UL-CG configuration 322.
To further illustrate, in some such examples, the UE 115 may select among the first UL-CG configuration 312 and the second UL-CG configuration 322 and may determine the TBS 1054 based on the selection. In some examples, the UE 115 may perform the selection using one or more operations described with reference to Figure 8, such as by selecting one of the first UL-CG configuration 312 and the second UL-CG configuration 322 as a reference UL-CG configuration. To further illustrate, in some examples, the UE 115 receives a configuration message (such as an RRC configuration message) that identifies a selected UL-CG configuration, such as the second UL-CG configuration 322. In some other examples, the UE 115 may select a UL-CG configuration (such as the second UL-CG configuration 322) based on a comparison of a first index value associated with the first UL-CG configuration 312 and a second index value associated with the second UL-CG configuration 322, such as by selecting a UL-CG configuration associated with a lowest or highest index value.
Alternatively or in addition to the TBS 1054, the one or more parameters may include a redundancy version (RV) 1056 of the repetition of the first TB. In some such examples, the UE 115 may set the RV 1056 to a default value. As a non-limiting example, the default value may correspond to a “0” value. In other examples, the default value may correspond to another value. In some examples, the UE 115 may transmit multiple repetitions of the repetition of the first TB during the UL-CG occasion of the first UL-CG. In this case, the UL-CG occasion is associated with multiple repetitions of the repetition of the first TB. In some examples, the multiple repetitions of the repetition of the first TB are associated with a configured pattern of RVs that begins with the default value.
In some other examples, the UE 115 may identify a first RV value 1010 associated with the PUSCH transmission, where the first RV value 1010 is included in an RV sequence 1008. The UE 115 may identify a second RV value 1012 that follows the first RV value 1010 in the RV sequence 1008 and to set the RV 1056 of the repetition of  the first TB based on the second RV value 1012. As an example, the RV sequence 1008 may include or correspond to a sequence of the  values  0, 2, 3, and 1. In one example, if the first RV value 1010 corresponds to the value of 0, then the second value may correspond to the value of 2. In another example, if the first RV value 1010 corresponds to the value of 2, then the second value may correspond to the value of 3.
In some examples, the PUSCH transmission is associated with one or more repetitions of the PUSCH transmission, and the UL-CG occasion is associated with multiple repetitions of the repetition of the first TB. As an illustrative example, the UE 115 may transmit the PUSCH transmission twice (for two repetitions of the PUSCH transmission) and may transmit the first TB three times during the UL-CG occasion (for three repetitions of the first TB) . In accordance with some aspects of the second RV determination example, the UE 115 may select one or more first values of the RV sequence 1008 for the one or more repetitions of the PUSCH transmission, where the first RV value 1010 is a last value of the first values in the RV sequence 1008. The UE 115 may select second values for the multiple repetitions of the repetition of the first TB based on the first values. To further illustrate, in one example, the UE 115 transmits two repetitions of the PUSCH transmission and transmits three repetitions of the first TB during the UL-CG occasion. In this example, if the RV sequence 1008 corresponds to the sequence of the  values  0, 2, 3, and 1, and if RVs of the two repetitions of the PUSCH transmission are associated with the values of 0 and 2 in the RV sequence 1008, then the first RV value 1010 may correspond to the value of 2. In this case, the second RV value 1012 may correspond to the value of 3 in the RV sequence 1008, and the three repetitions of the first TB during the UL-CG occasion may have the values of 3, 1, and 0.
In some other examples, the UE 115 may receive, from the base station 105, a configuration message (such as an RRC configuration message) indicating the RV 1056. In this case, if the UE 115 determines to transmit the repetition of the first TB during the UL-CG occasion, then the UE 115 may use the RV 1056 indicated by the configuration message. Alternatively, if the UE 115 determines to transmit the second TB during the UL-CG occasion, then the UE 115 may select a default RV for the second TB instead of the RV 1056 indicated by the configuration message. In some examples, the default RV corresponds to a 0 value.
In some examples, the UL-CG occasion of the first UL-CG is associated with multiple repetitions of the repetition of the first TB. The first UL-CG configuration may be associated with a first RV sequence and a second RV sequence, and the second TB  may be associated with the second RV sequence and the multiple repetitions of the repetition of the first TB associated with the first RV sequence. The UE 115 may select the RV 1056 from the first RV sequence based on determining to transmit the second TB during the UL-CG occasion of the first UL-CG. Alternatively, in another example, the UE 115 may select the RV 1056 from the second RV sequence based on determining to transmit the repetition of the first TB during the UL-CG occasion of the first UL-CG. One or more aspects described with reference to one or more of Figures 3-10 may improve performance of a wireless communication system. For example, in some aspects, supporting multiple sets of parameters for repetitions of a TB enables the UE 115 to transmit repetitions of the first TB 332 to different destinations, such as to different panels or to different TRPs. For example, in some wireless communication protocols, a panel or a TRP of the base station 105 may receive repetitions that use a common set of transmission parameters. As a result, by adjusting transmission parameters of a repetition of the first TB 332 by selecting a particular UL-CG configuration for the repetition, the UE may transmit repetitions of the TB to multiple destinations, such as to different panels of the base station 105 or to different TRPs of the base station 105.
Alternatively or in addition, in some examples, the UE 115 may determine a transmission start time for a repetition of the first TB 332 by selecting a particular UL-CG configuration. For example, different UL-CG configurations may be associated with different UL-CG occasions having different transmission start times. In some cases, the UE 115 may prioritize transmission of a repetition by selecting an UL-CG configuration with a UL-CG occasion having an earlier transmission start time as compared to another UL-CG configuration. As an example, in Figures 4 and 5, UL-CG occasions of the first UL-CG configuration 312 may have an earlier transmission start time as compared to occasions of the second UL-CG configuration 322. In some other examples, the UE 115 may deprioritize transmission of a repetition by selecting an UL-CG configuration with a UL-CG occasion having a later transmission start time as compared to another UL-CG configuration. For example, in Figures 4 and 5, UL-CG occasions of the second UL-CG configuration 322 may have a later transmission start time as compared to occasions of the first UL-CG configuration 312. As a result, flexibility is increased.
Figure 11 is a flow diagram illustrating an example process 1100 that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. Operations of the process 1100 may be performed by a UE, such as the UE 115.
In block 1102, the UE receives, from a base station, a first UL-CG associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. To illustrate, the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to detect UL-CGs from the base station 105.
In block 1104, the UE receives, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. To illustrate, the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to detect UL-CGs from the base station 105.
In block 1106, the UE determines, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, determining that a TB transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion. To illustrate, the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to link UL-CGs from the base station 105.
Figure 12 is a flow diagram illustrating an example process 1200 that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. Operations of the process 1200 may be performed by a UE, such as the UE 115.
In block 1202, the UE determines that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, and the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier. To illustrate, the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to link UL-CGs from the base station 105.
In block 1204, the UE transmits a TB during the first UL-CG occasion. To illustrate, the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to transmit the TB. In block 1206, the UE initiates, based on transmitting the TB, a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier. For example, the UE 115 may  execute, under control of the controller 280, instructions stored in the memory 282 to initiate the first timer. In block 1208, the UE transmits, based on determining that the first timer is unexpired, a repetition of the TB during the second UL-CG occasion. To illustrate, the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to transmit the repetition of the TB..
Figure 13 is a flow diagram illustrating an example process 1300 that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. Operations of the process 1300 may be performed by a UE, such as the UE 115.
In block 1302, the UE determines that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, and the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier. To illustrate, the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to link UL-CGs from the base station 105.
In block 1304, the UE selects, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration. To illustrate, the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to select the first UL-CG configuration as the reference UL-CG configuration. In block 1306, the UE transmits a TB during the first UL-CG occasion. For example, the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to transmit the TB. In block 1308, the UE initiates, based on transmitting the TB, a timer that is associated with the common HARQ process identifier. To illustrate, the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to initiate the timer. In block 1310, the UE transmits, based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, a repetition of the TB during the second UL-CG occasion. For example, the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to transmit the repetition of the TB.
Figure 14 is a flow diagram illustrating an example process 1400 that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. Operations of the process 1400 may be performed by a UE, such as the UE 115.
In block 1402, the UE transmits a first TB in a PUSCH transmission to a base station. To illustrate, the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to transmit the first TB. In block 1404, the UE receives, from the base station, a first UL-CG associated with a first UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. For example, the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to receive the first UL-CG. In block 1406, the UE determines one or more parameters for a repetition of the first TB. To illustrate, the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to determine the one or more parameters for the repetition of the first TB. In block 1408, the UE transmits, based on the one or more parameters, one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG. For example, the UE 115 may execute, under control of the controller 280, instructions stored in the memory 282 to transmit the second TB or the repetition of the first TB.
It is noted that one or more blocks (or operations) described with reference to Figures 11-14 may be combined with one or more blocks (or operations) described with reference to another of the figures. For example, one or more blocks (or operations) of Figure 11 may be combined with one or more blocks (or operations) of Figure 12. As another example, one or more blocks associated with Figures 11 or 12 may be combined with one or more blocks (or operations) associated with Figures 13 or 14. Additionally, or alternatively, one or more operations described above with reference to Figures 1-10 may be combined with one or more operations described with reference to Figure 15.
Figure 15 is a block diagram of an example UE 1500 that supports transmission of repetitions of a TB based on one or more UL-CGs according to some aspects. The UE 1500 may be configured to perform operations, including the blocks of the process 1100 described with reference to Figure 11. In some implementations, the UE 1500 includes the structure, hardware, and components shown and described with reference to the UE 115 of Figures 2 or 3. For example, the UE 1500 includes the controller 280, which operates to execute logic or computer instructions stored in the memory 282, as well as controlling the components of the UE 1500 that provide the features and functionality of  the UE 1500. The UE 1500, under control of the controller 280, transmits and receives signals via wireless radios 1501a-r and the antennas 252a-r. The wireless radios 1501a-r may include one or more components described with reference to Figure 2, such as the modulator and demodulators 254a-r, the MIMO detector 256, the receive processor 258, the transmit processor 264, and the TX MIMO processor 266.
In some examples, the memory 282 stores UL-CG detection instructions 501. The controller 280 may be configured to execute the UL-CG detection instructions 501 to receive and detect UL-CGs from the base station 105. The memory 282 may store linking condition evaluation instructions 502. The controller 280 may be configured to execute the linking condition evaluation instructions 502 to determine whether UL-CG configurations satisfy the linking condition 308 of Figure 3. Figure 15 also illustrates that the memory 282 may be configured to store UL-CG linking instructions 504. The controller 280 may be configured to execute the UL-CG linking instructions 504 to link UL-CG configurations that satisfy the linking condition 308 of Figure 3.
In some aspects, techniques supporting transmission of repetitions of a TB based on one or more UL-CGs may include additional aspects, such as any single aspect or any combination of aspects described below or in connection with one or more other processes or devices described elsewhere herein. In some aspects, an apparatus supports transmission of repetitions of a TB based on one or more UL-CGs. In some implementations, the apparatus includes a wireless device, such as a UE. In some implementations, the apparatus may include at least one processor, and a memory coupled to the processor. The processor may be configured to perform operations described herein with respect to the wireless device. In some other implementations, the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device. In some implementations, the apparatus may include one or more means configured to perform operations described herein.
In a first aspect, a method of wireless communication performed by a UE includes receiving, from a base station, a first UL-CG associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. The method further includes receiving, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time  and frequency resources for uplink transmissions. The method further includes, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, determining that a TB transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
In a second aspect, alone or in combination with the first aspect, the method includes receiving a configuration message from the base station indicating a group identifier associated with both the first UL-CG and the second UL-CG and further includes determining that the first UL-CG configuration and the second UL-CG configuration satisfy the linking condition based on the group identifier.
In a third aspect, alone or in combination with one or more of the first through second aspects, the method includes determining that a first plurality of HARQ processes associated with the first UL-CG configuration and a second plurality of HARQ processes associated with the second UL-CG configuration include at least one common HARQ process identifier. The method further includes determining that the first UL-CG configuration and the second UL-CG configuration satisfy the linking condition based on the at least one common HARQ process identifier.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the first plurality of HARQ processes is the same as the second plurality of HARQ processes.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the first plurality of HARQ processes and the second plurality of HARQ processes are associated with at least one common HARQ process identifier.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the method further includes receiving, from the base station, a first indication of a first CORESET pool index value associated with the first UL-CG configuration. The method further includes receiving, from the base station, a second indication of a second CORESET pool index value associated with the second UL-CG configuration, the second CORESET pool index value being different than the first CORESET pool index value. The method further includes determining that the first UL-CG configuration and the second UL-CG configuration satisfy the linking condition based on the first CORESET pool index value being different than the second CORESET pool index value.
In some aspects, an apparatus configured for wireless communication, such as a UE, is configured to receive, from a base station, a first UL-CG associated with a first  UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. The apparatus is further configured to receive, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The apparatus is further configured to determine, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, that a TB transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion. In some implementations, the apparatus may include at least one processor, and a memory coupled to the processor. The processor may be configured to perform operations described herein with respect to the wireless device. In some other implementations, the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device. In some implementations, the apparatus may include one or more means configured to perform operations described herein.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, a method of wireless communication performed by a UE includes determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, and the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier. The method further includes transmitting a TB during the first UL-CG occasion and, based on transmitting the TB, initiating a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier. The method further includes, based on determining that the first timer is unexpired, transmitting a repetition of the TB during the second UL-CG occasion.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the transmission of the repetition of the TB is further based on detecting that a second timer is expired, and the second timer is associated with the second UL-CG configuration and associated with the common HARQ process identifier.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the transmission of the repetition of the TB is further based on determining that one or both of the first timer or a third timer are unexpired, and the third timer is associated with the common HARQ process identifier and with a third UL-CG configuration that is linked to the first UL-CG configuration and to the second UL-CG configuration.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the transmission of the repetition of the TB is further based on determining that both the first timer and a third timer are unexpired, and the third timer is associated with the common HARQ process identifier and with a third UL-CG configuration that is linked to the first UL-CG configuration and to the second UL-CG configuration.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the method further includes, based on determining that the first timer is unexpired, canceling an uplink transmission scheduled for a particular UL-CG occasion of the first UL-CG.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the method further includes initiating a second timer based on transmitting the repetition of the TB during the second UL-CG occasion, and the second timer is associated with the second UL-CG configuration and associated with the common HARQ process identifier. The method further includes determining that the second timer is unexpired and canceling an uplink transmission scheduled for a particular UL-CG occasion of the second UL-CG based on determining that the second timer is unexpired.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the method further includes, based on detecting that both the first timer and the second timer have expired, transmitting a second TB that is different than the TB during a third UL-CG occasion of the first UL-CG.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, the method further includes receiving, from a base station, DCI scheduling a dynamic PUSCH transmission, and the DCI indicates the common HARQ process identifier.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, the method further includes, based on the common HARQ process identifier indicated by the DCI, resetting a plurality of timers including the first timer and  a second timer associated with the second UL-CG configuration and associated with the common HARQ process identifier.
In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, the DCI further indicates the first UL-CG configuration or the second UL-CG configuration, and the method further includes resetting, based on the DCI, the first timer or a second timer associated with the second UL-CG configuration and associated with the common HARQ process identifier.
In some aspects, an apparatus configured for wireless communication, such as a UE, is configured to determine that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, and the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The first UL-CG occasion and the second UL-CG occasion are associated with a common HARQ process identifier. The apparatus is further configured to transmit a TB during the first UL-CG occasion and, based on transmitting the TB, initiate a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier. The apparatus is further configured to transmit, based on determining that the first timer is unexpired, a repetition of the TB during the second UL-CG occasion. In some implementations, the apparatus may include at least one processor, and a memory coupled to the processor. The processor may be configured to perform operations described herein with respect to the wireless device. In some other implementations, the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device. In some implementations, the apparatus may include one or more means configured to perform operations described herein.
In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, a method of wireless communication performed at a UE includes determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, and the second UL-CG  configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The first UL-CG occasion and the second UL-CG occasion being associated with a common HARQ process identifier. The method further includes selecting, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration. The method further includes transmitting a TB during the first UL-CG occasion. The method further includes, based on transmitting the TB, initiating a timer that is associated with the common HARQ process identifier and, based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, transmitting a repetition of the TB during the second UL-CG occasion.
In an eighteenth aspect, alone or in combination with the first through seventeenth aspects, the first UL-CG configuration is selected as the reference UL-CG configuration based on receiving a configuration message that identifies the first UL-CG configuration.
In a nineteenth aspect, alone or in combination with one or more of the first through eighteenth aspects, the first UL-CG configuration is selected as the reference UL-CG configuration based on a comparison of a first index value associated with the first UL-CG configuration and a second index value associated with the second UL-CG configuration.
In a twentieth aspect, alone or in combination with one or more of the first through nineteenth aspects, the method further includes detecting that the timer has expired and, based on detecting that the timer has expired, transmitting a second TB that is different than the TB during a third UL-CG occasion of the first UL-CG.
In a twenty-first aspect, alone or in combination with one or more of the first through twentieth aspects, the method further includes determining that the timer is unexpired, and the repetition of the TB is transmitted during the second UL-CG occasion further based on determining that the timer is unexpired.
In a twenty-second aspect, alone or in combination with one or more of the first through twenty-first aspects, the method further includes detecting that the timer has expired and, based on detecting that the timer has expired, canceling an uplink transmission scheduled for a third UL-CG occasion of the second UL-CG.
In a twenty-third aspect, alone or in combination with one or more of the first through twenty-second aspects, the method further includes transmitting a second  repetition of the TB during a third UL-CG occasion of the second UL-CG irrespective of whether the timer is expired or unexpired.
In a twenty-fourth aspect, alone or in combination with one or more of the first through twenty-third aspects, the repetition of the TB is transmitted without restarting the timer.
In a twenty-fifth aspect, alone or in combination with one or more of the first through twenty-fourth aspects, the method further includes restarting the timer based on transmitting the repetition of the TB.
In some aspects, an apparatus configured for wireless communication, such as a UE, is configured to determine that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, and the second UL-CG configuration indicates at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions. The first UL-CG occasion and the second UL-CG occasion being associated with a common HARQ process identifier. The apparatus is further configured to select, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration. The apparatus is further configured to transmit a TB during the first UL-CG occasion. The apparatus is further configured to initiate, based on transmitting the TB, a timer that is associated with the common HARQ process identifier and, based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, to transmit a repetition of the TB during the second UL-CG occasion. In some implementations, the apparatus may include at least one processor, and a memory coupled to the processor. The processor may be configured to perform operations described herein with respect to the wireless device. In some other implementations, the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device. In some implementations, the apparatus may include one or more means configured to perform operations described herein.
In a twenty-sixth aspect, alone or in combination with one or more of the first through twenty-fifth aspects, a method of wireless communication performed by a UE  includes transmitting a first TB in a PUSCH transmission to a base station. The method further includes receiving, from the base station, a first UL-CG associated with a first UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. The method further includes determining one or more parameters for a repetition of the first TB and, based on the one or more parameters, transmitting one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
In a twenty-seventh aspect, alone or in combination with one or more of the first through twenty-sixth aspects, the one or more parameters include a TBS of the repetition of the first TB.
In a twenty-eighth aspect, alone or in combination with one or more of the first through twenty-seventh aspects, the method further includes determining the TBS based on parameters associated with an RRC configuration of the first UL-CG configuration or based on DCI associated with the first UL-CG configuration.
In a twenty-ninth aspect, alone or in combination with one or more of the first through twenty-eighth aspects, the repetition of the first TB is transmitted during the UL-CG occasion of the first UL-CG based on the TBS being associated with the first UL-CG configuration.
In a thirtieth aspect, alone or in combination with one or more of the first through twenty-ninth aspects, the method further includes determining that the TBS differs from a TBS of the first TB of the PUSCH transmission, and the second TB is transmitted during the UL-CG occasion.
In a thirty-first aspect, alone or in combination with one or more of the first through thirtieth aspects, the method further includes selecting the TBS of the repetition of the first TB from parameters associated with the PUSCH transmission.
In a thirty-second aspect, alone or in combination with one or more of the first through thirty-first aspects, the TBS is associated with a second UL-CG that is linked to the first UL-CG and associated with a second UL-CG configuration.
In a thirty-third aspect, alone or in combination with one or more of the first through thirty-second aspects, the method further includes selecting among the first UL-CG configuration and the second UL-CG configuration and determining the TBS based on the selection.
In a thirty-fourth aspect, alone or in combination with one or more of the first through thirty-third aspects, the second UL-CG configuration is selected based on receiving a configuration message that identifies the second UL-CG configuration.
In a thirty-fifth aspect, alone or in combination with one or more of the first through thirty-fourth aspects, the second UL-CG configuration is selected based on a comparison of a first index value associated with the first UL-CG configuration and a second index value associated with the second UL-CG configuration.
In a thirty-sixth aspect, alone or in combination with one or more of the first through thirty-fifth aspects, the one or more parameters include an RV of the repetition of the first TB.
In a thirty-seventh aspect, alone or in combination with one or more of the first through thirty-sixth aspects, the RV is set to a default value.
In a thirty-eighth aspect, alone or in combination with one or more of the first through thirty-seventh aspects, the UL-CG occasion of the first UL-CG is associated with multiple repetitions of the repetition of the first TB, and the multiple repetitions of the repetition of the first TB are associated with a configured pattern of RVs that begins with the default value.
In a thirty-ninth aspect, alone or in combination with one or more of the first through thirty-eighth aspects, the method further includes identifying a first RV value associated with the PUSCH transmission, and the first RV value is included in an RV sequence. The method further includes identifying a second RV value that follows the first RV value in the RV sequence and setting the RV of the repetition of the first TB based on the second RV value.
In a fortieth aspect, alone or in combination with one or more of the first through thirty-ninth aspects, the method further includes selecting one or more first values of the RV sequence for one or more repetitions of the PUSCH transmission, and the first RV value is a last value of the first values in the RV sequence. The method further includes, based on the first values, selecting second values for multiple repetitions of the repetition of the first TB.
In a forty-first aspect, alone or in combination with one or more of the first through fortieth aspects, the method further includes receiving, from the base station, a configuration message indicating the RV, and the RV is associated with the first UL-CG configuration.
In a forty-second aspect, alone or in combination with one or more of the first through forty-first aspects, the method further includes, based on transmitting the second TB, selecting a default RV for the second TB instead of the RV indicated by the configuration message.
In a forty-third aspect, alone or in combination with one or more of the first through forty-second aspects, the UL-CG occasion of the first UL-CG is associated with multiple repetitions of the repetition of the first TB, the first UL-CG configuration is associated with a first RV sequence and a second RV sequence, and the second TB is associated with the second RV sequence and the multiple repetitions of the repetition of the first TB associated with the first RV sequence.
In a forty-fourth aspect, alone or in combination with one or more of the first through forty-third aspects, the method further includes selecting the RV from the first RV sequence based on determining to transmit the second TB during the UL-CG occasion of the first UL-CG.
In a forty-fifth aspect, alone or in combination with one or more of the first through forty-fourth aspects, the method further includes selecting the RV from the second RV sequence based on determining to transmit the repetition of the first TB during the UL-CG occasion of the first UL-CG.
In some aspects, an apparatus configured for wireless communication, such as a UE, is configured to transmit a first TB in a PUSCH transmission to a base station. The method further includes receiving, from the base station, a first UL-CG associated with a first UL-CG configuration. The first UL-CG configuration indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions. The apparatus is further configured to determine one or more parameters for a repetition of the first TB and, based on the one or more parameters, to transmit one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG. In some implementations, the apparatus may include at least one processor, and a memory coupled to the processor. The processor may be configured to perform operations described herein with respect to the wireless device. In some other implementations, the apparatus may include a non-transitory computer-readable medium having program code recorded thereon and the program code may be executable by a computer for causing the computer to perform operations described herein with reference to the wireless device. In some implementations, the apparatus may include one or more means configured to perform operations described herein.
Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Components, the functional blocks, and the modules described herein with respect to Figures 1-15 include processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, among other examples, or any combination thereof. In addition, features discussed herein may be implemented via specialized processor circuitry, via executable instructions, or combinations thereof.
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure. Skilled artisans will also readily recognize that the order or combination of components, methods, or interactions that are described herein are merely examples and that the components, methods, or interactions of the various aspects of the present disclosure may be combined or performed in ways other than those illustrated and described herein.
The various illustrative logics, logical blocks, modules, circuits and algorithm processes described in connection with the implementations disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. The interchangeability of hardware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and processes described above. Whether such functionality is implemented in hardware or software depends upon the particular application and design constraints imposed on the overall system.
The hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. In some implementations, a processor may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some implementations, particular processes and methods may be performed by circuitry that is specific to a given function.
In one or more aspects, the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, that is one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. The processes of a method or algorithm disclosed herein may be implemented in a processor-executable software module which may reside on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another. A storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Also, any connection can be properly termed a computer-readable medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital  versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.
Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to some other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein, but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein.
Additionally, a person having ordinary skill in the art will readily appreciate, the terms “upper” and “lower” are sometimes used for ease of describing the figures, and indicate relative positions corresponding to the orientation of the figure on a properly oriented page, and may not reflect the proper orientation of any device as implemented.
Certain features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one more example processes in the form of a flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of  various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Additionally, some other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.
As used herein, including in the claims, the term “or, ” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. Also, as used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (that is A and B and C) or any of these in any combination thereof. The term “substantially” is defined as largely but not necessarily wholly what is specified (and includes what is specified; for example, substantially 90 degrees includes 90 degrees and substantially parallel includes parallel) , as understood by a person of ordinary skill in the art. In any disclosed implementations, the term “substantially” may be substituted with “within [a percentage] of” what is specified, where the percentage includes . 1, 1, 5, or 10 percent.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (57)

  1. A method of wireless communication performed at a user equipment (UE) , comprising:
    receiving, from a base station, a first uplink configured grant (UL-CG) associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions;
    receiving, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions; and
    based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, determining that a transport block (TB) transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
  2. The method of claim 1, further including:
    receiving a configuration message from the base station indicating a group identifier associated with both the first UL-CG and the second UL-CG; and
    determining that the first UL-CG configuration and the second UL-CG configuration satisfy the linking condition based on the group identifier.
  3. The method of claim 1, further including:
    determining that a first plurality of hybrid automatic repeat request (HARQ) processes associated with the first UL-CG configuration and a second plurality of HARQ processes associated with the second UL-CG configuration include at least one common HARQ process identifier; and
    determining that the first UL-CG configuration and the second UL-CG configuration satisfy the linking condition based on the at least one common HARQ process identifier.
  4. The method of claim 3, wherein the first plurality of HARQ processes is the same as the second plurality of HARQ processes.
  5. The method of claim 3, wherein the first plurality of HARQ processes and the second plurality of HARQ processes are associated with at least one common HARQ process identifier.
  6. The method of claim 1, further including:
    receiving, from the base station, a first indication of a first control resource set (CORESET) pool index value associated with the first UL-CG configuration;
    receiving, from the base station, a second indication of a second CORESET pool index value associated with the second UL-CG configuration, the second CORESET pool index value being different than the first CORESET pool index value; and
    determining that the first UL-CG configuration and the second UL-CG configuration satisfy the linking condition based on the first CORESET pool index value being different than the second CORESET pool index value.
  7. A method of wireless communication performed at a user equipment (UE) , comprising:
    determining that a first uplink configured grant (UL-CG) associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, the second UL-CG configuration indicating at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions, the first UL-CG occasion and the second UL-CG occasion being associated with a common hybrid automatic repeat request (HARQ) process identifier;
    transmitting a transport block (TB) during the first UL-CG occasion;
    based on transmitting the TB, initiating a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier; and
    based on determining that the first timer is unexpired, transmitting a repetition of the TB during the second UL-CG occasion.
  8. The method of claim 7, wherein the transmission of the repetition of the TB is further based on detecting that a second timer is expired, wherein the second timer is associated with the second UL-CG configuration and associated with the common HARQ process identifier.
  9. The method of claim 8, wherein the transmission of the repetition of the TB is further based on determining that one or both of the first timer or a third timer are unexpired, and wherein the third timer is associated with the common HARQ process identifier and with a third UL-CG configuration that is linked to the first UL-CG configuration and to the second UL-CG configuration.
  10. The method of claim 8, wherein the transmission of the repetition of the TB is further based on determining that both the first timer and a third timer are unexpired, and wherein the third timer is associated with the common HARQ process identifier and with a third UL-CG configuration that is linked to the first UL-CG configuration and to the second UL-CG configuration.
  11. The method of claim 7, further including, based on determining that the first timer is unexpired, canceling an uplink transmission scheduled for a particular UL-CG occasion of the first UL-CG.
  12. The method of claim 7, further including:
    initiating a second timer based on transmitting the repetition of the TB during the second UL-CG occasion, wherein the second timer is associated with the second UL-CG configuration and associated with the common HARQ process identifier;
    determining that the second timer is unexpired; and
    canceling an uplink transmission scheduled for a particular UL-CG occasion of the second UL-CG based on determining that the second timer is unexpired.
  13. The method of claim 12, further including, based on detecting that both the first timer and the second timer have expired, transmitting a second TB that is different than the TB during a third UL-CG occasion of the first UL-CG.
  14. The method of claim 7, further including receiving, from a base station, downlink control information (DCI) scheduling a dynamic physical uplink shared channel (PUSCH) transmission, wherein the DCI indicates the common HARQ process identifier.
  15. The method of claim 14, further including, based on the common HARQ process identifier indicated by the DCI, resetting a plurality of timers including the first timer and a second timer associated with the second UL-CG configuration and associated with the common HARQ process identifier.
  16. The method of claim 14, wherein the DCI further indicates the first UL-CG configuration or the second UL-CG configuration, and further including resetting, based on the DCI, the first timer or a second timer associated with the second UL-CG configuration and associated with the common HARQ process identifier.
  17. A method of wireless communication performed at a user equipment (UE) , comprising:
    determining that a first uplink configured grant (UL-CG) associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, the second UL-CG configuration indicating at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions, the first UL-CG occasion and the second UL-CG occasion being associated with a common hybrid automatic repeat request (HARQ) process identifier;
    selecting, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration;
    transmitting a transport block (TB) during the first UL-CG occasion;
    based on transmitting the TB, initiating a timer that is associated with the common HARQ process identifier; and
    based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, transmitting a repetition of the TB during the second UL-CG occasion.
  18. The method of claim 17, wherein the first UL-CG configuration is selected as the reference UL-CG configuration based on receiving a configuration message that identifies the first UL-CG configuration.
  19. The method of claim 17, wherein the first UL-CG configuration is selected as the reference UL-CG configuration based on a comparison of a first index value associated with the first UL-CG configuration and a second index value associated with the second UL-CG configuration.
  20. The method of claim 17, further including:
    detecting that the timer has expired; and
    based on detecting that the timer has expired, transmitting a second TB that is different than the TB during a third UL-CG occasion of the first UL-CG.
  21. The method of claim 17, further including determining that the timer is unexpired, wherein the repetition of the TB is transmitted during the second UL-CG occasion further based on determining that the timer is unexpired.
  22. The method of claim 17, further including:
    detecting that the timer has expired; and
    based on detecting that the timer has expired, canceling an uplink transmission scheduled for a third UL-CG occasion of the second UL-CG.
  23. The method of claim 17, further including transmitting a second repetition of the TB during a third UL-CG occasion of the second UL-CG irrespective of whether the timer is expired or unexpired.
  24. The method of claim 17, wherein the repetition of the TB is transmitted without restarting the timer.
  25. The method of claim 17, further including restarting the timer based on transmitting the repetition of the TB.
  26. A method of wireless communication performed at a user equipment (UE) , comprising:
    transmitting a first transport block (TB) in a physical uplink shared channel (PUSCH) transmission to a base station;
    receiving, from the base station, a first uplink configured grant (UL-CG) associated with a first UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions;
    determining one or more parameters for a repetition of the first TB; and
    based on the one or more parameters, transmitting one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
  27. The method of claim 26, wherein the one or more parameters include a transport block size (TBS) of the repetition of the first TB.
  28. The method of claim 27, further including determining the TBS based on parameters associated with a radio resource control (RRC) configuration of the first UL-CG configuration or based on downlink control information (DCI) associated with the first UL-CG configuration.
  29. The method of claim 28, wherein the repetition of the first TB is transmitted during the UL-CG occasion of the first UL-CG based on the TBS being associated with the first UL-CG configuration.
  30. The method of claim 28, further including determining that the TBS differs from a TBS of the first TB of the PUSCH transmission, wherein the second TB is transmitted during the UL-CG occasion.
  31. The method of claim 27, further including selecting the TBS of the repetition of the first TB from parameters associated with the PUSCH transmission.
  32. The method of claim 27, wherein the TBS is associated with a second UL-CG that is linked to the first UL-CG and associated with a second UL-CG configuration.
  33. The method of claim 32, further including:
    selecting among the first UL-CG configuration and the second UL-CG configuration; and
    determining the TBS based on the selection.
  34. The method of claim 33, wherein the second UL-CG configuration is selected based on receiving a configuration message that identifies the second UL-CG configuration.
  35. The method of claim 33, wherein the second UL-CG configuration is selected based on a comparison of a first index value associated with the first UL-CG configuration and a second index value associated with the second UL-CG configuration.
  36. The method of claim 26, wherein the one or more parameters include a redundancy version (RV) of the repetition of the first TB.
  37. The method of claim 36, wherein the RV is set to a default value.
  38. The method of claim 37, wherein the UL-CG occasion of the first UL-CG is associated with multiple repetitions of the repetition of the first TB, and wherein the multiple repetitions of the repetition of the first TB are associated with a configured pattern of RVs that begins with the default value.
  39. The method of claim 36, further including:
    identifying a first RV value associated with the PUSCH transmission, wherein the first RV value is included in an RV sequence;
    identifying a second RV value that follows the first RV value in the RV sequence; and
    setting the RV of the repetition of the first TB based on the second RV value.
  40. The method of claim 39, further including:
    selecting one or more first values of the RV sequence for one or more repetitions of the PUSCH transmission, wherein the first RV value is a last value of the first values in the RV sequence; and
    based on the first values, selecting second values for multiple repetitions of the repetition of the first TB.
  41. The method of claim 36, further including receiving, from the base station, a configuration message indicating the RV, wherein the RV is associated with the first UL-CG configuration.
  42. The method of claim 41, further comprising, based on transmitting the second TB, selecting a default RV for the second TB instead of the RV indicated by the configuration message.
  43. The method of claim 41, wherein the UL-CG occasion of the first UL-CG is associated with multiple repetitions of the repetition of the first TB, wherein the first UL-CG configuration is associated with a first RV sequence and a second RV sequence, and wherein the second TB is associated with the second RV sequence and the multiple repetitions of the repetition of the first TB associated with the first RV sequence.
  44. The method of claim 43, further including selecting the RV from the first RV sequence based on determining to transmit the second TB during the UL-CG occasion of the first UL-CG.
  45. The method of claim 43, further including selecting the RV from the second RV sequence based on determining to transmit the repetition of the first TB during the UL-CG occasion of the first UL-CG.
  46. A user equipment (UE) comprising:
    at least one processor; and
    a memory coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor, is configured to:
    receive, from a base station, a first uplink configured grant (UL-CG) associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions;
    receive, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions; and
    based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, determine that a transport block  (TB) transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
  47. An apparatus configured to perform wireless communication, the apparatus comprising:
    means for receiving, from a base station, a first uplink configured grant (UL-CG) associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions;
    means for receiving, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions; and
    means for determining, based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, that a transport block (TB) transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
  48. A non-transitory computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations comprising:
    receiving, from a base station, a first uplink configured grant (UL-CG) associated with a first UL-CG configuration that indicates at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions;
    receiving, from the base station, a second UL-CG associated with a second UL-CG configuration that specifies at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions; and
    based on the first UL-CG configuration and the second UL-CG configuration satisfying a linking condition for association of UL-CGs, determining that a transport block (TB) transmitted during the first UL-CG occasion is eligible to be retransmitted during the second UL-CG occasion.
  49. A user equipment (UE) comprising:
    at least one processor; and
    a memory coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor, is configured to:
    determine that a first uplink configured grant (UL-CG) associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG  configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, the second UL-CG configuration indicating at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions, the first UL-CG occasion and the second UL-CG occasion being associated with a common hybrid automatic repeat request (HARQ) process identifier;
    transmit a transport block (TB) during the first UL-CG occasion;
    based on transmitting the TB, initiate a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier; and
    based on determining that the first timer is unexpired, transmit a repetition of the TB during the second UL-CG occasion.
  50. An apparatus configured to perform wireless communication, the apparatus comprising:
    means for determining that a first uplink configured grant (UL-CG) associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, the second UL-CG configuration indicating at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions, the first UL-CG occasion and the second UL-CG occasion being associated with a common hybrid automatic repeat request (HARQ) process identifier;
    means for transmitting a transport block (TB) during the first UL-CG occasion;
    means for initiating, based on transmitting the TB, a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier; and
    means for transmitting, based on determining that the first timer is unexpired, a repetition of the TB during the second UL-CG occasion.
  51. A non-transitory computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations comprising:
    determining that a first uplink configured grant (UL-CG) associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of  the first UL-CG that includes time and frequency resources for uplink transmissions, the second UL-CG configuration indicating at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions, the first UL-CG occasion and the second UL-CG occasion being associated with a common hybrid automatic repeat request (HARQ) process identifier;
    transmitting a transport block (TB) during the first UL-CG occasion;
    based on transmitting the TB, initiating a first timer that is associated with the first UL-CG configuration and associated with the common HARQ process identifier; and
    based on determining that the first timer is unexpired, transmitting a repetition of the TB during the second UL-CG occasion.
  52. A user equipment (UE) comprising:
    at least one processor; and
    a memory coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor, is configured to:
    determine that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, the second UL-CG configuration indicating at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions, the first UL-CG occasion and the second UL-CG occasion being associated with a common hybrid automatic repeat request (HARQ) process identifier;
    select, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration;
    transmit a transport block (TB) during the first UL-CG occasion;
    based on transmitting the TB, initiate a timer that is associated with the common HARQ process identifier; and
    based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, transmit a repetition of the TB during the second UL-CG occasion.
  53. An apparatus configured to perform wireless communication, the apparatus comprising:
    means for determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, the second UL-CG configuration indicating at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions, the first UL-CG occasion and the second UL-CG occasion being associated with a common hybrid automatic repeat request (HARQ) process identifier;
    means for selecting, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration;
    means for transmitting a transport block (TB) during the first UL-CG occasion;
    means for initiating, based on transmitting the TB, a timer that is associated with the common HARQ process identifier; and
    means for transmitting, based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, a repetition of the TB during the second UL-CG occasion.
  54. A non-transitory computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations comprising:
    determining that a first UL-CG associated with a first UL-CG configuration is linked to a second UL-CG associated with a second UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions, the second UL-CG configuration indicating at least a second UL-CG occasion of the second UL-CG that includes time and frequency resources for uplink transmissions, the first UL-CG occasion and the second UL-CG occasion being associated with a common hybrid automatic repeat request (HARQ) process identifier;
    selecting, from among the first UL-CG configuration and the second UL-CG configuration, the first UL-CG configuration as a reference UL-CG configuration;
    transmitting a transport block (TB) during the first UL-CG occasion;
    based on transmitting the TB, initiating a timer that is associated with the common HARQ process identifier; and
    based on determining that the second UL-CG configuration is a non-reference UL-CG configuration that is linked to the first UL-CG configuration, transmitting a repetition of the TB during the second UL-CG occasion.
  55. A user equipment (UE) comprising:
    at least one processor; and
    a memory coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor, is configured to:
    transmit a first transport block (TB) in a physical uplink shared channel (PUSCH) transmission to a base station;
    receive, from the base station, a first uplink configured grant (UL-CG) associated with a first UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions;
    determine one or more parameters for a repetition of the first TB; and
    based on the one or more parameters, transmit one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
  56. An apparatus configured to perform wireless communication, the apparatus comprising:
    means for transmitting a first transport block (TB) in a physical uplink shared channel (PUSCH) transmission to a base station;
    means for receiving, from the base station, a first uplink configured grant (UL-CG) associated with a first UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions;
    means for determining one or more parameters for a repetition of the first TB; and
    means for transmitting, based on the one or more parameters, one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
  57. A non-transitory computer-readable medium storing instructions that, when executed by a processor, cause the processor to perform operations comprising:
    transmitting a first transport block (TB) in a physical uplink shared channel (PUSCH) transmission to a base station;
    receiving, from the base station, a first uplink configured grant (UL-CG) associated with a first UL-CG configuration, the first UL-CG configuration indicating at least a first UL-CG occasion of the first UL-CG that includes time and frequency resources for uplink transmissions;
    determining one or more parameters for a repetition of the first TB; and
    based on the one or more parameters, transmitting one of a second TB or the repetition of the first TB to the base station during an UL-CG occasion of the first UL-CG.
PCT/CN2020/085349 2020-04-17 2020-04-17 Transmission of repetitions of a transport block based on uplink configured grants WO2021208075A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085349 WO2021208075A1 (en) 2020-04-17 2020-04-17 Transmission of repetitions of a transport block based on uplink configured grants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085349 WO2021208075A1 (en) 2020-04-17 2020-04-17 Transmission of repetitions of a transport block based on uplink configured grants

Publications (1)

Publication Number Publication Date
WO2021208075A1 true WO2021208075A1 (en) 2021-10-21

Family

ID=78083458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085349 WO2021208075A1 (en) 2020-04-17 2020-04-17 Transmission of repetitions of a transport block based on uplink configured grants

Country Status (1)

Country Link
WO (1) WO2021208075A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019024890A1 (en) * 2017-08-03 2019-02-07 维沃移动通信有限公司 Data transmission method, and data detection method and device
CN109495219A (en) * 2017-09-11 2019-03-19 维沃移动通信有限公司 One kind exempting from authorized transmissions method, base station and terminal
WO2019127465A1 (en) * 2017-12-29 2019-07-04 Oppo广东移动通信有限公司 Method for managing timer and transmitting information, terminal device and network device
WO2020033689A1 (en) * 2018-08-09 2020-02-13 Convida Wireless, Llc Autonomous uplink transmission in unlicensed new radio spectrum
CN110971368A (en) * 2018-09-28 2020-04-07 华为技术有限公司 Information transmission method and information transmission device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019024890A1 (en) * 2017-08-03 2019-02-07 维沃移动通信有限公司 Data transmission method, and data detection method and device
CN109495219A (en) * 2017-09-11 2019-03-19 维沃移动通信有限公司 One kind exempting from authorized transmissions method, base station and terminal
WO2019127465A1 (en) * 2017-12-29 2019-07-04 Oppo广东移动通信有限公司 Method for managing timer and transmitting information, terminal device and network device
WO2020033689A1 (en) * 2018-08-09 2020-02-13 Convida Wireless, Llc Autonomous uplink transmission in unlicensed new radio spectrum
CN110971368A (en) * 2018-09-28 2020-04-07 华为技术有限公司 Information transmission method and information transmission device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "On remaining issues for UL transmission without grant", 3GPP DRAFT; R1-1720481_GRANT-FREE_SEMIFINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 17 November 2017 (2017-11-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051368998 *

Similar Documents

Publication Publication Date Title
US20240205954A1 (en) Enabling remaining minimum system information (rmsi) repetition or rmsi slot aggregation
EP4236542A2 (en) Ue processing time for pdsch repetition in the same slot
US11653358B2 (en) Downlink control information transmission within a physical downlink shared channel
EP3994935A1 (en) Cross carrier activation of a periodic grant
US11997667B2 (en) Non-numerical K1 for group common-physical downlink control channel (GC-PDCCH) grant in multimedia broadcast multicast service (MBMS)
US11996950B2 (en) Group-based signaling for a wireless communication system
US11589268B2 (en) Backward cancellation indication for sidelink transmission
WO2021208075A1 (en) Transmission of repetitions of a transport block based on uplink configured grants
US11963172B2 (en) Sidelink resource allocation and communication
US11895667B2 (en) Multiple feedback control for group common-physical downlink shared channel (GC-PDSCH) in multimedia broadcast multicast service (MBMS)
US12010568B2 (en) Device performance when T312 configured
US11799567B2 (en) Beam-specific RSSI and CO for NR-U
US11785625B2 (en) Downlink control information (DCI) on physical downlink shared channel (PDSCH)
WO2021248507A1 (en) Stand alone (sa) 5g idle mobility extension
US20220330223A1 (en) Configuration of sidelink resources for transmission of a sidelink message
US20240015751A1 (en) Enhanced implicit pucch resource indication and identification techniques
WO2022221977A1 (en) Uplink scheduling using a timing parameter associated with an internet-of-things (iot) service session
US20230198317A1 (en) Base station (gnb)-assisting-energy harvesting (eh) from nearby user equipments (ues)
WO2021237566A1 (en) Network service recovery from abnormal 5g (sa) networks
WO2021237576A1 (en) Network service recovery from abnormal 5g (sa) networks for a dual sim ue
WO2021237589A1 (en) A method to accelerate ue return 5g from 4g
US20230269762A1 (en) Multi-beam techniques for small data transfer over preconfigured uplink resources
WO2021212507A1 (en) Packet encoding based on raptor codes to enable adaptive physical layer error rate determination or selection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930807

Country of ref document: EP

Kind code of ref document: A1