WO2021177765A1 - Drilling tooth, and drilling bucket having drilling tooth - Google Patents

Drilling tooth, and drilling bucket having drilling tooth Download PDF

Info

Publication number
WO2021177765A1
WO2021177765A1 PCT/KR2021/002715 KR2021002715W WO2021177765A1 WO 2021177765 A1 WO2021177765 A1 WO 2021177765A1 KR 2021002715 W KR2021002715 W KR 2021002715W WO 2021177765 A1 WO2021177765 A1 WO 2021177765A1
Authority
WO
WIPO (PCT)
Prior art keywords
excavation
tooth
stepped
bucket
wear
Prior art date
Application number
PCT/KR2021/002715
Other languages
French (fr)
Korean (ko)
Inventor
이청래
안상민
박해지
최해천
김재림
Original Assignee
두산인프라코어 주식회사
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사, 서울대학교산학협력단 filed Critical 두산인프라코어 주식회사
Priority to CN202180032385.8A priority Critical patent/CN115516176A/en
Priority to KR1020227031878A priority patent/KR20230004449A/en
Publication of WO2021177765A1 publication Critical patent/WO2021177765A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2808Teeth
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators

Definitions

  • the present invention relates to an excavation tooth and a bucket for excavation having a tooth for excavation, and more particularly, to a bucket for excavation provided with a tooth for excavation and an excavation tooth which is mounted and used in a construction machine.
  • an excavator which is a type of construction machine, is a civil engineering machine used to mine soil or rocks.
  • An arm is rotatably provided in the front part of the excavator car body using a hydraulic device, and a bucket capable of mining soil or rocks and temporarily storing it is provided rotatably at the tip of the arm.
  • a plurality of teeth teeth are installed integrally or separately at the tip of the bucket in order to improve the excavation performance.
  • An object of the present invention is to provide an excavation bucket having an improved wear resistance and an excavation tooth and an excavation tooth.
  • the tooth for excavation in the tooth for excavation coupled to the bucket, includes a coupling unit coupled to the bucket and an excavation unit for performing an excavation operation, wherein the excavation unit is located at the center of the lower surface in the front-rear direction and at least one stepped groove formed from the horizontal part toward the side surface, and a first stepped surface adjacent to the horizontal part and a predetermined angle with the first stepped surface. It may be formed to be stepped through the second stepped surface formed adjacent to the side portion.
  • the angle between the first stepped surface and the second stepped surface is formed in the range of 135 ⁇ to 145 ⁇ , and the angle between the second stepped surface and the side part is formed in the range of 30 ⁇ to 40 ⁇ .
  • the upper surface portion of the excavation portion may be formed to be concave downward toward the center from the side portion.
  • the angle between the tangent of the first curve formed by the curvature corresponding to the curvature of the upper surface part and the tangent of the second curve formed by the curvature corresponding to the curvature of the lower surface part is 10 It can be formed in the range of ⁇ to 25 ⁇ .
  • a cross-section perpendicular to the front-rear direction of the excavation part may be formed in a crescent shape that is opened upward.
  • At least some sections of the upper end or lower end of the crescent shape may be formed in a straight section.
  • the bucket for excavation is a bucket for excavation having a tooth coupled to a tip portion, wherein the tooth includes a coupling unit coupled to the bucket and an excavation unit for performing an excavation operation, and the excavation
  • the portion includes a horizontal portion extending in the front-rear direction at the center of the lower surface portion and at least one or more stepped grooves formed on the left and right from the horizontal portion toward the side surface, wherein the step groove includes a first stepped surface adjacent to the horizontal portion and the It may be formed to be stepped through a second stepped surface that forms a predetermined angle with the first stepped surface and is formed adjacent to the side portion.
  • the angle between the first stepped surface and the second stepped surface is formed in the range of 135 ⁇ to 145 ⁇ , and the angle between the second stepped surface and the side part is formed in the range of 30 ⁇ to 40 ⁇ .
  • An excavation bucket having an excavation tooth or an excavation tooth according to various embodiments of the present invention can minimize weight increase while improving wear resistance during excavation work.
  • FIG. 1 is a view showing a general bucket for excavation.
  • Figure 2 is a view showing a bucket for excavation according to various embodiments of the present invention.
  • Figure 3 is a view showing a reinforcing member installed in the bucket for excavation according to various embodiments of the present invention.
  • FIG. 4 to 6 are views specifically showing the protrusion and depression of the reinforcing member of FIG.
  • FIG. 7 is a view showing a test specimen performed to derive the shape of the reinforcing member of FIG.
  • FIG. 8 is a view showing a simplified discrete element method analysis model in the form of a specimen passing between particles so that contact with particles occurs due to movement of the specimen for surface wear analysis of the bucket.
  • FIG. 9 is a view showing the shear energy measurement results obtained through the discrete element method analysis model of FIG. 5B using the specimens of FIG. 7 .
  • FIG. 10 is a view showing the results of deriving shear energy based on surface wear analysis using the discrete element method for some of the specimens of FIG. 7 .
  • FIG. 11 is a view showing a wear analysis result using a discrete element method for an excavation bucket to which the reinforcement member of the present invention is applied.
  • FIG. 12 is a photograph showing a tooth applied to a bucket for excavation according to various embodiments of the present invention.
  • FIG. 13 to 15 are views showing a tooth applied to a bucket for excavation according to various embodiments of the present invention.
  • FIG. 16 is a view showing a cross-section taken along line A-A' in FIG. 13;
  • 17 is a view showing a wear analysis result using the discrete element method for the tooth applied to the bucket for excavation according to various embodiments of the present invention.
  • FIG. 18 is a view showing a wear resistance lifespan calculated using the wear analysis result of FIG. 17 .
  • 19 is a view showing a wear analysis model through the discrete element method for surface wear analysis of teeth.
  • FIG. 20 is a view showing a simplified form of the specimen to form a symmetrical form and an asymmetrical form based on the direction in which the specimen for testing the amount of wear using the analysis model of FIG. 19 .
  • 21 is a view showing a wear analysis result through shear energy according to the shape of the specimen 20.
  • FIG. 22 is a view showing the results of wear analysis by forming a stepped groove in an asymmetrical specimen among the specimens of FIG. 20;
  • FIG. 1 is a view showing a general bucket 100 for excavation
  • FIG. 2 is a view showing a bucket 100 for excavation having a reinforcement member 200 for a bucket 100 according to various embodiments of the present invention
  • 3 is a view showing the reinforcing member 200 for the bucket 100 according to various embodiments of the present invention
  • FIGS. 4 to 6 are the protrusions 220 and depressions of the reinforcing member 200 of FIG. 3 .
  • It is a diagram specifically showing the part 230 .
  • the bucket 100 for excavation is mounted on the arm of a construction machine, and is disposed on the upper side of the bottom plate part 110 formed including a curved surface, the bottom plate part 110 , and is a bracket for connection with the arm.
  • a pair of side plate parts 120 disposed on both sides of the top plate part 130, the bottom plate part 110 and the top plate part 130 on which the 131 (bracket) is formed to form a space in which the work can be accommodated. ) may be included.
  • a lip unit 140 for installing a plurality of teeth 300 is disposed at the lower front end of the bottom plate unit 110 , and the plurality of teeth 300 are integrally formed in front of the lip unit 140 or an adapter 150 . It is disposed so that it can be detached through.
  • the direction in which both side plates of the bucket 100 oppose can be described as the 'width direction', and in the bottom part, the direction in which the lip part 140 is disposed is described as the 'front', and the opposite direction It can be described as 'rear'.
  • the bucket 100 for excavation is mounted on the arm of the construction machine through the bracket 131 formed on the upper plate 130 , and serves to excavate the ground or collect or move soil and gravel. Since the bucket 100 is in direct contact with the ground or working surface in various working environments during the excavation process, wear occurs over time, and the lifespan may be greatly shortened depending on the working conditions of the construction machine.
  • the outer surface of the bottom plate part 110 in direct contact with the working surface is most vulnerable to wear, and the inner surface in contact with the space of the bucket 100 is also easily abraded due to the work.
  • the tooth 300 installed to improve the excavation performance is also a structure disposed at the forefront of the bucket 100 and is inevitably very vulnerable to wear due to work.
  • the structure of the reinforcing member 200 and the tooth 300 is proposed to improve the wear-resistance life while minimizing the increase in the weight of the bucket 100 .
  • the reinforcing member 200 of the bucket 100 imitates the scales of a king snake that can move freely by minimizing friction in the sandy desert, and the tooth 300 for the bucket 100 imitating the claws of a mole digging into the ground to create a movement path. ) and will be described in detail below.
  • the reinforcement member 200 for the bucket 100 is a bottom plate part ( As the wear-resistant reinforcing member 200 installed on the outer surface of the 110 , it may include a body portion 210 , a protrusion portion 220 , and a depression portion 230 .
  • the body 210 may be provided in a bar-type plate shape extending in the width direction of the bucket 100 having a constant thickness T and a width W1 .
  • the body part 210 may be arranged to cover a certain area of the exposed surface of the inner surface or the outer surface of the bottom plate part 110 in order to minimize wear of the bottom plate part 110 of the bucket 100 .
  • the width W1 of the body 210 may mean a distance from the front end to the rear end except for the protrusion 220 to be described later.
  • the width W1 of the body portion 210 may be formed to be 1.5 times or more and 4 times or less of the thickness T. If the width (W1) of the body portion 210 is formed to be less than 1.5 times the thickness (T), the contact area with the bottom plate portion 110 is reduced to become vulnerable to the shear stress received with respect to the thickness (T), the body portion ( When the width W1 of 210 is formed to exceed 4 times the thickness T, the abrasion resistance effect is reduced compared to the manufacturing cost.
  • a protrusion 220 protruding toward the rear at a constant height may be formed.
  • the protrusion 220 may be formed in a shape such as a wedge, a semicircle, a square, a trapezoid or other polygonal shapes. 4 to 6 , in one embodiment, the width W2 of the protrusion 220 formed in a wedge shape may be formed to be one or more times or more than twice the height H1 of the protrusion 220 or less. .
  • width W2 of the wedge protrusion 220 is formed to be less than one time the height H1 of the protrusion 220, the effect of protecting the bottom plate 110 from friction is reduced, and the width W2 of the protrusion 220 is ) is formed to exceed twice the height H1 of the protrusion 220 , the amount of wear of the reinforcement member 200 itself increases compared to the effect of protecting the bottom plate part 110 .
  • the height H1 of the protrusion 220 may be 0.3 times or more of the width W1 of the body 210 and less than or equal to the width W1 of the body 210 . If the height H1 of the protrusion 220 is formed to be less than 0.3 times the width W1 of the body 210 described above, the anti-wear effect of the bottom plate 110 by the protrusion 220 does not occur, When the height H1 of the protrusion 220 exceeds the width W1 of the body 210 , the wear amount of the body 210 itself increases.
  • a plurality of protrusions 220 may be formed, and the plurality of protrusions 220 may be arranged at regular intervals along the rear end of the body 210 .
  • the distance L1 between the protrusions 220 may be formed to be at least 2 times and not more than 5 times the width W2 of the protrusions 220 .
  • each protrusion 220 is arranged to be less than twice the width W2 of the protrusion 220 , the manufacturing cost becomes excessive compared to the effect of improving the abrasion resistance of the reinforcing member 200 , and each protrusion
  • the interval L1 between the 220 is arranged to exceed 5 times the width W2 of the protrusion 220, the effect of protecting the bottom plate 110 of the bucket 100 from abrasion is reduced, and the reinforcing member ( 200) will increase its own wear.
  • a depression portion 230 concavely recessed to a predetermined height toward the rear may be formed.
  • the depression 230 may be formed in the same shape as the protrusion 220 . Although not limited thereto, it may be preferable that the protrusion 220 and the depression 230 have the same shape in order to reduce manufacturing cost when cutting a plate (eg, a steel plate).
  • a plurality of the aforementioned reinforcing members 200 may be disposed to be spaced apart from each other at specific intervals in the front-rear direction.
  • the distance between each of the reinforcing members 200 may be arranged to be 1 to 3 times the height of the above-described protrusion 220 .
  • each reinforcing member 200 is arranged to be less than one time the height of the protrusion 220 , the number of applied reinforcing members 200 compared to the total area of the bottom plate part 110 is excessive and wear resistance Compared to the effect, the manufacturing cost increases, and when the distance between each reinforcing member 200 is disposed to exceed three times the height of the protrusion 220 , the exposure of the bottom plate 110 is the protection range of the reinforcing member 200 . Beyond this, the wear resistance effect may be reduced.
  • the aforementioned reinforcing member 200 may be disposed on the outer surface of the bottom plate part 110 as shown in FIG. 2 , but is not limited thereto and may be disposed on the inner surface of the bottom plate part 110 . and may be disposed on both the inner surface and the outer surface.
  • the reinforcing member 200 may be joined to the bottom plate part 110 by welding, but the joining method is not limited thereto.
  • the reinforcing member 200 may be detachably coupled through a support member formed on the inner or outer surface of the bottom plate 110 .
  • the reinforcing member 200 may be formed of a steel plate material having a Brinell hardness (HBW) in the range of 400 to 600. If the hardness of the reinforcing member 200 is less than 400, it is difficult to perform the role of the reinforcing member 200 for the abrasion resistance of the bottom plate part 110 because the wear resistance performance of the reinforcing member 200 itself is lowered, and the hardness exceeds 600 When welding the bottom plate part 110, the weldability is extremely deteriorated, so that there is a difficulty in the manufacturing process.
  • HMW Brinell hardness
  • the bottom plate 110 of the bucket 100 may be formed of a steel plate material having a Brinell hardness (HBW) within the range of 180 to 400.
  • HCW Brinell hardness
  • the shape of the reinforcing member 200 that can be applied is derived as shown in FIG. 7 by technically simulating the shapes of various animals and plants by applying the natural simulation technique.
  • the shear energy acting on the surface of each specimen was measured and compared using the wear analysis method through the discrete element method (DEM).
  • the shear energy is a value obtained by multiplying the shear force generated by contact with the wear particles and the movement distance, which can be considered the same concept as the amount of wear. can judge
  • the convex structure is for the reinforcement member 200 for reinforcement reinforcement on the bottom plate 110 of the bucket 100
  • the concave structure is for the surface shape of the tooth 300 for the bucket 100.
  • test conditions of the discrete element method performed in the present invention are as shown in Table 1 below, and each specimen proceeded at a speed of 0.4 m/s in the X-axis direction with respect to the particles.
  • particle Psalter Diameter(mm) 10 - Number of particles ⁇ 6x10 5 - Density(kg/m 3 ) 2,300 7,850 Poisson ratio 0.3 0.3 Young's modulus 2,500 200,000 Viscosity 0.25 0.3 Dynamic friction coefficient 0.25 0.3 Rolling friction coefficient 0.25 0.3
  • 9 is a shear energy measurement result obtained through the above-described discrete element method analysis model using the specimens of FIG. 7 . 9, it can be confirmed that the shear energy acting on the surface of the convex structure of a7 in which the wedge-shaped protrusions 220 protruding in the opposite direction to the moving direction (X-axis direction) of the specimen are spaced apart from each other at regular intervals is the smallest. can It can be seen that this is a significantly lower value than S, which is a flat structure.
  • the surface of the concave structure in the direction of the specimen has the smallest shear energy among the concave structures, and it can be confirmed that the shear energy is lower than that of S, which is a flat structure.
  • a reinforcing member in a protruding form is formed on a flat plate, which can be called the conventional method
  • a reinforcing member in a protruding form is formed on the flat plate used in the present invention, and a wedge-shaped protrusion 220 is added to the reinforcing member.
  • the protective effect by the particle flow in the above-described manner is stronger, and a wear reduction effect of 10% or more can be additionally obtained.
  • a wedge-shaped protrusion 220 was formed on the reinforcing member, while a wedge-shaped concave portion 230 was formed in the opposite direction. This is to minimize the amount of iron plate used. This is to prevent loss of the iron plate for the formation of the wedge-shaped protrusion 220 during cutting. That is, the presence or absence of the concave portion 230 may not significantly affect the occurrence of the effect of improving the wear resistance performance according to the present invention, but the opposite side of the cut portion for forming the wedge-shaped protrusion 220 is the concave portion 230 of the reinforcing member. ) as a forming surface to minimize the cost increase caused by the amount of steel used. It can be seen that even when the concave portion 230 of a certain size or less is formed, a decrease in wear resistance does not occur as shown in FIG. 8(b) .
  • the bucket 100 for excavation is provided with a plurality of reinforcing members 200 spaced apart from each other in the front-rear direction on the bottom plate part 110 while improving the abrasion resistance of the bucket 100.
  • An increase in weight can be minimized, and there is an effect that productivity can be improved through this.
  • FIG. 12 is a photograph showing a tooth 300 applied to the bucket 100 for excavation according to various embodiments of the present invention
  • FIG. 13 is a tooth applied to the bucket 100 for excavation according to various embodiments of the present invention. It is a view showing 300
  • FIG. 14 is a view showing a cross-section taken along line A-A' in FIG. 13. Referring to FIG.
  • the tooth 300 applied to the bucket 100 for excavation of the present invention may be detachably installed through the adapter 150 to the lip portion 140 of the bucket 100 as shown in FIG. 2, but is not necessarily limited thereto. It is self-evident that it may be formed integrally.
  • the tooth 300 proposed in the present invention can improve the abrasion resistance by applying the concave structure of b3 of FIG.
  • a direction coupled with the adapter 150 may be described as 'rear', and a direction opposite to this may be described as 'front'.
  • the direction in which the ground faces the bucket 100 may be described as 'upward', and the opposite direction may be described as 'downward'.
  • the tooth 300 proposed in the present invention includes a coupling hole 311 for coupling with the adapter 150 on the rear end side, and at least a portion of the adapter 150 is inserted. It may include a coupling part 310 in which the groove 312 is formed, and an excavation part 320 extending from the coupling part 310 to a front by a predetermined length to perform an excavation operation.
  • the excavation part 320 includes a lower surface portion 330 in which a stepped groove 340 to be described later is formed, a side portion 370 formed on both sides of the lower surface portion 330 , and both side portions 370 opposite to the lower surface portion 330 . It may include an upper surface portion 360 formed therebetween. In addition, contact surfaces 381 and 382 may be formed on the front portion 380 of the excavation unit 320 .
  • the gap between the both side portions 370 of the excavation unit 320 may be formed to become narrower toward the front.
  • the lower surface part 330 of the excavation part 320 has a horizontal part 335 horizontally formed in the center extending in the front-rear direction, and is inclined upward toward both side parts 370 based on the horizontal part 335 .
  • a pair of first stepped grooves 341 and a first stepped groove are formed from the horizontal portion 335 toward both side portions 370 from side to side.
  • a pair of second stepped grooves 342 formed in front of the 341 and formed left and right from the horizontal portion 335 toward the side surface portions 370 may be formed.
  • the first stepped groove 341 and the second stepped groove 342 may be formed symmetrically left and right for manufacturing convenience, but is not limited thereto.
  • Each of the stepped grooves 341 and 342 is a step through a first stepped surface 351 adjacent to the horizontal portion 335 and a second stepped surface 352 adjacent to the side portion 370 when viewed from above as shown in FIG. 10B . may be formed.
  • the angle e1 between the first stepped surface 351 and the second stepped surface 352 may be 135 degrees or more and 145 degrees or less.
  • the angle e2 between the second stepped surface 352 and the side surface may be formed to be 30 degrees or more and 40 degrees or less.
  • At least one pair of stepped grooves 340 formed on the lower surface of the excavation unit 320 may be formed, and a plurality of stepped grooves 340 may be formed according to the length of the excavation unit 320 . do.
  • the lower surface 330 of the excavation unit 320 when viewed from the side portion 370 , the lower surface 330 of the excavation unit 320 is curved to have a first curvature, and the upper surface portion 360 is curved to have a second curvature. can be formed.
  • the corresponding virtual surface When the line viewed from the side is taken as the reference line, the extension line of the first curve 330a corresponding to the curvature of the lower surface part 330 and the second curve 360a corresponding to the curvature of the upper surface part 360 as shown in FIG. 15 .
  • the angle e3 between the tangents at each contact point that meets the reference line of the front part 380 of the excavation part 320 may be formed in a range of 10 to 25 degrees. If the angle (e3) between the two tangents is formed to be less than 10 degrees, the thickness in the vertical direction of the front end of the excavation part 320 becomes too thin. The risk of destruction increases, and when the angle (e1) between the two tangents is formed to exceed 25 degrees, the thickness of the front part 380 of the excavation part 320 is too thick, so that the excavation resistance becomes excessively large, thereby reducing work efficiency.
  • the lower surface portion 360 of the excavation unit 320 may be formed to be concave downwardly toward the central portion from both side portions 370 .
  • a cross section perpendicular to the front-rear direction in a predetermined section of the front part 380 of the excavation part 320 may be formed in a crescent shape that is generally opened upward.
  • a certain section of the lower end of the cross section of the crescent shape may be formed as a straight section.
  • the front part 380 of the excavation part 320 has a first contact surface 381 that is bent upwardly vertically from the front end of the lower surface part 330 and a second contact surface that is bent downward toward the front from the front end of the upper surface part 360 . (382).
  • the shape of the excavation part 320 is simulating the toenails of moles, and in the present invention, a plurality of stepped grooves 340 are provided on the lower surface 330 and the excavation part 320 by the flow of particles.
  • the wear resistance is improved through the protection effect, and the lower surface 330 of the excavation part 320 is curved to have a curvature when viewed from the side part, and the upper surface part 360 is concave to form a crescent in cross section. It is possible to improve abrasion resistance and excavation performance by minimizing frictional resistance with the ground by providing this.
  • the shape of the excavation tooth 300 with improved wear resistance performance was derived by technically simulating the shape of animals and plants digging the ground by applying the natural simulation technique. Wear analysis was performed using the discrete element method.
  • the analysis evaluated the amount of wear occurring in the excavation work by measuring the shear energy generated when the specimen in the form of a simplified tooth 300 penetrates the particles, and the evaluation target is symmetrical based on the penetration direction as shown in FIG. A tooth specimen with a shape and asymmetrical shape was used.
  • a step groove 340 of various shapes is formed on the upper surface of the tooth 300 having an asymmetric shape according to the analysis result described above. Analysis was performed and the results are shown in FIG. 22 . 22, it can be seen that the formation of an appropriate stepped groove 340 shows a lower amount of wear than the absence of the stepped groove 340, and the result of the lowest wear amount of the specimen having the stepped groove 340 in the shape of a snake scale was shown.
  • an embodiment of the tooth 300 having an asymmetric shape and a stepped groove 340 was derived by applying a natural simulation technique.
  • the tooth 300 has a certain curvature such that its lower surface is parallel to the penetration direction during excavation, and accordingly, the upper surface has a crescent-shaped cross-section to secure structural rigidity. Additionally, a stepped groove 340 in the shape of a snake scale is provided to reduce wear of the lower surface.
  • FIG. 17 is a result of analyzing the friction acting on the surface of the tooth 300 of this embodiment through the discrete element method
  • FIG. 18 is a graph obtained by calculating the wear-resistance life of the tooth 300 using [Table 2] below. .
  • the wear rate was calculated by dividing the shear energy by the area, and the effective life constant was calculated by multiplying the body length by the volume.
  • the wear rate was 78.7, it was confirmed that it was lowered by up to 20% compared to the comparative examples, As shown in FIG. 18 , it was confirmed that the wear life was also improved by 50% or more compared to the target value.
  • the bucket 100 for excavation minimizes the increase in weight through the reinforcement member 200 having the protrusions 220 and the depressions 230 at regular intervals while minimizing the weight increase. It is possible to improve the wear resistance performance of the plate part 110, and to improve the wear resistance performance of the tooth 300 by providing a stepped groove 340 made of stepped surfaces 351 and 352 formed at a constant angle on the upper surface of the tooth 300. At the same time, it is possible to improve the excavation performance by forming it to have a crescent-shaped cross section.

Abstract

A drilling tooth according to various embodiments of the present invention, which is a drilling tooth joined to a bucket, comprises: a joining part which is joined to the bucket; and a drilling part for performing a drilling operation. The drilling part includes a horizontal portion extending in the front and rear directions at the center of a lower surface portion, and at least one stepped groove formed from the horizontal portion toward a side portion. The stepped groove may be formed to be stepped through a first stepped surface adjacent to the horizontal portion and a second stepped surface formed so as to be adjacent to the side portion at a constant angle with the first stepped surface.

Description

굴착용 투스 및 굴착용 투스를 구비한 굴착용 버켓Drilling tooth and drilling bucket with drilling tooth
본 발명은, 굴착용 투스 및 굴착용 투스를 구비한 굴착용 버켓에 관한 것으로, 상세하게는 건설기계에 장착되어 사용되는 굴착용 투스 및 굴착용 투스를 구비한 굴착용 버켓에 관한 것이다.The present invention relates to an excavation tooth and a bucket for excavation having a tooth for excavation, and more particularly, to a bucket for excavation provided with a tooth for excavation and an excavation tooth which is mounted and used in a construction machine.
일반적으로 건설 기계의 일종인 굴착기는 토사나 암석을 채굴하기 위해 사용되는 토목 기계이다. 굴착기 차체의 전방부에는 암이 유압장치를 이용하여 회동 가능하게 마련되고, 암의 선단부에는 토사나 암석을 채굴하고 일시적으로 보관 가능한 버켓이 회동 가능하게 마련된다. 또한 버켓의 선단부에는 굴착 성능을 향상시키기 위해 복수의 투스(tooth)가 일체형 또는 분리형으로 설치된다.In general, an excavator, which is a type of construction machine, is a civil engineering machine used to mine soil or rocks. An arm is rotatably provided in the front part of the excavator car body using a hydraulic device, and a bucket capable of mining soil or rocks and temporarily storing it is provided rotatably at the tip of the arm. In addition, a plurality of teeth (tooth) are installed integrally or separately at the tip of the bucket in order to improve the excavation performance.
본 발명은, 내마모 성능이 향상된 굴착용 투스 및 굴착용 투스를 구비한 굴착용 버켓을 제공하는 것을 목적으로 한다. An object of the present invention is to provide an excavation bucket having an improved wear resistance and an excavation tooth and an excavation tooth.
본 발명의 다양한 실시예에 따른 굴착용 투스는, 버켓에 결합되는 굴착용 투스에 있어서, 상기 버켓에 결합되는 결합부 및 굴착 작업을 수행하는 굴착부를 포함하고, 상기 굴착부는 하면부 중앙에 전후방향으로 연장 형성되는 수평부 및 상기 수평부로부터 측면부를 향해 형성되는 적어도 하나 이상의 단차홈을 포함하고, 상기 단차홈은 상기 수평부와 인접하는 제1단차면 및 상기 제1단차면과 일정 각도를 이루고 상기 측면부와 인접하게 형성되는 제2단차면을 통해 단차지게 형성될 수 있다.The tooth for excavation according to various embodiments of the present invention, in the tooth for excavation coupled to the bucket, includes a coupling unit coupled to the bucket and an excavation unit for performing an excavation operation, wherein the excavation unit is located at the center of the lower surface in the front-rear direction and at least one stepped groove formed from the horizontal part toward the side surface, and a first stepped surface adjacent to the horizontal part and a predetermined angle with the first stepped surface. It may be formed to be stepped through the second stepped surface formed adjacent to the side portion.
바람직하게는, 상기 제1단차면과 상기 제2단차면 사이의 각도는 135˚~145˚ 범위로 형성되고, 상기 제2단차면과 상기 측면부 사이의 각도는 30˚~40˚ 범위로 형성될 수 있다.Preferably, the angle between the first stepped surface and the second stepped surface is formed in the range of 135˚ to 145˚, and the angle between the second stepped surface and the side part is formed in the range of 30˚ to 40˚. can
바람직하게는, 상기 굴착부의 상면부는 상기 측면부로부터 중앙으로 갈수록 하방으로 오목하게 형성될 수 있다.Preferably, the upper surface portion of the excavation portion may be formed to be concave downward toward the center from the side portion.
바람직하게는, 상기 굴착부의 측면부에서 보았을 때, 상기 상면부의 곡률과 대응되는 곡률로 형성되는 제1곡선의 접선과 상기 하면부의 곡률과 대응되는 곡률로 형성되는 제2곡선의 접선 사이의 각도는 10˚~25˚ 범위로 형성될 수 있다.Preferably, when viewed from the side of the excavation part, the angle between the tangent of the first curve formed by the curvature corresponding to the curvature of the upper surface part and the tangent of the second curve formed by the curvature corresponding to the curvature of the lower surface part is 10 It can be formed in the range of ˚ to 25˚.
바람직하게는, 상기 굴착부의 전후방향과 수직하는 단면은 상방으로 개방되는 초승달 형상으로 형성될 수 있다.Preferably, a cross-section perpendicular to the front-rear direction of the excavation part may be formed in a crescent shape that is opened upward.
바람직하게는, 상기 초승달 형상의 상단부 또는 하단부의 적어도 일부 구간은 직선 구간으로 형성될 수 있다.Preferably, at least some sections of the upper end or lower end of the crescent shape may be formed in a straight section.
본 발명의 다양한 실시예에 따른 굴착용 버켓은, 선단부에 결합되는 투스를 구비하는 굴착용 버켓에 있어서, 상기 투스는 상기 버켓에 결합되는 결합부 및 굴착 작업을 수행하는 굴착부를 포함하고, 상기 굴착부는 하면부 중앙에 전후방향으로 연장 형성되는 수평부 및 상기 수평부로부터 측면부를 향해 좌우에 형성되는 적어도 하나 이상의 단차홈을 포함하고, 상기 단차홈은 상기 수평부와 인접하는 제1단차면 및 상기 제1단차면과 일정 각도를 이루고 상기 측면부와 인접하게 형성되는 제2단차면을 통해 단차지게 형성될 수 있다. The bucket for excavation according to various embodiments of the present invention is a bucket for excavation having a tooth coupled to a tip portion, wherein the tooth includes a coupling unit coupled to the bucket and an excavation unit for performing an excavation operation, and the excavation The portion includes a horizontal portion extending in the front-rear direction at the center of the lower surface portion and at least one or more stepped grooves formed on the left and right from the horizontal portion toward the side surface, wherein the step groove includes a first stepped surface adjacent to the horizontal portion and the It may be formed to be stepped through a second stepped surface that forms a predetermined angle with the first stepped surface and is formed adjacent to the side portion.
바람직하게는, 상기 제1단차면과 상기 제2단차면 사이의 각도는 135˚~145˚ 범위로 형성되고, 상기 제2단차면과 상기 측면부 사이의 각도는 30˚~40˚ 범위로 형성될 수 있다. Preferably, the angle between the first stepped surface and the second stepped surface is formed in the range of 135˚ to 145˚, and the angle between the second stepped surface and the side part is formed in the range of 30˚ to 40˚. can
본 발명의 다양한 실시예에 따른 굴착용 투스 또는 굴착용 투스를 구비하는 굴착용 버켓은 굴착작업시 내마모성이 향상되면서도 무게증가를 최소화할 수 있다. An excavation bucket having an excavation tooth or an excavation tooth according to various embodiments of the present invention can minimize weight increase while improving wear resistance during excavation work.
도 1은 일반적인 굴착용 버켓을 도시한 도면.1 is a view showing a general bucket for excavation.
도 2는 본 발명의 다양한 실시예에 따른 굴착용 버켓을 도시한 도면.Figure 2 is a view showing a bucket for excavation according to various embodiments of the present invention.
도 3은 본 발명의 다양한 실시예에 따른 굴착용 버켓에 설치되는 보강부재를 도시한 도면.Figure 3 is a view showing a reinforcing member installed in the bucket for excavation according to various embodiments of the present invention.
도 4 내지 도 6은 도 3의 보강부재의 돌출부 및 함몰부를 구체적으로 도시한 도면.4 to 6 are views specifically showing the protrusion and depression of the reinforcing member of FIG.
도 7는 도 3의 보강부재의 형상을 도출하기 위해 실시한 시험용 시편을 도시한 도면.7 is a view showing a test specimen performed to derive the shape of the reinforcing member of FIG.
도 8는 버켓의 표면 마모해석을 위한 시편의 이동으로 입자와의 접촉이 발생하도록 입자 사이를 시편이 통과하는 형태로 단순화한 이산요소법 해석 모델을 나타내는 도면.8 is a view showing a simplified discrete element method analysis model in the form of a specimen passing between particles so that contact with particles occurs due to movement of the specimen for surface wear analysis of the bucket.
도 9은 도 7의 시편들을 이용하여 도 5B의 이산요소법 해석 모델을 통해 구한 전단 에너지 측정 결과를 도시한 도면.9 is a view showing the shear energy measurement results obtained through the discrete element method analysis model of FIG. 5B using the specimens of FIG. 7 .
도 10은 도 7의 시편들 중 일부에 대한 이산요소법을 이용한 표면 마모해석을 바탕으로 전단에너지를 도출한 결과를 도시한 도면.FIG. 10 is a view showing the results of deriving shear energy based on surface wear analysis using the discrete element method for some of the specimens of FIG. 7 .
도 11은 본 발명의 보강부재가 적용된 굴착용 버켓에 대한 이산요소법을 이용한 마모해석 결과를 도시한 도면.11 is a view showing a wear analysis result using a discrete element method for an excavation bucket to which the reinforcement member of the present invention is applied.
도 12는 본 발명의 다양한 실시예에 따른 굴착용 버켓에 적용되는 투스를 보여주는 사진.12 is a photograph showing a tooth applied to a bucket for excavation according to various embodiments of the present invention.
도 13 내지 도 15는 본 발명의 다양한 실시예에 따른 굴착용 버켓에 적용되는 투스를 도시한 도면.13 to 15 are views showing a tooth applied to a bucket for excavation according to various embodiments of the present invention.
도 16은 도 13에서 A-A'의 단면을 도시한 도면.FIG. 16 is a view showing a cross-section taken along line A-A' in FIG. 13;
도 17는 본 발명의 다양한 실시예에 따른 굴착용 버켓에 적용되는 투스에 대한 이산요소법을 이용한 마모해석 결과를 도시한 도면.17 is a view showing a wear analysis result using the discrete element method for the tooth applied to the bucket for excavation according to various embodiments of the present invention.
도 18은 도 17의 마모해석 결과를 이용하여 계산된 내마모 수명을 도시한 도면.18 is a view showing a wear resistance lifespan calculated using the wear analysis result of FIG. 17 .
도 19는 투스의 표면 마모해석을 위한 이산요소법을 통한 마모 해석 모델을 나타내는 도면.19 is a view showing a wear analysis model through the discrete element method for surface wear analysis of teeth.
도 20는 도 19의 해석 모델을 이용하여 마모량을 시험하기 위한 시편이 입자를 침투하는 방향을 기준으로 대칭형태와 비대칭형태를 이루도록 투스를 단순화한 형태 시편을 도시한 도면.20 is a view showing a simplified form of the specimen to form a symmetrical form and an asymmetrical form based on the direction in which the specimen for testing the amount of wear using the analysis model of FIG. 19 .
도 21은 20의 시편의 형태에 따른 전단에너지를 통한 마모 해석 결과를 도시한 도면.21 is a view showing a wear analysis result through shear energy according to the shape of the specimen 20.
도 22는 도 20의 시편들 중 비대칭형태의 시편에 단차홈을 형성하여 마모해석을 수행한 결과를 도시한 도면.FIG. 22 is a view showing the results of wear analysis by forming a stepped groove in an asymmetrical specimen among the specimens of FIG. 20; FIG.
이하에서는 설명의 편의를 위해 본 발명의 일부 실시 예를 예시적인 도면을 통해 설명한다. 각 도면의 구성요소들에 참조부호를 기재함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표시한다.Hereinafter, some embodiments of the present invention will be described with reference to exemplary drawings for convenience of description. In describing the reference numerals for the components of each drawing, the same components are denoted by the same reference numerals as much as possible even if they are displayed on different drawings.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 '연결' 또는 '결합'된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결 또는 결합될 수 있지만, 그 구성 요소와 그 다른 구성요소 사이에 또 다른 구성 요소가 '연결' 또는 '결합'될 수도 있다고 이해되어야 할 것이다.The principle that the terms or words used in the present specification and claims are not limited to their ordinary or dictionary meanings, and the inventor can appropriately define the concept of the term in order to best describe his invention. It should be interpreted as meaning and concept consistent with the technical idea of the present invention based on the In addition, in describing the components of the embodiment of the present invention, terms such as first, second, A, B, (a), (b), etc. may be used. These terms are only for distinguishing the components from other components, and the essence, order, or order of the components are not limited by the terms. When it is described that a component is 'connected' or 'coupled' to another component, the component may be directly connected or coupled to the other component, but another component is between the component and the other component. It should be understood that elements may be 'connected' or 'coupled'.
따라서, 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시 예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. Therefore, the embodiments described in the present specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention and do not represent all the technical spirit of the present invention, so various equivalents that can replace them at the time of the present application It should be understood that there may be water and variations. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the gist of the present invention will be omitted.
이하에서는 본 발명의 다양한 실시예에 따른 굴착용 버켓(100)에 대해 첨부된 도면을 참조하여 구체적으로 설명한다. Hereinafter, with reference to the accompanying drawings for the bucket 100 for excavation according to various embodiments of the present invention will be described in detail.
도 1은 일반적인 굴착용 버켓(100)을 도시한 도면이고, 도 2는 본 발명의 다양한 실시예에 따른 버켓(100)용 보강부재(200)를 구비한 굴착용 버켓(100)을 도시한 도면이고, 도 3은 본 발명의 다양한 실시예에 따른 버켓(100)용 보강부재(200)를 도시한 도면이고, 도 4 내지 도 6은 도 3의 보강부재(200)의 돌출부(220) 및 함몰부(230)를 구체적으로 도시한 도면이다.FIG. 1 is a view showing a general bucket 100 for excavation, and FIG. 2 is a view showing a bucket 100 for excavation having a reinforcement member 200 for a bucket 100 according to various embodiments of the present invention. 3 is a view showing the reinforcing member 200 for the bucket 100 according to various embodiments of the present invention, and FIGS. 4 to 6 are the protrusions 220 and depressions of the reinforcing member 200 of FIG. 3 . It is a diagram specifically showing the part 230 .
도 1을 참조하면, 굴착용 버켓(100)은 건설기계의 암에 장착되는 것으로, 곡면을 포함하여 형성되는 바닥판부(110), 바닥판부(110)의 상측에 배치되고 암과 연결되기 위한 브라켓(131)(bracket)이 형성되는 상판부(130), 바닥판부(110) 및 상판부(130)의 양 측에 배치되어 내측으로 작업물이 수용될 수 있는 공간을 형성하는 한 쌍의 측판부(120)를 포함할 수 있다. 또한, 바닥판부(110)의 전방 하단에는 복수의 투스(300)를 설치하기 위한 립부(140)가 배치되고, 복수의 투스(300)가 립부(140)의 전방에 일체로 또는 어댑터(150)를 통해 탈착 가능하도록 배치된다. Referring to FIG. 1 , the bucket 100 for excavation is mounted on the arm of a construction machine, and is disposed on the upper side of the bottom plate part 110 formed including a curved surface, the bottom plate part 110 , and is a bracket for connection with the arm. A pair of side plate parts 120 disposed on both sides of the top plate part 130, the bottom plate part 110 and the top plate part 130 on which the 131 (bracket) is formed to form a space in which the work can be accommodated. ) may be included. In addition, a lip unit 140 for installing a plurality of teeth 300 is disposed at the lower front end of the bottom plate unit 110 , and the plurality of teeth 300 are integrally formed in front of the lip unit 140 or an adapter 150 . It is disposed so that it can be detached through.
이하에서는 버켓(100)의 양 측판이 대향되는 방향을 '폭방향'으로 설명할 수 있고, 바닥부에 있어서, 립부(140)가 배치되는 방향을 '전방'으로 설명하고, 이와 반대되는 방향을 '후방'으로 설명할 수 있다. Hereinafter, the direction in which both side plates of the bucket 100 oppose can be described as the 'width direction', and in the bottom part, the direction in which the lip part 140 is disposed is described as the 'front', and the opposite direction It can be described as 'rear'.
굴착용 버켓(100)은 상판부(130)에 형성되는 브라켓(131)을 통해 건설기계의 암에 장착되고, 땅을 굴착하거나 토사와 자갈 등을 모으거나 이동시키는 역할을 한다. 버켓(100)은 굴착과정에서 다양한 작업환경에서 지면 또는 작업면과 직접 접촉되기 때문에 시간이 지날수록 마모가 발생되고, 건설기계의 작업 조건에 다라 수명이 크게 단축될 수 있다. The bucket 100 for excavation is mounted on the arm of the construction machine through the bracket 131 formed on the upper plate 130 , and serves to excavate the ground or collect or move soil and gravel. Since the bucket 100 is in direct contact with the ground or working surface in various working environments during the excavation process, wear occurs over time, and the lifespan may be greatly shortened depending on the working conditions of the construction machine.
특히, 바닥판부(110)는 작업면과 직접 접촉하는 외측면이 가장 마모에 취약하며, 버켓(100)의 공간과 접하는 내측면 역시 작업물로 인해 마모가 쉽게 발생된다. 뿐만 아니라 굴착 성능을 향상시키기 위해 설치하는 투스(300) 역시, 버켓(100)의 최전방에 배치되는 구조물로 작업으로 인한 마모에 상당히 취약할 수밖에 없다. In particular, the outer surface of the bottom plate part 110 in direct contact with the working surface is most vulnerable to wear, and the inner surface in contact with the space of the bucket 100 is also easily abraded due to the work. In addition, the tooth 300 installed to improve the excavation performance is also a structure disposed at the forefront of the bucket 100 and is inevitably very vulnerable to wear due to work.
그러나, 마모 방지를 위해 바닥판부(110)나 투스(300)에 추가적인 구조를 더하는 경우 버켓(100)의 전체적인 무게가 증가되어 건설기계의 연비 및 작업효율이 저하될 수밖에 없는 문제점이 있다. However, when an additional structure is added to the bottom plate part 110 or the tooth 300 to prevent wear, the overall weight of the bucket 100 is increased, so that fuel efficiency and work efficiency of the construction machine are inevitably reduced.
본 발명에서는 버켓(100)의 무게 증가를 최소화하면서 내마모 수명을 향상시키기 위한 보강부재(200)와 투스(300)의 구조를 제안한다. In the present invention, the structure of the reinforcing member 200 and the tooth 300 is proposed to improve the wear-resistance life while minimizing the increase in the weight of the bucket 100 .
본 발명에서는 자연의 기능성 표면구조를 모사하여 마찰과 마모를 저감하는 자연 모사 기법을 활용하였다. 구체적으로 모래사막에서 마찰을 최소화하여 움직임이 자유로운 왕뱀의 비늘을 모사한 버켓(100)의 보강부재(200) 및 땅속을 파고 이동 통로를 만드는 두더지의 발톱을 모사한 버켓(100)용 투스(300)를 제안하고, 이하 구체적으로 설명한다. In the present invention, a natural simulation technique was used to reduce friction and abrasion by simulating the functional surface structure of nature. Specifically, the reinforcing member 200 of the bucket 100 imitates the scales of a king snake that can move freely by minimizing friction in the sandy desert, and the tooth 300 for the bucket 100 imitating the claws of a mole digging into the ground to create a movement path. ) and will be described in detail below.
먼저, 도 2 내지 도 6을 참조하면, 본 발명의 다양한 실시예에 따른 버켓(100)용 보강부재(200)는 버켓(100)의 바닥판부(110)의 내마모 수명 향상을 위해 바닥판부(110)의 외측면에 설치되는 내마모 보강부재(200)로, 바디부(210), 돌출부(220) 및 함몰부(230)를 포함할 수 있다. First, referring to FIGS. 2 to 6 , the reinforcement member 200 for the bucket 100 according to various embodiments of the present invention is a bottom plate part ( As the wear-resistant reinforcing member 200 installed on the outer surface of the 110 , it may include a body portion 210 , a protrusion portion 220 , and a depression portion 230 .
바디부(210)는 일정한 두께(T)와 폭(W1)을 갖고 버켓(100)의 폭방향으로 연장 형성되는 바(bar) 타입의 플레이트(plate) 형상으로 구비될 수 있다. 바디부(210)는 버켓(100)의 바닥판부(110)의 마모를 최소화하기 위해 바닥판부(110)의 내측면 또는 외측면의 노출면의 일정 영역을 커버하도록 배치될 수 있다. The body 210 may be provided in a bar-type plate shape extending in the width direction of the bucket 100 having a constant thickness T and a width W1 . The body part 210 may be arranged to cover a certain area of the exposed surface of the inner surface or the outer surface of the bottom plate part 110 in order to minimize wear of the bottom plate part 110 of the bucket 100 .
바디부(210)의 폭(W1)은 후술하는 돌출부(220)를 제외한 전방 단부에서 후방 단부까지의 간격을 의미할 수 있다. 일 실시예에서 바디부(210)의 폭(W1)은 두께(T)의 1.5배 이상, 4배 이하로 형성될 수 있다. 만약 바디부(210)의 폭(W1)이 두께(T)의 1.5배 미만으로 형성되면 바닥판부(110)와의 접촉면적이 감소되어 두께(T)에 대해 받는 전단응력에 취약해지고, 바디부(210)의 폭(W1)이 두께(T)의 4배를 초과하여 형성되면 제조 비용 대비 내마모 효과가 저감된다. The width W1 of the body 210 may mean a distance from the front end to the rear end except for the protrusion 220 to be described later. In one embodiment, the width W1 of the body portion 210 may be formed to be 1.5 times or more and 4 times or less of the thickness T. If the width (W1) of the body portion 210 is formed to be less than 1.5 times the thickness (T), the contact area with the bottom plate portion 110 is reduced to become vulnerable to the shear stress received with respect to the thickness (T), the body portion ( When the width W1 of 210 is formed to exceed 4 times the thickness T, the abrasion resistance effect is reduced compared to the manufacturing cost.
바디부(210)의 후방 단부, 즉 립부(140)가 배치되는 방향의 반대방향 단부에는 후방을 향해 일정한 높이로 돌출되는 돌출부(220)가 형성될 수 있다. 돌출부(220)는 쐐기, 반원, 사각, 사다리꼴 그 외의 다각형 등의 형상으로 형성될 수 있다. 도 4 내지 도 6을 참조하면, 일 실시예에서 쐐기 형상으로 형성되는 돌출부(220)의 폭(W2)은 돌출부(220)의 높이(H1)의 1배 이상, 2배 이하로 형성될 수 있다. 만약 쐐기 돌출부(220)의 폭(W2)이 돌출부(220)의 높이(H1)의 1배 미만으로 형성되면 바닥판부(110)를 마찰로부터 보호하는 효과가 줄어들고, 돌출부(220)의 폭(W2)이 돌출부(220)의 높이(H1)의 2배를 초과하여 형성되면 바닥판부(110)를 보호하는 효과 대비 보강부재(200) 자체의 마모량이 많아 지게 된다. At the rear end of the body 210 , that is, at an end opposite to the direction in which the lip unit 140 is disposed, a protrusion 220 protruding toward the rear at a constant height may be formed. The protrusion 220 may be formed in a shape such as a wedge, a semicircle, a square, a trapezoid or other polygonal shapes. 4 to 6 , in one embodiment, the width W2 of the protrusion 220 formed in a wedge shape may be formed to be one or more times or more than twice the height H1 of the protrusion 220 or less. . If the width W2 of the wedge protrusion 220 is formed to be less than one time the height H1 of the protrusion 220, the effect of protecting the bottom plate 110 from friction is reduced, and the width W2 of the protrusion 220 is ) is formed to exceed twice the height H1 of the protrusion 220 , the amount of wear of the reinforcement member 200 itself increases compared to the effect of protecting the bottom plate part 110 .
돌출부(220)의 높이(H1)는 상술한 바디부(210)의 폭(W1)의 0.3배 이상 및 바디부(210)의 폭(W1) 이하로 형성될 수 있다. 만약 돌출부(220)의 높이(H1)가 상술한 바디부(210)의 폭(W1)의 0.3배 미만으로 형성되면 돌출부(220)에 의한 바닥판부(110)의 마모 방지 효과가 발생하지 않고, 돌출부(220)의 높이(H1)가 바디부(210)의 폭(W1)을 초과할 경우 바디부(210) 자체의 마모량이 많아지게 된다.The height H1 of the protrusion 220 may be 0.3 times or more of the width W1 of the body 210 and less than or equal to the width W1 of the body 210 . If the height H1 of the protrusion 220 is formed to be less than 0.3 times the width W1 of the body 210 described above, the anti-wear effect of the bottom plate 110 by the protrusion 220 does not occur, When the height H1 of the protrusion 220 exceeds the width W1 of the body 210 , the wear amount of the body 210 itself increases.
본 발명에서 돌출부(220)는 복수개가 형성될 수 있고, 복수개의 돌출부(220)는 바디부(210)의 후방 단부를 따라 일정한 간격으로 배치될 수 있다. 일 실시예에서 각 돌출부(220) 사이의 간격(L1)은 돌출부(220)의 폭(W2)의 2배 이상, 5배 이하로 형성될 수 있다. 만약 각 돌출부(220) 사이의 간격(L1)이 돌출부(220)의 폭(W2)의 2배 미만으로 배치되면, 보강부재(200)의 내마모성능 개선 효과 대비 제조 비용이 과도하게 되고, 각 돌출부(220) 사이의 간격(L1)이 돌출부(220)의 폭(W2)의 5배를 초과하도록 배치되면 버켓(100)의 바닥판부(110)를 마모로부터 보호하는 효과가 절감되고, 보강부재(200) 자체의 마모량이 증가하게 된다. In the present invention, a plurality of protrusions 220 may be formed, and the plurality of protrusions 220 may be arranged at regular intervals along the rear end of the body 210 . In an embodiment, the distance L1 between the protrusions 220 may be formed to be at least 2 times and not more than 5 times the width W2 of the protrusions 220 . If the distance L1 between each protrusion 220 is arranged to be less than twice the width W2 of the protrusion 220 , the manufacturing cost becomes excessive compared to the effect of improving the abrasion resistance of the reinforcing member 200 , and each protrusion When the interval L1 between the 220 is arranged to exceed 5 times the width W2 of the protrusion 220, the effect of protecting the bottom plate 110 of the bucket 100 from abrasion is reduced, and the reinforcing member ( 200) will increase its own wear.
바디부(210)의 전방 단부, 즉 립부(140)가 배치되는 방향의 단부에는 후방을 향해 일정한 높이로 오목하게 함몰되는 함몰부(230)가 형성될 수 있다. 함몰부(230)는 돌출부(220)와 동일한 형상으로 형성될 수 있다. 이에 제한되는 것은 아니나, 판재(예를 들어 강판)를 절단 시 제조비용의 절감을 위해 돌출부(220)와 함몰부(230)가 동일한 형상으로 형성되는 것이 바람직할 수 있다. At the front end of the body portion 210 , that is, at the end in the direction in which the lip portion 140 is disposed, a depression portion 230 concavely recessed to a predetermined height toward the rear may be formed. The depression 230 may be formed in the same shape as the protrusion 220 . Although not limited thereto, it may be preferable that the protrusion 220 and the depression 230 have the same shape in order to reduce manufacturing cost when cutting a plate (eg, a steel plate).
도 2 및 도 3을 참조하면, 상술한 보강부재(200)는 복수개가 전후방향으로 특정 간격으로 이격되게 배치될 수 있다. 일 실시예에서, 각각의 보강부재(200) 사이의 거리는 상술한 돌출부(220)의 높이의 1~3배가 되도록 배치될 수 있다. 만약 각 보강부재(200) 사이의 거리가 돌출부(220)의 높이의 1배 미만으로 배치될 경우, 바닥판부(110)의 전체 면적에 비해 적용되는 보강부재(200)의 개수가 과도하여 내마모 효과에 비해 제조 비용이 증가하게 되고, 각 보강부재(200) 사이의 거리가 돌출부(220) 높이의 3배를 초과하여 배치되는 경우 바닥판부(110)의 노출이 보강부재(200)의 보호범위를 넘어서서 내마모 효과가 저하될 수 있다. Referring to FIGS. 2 and 3 , a plurality of the aforementioned reinforcing members 200 may be disposed to be spaced apart from each other at specific intervals in the front-rear direction. In one embodiment, the distance between each of the reinforcing members 200 may be arranged to be 1 to 3 times the height of the above-described protrusion 220 . If the distance between each reinforcing member 200 is arranged to be less than one time the height of the protrusion 220 , the number of applied reinforcing members 200 compared to the total area of the bottom plate part 110 is excessive and wear resistance Compared to the effect, the manufacturing cost increases, and when the distance between each reinforcing member 200 is disposed to exceed three times the height of the protrusion 220 , the exposure of the bottom plate 110 is the protection range of the reinforcing member 200 . Beyond this, the wear resistance effect may be reduced.
본 발명의 다양한 실시예에 따르면 상술한 보강부재(200)는 도 2와 같이 바닥판부(110)의 외측면에 배치될 수 있으나, 이에 제한되는 것은 아니고 바닥판부(110)의 내측면에 배치될 수 있으며, 내측면 및 외측면 모두에 배치될 수도 있다. According to various embodiments of the present invention, the aforementioned reinforcing member 200 may be disposed on the outer surface of the bottom plate part 110 as shown in FIG. 2 , but is not limited thereto and may be disposed on the inner surface of the bottom plate part 110 . and may be disposed on both the inner surface and the outer surface.
다양한 실시예에 따르면 보강부재(200)는 바닥판부(110)에 용접을 통해 접합될 수 있으나, 그 접합 방식에 제한되는 것은 아니다. 일 실시예에서 보강부재(200)는 바닥판부(110)의 내측면 또는 외측면에 형성되는 지지부재를 통해 탈착 가능하게 결합될 수도 있다. According to various embodiments, the reinforcing member 200 may be joined to the bottom plate part 110 by welding, but the joining method is not limited thereto. In an embodiment, the reinforcing member 200 may be detachably coupled through a support member formed on the inner or outer surface of the bottom plate 110 .
본 발명에서 보강부재(200)는 브리넬 경도(HBW)가 400 내지 600의 범위에 속하는 강판 재질로 형성될 수 있다. 만약 보강부재(200)의 경도가 400미만이면 보강부재(200) 자체의 내마모 성능이 떨어져 바닥판부(110)의 내마모를 위한 보강부재(200) 역할을 수행하기 어렵고, 경도가 600을 초과하면 바닥판부(110) 용접 시 용접성이 극히 저하되어 제조과정에 어려움이 있다.In the present invention, the reinforcing member 200 may be formed of a steel plate material having a Brinell hardness (HBW) in the range of 400 to 600. If the hardness of the reinforcing member 200 is less than 400, it is difficult to perform the role of the reinforcing member 200 for the abrasion resistance of the bottom plate part 110 because the wear resistance performance of the reinforcing member 200 itself is lowered, and the hardness exceeds 600 When welding the bottom plate part 110, the weldability is extremely deteriorated, so that there is a difficulty in the manufacturing process.
일 실시예에서 이러한 보강부재(200)가 설치되면 버켓(100)의 바닥판부(110)는 브리넬 경도(HBW)가 180 내지 400의 범위 내에 속하는 강판 재질로 형성될 수 있다. In one embodiment, when the reinforcing member 200 is installed, the bottom plate 110 of the bucket 100 may be formed of a steel plate material having a Brinell hardness (HBW) within the range of 180 to 400.
본 발명에서는 자연모사 기법을 적용하여 다양한 동물, 식물의 형상을 기술적으로 모사하여 도 7에 도시된 바와 같이 적용 가능한 보강부재(200)의 형상을 도출하였다. 해당 형상들에 의한 내마모성능 개선 효과를 확인하기 위해 이산요소법(descrete element method,DEM)을 통한 마모해석 방법을 활용하여 각 시편들의 표면에 작용하는 전단 에너지(shear energy)를 측정하여 비교하였다. 전단에너지는 마모 입자와의 접촉에 의해 발생되는 전단력과 이동거리를 곱하여 구한 값으로, 이는 마모량과 같은 개념이라고 볼 수 있으며, 각 시편들에 인가된 전단에너지의 총 합을 비교하여 내마모성능 수준을 판단할 수 있다. 도 5A에서는 볼록형 구조는 버켓(100)의 바닥판부(110)에 덧댐 보강을 위한 보강부재(200)를 위한 것이고, 오목형 구조는 버켓(100)용 투스(300)의 표면 형상 도출을 위한 것이다.In the present invention, the shape of the reinforcing member 200 that can be applied is derived as shown in FIG. 7 by technically simulating the shapes of various animals and plants by applying the natural simulation technique. In order to confirm the effect of improving the wear resistance performance by the corresponding shapes, the shear energy acting on the surface of each specimen was measured and compared using the wear analysis method through the discrete element method (DEM). The shear energy is a value obtained by multiplying the shear force generated by contact with the wear particles and the movement distance, which can be considered the same concept as the amount of wear. can judge In FIG. 5A, the convex structure is for the reinforcement member 200 for reinforcement reinforcement on the bottom plate 110 of the bucket 100, and the concave structure is for the surface shape of the tooth 300 for the bucket 100. .
이산요소법을 통한 마모해석 수행 시 굴삭 작업과 같이 시편의 이동으로 입자와의 접촉이 발생하도록 입자 사이를 시편이 통과하는 형태로 단순화한 해석 모델을 구성하였으며 이는 도 8와 같다. When performing wear analysis through the discrete element method, a simplified analysis model was constructed such that the specimen passes between the particles so that contact with the particles occurs due to movement of the specimen, such as in the excavation operation, as shown in FIG. 8 .
본 발명에서 시행한 이산요소법의 시험 조건은 아래 표 1과 같고, 각 시편은 입자들에 대해 X축 방향으로 0.4m/s의 속도로 진행하였다. The test conditions of the discrete element method performed in the present invention are as shown in Table 1 below, and each specimen proceeded at a speed of 0.4 m/s in the X-axis direction with respect to the particles.
입자particle 시편Psalter
Diameter(mm)Diameter(mm) 1010 --
Number of particlesNumber of particles ~6x10 5 ~6x10 5 --
Density(kg/m 3)Density(kg/m 3 ) 2,3002,300 7,8507,850
Poisson ratioPoisson ratio 0.30.3 0.30.3
Young's modulusYoung's modulus 2,5002,500 200,000200,000
ViscosityViscosity 0.250.25 0.30.3
Dynamic friction coefficientDynamic friction coefficient 0.250.25 0.30.3
Rolling friction coefficientRolling friction coefficient 0.250.25 0.30.3
도 9은 도 7의 시편들을 이용하여 상술한 이산요소법 해석 모델을 통해 구한 전단에너지 측정 결과이다. 도 9를 참조하면, 시편의 진행 방향(X축 방향)과 반대방향으로 돌출되는 쐐기형 돌출부(220)가 일정간격으로 이격 배치되는 a7의 볼록한 구조의 표면에 작용하는 전단에너지가 가장 작은 것을 확인할 수 있다. 이는 평판 구조인 S에 비해 현저히 낮은 값임을 알 수 있다. 또한, b3과 같이 시편의 진행 방향으로 오목한 구조의 표면이 오목형 구조 중에서는 작용하는 전단에너지가 가장 작은 것을 확인할 수 있으며, 평판 구조인 S에 비해서도 낮은 전단에너지를 나타냄을 확인할 수 있다.9 is a shear energy measurement result obtained through the above-described discrete element method analysis model using the specimens of FIG. 7 . 9, it can be confirmed that the shear energy acting on the surface of the convex structure of a7 in which the wedge-shaped protrusions 220 protruding in the opposite direction to the moving direction (X-axis direction) of the specimen are spaced apart from each other at regular intervals is the smallest. can It can be seen that this is a significantly lower value than S, which is a flat structure. In addition, as shown in b3, it can be confirmed that the surface of the concave structure in the direction of the specimen has the smallest shear energy among the concave structures, and it can be confirmed that the shear energy is lower than that of S, which is a flat structure.
도 10에 위 a7, a8 및 S 시편에 대해 이산요소법을 이용한 표면 마모해석을 바탕으로 전단에너지를 도출한 결과를 도시하였다. 시편에 인가된 전단에너지 수준에 따라 다른 색상으로 표현되는 방식으로 마모수준을 비교하였을 때, 평판(S)의 경우 전체 면적이 초록색으로 변하여 골고루 마모가 발생하는 반면, a7, a8과 같이 돌출된 보강부재를 형성시키면 전면부 및 보강부재에서만 마모가 관찰되며 전반적으로는 마모가 감소됨을 확인할 수 있다. 10 shows the results of deriving the shear energy based on the surface wear analysis using the discrete element method for the a7, a8 and S specimens. When comparing the wear level in a way that is expressed in different colors depending on the shear energy level applied to the specimen, in the case of the flat plate (S), the entire area turns green and wear occurs evenly, whereas the protruding reinforcement such as a7, a8 When the member is formed, wear is observed only in the front part and the reinforcing member, and it can be seen that the wear is reduced overall.
이와 같은 결과는 시편이 입자 사이를 관통하여 움직이는 동안의 입자 거동 차이에 의한 것으로, 보강부재 사이에 입자가 갇히게 되고 갇힌 입자가 이후의 입자들과 시편의 접촉을 방해함으로써 얻어진다. 한편, 한편 도면에 도시하지는 않았으나, 본 발명에서는 붉은색부터 보라색까지 무지개 색깔에 따라 입자의 색깔을 구간별로 달리하여 이를 통해 시편의 관통으로 인한 입자의 거동을 확인하는 실험을 하였고, 상술한 갇힌 입자는 구간별로 입자를 달리하여 이러한 입자가 붉은색부터 보라색까지의 순서로 시편을 관통시키는 실험에서, 여러 색상의 입자들 중 초기에 위치한 붉은색 입자들이 다수 관찰되어, 초기에 갇힌 입자가 이탈되지 않고 유지됨으로써 상기 효과가 잘 발현되고 있음을 확인하였다.Such a result is due to the difference in particle behavior while the specimen moves through the particles, and the particles are trapped between the reinforcing members, and the trapped particles interfere with subsequent particles and contact of the specimen. On the other hand, although not shown in the drawings, in the present invention, an experiment was conducted to check the behavior of particles due to penetration of the specimen by varying the color of the particles according to the rainbow color from red to purple for each section, and the above-mentioned trapped particles In the experiment in which the particles were different for each section, and these particles penetrate the specimen in the order from red to purple, a large number of initially located red particles among the particles of various colors were observed, and the initially trapped particles did not escape. It was confirmed that the effect was well expressed by being maintained.
종래의 방식이라고 할 수 있는 평판에 돌출된 형태의 보강부재를 형성시킨 a8 대비, 본 발명에 활용한 평판에 돌출된 형태의 보강부재를 형성시키고 해당 보강부재에 쐐기 형태의 돌출부(220)를 추가로 형성시킨 a7의 형태에서 전술한 방식의 입자 유동에 의한 보호 효과가 더 강하게 나타나, 10% 이상의 마모 저감 효과를 추가로 얻을 수 있다.In contrast to the a8, in which a reinforcing member in a protruding form is formed on a flat plate, which can be called the conventional method, a reinforcing member in a protruding form is formed on the flat plate used in the present invention, and a wedge-shaped protrusion 220 is added to the reinforcing member. In the form of a7 formed with , the protective effect by the particle flow in the above-described manner is stronger, and a wear reduction effect of 10% or more can be additionally obtained.
상술한 a7, a8 형태를 버켓에 적용하였을 때의 내마모성능 개선 효과를 비교하기 위하여 이산요소법을 이용한 마모해석을 수행하였으며 그 결과를 도 11에 도시하였다. 도 11의 (a)에서 가로 방향의 돌출된 보강부재를 형성한 종래의 형태를, 도 11의 (b)와 같이 보강부재에 쐐기 형상의 돌출부(220)를 형성한 본 발명의 형상을 적용한 결과와 비교했을 때 단위면적당 마모량이 27% 감소한 결과를 얻었다. 도 11의 (b)에서 버켓에 적용한 본 발명의 쐐기형 돌출부를 구비한 보강부재의 형상을 구현함에 있어 종래의 형태인 도 11의 (a)와 같이 가로 방향의 돌출된 보강부재를 형성한 형상 대비 보강부재의 양을 약35% 적게 사용하였기에 그 효과는 더 크다고 할 수 있다.In order to compare the effect of improving the wear resistance performance when the a7 and a8 shapes described above are applied to the bucket, wear analysis using the discrete element method was performed, and the results are shown in FIG. 11 . The result of applying the shape of the present invention in which a wedge-shaped protrusion 220 is formed on the reinforcing member as shown in FIG. Compared with , a 27% reduction in wear per unit area was obtained. In the implementation of the shape of the reinforcing member having the wedge-shaped protrusion of the present invention applied to the bucket in FIG. As the amount of reinforcing member is used less than 35%, the effect can be said to be greater.
도 11의 (b)에서 보강부재에 쐐기 형상의 돌출부(220)를 형성시킨 반면 반대 방향으로는 쐐기 형상의 오목부(230)를 형성하였는데 이는 철판의 사용량을 최소화하기 위한 것으로, 철판 원소재의 절단 시 쐐기형 돌출부(220)의 형성을 위해 철판의 손실이 발생하지 않기 위함이다. 즉 오목부(230)의 존재 여부는 본 발명에 의한 내마모성능 개선 효과의 발생에는 큰 영향을 미치지 않을 수 있으나, 쐐기형 돌출부(220) 형성을 위한 절단부의 반대 면이 보강부재의 오목부(230) 형성면이 되어 철판 사용량에 의한 원가 상승요인을 최소화하는 것이다. 일정 크기 이하의 오목부(230)가 형성되어도 도 8의 (b)에서 나타난 바와 같이 내마모성능의 저하가 발생하지 않음을 알 수 있다.11 (b), a wedge-shaped protrusion 220 was formed on the reinforcing member, while a wedge-shaped concave portion 230 was formed in the opposite direction. This is to minimize the amount of iron plate used. This is to prevent loss of the iron plate for the formation of the wedge-shaped protrusion 220 during cutting. That is, the presence or absence of the concave portion 230 may not significantly affect the occurrence of the effect of improving the wear resistance performance according to the present invention, but the opposite side of the cut portion for forming the wedge-shaped protrusion 220 is the concave portion 230 of the reinforcing member. ) as a forming surface to minimize the cost increase caused by the amount of steel used. It can be seen that even when the concave portion 230 of a certain size or less is formed, a decrease in wear resistance does not occur as shown in FIG. 8(b) .
상술한 바와 같이 본 발명의 다양한 실시예에 따른 굴착용 버켓(100)은 바닥판부(110)에 전후방향으로 이격 배치되는 다수의 보강부재(200)를 구비함으로써 버켓(100)의 내마모성을 향상시키면서도 무게의 증가를 최소화할 수 있고, 이를 통해 생산성을 향상시킬 수 있는 효과가 있다. As described above, the bucket 100 for excavation according to various embodiments of the present invention is provided with a plurality of reinforcing members 200 spaced apart from each other in the front-rear direction on the bottom plate part 110 while improving the abrasion resistance of the bucket 100. An increase in weight can be minimized, and there is an effect that productivity can be improved through this.
다음은 본 발명의 다양한 실시예에 따른 굴착용 버켓(100)의 내마모 수명 향상을 위해 선단부에 설치되는 투스(300)에 대해 첨부된 도면을 참조하여 구체적으로 설명한다. The following will be described in detail with reference to the accompanying drawings for the teeth 300 installed at the tip for improving the wear-resistance life of the bucket 100 for excavation according to various embodiments of the present invention.
도 12는 본 발명의 다양한 실시예에 따른 굴착용 버켓(100)에 적용되는 투스(300)를 보여주는 사진이고, 도 13은 본 발명의 다양한 실시예에 따른 굴착용 버켓(100)에 적용되는 투스(300)를 도시한 도면이고, 도 14는 도 13에서 A-A'의 단면을 도시한 도면이다. 12 is a photograph showing a tooth 300 applied to the bucket 100 for excavation according to various embodiments of the present invention, and FIG. 13 is a tooth applied to the bucket 100 for excavation according to various embodiments of the present invention. It is a view showing 300, and FIG. 14 is a view showing a cross-section taken along line A-A' in FIG. 13. Referring to FIG.
본 발명의 굴착용 버켓(100)에 적용되는 투스(300)는, 도 2와 같이 버켓(100)의 립부(140)에 어댑터(150)를 통해 탈착 가능하게 설치될 수 있으나 반드시 이에 제한되는 것은 아니고 일체로 형성될 수도 있음은 자명하다. 본 발명에서 제안하는 투스(300)는 상술한 바와 같이 도 5의 b3의 오목형 구조를 적용하여 내마모 성능을 향상시킴과 동시에 두더지 발톱을 모사한 형상을 통해 굴착 성능을 향상시킬 수 있다. The tooth 300 applied to the bucket 100 for excavation of the present invention may be detachably installed through the adapter 150 to the lip portion 140 of the bucket 100 as shown in FIG. 2, but is not necessarily limited thereto. It is self-evident that it may be formed integrally. The tooth 300 proposed in the present invention can improve the abrasion resistance by applying the concave structure of b3 of FIG.
이하에서는, 본 발명의 다양한 실시예에 따른 투스(300)에 대해, 어댑터(150)와 결합되는 방향을 '후방'으로 설명하고, 이와 반대되는 방향을 '전방'으로 설명할 수 있다. 또한, 버켓(100)이 도 1 또는 도 2와 같이 놓인 상태에서 지면이 버켓(100)을 바라보는 방향을 '상방'으로 설명하고, 이와 반대되는 방향을 '하방'으로 설명할 수 있다.Hereinafter, for the tooth 300 according to various embodiments of the present invention, a direction coupled with the adapter 150 may be described as 'rear', and a direction opposite to this may be described as 'front'. In addition, in the state in which the bucket 100 is placed as shown in FIG. 1 or FIG. 2 , the direction in which the ground faces the bucket 100 may be described as 'upward', and the opposite direction may be described as 'downward'.
도 12 내지 도 16을 참조하면, 본 발명에서 제안하는 투스(300)는, 후단부 측면에 어댑터(150)와 결합되기 위한 결합공(311)과, 어댑터(150)의 적어도 일부가 삽입되는 결합홈(312)이 형성되는 결합부(310) 및 결합부(310)로부터 전방을 향해 일정길이로 연장 형성되어 굴착작업을 수행하는 굴착부(320)를 포함할 수 있다. 12 to 16 , the tooth 300 proposed in the present invention includes a coupling hole 311 for coupling with the adapter 150 on the rear end side, and at least a portion of the adapter 150 is inserted. It may include a coupling part 310 in which the groove 312 is formed, and an excavation part 320 extending from the coupling part 310 to a front by a predetermined length to perform an excavation operation.
굴착부(320)는 후술하는 단차홈(340)이 형성되는 하면부(330)와 하면부(330)의 양측에 형성되는 측면부(370), 하면부(330)와 대향되게 양 측면부(370) 사이에 형성되는 상면부(360)를 포함할 수 있다. 또한, 굴착부(320)의 전면부(380)에는 접촉면(381,382)이 형성될 수 있다. The excavation part 320 includes a lower surface portion 330 in which a stepped groove 340 to be described later is formed, a side portion 370 formed on both sides of the lower surface portion 330 , and both side portions 370 opposite to the lower surface portion 330 . It may include an upper surface portion 360 formed therebetween. In addition, contact surfaces 381 and 382 may be formed on the front portion 380 of the excavation unit 320 .
본 발명의 다양한 실시예에 따르면 굴착부(320)의 양 측면부(370) 사이의 간격은 전방으로 향할수록 좁아지게 형성될 수 있다. 굴착부(320)의 하면부(330)는 중앙에 수평하게 형성되는 수평부(335)가 전후방향으로 연장 형성되고, 수평부(335)를 기준으로 양 측면부(370)로 향할수록 상향 경사지게 형성될 수 있다. According to various embodiments of the present disclosure, the gap between the both side portions 370 of the excavation unit 320 may be formed to become narrower toward the front. The lower surface part 330 of the excavation part 320 has a horizontal part 335 horizontally formed in the center extending in the front-rear direction, and is inclined upward toward both side parts 370 based on the horizontal part 335 . can be
도 13을 참조하면, 굴착부(320)의 하면부(330)에는 수평부(335)로부터 양 측면부(370)를 향해 좌우로 형성되는 한 쌍의 제1 단차홈(341) 및 제1 단차홈(341)의 전방에 형성되고, 수평부(335)로부터 양측면부(370)를 향해 좌우로 형성되는 한 쌍의 제2 단차홈(342)이 형성될 수 있다. 제1 단차홈(341) 과 제2 단차홈(342)은 제조상의 편의를 위하여 좌우로 대칭되게 형성될 수 있으나 이에 제한되는 것은 아니다. 각각의 단차홈(341,342)은 도 10b 와 같이 위쪽에서 보았을 때, 수평부(335)와 인접하는 제1 단차면(351)과 측면부(370)와 인접하는 제2 단차면(352)을 통해 단차지게 형성될 수 있다.Referring to FIG. 13 , in the lower surface 330 of the excavation unit 320 , a pair of first stepped grooves 341 and a first stepped groove are formed from the horizontal portion 335 toward both side portions 370 from side to side. A pair of second stepped grooves 342 formed in front of the 341 and formed left and right from the horizontal portion 335 toward the side surface portions 370 may be formed. The first stepped groove 341 and the second stepped groove 342 may be formed symmetrically left and right for manufacturing convenience, but is not limited thereto. Each of the stepped grooves 341 and 342 is a step through a first stepped surface 351 adjacent to the horizontal portion 335 and a second stepped surface 352 adjacent to the side portion 370 when viewed from above as shown in FIG. 10B . may be formed.
일 실시예에서, 아래에서 보았을 때 제1 단차면(351)과 제2 단차면(352) 사이의 각도(e1)는 135도 이상 145도 이하로 형성될 수 있다. 또한, 제2 단차면(352)과 측면이 이루는 각도(e2)는 30도 이상 40도 이하로 형성될 수 있다. 이러한 제1 단차홈(341) 및 제2 단차홈(342)은 굴착작업시 표면에 마찰되는 입자의 유동을 원활하게 하기 위한 것으로, 만약 제1 단차면(351)과 제2 단차면(352) 사이의 각도(e1) 및 제2 단차면(352)과 측면 사이의 각도(e2)가 위의 범위를 벗어나게 형성된다면, 굴착 시 입자의 유동에 의한 굴착부(320)가 입자에 의해 보호되는 내마모 효과가 저감될 수 있다. In one embodiment, when viewed from below, the angle e1 between the first stepped surface 351 and the second stepped surface 352 may be 135 degrees or more and 145 degrees or less. In addition, the angle e2 between the second stepped surface 352 and the side surface may be formed to be 30 degrees or more and 40 degrees or less. These first stepped grooves 341 and second stepped grooves 342 are to facilitate the flow of particles rubbing against the surface during excavation work, and if the first stepped surface 351 and the second stepped surface 352 are If the angle (e1) and the angle (e2) between the second step surface 352 and the side surface are formed outside the above range, the excavation part 320 by the flow of particles during excavation is protected by the particles. The wear effect can be reduced.
다만, 굴착부(320)의 하면에 형성되는 단차홈(340)은 적어도 한 쌍 이상이 형성되는 것으로, 굴착부(320)의 길이에 따라 복수의 단차홈(340)이 형성될 수 있음은 자명하다.However, it is self-evident that at least one pair of stepped grooves 340 formed on the lower surface of the excavation unit 320 may be formed, and a plurality of stepped grooves 340 may be formed according to the length of the excavation unit 320 . do.
한편, 도 13을 참조하면, 측면부(370) 쪽에서 보았을 때 굴착부(320)의 하면부(330)는 제1 곡률을 갖도록 만곡되게 형성되고, 상면부(360)는 제2 곡률을 갖도록 만곡되게 형성될 수 있다. 이때, 결합부(310)의 끝단면에서 가장 멀리 떨어진 굴착부(320)의 전면부(380)의 지점에서 결합부(310)의 끝단면과 수평한 가상의 면을 가정할 때 해당 가상의 면을 측면에서 바라본 선을 기준선으로 했을 때, 도 15와 같이 하면부(330)의 곡률과 대응되는 제1곡선(330a)과 상면부(360)의 곡률과 대응되는 제2곡선(360a)의 연장선이 굴착부(320)의 전면부(380) 기준선과 만나는 각각의 접점에서의 접선들 사이의 각도(e3)는 10~25도 사이의 범위로 형성될 수 있다. 만약 두 접선 사이의 각도(e3)가 10도 미만으로 형성되면 굴착부(320)의 전단부의 상하방향 두께가 너무 얇아져서 석산작업과 같이 강도와 경도가 높은 작업물의 작업 시 굴착부(320)의 파괴 위험성이 커지게 되고, 두 접선 사이의 각도(e1)가 25도를 초과하여 형성되면 굴착부(320)의 전면부(380) 두께가 너무 두꺼워져서 굴착 저항이 지나치게 커져서 작업 효율성이 저하된다. Meanwhile, referring to FIG. 13 , when viewed from the side portion 370 , the lower surface 330 of the excavation unit 320 is curved to have a first curvature, and the upper surface portion 360 is curved to have a second curvature. can be formed. At this time, assuming a virtual plane horizontal to the end face of the coupling part 310 at the point of the front part 380 of the excavation part 320 farthest from the end face of the coupling part 310, the corresponding virtual surface When the line viewed from the side is taken as the reference line, the extension line of the first curve 330a corresponding to the curvature of the lower surface part 330 and the second curve 360a corresponding to the curvature of the upper surface part 360 as shown in FIG. 15 . The angle e3 between the tangents at each contact point that meets the reference line of the front part 380 of the excavation part 320 may be formed in a range of 10 to 25 degrees. If the angle (e3) between the two tangents is formed to be less than 10 degrees, the thickness in the vertical direction of the front end of the excavation part 320 becomes too thin. The risk of destruction increases, and when the angle (e1) between the two tangents is formed to exceed 25 degrees, the thickness of the front part 380 of the excavation part 320 is too thick, so that the excavation resistance becomes excessively large, thereby reducing work efficiency.
도 16을 참조하면, 굴착부(320)의 하면부(360)는 양 측면부(370)로부터 중앙부로 향할수록 하방으로 오목하게 형성될 수 있다. 굴착부(320)의 전면부(380)의 일정 구간에서 전후방향과 수직한 단면은 대체로 위쪽으로 개방된 초승달 형상으로 형성될 수 있다. 일 실시예에서 이러한 초승달 형상의 단면 중에서 하단부 일정 구간은 직선구간으로 형성될 수 있다. Referring to FIG. 16 , the lower surface portion 360 of the excavation unit 320 may be formed to be concave downwardly toward the central portion from both side portions 370 . A cross section perpendicular to the front-rear direction in a predetermined section of the front part 380 of the excavation part 320 may be formed in a crescent shape that is generally opened upward. In one embodiment, a certain section of the lower end of the cross section of the crescent shape may be formed as a straight section.
굴착부(320)의 전면부(380)는 하면부(330)의 전단으로부터 대체로 수직하게 상향 절곡되는 제1 접촉면(381) 및 상면부(360)의 전단으로부터 전방으로 갈수록 하향 절곡되는 제2 접촉면(382)을 포함할 수 있다. The front part 380 of the excavation part 320 has a first contact surface 381 that is bent upwardly vertically from the front end of the lower surface part 330 and a second contact surface that is bent downward toward the front from the front end of the upper surface part 360 . (382).
이러한 굴착부(320)의 형상은 상술한 바와 같이, 두더지의 발톱을 모사한 것으로 본 발명에서는 하면부(330)에 복수의 단차홈(340)을 구비하여 입자의 유동에 의해 굴착부(320)가 보호되는 효과를 통해 내마모성능히 향상됨과 동시에, 측면부 쪽에서 보았을 때 굴착부(320)의 하면부(330)가 곡률을 갖도록 만곡지게 구비하고, 상면부(360)를 오목하게 형성하여 단면이 초승달 형성이 되도록 구비함으로써 지면과의 마찰 저항을 최소화하여 내마모성능과 굴착 성능을 향상시킬 수 있다. As described above, the shape of the excavation part 320 is simulating the toenails of moles, and in the present invention, a plurality of stepped grooves 340 are provided on the lower surface 330 and the excavation part 320 by the flow of particles. At the same time, the wear resistance is improved through the protection effect, and the lower surface 330 of the excavation part 320 is curved to have a curvature when viewed from the side part, and the upper surface part 360 is concave to form a crescent in cross section. It is possible to improve abrasion resistance and excavation performance by minimizing frictional resistance with the ground by providing this.
본 발명에서는 자연모사 기법을 적용하여 땅을 파는 동, 식물의 형상을 기술적으로 모사하여 내마모성능이 향상된 굴삭용 투스(300)의 형상안을 도출하고자 하였으며, 내마모성능 개선 효과를 확인하기 위해 도 19와 같이 이산요소법을 통한 마모해석을 수행하였다.In the present invention, the shape of the excavation tooth 300 with improved wear resistance performance was derived by technically simulating the shape of animals and plants digging the ground by applying the natural simulation technique. Wear analysis was performed using the discrete element method.
해석은 투스(300)를 단순화한 형태의 시편이 입자를 침투할 때 발생하는 전단에너지를 측정하여 굴삭 작업에서 발생하는 마모량을 평가하였으며 평가대상은 도 20에 도시한바와 같이 침투 방향을 기준으로 대칭형태와 비대칭형태를 이루는 투스 시편으로 하였다.The analysis evaluated the amount of wear occurring in the excavation work by measuring the shear energy generated when the specimen in the form of a simplified tooth 300 penetrates the particles, and the evaluation target is symmetrical based on the penetration direction as shown in FIG. A tooth specimen with a shape and asymmetrical shape was used.
도 21에 도시한 평가 결과를 보면 침투 방향을 기준으로 비대칭 형태를 가질 경우 그리고 투스(300)의 상/하 면이 침투방향과 이루는 각도가 작을수록 더 낮은 마모량을 나타내는 것을 확인할 수 있다. 이는 굴삭 작업 시 작업대상물과 이루는 각도가 작을수록 마모에 유리하며 특히 양쪽 면이 일정한 각도를 이루는 형태보다 한쪽면이 굴삭 방향과 평행을 이루는 것이 마모를 저감하는 측면에서 더 바람직함을 의미한다.From the evaluation result shown in FIG. 21 , it can be seen that when the tooth has an asymmetric shape with respect to the penetration direction and the angle between the upper and lower surfaces of the tooth 300 and the penetration direction is smaller, the lower the amount of wear. This means that the smaller the angle formed with the workpiece during excavation work, the more advantageous it is to wear, and in particular, it is more preferable to have one side parallel to the excavation direction than to form both sides at a constant angle in terms of reducing wear.
투스(300)에 표면에 마모 저감을 위한 단차면을 형성하였을 때의 효과를 확인하기 위하여 상술한 해석 결과에 따른 비대칭 형상의 투스(300) 상면에 여러 형상의 단차홈(340)을 형성하여 마모해석을 수행하였으며 그 결과를 도 22에 도시하였다. 도 22에서 단차홈(340)이 없는 것 보다 적절한 단차홈(340)을 형성하는 것이 더 낮은 마모량을 나타냄을 확인할 수 있으며 뱀 비늘 형상의 단차홈(340)을 형성한 시편의 마모량이 가장 낮은 결과를 나타내었다. In order to confirm the effect of forming a stepped surface for reducing wear on the surface of the tooth 300, a step groove 340 of various shapes is formed on the upper surface of the tooth 300 having an asymmetric shape according to the analysis result described above. Analysis was performed and the results are shown in FIG. 22 . 22, it can be seen that the formation of an appropriate stepped groove 340 shows a lower amount of wear than the absence of the stepped groove 340, and the result of the lowest wear amount of the specimen having the stepped groove 340 in the shape of a snake scale was shown.
상술한 해석 결과를 바탕으로 자연모사 기술을 적용하여 비대칭 형상과 단차홈(340)을 가진 투스(300)의 실시예를 도출하였다. 투스(300)는 굴삭 작업 시 하면이 침투 방향과 평행을 이루도록 일정 곡률을 가지고 있으며, 이에 따라 상면은 구조적 강성 확보를 위하여 초승달 형태의 단면을 가지고 있다. 추가적으로 하면의 마모 저감을 위해 뱀 비늘 형상의 단차홈(340)을 구비하고 있다.Based on the analysis results described above, an embodiment of the tooth 300 having an asymmetric shape and a stepped groove 340 was derived by applying a natural simulation technique. The tooth 300 has a certain curvature such that its lower surface is parallel to the penetration direction during excavation, and accordingly, the upper surface has a crescent-shaped cross-section to secure structural rigidity. Additionally, a stepped groove 340 in the shape of a snake scale is provided to reduce wear of the lower surface.
도 17은 이산요소법을 통해 본 실시예의 투스(300)의 표면에 작용하는 마찰을 해석한 결과이고, 도 18은 아래의 [표 2]를 이용해 투스(300)의 내마모 수명을 계산한 그래프이다. 17 is a result of analyzing the friction acting on the surface of the tooth 300 of this embodiment through the discrete element method, and FIG. 18 is a graph obtained by calculating the wear-resistance life of the tooth 300 using [Table 2] below. .
항목item 비교예1Comparative Example 1 비교예2Comparative Example 2 실시예Example 비교예3Comparative Example 3
Shear EnergyShear Energy 96.796.7 95.395.3 88.188.1 106.6106.6
AreaArea 107.1107.1 98.898.8 111.9111.9 107.9107.9
Wear RateWear Rate 90.390.3 96.596.5 78.778.7 98.898.8
Body LengthBody Length 125125 130130 142142 140140
VolumeVolume 90.090.0 98.198.1 101.0101.0 120.3120.3
Effective Life ConstantEffective Life Constant 93.893.8 106.3106.3 119.5119.5 140.4140.4
Wear LifeWear Life 103.9103.9 110.2110.2 151.7151.7 142.1142.1
여기서, Wear Rate는 Shear Energy를 Area로 나눈 값으로 계산하였고, Effective Life Constant는 Body Length에 Volume을 곱한 값으로 계산하였다. Here, the wear rate was calculated by dividing the shear energy by the area, and the effective life constant was calculated by multiplying the body length by the volume.
도 17 및 도 18과 [표 2]를 참조하면, 본 발명의 다양한 실시예에 따른 투스(300)의 경우 마모율(Wear Rate)이 78.7로 비교예들에 비해 최대 20%가량 낮아진 것을 확인하였고, 도 18에 도시된 바와 같이, 내마모 수명(Wear Life) 역시 목표값 대비 50% 이상 향상된 것을 확인할 수 있었다.17 and 18 and [Table 2], in the case of the tooth 300 according to various embodiments of the present invention, the wear rate was 78.7, it was confirmed that it was lowered by up to 20% compared to the comparative examples, As shown in FIG. 18 , it was confirmed that the wear life was also improved by 50% or more compared to the target value.
이상에서 설명한 바와 같이 본 발명의 다양한 실시예에 따른 굴착용 버켓(100)은, 일정한 간격의 돌출부(220) 및 함몰부(230)를 구비한 보강부재(200)를 통해 무게증가를 최소화하면서도 바닥판부(110)의 내마모 성능을 향상시킬 있고, 투스(300)의 상면에 일정한 각도 형성되는 단차면(351,352)으로 이루어진 단차홈(340)을 구비하여 투스(300)의 내마모 성능을 향상시킴과 동시에 초승달 형상의 단면을 갖도록 형성하여 굴착 성능까지 향상시킬 수 있다. As described above, the bucket 100 for excavation according to various embodiments of the present invention minimizes the increase in weight through the reinforcement member 200 having the protrusions 220 and the depressions 230 at regular intervals while minimizing the weight increase. It is possible to improve the wear resistance performance of the plate part 110, and to improve the wear resistance performance of the tooth 300 by providing a stepped groove 340 made of stepped surfaces 351 and 352 formed at a constant angle on the upper surface of the tooth 300. At the same time, it is possible to improve the excavation performance by forming it to have a crescent-shaped cross section.
이상에서, 본 발명의 실시 예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 이상에서 기재된 '포함하다', '구성하다' 또는 '가지다' 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. In the above, even though it has been described that all the components constituting the embodiment of the present invention operate by being combined or combined into one, the present invention is not necessarily limited to this embodiment. That is, within the scope of the object of the present invention, all the components may operate by selectively combining one or more. In addition, terms such as 'include', 'comprise' or 'have' described above mean that the corresponding component may be inherent unless otherwise stated, so other components are excluded. Rather, it should be construed as being able to further include other components. All terms, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs, unless otherwise defined. Terms commonly used, such as those defined in the dictionary, should be interpreted as being consistent with the contextual meaning of the related art, and are not interpreted in an ideal or excessively formal meaning unless explicitly defined in the present invention.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical spirit of the present invention, and various modifications and variations will be possible without departing from the essential characteristics of the present invention by those skilled in the art to which the present invention pertains. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but to explain, and the scope of the technical spirit of the present invention is not limited by these embodiments. The protection scope of the present invention should be construed by the following claims, and all technical ideas within the equivalent range should be construed as being included in the scope of the present invention.

Claims (8)

  1. 버켓에 결합되는 굴착용 투스에 있어서, In the tooth for excavation coupled to the bucket,
    상기 버켓에 결합되는 결합부 및 굴착 작업을 수행하는 굴착부를 포함하고,It includes a coupling part coupled to the bucket and an excavation part for performing an excavation operation,
    상기 굴착부는 하면부 중앙에 전후방향으로 연장 형성되는 수평부 및 상기 수평부로부터 측면부를 향해 형성되는 적어도 하나 이상의 단차홈을 포함하고, The excavation portion includes a horizontal portion extending in the front and rear directions at the center of the lower surface portion and at least one or more stepped grooves formed from the horizontal portion toward the side portion,
    상기 단차홈은 상기 수평부와 인접하는 제1단차면 및 상기 제1단차면과 일정 각도를 이루고 상기 측면부와 인접하게 형성되는 제2단차면을 통해 단차지게 형성되는 굴착용 투스.The stepped groove is a first stepped surface adjacent to the horizontal portion and a second stepped surface formed adjacent to the side portion at a predetermined angle with the first stepped surface and is formed to be stepped through the tooth for excavation.
  2. 제1항에 있어서,According to claim 1,
    상기 제1단차면과 상기 제2단차면 사이의 각도는 135˚~145˚ 범위로 형성되고, 상기 제2단차면과 상기 측면부 사이의 각도는 30˚~40˚ 범위로 형성되는 굴착용 투스.The angle between the first stepped surface and the second stepped surface is formed in the range of 135˚ to 145˚, and the angle between the second stepped surface and the side part is formed in the range of 30˚ to 40˚.
  3. 제1항에 있어서, According to claim 1,
    상기 굴착부의 상면부는 상기 측면부로부터 중앙으로 갈수록 하방으로 오목하게 형성되는 굴착용 투스.The upper surface portion of the excavation part is formed to be concave downward toward the center from the side part for excavation tooth.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 굴착부의 측면부에서 보았을 때, 상기 상면부의 곡률과 대응되는 곡률로 형성되는 제1곡선의 접선과 상기 하면부의 곡률과 대응되는 곡률로 형성되는 제2곡선의 접선 사이의 각도는 10˚~25˚ 범위로 형성되는 굴착용 투스.When viewed from the side of the excavation part, the angle between the tangent of the first curve formed by the curvature corresponding to the curvature of the upper surface part and the tangent of the second curve formed by the curvature corresponding to the curvature of the lower surface part is 10˚ to 25˚ An excavation tooth formed by a range.
  5. 제1항에 있어서, According to claim 1,
    상기 굴착부의 전후방향과 수직하는 단면은 상방으로 개방되는 초승달 형상으로 형성되는 굴착용 투스.A cross section perpendicular to the front and rear directions of the excavation part is an excavation tooth formed in a crescent shape that is opened upward.
  6. 제5항에 있어서, 6. The method of claim 5,
    상기 초승달 형상의 상단부 또는 하단부의 적어도 일부 구간은 직선 구간으로 형성되는 굴착용 투스.At least some section of the upper end or lower end of the crescent shape is a tooth for excavation formed in a straight section.
  7. 선단부에 결합되는 투스를 구비하는 굴착용 버켓에 있어서, In the excavation bucket having a tooth coupled to the tip,
    상기 투스는 상기 버켓에 결합되는 결합부 및 굴착 작업을 수행하는 굴착부를 포함하고,The tooth includes a coupling part coupled to the bucket and an excavation part for performing an excavation operation,
    상기 굴착부는 하면부 중앙에 전후방향으로 연장 형성되는 수평부 및 상기 수평부로부터 측면부를 향해 좌우에 형성되는 적어도 하나 이상의 단차홈을 포함하고, The excavation portion includes a horizontal portion extending in the front-rear direction at the center of the lower surface portion and at least one stepped groove formed on the left and right from the horizontal portion toward the side portion,
    상기 단차홈은 상기 수평부와 인접하는 제1단차면 및 상기 제1단차면과 일정 각도를 이루고 상기 측면부와 인접하게 형성되는 제2단차면을 통해 단차지게 형성되는 굴착용 버켓.The step groove is a first step surface adjacent to the horizontal portion and the first step surface at a predetermined angle and is formed to be stepped through a second step surface formed adjacent to the side portion.
  8. 제7항에 있어서, 8. The method of claim 7,
    상기 제1단차면과 상기 제2단차면 사이의 각도는 135˚~145˚ 범위로 형성되고, 상기 제2단차면과 상기 측면부 사이의 각도는 30˚~40˚ 범위로 형성되는 굴착용 버켓.The angle between the first stepped surface and the second stepped surface is formed in the range of 135˚ to 145˚, and the angle between the second stepped surface and the side part is in the range of 30˚ to 40˚.
PCT/KR2021/002715 2020-03-04 2021-03-04 Drilling tooth, and drilling bucket having drilling tooth WO2021177765A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180032385.8A CN115516176A (en) 2020-03-04 2021-03-04 Digging tooth and digging bucket with same
KR1020227031878A KR20230004449A (en) 2020-03-04 2021-03-04 Excavation teeth and excavation buckets equipped with excavation teeth

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200026975 2020-03-04
KR10-2020-0026975 2020-03-04

Publications (1)

Publication Number Publication Date
WO2021177765A1 true WO2021177765A1 (en) 2021-09-10

Family

ID=77612997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002715 WO2021177765A1 (en) 2020-03-04 2021-03-04 Drilling tooth, and drilling bucket having drilling tooth

Country Status (3)

Country Link
KR (1) KR20230004449A (en)
CN (1) CN115516176A (en)
WO (1) WO2021177765A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880007882A (en) * 1986-12-04 1988-08-29 원본미기재 Excavation tooth assembly
JPH08746U (en) * 1995-12-04 1996-04-30 株式会社小松製作所 Drilling bucket tooth
KR19980037674U (en) * 1996-12-13 1998-09-15 이석근 Structure of teeth for forklift bucket
JPH11131534A (en) * 1997-10-30 1999-05-18 Shin Caterpillar Mitsubishi Ltd Excavation cutting edge and manufacture thereof
KR20120085020A (en) * 2011-01-21 2012-07-31 두산인프라코어 주식회사 A bucket tooth for a construction heavy equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768992B (en) * 2008-12-30 2011-12-21 宁波浙东精密铸造有限公司 Excavating tooth component, tooth holder and bucket teeth
CN102733446A (en) * 2011-04-15 2012-10-17 斗山工程机械(中国)有限公司 Digging bucket and bucket teeth thereof
US9359745B2 (en) * 2013-10-15 2016-06-07 Caterpillar Inc. Bucket edge protection system
CN203939072U (en) * 2013-12-26 2014-11-12 宁波滕头精密铸造有限公司 Split type bucket tooth

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880007882A (en) * 1986-12-04 1988-08-29 원본미기재 Excavation tooth assembly
JPH08746U (en) * 1995-12-04 1996-04-30 株式会社小松製作所 Drilling bucket tooth
KR19980037674U (en) * 1996-12-13 1998-09-15 이석근 Structure of teeth for forklift bucket
JPH11131534A (en) * 1997-10-30 1999-05-18 Shin Caterpillar Mitsubishi Ltd Excavation cutting edge and manufacture thereof
KR20120085020A (en) * 2011-01-21 2012-07-31 두산인프라코어 주식회사 A bucket tooth for a construction heavy equipment

Also Published As

Publication number Publication date
KR20230004449A (en) 2023-01-06
CN115516176A (en) 2022-12-23

Similar Documents

Publication Publication Date Title
US10774499B2 (en) Lip for excavating bucket
WO2021177764A1 (en) Reinforcement member for excavator bucket, and excavator bucket comprising same
US6952892B1 (en) Lip assembly
AU676060B2 (en) Improved retaining device
WO2021177765A1 (en) Drilling tooth, and drilling bucket having drilling tooth
US5210965A (en) Fabricated bucket tooth
US20170241108A1 (en) Ground Engaging Machine
CN205475405U (en) Engineering machine is bucket tooth structure for tool
CN207974184U (en) A kind of wear-resisting mining bucket
CN209066528U (en) A kind of novel wear resistant knife plate of scraper bowl
US20150033594A1 (en) Latch system for a power shovel dipper door
CN217537143U (en) Wear-resisting bucket of excavator
WO2021246814A1 (en) Tooth adapter
CN216845679U (en) Thin wear-resistant brick
US20230287663A1 (en) Heel shroud having stress concentration reduction geometry and enhanced durability
WO2012146148A1 (en) Mining elevator rigid guide rail and layout structure thereof
US20230287664A1 (en) Heel shroud having stress concentration reduction geometry and enhanced durability
CN216428365U (en) Broken forklift is used in road bridge construction
CN216130209U (en) Two-side tooth digging bucket
CN215926134U (en) Soil cracking device
CN220448741U (en) Double-layer sealing guide chute for belt conveyor
CN216116814U (en) Test weight device of loader
CN215155122U (en) Rubber track shoe for mine removal robot
CN208604647U (en) Excavator bucket device
BR202017012293Y1 (en) CONSTRUCTION LAYOUT INTRODUCED IN EDGE OF RESUME BOX

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21765068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21765068

Country of ref document: EP

Kind code of ref document: A1