WO2021177236A1 - 3次元測定装置、及び3次元測定方法 - Google Patents

3次元測定装置、及び3次元測定方法 Download PDF

Info

Publication number
WO2021177236A1
WO2021177236A1 PCT/JP2021/007731 JP2021007731W WO2021177236A1 WO 2021177236 A1 WO2021177236 A1 WO 2021177236A1 JP 2021007731 W JP2021007731 W JP 2021007731W WO 2021177236 A1 WO2021177236 A1 WO 2021177236A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
dimensional
image
gradation
histogram
Prior art date
Application number
PCT/JP2021/007731
Other languages
English (en)
French (fr)
Inventor
悠介 太田
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to JP2022504353A priority Critical patent/JP7401648B2/ja
Priority to US17/801,343 priority patent/US20230083531A1/en
Priority to DE112021001433.1T priority patent/DE112021001433T5/de
Priority to CN202180018261.4A priority patent/CN115280097A/zh
Publication of WO2021177236A1 publication Critical patent/WO2021177236A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2545Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with one projection direction and several detection directions, e.g. stereo
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images

Definitions

  • the present invention relates to a three-dimensional measuring device and a three-dimensional measuring method.
  • the shape and position / orientation of the work can be obtained three-dimensionally by acquiring the three-dimensional information by imaging the work with a three-dimensional sensor such as a stereo camera and processing the obtained three-dimensional information.
  • object recognition based on three-dimensional information has a problem that a large amount of calculation is required and processing takes time.
  • a large amount of time is required as compared with the case of processing the two-dimensional information because the three-dimensional information and the model are compared. ..
  • the shade value changes according to the height of the work. For example, in the case of 256 gradations, the distance corresponding to each of the shade value “0” indicating black and the shade value “255” indicating white is perpendicular to the optical axis of the three-dimensional sensor. It is preset based on the distance from the plane, and the shade value changes according to the distance within the range of the distance. Therefore, depending on the size of the work, the range of the distance may be exceeded.
  • FIG. 10 is a diagram showing an example of a shading image of a work having a size within a range of a distance based on a three-dimensional sensor, and a histogram in which the horizontal axis is the shading value and the vertical axis is the number of pixels.
  • FIG. 11 is a diagram showing an example of a grayscale image of a work having a size not within the range of the distance based on the three-dimensional sensor, and a histogram in which the horizontal axis is the grayscale value and the vertical axis is the number of pixels.
  • set white gray value "255" from the 3-dimensional sensor at a distance H 1 a black gray value at a distance H 2 "0" is set.
  • FIG. 10 and FIG. 11 set white gray value "255" from the 3-dimensional sensor at a distance H 1
  • a black gray value at a distance H 2 "0" is set.
  • FIG. 10 shows a work having a semicircular groove in the Y-axis direction.
  • FIG. 11 shows a work having a semicircular groove similar to the work of FIG. 10 and having a height in the Z-axis direction from the work of FIG.
  • the right side of FIG. 10 shows a histogram of the shading value in the work area excluding the background portion (for example, the area of the table in which the work is arranged) having the shading value “1” or less in the shading image.
  • the background portion for example, the area of the table in which the work is arranged
  • One aspect of the three-dimensional measuring device of the present disclosure is a three-dimensional sensor that images a work and acquires three-dimensional information, and a reference in the height direction of the work based on the acquired three-dimensional information.
  • a reference position, and a setting unit that sets a margin in the height direction of the gradation degree in the gradation image with reference to the reference position, and sets a distance range corresponding to the gradation degree of the gradation image.
  • the image conversion unit that converts the acquired three-dimensional information into the gradation image, and the shape and / or position / orientation of the work are three-dimensionally obtained using the gradation image. It includes a detection unit.
  • One aspect of the three-dimensional measurement method of the present disclosure is to image a work with a three-dimensional sensor to acquire three-dimensional information, and to use the acquired three-dimensional information as a reference in the height direction of the work.
  • the reference position and the margin in the height direction of the gradation degree in the gradation image are set with reference to the reference position, and the distance range corresponding to the gradation degree of the gradation image is set, and the distance range is set.
  • the acquired three-dimensional information is converted into the gradation image, and the shape and / or position / orientation of the work is three-dimensionally obtained using the gradation image.
  • the distance range for calculating the gradation degree can be appropriately set according to the height of the work.
  • FIG. 1 is a block diagram showing a configuration example of a three-dimensional measuring device according to an embodiment.
  • the three-dimensional measuring device 10 includes a three-dimensional sensor 101, a work detection unit 102, a setting unit 103, an image conversion unit 104, and a detection unit 105.
  • the three-dimensional sensor 101 images the work 20 and the mounting surface 30 on which the work 20 is placed, and the plane perpendicular to the optical axis of the three-dimensional sensor 101 and the work 20 and the mounting surface 30. Acquires three-dimensional information whose pixel value is the distance between each point on the surface of the surface. For example, as shown in FIG.
  • the pixel value of the point A of the work 20 of the three-dimensional information is the three-dimensional sensor 101 in the Z-axis direction of the three-dimensional coordinate system (X, Y, Z) of the three-dimensional sensor 101. It is a distance D between the work 20 and the point A.
  • the Z-axis direction of the three-dimensional coordinate system is the optical axis direction of the three-dimensional sensor 101.
  • the distance refers to the distance in the Z-axis direction of the three-dimensional coordinate system (X, Y, Z) of the three-dimensional sensor 101.
  • the three-dimensional sensor 101 may acquire a two-dimensional image such as an RGB image together with the three-dimensional information.
  • Work 20 is an object to be detected.
  • the mounting surface 30 is, for example, the surface of a table on which the work 20 is placed.
  • the work 20 is arranged on the optical axis of the three-dimensional sensor 101.
  • the work 20 exemplifies a rectangular parallelepiped having a semicircular groove in the Y-axis direction.
  • the three-dimensional sensor 101 includes, for example, a stereo camera that measures the distance between the work 20 to be detected by matching between the images of the two cameras, an image of a pattern projected from the projector, and an image of the camera.
  • a stereo camera that measures the distance to the work 20 to be detected can be used by matching between the two.
  • the three-dimensional sensor 101 may use a stereo camera that measures the distance between the workpiece 20 to be detected by matching the images of the two cameras under the condition that the pattern is projected from the projector. can.
  • the work detection unit 102 is, for example, a work 20 that is stored in advance in a storage unit (not shown) such as an HDD (Hard Disk Drive) included in the three-dimensional measuring device 10 and a two-dimensional image acquired by the three-dimensional sensor 101. Based on the two-dimensional model showing the shape of the work 20, pattern matching or the like is performed to detect the position of the work 20.
  • the work detection unit 102 includes, for example, three-dimensional information acquired by the three-dimensional sensor 101 and three-dimensional information indicating the shape of the work 20 stored in advance in a storage unit (not shown) of the three-dimensional measuring device 10. , The position of the work 20 may be detected by pattern matching or the like based on.
  • the setting unit 103 serves as a reference in the height direction (Z-axis direction) of the work 20 based on the three-dimensional information acquired by the three-dimensional sensor 101 and the position of the work 20 detected by the work detection unit 102.
  • a predetermined distance range including the reference position is set in the Z-axis direction.
  • the setting unit 103 uses, for example, the point closest to the three-dimensional sensor 101 among the distances in the Z-axis direction of each point on the surface of the work 20 in the three-dimensional information as a reference in the Z-axis direction. Set as a position. In the case of FIG.
  • the setting unit 103 sets, for example, a point A included in the upper surface as a reference position. Further, as shown in FIG. 2, the setting unit 103 is on the side of the three-dimensional sensor 101, which is a white reference of the shade image converted from the three-dimensional information by the image conversion unit 104, which will be described later, with reference to the set reference position.
  • a margin D 1 is set in the Z-axis direction of the above, and a margin D 2 is set in the Z-axis direction opposite to the three-dimensional sensor 101 which is a reference for black.
  • the setting unit 103 ranges from "255" to "0" in the distance range from the distance (DD 1 ) including the reference position to the distance (D + D 2) in the Z-axis direction. Set the shade value.
  • the image conversion unit 104 is a distance value of each point on the surface of the work 20 in the three-dimensional information based on the shading value in the distance range from the distance (DD 1 ) to the distance (D + D 2 ) set by the setting unit 103. Is converted into a shading image with a shading value. Specifically, as shown in FIG. 4A, for example, the image conversion unit 104 provides 256 three-dimensional information of the work 20 having the same shape as that of FIG. 10 based on the shading value set as shown in FIG. Converts to a gradation image. As described above, even when the work 20 has the same shape as that of FIG.
  • the setting unit 103 has a distance (D'-D 1 ) and a distance (D) according to the height of the work 20, as shown in FIG. 4B.
  • the gradation can be set appropriately within the distance range from'+ D 2).
  • the image conversion unit 104 can convert the three-dimensional information into a shading image without overexposure.
  • D' is the distance in the Z-axis direction between the three-dimensional sensor 101 and the point A'of the work 20. Since the distance D'in FIG. 4B is shorter than the distance D in FIG. 4A, the work 20 in the shade image of FIG. 4B is imaged larger by the three-dimensional sensor 101 than in FIG. 4A.
  • the detection unit 105 performs image processing on the converted shading image, and three-dimensionally obtains the shape and / or position / orientation of the work 20. Specifically, for example, the detection unit 105 uses the shade value of the region corresponding to the work 20 in the converted shade image to generate a histogram in which the horizontal axis is the shade value and the vertical axis is the number of pixels. ..
  • FIG. 5 is a diagram showing an example of a histogram of the shade image of FIG. 4A. In addition, FIG. 5 shows a histogram of the shading value in the work 20 excluding the background of the mounting surface 30 having the shading value “1” or less. As shown in FIG. 5, as shown in FIG.
  • the histogram has the largest number of pixels having a shade value of 160 to 165 because the area of the region R1 on the upper surface of the work 20 is large. Further, in the histogram, since the area of the region R3 corresponding to the bottom portion of the semicircular groove is the next largest, the number of pixels having a shading value of 85 to 120 is the second largest. On the other hand, as shown in FIG. 3, since the area of the region R2 corresponding to the side surface of the semicircular groove is the smallest, the number of pixels having a shading value of 120 to 160 is the smallest.
  • the detection unit 105 compares and places the generated histogram of FIG.
  • FIG. 6 is a diagram showing an example of a shading image and a histogram when the back side of the work 20 is arranged as the upper surface.
  • the left side of FIG. 6 shows the positional relationship between the reference position set on the upper surface of the work 20 and the margins D 1 and D 2.
  • the center of FIG. 6 shows a shade image of the back side of the work 20.
  • the right side of FIG. 6 shows a histogram in which the horizontal axis on the back side of the work 20 is the shading value and the vertical axis is the number of pixels.
  • the histogram of FIG. 6 shows the shading value in the work 20 excluding the background of the mounting surface 30 having the shading value “1” or less, as in the case of FIG. As shown in the center of FIG.
  • the shading image shows an image in which the back side of the work 20 is flat, so that there are few irregularities and the shading is constant. Therefore, as shown on the right side of FIG. 6, only the pixels having the shading value ⁇ are distributed in the histogram on the back side of the work 20. As a result, as shown in FIGS. 4A (or 4B) and 6, the shape of the histogram differs greatly between the front side and the back side of the work 20, so that the three-dimensional measuring device 10 uses the mounting surface 30 based on the histogram. It can be determined whether the upper work 20 is the front side or the back side.
  • the three-dimensional measuring device 10 is composed of a computer provided with an arithmetic processing unit such as a CPU (Central Processing Unit). can do. Further, the three-dimensional measuring device 10 is temporarily required for an auxiliary storage device such as an HDD that stores various control programs such as application software and an OS (Operating System), and an arithmetic processing device for executing the program. It also has a main storage device such as a RAM (Random Access Memory) for storing the data to be stored.
  • a main storage device such as a RAM (Random Access Memory) for storing the data to be stored.
  • the arithmetic processing device reads the application software and the OS from the auxiliary storage device, and while deploying the read application software and the OS to the main storage device, arithmetic processing based on these application software and the OS is performed. To do. Further, based on the calculation result, various hardwares included in the three-dimensional measuring device 10 are controlled. As a result, the functional block of the present embodiment is realized. That is, this embodiment can be realized by the cooperation of hardware and software.
  • FIG. 7 is a flowchart illustrating the measurement process of the three-dimensional measuring device 10.
  • step S11 the three-dimensional sensor 101 images the work 20 and the mounting surface 30 on which the work 20 is placed, and pixels the distance between the three-dimensional sensor 101 and each point on the surface of the work 20 and the mounting surface 30. Acquires three-dimensional information as a value and a two-dimensional image such as an RGB image.
  • the three-dimensional sensor 101 outputs a two-dimensional image to the work detection unit 102 and outputs three-dimensional information to the setting unit 103.
  • step S12 the work detection unit 102 is based on the two-dimensional image acquired in step S11 and the two-dimensional model of the work 20 stored in advance in the storage unit (not shown) of the three-dimensional measuring device 10.
  • the position of the work 20 is detected by pattern matching or the like.
  • step S13 the setting unit 103 sets a reference position as a reference in the Z-axis direction in the work 20 and a reference position in the work 20 based on the three-dimensional information acquired in step S11 and the position of the work 20 detected in step S12. Margins D 1 and D 2 are set, and the distance range corresponding to the shading value of the shading image is set.
  • step S14 the image conversion unit 104 converts the three-dimensional information into a shade image based on the distance range set in step S13.
  • step S15 the detection unit 105 uses the shading value of the shading image converted in step S14 to generate a histogram in which the horizontal axis is the shading value and the vertical axis is the number of pixels.
  • step S16 the detection unit 105 uses the histogram generated in step S15 and the model of the histogram of the light and shade values on the front side and the back side of the work 20 stored in advance in the storage unit (not shown) of the coordinate measuring device 10. By comparison, it is determined whether the upper surface of the work 20 arranged on the mounting surface 30 is the front side or the back side, and the orientation of the work 20 is detected.
  • the three-dimensional measuring device 10 acquires three-dimensional information including the distance in the Z-axis direction to each point on the surface of the work 20 imaged by the three-dimensional sensor 101. Based on the acquired three-dimensional information, the three-dimensional measuring device 10 sets the reference position D and the margins D 1 and D 2 which are the reference in the Z-axis direction in the work 20, and corresponds to the shading value of the shading image. Set the distance range. As a result, the three-dimensional measuring device 10 can appropriately set the distance range for calculating the gradation degree according to the height of the work 20, and the distance value of the three-dimensional information is used as the shading value. Can be converted to no shading image.
  • the three-dimensional measuring device 10 does not significantly change the shading value in the shading image even if the height of the work 20 changes, it is determined whether the work 20 is the front side or the back side by using the shading value such as a histogram.
  • the detection process for detecting the orientation of the work 20 can be easily performed. Further, the three-dimensional measuring device 10 is placed around the work 20 when the robot takes out the work 20 in a case where the position (height) for gripping the work 20 changes between the front and the back, for example, based on the detection result. It is possible to check whether or not there is an object with a height that may collide.
  • the three-dimensional measuring device 10 is not limited to the above-described embodiment, and includes deformation, improvement, and the like within a range in which the object can be achieved.
  • the three-dimensional measuring device 10 sets margins D 1 and D 2 together with a reference position as a reference in the Z-axis direction in the work 20, but is not limited thereto.
  • the reference position is set at a point closest to the 3-dimensional sensor 101 of the distance of each point on the surface of the workpiece 20 in 3-dimensional information
  • the three-dimensional measuring device 10 is set only margin D 2 You may. That is, the coordinate measuring device 10 may set a shading value of "255" to "0" in the distance range from the distance D to the distance (D + D 2).
  • the three-dimensional measuring device 10 uses a histogram to determine whether the work 20 is on the front side or the back side, and detects the orientation of the work 20, but the present invention is not limited to this.
  • the three-dimensional measuring device 10 stores a model of each posture of the work 20 in the shade image in advance in a storage unit (not shown), and compares the shape of the converted shade image with the stored model of each posture. (Matching) may be performed to obtain the three-dimensional position and orientation of the work 20.
  • FIG. 8A is a diagram showing an example of two-dimensional images of six workpieces 20a (1) -20a (6) captured by the three-dimensional sensor 101.
  • the front side of the work 20a (1), 20a (3), 20a (5) is the upper surface
  • the back side of the work 20a (2), 20a (4), 20a (6) is the upper surface.
  • FIG. 8B shows a shade image of the workpieces 20a (1) -20a (6) of FIG. 8A.
  • the three-dimensional measuring device 10 detects the position and orientation (XYZWPR) of each of the workpieces 20a (1) and 20a (6) on the grayscale image by performing tape rate matching based on the edge of the grayscale image of FIG. 8B, for example. can do.
  • XYZWPR position and orientation
  • FIG. 9A is a diagram showing an example of a histogram of a grayscale image on the front side of the work 20a (1).
  • FIG. 9B is a diagram showing an example of a histogram of a grayscale image on the back side of the work 20a (2).
  • the histograms of FIGS. 9A and 9B exclude the background whose shading value is "1" or less (that is, the mounting surface 30).
  • the number of pixels in the histogram is normalized by setting the number of pixels having the largest shade value as "1".
  • the histograms on the front side of the workpieces 20a (3) and 20a (5) are the same as the histograms of the workpieces 20a (1) of FIG. 9A. Further, the histogram on the back side of the work 20a (4) and 20a (6) is the same as the histogram of the work 20a (2) in FIG. 9B.
  • the three-dimensional measuring device 10 can obtain a more accurate three-dimensional position and orientation of the work 20 in a short time by using the histogram after performing template matching.
  • the gradation image is a black-and-white grayscale image, but the gradation image is not limited to this.
  • the gradation image may be a shade image using gradations of any of red, green, and blue.
  • each function included in the three-dimensional measuring device 10 in one embodiment can be realized by hardware, software, or a combination thereof.
  • what is realized by software means that it is realized by a computer reading and executing a program.
  • Non-transitory computer-readable media include various types of tangible recording media (Tangible storage media). Examples of non-temporary computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory), CD- Includes R, CD-R / W, and semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM).
  • the program may also be supplied to the computer by various types of temporary computer-readable media (Transition computer readable medium). Examples of temporary computer-readable media include electrical, optical, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • the step of describing the program recorded on the recording medium is not only the processing performed in chronological order according to the order, but also the processing executed in parallel or individually even if it is not necessarily processed in chronological order. Also includes.
  • the three-dimensional measuring device and the three-dimensional measuring method of the present disclosure can take various embodiments having the following configurations.
  • the three-dimensional measuring device 10 of the present disclosure serves as a reference in the height direction of the work 20 based on the three-dimensional sensor 101 that images the work 20 and acquires the three-dimensional information and the acquired three-dimensional information.
  • a setting unit that sets margins D 1 and D 2 in the height direction of the gradation image in the gradation image with reference to the reference position D and the reference position D, and sets a distance range corresponding to the gradation degree of the gradation image.
  • the shape and / or position / orientation of the work 20 is three-dimensionally obtained using the 103, the image conversion unit 104 that converts the acquired three-dimensional information into a gradation image based on the distance range, and the gradation image.
  • a detection unit 105 is provided. According to the three-dimensional measuring device 10, the distance range for calculating the gradation degree can be appropriately set according to the height of the work.
  • the detection unit 105 According to the three-dimensional measuring device 10 described in (1), the detection unit 105 generates a histogram using the gradation degree of the gradation image, and the shape of the work 20 and the shape of the work 20 based on the generated histogram. / Or the position and orientation may be obtained three-dimensionally. By doing so, the three-dimensional measuring device 10 can reduce the amount of calculation as compared with the case of using the gradation image.
  • the shape of the work 20 may be the front or back of the work 20.
  • the three-dimensional measuring device 10 can confirm whether or not there is an object having a height that may collide with the surroundings of the work 20.
  • the work 20 is imaged by the three-dimensional sensor 101 to acquire three-dimensional information, and based on the acquired three-dimensional information, a reference in the height direction of the work 20 is used.
  • the margins D 1 and D 2 in the height direction of the gradation image in the gradation image are set, and the distance range corresponding to the gradation degree of the gradation image is set, and the distance range is set.
  • the acquired three-dimensional information is converted into a gradation image, and the shape and / or position / orientation of the work 20 is three-dimensionally obtained using the gradation image. According to this three-dimensional measurement method, the same effect as in (1) can be obtained.
  • a histogram is generated using the gradation degree of the gradation image, and the shape and / or position / orientation of the work 20 is set to 3 based on the generated histogram. It may be obtained three-dimensionally. By doing so, the three-dimensional measurement method can achieve the same effect as in (2).
  • the shape of the work 20 may be the front or back of the work 20. By doing so, the three-dimensional measurement method can achieve the same effect as in (3).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

ワークの高さに応じて階調度を算出するための距離範囲を適切に設定すること。 3次元測定装置は、ワークを撮像して3次元情報を取得する3次元センサと、取得された前記3次元情報に基づいて前記ワークにおける高さ方向の基準となる基準位置、及び前記基準位置を基準にして階調画像における階調度の前記高さ方向のマージンを設定して、前記階調画像の前記階調度に対応する距離範囲を設定する設定部と、前記距離範囲に基づいて、取得された前記3次元情報を前記階調画像に変換する画像変換部と、前記階調画像を用いて前記ワークの形状、及び/又は位置姿勢を3次元的に求める検出部と、を備える。

Description

3次元測定装置、及び3次元測定方法
 本発明は、3次元測定装置、及び3次元測定方法に関する。
 ステレオカメラ等の3次元センサでワークを撮像することで3次元情報を取得し、得られた3次元情報を処理することで、ワークの形状や位置姿勢を3次元的に求めることができる。しかしながら、3次元情報による物体認識は、計算量が多く、処理に時間が掛かるという問題がある。例えば、予め教示したワークの3次元形状を示すモデルを基にワークを検出する場合、3次元情報とモデルとを比較するため、2次元情報の処理の場合と比べて多大な時間が必要になる。
 この点、取得した3次元情報に基づいて算出される距離値を濃淡値に変換し、得られた濃淡画像を基に検出処理を行う技術が知られている。例えば、特許文献1参照。
特開2012-021909号公報
 3次元センサから取得した3次元情報に基づいて算出される距離値の濃淡画像では、ワークの高さに応じて濃淡値が変化する。例えば、濃淡画像における濃淡値は、256階調の場合、黒を示す濃淡値「0」、及び白を示す濃淡値「255」それぞれに対応する距離が3次元センサの光軸に対して垂直な平面からの距離に基づいて予め設定されており、当該距離の範囲で距離に応じて濃淡値が変化する。このため、ワークの大きさによっては、前記距離の範囲を超えてしまう場合がある。
 図10は、3次元センサを基準にした距離の範囲に収まる大きさのワークの濃淡画像、及び横軸を濃淡値とし縦軸を画素数とするヒストグラムの一例を示す図である。図11は、3次元センサを基準にした距離の範囲に収まらない大きさのワークの濃淡画像、及び横軸を濃淡値とし縦軸を画素数とするヒストグラムの一例を示す図である。なお、図10及び図11では、3次元センサから距離Hの位置に白の濃淡値「255」が設定され、距離Hの位置に黒の濃淡値「0」が設定される。また、図10では、Y軸方向に半円形の溝を有するワークを示す。また、図11では、図10のワークと同様の半円形の溝を有し、図10のワークよりZ軸方向の高さを有するワークを示す。
 図10に示すように、ワークの高さが距離Hと距離Hとの範囲に収まっていることから、ワークの形状を反映した濃淡画像が得られる。図10の右側は、濃淡画像のうち、濃淡値「1」以下の背景部分(例えば、ワークが配置されたテーブルの領域)を除いたワークの領域における濃淡値のヒストグラムを示す。
 一方、図11に示すように、ワークの上面が距離Hより3次元センサ側にはみ出していることから、ワークの上面より広い領域が白飛びした濃淡画像が得られる。このため、得られた濃淡画像は、ワークの形状を正しく反映していない。また、図11の右側のヒストグラムでは、白飛びにより濃淡値「255」の画素数が多くなっている。
 このように、同じワーク面でもワークの高さによってヒストグラムが大きく変わってしまうため、予め教示したモデルのヒストグラムとそのまま比較することができず、処理が複雑になることがある。
 そこで、ワークの高さに応じて階調度を算出するための距離範囲を適切に設定することが望まれている。
 (1)本開示の3次元測定装置の一態様は、ワークを撮像して3次元情報を取得する3次元センサと、取得された前記3次元情報に基づいて前記ワークにおける高さ方向の基準となる基準位置、及び前記基準位置を基準にして階調画像における階調度の前記高さ方向のマージンを設定して、前記階調画像の前記階調度に対応する距離範囲を設定する設定部と、前記距離範囲に基づいて、取得された前記3次元情報を前記階調画像に変換する画像変換部と、前記階調画像を用いて前記ワークの形状、及び/又は位置姿勢を3次元的に求める検出部と、を備える。
 (2)本開示の3次元測定方法の一態様は、3次元センサでワークを撮像して3次元情報を取得し、取得された前記3次元情報に基づいて前記ワークにおける高さ方向の基準となる基準位置、及び前記基準位置を基準にして階調画像における階調度の前記高さ方向のマージンを設定して、前記階調画像の前記階調度に対応する距離範囲を設定し、前記距離範囲に基づいて、取得された前記3次元情報を前記階調画像に変換し、前記階調画像を用いて前記ワークの形状、及び/又は位置姿勢を3次元的に求める。
 一態様によれば、ワークの高さに応じて階調度を算出するための距離範囲を適切に設定することができる。
一実施形態に係る3次元測定装置の一構成例を示すブロック図である。 基準位置と距離範囲との一例を示す図である。 ワークと、距離範囲と、濃淡値との関係の一例を示す図である。 ワークの濃淡画像の一例を示す図である。 ワークの濃淡画像の一例を示す図である。 濃淡画像のヒストグラムの一例を示す図である。 ワークの裏側が上面として配置された場合の濃淡画像とヒストグラムとの一例を示す図である。 3次元測定装置の測定処理について説明するフローチャートである。 3次元センサにより撮像された6個のワークの2次元画像の一例を示す図である。 ワークの濃淡画像の一例を示す図である。 ワークの表側の濃淡画像のヒストグラムの一例を示す図である。 ワークの裏側の濃淡画像のヒストグラムの一例を示す図である。 3次元センサを基準にした距離の範囲に収まる大きさのワークの濃淡画像、及び横軸を濃淡値とし縦軸を画素数とするヒストグラムの一例を示す図である。 3次元センサを基準にした距離の範囲に収まらない大きさのワークの濃淡画像、及び横軸を濃淡値とし縦軸を画素数とするヒストグラムの一例を示す図である。
 以下、本発明の実施形態について図面を用いて詳細に説明する。ここでは、階調画像として白黒の濃淡画像を例示する。なお、本発明は、白黒の濃淡画像に限定されず、例えば赤、緑、青のいずれかの色の階調の濃淡画像にも適用可能である。
 図1は、一実施形態に係る3次元測定装置の一構成例を示すブロック図である。
 図1に示すように、3次元測定装置10は、3次元センサ101、ワーク検出部102、設定部103、画像変換部104、及び検出部105を備える。
 図1に示すように、3次元センサ101は、ワーク20及びワーク20が置かれる載置面30を撮像し、3次元センサ101の光軸に対して垂直な平面とワーク20及び載置面30の表面の各点との間の距離を画素値とする3次元情報を取得する。例えば、図1に示すように、3次元情報のワーク20の点Aの画素値は、3次元センサ101の3次元座標系(X,Y,Z)のZ軸方向の、3次元センサ101とワーク20の点Aとの間の距離Dである。3次元座標系のZ軸方向は3次元センサ101の光軸方向となる。以下の説明で距離は、3次元センサ101の3次元座標系(X,Y,Z)のZ軸方向の距離をいうものとする。
 また、3次元センサ101は、3次元情報とともに、RGB画像等の2次元画像を取得してもよい。
 ワーク20は検出対象となる物体である。載置面30は例えば、ワーク20が載置されるテーブルの面である。図1に示すように、ワーク20は3次元センサ101の光軸上に配置されている。ここでは、ワーク20は、Y軸方向に半円形の溝を有する直方体を例示する。
 3次元センサ101としては、例えば、2つのカメラの画像間でマッチングを行うことで検出対象となるワーク20との間の距離を計測するステレオカメラ、プロジェクタから投影するパターンの画像とカメラの画像との間でマッチングを行うことで検出対象なるワーク20との間の距離を計測するステレオカメラを用いることができる。また、3次元センサ101は、プロジェクタからパターンを投影した条件で、2台のカメラの画像間でマッチングを行うことで検出対象となるワーク20との間の距離を計測するステレオカメラを用いることもできる。
 ワーク検出部102は、例えば、3次元センサ101により取得された2次元画像と、3次元測定装置10に含まれるHDD(Hard Disk Drive)等の記憶部(図示しない)に予め記憶されるワーク20の形状を示す2次元モデルと、に基づいて、パターンマッチング等を行い、ワーク20の位置を検出する。
 なお、ワーク検出部102は、例えば、3次元センサ101により取得された3次元情報と、3次元測定装置10の記憶部(図示しない)に予め記憶されるワーク20の形状を示す3次元情報と、に基づくパターンマッチング等により、ワーク20の位置を検出してもよい。
 設定部103は、3次元センサ101により取得された3次元情報と、ワーク検出部102により検出されたワーク20の位置と、に基づいて、ワーク20における高さ方向(Z軸方向)の基準となる基準位置を設定するとともに、Z軸方向に基準位置を含む所定の距離範囲を設定する。
 具体的には、設定部103は、例えば、3次元情報におけるワーク20の表面の各点のZ軸方向の距離のうち3次元センサ101に最も近い距離の点をZ軸方向の基準となる基準位置として設定する。図1の場合、ワーク20の上面の各点が3次元センサ101に最も近い距離となることから、設定部103は、例えば、上面に含まれる点Aを基準位置として設定する。また、設定部103は、図2に示すように、設定した基準位置を基準にして、後述する画像変換部104により3次元情報から変換される濃淡画像の白の基準となる3次元センサ101側のZ軸方向にマージンDと、黒の基準となる3次元センサ101と反対側のZ軸方向にマージンDとを設定する。換言すれば、設定部103は、図3に示すように、Z軸方向に基準位置を含む距離(D-D)から距離(D+D)の距離範囲に、「255」から「0」の濃淡値を設定する。
 画像変換部104は、設定部103により設定された距離(D-D)から距離(D+D)の距離範囲における濃淡値に基づいて、3次元情報におけるワーク20の表面の各点の距離値を濃淡値とした濃淡画像に変換する。
 具体的には、画像変換部104は、例えば、図4Aに示すように、図3のように設定された濃淡値に基づいて、図10と同様の形状を有するワーク20の3次元情報を256階調の濃淡画像に変換する。
 このように、ワーク20が図11と同様の形状を有する場合でも、設定部103は、図4Bに示すように、ワーク20の高さに応じて距離(D’-D)と距離(D’+D)との距離範囲で階調を適切に設定することができる。これにより、画像変換部104は、3次元情報を白飛びのない濃淡画像に変換することができる。
 なお、D’は、3次元センサ101とワーク20の点A’との間のZ軸方向の距離である。そして、図4Bの距離D’が図4Aの距離Dと比べて短いため、図4Bの濃淡画像におけるワーク20が図4Aと比べて3次元センサ101により大きく撮像される。
 検出部105は、変換された濃淡画像に対して画像処理を行い、ワーク20の形状、及び/又は位置姿勢を3次元的に求める。
 具体的には、検出部105は、例えば、変換された濃淡画像のうち、ワーク20に対応する領域の濃淡値を用いて、横軸を濃淡値とし縦軸を画素数とするヒストグラムを生成する。
 図5は、図4Aの濃淡画像のヒストグラムの一例を示す図である。なお、図5では、濃淡値「1」以下の載置面30の背景を除いたワーク20における濃淡値のヒストグラムを示す。
 図5に示すように、ヒストグラムは、図3に示すように、ワーク20の上面の領域R1の面積が広いため濃淡値が160から165の画素数が最も多い。また、ヒストグラムは、半円形の溝の底の部分に対応する領域R3の面積が次に広いため、濃淡値が85から120の画素数が2番目に多い。一方、図3に示すように、半円形の溝の側面に対応する領域R2の面積が最も小さいため、濃淡値が120から160の画素数は最も少ない。
 検出部105は、生成した図5のヒストグラムと、3次元測定装置10の記憶部(図示しない)に予め記憶されたワーク20の表側及び裏側の濃淡を示すヒストグラムのモデルとを比較し、載置面30に配置されたワーク20の上面が表側か裏側かを判定し、ワーク20の向きを検出する。
 図6は、ワーク20の裏側が上面として配置された場合の濃淡画像とヒストグラムとの一例を示す図である。なお、図6の左側は、ワーク20の上面に設定された基準位置と、マージンD、Dとの位置関係を示す。また、図6の中央は、ワーク20の裏側の濃淡画像を示す。また、図6の右側は、ワーク20の裏側における横軸を濃淡値とし縦軸を画素数とするヒストグラムを示す。また、図6のヒストグラムは、図5の場合と同様に、濃淡値「1」以下の載置面30の背景を除いたワーク20における濃淡値を示す。
 図6の中央に示すように、濃淡画像は、ワーク20の裏側が平面のため、凹凸が少なく濃淡が一定の画像を示す。このため、図6の右側に示すように、ワーク20の裏側のヒストグラムは、濃淡値αの画素のみが分布する。
 これにより、図4A(又は図4B)及び図6に示すように、ワーク20の表側と裏側とでヒストグラムの形状が大きく異なるため、3次元測定装置10は、ヒストグラムに基づいて、載置面30上のワーク20が表側か裏側かを判定することができる。
 図1に示した3次元測定装置10に含まれる3次元センサ101を除く機能ブロックを実現するために、3次元測定装置10は、CPU(Central Processing Unit)等の演算処理装置を備えるコンピュータで構成することができる。また、3次元測定装置10は、アプリケーションソフトウェアやOS(Operating System)等の各種の制御用プログラムを格納したHDD等の補助記憶装置や、演算処理装置がプログラムを実行する上で一時的に必要とされるデータを格納するためのRAM(Random Access Memory)といった主記憶装置も備える。
 そして、3次元測定装置10において、演算処理装置が補助記憶装置からアプリケーションソフトウェアやOSを読み込み、読み込んだアプリケーションソフトウェアやOSを主記憶装置に展開させながら、これらのアプリケーションソフトウェアやOSに基づいた演算処理を行なう。また、この演算結果に基づいて、3次元測定装置10が備える各種のハードウェアを制御する。これにより、本実施形態の機能ブロックは実現される。すなわち、本実施形態は、ハードウェアとソフトウェアが協働することにより実現することができる。
<3次元測定装置10の測定処理>
 次に、本実施形態に係る3次元測定装置10の測定処理に係る動作について説明する。
 図7は、3次元測定装置10の測定処理について説明するフローチャートである。
 ステップS11において、3次元センサ101は、ワーク20及びワーク20が置かれる載置面30を撮像し、3次元センサ101とワーク20及び載置面30の表面の各点との間の距離を画素値とする3次元情報、及びRGB画像等の2次元画像を取得する。3次元センサ101は、2次元画像をワーク検出部102に出力し、3次元情報を設定部103に出力する。
 ステップS12において、ワーク検出部102は、ステップS11で取得された2次元画像と、3次元測定装置10の記憶部(図示しない)に予め記憶されるワーク20の2次元モデルと、に基づいて、パターンマッチング等によりワーク20の位置を検出する。
 ステップS13において、設定部103は、ステップS11で取得された3次元情報と、ステップS12で検出されたワーク20の位置と、に基づいて、ワーク20におけるZ軸方向の基準となる基準位置、及びマージンD、Dを設定し、濃淡画像の濃淡値に対応する距離範囲を設定する。
 ステップS14において、画像変換部104は、ステップS13で設定された距離範囲に基づいて、3次元情報を濃淡画像に変換する。
 ステップS15において、検出部105は、ステップS14で変換された濃淡画像の濃淡値を用いて、横軸を濃淡値とし縦軸を画素数とするヒストグラムを生成する。
 ステップS16において、検出部105は、ステップS15で生成されたヒストグラムと、3次元測定装置10の記憶部(図示しない)に予め記憶されたワーク20の表側及び裏側の濃淡値のヒストグラムのモデルとを比較し、載置面30に配置されたワーク20の上面が表側か裏側かを判定し、ワーク20の向きを検出する。
 以上により、一実施形態に係る3次元測定装置10は、3次元センサ101により撮像されたワーク20の表面の各点までのZ軸方向の距離を含む3次元情報を取得する。3次元測定装置10は、取得された3次元情報に基づいて、ワーク20におけるZ軸方向の基準となる基準位置D、及びマージンD、Dを設定し、濃淡画像の濃淡値に対応する距離範囲を設定する。これにより、3次元測定装置10は、ワーク20の高さに応じて階調度を算出するための距離範囲を適切に設定することができ、3次元情報の距離値を濃淡値とした白飛びのない濃淡画像に変換することができる。そして、3次元測定装置10は、ワーク20の高さが変わっても濃淡画像における濃淡値が大きく変わらないため、ヒストグラムのような濃淡値を用いて、ワーク20が表側か裏側かを判定し、ワーク20の向きを検出する検出処理を容易に行うことができる。
 また、3次元測定装置10は、検出結果に基づいて、例えば、表と裏でワーク20を掴む位置(高さ)が変わるような場合において、ロボットによってワーク20を取出す際、ワーク20の周囲に衝突する可能性のある高さの物体が存在しないか否かを確認することができる。
 以上、一実施形態について説明したが、3次元測定装置10は、上述の実施形態に限定されるものではなく、目的を達成できる範囲での変形、改良等を含む。
<変形例1>
 上述の実施形態では、3次元測定装置10は、ワーク20におけるZ軸方向の基準となる基準位置とともに、マージンD、Dを設定したが、これに限定されない。例えば、基準位置が3次元情報におけるワーク20の表面の各点の距離のうち3次元センサ101に最も近い距離の点に設定されることから、3次元測定装置10は、マージンDのみ設定してもよい。すなわち、3次元測定装置10は、距離Dから距離(D+D)の距離範囲に、「255」から「0」の濃淡値を設定してもよい。
<変形例2>
 また例えば、上述の実施形態では、3次元測定装置10は、ヒストグラムを用いて、ワーク20が表側か裏側かを判定し、ワーク20の向きを検出したが、これに限定されない。例えば、3次元測定装置10は、濃淡画像でのワーク20の各姿勢のモデルを予め記憶部(図示しない)に記憶し、変換された濃淡画像と、記憶された各姿勢のモデルとを形状比較(マッチング)を行い、ワーク20の3次元位置姿勢を求めてもよい。
 図8Aは、3次元センサ101により撮像された6個のワーク20a(1)-20a(6)の2次元画像の一例を示す図である。図8Aでは、ワーク20a(1)、20a(3)、20a(5)の表側が上面であり、ワーク20a(2)、20a(4)、20a(6)の裏側が上面である。
 図8Bは、図8Aのワーク20a(1)-20a(6)の濃淡画像を示す。
 3次元測定装置10は、例えば、図8Bの濃淡画像のエッジを基にテープレートマッチングを行うことで、濃淡画像上でワーク20a(1)-20a(6)それぞれの位置姿勢(XYZWPR)を検出することができる。
 また、3次元測定装置10は、上述のテンプレートマッチングを行った後に、図9A及び図9Bに示すヒストグラムを用いてワーク20a(1)-20a(6)それぞれの表裏を判定することで、より正確なワーク20の3次元位置姿勢を求めてもよい。
 図9Aは、ワーク20a(1)の表側の濃淡画像のヒストグラムの一例を示す図である。図9Bは、ワーク20a(2)の裏側の濃淡画像のヒストグラムの一例を示す図である。なお、図9A及び図9Bのヒストグラムは、濃淡値が「1」以下(すなわち、載置面30)の背景を除外している。また、ヒストグラムの画素数は、最も多い濃淡値の画素数を「1」として正規化している。
 なお、ワーク20a(3)、20a(5)の表側のヒストグラムについても、図9Aのワーク20a(1)のヒストグラムと同様である。また、ワーク20a(4)、20a(6)の裏側のヒストグラムについても、図9Bのワーク20a(2)のヒストグラムと同様である。
 ここで、濃淡画像だけでも向きを含めた姿勢の検出は可能であるが、Z軸周りの回転(R方向)の変化を含めた比較処理を行う必要があるため、処理時間がかかる。一方、ヒストグラムは、図9A及び図9Bに示すように、ワークがR方向に変わった場合でも、同様のヒストグラムが得られる。このため、3次元測定装置10は、上述したように、テンプレートマッチングを行った後に、ヒストグラムを用いることで、より正確なワーク20の3次元位置姿勢を短時間で求めることができる。
<変形例3>
 また例えば、上述の実施形態では、階調画像は、白黒の濃淡画像としたが、これに限定されない。例えば、階調画像は、赤、緑、青のいずれかの色の階調を用いた濃淡画像でもよい。
 なお、一実施形態における、3次元測定装置10に含まれる各機能は、ハードウェア、ソフトウェア又はこれらの組み合わせによりそれぞれ実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(Non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(Tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM)を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(Transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は、無線通信路を介して、プログラムをコンピュータに供給できる。
 なお、記録媒体に記録されるプログラムを記述するステップは、その順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
 以上を換言すると、本開示の3次元測定装置、及び3次元測定方法は、次のような構成を有する各種各様の実施形態を取ることができる。
 (1)本開示の3次元測定装置10は、ワーク20を撮像して3次元情報を取得する3次元センサ101と、取得された3次元情報に基づいてワーク20における高さ方向の基準となる基準位置D、及び基準位置Dを基準にして階調画像における階調度の高さ方向のマージンD、Dを設定して、階調画像の階調度に対応する距離範囲を設定する設定部103と、距離範囲に基づいて、取得された3次元情報を階調画像に変換する画像変換部104と、階調画像を用いてワーク20の形状、及び/又は位置姿勢を3次元的に求める検出部105と、を備える。
 この3次元測定装置10によれば、ワークの高さに応じて階調度を算出するための距離範囲を適切に設定することができる。
 (2) (1)に記載の3次元測定装置10によれば、検出部105は、階調画像の階調度を用いてヒストグラムを生成し、生成されたヒストグラムに基づいてワーク20の形状、及び/又は位置姿勢を3次元的に求めてもよい。
 そうすることで、3次元測定装置10は、階調画像を用いる場合と比べて、計算量を減らすことができる。
 (3) (1)又は(2)に記載の3次元測定装置10において、ワーク20の形状は、ワーク20の表又は裏であってもよい。
 そうすることで、3次元測定装置10は、ロボットによってワーク20を取出す際、ワーク20の周囲に衝突する可能性のある高さの物体が存在しないか否かを確認することができる。
 (4)本開示の3次元測定方法は、3次元センサ101でワーク20を撮像して3次元情報を取得し、取得された3次元情報に基づいてワーク20における高さ方向の基準となる基準位置D、及び基準位置Dを基準にして階調画像における階調度の高さ方向のマージンD、Dを設定して、階調画像の階調度に対応する距離範囲を設定し、距離範囲に基づいて、取得された3次元情報を階調画像に変換し、階調画像を用いてワーク20の形状、及び/又は位置姿勢を3次元的に求める。
 この3次元測定方法によれば、(1)と同様の効果を奏することができる。
 (5) (4)に記載の3次元測定方法によれば、階調画像の階調度を用いてヒストグラムを生成し、生成されたヒストグラムに基づいてワーク20の形状、及び/又は位置姿勢を3次元的に求めてもよい。
 そうすることで、3次元測定方法は、(2)と同様の効果を奏することができる。
 (6) (4)又は(5)に記載の3次元測定方法において、ワーク20の形状は、ワーク20の表又は裏であってもよい。
 そうすることで、3次元測定方法は、(3)と同様の効果を奏することができる。
 10 3次元測定装置
 20 ワーク
 30 載置面
 101 三次元センサ
 102 ワーク検出部
 103 設定部
 104 画像変換部
 105 検出部

Claims (6)

  1.  ワークを撮像して3次元情報を取得する3次元センサと、
     取得された前記3次元情報に基づいて前記ワークにおける高さ方向の基準となる基準位置、及び前記基準位置を基準にして階調画像における階調度の前記高さ方向のマージンを設定して、前記階調画像の前記階調度に対応する距離範囲を設定する設定部と、
     前記距離範囲に基づいて、取得された前記3次元情報を前記階調画像に変換する画像変換部と、
     前記階調画像を用いて前記ワークの形状、及び/又は位置姿勢を3次元的に求める検出部と、
     を備える3次元測定装置。
  2.  前記検出部は、前記階調画像の前記階調度を用いてヒストグラムを生成し、生成された前記ヒストグラムに基づいて前記ワークの形状、及び/又は位置姿勢を3次元的に求める、請求項1に記載の3次元測定装置。
  3.  前記ワークの形状は、前記ワークの表又は裏である、請求項1又は請求項2に記載の3次元測定装置。
  4.  3次元センサでワークを撮像して3次元情報を取得し、
     取得された前記3次元情報に基づいて前記ワークにおける高さ方向の基準となる基準位置、及び前記基準位置を基準にして階調画像における階調度の前記高さ方向のマージンを設定して、前記階調画像の前記階調度に対応する距離範囲を設定し、
     前記距離範囲に基づいて、取得された前記3次元情報を前記階調画像に変換し、
     前記階調画像を用いて前記ワークの形状、及び/又は位置姿勢を3次元的に求める
     3次元測定方法。
  5.  前記階調画像の前記階調度を用いてヒストグラムを生成し、
     生成された前記ヒストグラムに基づいて前記ワークの形状、及び/又は位置姿勢を3次元的に求める、請求項4に記載の3次元測定方法。
  6.  前記ワークの形状は、前記ワークの表又は裏である、請求項4又は請求項5に記載の3次元測定方法。
PCT/JP2021/007731 2020-03-05 2021-03-01 3次元測定装置、及び3次元測定方法 WO2021177236A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022504353A JP7401648B2 (ja) 2020-03-05 2021-03-01 3次元測定装置、及び3次元測定方法
US17/801,343 US20230083531A1 (en) 2020-03-05 2021-03-01 Three-dimensional measuring device, and three-dimensional measuring method
DE112021001433.1T DE112021001433T5 (de) 2020-03-05 2021-03-01 Drei-dimensionale Messvorrichtung und drei-dimensionales Messverfahren
CN202180018261.4A CN115280097A (zh) 2020-03-05 2021-03-01 三维测量装置和三维测量方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-037898 2020-03-05
JP2020037898 2020-03-05

Publications (1)

Publication Number Publication Date
WO2021177236A1 true WO2021177236A1 (ja) 2021-09-10

Family

ID=77613464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007731 WO2021177236A1 (ja) 2020-03-05 2021-03-01 3次元測定装置、及び3次元測定方法

Country Status (5)

Country Link
US (1) US20230083531A1 (ja)
JP (1) JP7401648B2 (ja)
CN (1) CN115280097A (ja)
DE (1) DE112021001433T5 (ja)
WO (1) WO2021177236A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252587A (ja) * 1998-03-03 1999-09-17 Matsushita Electric Ind Co Ltd 物体追跡装置
JP2008246631A (ja) * 2007-03-30 2008-10-16 Fanuc Ltd 対象物取出装置
JP2015038466A (ja) * 2013-07-16 2015-02-26 株式会社キーエンス 三次元画像処理装置、三次元画像処理方法及び三次元画像処理プログラム並びにコンピュータで読み取り可能な記録媒体及び記録した機器
JP2015045587A (ja) * 2013-08-28 2015-03-12 株式会社キーエンス 三次元画像処理装置、三次元画像処理装置の状態変化判定方法、三次元画像処理装置の状態変化判定プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
JP2017010327A (ja) * 2015-06-23 2017-01-12 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181880A (ja) * 1989-01-09 1990-07-16 Nippon Telegr & Teleph Corp <Ntt> 三次元形状検出装置
JP5458885B2 (ja) 2007-08-30 2014-04-02 株式会社安川電機 物体検出方法と物体検出装置およびロボットシステム
JP5564348B2 (ja) 2010-07-15 2014-07-30 株式会社キーエンス 画像処理装置及び外観検査方法
JP6231302B2 (ja) 2013-06-12 2017-11-15 株式会社ブリヂストン 検査補助装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252587A (ja) * 1998-03-03 1999-09-17 Matsushita Electric Ind Co Ltd 物体追跡装置
JP2008246631A (ja) * 2007-03-30 2008-10-16 Fanuc Ltd 対象物取出装置
JP2015038466A (ja) * 2013-07-16 2015-02-26 株式会社キーエンス 三次元画像処理装置、三次元画像処理方法及び三次元画像処理プログラム並びにコンピュータで読み取り可能な記録媒体及び記録した機器
JP2015045587A (ja) * 2013-08-28 2015-03-12 株式会社キーエンス 三次元画像処理装置、三次元画像処理装置の状態変化判定方法、三次元画像処理装置の状態変化判定プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
JP2017010327A (ja) * 2015-06-23 2017-01-12 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム

Also Published As

Publication number Publication date
US20230083531A1 (en) 2023-03-16
JPWO2021177236A1 (ja) 2021-09-10
DE112021001433T5 (de) 2023-01-26
JP7401648B2 (ja) 2023-12-19
CN115280097A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US9014433B2 (en) Measurement apparatus, information processing apparatus, information processing method, and storage medium
US10478149B2 (en) Method of automatically positioning an X-ray source of an X-ray system and an X-ray system
JP3951984B2 (ja) 画像投影方法、及び画像投影装置
US9621793B2 (en) Information processing apparatus, method therefor, and measurement apparatus
JP3930482B2 (ja) 3次元視覚センサ
EP3761013A1 (en) Method for inspecting mounting state of component, printed circuit board inspection apparatus, and computer readable recording medium
JP6073858B2 (ja) 顔の位置検出
KR20170048720A (ko) 구조광 기반 3차원 카메라의 최적 노출 시간 및 횟수 결정 방법과 시스템
US11443418B2 (en) Machine vision system with a computer generated virtual reference object
US20160110840A1 (en) Image processing method, image processing device, and robot system
US20150003685A1 (en) Information processing apparatus, assembly apparatus, information processing method, and storage medium
US9560250B2 (en) Information processing apparatus, measurement system, control system, light amount determination method and storage medium
WO2021177236A1 (ja) 3次元測定装置、及び3次元測定方法
JPS63311485A (ja) 自動キャリブレ−ション装置
JP6548076B2 (ja) パターン画像投射装置、視差情報生成装置、パターン画像生成プログラム
JP7047848B2 (ja) 顔三次元形状推定装置、顔三次元形状推定方法、及び、顔三次元形状推定プログラム
US11717970B2 (en) Controller, control method using controller, and control system
JP6061631B2 (ja) 計測装置、情報処理装置、計測方法、情報処理方法、および、プログラム
JP7415028B2 (ja) 撮像条件調整装置、及び撮像条件調整方法
WO2022050169A1 (ja) ロボットシステム及び制御方法
WO2021193236A1 (ja) 画像処理装置及び画像処理方法
US20240075627A1 (en) Three-dimensional measuring apparatus, three-dimensional measuring method, storage medium, system, and method for manufacturing an article
JP2021183921A (ja) 三次元計測装置
KR20230007034A (ko) 어안 왜곡 이미지의 무손실 보정 방법 및 장치
CN116034002A (zh) 图像处理装置和机器人控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504353

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21764972

Country of ref document: EP

Kind code of ref document: A1