WO2021177123A1 - Artificial nucleic acid - Google Patents

Artificial nucleic acid Download PDF

Info

Publication number
WO2021177123A1
WO2021177123A1 PCT/JP2021/006992 JP2021006992W WO2021177123A1 WO 2021177123 A1 WO2021177123 A1 WO 2021177123A1 JP 2021006992 W JP2021006992 W JP 2021006992W WO 2021177123 A1 WO2021177123 A1 WO 2021177123A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
substituent
formula
skeleton
Prior art date
Application number
PCT/JP2021/006992
Other languages
French (fr)
Japanese (ja)
Inventor
順哉 千葉
将彦 井上
史大 黒崎
Original Assignee
国立大学法人富山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人富山大学 filed Critical 国立大学法人富山大学
Priority to JP2022505151A priority Critical patent/JPWO2021177123A1/ja
Publication of WO2021177123A1 publication Critical patent/WO2021177123A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system

Definitions

  • the present invention relates to novel compounds and the like.
  • Non-Patent Document 1 Non-Patent Document 2
  • Non-Patent Document 2 Non-Patent Document 2. See Document 3 and Non-Patent Document 4).
  • An object of the present invention is to provide a novel compound or the like.
  • the artificial DNA has physicochemical properties such as a basic skeleton and double chain melting temperature (Tm value) as compared with natural nucleic acids such as naturally occurring DNA (natural DNA) or RNA (natural RNA). It is very similar in terms of molecular structure such as hydrogen bond and double helix structure, and it is possible not only to form a double helix structure between artificial DNAs but also to form a double helix structure with natural DNA.
  • Tm value basic skeleton and double chain melting temperature
  • the above-mentioned artificial DNA has almost the same affinity for nucleic acid as that of natural nucleic acid, or has lower affinity than natural nucleic acid. Therefore, when natural nucleic acids form a double helix structure, even if heat treatment is performed, the artificial DNA replaces the natural nucleic acid having a sequence corresponding to the artificial DNA in one of the double strands. In addition, it was difficult to form a double helix structure with a natural nucleic acid having a sequence complementary to artificial DNA, which is the other of the double strands.
  • the present inventor can obtain a novel compound in which the sugar skeleton is bonded to a specific structure via a carbon-carbon triple bond. Further, when a polymer was formed using such a novel compound, it was surprisingly found that it could have a high affinity with other nucleic acids such as natural DNA, and the present invention was completed. I arrived.
  • X is a heteroaromatic ring group ⁇ or a group having an aromatic heterocyclic skeleton [for example, a group having only an aromatic heterocyclic skeleton (aromatic heterocyclic skeleton, an aromatic heterocycle which may have a substituent).
  • X is a pyridine ring group [for example, a pyridine skeleton (a pyridine skeleton that may have a substituent)], a pyrimidine ring group [for example, a pyrimidine skeleton (a pyrimidine skeleton that may have a substituent)].
  • the compound according to the above [1] or [2], which is a purine ring group [for example, a purine skeleton (a purine skeleton that may have a substituent)].
  • R 1 and R 3 are hydroxy groups and R 2 is a hydrogen atom.
  • a novel compound can be obtained.
  • Such a novel compound can be suitably used as a raw material for a polymer, for example.
  • a polymer containing a novel compound as a polymerization component can be obtained.
  • Such polymers have an affinity for, for example, nucleic acids (such as natural nucleic acids) and are often capable of forming base pairs.
  • such a polymer can efficiently form base pairs with high affinity for nucleic acids (and thus excellent thermal stability).
  • Such a polymer can be suitably used as a nucleic acid detection material because, for example, nucleic acid can be easily and easily detected.
  • the above-mentioned polymer or base pair can be suitably used as a nucleic acid medicine.
  • FIG. 1A is a diagram showing UV-vis spectrum measurement results using compounds 5 and 7 obtained in Examples.
  • FIG. 1B is a diagram showing the results of CD spectrum measurement using compounds 5 and 7.
  • FIG. 1C is a diagram showing the measurement results of the double chain melting temperature using compounds 5 and 7.
  • FIG. 2A is a diagram showing UV-vis spectrum measurement results using the compounds 5 and 13 obtained in the examples.
  • FIG. 2B is a diagram showing the results of CD spectrum measurement using compounds 5 and 13.
  • FIG. 2C is a diagram showing the measurement results of the double chain melting temperature using the compounds 5 and 13.
  • FIG. 3A is a diagram showing the results of UV-vis spectrum measurement using the compounds 5 and 6 obtained in the examples.
  • FIG. 3B is a diagram showing the results of CD spectrum measurement using compounds 5 and 6.
  • FIG. 3C is a diagram showing the measurement results of the double chain melting temperature using the compounds 5 and 6.
  • X is an aromatic ring group
  • R 1 is -OR 1a (in the formula, R 1a represents a hydrogen atom or a substituent) or a phosphoramidite group
  • R 2 is a hydrogen atom or a substituent and is
  • R 3 is a halogen atom or ⁇ OR 3a (in the formula, R 3a represents a hydrogen atom or a substituent).
  • the aromatic ring group represented by X in the above formula (A) may be a group having an aromatic ring skeleton whose ring structure exhibits aromaticity, and may have an aromatic ring skeleton (even if it has a substituent). It may be one having only a good aromatic ring skeleton (aromatic ring skeleton (aromatic ring skeleton which may have a substituent)].
  • the aromatic ring skeleton may be a single ring or a ring containing a plurality of rings (for example, a condensed ring).
  • aromatic ring skeleton examples include an aromatic hydrocarbon ring skeleton and an aromatic heterocyclic ring skeleton.
  • the number of ring members of these aromatic ring skeletons may be, for example, 5 to 20, preferably 5 to 15, and more preferably 6 to 14.
  • aromatic hydrocarbon ring skeleton examples include benzene, naphthalene, anthracene, and tetracene.
  • the aromatic heterocyclic skeleton may have an aromatic heterocyclic skeleton containing at least one heteroatom other than a carbon atom on the ring structure, and the heteroatom may be, for example, an oxygen atom. Examples include a sulfur atom and a nitrogen atom. A nitrogen atom is preferable because it facilitates the formation of hydrogen bonds.
  • the aromatic heterocyclic skeleton may have one or more heteroatoms. When having two or more heteroatoms, the heteroatoms may be the same or different. When the aromatic heterocyclic skeleton contains a plurality of rings, the hetero atom may have at least one ring, and all the rings may have a hetero atom.
  • aromatic heterocyclic skeleton examples include an aromatic heterocyclic skeleton containing an oxygen atom (for example, furan, benzofuran, isobenzofuran, etc.) and an aromatic heterocyclic skeleton containing a sulfur atom (for example, thiophene, benzothiophene).
  • an aromatic heterocyclic skeleton containing an oxygen atom for example, furan, benzofuran, isobenzofuran, etc.
  • an aromatic heterocyclic skeleton containing a sulfur atom for example, thiophene, benzothiophene
  • Aromatic heterocyclic skeleton containing nitrogen atoms ⁇ eg, aromatic heterocyclic skeletons containing only nitrogen atoms (eg, pyrrole, indol, isoindole, pyridine, quinoline, isoquinolin, imidazole, benzoimidazole, pyrazole, etc.) Indazole, pyrazine, pyrimidine, pyridazine, quinoxalin, quinazoline, cinnoline, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, purine, etc.), nitrogen atoms and other heteroatoms.
  • nitrogen atoms and other heteroatoms eg, pyrrole, indol, isoindole, pyridine, quinoline, isoquinolin, imidazole, benzoimidazole, pyrazole, etc.
  • Indazole pyrazine, pyrimidine
  • Aromatic heterocyclic skeletons containing [eg, aromatic heterocyclic skeletons containing oxygen and nitrogen atoms (eg, oxazole, benzoxazole, etc.), aromatic heterocyclic skeletons containing sulfur and nitrogen atoms (eg, thiazole). , Benzothiazole, etc.), etc.], etc. ⁇ and the like.
  • a pyridine skeleton, a pyrimidine skeleton, a purine skeleton, a pyrazine skeleton or a pyridazine skeleton is preferable, and a pyridine skeleton, a pyrimidine skeleton or a purine skeleton is more preferable.
  • the aromatic ring skeleton may have a substituent.
  • substituents include a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), a hydroxy group, an amino group, a nitro group, a cyano group, a phosphoric acid group (-H 2 PO 3 ), and phosphorus.
  • a halogen atom for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.
  • a hydroxy group for example, an amino group, a nitro group, a cyano group, a phosphoric acid group (-H 2 PO 3 ), and phosphorus.
  • examples thereof include an acid ester group, an oxo group, a mercapto group (thiol group), a thioether group, a thiocarbonyl group, a sulfo
  • the phosphate group which at least partially is ionized (e.g., -HPO 3 -, -PO 3 2-, etc.).
  • the organic group may be a monovalent organic group or a divalent organic group.
  • the substituent for example, hydroxy group, amino group, oxo group, organic group (for example, alkyl group), etc.] is a nucleic acid base as the group X (for example, adenin, guanine, amino group of cytosine, guanine, uracil, etc. It may constitute a skeleton (such as cytosine, an oxo group of timine, a methyl group of timine, etc.).
  • the compound having an oxo group as a substituent may be an isomer (keto-enol isomer) of a compound having a hydroxy group as a substituent depending on the substitution position and the like. Therefore, in the present specification, the compound having an oxo group (or hydroxy group) as a substituent is assumed to contain the isomer.
  • the aromatic ring skeleton may have the above substituents alone or in combination of two or more.
  • the organic group is not particularly limited as long as it has at least one carbon atom, and may have a bond containing a hetero atom.
  • a hetero atom include an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a silicon atom and the like.
  • the bond containing the hetero atom for example, -O -, - CO -, - COO -, - S -, - NR 4 - (R 4 is a hydrogen atom or a monovalent organic group), - PR 5 - (R 5 is a hydrogen atom or a monovalent organic group), - SiR 6 R 7 - (R 6 and R 7 are hydrogen atom or a monovalent organic group).
  • the bond containing the heteroatom may be present alone or in combination of two or more.
  • the bond containing the heteroatom may be included in the monovalent organic group, and may be present at the bond end of the monovalent organic group, for example, and the bonds containing a plurality of heteroatoms are bonded to each other. May be adjacent to each other.
  • Examples of the monovalent organic group represented by R 4 to R 7 include those similar to the monovalent organic group that the aromatic ring group represented by X may have. Be done.
  • the monovalent organic group represented by R 4 to R 7 may be, for example, a monovalent organic group having 1 to 30 carbon atoms, or a monovalent organic group having 1 to 20 carbon atoms. May be good.
  • organic groups include, for example, a hydrocarbon group [for example, an alkyl group (for example, a methyl group, an ethyl group, a 1-propyl group, a 2-propyl group, an n-butyl group, etc.), an alkenyl group (for example, vinyl).
  • a hydrocarbon group for example, an alkyl group (for example, a methyl group, an ethyl group, a 1-propyl group, a 2-propyl group, an n-butyl group, etc.), an alkenyl group (for example, vinyl).
  • alkynyl group eg, propargyl group, etc.
  • cycloalkyl group eg, cyclohexyl group, etc.
  • cycloalkenyl group eg, cyclobutenyl group, cyclopentenyl group, etc.
  • aryl group eg, phenyl group
  • Etc. e.g., Etc.
  • aralkyl group eg, benzyl group, etc.
  • substituted hydroxy group eg, alkoxy group (eg, methoxy group, ethoxy group, phenoxy group, etc.), silyloxy group (eg, tert-butyldimethylsilyloxy group, etc.), etc.
  • Trialkylsilyloxy group, etc. alkoxysilyl group (eg, methoxysilyl group, ethoxysilyl group, triisopropylsiloxymethyl (TOM) group, etc.)], acyl group (eg, acetyl group, benzoyl group, phenoxyacetyl group, etc.) ), Formyl group, carboxy group, ester group (eg, alkoxycarbonyl group such as methoxycarbonyl group, ethoxycarbonyl group), substituted mercapto group [eg, thioalkoxy group (eg, methylthio group)], thioacyl group (eg, eg, methylthio group).
  • alkoxysilyl group eg, methoxysilyl group, ethoxysilyl group, triisopropylsiloxymethyl (TOM) group, etc.
  • acyl group eg, acetyl group, benzoyl
  • alkylamino group eg, methylamino group, dimethylamino group, etc.
  • aralkylamino group eg, benzylamino, etc.
  • acylamino group eg, benzylamino group
  • a substituted phosphate group for example, a phosphate ester group (for example, a group in which a hydrogen atom constituting the phosphate group is replaced with an alkyl group, etc.)
  • the substituent is a protected (protected by a protecting group (leaving group)) functional group (for example, a hydroxy group, an amino group, a thio group, a phosphate group (-H 2 PO 3 ), a carboxyl group, etc.). May be good.
  • the protecting group may usually be a leaving group (a group that can be removed).
  • group-OC 2,2,2-trichloroacetimideyloxy group
  • NH) -CCl 3 NH
  • N-phenyl trifluoroacetimideyloxy group
  • carbonate group or carbonate ester group, for example 2,2) , 2-Trichloroethoxydicarbonyloxy group, etc.
  • Typical substituents include, for example, halogen atoms (eg, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), nitro group, cyano group, oxo group, and optionally substituted hydroxy group [eg, hydroxy group.
  • halogen atoms eg, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.
  • nitro group eg, cyano group, oxo group
  • optionally substituted hydroxy group eg, hydroxy group.
  • the substitution site (substitution position with respect to the aromatic ring skeleton) of the substituent is not particularly limited and may be a carbon atom on the aromatic ring skeleton.
  • the aromatic ring skeleton is an aromatic heterocyclic skeleton
  • the aromatic heterocycle may be used. It may be a heteroatom on the ring skeleton (eg, a nitrogen atom, etc.) or both.
  • aromatic ring skeleton or aromatic ring group
  • structures represented by the following formulas (X-1) to (X-5).
  • R c is a substituent independently of each other.
  • R d is a hydrogen atom or a substituent and is m1 is an integer from 0 to 5 and m2 is an integer from 0 to 4 and m3 is an integer of 0 to 3.
  • Examples of the substituents represented by R c and R d include the same groups as those exemplified as the substituents that the aromatic ring group (aromatic ring skeleton) represented by X may have. ..
  • the R d is preferably an alkyl group having 1 to 5 carbon atoms, an amino group, or a protecting group for an amino group.
  • the bonding position of the aromatic ring group is not particularly limited, and for example, the position excluding one hydrogen atom constituting the aromatic ring group (aromatic ring group or aromatic). Any carbon atom or the like constituting the ring skeleton may be used.
  • the aromatic ring group the pyridine skeleton, the pyrimidine skeleton and the purine skeleton have the following formulas (X-1-1) to (X-1-2), (X-2-1) to (X-2-4). ), (X-3-1) to (X-3-2) may be the structure (skeleton, group).
  • R c and R d are synonymous with the above formulas (X-1) to (X-3).
  • Re and R f are hydrogen atoms or substituents and are m4 is an integer from 0 to 4 and m5 is an integer from 0 to 3 and m6 and m7 are independently integers of 0 to 2.
  • the substituents represented by Re and R f are the same as the monovalent groups among the groups exemplified as the substituents that the aromatic ring group (aromatic ring skeleton) represented by X may have. Can be mentioned.
  • the bond position (substitution or bond position with respect to the acetylene group, -C ⁇ C-) of the aromatic ring group is not particularly limited, and for example, constitutes a ring of the aromatic ring skeleton. It may be either a carbon atom, a hetero atom constituting the ring of the aromatic heterocyclic skeleton among the aromatic ring skeletons, or a substituent having the aromatic ring skeleton, but typically constitutes the ring of the aromatic ring skeleton.
  • the carbon atoms or the aromatic ring skeleton may be a hetero atom constituting the ring of the aromatic heterocyclic skeleton, particularly a carbon atom constituting the ring of the aromatic ring skeleton.
  • the aromatic ring skeleton is a pyridine skeleton, it is preferably bonded at the carbon atom at the 3- or 5-position of the skeleton, and is bonded at the carbon atom at the 5-position of the skeleton. Is more preferable.
  • the aromatic ring skeleton is a pyrimidine skeleton, it is preferably bonded at the carbon atom at the 5-position of the skeleton.
  • Examples of the aromatic ring group represented by X include an aromatic heterocyclic skeleton containing a nitrogen atom (an aromatic heterocyclic skeleton in which the nitrogen atom is a heteroatom constituting the ring of the aromatic ring skeleton).
  • an aromatic heterocyclic skeleton in which the nitrogen atom is a heteroatom constituting the ring of the aromatic ring skeleton.
  • a pyridine skeleton pyridine skeleton which may have a substituent
  • pyrimidine skeleton pyrimidine skeleton which may have a substituent
  • purine skeleton purine skeleton which may have a substituent
  • Pyrazine skeleton (pyrazine skeleton which may have a substituent) or pyridazine skeleton (pyridazine skeleton which may have a substituent), and pyridine skeleton, pyrimidine skeleton or purine skeleton is preferable.
  • Examples of the substituent represented by R 1a include the same groups as those exemplified as the substituents that the aromatic ring group represented by X may have.
  • a group having at least one phosphoric acid group for example, monophosphoric acid, diphosphoric acid, triphosphate, etc. is preferable.
  • the R 1 is preferably a hydroxy group or a phosphoramidite group.
  • Examples of the halogen atom represented by R 3 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • substituents represented by R 2 and R 3a include the same groups as those exemplified as the substituents that the aromatic ring group represented by X may have.
  • the substituents represented by R 2 and R 3a may be the same or different.
  • the substituent represented by R 2 and R 3a is preferably a protecting group of a hydroxy group bonded to the 2-position and / or 5-position of the sugar skeleton, and the protecting group of the hydroxy group is unnecessary. When it becomes, it is preferable that it is a group that can be deprotected.
  • hydroxy group protective group examples include an acyl group (for example, an acetyl group, a benzoyl group, etc.), an aralkyl group (for example, a benzyl group, etc.), a trialkylsilyl group (for example, a trimethylsilyl group, a triethylsilyl group, a TBS group, etc.). ), A group having a trityl group and the like.
  • Examples of the substituent (protective group) represented by R 2 and R 3a include a trityl group and a silyl group (for example, a trimethylsilyl group, a triethylsilyl group and a tert-butyldimethylsilyl) which may have a substituent. (TBS) group, etc.), acyl group (eg, acetyl group, benzoyl group, phenoxyacetyl group, etc.), alkoxysilyl group (eg, methoxysilyl group, ethoxysilyl group, triisopropylsiloxymethyl (TOM) group, etc.), etc. Can be mentioned.
  • R 2 As the substituent (protecting group) represented by R 2 , a trityl group which may have a substituent is preferable.
  • an alkoxy group having 1 to 5 carbon atoms is preferable, and a methoxy group is more preferable.
  • R 3a As the substituent (protecting group) represented by R 3a , a silyl group and an alkoxysilyl group are preferable, and a TBS group and a TOM group are more preferable.
  • the phosphoramidite group has a structure represented by the following formula (I).
  • R 1b , R 1c and R 1d are independently hydrogen atoms or substituents. * Indicates the binding site with the sugar skeleton in the above formula (A). )
  • R 1b , R 1c and R 1d examples include the same groups as those exemplified as the substituent that X of the above formula (A) may have.
  • the R 1b is preferably a protecting group for the hydroxy group of phosphoric acid, and the protecting group is preferably a group that can be deprotected when it is no longer needed.
  • R 1b As the substituent (protecting group) represented by R 1b , a hydrocarbon group having 1 to 5 carbon atoms substituted with a cyano group is preferable.
  • a hydrocarbon group having 1 to 10 carbon atoms which may be substituted is preferable, and a hydrocarbon group having 1 to 5 carbon atoms which may be substituted is more preferable.
  • an alkyl group having 1 to 5 carbon atoms which may be substituted is more preferable, and a 2-propyl group is particularly preferable.
  • the compound represented by the above formula (A) can be prepared, for example, using the compound represented by the following formula (II) as a raw material.
  • the compound represented by the following formula (II) a commercially available product may be used as long as it is available, or a synthesized (manufactured) compound may be used.
  • R 1 ' is -OR 1a' (wherein, R 1a 'is a hydrogen atom or a substituent.) Or a phosphoramidite group, R 2a is a hydrogen atom or a substituent and is R 3 'is a halogen atom or -OR 3a' (wherein, R 3a 'is a hydrogen atom or a substituent.) It is. ]
  • the ratio of the compound represented by the following formula (III) to be used is, for example, 0.3 mol or more (for example, 0.4 to 0.4 to 1 mol) of the compound represented by the above formula (II). It may be 10 mol) or more, preferably 0.5 mol or more (for example, 0.6 to 5 mol), and more preferably 0.6 mol or more (for example, 0.7 to 3 mol).
  • the coupling reaction may be carried out in the presence of a catalyst.
  • a catalyst include palladium (for example, palladium chloride (PdCl 2 ), dichlorobis (triphenylphosphine) palladium (II) (PdCl 2 (PPh 3 ) 2 ), palladium acetate (Pd (OAc) 2 ), tetrakis (triphenyl).
  • the catalyst may be used alone or in combination of two or more. As the catalyst, palladium, copper and a combination thereof are preferable, and a combination of palladium and copper is more preferable.
  • the coupling reaction may be carried out in the presence of a base.
  • a base examples include amines (eg, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, etc.), carbonates (eg, alkali metal carbonates such as sodium carbonate, potassium carbonate, cesium carbonate, etc.), silver oxide, and the like.
  • amines eg, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, etc.
  • carbonates eg, alkali metal carbonates such as sodium carbonate, potassium carbonate, cesium carbonate, etc.
  • silver oxide and the like.
  • pyridines pyridine, picolin, etc.
  • the above bases may be used alone or in combination of two or more.
  • amine is preferable, and diethylamine and triethylamine are more preferable from the viewpoint that they can also be used as a solvent
  • the coupling reaction may be carried out in a solvent.
  • the solvent is not particularly limited as long as it does not inhibit the coupling reaction, and is, for example, hydrocarbons [for example, aliphatic hydrocarbons (for example, hexane, heptane, cyclohexane, etc.), aromatic hydrocarbons (for example, for example).
  • Benzene, toluene, xylene, etc.] halogenated hydrocarbons eg, methylene chloride, dichloromethane, chloroform, etc.
  • ethers eg, chain ethers (eg, diethyl ether, etc.), cyclic ethers (eg, eg, diethyl ether, etc.) , Tetrahydrofuran, dioxane, etc.], esters (eg, ethyl acetate, etc.), amides [eg, N-substituted amides (N-alkylalkaneamides, such as N, N-dimethylformamide), etc.], alcohols (eg, N-alkylalkaneamides, etc.) , Alkanels such as methanol, ethanol and isopropanol), aprotonic polar solvents (eg, acetonitrile, acetone and the like) and the like.
  • the reaction may be carried out at room temperature (or room temperature), cooling, or heating. Further, the reaction may be carried out in air or in an inert atmosphere (noble gas such as nitrogen or argon).
  • the reaction time is not particularly limited, but is, for example, 1 minute or more (for example, 2 minutes to 48 hours), preferably 3 minutes or more (for example, 4 minutes or more to 24 hours), and more preferably 5 minutes or more (for example, 10 minutes). It may be about minutes to 12 hours).
  • the progress of the reaction may be confirmed by using a conventional method such as thin layer chromatography (TLC).
  • aromatic ring group represented by X' the same group as the aromatic ring group represented by X in the above formula (A) can be mentioned.
  • a halogen atom is preferable because it is easy to adjust the binding site in X.
  • the compound represented by the above formula (III) is not particularly limited as long as the above A is a group that can be eliminated during the coupling reaction, and the convenience of preparing the compound represented by the above formula (III) or It can be appropriately set from the viewpoint of detachability.
  • the bond site is preferably bonded to a carbon atom constituting the aromatic ring skeleton in the aromatic ring group represented by X', and in particular, when the aromatic ring group is a pyridine ring group or a pyrimidine ring group. , It is preferable that it is bonded to the carbon atom at the 5-position of these aromatic ring skeletons.
  • the compound represented by the above formula (IV) can be obtained.
  • the reaction mixture (mixture containing the compound represented by the formula (IV)) may be subjected to the reaction described later as it is without separation (or recovery), or may be separated (or recovered).
  • the above formula (A) is carried out by yet another reaction (for example, deprotection reaction, phosphoramidite conversion reaction, etc.).
  • the compound represented by may be prepared.
  • the deprotection reaction is not particularly limited as long as it can deprotect the substituents at the 2-position and / or the 6-position of the sugar skeleton of the compound represented by the above formula (IV).
  • the 2- and 6-position substituents of the sugar skeleton may be deprotected in a single reaction, and one of the substituents may be removed. After protection, the remaining substituents may be deprotected.
  • the aromatic ring group represented by X in the above formula (A) has a substituent (protecting group of amino group)
  • the above substituent (protecting group of amino group) is further deprotected. It may have a reaction to the effect.
  • the compound represented by the following formula (V) is prepared by deprotecting the substituents at the 2- and / or 6-positions of the sugar skeleton of the compound represented by the above formula (IV). ..
  • the aromatic ring group represented by X has a substituent (protecting group)
  • the compound represented by the following formula (V) can be obtained by further deprotecting the substituent (protecting group). It may be prepared.
  • R 3b is a halogen atom or a hydroxy group.
  • the deprotection reaction can be carried out using acid and / or fluoride ions (or by reacting with acid and / or fluoride ions).
  • Acids include organic acids [eg, carboxylic acids (eg acetic acid, citric acid, oxalic acid, tartaric acid, trichloroacetic acid, trifluoroacetic acid, etc.)], inorganic acids [eg, hydrogen halide (eg, hydrochloric acid, hydrogen fluoride). Acids, etc.), sulfuric acid, nitric acid, phosphoric acid, chromium acid, boric acid, sulfonic acid, etc.] and the like.
  • the acid may be used alone or in combination of two or more.
  • a carboxylic acid is preferable, and trichloroacetic acid or trifluoroacetic acid is more preferable.
  • fluoride ion examples include tetra-n-butylammonium fluoride (TBAF), hydrofluoric acid, cesium fluoride and the like. Fluoride ions may be used alone or in combination of two or more. In particular, TBAF is preferable as the fluoride ion.
  • TBAF tetra-n-butylammonium fluoride
  • the deprotection reaction is carried out using (or reacting with) a base. Can be done.
  • the base examples include a base having a small degree of ionization (weak base) such as ammonia, a base having a large degree of ionization (strong base) such as sodium hydroxide, calcium hydroxide and barium hydroxide.
  • the bases may be used alone or in combination of two or more.
  • a base having a small degree of ionization (weak base) is preferable, and ammonia (ammonia water) is more preferable.
  • the deprotection reaction may be carried out in a solvent.
  • the solvent is not particularly limited as long as it does not inhibit the deprotection reaction, and examples thereof include the same solvents as those exemplified in the coupling reaction.
  • the reaction may be carried out at room temperature (or room temperature), cooling, or heating. Further, the reaction may be carried out in air or in an inert atmosphere (noble gas such as nitrogen or argon).
  • the reaction time is not particularly limited, but is, for example, 1 minute or more (for example, 2 minutes to 48 hours), preferably 3 minutes or more (for example, 4 minutes or more to 24 hours), and more preferably 5 minutes or more (for example, 10 minutes). It may be about minutes to 12 hours).
  • the progress of the reaction may be confirmed by using a conventional method such as thin layer chromatography (TLC).
  • the reaction mixture (mixture containing the compound represented by the formula (IV)) may be subjected to another deprotection reaction as it is without separation (or recovery).
  • Conventional methods eg, filtration, extraction, concentration, washing, adsorption, membrane separation, chromatography, etc.
  • separation or purification
  • the phosphoramidite-forming reaction is not particularly limited as long as it can phosphoramidite the hydroxy group at the 3-position of the sugar skeleton of the compound represented by the above formula (IV).
  • a compound represented by the following formula (VI) is prepared by reacting a compound represented by the above formula (IV) with a phosphoramidite agent.
  • the phosphoramidite agent is not particularly limited as long as it can change the hydroxy group at the 2-position of the sugar skeleton of the compound represented by the above formula (IV) to a phosphoramidite group.
  • Examples of the phosphoramidite agent include compounds in which a cyanoethoxy group and a dialkylamino group are bonded (for example, i-Pr 2 NP (Cl) O (CH 2 ) 2 CN, etc.).
  • the ratio of the phosphoramidite agent used is preferably 0.8 mol or more (for example, 1 to 10 mol) with respect to 1 mol of the compound represented by the above formula (IV). May be 1 mol or more (for example, 1.2 to 7 mol), more preferably 1.5 mol or more (for example, 1.6 to 5 mol).
  • the phosphoramidite formation reaction may be carried out in a solvent.
  • the solvent is not particularly limited as long as it does not inhibit the phosphoramidite formation reaction, and examples thereof include the same solvents as those exemplified in the coupling reaction.
  • the reaction may be carried out at room temperature (or room temperature), cooling, or heating. Further, the reaction may be carried out in air or in an inert atmosphere (noble gas such as nitrogen or argon).
  • the reaction time is not particularly limited, but is, for example, 1 minute or more (for example, 2 minutes to 48 hours), preferably 3 minutes or more (for example, 4 minutes or more to 24 hours), and more preferably 5 minutes or more (for example, 10 minutes). It may be about minutes to 12 hours).
  • the progress of the reaction may be confirmed by using a conventional method such as thin layer chromatography (TLC).
  • the reaction mixture (mixture containing the compound represented by the formula (IV)) may be subjected to another deprotection reaction as it is without separation (or recovery).
  • Conventional methods eg, filtration, extraction, concentration, washing, adsorption, membrane separation, chromatography, etc.
  • separation or purification
  • the compound represented by the above formula (VI) obtained by the phosphoramidite reaction may be a mixture containing optical isomers (for example, diastereomers, enantiomers, etc.). Even in such a mixture, the asymmetric atom is eliminated when a polymer is formed via a phosphodiester bond.
  • ⁇ Polymer> Another aspect of the present invention includes a polymer of the above compounds.
  • the polymer may be a polymer containing a plurality of compounds represented by the above formula (A) as a polymerization component, and examples of the bonds between the polymerization components include phosphodiester bonds and phosphorothioate bonds. .. Further, the polymer may be one capable of forming a base pair with nucleic acid.
  • the "nucleic acid” may be a naturally occurring DNA or RNA in a living body or the like, or may be an artificially synthesized natural nucleic acid such as a naturally occurring DNA or RNA. As long as it is a nucleic acid-like substance having a structure capable of forming a base pair with a naturally occurring nucleic acid, the above-mentioned nucleic acid-like substance may be artificially synthesized.
  • the polymer has a high affinity for natural nucleic acids is not limited to the following speculation, but the sugar skeleton in the above formula (A) and the specific structure represented by X are carbon. -By being linked via a carbon triple bond, the conformation of the acetylene group (-C ⁇ C-) and the sugar skeleton is similar to the conformation of sugar in natural nucleic acids (particularly natural DNA). Therefore, it is presumed that the affinity (the force of interaction) with the natural nucleic acid (particularly, the natural DNA) is high.
  • Examples of such a polymer include those having a structural unit represented by the following formula (B).
  • X is an aromatic ring group
  • A is an oxygen atom or a sulfur atom
  • R a is -OR b (R b indicates a hydrogen atom or a substituent).
  • R 3 is a halogen atom or ⁇ OR 3a (in the formula, R 3a represents a hydrogen atom or a substituent).
  • n is 2 or more.
  • a plurality of X, R a and R 3 may be be the same or different.
  • aromatic ring group examples include those similar to X in the above formula (A).
  • the above A is preferably an oxygen atom from the viewpoint of structural unity. Further, the above-mentioned A is preferably a sulfur atom from the viewpoint of excellent resistance to RNA nuclease.
  • the -OR b is what is ionized - may be a (-O).
  • Examples of the substituent represented by R b include the groups exemplified as the substituent represented by R 1a in the above formula (A).
  • n is preferably 10 or more, more preferably 15 or more, and even more preferably 20 or more from the viewpoint of forming a double helix structure.
  • the upper limit of n is not particularly limited, but may be 100, for example.
  • the method for forming the polymer from the compound represented by the above formula (A) is not particularly limited as long as the compound represented by the above formula (A) can form a crosslinked structure, and is a nucleic acid synthesis method.
  • a known method for example, a phosphoramidite method, a synthetic method via phosphorochloridate, a phosphite triester method, etc. may be used. From the viewpoint of enhancing reactivity, those using the phosphoramidite method are preferable.
  • the phosphoramidite method may be a solid phase synthesis or a liquid phase synthesis. From the viewpoint of enhancing reactivity, it is preferable to carry out solid phase synthesis.
  • solid-phase synthesis it is preferable to use a solid-phase carrier from the viewpoint of simplification of washing operations and the like.
  • Solid-phase synthesis by the phosphoramidite method can be performed by, for example, the following steps.
  • the solid-phase synthesis by the phosphoramidite method may be performed manually or by using an apparatus for automatic synthesis under computer control.
  • a step of introducing a compound into a solid phase carrier (2) a step of deprotecting a substituent (protecting group) at the 5'position of the sugar skeleton, (3) a cup at the hydroxy group at the 5'position and the 3'position. It includes a ringing step, (4) a step of capping the hydroxy group at the 5'position of the unreacted sugar skeleton, (5) a step of oxidizing or sulfurizing, and (6) a step of deprotecting and cutting out from the solid phase carrier.
  • Step of introducing the compound into the solid phase carrier (1) In the step of introducing the compound into the solid phase carrier, the compound represented by the formula (A) located on the 3'side is introduced into the solid phase carrier.
  • the solid-phase carrier can be appropriately changed depending on the arrangement of the polymer to be prepared, the degree of polymerization, the concentration of the compound represented by the above formula (A) to be used, and the like.
  • the above step (2) can be performed in the same manner as the above deprotection reaction.
  • the above step (3) may be carried out in the presence of an activator.
  • the activator include compounds having a tetrazole ring (for example, 1H-tetrazole, 2-ethylthiotetrazole, 2-benzylthiotetrazole, etc.).
  • the ratio of the compound to be bonded to 1 mol of the compound (or polymer) bonded to the solid phase carrier is not particularly limited as long as the reaction proceeds sufficiently, and is, for example, 1.5. It may be up to 100 mol, preferably 2 to 80 mol, more preferably 3 to 50 mol.
  • the ratio of the activator to 1 mol of the compound (or polymer) bonded to the solid phase carrier is not particularly limited as long as the reaction proceeds sufficiently, and is, for example, 0.5 to 0.5. It may be 30 mol, preferably 0.8 to 25 mol, more preferably 1 to 20 mol.
  • Step of capping the hydroxy group at the 5'position of the unreacted sugar skeleton is the sugar skeleton of the unreacted compound (or polymer) among the compounds (or polymers) bonded to the solid phase carrier. Anything can be used as long as it can cap the hydroxy group at the 5'position of the above so that the polymer does not extend any more.
  • the reaction may be carried out in the presence of an acylating agent.
  • the acylating agent may be any as long as it can acylate the hydroxy group at the 5'position of the sugar skeleton in the unreacted compound (or polymer), and for example, acyl halide (for example, acetyl chloride), etc. Examples thereof include carboxylic acid anhydrides (for example, acetic anhydride, propionic anhydride, etc.).
  • Step of oxidizing or sulfurizing is a step of converting the phosphite ester bond formed in the above step (3) into a phosphate ester by oxidation or a thiophosphate ester bond by sulphurizing.
  • the reaction may be carried out in the presence of an oxidizing agent or a sulfurizing agent.
  • the oxidizing agent is not particularly limited as long as it can convert a phosphite bond into a phosphate ester bond, and is, for example, halogen (for example, chlorine (Cl 2 ), fluorine (F 2 ), iodine). (I 2 ), etc.) and the like.
  • halogen for example, chlorine (Cl 2 ), fluorine (F 2 ), iodine). (I 2 ), etc.
  • the sulfide agent is not particularly limited as long as it can convert a phosphite ester bond into a thiophosphate ester bond, and is, for example, ((dimethylaminomethylidene) amino) -3H-1,2,4. - dithiazoline-3-thione (DTTT), 5-phenyl-3H-1,2,4-dithiazole-3-one, molecular sulfur (S 8), phenylacetyl disulfide, Beaucage reagent and the like.
  • DTTT dithiazoline-3-thione
  • S 8 molecular sulfur
  • S 8 phenylacetyl disulfide
  • Beaucage reagent Beaucage reagent and the like.
  • the above steps (2) to (5) can be repeated until a polymer having a desired degree of polymerization is obtained.
  • sulfurization is carried out in the above step (5), the above steps (4) and the above (5) may be interchanged to carry out the reaction.
  • step (6) can be performed in the same manner as the above deprotection reaction, for example.
  • all the protecting groups may be deprotected in the step (6), or some protecting groups may remain.
  • the base pair may be any one as long as at least one of the double strands constituting the base pair is the polymer in the present invention, and the other of the double strands is a natural nucleic acid such as DNA or RNA that may exist in nature. , It may be a nucleic acid such as an artificially synthesized nucleic acid-like substance, or it may be a polymer in the present invention.
  • the above base pair may have a double chain formed over the entire length, or a double chain may be formed in a part of the entire length.
  • the polymer of at least one of the double chains in the base pair may have, for example, 50% or more, preferably 60% or more, and 70% or more, as complementarity to the other of the double chains. It is more preferable to have, more preferably 80% or more, and particularly preferably 90% or more.
  • the upper limit of the complementarity is, for example, 100%.
  • Complementarity means that one polymer of a double chain and the other of the double chains have at least two hydrogen bond modes (relationship between a hydrogen bond donor (D) and an acceptor (A)) per base. Those having a complementary relationship. It may have two hydrogen bonds per base, or it may have three hydrogen bonds.
  • the hydrogen bonding modes of the commonly known nucleobases adenine, guanine, cytosine, thymine, and uracil are DA, DDA, AAD, AD, and AD, respectively, and the other of the double chains is a natural nucleic acid. If this is the case, it suffices to have complementarity to these hydrogen bond modes so that two or more hydrogen bonds can be formed per base.
  • the other of the double chains is an artificially synthesized nucleic acid-like substance and has a hydrogen bonding mode (for example, DAD, ADA, etc.) that does not exist in nature, the weight of one of the double chains is heavy.
  • the coalescence may have a complementary hydrogen bond mode.
  • the polymer of at least one of the double chains in the above base pair has a hydrophobic property that can form a hydrophobic interaction with the other of the double chains.
  • one polymer of the double chain may be a single polymer forming a base pair.
  • the base pair When the other of the double chains is a natural nucleic acid, the base pair preferably has a higher double chain melting temperature (Tm value) than the base pair formed by the natural nucleic acids. ..
  • Tm value double chain melting temperature
  • the base pair when a base pair is formed between nucleic acids having the same length, the Tm value of the base pair formed by the natural DNA and the polymer is higher than that of the base pair formed by the natural DNAs. Is preferable.
  • the base pair When the other of the double chains is a natural nucleic acid, the base pair preferably has a higher Tm value than the base pair formed by the polymers.
  • the base pair formed by natural DNA and the polymer is compared with the base pair formed by the polymers because it is easy to handle. It is preferable that the T m value of is high.
  • the T m value can be measured by, for example, a conventional method.
  • the measurement can be performed under the following measurement conditions.
  • Measurement conditions A 1: 1 buffer solution of artificial or natural nucleic acid oligomer (2 ⁇ M duplexes, 10 mM HEPES (pH 7.0), 10 mM MgCl 2 , 100 mM NaCl) was prepared, and a double chain melting experiment was performed while monitoring the absorbance at 270 nm. (Temperature range: 10 to 80 ° C., temperature change: 1 ° C./1 minute).
  • Equipment used V-560 UV / vis spectrophotometer (manufactured by JASCO Corporation)
  • the T m value may be appropriately calculated according to conditions such as the length of the nucleic acid, the base sequence, and the measurement solution.
  • T m values base pairs having the above natural DNA and polymer, and T m values having base pairs of the native DNA with each other, the measurement conditions (the length of the nucleic acid, the hydrogen bonding pattern of the base sequence, the sample solution and the like) when performing a measurement in the same, for example, preferably T m values having base pairs of the native DNA and the polymer is higher, the difference between the two in T m values, even 10 ° C. or higher It is often preferably 15 ° C. or higher, and more preferably 20 ° C. or higher.
  • the upper limit of the difference between the T m values of the above two base pairs is not particularly limited, but may be, for example, 50 ° C. or lower, preferably 45 ° C. or lower.
  • the above base pair may form a double helix structure.
  • the fact that the base pairs form a double helix structure can be confirmed by a conventional method such as circular dichroism (CD) spectrum measurement.
  • the measurement can be performed under the following measurement conditions. Measurement conditions: Prepare a 1: 1 buffer solution of artificial or natural nucleic acid oligomer (2 ⁇ M duplexes, 10 mM HEPES (pH 7.0), 10 mM MgCl 2 , 100 mM NaCl), and prepare 10, 20, 30, 40, 50, 60, 70. , 80 ° C. for circular dichroism (CD) spectrum measurements.
  • Equipment used J-720WI spectroscopy (manufactured by JASCO Corporation)
  • nucleic acid detection material containing the above polymer.
  • nucleic acid medicine includes a nucleic acid drug containing the polymer or base pair.
  • DMTr represents a dimethoxytrityl group.
  • TBS represents a tert-butyldimethylsilyl group.
  • i-Pr 2 represents a diisopropyl group.
  • Example 1 1 buffer solution of Compound 5 and Compound 7 (2 ⁇ M duplexes, 10 mM HEPES (pH 7.0), 10 mM MgCl 2 , 100 mM NaCl) was prepared. The results of UV-vis spectrum measurement of the solution at 10 ° C. and 80 ° C. are shown in FIG. 1A.
  • a V-560 UV / vis spectrophotometer manufactured by JASCO Corporation was used for the measurement of the UV-vis spectrum measurement. According to FIG. 1A, temperature-dependent and irreversible dark color effect and light color effect could be observed as in the case of natural nucleic acid.
  • FIG. 1B results of circular dichroism (CD) spectrum measurements at 10, 20, 30, 40, 50, 60, 70, and 80 ° C. using the J-720WI spectrum spectrometer (manufactured by JASCO Corporation) are shown in FIG. 1B. Indicated. Further, the melting temperature curve was measured by monitoring the change in absorbance at 270 nm when the temperature was raised from 10 ° C. to 1.0 ° C. per minute. A V-560 UV / vis spectrophotometer (manufactured by JASCO Corporation) was used for the measurement of the melting temperature curve. The double chain melting temperature (Tm value) was calculated from the maximum value obtained by first-derivating the melting temperature curve, and the result is shown in FIG. 1C. The T m value was 71.0 ° C.
  • Example 2 The results of UV-vis spectrum measurement are shown in FIG. 2A and the results of CD spectrum measurement are shown in FIG. 2B in the same manner as in Example 1 except that compound 7 was changed to compound 13. Also, except for changing the compound 7 to compound 13, in the same manner as in Example, the results of the measurement of the melting temperature curve shown in FIG. 2C, was subjected to calculation in T m value, T m value It was 34.0 ° C.
  • Example 3 The results of UV-vis spectrum measurement are shown in FIG. 3A and the results of CD spectrum measurement are shown in FIG. 3B in the same manner as in Example 1 except that compound 7 was changed to compound 6. Also, except for changing the compound 7 to compound 6, in the same manner as in Example, the results of the measurement of the melting temperature curve shown in FIG. 3C, was subjected to calculation in T m value, T m value It was 55.0 ° C.
  • the polymer according to the present invention Since the polymer according to the present invention has an excellent affinity with natural DNA, even when the natural DNA forms a double chain, it forms a complementary hydrogen bond with one of the natural DNAs. It can form a base pair specifically with the polymer. For example, if it can be specifically bound to natural DNA or natural RNA related to a disease, it is expected to be applied to nucleic acid drugs such as antigene, antisense, and diagnostic agents.
  • the polymer according to the present invention can form a base pair with the polymer according to the present invention or other artificially synthesized nucleic acid.
  • the base pair interaction is particularly excellent in thermal stability when it is a base pair of the polymer and natural nucleic acid (natural DNA) according to the present invention.
  • PNA Peptide Nucleic Acid
  • LNA Locked Nucleic Acid
  • BNA Bridged Nucleic Acid

Abstract

Provided are, inter alia, novel compounds. Also provided are a nucleic acid detection substance and a base pair formed by this polymer, and a nucleic acid drug containing the polymer or base pair. The compounds are represented by formula (A). [In formula (A), X is an aromatic ring group, R1 is -OR1a (In the formula, R1a represents a hydrogen atom or a substituent.) or a phosphoramidite group, R2 is a hydrogen atom or a substituent, R3 is a halogen atom or -OR3a (In the formula, R3a represents a hydrogen atom or a substituent.).]

Description

人工核酸Artificial nucleic acid
 本発明は、新規な化合物等に関する。 The present invention relates to novel compounds and the like.
 デオキシリボース骨格及び核酸塩基骨格が炭素-炭素3重結合を介して結合する人工的に合成されたDNA(人工DNA)の開発が行われてきた(非特許文献1、非特許文献2、非特許文献3及び非特許文献4参照)。 Development of artificially synthesized DNA (artificial DNA) in which a deoxyribose skeleton and a nucleobase skeleton are bound via a carbon-carbon triple bond has been developed (Non-Patent Document 1, Non-Patent Document 2, Non-Patent Document 2). See Document 3 and Non-Patent Document 4).
 本発明の目的は、新規な化合物等を提供することである。 An object of the present invention is to provide a novel compound or the like.
 上記人工DNAは、天然に存在しうるDNA(天然DNA)又はRNA(天然RNA)といった天然核酸と比較して、基本となる骨格、2重鎖溶融温度(T値)等の物理化学的性質や水素結合、2重らせん構造等の分子構造の点で酷似しており、人工DNA同士で2重らせん構造を形成できるだけでなく、天然DNAと2重らせん構造を形成することが可能である。 The artificial DNA has physicochemical properties such as a basic skeleton and double chain melting temperature (Tm value) as compared with natural nucleic acids such as naturally occurring DNA (natural DNA) or RNA (natural RNA). It is very similar in terms of molecular structure such as hydrogen bond and double helix structure, and it is possible not only to form a double helix structure between artificial DNAs but also to form a double helix structure with natural DNA.
 しかしながら、上記人工DNAは、天然核酸と比べ、核酸に対する親和性がほとんど変わらないか、又は天然核酸よりも親和性が低い。そのため、天然核酸同士で2重らせん構造を形成している場合に、熱処理を行ったとしても、人工DNAが、2重鎖のうちの一方の、人工DNAに対応する配列を有する天然核酸の代わりに、2重鎖のうちの他方の、人工DNAと相補的な配列を有する天然核酸と2重らせん構造を形成することが難しかった。 However, the above-mentioned artificial DNA has almost the same affinity for nucleic acid as that of natural nucleic acid, or has lower affinity than natural nucleic acid. Therefore, when natural nucleic acids form a double helix structure, even if heat treatment is performed, the artificial DNA replaces the natural nucleic acid having a sequence corresponding to the artificial DNA in one of the double strands. In addition, it was difficult to form a double helix structure with a natural nucleic acid having a sequence complementary to artificial DNA, which is the other of the double strands.
 このような中、本発明者は、上記課題を解決するために鋭意検討した結果、糖骨格が炭素-炭素3重結合を介して特定の構造と結合している新規な化合物が得られること、また、このような新規な化合物を用いて、重合体を形成したところ、意外にも、天然DNAをはじめとする他の核酸と高い親和性を有しうることを見出し、本発明を完成するに至った。 Under these circumstances, as a result of diligent studies to solve the above problems, the present inventor can obtain a novel compound in which the sugar skeleton is bonded to a specific structure via a carbon-carbon triple bond. Further, when a polymer was formed using such a novel compound, it was surprisingly found that it could have a high affinity with other nucleic acids such as natural DNA, and the present invention was completed. I arrived.
 即ち、本発明は、下記の発明等に関する。
〔1〕 下記式(A)
Figure JPOXMLDOC01-appb-C000003
[式(A)中、Xは、芳香環基であり、
 Rは、-OR1a(式中、R1aは、水素原子又は置換基を示す。)又はホスホロアミダイト基であり、
 Rは、水素原子又は置換基であり、
 Rは、ハロゲン原子又は-OR3a(式中、R3aは、水素原子又は置換基を示す。)である。]
で表される化合物。
〔2〕 Xがヘテロ芳香環基{又は芳香族複素環骨格を有する基[例えば、芳香族複素環骨格のみを有する基(芳香族複素環骨格、置換基を有していてもよい芳香族複素環骨格)]}である上記〔1〕記載の化合物。
〔3〕 Xがピリジン環基[例えば、ピリジン骨格(置換基を有していてもよいピリジン骨格)]、ピリミジン環基[例えば、ピリミジン骨格(置換基を有していてもよいピリミジン骨格)]又はプリン環基[例えば、プリン骨格(置換基を有していてもよいプリン骨格)]である上記〔1〕又は〔2〕記載の化合物。
〔4〕 Rが-OR3aである上記〔1〕~〔3〕のいずれかに記載の化合物。
〔5〕 R及びRがヒドロキシ基であり、Rが水素原子である上記〔1〕~〔4〕のいずれかに記載の化合物。
〔6〕 Rがヒドロキシ基又はホスホロアミダイト基であり、Rが-OR3aであり、R及びR3aが保護基である上記〔1〕~〔4〕のいずれかに記載の化合物。
〔7〕 上記〔1〕~〔6〕のいずれかに記載の化合物の重合体。
〔8〕 下記式(B)
Figure JPOXMLDOC01-appb-C000004
[式(B)中、Xは、芳香環基であり、
 Rは、-OR(式中、Rは、水素原子又は置換基を示す。)であり、
 Rは、ハロゲン原子又は-OR3a(式中、R3aは、水素原子又は置換基を示す。)であり、
 nは2以上である。
 複数のX、R及びRは同一であっても異なっていてもよい。]
で表される構造単位を有する上記〔7〕記載の重合体。
〔9〕 核酸と塩基対を形成できる上記〔7〕又は〔8〕記載の重合体。
〔10〕 同じ長さの核酸同士で塩基対を形成する場合において、天然DNA同士での塩基対に比べて、天然DNAとの塩基対の2重鎖融解温度が高い上記〔7〕~〔9〕のいずれかに記載の重合体。
〔11〕 nが10以上である上記〔8〕~〔10〕のいずれかに記載の重合体。
〔12〕 上記〔7〕~〔11〕のいずれかに記載の重合体を含む塩基対。
〔13〕 2重らせん構造を形成している上記〔12〕記載の塩基対。
〔14〕 上記〔7〕~〔11〕のいずれかに記載の重合体を含む核酸検出材料。
〔15〕 上記〔1〕~〔13〕のいずれかに記載の化合物、重合体又は塩基対を含む核酸医薬。
That is, the present invention relates to the following inventions and the like.
[1] The following formula (A)
Figure JPOXMLDOC01-appb-C000003
[In the formula (A), X is an aromatic ring group,
R 1 is -OR 1a (in the formula, R 1a represents a hydrogen atom or a substituent) or a phosphoramidite group.
R 2 is a hydrogen atom or a substituent and is
R 3 is a halogen atom or −OR 3a (in the formula, R 3a represents a hydrogen atom or a substituent). ]
The compound represented by.
[2] X is a heteroaromatic ring group {or a group having an aromatic heterocyclic skeleton [for example, a group having only an aromatic heterocyclic skeleton (aromatic heterocyclic skeleton, an aromatic heterocycle which may have a substituent). The compound according to the above [1], which is a ring skeleton)]}.
[3] X is a pyridine ring group [for example, a pyridine skeleton (a pyridine skeleton that may have a substituent)], a pyrimidine ring group [for example, a pyrimidine skeleton (a pyrimidine skeleton that may have a substituent)]. Alternatively, the compound according to the above [1] or [2], which is a purine ring group [for example, a purine skeleton (a purine skeleton that may have a substituent)].
[4] The compound according to any one of the above [1] to [3], wherein R 3 is −OR 3a.
[5] The compound according to any one of the above [1] to [4], wherein R 1 and R 3 are hydroxy groups and R 2 is a hydrogen atom.
[6] The compound according to any one of the above [1] to [4], wherein R 1 is a hydroxy group or a phosphoramidite group, R 3 is −OR 3a , and R 2 and R 3a are protecting groups. ..
[7] A polymer of the compound according to any one of the above [1] to [6].
[8] The following formula (B)
Figure JPOXMLDOC01-appb-C000004
[In formula (B), X is an aromatic ring group,
R a is −OR b (in the formula, R b represents a hydrogen atom or a substituent).
R 3 is a halogen atom or −OR 3a (in the formula, R 3a represents a hydrogen atom or a substituent).
n is 2 or more.
A plurality of X, R a and R 3 may be be the same or different. ]
The polymer according to the above [7], which has a structural unit represented by.
[9] The polymer according to the above [7] or [8], which can form a base pair with a nucleic acid.
[10] When a base pair is formed between nucleic acids having the same length, the double-chain melting temperature of the base pair with the natural DNA is higher than that between the natural DNAs [7] to [9]. ] The polymer according to any one of.
[11] The polymer according to any one of the above [8] to [10], wherein n is 10 or more.
[12] A base pair containing the polymer according to any one of the above [7] to [11].
[13] The base pair according to the above [12], which forms a double helix structure.
[14] A nucleic acid detection material containing the polymer according to any one of the above [7] to [11].
[15] A nucleic acid drug containing the compound, polymer or base pair according to any one of the above [1] to [13].
 本発明では、新規な化合物を得ることができる。このような新規化合物は、例えば、重合体の原料として好適に使用できる。 In the present invention, a novel compound can be obtained. Such a novel compound can be suitably used as a raw material for a polymer, for example.
 また、本発明では、新規な化合物を重合成分として含む重合体を得ることができる。このような重合体は、例えば、核酸(天然核酸など)に対する親和性を有し、塩基対を形成しうる場合が多い。 Further, in the present invention, a polymer containing a novel compound as a polymerization component can be obtained. Such polymers have an affinity for, for example, nucleic acids (such as natural nucleic acids) and are often capable of forming base pairs.
 特に、このような重合体は、核酸に対する高い親和性で(ひいては、熱安定性に優れた)塩基対を効率良く形成しうる。 In particular, such a polymer can efficiently form base pairs with high affinity for nucleic acids (and thus excellent thermal stability).
 このような重合体は、例えば、核酸の検出を容易かつ簡便に行うことができるので、核酸検出材料として好適に用いることができる。また、上記重合体又は塩基対は、核酸医薬として好適に用いることができる。 Such a polymer can be suitably used as a nucleic acid detection material because, for example, nucleic acid can be easily and easily detected. Moreover, the above-mentioned polymer or base pair can be suitably used as a nucleic acid medicine.
図1Aは、実施例で得た化合物5及び7を用いた、UV-visスペクトル測定結果を示した図である。FIG. 1A is a diagram showing UV-vis spectrum measurement results using compounds 5 and 7 obtained in Examples. 図1Bは、化合物5及び7を用いた、CDスペクトル測定結果を示した図である。FIG. 1B is a diagram showing the results of CD spectrum measurement using compounds 5 and 7. 図1Cは、化合物5及び7を用いた、2重鎖融解温度の測定結果を示した図である。FIG. 1C is a diagram showing the measurement results of the double chain melting temperature using compounds 5 and 7. 図2Aは、実施例で得た化合物5及び13を用いた、UV-visスペクトル測定結果を示した図である。FIG. 2A is a diagram showing UV-vis spectrum measurement results using the compounds 5 and 13 obtained in the examples. 図2Bは、化合物5及び13を用いた、CDスペクトル測定結果を示した図である。FIG. 2B is a diagram showing the results of CD spectrum measurement using compounds 5 and 13. 図2Cは、化合物5及び13を用いた、2重鎖融解温度の測定結果を示した図である。FIG. 2C is a diagram showing the measurement results of the double chain melting temperature using the compounds 5 and 13. 図3Aは、実施例で得た化合物5及び6を用いた、UV-visスペクトル測定結果を示した図である。FIG. 3A is a diagram showing the results of UV-vis spectrum measurement using the compounds 5 and 6 obtained in the examples. 図3Bは、化合物5及び6を用いた、CDスペクトル測定結果を示した図である。FIG. 3B is a diagram showing the results of CD spectrum measurement using compounds 5 and 6. 図3Cは、化合物5及び6を用いた、2重鎖融解温度の測定結果を示した図である。FIG. 3C is a diagram showing the measurement results of the double chain melting temperature using the compounds 5 and 6.
 <化合物>
 本発明の一態様である化合物は、下記式(A)で表される。
<Compound>
The compound according to one aspect of the present invention is represented by the following formula (A).
Figure JPOXMLDOC01-appb-C000005
[式(A)中、Xは、芳香環基であり、
 Rは、-OR1a(式中、R1aは、水素原子又は置換基を示す。)又はホスホロアミダイト基であり、
 Rは、水素原子又は置換基であり、
 Rは、ハロゲン原子又は-OR3a(式中、R3aは、水素原子又は置換基を示す。)である。]
Figure JPOXMLDOC01-appb-C000005
[In the formula (A), X is an aromatic ring group,
R 1 is -OR 1a (in the formula, R 1a represents a hydrogen atom or a substituent) or a phosphoramidite group.
R 2 is a hydrogen atom or a substituent and is
R 3 is a halogen atom or −OR 3a (in the formula, R 3a represents a hydrogen atom or a substituent). ]
 上記式(A)におけるXで表される芳香環基は、環構造が芳香族性を示す芳香環骨格を有している基であればよく、芳香環骨格(置換基を有していてもよい芳香環骨格)のみを有するもの[芳香環骨格(置換基を有していてもよい芳香環骨格)]であってもよい。 The aromatic ring group represented by X in the above formula (A) may be a group having an aromatic ring skeleton whose ring structure exhibits aromaticity, and may have an aromatic ring skeleton (even if it has a substituent). It may be one having only a good aromatic ring skeleton (aromatic ring skeleton (aromatic ring skeleton which may have a substituent)].
 上記芳香環骨格は、単環であっても、複数の環を含む環(例えば、縮合環)であってもよい。 The aromatic ring skeleton may be a single ring or a ring containing a plurality of rings (for example, a condensed ring).
 上記芳香環骨格としては、例えば、芳香族炭化水素環骨格、芳香族複素環(ヘテロ芳香環)骨格等が挙げられる。これらの芳香環骨格の環員数としては、例えば、5~20であってもよく、5~15が好ましく、6~14がより好ましい。 Examples of the aromatic ring skeleton include an aromatic hydrocarbon ring skeleton and an aromatic heterocyclic ring skeleton. The number of ring members of these aromatic ring skeletons may be, for example, 5 to 20, preferably 5 to 15, and more preferably 6 to 14.
 上記芳香族炭化水素環骨格としては、例えば、ベンゼン、ナフタレン、アントラセン、テトラセン等が挙げられる。 Examples of the aromatic hydrocarbon ring skeleton include benzene, naphthalene, anthracene, and tetracene.
 上記芳香族複素環骨格としては、環構造上に炭素原子以外のヘテロ原子を少なくとも1つ以上含む芳香環骨格を有しているものであればよく、上記ヘテロ原子としては、例えば、酸素原子、硫黄原子、窒素原子等が挙げられる。水素結合を形成しやすくなる点から、窒素原子が好ましい。
 上記芳香族複素環骨格は、1つ又は2以上のヘテロ原子を有していてもよい。2以上のヘテロ原子を有する場合、ヘテロ原子は同一の又は異なるものであってもよい。
 なお、上記芳香族複素環骨格が、複数の環を含む場合、ヘテロ原子は、少なくとも1つの環が有していればよく、全ての環がヘテロ原子を有していてもよい。
The aromatic heterocyclic skeleton may have an aromatic heterocyclic skeleton containing at least one heteroatom other than a carbon atom on the ring structure, and the heteroatom may be, for example, an oxygen atom. Examples include a sulfur atom and a nitrogen atom. A nitrogen atom is preferable because it facilitates the formation of hydrogen bonds.
The aromatic heterocyclic skeleton may have one or more heteroatoms. When having two or more heteroatoms, the heteroatoms may be the same or different.
When the aromatic heterocyclic skeleton contains a plurality of rings, the hetero atom may have at least one ring, and all the rings may have a hetero atom.
 上記芳香族複素環骨格としては、例えば、酸素原子を含有する芳香族複素環骨格(例えば、フラン、ベンゾフラン、イソベンゾフランなど)、硫黄原子を含有する芳香族複素環骨格(例えば、チオフェン、ベンゾチオフェンなど)、窒素原子を含有する芳香族複素環骨格{例えば、窒素原子のみを含有する芳香族複素環骨格(例えば、ピロール、インドール、イソインドール、ピリジン、キノリン、イソキノリン、イミダゾール、ベンゾイミダゾール、ピラゾール、インダゾール、ピラジン、ピリミジン、ピリダジン、キノキサリン、キナゾリン、シンノリン、1,2,3-トリアジン、1,2,4-トリアジン、1,3,5-トリアジン、プリンなど)、窒素原子と他のヘテロ原子を含有する芳香族複素環骨格[例えば、酸素原子及び窒素原子を含有する芳香族複素環骨格(例えば、オキサゾール、ベンゾオキサゾールなど)、硫黄原子及び窒素原子を含有する芳香族複素環骨格(例えば、チアゾール、ベンゾチアゾールなど)など]など}等が挙げられる。この中でも、ピリジン骨格、ピリミジン骨格、プリン骨格、ピラジン骨格又はピリダジン骨格が好ましく、ピリジン骨格、ピリミジン骨格又はプリン骨格がより好ましい。 Examples of the aromatic heterocyclic skeleton include an aromatic heterocyclic skeleton containing an oxygen atom (for example, furan, benzofuran, isobenzofuran, etc.) and an aromatic heterocyclic skeleton containing a sulfur atom (for example, thiophene, benzothiophene). Aromatic heterocyclic skeleton containing nitrogen atoms {eg, aromatic heterocyclic skeletons containing only nitrogen atoms (eg, pyrrole, indol, isoindole, pyridine, quinoline, isoquinolin, imidazole, benzoimidazole, pyrazole, etc.) Indazole, pyrazine, pyrimidine, pyridazine, quinoxalin, quinazoline, cinnoline, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, purine, etc.), nitrogen atoms and other heteroatoms. Aromatic heterocyclic skeletons containing [eg, aromatic heterocyclic skeletons containing oxygen and nitrogen atoms (eg, oxazole, benzoxazole, etc.), aromatic heterocyclic skeletons containing sulfur and nitrogen atoms (eg, thiazole). , Benzothiazole, etc.), etc.], etc.} and the like. Among these, a pyridine skeleton, a pyrimidine skeleton, a purine skeleton, a pyrazine skeleton or a pyridazine skeleton is preferable, and a pyridine skeleton, a pyrimidine skeleton or a purine skeleton is more preferable.
 芳香環骨格は置換基を有していてもよい。置換基としては、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、リン酸基(-HPO)、リン酸エステル基、オキソ基、メルカプト基(チオール基)、チオエーテル基、チオカルボニル基、スルホ基、有機基(例えば、炭素数1~30の有機基など)等が挙げられる。なお、リン酸基は、少なくとも一部がイオン化しているもの(例えば、-HPO 、-PO 2-等)であってもよい。
 上記有機基は、1価の有機基であってよく、2価の有機基であってもよい。
 なお、置換基[例えば、ヒドロキシ基、アミノ基、オキソ基、有機基(例えば、アルキル基)等]は、基Xとしての核酸塩基(例えば、アデニン、グアニン、シトシンのアミノ基、グアニン、ウラシル、シトシン、チミンのオキソ基、チミンのメチル基等)骨格を構成するものであってもよい。
 なお、オキソ基を置換基として有する化合物は、その置換位置等によって、置換基としてヒドロキシ基を有する化合物の異性体(ケトエノール異性体)であってもよい。そのため、本明細書において、置換基としてオキソ基(又はヒドロキシ基)を有する化合物には、当該異性体が含まれるものとする。
 上記芳香環骨格が置換基を有する場合、芳香環骨格は、上記置換基を単独で又は2種以上組み合わせて有するものであってもよい。
The aromatic ring skeleton may have a substituent. Examples of the substituent include a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), a hydroxy group, an amino group, a nitro group, a cyano group, a phosphoric acid group (-H 2 PO 3 ), and phosphorus. Examples thereof include an acid ester group, an oxo group, a mercapto group (thiol group), a thioether group, a thiocarbonyl group, a sulfo group, and an organic group (for example, an organic group having 1 to 30 carbon atoms). Incidentally, the phosphate group, which at least partially is ionized (e.g., -HPO 3 -, -PO 3 2-, etc.).
The organic group may be a monovalent organic group or a divalent organic group.
The substituent [for example, hydroxy group, amino group, oxo group, organic group (for example, alkyl group), etc.] is a nucleic acid base as the group X (for example, adenin, guanine, amino group of cytosine, guanine, uracil, etc. It may constitute a skeleton (such as cytosine, an oxo group of timine, a methyl group of timine, etc.).
The compound having an oxo group as a substituent may be an isomer (keto-enol isomer) of a compound having a hydroxy group as a substituent depending on the substitution position and the like. Therefore, in the present specification, the compound having an oxo group (or hydroxy group) as a substituent is assumed to contain the isomer.
When the aromatic ring skeleton has a substituent, the aromatic ring skeleton may have the above substituents alone or in combination of two or more.
 上記有機基としては、少なくとも1つの炭素原子を有するものであれば、特に限定されず、ヘテロ原子を含む結合を有するものであってもよい。このようなヘテロ原子としては、例えば、酸素原子、硫黄原子、窒素原子、リン原子、ケイ素原子等が挙げられる。 The organic group is not particularly limited as long as it has at least one carbon atom, and may have a bond containing a hetero atom. Examples of such a hetero atom include an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a silicon atom and the like.
 上記ヘテロ原子を含む結合としては、例えば、-O-、-CO-、-COO-、-S-、-NR-(Rは、水素原子又は1価の有機基である)、-PR-(Rは、水素原子又は1価の有機基である)、-SiR-(R及びRは、水素原子又は1価の有機基である)等が挙げられる。上記ヘテロ原子を含む結合を、単独で又は2種以上組み合わせて有していてもよい。上記ヘテロ原子を含む結合は、上記1価の有機基に包含されていればよく、例えば、1価の有機基の結合末端に存在するものであってもよく、複数のヘテロ原子を含む結合同士が隣接しているものであってもよい。 The bond containing the hetero atom, for example, -O -, - CO -, - COO -, - S -, - NR 4 - (R 4 is a hydrogen atom or a monovalent organic group), - PR 5 - (R 5 is a hydrogen atom or a monovalent organic group), - SiR 6 R 7 - (R 6 and R 7 are hydrogen atom or a monovalent organic group). The bond containing the heteroatom may be present alone or in combination of two or more. The bond containing the heteroatom may be included in the monovalent organic group, and may be present at the bond end of the monovalent organic group, for example, and the bonds containing a plurality of heteroatoms are bonded to each other. May be adjacent to each other.
 上記R~Rで表される1価の有機基としては、例えば、上記Xで表される芳香環基が有していてもよい有機基のうち1価のものと同様のものが挙げられる。上記R~Rで表される1価の有機基は、例えば、炭素数1~30の1価の有機基であってもよく、炭素数1~20の1価の有機基であってもよい。 Examples of the monovalent organic group represented by R 4 to R 7 include those similar to the monovalent organic group that the aromatic ring group represented by X may have. Be done. The monovalent organic group represented by R 4 to R 7 may be, for example, a monovalent organic group having 1 to 30 carbon atoms, or a monovalent organic group having 1 to 20 carbon atoms. May be good.
 具体的な有機基としては、例えば、炭化水素基[例えば、アルキル基(例えば、メチル基、エチル基、1-プロピル基、2-プロピル基、n-ブチル基など)、アルケニル基(例えば、ビニル基、アリル基など)、アルキニル基(例えば、プロパルギル基など)、シクロアルキル基(例えば、シクロヘキシル基など)、シクロアルケニル基(例えば、シクロブテニル基、シクロペンテニル基など)、アリール基(例えば、フェニル基など)、アラルキル基(例えば、ベンジル基など)など]、置換ヒドロキシ基[例えば、アルコキシ基(例えば、メトキシ基、エトキシ基、フェノキシ基など)、シリルオキシ基(例えば、tert-ブチルジメチルシリルオキシ基などのトリアルキルシリルオキシ基など)、アルコキシシリル基(例えば、メトキシシリル基、エトキシシリル基、トリイソプロピルシロキシメチル(TOM)基など)]、アシル基(例えば、アセチル基、ベンゾイル基、フェノキシアセチル基など)、ホルミル基、カルボキシ基、エステル基(例えば、メトキシカルボニル基、エトキシカルボニル基などのアルコキシカルボニル基)、置換メルカプト基[例えば、チオアルコキシ基(例えば、メチルチオ基など)]、チオアシル基(例えば、チオアセチル基)、チオエステル基(例えば、メチルチオカルボニル基)、置換アミノ基[例えば、アルキルアミノ基(例えば、メチルアミノ基、ジメチルアミノ基など)、アラルキルアミノ基(例えば、ベンジルアミノなど)、アシルアミノ基(例えば、アセチルアミノ基、2-フェノキシアセチルアミノ基)など]、置換リン酸基[例えば、リン酸エステル基(例えば、リン酸基を構成する水素原子がアルキル基に置換した基等)など]、シリル基(例えば、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル(TBS)基など)等が挙げられる。 Specific organic groups include, for example, a hydrocarbon group [for example, an alkyl group (for example, a methyl group, an ethyl group, a 1-propyl group, a 2-propyl group, an n-butyl group, etc.), an alkenyl group (for example, vinyl). Group, allyl group, etc.), alkynyl group (eg, propargyl group, etc.), cycloalkyl group (eg, cyclohexyl group, etc.), cycloalkenyl group (eg, cyclobutenyl group, cyclopentenyl group, etc.), aryl group (eg, phenyl group) , Etc.), aralkyl group (eg, benzyl group, etc.)], substituted hydroxy group [eg, alkoxy group (eg, methoxy group, ethoxy group, phenoxy group, etc.), silyloxy group (eg, tert-butyldimethylsilyloxy group, etc.), etc. Trialkylsilyloxy group, etc.), alkoxysilyl group (eg, methoxysilyl group, ethoxysilyl group, triisopropylsiloxymethyl (TOM) group, etc.)], acyl group (eg, acetyl group, benzoyl group, phenoxyacetyl group, etc.) ), Formyl group, carboxy group, ester group (eg, alkoxycarbonyl group such as methoxycarbonyl group, ethoxycarbonyl group), substituted mercapto group [eg, thioalkoxy group (eg, methylthio group)], thioacyl group (eg, eg, methylthio group). Thioacetyl group), thioester group (eg, methylthiocarbonyl group), substituted amino group [eg, alkylamino group (eg, methylamino group, dimethylamino group, etc.), aralkylamino group (eg, benzylamino, etc.), acylamino group (eg, benzylamino group) For example, an acetylamino group, a 2-phenoxyacetylamino group), etc.], a substituted phosphate group [for example, a phosphate ester group (for example, a group in which a hydrogen atom constituting the phosphate group is replaced with an alkyl group, etc.)], Examples thereof include a silyl group (for example, a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl (TBS) group, etc.) and the like.
 置換基は、保護(保護基(脱離基)によって保護)された官能基(例えば、ヒドロキシ基、アミノ基、チオ基、リン酸基(-HPO)、カルボキシル基等)であってもよい。なお、保護基は、通常、脱離基(脱離可能な基)であってもよい。 The substituent is a protected (protected by a protecting group (leaving group)) functional group (for example, a hydroxy group, an amino group, a thio group, a phosphate group (-H 2 PO 3 ), a carboxyl group, etc.). May be good. The protecting group may usually be a leaving group (a group that can be removed).
 脱離基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、イミダート基[例えば、2,2,2-トリクロロアセトイミドイルオキシ基(基-O-C(=NH)-CCl)、(N-フェニル)トリフルオロアセトイミドイルオキシ基(基-O-C(=NPh)-CF)、など]、カーボネート基(又は炭酸エステル基、例えば、2,2,2-トリクロロエトキシジカルボニルオキシ基など)等が挙げられる。 Examples of the desorbing group include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.) and an imidate group [for example, 2,2,2-trichloroacetimideyloxy group (group-OC (=)). NH) -CCl 3 ), (N-phenyl) trifluoroacetimideyloxy group (group-OC (= NPh) -CF 3 ), etc.], carbonate group (or carbonate ester group, for example 2,2) , 2-Trichloroethoxydicarbonyloxy group, etc.) and the like.
 代表的な置換基としては、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、ニトロ基、シアノ基、オキソ基、置換されていてもよいヒドロキシ基[例えば、ヒドロキシ基、置換ヒドロキシ基(例えば、アルコキシ基、シリルオキシ基等)等]、置換されていてもよいメルカプト基[例えば、メルカプト基(チオール基)、置換メルカプト基(例えば、チオアルコキシ基など)等]、置換されていてもよいアミノ基[例えば、アミノ基、置換アミノ基(例えば、アルキルアミノ基、アシルアミノ基など)等]、置換されていてもよいリン酸基、リン酸エステル基、炭化水素基(例えば、アルキル基など)、アシル基、エステル基等が挙げられる。 Typical substituents include, for example, halogen atoms (eg, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), nitro group, cyano group, oxo group, and optionally substituted hydroxy group [eg, hydroxy group. Group, substituted hydroxy group (eg, alkoxy group, silyloxy group, etc.), etc.], optionally substituted mercapto group [eg, mercapto group (thiol group), substituted mercapto group (eg, thioalkoxy group, etc.), etc.], Substituentally substituted amino groups [eg, amino groups, substituted amino groups (eg, alkylamino groups, acylamino groups, etc.), etc.], optionally substituted phosphate groups, phosphate ester groups, hydrocarbon groups (eg, alkylamino groups, acylamino groups, etc.) For example, an alkyl group), an acyl group, an ester group and the like can be mentioned.
 置換基の置換部位(芳香環骨格に対する置換位置)は、特に限定されず、芳香環骨格上の炭素原子であってもよく、芳香環骨格が芳香族複素環骨格の場合には、芳香族複素環骨格上のヘテロ原子(例えば、窒素原子など)であってもよく、これらの双方であってもよい。 The substitution site (substitution position with respect to the aromatic ring skeleton) of the substituent is not particularly limited and may be a carbon atom on the aromatic ring skeleton. When the aromatic ring skeleton is an aromatic heterocyclic skeleton, the aromatic heterocycle may be used. It may be a heteroatom on the ring skeleton (eg, a nitrogen atom, etc.) or both.
 このような芳香環骨格(又は芳香環基)としては、例えば、以下の式(X-1)~(X-5)で表される構造(骨格、基)が挙げられる。 Examples of such an aromatic ring skeleton (or aromatic ring group) include structures (skeletons, groups) represented by the following formulas (X-1) to (X-5).
Figure JPOXMLDOC01-appb-C000006
(式中、Rは、それぞれ独立して、置換基であり、
 Rは、水素原子又は置換基であり、
 m1は、0~5の整数であり、
 m2は、0~4の整数であり、
 m3は、0~3の整数である。)
Figure JPOXMLDOC01-appb-C000006
(In the formula, R c is a substituent independently of each other.
R d is a hydrogen atom or a substituent and is
m1 is an integer from 0 to 5 and
m2 is an integer from 0 to 4 and
m3 is an integer of 0 to 3. )
 上記R及びRで表される置換基は、例えば、上記Xで表される芳香環基(芳香環骨格)が有していてもよい置換基として例示した基と同様のものが挙げられる。 Examples of the substituents represented by R c and R d include the same groups as those exemplified as the substituents that the aromatic ring group (aromatic ring skeleton) represented by X may have. ..
 上記Rとしては、炭素数1~5のアルキル基、アミノ基又はアミノ基の保護基であることが好ましい。 The R d is preferably an alkyl group having 1 to 5 carbon atoms, an amino group, or a protecting group for an amino group.
 上記式(X-1)~(X-5)において、芳香環基の結合位置は、特に限定されず、例えば、芳香環基を構成する水素原子を1個除いた位置(芳香環基又は芳香環骨格を構成する炭素原子等)であればよい。 In the above formulas (X-1) to (X-5), the bonding position of the aromatic ring group is not particularly limited, and for example, the position excluding one hydrogen atom constituting the aromatic ring group (aromatic ring group or aromatic). Any carbon atom or the like constituting the ring skeleton may be used.
 特に、芳香環基は、ピリジン骨格、ピリミジン骨格及びプリン骨格が、以下の式(X-1-1)~(X-1-2)、(X-2-1)~(X-2-4)、(X-3-1)~(X-3-2)で表される構造(骨格、基)であってもよい。 In particular, as the aromatic ring group, the pyridine skeleton, the pyrimidine skeleton and the purine skeleton have the following formulas (X-1-1) to (X-1-2), (X-2-1) to (X-2-4). ), (X-3-1) to (X-3-2) may be the structure (skeleton, group).
Figure JPOXMLDOC01-appb-C000007
(式中、R及びRは上記式(X-1)~(X-3)と同義であり、
 R及びRは、水素原子又は置換基であり、
 m4は、0~4の整数であり、
 m5は、0~3の整数であり、
 m6及びm7は、それぞれ独立して、0~2の整数である。)
Figure JPOXMLDOC01-appb-C000007
(In the formula, R c and R d are synonymous with the above formulas (X-1) to (X-3).
Re and R f are hydrogen atoms or substituents and are
m4 is an integer from 0 to 4 and
m5 is an integer from 0 to 3 and
m6 and m7 are independently integers of 0 to 2. )
 上記R及びRで表される置換基としては、上記Xで表される芳香環基(芳香環骨格)が有していてもよい置換基として例示した基のうち1価の基と同様のものが挙げられる。 The substituents represented by Re and R f are the same as the monovalent groups among the groups exemplified as the substituents that the aromatic ring group (aromatic ring skeleton) represented by X may have. Can be mentioned.
 上記式(A)において、芳香環基(芳香環骨格)の結合位置(アセチレン基、-C≡C-に対する置換又は結合位置)は、特に限定されず、例えば、芳香環骨格の環を構成する炭素原子、芳香環骨格のうち芳香族複素環骨格の環を構成するヘテロ原子、芳香環骨格が有する置換基のいずれであってもよいが、代表的には、芳香環骨格の環を構成する炭素原子又は芳香環骨格のうち芳香族複素環骨格の環を構成するヘテロ原子、特に、芳香環骨格の環を構成する炭素原子であってもよい。
 具体的な例を挙げると、芳香環骨格が、ピリジン骨格である場合、該骨格の3位又は5位の炭素原子で結合していることが好ましく、該骨格の5位の炭素原子で結合していることがより好ましい。また、芳香環骨格が、ピリミジン骨格である場合、該骨格の5位の炭素原子で結合していることが好ましい。
 代表的なXで表される芳香環基としては、窒素原子を含有する芳香族複素環骨格(窒素原子を芳香環骨格の環を構成するヘテロ原子とする芳香族複素環骨格)が挙げられ、好ましくは、ピリジン骨格(置換基を有していてもよいピリジン骨格)、ピリミジン骨格(置換基を有していてもよいピリミジン骨格)、プリン骨格(置換基を有していてもよいプリン骨格)、ピラジン骨格(置換基を有していてもよいピラジン骨格)又はピリダジン骨格(置換基を有していてもよいピリダジン骨格)が挙げられ、ピリジン骨格、ピリミジン骨格又はプリン骨格が好ましい。
In the above formula (A), the bond position (substitution or bond position with respect to the acetylene group, -C≡C-) of the aromatic ring group (aromatic ring skeleton) is not particularly limited, and for example, constitutes a ring of the aromatic ring skeleton. It may be either a carbon atom, a hetero atom constituting the ring of the aromatic heterocyclic skeleton among the aromatic ring skeletons, or a substituent having the aromatic ring skeleton, but typically constitutes the ring of the aromatic ring skeleton. Of the carbon atoms or the aromatic ring skeleton, it may be a hetero atom constituting the ring of the aromatic heterocyclic skeleton, particularly a carbon atom constituting the ring of the aromatic ring skeleton.
To give a specific example, when the aromatic ring skeleton is a pyridine skeleton, it is preferably bonded at the carbon atom at the 3- or 5-position of the skeleton, and is bonded at the carbon atom at the 5-position of the skeleton. Is more preferable. When the aromatic ring skeleton is a pyrimidine skeleton, it is preferably bonded at the carbon atom at the 5-position of the skeleton.
Examples of the aromatic ring group represented by X include an aromatic heterocyclic skeleton containing a nitrogen atom (an aromatic heterocyclic skeleton in which the nitrogen atom is a heteroatom constituting the ring of the aromatic ring skeleton). Preferably, a pyridine skeleton (pyridine skeleton which may have a substituent), pyrimidine skeleton (pyrimidine skeleton which may have a substituent), purine skeleton (purine skeleton which may have a substituent). , Pyrazine skeleton (pyrazine skeleton which may have a substituent) or pyridazine skeleton (pyridazine skeleton which may have a substituent), and pyridine skeleton, pyrimidine skeleton or purine skeleton is preferable.
 上記R1aで表される置換基としては、例えば、上記Xで表される芳香環基が有していてもよい置換基として例示した基と同様のものが挙げられる。上記R1aで表される置換基としては、少なくとも1つのリン酸基を有する基(例えば、一リン酸、二リン酸、三リン酸等)が好ましい。 Examples of the substituent represented by R 1a include the same groups as those exemplified as the substituents that the aromatic ring group represented by X may have. As the substituent represented by R 1a , a group having at least one phosphoric acid group (for example, monophosphoric acid, diphosphoric acid, triphosphate, etc.) is preferable.
 上記Rとしては、ヒドロキシ基又はホスホロアミダイト基であることが好ましい。 The R 1 is preferably a hydroxy group or a phosphoramidite group.
 上記Rで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the halogen atom represented by R 3 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 上記R及びR3aで表される置換基は、例えば、上記Xで表される芳香環基が有していてもよい置換基として例示した基と同様のものが挙げられる。上記R及びR3aで表される置換基は、同じであっても異なっていてもよい。また、上記R及びR3aで表される置換基は、糖骨格の2位及び/又は5位に結合するヒドロキシ基の保護基であることが好ましく、上記ヒドロキシ基の保護基は、不要となった際には、脱保護できる基であることが好ましい。ヒドロキシ基の保護基としては、例えば、アシル基(例えば、アセチル基、ベンゾイル基など)、アラルキル基(例えば、ベンジル基など)、トリアルキルシリル基(例えば、トリメチルシリル基、トリエチルシリル基、TBS基など)、トリチル基を有する基等が挙げられる。 Examples of the substituents represented by R 2 and R 3a include the same groups as those exemplified as the substituents that the aromatic ring group represented by X may have. The substituents represented by R 2 and R 3a may be the same or different. Further, the substituent represented by R 2 and R 3a is preferably a protecting group of a hydroxy group bonded to the 2-position and / or 5-position of the sugar skeleton, and the protecting group of the hydroxy group is unnecessary. When it becomes, it is preferable that it is a group that can be deprotected. Examples of the hydroxy group protective group include an acyl group (for example, an acetyl group, a benzoyl group, etc.), an aralkyl group (for example, a benzyl group, etc.), a trialkylsilyl group (for example, a trimethylsilyl group, a triethylsilyl group, a TBS group, etc.). ), A group having a trityl group and the like.
 上記R及びR3aで表される置換基(保護基)としては、例えば、置換基を有していてもよいトリチル基、シリル基(例えば、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル(TBS)基など)、アシル基(例えば、アセチル基、ベンゾイル基、フェノキシアセチル基など)、アルコキシシリル基(例えば、メトキシシリル基、エトキシシリル基、トリイソプロピルシロキシメチル(TOM)基など)等が挙げられる。 Examples of the substituent (protective group) represented by R 2 and R 3a include a trityl group and a silyl group (for example, a trimethylsilyl group, a triethylsilyl group and a tert-butyldimethylsilyl) which may have a substituent. (TBS) group, etc.), acyl group (eg, acetyl group, benzoyl group, phenoxyacetyl group, etc.), alkoxysilyl group (eg, methoxysilyl group, ethoxysilyl group, triisopropylsiloxymethyl (TOM) group, etc.), etc. Can be mentioned.
 上記Rで表される置換基(保護基)としては、置換基を有していてもよいトリチル基が好ましい。 As the substituent (protecting group) represented by R 2 , a trityl group which may have a substituent is preferable.
 上記トリチル基が有する置換基としては、炭素数1~5のアルコキシ基が好ましく、メトキシ基がより好ましい。 As the substituent contained in the trityl group, an alkoxy group having 1 to 5 carbon atoms is preferable, and a methoxy group is more preferable.
 上記R3aで表される置換基(保護基)としては、シリル基、並びにアルコキシシリル基が好ましく、TBS基及びTOM基がより好ましい。 As the substituent (protecting group) represented by R 3a , a silyl group and an alkoxysilyl group are preferable, and a TBS group and a TOM group are more preferable.
 ホスホロアミダイト基は、下記式(I)で表される構造である。 The phosphoramidite group has a structure represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000008
(式(I)中、R1b、R1c及びR1dは、それぞれ独立して、水素原子又は置換基である。
 は、上記式(A)中の糖骨格との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000008
In formula (I), R 1b , R 1c and R 1d are independently hydrogen atoms or substituents.
* Indicates the binding site with the sugar skeleton in the above formula (A). )
 上記R1b、R1c及びR1dで表される置換基は、例えば、上記式(A)のXが有していてもよい置換基として例示した基と同様のものが挙げられる。 Examples of the substituent represented by R 1b , R 1c and R 1d include the same groups as those exemplified as the substituent that X of the above formula (A) may have.
 上記R1bとしては、リン酸のヒドロキシ基の保護基であることが好ましく、上記保護基は、不要となった際には、脱保護できる基であることが好ましい。 The R 1b is preferably a protecting group for the hydroxy group of phosphoric acid, and the protecting group is preferably a group that can be deprotected when it is no longer needed.
 上記R1bで表される置換基(保護基)としては、シアノ基で置換されている炭素数1~5の炭化水素基が好ましい。 As the substituent (protecting group) represented by R 1b , a hydrocarbon group having 1 to 5 carbon atoms substituted with a cyano group is preferable.
 上記R1c及びR1dで表される置換基としては、置換されていてもよい炭素数1~10の炭化水素基が好ましく、置換されていてもよい炭素数1~5の炭化水素基がより好ましく、置換されていてもよい炭素数1~5のアルキル基がさらに好ましく、2-プロピル基が特に好ましい。 As the substituents represented by R 1c and R 1d , a hydrocarbon group having 1 to 10 carbon atoms which may be substituted is preferable, and a hydrocarbon group having 1 to 5 carbon atoms which may be substituted is more preferable. Preferably, an alkyl group having 1 to 5 carbon atoms which may be substituted is more preferable, and a 2-propyl group is particularly preferable.
 上記式(A)で表される化合物は、例えば、下記式(II)で表される化合物を原料として調製することができる。下記式(II)で表される化合物は、入手可能であれば市販品を用いてもよく、合成(製造)したものを用いてもよい。 The compound represented by the above formula (A) can be prepared, for example, using the compound represented by the following formula (II) as a raw material. As the compound represented by the following formula (II), a commercially available product may be used as long as it is available, or a synthesized (manufactured) compound may be used.
Figure JPOXMLDOC01-appb-C000009
[式(II)中、R1’は、-OR1a’(式中、R1a’は、水素原子又は置換基を示す。)又はホスホロアミダイト基であり、
 R2aは、水素原子又は置換基であり、
 R3’は、ハロゲン原子又は-OR3a’(式中、R3a’は、水素原子又は置換基を示す。)である。]
Figure JPOXMLDOC01-appb-C000009
Wherein (II), R 1 'is -OR 1a' (wherein, R 1a 'is a hydrogen atom or a substituent.) Or a phosphoramidite group,
R 2a is a hydrogen atom or a substituent and is
R 3 'is a halogen atom or -OR 3a' (wherein, R 3a 'is a hydrogen atom or a substituent.) It is. ]
 R1a’で表される置換基としては、上記式(A)のR1aで表される置換基と同様のものが挙げられる。 Examples of the substituent represented by R 1a ', those similar to the substituents represented by R 1a in the formula (A).
 R2a及びR3a’で表される置換基としては、それぞれ上記式(A)のR及びR3aで表される置換基と同様のものが挙げられる。 Examples of the substituent represented by R 2a and R 3a'include the same substituents represented by R 2 and R 3a of the above formula (A), respectively.
 上記式(II)で表される化合物から上記式(A)で表される化合物を調製する方法としては、当該技術分野で公知の方法を参照して行ってもよいが、例えば、以下のような工程で行ってもよい。 As a method for preparing the compound represented by the above formula (A) from the compound represented by the above formula (II), a method known in the art may be referred to, and for example, as follows. It may be carried out in various steps.
 上記式(II)で表される化合物を、下記式(III)で表される化合物と反応(カップリング反応)させて、下記式(IV)で表される化合物を調製する。 The compound represented by the above formula (II) is reacted with the compound represented by the following formula (III) (coupling reaction) to prepare the compound represented by the following formula (IV).
 カップリング反応において、下記式(III)で表される化合物の使用割合は、上記式(II)で表される化合物1モルに対して、例えば、0.3モル以上(例えば、0.4~10モル)、好ましくは0.5モル以上(例えば、0.6~5モル)、より好ましくは0.6モル以上(例えば、0.7~3モル)であってもよい。 In the coupling reaction, the ratio of the compound represented by the following formula (III) to be used is, for example, 0.3 mol or more (for example, 0.4 to 0.4 to 1 mol) of the compound represented by the above formula (II). It may be 10 mol) or more, preferably 0.5 mol or more (for example, 0.6 to 5 mol), and more preferably 0.6 mol or more (for example, 0.7 to 3 mol).
 カップリング反応は、触媒の存在下で行ってもよい。触媒としては、例えばパラジウム(例えば、塩化パラジウム(PdCl)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)(PdCl(PPh)、酢酸パラジウム(Pd(OAc))、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)、トリス(ジベンジリデンアセトン)パラジウム(0)-クロロホルム付加物(Pd(dba)・CHCl)、パラジウムブラックなど)、銅(例えば、ヨウ化銅(I)(CuI)、酸化銅(I)(CuO)、臭化銅(I)(CuBr)、トリフルオロメタンスルホン酸銅(I)ベンゼン錯体((CuOTf)-C)、塩化銅(I)(CuCl)など)、白金等が挙げられる。上記触媒は単独で又は2種以上組み合わせて用いてもよい。上記触媒としては、パラジウム、銅及びこれらの組み合わせが好ましく、パラジウム及び銅の組み合わせがより好ましい。 The coupling reaction may be carried out in the presence of a catalyst. Examples of the catalyst include palladium (for example, palladium chloride (PdCl 2 ), dichlorobis (triphenylphosphine) palladium (II) (PdCl 2 (PPh 3 ) 2 ), palladium acetate (Pd (OAc) 2 ), tetrakis (triphenyl). Phosphine) palladium (0) (Pd (PPh 3 ) 4 ), tris (dibenzilidenacetone) palladium (0) -chloroadium adduct (Pd 2 (dba) 3 · CHCl 3 ), palladium black, etc.), copper (eg, phosphine) palladium (0) (Pd (PPh 3) 4), copper (eg Copper iodide (I) (CuI), copper (I) oxide (Cu 2 O), copper bromide (I) (CuBr), copper trifluoromethanesulfonate (I) benzene complex ((CuOTf) 2- C 6 H 6 ), copper (I) chloride (CuCl), etc.), platinum and the like. The catalyst may be used alone or in combination of two or more. As the catalyst, palladium, copper and a combination thereof are preferable, and a combination of palladium and copper is more preferable.
 カップリング反応は、塩基の存在下で行ってもよい。上記塩基としては、例えば、アミン(例えば、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミンなど)、炭酸塩(例えば炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどの炭酸アルカリ金属塩)、酸化銀、ピリジン類(ピリジン、ピコリンなど)等が挙げられる。上記塩基は単独又は2種以上組み合わせて用いてもよい。上記塩基としては、アミンが好ましく、溶媒と兼用できる点から、ジエチルアミン及びトリエチルアミンがより好ましい。 The coupling reaction may be carried out in the presence of a base. Examples of the base include amines (eg, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, etc.), carbonates (eg, alkali metal carbonates such as sodium carbonate, potassium carbonate, cesium carbonate, etc.), silver oxide, and the like. Examples thereof include pyridines (pyridine, picolin, etc.). The above bases may be used alone or in combination of two or more. As the base, amine is preferable, and diethylamine and triethylamine are more preferable from the viewpoint that they can also be used as a solvent.
 なお、カップリング反応は、溶媒中で行ってもよい。溶媒としては、カップリング反応を阻害しない溶媒であれば特に限定されず、例えば、炭化水素類[例えば、脂肪族炭化水素類(例えば、ヘキサン、ヘプタン、シクロヘキサンなど)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレンなど)など]、ハロゲン化炭化水素類(例えば、塩化メチレン、ジクロロメタン、クロロホルムなど)、エーテル類[例えば、鎖状エーテル類(例えば、ジエチルエーテルなど)、環状エーテル類(例えば、テトラヒドロフラン、ジオキサンなど)など]、エステル類(例えば、酢酸エチルなど)、アミド類[例えば、N-置換アミド(N,N-ジメチルホルムアミドなどのN-アルキルアルカンアミド)など]、アルコール類(例えば、メタノール、エタノール、イソプロパノールなどのアルカノール)、非プロトン性極性溶媒(例えば、アセトニトリル、アセトンなど)等が挙げられる。
 これらの溶媒は、単独又は2種以上組み合わせて用いてもよい。
The coupling reaction may be carried out in a solvent. The solvent is not particularly limited as long as it does not inhibit the coupling reaction, and is, for example, hydrocarbons [for example, aliphatic hydrocarbons (for example, hexane, heptane, cyclohexane, etc.), aromatic hydrocarbons (for example, for example). , Benzene, toluene, xylene, etc.], halogenated hydrocarbons (eg, methylene chloride, dichloromethane, chloroform, etc.), ethers [eg, chain ethers (eg, diethyl ether, etc.), cyclic ethers (eg, eg, diethyl ether, etc.) , Tetrahydrofuran, dioxane, etc.], esters (eg, ethyl acetate, etc.), amides [eg, N-substituted amides (N-alkylalkaneamides, such as N, N-dimethylformamide), etc.], alcohols (eg, N-alkylalkaneamides, etc.) , Alkanels such as methanol, ethanol and isopropanol), aprotonic polar solvents (eg, acetonitrile, acetone and the like) and the like.
These solvents may be used alone or in combination of two or more.
 反応は、常温(又は室温)下、冷却下、又は加温下で行ってもよい。また、反応は、空気中又は不活性雰囲気(窒素、アルゴンなどの希ガス等)中で行ってもよい。 The reaction may be carried out at room temperature (or room temperature), cooling, or heating. Further, the reaction may be carried out in air or in an inert atmosphere (noble gas such as nitrogen or argon).
 反応時間は、特に限定されないが、例えば、1分以上(例えば、2分~48時間)、好ましくは3分以上(例えば、4分以上~24時間)、さらに好ましくは5分以上(例えば、10分~12時間)程度であってもよい。なお、薄層クロマトグラフィー(TLC)等の慣用の方法を用い、反応の進行を確認してもよい。 The reaction time is not particularly limited, but is, for example, 1 minute or more (for example, 2 minutes to 48 hours), preferably 3 minutes or more (for example, 4 minutes or more to 24 hours), and more preferably 5 minutes or more (for example, 10 minutes). It may be about minutes to 12 hours). The progress of the reaction may be confirmed by using a conventional method such as thin layer chromatography (TLC).
Figure JPOXMLDOC01-appb-C000010
(式(III)中、X’は、芳香環基であり、
 Aは、脱離基である。)
Figure JPOXMLDOC01-appb-C000010
(In formula (III), X'is an aromatic ring group,
A is a leaving group. )
 上記X’で表される芳香環基は、上記式(A)におけるXで表される芳香環基と同様の基が挙げられる。 As the aromatic ring group represented by X', the same group as the aromatic ring group represented by X in the above formula (A) can be mentioned.
 上記Aで表される脱離基としては、例えば、上記式(II)で表される化合物の水素原子(末端アルキンの水素原子)と反応して、グリコシド結合を形成可能な基であれば特に限定されず、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、イミダート基[例えば、2,2,2-トリクロロアセトイミドイルオキシ基(基-O-C(=NH)-CCl)、(N-フェニル)トリフルオロアセトイミドイルオキシ基(基-O-C(=NPh)-CF)、など]、カーボネート基(又は炭酸エステル基、例えば、2,2,2-トリクロロエトキシジカルボニルオキシ基など)等が挙げられる。 The desorbing group represented by A is particularly any group capable of forming a glycoside bond by reacting with the hydrogen atom (hydrogen atom of the terminal alkin) of the compound represented by the above formula (II). Not limited, for example, halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), imidate group [eg, 2,2,2-trichloroacetimideyloxy group (group-OC (= NH)). -CCl 3 ), (N-phenyl) trifluoroacetimideyloxy group (group-OC (= NPh) -CF 3 ), etc.], carbonate group (or carbonate ester group, for example 2,2,2) -Trichloroethoxydicarbonyloxy group, etc.) and the like.
 これらのうち、上記Xにおける結合部位を調節しやすい点から、ハロゲン原子が好ましい。 Of these, a halogen atom is preferable because it is easy to adjust the binding site in X.
 上記式(III)で表される化合物は、カップリング反応の際に上記Aが脱離可能な基であれば特に限定されず、上記式(III)で表される化合物の調製の簡便性又は脱離性の観点から適宜設定することができる。上記結合部位は、上記X’で表される芳香環基における芳香環骨格を構成する炭素原子と結合していることが好ましく、特に、上記芳香環基がピリジン環基又はピリミジン環基である場合、これらの芳香環骨格の5位の炭素原子と結合していることが好ましい。 The compound represented by the above formula (III) is not particularly limited as long as the above A is a group that can be eliminated during the coupling reaction, and the convenience of preparing the compound represented by the above formula (III) or It can be appropriately set from the viewpoint of detachability. The bond site is preferably bonded to a carbon atom constituting the aromatic ring skeleton in the aromatic ring group represented by X', and in particular, when the aromatic ring group is a pyridine ring group or a pyrimidine ring group. , It is preferable that it is bonded to the carbon atom at the 5-position of these aromatic ring skeletons.
Figure JPOXMLDOC01-appb-C000011
(式(IV)中、X’は、上記式(III)と同義である。
 R1’、R2a及びR3’は、上記式(II)と同義である。)
Figure JPOXMLDOC01-appb-C000011
(In formula (IV), X'is synonymous with formula (III) above.
R 1 ', R 2a and R 3' is as defined in the above formula (II). )
 上述のようにして、上記式(A)で表される化合物のうち上記式(IV)で表される化合物が得られる。反応混合物(式(IV)で表される化合物を含む混合物)は、分離(又は回収)することなく、そのまま、後述の反応に供してもよく、分離(又は回収)してもよい。 As described above, among the compounds represented by the above formula (A), the compound represented by the above formula (IV) can be obtained. The reaction mixture (mixture containing the compound represented by the formula (IV)) may be subjected to the reaction described later as it is without separation (or recovery), or may be separated (or recovered).
 上述のようにして得られた上記式(IV)で表される化合物を中間体又は前駆体として、さらに別の反応(例えば、脱保護反応、ホスホロアミダイト化反応等)により上記式(A)で表される化合物を調製してもよい。 Using the compound represented by the above formula (IV) obtained as described above as an intermediate or a precursor, the above formula (A) is carried out by yet another reaction (for example, deprotection reaction, phosphoramidite conversion reaction, etc.). The compound represented by may be prepared.
 脱保護反応としては、上記式(IV)で表される化合物の糖骨格の2位及び/又は6位の置換基を脱保護することができる反応であれば特に限定されない。糖骨格の2位及び6位の両方に置換基を有する場合には、糖骨格の2位及び6位の置換基を一度の反応で脱保護してもよく、いずれか一方の置換基を脱保護した後、残りの置換基を脱保護してもよい。また、脱保護反応は、上記式(A)におけるXで表される芳香環基が置換基(アミノ基の保護基)を有する場合に、上記置換基(アミノ基の保護基)をさらに脱保護する反応を備えるものであってもよい。 The deprotection reaction is not particularly limited as long as it can deprotect the substituents at the 2-position and / or the 6-position of the sugar skeleton of the compound represented by the above formula (IV). When both the 2- and 6-positions of the sugar skeleton have substituents, the 2- and 6-position substituents of the sugar skeleton may be deprotected in a single reaction, and one of the substituents may be removed. After protection, the remaining substituents may be deprotected. Further, in the deprotection reaction, when the aromatic ring group represented by X in the above formula (A) has a substituent (protecting group of amino group), the above substituent (protecting group of amino group) is further deprotected. It may have a reaction to the effect.
 脱保護反応は、上記式(IV)で表される化合物の糖骨格の2位及び/又は6位の置換基を脱保護することにより、下記式(V)で表される化合物が調製される。なお、上記Xで表される芳香環基が置換基(保護基)を有する場合には、上記置換基(保護基)をさらに脱保護することにより、下記式(V)で表される化合物が調製されるものでもよい。 In the deprotection reaction, the compound represented by the following formula (V) is prepared by deprotecting the substituents at the 2- and / or 6-positions of the sugar skeleton of the compound represented by the above formula (IV). .. When the aromatic ring group represented by X has a substituent (protecting group), the compound represented by the following formula (V) can be obtained by further deprotecting the substituent (protecting group). It may be prepared.
Figure JPOXMLDOC01-appb-C000012
(式(V)中、X’は、上記式(III)と同義である。
 R3bは、ハロゲン原子又はヒドロキシ基である。)
Figure JPOXMLDOC01-appb-C000012
(In the formula (V), X'is synonymous with the above formula (III).
R 3b is a halogen atom or a hydroxy group. )
 脱保護反応は、酸及び/又はフッ化物イオンを用いて(又は酸及び/又はフッ化物イオンと反応させて)行うことができる。 The deprotection reaction can be carried out using acid and / or fluoride ions (or by reacting with acid and / or fluoride ions).
 酸としては、有機酸[例えば、カルボン酸(例えば、酢酸、クエン酸、シュウ酸、酒石酸、トリクロロ酢酸、トリフルオロ酢酸など)]、無機酸[例えば、ハロゲン化水素(例えば、塩酸、フッ化水素酸など)、硫酸、硝酸、リン酸、クロム酸、ホウ酸、スルホン酸など]等が挙げられる。酸は、単独で又は2種以上組み合わせてもよい。
 特に、酸として、カルボン酸が好ましく、トリクロロ酢酸又はトリフルオロ酢酸がより好ましい。
Acids include organic acids [eg, carboxylic acids (eg acetic acid, citric acid, oxalic acid, tartaric acid, trichloroacetic acid, trifluoroacetic acid, etc.)], inorganic acids [eg, hydrogen halide (eg, hydrochloric acid, hydrogen fluoride). Acids, etc.), sulfuric acid, nitric acid, phosphoric acid, chromium acid, boric acid, sulfonic acid, etc.] and the like. The acid may be used alone or in combination of two or more.
In particular, as the acid, a carboxylic acid is preferable, and trichloroacetic acid or trifluoroacetic acid is more preferable.
 フッ化物イオンとしては、例えば、フッ化テトラ-n-ブチルアンモニウム(TBAF)、フッ化水素酸、フッ化セシウム等が挙げられる。フッ化物イオンは、単独で又は2種以上組み合わせてもよい。
 特に、フッ化物イオンとして、TBAFが好ましい。
Examples of the fluoride ion include tetra-n-butylammonium fluoride (TBAF), hydrofluoric acid, cesium fluoride and the like. Fluoride ions may be used alone or in combination of two or more.
In particular, TBAF is preferable as the fluoride ion.
 また、脱保護反応は、上記X’で表される芳香環基が有する置換基(アミノ基の保護基)を脱保護する場合には、塩基を用いて(又は塩基と反応させて)行うことができる。 Further, when deprotecting the substituent (protecting group of amino group) of the aromatic ring group represented by X', the deprotection reaction is carried out using (or reacting with) a base. Can be done.
 塩基としては、例えば、アンモニアなどの電離度の小さい塩基(弱塩基)、水酸化ナトリウム、水酸化カルシウム、水酸化バリウムなどの電離度の大きい塩基(強塩基)等が挙げられる。塩基は、単独で又は2種以上組み合わせてもよい。
 特に、塩基として、電離度の小さい塩基(弱塩基)が好ましく、アンモニア(アンモニア水)がより好ましい。
Examples of the base include a base having a small degree of ionization (weak base) such as ammonia, a base having a large degree of ionization (strong base) such as sodium hydroxide, calcium hydroxide and barium hydroxide. The bases may be used alone or in combination of two or more.
In particular, as the base, a base having a small degree of ionization (weak base) is preferable, and ammonia (ammonia water) is more preferable.
 なお、脱保護反応は、溶媒中で行ってもよい。溶媒としては、脱保護反応を阻害しない溶媒であれば特に限定されず、例えば、カップリング反応で例示した溶媒と同様のものが挙げられる。 The deprotection reaction may be carried out in a solvent. The solvent is not particularly limited as long as it does not inhibit the deprotection reaction, and examples thereof include the same solvents as those exemplified in the coupling reaction.
 反応は、常温(又は室温)下、冷却下、又は加温下で行ってもよい。また、反応は、空気中又は不活性雰囲気(窒素、アルゴンなどの希ガス等)中で行ってもよい。 The reaction may be carried out at room temperature (or room temperature), cooling, or heating. Further, the reaction may be carried out in air or in an inert atmosphere (noble gas such as nitrogen or argon).
 反応時間は、特に限定されないが、例えば、1分以上(例えば、2分~48時間)、好ましくは3分以上(例えば、4分以上~24時間)、さらに好ましくは5分以上(例えば、10分~12時間)程度であってもよい。なお、薄層クロマトグラフィー(TLC)等の慣用の方法を用い、反応の進行を確認してもよい。 The reaction time is not particularly limited, but is, for example, 1 minute or more (for example, 2 minutes to 48 hours), preferably 3 minutes or more (for example, 4 minutes or more to 24 hours), and more preferably 5 minutes or more (for example, 10 minutes). It may be about minutes to 12 hours). The progress of the reaction may be confirmed by using a conventional method such as thin layer chromatography (TLC).
 なお、反応混合物(式(IV)で表される化合物を含む混合物)は、分離(又は回収)することなく、そのまま、別の脱保護反応を行うものであってもよい。
 反応混合物からの分離(又は精製)には、慣用の方法(例えば、濾過、抽出、濃縮、洗浄、吸着、膜分離、クロマトグラフィーなど)を利用できる。
The reaction mixture (mixture containing the compound represented by the formula (IV)) may be subjected to another deprotection reaction as it is without separation (or recovery).
Conventional methods (eg, filtration, extraction, concentration, washing, adsorption, membrane separation, chromatography, etc.) can be used for separation (or purification) from the reaction mixture.
 ホスホロアミダイト化反応としては、上記式(IV)で表される化合物の糖骨格の3位のヒドロキシ基をホスホロアミダイト化できる反応であれば、特に限定されない。 The phosphoramidite-forming reaction is not particularly limited as long as it can phosphoramidite the hydroxy group at the 3-position of the sugar skeleton of the compound represented by the above formula (IV).
 ホスホロアミダイト化反応は、上記式(IV)で表される化合物をホスホロアミダイト化剤と反応させることにより、下記式(VI)で表される化合物が調製される。 In the phosphoramidite conversion reaction, a compound represented by the following formula (VI) is prepared by reacting a compound represented by the above formula (IV) with a phosphoramidite agent.
Figure JPOXMLDOC01-appb-C000013
(式(VI)中、X’、R2a及びR3’は上記式(IV)と同義である。
 R1eは、ホスホロアミダイト基である。)
Figure JPOXMLDOC01-appb-C000013
(In the formula (VI), X ', R 2a and R 3' are as defined in the above formula (IV).
R 1e is a phosphoramidite group. )
 ホスホロアミダイト化剤は、上記式(IV)で表される化合物の糖骨格の2位のヒドロキシ基をホスホロアミダイト基に変更できるものであれば、特に限定されない。ホスホロアミダイト化剤としては、例えば、シアノエトキシ基及びジアルキルアミノ基が結合した化合物(例えば、i-PrNP(Cl)O(CHCNなど)等が挙げられる。 The phosphoramidite agent is not particularly limited as long as it can change the hydroxy group at the 2-position of the sugar skeleton of the compound represented by the above formula (IV) to a phosphoramidite group. Examples of the phosphoramidite agent include compounds in which a cyanoethoxy group and a dialkylamino group are bonded (for example, i-Pr 2 NP (Cl) O (CH 2 ) 2 CN, etc.).
 ホスホロアミダイト化反応において、ホスホロアミダイト化剤の使用割合は、上記式(IV)で表される化合物1モルに対して、例えば、0.8モル以上(例えば、1~10モル)、好ましくは1モル以上(例えば、1.2~7モル)、より好ましくは1.5モル以上(例えば、1.6~5モル)であってもよい。 In the phosphoramidite conversion reaction, the ratio of the phosphoramidite agent used is preferably 0.8 mol or more (for example, 1 to 10 mol) with respect to 1 mol of the compound represented by the above formula (IV). May be 1 mol or more (for example, 1.2 to 7 mol), more preferably 1.5 mol or more (for example, 1.6 to 5 mol).
 なお、ホスホロアミダイト化反応は、溶媒中で行ってもよい。溶媒としては、ホスホロアミダイト化反応を阻害しない溶媒であれば特に限定されず、例えば、カップリング反応で例示した溶媒と同様のものが挙げられる。 The phosphoramidite formation reaction may be carried out in a solvent. The solvent is not particularly limited as long as it does not inhibit the phosphoramidite formation reaction, and examples thereof include the same solvents as those exemplified in the coupling reaction.
 反応は、常温(又は室温)下、冷却下、又は加温下で行ってもよい。また、反応は、空気中又は不活性雰囲気(窒素、アルゴンなどの希ガス等)中で行ってもよい。 The reaction may be carried out at room temperature (or room temperature), cooling, or heating. Further, the reaction may be carried out in air or in an inert atmosphere (noble gas such as nitrogen or argon).
 反応時間は、特に限定されないが、例えば、1分以上(例えば、2分~48時間)、好ましくは3分以上(例えば、4分以上~24時間)、さらに好ましくは5分以上(例えば、10分~12時間)程度であってもよい。なお、薄層クロマトグラフィー(TLC)等の慣用の方法を用い、反応の進行を確認してもよい。 The reaction time is not particularly limited, but is, for example, 1 minute or more (for example, 2 minutes to 48 hours), preferably 3 minutes or more (for example, 4 minutes or more to 24 hours), and more preferably 5 minutes or more (for example, 10 minutes). It may be about minutes to 12 hours). The progress of the reaction may be confirmed by using a conventional method such as thin layer chromatography (TLC).
 なお、反応混合物(式(IV)で表される化合物を含む混合物)は、分離(又は回収)することなく、そのまま、別の脱保護反応を行うものであってもよい。
 反応混合物からの分離(又は精製)には、慣用の方法(例えば、濾過、抽出、濃縮、洗浄、吸着、膜分離、クロマトグラフィーなど)を利用できる。
The reaction mixture (mixture containing the compound represented by the formula (IV)) may be subjected to another deprotection reaction as it is without separation (or recovery).
Conventional methods (eg, filtration, extraction, concentration, washing, adsorption, membrane separation, chromatography, etc.) can be used for separation (or purification) from the reaction mixture.
 ホスホロアミダイト化反応により得られる上記式(VI)で表される化合物は、光学異性体(例えば、ジアステレオマー、エナンチオマー等)を含む混合物であってもよい。このような混合物であっても、ホスホジエステル結合を介して重合体を形成すると不斉原子が解消される。 The compound represented by the above formula (VI) obtained by the phosphoramidite reaction may be a mixture containing optical isomers (for example, diastereomers, enantiomers, etc.). Even in such a mixture, the asymmetric atom is eliminated when a polymer is formed via a phosphodiester bond.
 <重合体>
 本発明の別の一態様には、上記化合物の重合体が含まれる。
<Polymer>
Another aspect of the present invention includes a polymer of the above compounds.
 上記重合体としては、複数の上記式(A)で表される化合物を重合成分とするものであればよく、上記重合成分間の結合としては、例えば、ホスホジエステル結合、ホスホロチオエート結合等が挙げられる。また、上記重合体は、核酸と塩基対を形成できるものであってもよい。ここで、「核酸」とは、生体内等において、天然に存在するDNA又はRNAであってもよく、天然に存在しうるDNA又はRNAといった天然核酸を人工的に合成したものであってもよく、天然に存在しうる核酸と塩基対を形成しうる構造を有する核酸類似物質であれば、上記核酸類似物質を人工的に合成したものであってもよい。 The polymer may be a polymer containing a plurality of compounds represented by the above formula (A) as a polymerization component, and examples of the bonds between the polymerization components include phosphodiester bonds and phosphorothioate bonds. .. Further, the polymer may be one capable of forming a base pair with nucleic acid. Here, the "nucleic acid" may be a naturally occurring DNA or RNA in a living body or the like, or may be an artificially synthesized natural nucleic acid such as a naturally occurring DNA or RNA. As long as it is a nucleic acid-like substance having a structure capable of forming a base pair with a naturally occurring nucleic acid, the above-mentioned nucleic acid-like substance may be artificially synthesized.
 上記重合体であることによって、天然核酸に対する親和性が高いものとなる理由としては、下記推測に縛られるものではないが、上記式(A)における糖骨格及びXで表される特定構造が炭素-炭素3重結合を介して結合されていることにより、アセチレン基(-C≡C-)及び糖骨格による立体配座が、天然核酸(特に、天然DNA)における糖の立体配座と類似しているため、天然核酸(特に、天然DNA)との親和性(相互作用の力)が高いものとなることが推測される。 The reason why the polymer has a high affinity for natural nucleic acids is not limited to the following speculation, but the sugar skeleton in the above formula (A) and the specific structure represented by X are carbon. -By being linked via a carbon triple bond, the conformation of the acetylene group (-C≡C-) and the sugar skeleton is similar to the conformation of sugar in natural nucleic acids (particularly natural DNA). Therefore, it is presumed that the affinity (the force of interaction) with the natural nucleic acid (particularly, the natural DNA) is high.
 このような重合体としては、例えば、下記式(B)で表される構造単位を有するもの等が挙げられる。 Examples of such a polymer include those having a structural unit represented by the following formula (B).
Figure JPOXMLDOC01-appb-C000014
[式(B)中、Xは、芳香環基であり、
 Aは、酸素原子又は硫黄原子であり、
 Rは、-OR(Rは、水素原子又は置換基を示す。)であり、
 Rは、ハロゲン原子又は-OR3a(式中、R3aは、水素原子又は置換基を示す。)であり、
 nは2以上である。
 複数のX、R及びRは同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000014
[In formula (B), X is an aromatic ring group,
A is an oxygen atom or a sulfur atom,
R a is -OR b (R b indicates a hydrogen atom or a substituent).
R 3 is a halogen atom or −OR 3a (in the formula, R 3a represents a hydrogen atom or a substituent).
n is 2 or more.
A plurality of X, R a and R 3 may be be the same or different. ]
 上記芳香環基としては、上記式(A)におけるXと同様のものが挙げられる。 Examples of the aromatic ring group include those similar to X in the above formula (A).
 上記Aは、構造の単一性の点から、酸素原子であることが好ましい。また、上記Aは、RNAヌクレアーゼに対する耐性に優れる点から、硫黄原子が好ましい。 The above A is preferably an oxygen atom from the viewpoint of structural unity. Further, the above-mentioned A is preferably a sulfur atom from the viewpoint of excellent resistance to RNA nuclease.
 上記-ORは、イオン化しているもの(-O)であってもよい。 The -OR b is what is ionized - may be a (-O).
 上記Rで表される置換基としては、例えば、上記式(A)におけるR1aで表される置換基として例示した基等が挙げられる。 Examples of the substituent represented by R b include the groups exemplified as the substituent represented by R 1a in the above formula (A).
 上記nは、2重らせん構造を形成させる点から、10以上が好ましく、15以上がより好ましく、20以上がさらに好ましい。上記nの上限としては、特に限定されるものではないが、例えば、100であってもよい。 The above n is preferably 10 or more, more preferably 15 or more, and even more preferably 20 or more from the viewpoint of forming a double helix structure. The upper limit of n is not particularly limited, but may be 100, for example.
 上記R3aで表される置換基としては、上記式(A)におけるR3aで表される置換基と同様のものが挙げられる。 The substituent represented by R 3a, those similar to the substituents represented by R 3a in the above formula (A).
 上記式(A)で表される化合物から上記重合体を形成する方法としては、上記式(A)で表される化合物が架橋構造を形成できる方法であれば、特に限定されず、核酸合成方法として公知の方法(例えば、ホスホロアミダイト法、ホスホロクロリダートを経由する合成法、亜リン酸トリエステル法等)を利用するものであってもよい。反応性を高める観点から、ホスホロアミダイト法を利用するものが好ましい。 The method for forming the polymer from the compound represented by the above formula (A) is not particularly limited as long as the compound represented by the above formula (A) can form a crosslinked structure, and is a nucleic acid synthesis method. A known method (for example, a phosphoramidite method, a synthetic method via phosphorochloridate, a phosphite triester method, etc.) may be used. From the viewpoint of enhancing reactivity, those using the phosphoramidite method are preferable.
 ホスホロアミダイト法は、固相合成を行うものであってもよく、液相合成を行うものでもよい。反応性を高める観点から、固相合成を行うことが好ましい。 The phosphoramidite method may be a solid phase synthesis or a liquid phase synthesis. From the viewpoint of enhancing reactivity, it is preferable to carry out solid phase synthesis.
 固相合成は、洗浄操作などの簡便化の点から、固相担体を使用することが好ましい。 For solid-phase synthesis, it is preferable to use a solid-phase carrier from the viewpoint of simplification of washing operations and the like.
 ホスホロアミダイト法による固相合成としては、例えば、以下のような工程で行うことができる。なお、ホスホロアミダイト法による固相合成は、手動で合成を行うものでもよく、コンピュータ制御のもと、自動で合成する装置を用いて行うものでもよい。 Solid-phase synthesis by the phosphoramidite method can be performed by, for example, the following steps. The solid-phase synthesis by the phosphoramidite method may be performed manually or by using an apparatus for automatic synthesis under computer control.
 (1)固相担体に化合物を導入する工程、(2)糖骨格の5’位の置換基(保護基)を脱保護する工程、(3)5’位のヒドロキシ基と3’位でカップリングする工程、(4)未反応の糖骨格の5’位のヒドロキシ基をキャッピングする工程、(5)酸化又は硫化する工程、及び(6)脱保護及び固相担体から切り出しする工程を備える。 (1) A step of introducing a compound into a solid phase carrier, (2) a step of deprotecting a substituent (protecting group) at the 5'position of the sugar skeleton, (3) a cup at the hydroxy group at the 5'position and the 3'position. It includes a ringing step, (4) a step of capping the hydroxy group at the 5'position of the unreacted sugar skeleton, (5) a step of oxidizing or sulfurizing, and (6) a step of deprotecting and cutting out from the solid phase carrier.
 [(1)固相担体に化合物を導入する工程]
 (1)固相担体に化合物を導入する工程では、最も3’側に位置する式(A)で表される化合物を固相担体に導入する。
[(1) Step of introducing the compound into the solid phase carrier]
(1) In the step of introducing the compound into the solid phase carrier, the compound represented by the formula (A) located on the 3'side is introduced into the solid phase carrier.
 固相担体は、調製する重合体の配列、重合度、及び使用する上記式(A)で表される化合物の濃度等に応じて適宜変更することができる。 The solid-phase carrier can be appropriately changed depending on the arrangement of the polymer to be prepared, the degree of polymerization, the concentration of the compound represented by the above formula (A) to be used, and the like.
 [(2)糖骨格の5’位の置換基(保護基)を脱保護する工程]
 (2)糖骨格の5’位の置換基(保護基)を脱保護する工程は、糖骨格の5’位のヒドロキシ基の置換基(保護基)のみを選択的に脱保護することができ、糖骨格の2位のヒドロキシ基の置換基(保護基)を脱離させないものであればよい。
[(2) Step of deprotecting the 5'-position substituent (protecting group) of the sugar skeleton]
(2) In the step of deprotecting the 5'-position substituent (protecting group) of the sugar skeleton, only the 5'-position hydroxy group substituent (protecting group) of the sugar skeleton can be selectively deprotected. , Anything that does not eliminate the substituent (protecting group) of the hydroxy group at the 2-position of the sugar skeleton may be used.
 上記(2)工程は、上記脱保護反応と同様に行うことができる。 The above step (2) can be performed in the same manner as the above deprotection reaction.
 [(3)5’位のヒドロキシ基及び3’位でカップリングする工程]
 (3)5’位のヒドロキシ基及び3’位でカップリングする工程は、上記式(VI)で表される化合物におけるR1eで表されるホスホロアミダイト基のうち上記式(I)で表される構造における-NR1c1dで表される部位が脱離し、固相担体に結合している別の上記式(VI)で表される化合物の5’位ヒドロキシ基と反応して、式(B)で表される構造単位を有する重合体を調製するものであってもよい。
[(3) Step of coupling at the hydroxy group at the 5'position and the 3'position]
(3) The step of coupling at the hydroxy group at the 5'position and the coupling at the 3'position is represented by the above formula (I) among the phosphoramidite groups represented by R 1e in the compound represented by the above formula (VI). The site represented by -NR 1c R 1d in the structure is desorbed and reacts with the 5'-position hydroxy group of another compound represented by the above formula (VI) bonded to the solid phase carrier to form the formula. A polymer having a structural unit represented by (B) may be prepared.
 上記(3)工程は、活性化剤の存在下で反応を行ってもよい。上記活性化剤としては、例えば、テトラゾール環を有する化合物(例えば、1H-テトラゾール、2-エチルチオテトラゾール、2-ベンジルチオテトラゾールなど)等が挙げられる。 The above step (3) may be carried out in the presence of an activator. Examples of the activator include compounds having a tetrazole ring (for example, 1H-tetrazole, 2-ethylthiotetrazole, 2-benzylthiotetrazole, etc.).
 固相担体に結合している化合物(又は重合体)1モルに対して、結合させたい化合物の使用割合としては、反応が十分に進行するのであれば、特に限定されず、例えば、1.5~100モルであってもよく、2~80モルが好ましく、3~50モルがより好ましい。 The ratio of the compound to be bonded to 1 mol of the compound (or polymer) bonded to the solid phase carrier is not particularly limited as long as the reaction proceeds sufficiently, and is, for example, 1.5. It may be up to 100 mol, preferably 2 to 80 mol, more preferably 3 to 50 mol.
 固相担体に結合している化合物(又は重合体)1モルに対して、活性化剤の使用割合としては、反応が十分に進行するのであれば、特に限定されず、例えば、0.5~30モルであってもよく、0.8~25モルが好ましく、1~20モルがより好ましい。 The ratio of the activator to 1 mol of the compound (or polymer) bonded to the solid phase carrier is not particularly limited as long as the reaction proceeds sufficiently, and is, for example, 0.5 to 0.5. It may be 30 mol, preferably 0.8 to 25 mol, more preferably 1 to 20 mol.
 [(4)未反応の糖骨格の5’位のヒドロキシ基をキャッピングする工程]
 (4)未反応の糖骨格の5’位のヒドロキシ基をキャッピングする工程は、固相担体に結合している化合物(又は重合体)のうち、未反応な化合物(又は重合体)における糖骨格の5’位のヒドロキシ基をこれ以上重合体が伸長しないようにキャッピングすることができるものであればよい。
[(4) Step of capping the hydroxy group at the 5'position of the unreacted sugar skeleton]
(4) The step of capping the hydroxy group at the 5'position of the unreacted sugar skeleton is the sugar skeleton of the unreacted compound (or polymer) among the compounds (or polymers) bonded to the solid phase carrier. Anything can be used as long as it can cap the hydroxy group at the 5'position of the above so that the polymer does not extend any more.
 上記(4)工程は、例えば、アシル化剤の存在下で反応を行ってもよい。アシル化剤としては、未反応な化合物(又は重合体)における糖骨格の5’位のヒドロキシ基をアシル化することができるものであればよく、例えば、アシルハライド(例えば、塩化アセチルなど)、カルボン酸無水物(例えば、無水酢酸、無水プロピオン酸など)等が挙げられる。 In the above step (4), for example, the reaction may be carried out in the presence of an acylating agent. The acylating agent may be any as long as it can acylate the hydroxy group at the 5'position of the sugar skeleton in the unreacted compound (or polymer), and for example, acyl halide (for example, acetyl chloride), etc. Examples thereof include carboxylic acid anhydrides (for example, acetic anhydride, propionic anhydride, etc.).
 [(5)酸化又は硫化する工程]
 (5)酸化又は硫化する工程は、上記(3)工程で形成された亜リン酸エステル結合を酸化によりリン酸エステルに、又は硫化によりチオリン酸エステル結合に変換する工程である。
[(5) Step of oxidizing or sulfurizing]
(5) The step of oxidizing or sulphurizing is a step of converting the phosphite ester bond formed in the above step (3) into a phosphate ester by oxidation or a thiophosphate ester bond by sulphurizing.
 上記(5)工程は、例えば、酸化剤又は硫化剤の存在下で反応を行ってもよい。 In the above step (5), for example, the reaction may be carried out in the presence of an oxidizing agent or a sulfurizing agent.
 酸化剤としては、亜リン酸エステル結合をリン酸エステル結合に変換することができるものであれば、特に限定されず、例えば、ハロゲン(例えば、塩素(Cl)、フッ素(F)、ヨウ素(I)など)等が挙げられる。 The oxidizing agent is not particularly limited as long as it can convert a phosphite bond into a phosphate ester bond, and is, for example, halogen (for example, chlorine (Cl 2 ), fluorine (F 2 ), iodine). (I 2 ), etc.) and the like.
 硫化剤としては、亜リン酸エステル結合をチオリン酸エステル結合に変換することができるものであれば、特に限定されず、例えば、((ジメチルアミノメチリデン)アミノ)-3H-1,2,4-ジチアゾリン-3-チオン(DTTT)、5-フェニル-3H-1,2,4-ジチアゾール-3-オン、分子状硫黄(S)、フェニルアセチルジスルフィド、Beaucage試薬等が挙げられる。 The sulfide agent is not particularly limited as long as it can convert a phosphite ester bond into a thiophosphate ester bond, and is, for example, ((dimethylaminomethylidene) amino) -3H-1,2,4. - dithiazoline-3-thione (DTTT), 5-phenyl-3H-1,2,4-dithiazole-3-one, molecular sulfur (S 8), phenylacetyl disulfide, Beaucage reagent and the like.
 目的とする重合度の重合体が得られるまで、上記(2)~(5)工程を繰り返し行うことができる。
 なお、上記(5)工程で硫化を行う場合、上記(4)工程及び上記(5)工程を入れ替えて反応を行ってもよい。
The above steps (2) to (5) can be repeated until a polymer having a desired degree of polymerization is obtained.
When sulfurization is carried out in the above step (5), the above steps (4) and the above (5) may be interchanged to carry out the reaction.
 [(6)脱保護及び固相担体から切り出しする工程]
 (6)脱保護及び固相担体から切り出しする工程は、目的とする重合度の重合体を得た後、重合体に存在する保護基を脱保護し、固相担体から切り出しを行う。
[(6) Steps of deprotection and cutting out from solid-phase carrier]
(6) In the steps of deprotection and cutting out from the solid-phase carrier, after obtaining a polymer having a desired degree of polymerization, the protecting groups present in the polymer are deprotected and the solid-phase carrier is cut out.
 上記(6)工程は、例えば、上記脱保護反応と同様にして行うことができる。 The above step (6) can be performed in the same manner as the above deprotection reaction, for example.
 上記重合体は、上記(6)工程で全ての保護基が脱保護されていてもよく、一部の保護基が残っていてもよい。 In the polymer, all the protecting groups may be deprotected in the step (6), or some protecting groups may remain.
 <塩基対>
 本発明のさらに別の一態様には、上記重合体を含む塩基対が含まれる。
<Base pair>
Yet another aspect of the present invention includes base pairs containing the above polymers.
 上記塩基対は、塩基対を構成する2重鎖のうち少なくとも一方が本発明における重合体であるものであればよく、2重鎖のうち他方は、天然に存在しうるDNA又はRNAといった天然核酸、人工的に合成された核酸類似物質等の核酸であってもよく、本発明における重合体であってもよい。 The base pair may be any one as long as at least one of the double strands constituting the base pair is the polymer in the present invention, and the other of the double strands is a natural nucleic acid such as DNA or RNA that may exist in nature. , It may be a nucleic acid such as an artificially synthesized nucleic acid-like substance, or it may be a polymer in the present invention.
 上記塩基対は、全長にわたって2重鎖が形成されていてもよく、全長のうち一部で2重鎖が形成されていてもよい。 The above base pair may have a double chain formed over the entire length, or a double chain may be formed in a part of the entire length.
 上記塩基対における2重鎖のうち少なくとも一方の重合体は、2重鎖のうち他方に対する相補性として、例えば、50%以上有するものであればよく、60%以上有することが好ましく、70%以上有することがより好ましく、80%以上有することがさらに好ましく、90%以上有することが特に好ましい。上記相補性の上限としては、例えば、100%である。 The polymer of at least one of the double chains in the base pair may have, for example, 50% or more, preferably 60% or more, and 70% or more, as complementarity to the other of the double chains. It is more preferable to have, more preferably 80% or more, and particularly preferably 90% or more. The upper limit of the complementarity is, for example, 100%.
 相補性とは、2重鎖の一方の重合体と、2重鎖のうち他方との水素結合様式(水素結合のドナー(D)及びアクセプター(A)の関係)が、1塩基当たり少なくとも2つ相補的な関係を有するものをいう。1塩基当たり2つの水素結合を有している場合であってもよく、3つの水素結合を有している場合であってもよい。 Complementarity means that one polymer of a double chain and the other of the double chains have at least two hydrogen bond modes (relationship between a hydrogen bond donor (D) and an acceptor (A)) per base. Those having a complementary relationship. It may have two hydrogen bonds per base, or it may have three hydrogen bonds.
 例えば、一般に知られる核酸塩基であるアデニン、グアニン、シトシン、チミン及びウラシルの水素結合の結合様式としては、それぞれDA、DDA、AAD、AD、ADであり、2重鎖のうち他方が、天然核酸である場合、これらの水素結合様式に対して、1塩基当たり2つ以上の水素結合を形成できる相補性を有していればよい。また、2重鎖の他方が人工的に合成された核酸類似物質であり、天然には存在しない水素結合様式(例えば、DAD、ADA等)を有している場合、2重鎖の一方の重合体は、相補的な水素結合様式を有するものであってもよい。 For example, the hydrogen bonding modes of the commonly known nucleobases adenine, guanine, cytosine, thymine, and uracil are DA, DDA, AAD, AD, and AD, respectively, and the other of the double chains is a natural nucleic acid. If this is the case, it suffices to have complementarity to these hydrogen bond modes so that two or more hydrogen bonds can be formed per base. Further, when the other of the double chains is an artificially synthesized nucleic acid-like substance and has a hydrogen bonding mode (for example, DAD, ADA, etc.) that does not exist in nature, the weight of one of the double chains is heavy. The coalescence may have a complementary hydrogen bond mode.
 上記塩基対における2重鎖のうち少なくとも一方の重合体は、2重鎖のうち他方との疎水性相互作用を形成できる程度の疎水性を有していることが好ましい。 It is preferable that the polymer of at least one of the double chains in the above base pair has a hydrophobic property that can form a hydrophobic interaction with the other of the double chains.
 2重鎖の一方の重合体が、全長にわたって又は全長のうち一部において、回文配列を有している場合、単独の重合体で塩基対を形成しているものであってもよい。 When one polymer of the double chain has a palindromic sequence over the entire length or a part of the entire length, it may be a single polymer forming a base pair.
 上記塩基対は、2重鎖のうち他方が天然核酸である場合に、天然核酸同士で形成される塩基対に比べて、2重鎖融解温度(T値)が高いものであることが好ましい。例えば、同じ長さの核酸同士で塩基対を形成する場合、天然DNA同士で形成される塩基対に比べて、天然DNA及び上記重合体で形成される塩基対のT値が高いものであることが好ましい。
 上記塩基対は、2重鎖のうち他方が天然核酸である場合に、上記重合体同士で形成される塩基対に比べて、T値が高いものであることが好ましい。例えば、同じ長さの核酸同士で塩基対を形成する場合、取り扱いが容易である点から、上記重合体同士で形成される塩基対に比べて、天然DNA及び上記重合体で形成される塩基対のT値が高いものであることが好ましい。
When the other of the double chains is a natural nucleic acid, the base pair preferably has a higher double chain melting temperature (Tm value) than the base pair formed by the natural nucleic acids. .. For example, when a base pair is formed between nucleic acids having the same length, the Tm value of the base pair formed by the natural DNA and the polymer is higher than that of the base pair formed by the natural DNAs. Is preferable.
When the other of the double chains is a natural nucleic acid, the base pair preferably has a higher Tm value than the base pair formed by the polymers. For example, when a base pair is formed between nucleic acids having the same length, the base pair formed by natural DNA and the polymer is compared with the base pair formed by the polymers because it is easy to handle. It is preferable that the T m value of is high.
 上記T値は、例えば、常法により測定することができる。
 例えば、以下のような測定条件で測定を行うことができる。
 測定条件:人工又は天然核酸オリゴマーの1:1緩衝溶液(2μM duplexes、10mM HEPES(pH7.0)、10mM MgCl、100mM NaCl)を調製し、270nmの吸光度をモニターしつつ、2重鎖融解実験を行う(温度範囲:10~80℃、温度変化:1℃/1分)。
 使用機器:V-560 UV/vis spectrophotometer(日本分光製)
The T m value can be measured by, for example, a conventional method.
For example, the measurement can be performed under the following measurement conditions.
Measurement conditions: A 1: 1 buffer solution of artificial or natural nucleic acid oligomer (2 μM duplexes, 10 mM HEPES (pH 7.0), 10 mM MgCl 2 , 100 mM NaCl) was prepared, and a double chain melting experiment was performed while monitoring the absorbance at 270 nm. (Temperature range: 10 to 80 ° C., temperature change: 1 ° C./1 minute).
Equipment used: V-560 UV / vis spectrophotometer (manufactured by JASCO Corporation)
 上記T値は、核酸の長さ、塩基配列、測定溶液等の条件に応じて適宜算出されるものであればよい。 The T m value may be appropriately calculated according to conditions such as the length of the nucleic acid, the base sequence, and the measurement solution.
 上記天然DNA及び重合体との塩基対が有するT値、及び上記天然DNA同士の塩基対が有するT値は、測定条件(核酸の長さ、塩基配列の水素結合様式、測定溶液等)を同じにして測定を行う場合に、例えば、天然DNA及び重合体との塩基対が有するT値が高いことが好ましく、上記2種のT値の差が、10℃以上であってもよく、15℃以上であることが好ましく、20℃以上であることがより好ましい。上記2種の塩基対のT値の差の上限としては、特に限定されるものではないが、例えば、50℃以下であってもよく、45℃以下であることが好ましい。 T m values base pairs having the above natural DNA and polymer, and T m values having base pairs of the native DNA with each other, the measurement conditions (the length of the nucleic acid, the hydrogen bonding pattern of the base sequence, the sample solution and the like) when performing a measurement in the same, for example, preferably T m values having base pairs of the native DNA and the polymer is higher, the difference between the two in T m values, even 10 ° C. or higher It is often preferably 15 ° C. or higher, and more preferably 20 ° C. or higher. The upper limit of the difference between the T m values of the above two base pairs is not particularly limited, but may be, for example, 50 ° C. or lower, preferably 45 ° C. or lower.
 上記塩基対は、2重らせん構造を形成しているものであってもよい。 The above base pair may form a double helix structure.
 上記塩基対が2重らせん構造を形成していることは、例えば、円二色性(CD)スペクトル測定等の常法により確認することができる。
 例えば、以下のような測定条件で測定を行うことができる。
 測定条件:人工又は天然核酸オリゴマーの1:1緩衝溶液(2μM duplexes、10mM HEPES(pH7.0)、10mM MgCl、100mM NaCl)を調製し、10、20、30、40、50、60、70、80℃での円二色性(CD)スペクトル測定を行う。
 使用機器:J-720WI spectropolarimeter(日本分光製)
The fact that the base pairs form a double helix structure can be confirmed by a conventional method such as circular dichroism (CD) spectrum measurement.
For example, the measurement can be performed under the following measurement conditions.
Measurement conditions: Prepare a 1: 1 buffer solution of artificial or natural nucleic acid oligomer (2 μM duplexes, 10 mM HEPES (pH 7.0), 10 mM MgCl 2 , 100 mM NaCl), and prepare 10, 20, 30, 40, 50, 60, 70. , 80 ° C. for circular dichroism (CD) spectrum measurements.
Equipment used: J-720WI spectroscopy (manufactured by JASCO Corporation)
 <核酸検出材料>
 本発明に係るさらに別の態様としては、上記重合体を含む核酸検出材料が含まれる。
<Nucleic acid detection material>
Yet another aspect according to the present invention includes a nucleic acid detection material containing the above polymer.
 <核酸医薬>
 本発明に係るさらに別の態様としては、上記重合体又は塩基対を含む核酸医薬が含まれる。
<Nucleic acid medicine>
Yet another aspect of the present invention includes a nucleic acid drug containing the polymer or base pair.
 [製造例1]
 下記式で表される化合物8(570mg、1.86mmol)、5-ヨード-1-メチルウラシル(300mg、1.19mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)-クロロホルム付加物(Pd(dba)・CHCl)(50mg、0.048mmol)、トリフェニルホスフィン(PPh)(70mg、0.19mmol)、及びヨウ化銅(I)(CuI)(5mg、0.026mmol)を、アルゴン雰囲気下、N,N-ジメチルホルムアミド(DMF)(10mL)及びトリエチルアミン(10mL)に溶解し、70℃で4.5時間撹拌した。室温まで冷却した後、溶媒を減圧留去し、残渣に酢酸エチルを加え、飽和食塩水で有機層を洗浄した。次いで、有機層を硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:3~1:1)にて精製し、下記式で表される化合物9(450mg、収率64%)を黄色泡状物質として得た。
[Manufacturing Example 1]
Compound 8 (570 mg, 1.86 mmol) represented by the following formula, 5-iodo-1-methyluracil (300 mg, 1.19 mmol), tris (dibenzylideneacetone) dipalladium (0) -chloroform adduct (Pd 2). ( Dba) 3. CHCl 3 ) (50 mg, 0.048 mmol), triphenylphosphine (PPh 3 ) (70 mg, 0.19 mmol), and copper (I) (CuI) iodide (5 mg, 0.026 mmol). Under an argon atmosphere, it was dissolved in N, N-dimethylformamide (DMF) (10 mL) and triethylamine (10 mL), and the mixture was stirred at 70 ° C. for 4.5 hours. After cooling to room temperature, the solvent was evaporated under reduced pressure, ethyl acetate was added to the residue, and the organic layer was washed with saturated brine. Then, the organic layer was dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography (ethyl acetate: hexane = 1: 3 to 1: 1) gave compound 9 (450 mg, yield 64%) represented by the following formula as a yellow foamy substance.
 (化合物9)
 Mp97-100℃;IR(KBr)3483,3194,3063,2952,2930,2856,2360,2232,2045,1693,1509,1252cm-1H NMR(500MHz,CDCl)δ7.63(s,1H),7.53(d,J=7.8Hz,2H),7.40(dd,J=12.8,8.7Hz,4H),7.30-7.20(m,3H),6.97(s,1H),6.84-6.80(m,4H),4.70(d,J=6.0Hz,1H),4.65(t,J=5.3Hz,1H),4.18-4.16(m,1H),4.10-4.06(m,1H),3.79(s,6H),3.46(dd,J=10.3,3.0Hz,1H),3.41(s,1H),3.05(d,J=6.0Hz,3H),2.70(d,J=4.1Hz,1H),0.94(s,9H),0.23-0.19(m,6H)ppm;13C{H}NMR(101MHz,CDCl)δ158.53.149.60,148.46,136.37,135.99,130.29,128.37,127.90,126.82,113.21,113.17,113.11,99.05,91.94,86.27,84.24,77.98,76.41,73.59,73.41,64.33,55.32,36.15,25.84,25.77,25.74,25.68,18.14,0.09,-4.24,-4.87ppm;HRMS calcd for MH,C3946NaOSi:721.2916;found 721.2930.
(Compound 9)
Mp97-100 ° C; IR (KBr) 3483,3194,306,2952,2930,2856,2360,2232,2045,1693,1509,1252cm -1 ; 1 1 H NMR (500MHz, CDCl 3 ) δ7.63 (s, 1H), 7.53 (d, J = 7.8Hz, 2H), 7.40 (dd, J = 12.8, 8.7Hz, 4H), 7.30-7.20 (m, 3H), 6.97 (s, 1H), 6.84-6.80 (m, 4H), 4.70 (d, J = 6.0Hz, 1H), 4.65 (t, J = 5.3Hz, 1H) ), 4.18-4.16 (m, 1H), 4.10-4.06 (m, 1H), 3.79 (s, 6H), 3.46 (dd, J = 10.3, 3) 0.0Hz, 1H), 3.41 (s, 1H), 3.05 (d, J = 6.0Hz, 3H), 2.70 (d, J = 4.1Hz, 1H), 0.94 (s) , 9H), 0.23-0.19 (m, 6H) ppm; 13 C {1 H} NMR (101MHz, CDCl 3) δ158.53.149.60,148.46,136.37,135.99 , 130.29, 128.37, 127.90, 126.82, 113.21, 113.17, 113.11, 99.05, 91.94, 86.27, 84.24, 77.98, 76 .41, 73.59, 73.41, 64.33, 55.32, 36.15, 25.84, 25.77, 25.74, 25.68, 18.14, 0.09, -4. 24, -4.87 ppm; HRMS calcd for MH + , C 39 H 46 N 2 NaO 8 Si: 721.2916; found 721.2930.
Figure JPOXMLDOC01-appb-C000015
(式中、DMTrは、ジメトキシトリチル基を表す。
 TBSは、tert-ブチルジメチルシリル基を表す。)
Figure JPOXMLDOC01-appb-C000015
(In the formula, DMTr represents a dimethoxytrityl group.
TBS represents a tert-butyldimethylsilyl group. )
Figure JPOXMLDOC01-appb-C000016
(式中、DMTr及びTBSは化合物8と同義である。
 Meはメチル基を表す。)
Figure JPOXMLDOC01-appb-C000016
(In the formula, DMTr and TBS are synonymous with compound 8.
Me represents a methyl group. )
 [製造例2]
 同様にして、化合物9を再合成し、合わせた化合物9(850mg、1.2mmol)をテトラヒドロフラン(THF)(50mL)に溶解した溶液に、1Mテトラブチルアンモニウムフルオリド(TBAF)/THF溶液(1.5mL)を加え、室温で30分間撹拌した。溶媒を減圧留去し、残渣に酢酸エチルを加え、飽和食塩水で有機層を洗浄した。有機層を硫酸ナトリウムで乾燥した後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:1)にて精製した。得られた粗精製物1にジクロロメタン(10mL)を加えて溶液とした後、トリクロロ酢酸(300mg、1.8mmol)を加え、室温で1時間撹拌した。反応液を濾過し、固体をジクロロメタンで洗浄して粗精製物2を得た。これを分取用逆相HPLC(メタノール)で精製し、下記式で表される化合物1(130mg、収率38%)を淡黄色固体として得た。
[Manufacturing Example 2]
Similarly, compound 9 was resynthesized and the combined compound 9 (850 mg, 1.2 mmol) was dissolved in tetrahydrofuran (THF) (50 mL) in a 1 M tetrabutylammonium fluoride (TBAF) / THF solution (1). .5 mL) was added, and the mixture was stirred at room temperature for 30 minutes. The solvent was evaporated under reduced pressure, ethyl acetate was added to the residue, and the organic layer was washed with saturated brine. The organic layer was dried over sodium sulfate, and the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 1). Dichloromethane (10 mL) was added to the obtained crude product 1 to prepare a solution, trichloroacetic acid (300 mg, 1.8 mmol) was added, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was filtered, and the solid was washed with dichloromethane to obtain a crude product 2. This was purified by reverse phase HPLC (methanol) for preparative use to obtain Compound 1 (130 mg, yield 38%) represented by the following formula as a pale yellow solid.
 (化合物1)
 Mp113-118℃;IR(KBr)3410,3058,2943,2359,2233,1684,1332cm-1H NMR(500MHz,DMSO-d)δ8.06(s,1H),5.76(s,1H),5.21(s,1H),4.97(s,1H),4.75(s,1H),4.38(d,J=5.7Hz,1H),3.87(dt,J=24.6,4.9Hz,2H),3.68(d,J=4.6Hz,1H),3.54-3.41(m,2H),3.24(s,3H)ppm;13C{H}NMR(126MHz,DMSO-d)δ150.86,150.71,96.97,85.29,78.59,76.63,72.81,71.86,62.64,55.44,49.12,36.09ppm;HRMS calcd for MH,C1214NaO:305.0744;found 305.0742;UV(HO,25℃)ε260=3500(L mol-1cm-1).
(Compound 1)
Mp113-118 ° C; IR (KBr) 3410,3058,2943,2359,2233,1684,1332 cm -1 ; 1 1 H NMR (500 MHz, DMSO-d 6 ) δ8.06 (s, 1H), 5.76 (s) , 1H), 5.21 (s, 1H), 4.97 (s, 1H), 4.75 (s, 1H), 4.38 (d, J = 5.7Hz, 1H), 3.87 ( dt, J = 24.6, 4.9Hz, 2H), 3.68 (d, J = 4.6Hz, 1H), 3.54-3.41 (m, 2H), 3.24 (s, 3H) ) Ppm; 13 C { 1 H} NMR (126 MHz, DMSO-d 6 ) δ150.86,150.71,96.97,85.29,78.59,76.63,72.81,71.86, 62.64, 55.44, 49.12, 36.09 ppm; HRMS calcd for MH + , C 12 H 14 N 2 NaO 6 : 305.0744; found 305.0742; UV (H 2 O, 25 ° C) ε 260 = 3500 (L mol -1 cm -1 ).
Figure JPOXMLDOC01-appb-C000017
(式中、Meは化合物9と同義である。)
Figure JPOXMLDOC01-appb-C000017
(In the formula, Me is synonymous with compound 9.)
 [製造例3]
 化合物8(1.07g、1.86mmol)、2-(N-フェノキシアセチルアミノ)-5-ヨードピリジン(792mg、2.20mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)(210mg、0.20mmol)、及びCuI(10mg、0.053mmol)を、アルゴン雰囲気下、アセトニトリル(10mL)及びトリエチルアミン(10mL)に溶解し、70℃で4時間撹拌した。室温まで冷却した後、溶媒を減圧留去し、残渣に酢酸エチルを加え、飽和炭酸水素ナトリウムと飽和食塩水で有機層を洗浄した。次いで、有機層を硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:8~1:5)にて精製し、下記式で表される化合物10(1.0g、収率65%)を無色泡状物質として得た。
[Manufacturing Example 3]
Compound 8 (1.07 g, 1.86 mmol), 2- (N-phenoxyacetylamino) -5-iodopyridine (792 mg, 2.20 mmol), tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 )) 4 ) (210 mg, 0.20 mmol) and CuI (10 mg, 0.053 mmol) were dissolved in acetonitrile (10 mL) and triethylamine (10 mL) under an argon atmosphere, and the mixture was stirred at 70 ° C. for 4 hours. After cooling to room temperature, the solvent was evaporated under reduced pressure, ethyl acetate was added to the residue, and the organic layer was washed with saturated sodium hydrogen carbonate and saturated brine. Then, the organic layer was dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography (ethyl acetate: hexane = 1: 8 to 1: 5) gave compound 10 (1.0 g, yield 65%) represented by the following formula as a colorless foam substance.
 (化合物10)
 Mp66-70℃;IR(KBr)3535,3396,2952,2929,2857,2359,2045,1707,1601,1510cm-1H NMR(500MHz,CDCl)δ8.94(s,1H),8.34(d,J=1.7Hz,1H),8.22(d,J=8.6Hz,1H),7.69(dd,J=8.6,2.3Hz,1H),7.50(d,J=7.4Hz,2H),7.40-7.33(m,6H),7.24(d,J=8.0Hz,2H),7.19-7.16(m,1H),7.06(t,J=7.4Hz,1H),6.99(d,J=8.0Hz,2H),6.80-6.77(m,4H),4.68(d,J=6.9Hz,1H),4.64(d,J=6.3Hz,1H),4.63(s,2H),4.11(q,J=2.9Hz,1H),4.08-4.06(m,1H),3.76(d,J=1.7Hz,6H),3.44(dd,J=10.3,2.9Hz,1H),3.07(dd,J=10.3,3.4Hz,1H),2.72(d,J=2.9Hz,1H),0.94(s,9H),0.22(s,3H)ppm;13C{H}NMR(101MHz,CDCl)δ166.92,158.52,156.91,150.87,149.69,145.02,141.26,136.20,130.25,130,23,130.01,129.21,128.30,127.90,127.85,126.84,122.61,116.08,114.85,113.50,113.25,113.21,113.17,90.12,86.39,84.50,77.98,73.48,72.88,67.43,64.39,55.27,25.82,18.18,-4.26,-4.74ppm;HRMS calcd for MNa,C4752NaOSi:823.3385;found 823.3392.
(Compound 10)
Mp66-70 ° C; IR (KBr) 3535, 3396, 2952, 2929, 2857, 2359, 2045, 1707, 1601, 1510 cm -1 ; 1 1 H NMR (500 MHz, CDCl 3 ) δ8.94 (s, 1H), 8 .34 (d, J = 1.7Hz, 1H), 8.22 (d, J = 8.6Hz, 1H), 7.69 (dd, J = 8.6, 2.3Hz, 1H), 7. 50 (d, J = 7.4Hz, 2H), 7.40-7.33 (m, 6H), 7.24 (d, J = 8.0Hz, 2H), 7.19-7.16 (m) , 1H), 7.06 (t, J = 7.4Hz, 1H), 6.99 (d, J = 8.0Hz, 2H), 6.80-6.77 (m, 4H), 4.68 (D, J = 6.9Hz, 1H), 4.64 (d, J = 6.3Hz, 1H), 4.63 (s, 2H), 4.11 (q, J = 2.9Hz, 1H) , 4.08-4.06 (m, 1H), 3.76 (d, J = 1.7Hz, 6H), 3.44 (dd, J = 10.3, 2.9Hz, 1H), 3. 07 (dd, J = 10.3, 3.4Hz, 1H), 2.72 (d, J = 2.9Hz, 1H), 0.94 (s, 9H), 0.22 (s, 3H) ppm 13 C { 1 H} NMR (101 MHz, CDCl 3 ) δ166.92, 158.52, 156.91, 150.87, 149.69, 145.02, 141.26, 136.20, 130.25 130, 23, 130.01, 129.21, 128.30, 127.90, 127.85, 126.84, 122.61, 116.08, 114.85, 113.50, 113.25, 113. 21,113.17,90.12.86.39,84.50,77.98,73.48,72.88,67.43,64.39,55.27,25.82,18.18, -4.26, -4.74 ppm; HRMS paid for MNa + , C 47 H 52 N 2 NaO 8 Si: 823.3385; found 823.3392.
Figure JPOXMLDOC01-appb-C000018
(式中、DMTr及びTBSは化合物8と同義である。)
Figure JPOXMLDOC01-appb-C000018
(In the formula, DMTr and TBS are synonymous with compound 8.)
 [製造例4]
 得られた化合物10(500mg、0.50mmol)のTHF(10mL)溶液に、1M TBAF/THF溶液(1mL)を加え、室温で10分間撹拌した。溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:1~2:1)にて精製した。この粗精製物3に、メタノール(30mL)及び28%アンモニア水(30mL)を加え、55℃で13時間撹拌した。室温まで冷却した後、溶媒を減圧留去し、残渣にジクロロメタンを加え、飽和食塩水で有機層を洗浄した。有機層を硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。残渣にジクロロメタン(3mL)を加えて溶液とし、これにトリクロロ酢酸(300mg、1.8mmol)を加え、室温で1時間撹拌した。反応液を濾過し、固体をジクロロメタンで洗浄して粗精製物4を得た。これを分取用逆相HPLC(メタノール)で精製し、下記式で表される化合物2(78.5mg、収率62%)を無色固体として得た。
[Manufacturing Example 4]
To a solution of the obtained compound 10 (500 mg, 0.50 mmol) in THF (10 mL) was added a 1 M TBAF / THF solution (1 mL), and the mixture was stirred at room temperature for 10 minutes. The solvent was evaporated under reduced pressure and purified by silica gel column chromatography (ethyl acetate: hexane = 1: 1 to 2: 1). Methanol (30 mL) and 28% aqueous ammonia (30 mL) were added to the crude product 3, and the mixture was stirred at 55 ° C. for 13 hours. After cooling to room temperature, the solvent was evaporated under reduced pressure, dichloromethane was added to the residue, and the organic layer was washed with saturated brine. After drying the organic layer with sodium sulfate, the solvent was distilled off under reduced pressure. Dichloromethane (3 mL) was added to the residue to prepare a solution, trichloroacetic acid (300 mg, 1.8 mmol) was added thereto, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was filtered, and the solid was washed with dichloromethane to obtain a crude product 4. This was purified by reverse phase HPLC (methanol) for preparative use to obtain Compound 2 (78.5 mg, yield 62%) represented by the following formula as a colorless solid.
 (化合物2)
 Mp69-74℃;IR(KBr)3484,3373,2902,2228,1935,1855,1631,1506,1402cm-1H NMR(500MHz,DMSO-d)δ7.98(s,1H),7.39(d,J=8.6Hz,1H),6.40(d,J=8.6Hz,1H),6.35(s,2H),5.22(s,1H),4.97(s,1H),4.77(s,1H),4.40(d,J=5.7Hz,1H),3.92-3.85(m,2H),3.67(q,J=4.4Hz,1H),3.47-3.44(m,2H)ppm;13C{H}NMR(126MHz,DMSO-d)δ159.71,151.69,140.03,108.07,106.34,88.22,85.29,84.24,76.69,72.82,71.63,62.55ppm;HRMS calcd for MH,C1215:251.1026;found 251.1033;UV(HO,25℃)ε260=21000(L mol-1cm-1).
(Compound 2)
Mp 69-74 ° C; IR (KBr) 3484, 3373, 2902, 2228, 1935, 1855, 1631, 1506, 1402 cm -1 ; 1 H NMR (500 MHz, DMSO-d 6 ) δ7.98 (s, 1H), 7 .39 (d, J = 8.6Hz, 1H), 6.40 (d, J = 8.6Hz, 1H), 6.35 (s, 2H), 5.22 (s, 1H), 4.97 (S, 1H), 4.77 (s, 1H), 4.40 (d, J = 5.7Hz, 1H), 3.92-3.85 (m, 2H), 3.67 (q, J) = 4.4Hz, 1H), 3.47-3.44 ( m, 2H) ppm; 13 C {1 H} NMR (126MHz, DMSO-d 6) δ159.71,151.69,140.03,108 .07, 106.34, 88.22, 85.29, 84.24, 76.69, 72.82, 71.63, 62.55 ppm; HRMS calcd for MH + , C 12 H 15 N 2 O 4 : 251.1206; found 251.1033; UV (H 2 O, 25 ° C.) ε 260 = 21000 (L mol -1 cm -1 ).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 [製造例5]
 化合物9(181mg、0.26mmol)をアルゴン雰囲気下、ジクロロメタン(3mL)に溶解し、その溶液にi-PrNP(Cl)O(CHCN(0.18mL、0.76mmol)、1-メチルイミダゾール(10μL、0.12μmol)、及びN,N-ジイソプロピルエチルアミン(1mL)を室温で加え、2時間撹拌した。メタノールを数滴加えて反応を停止した後、溶媒を減圧留去し、残渣に酢酸エチルを加え、飽和炭酸水素ナトリウムと飽和食塩水で有機層を洗浄した。有機層を硫酸ナトリウムで乾燥した後、溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:2~2:1)にて精製して、ジアステレオマー混合物として下記式で表される化合物3(142mg、収率61%)を無色泡状物質として得た。さらなる精製は、分取用逆相HPLC(メタノール)にて行った。
[Manufacturing Example 5]
Compound 9 (181 mg, 0.26 mmol) was dissolved in dichloromethane (3 mL) under an argon atmosphere, and i-Pr 2 NP (Cl) O (CH 2 ) 2 CN (0.18 mL, 0.76 mmol) was added to the solution. 1-Methylimidazole (10 μL, 0.12 μmol) and N, N-diisopropylethylamine (1 mL) were added at room temperature and stirred for 2 hours. After stopping the reaction by adding a few drops of methanol, the solvent was evaporated under reduced pressure, ethyl acetate was added to the residue, and the organic layer was washed with saturated sodium hydrogen carbonate and saturated brine. After drying the organic layer with sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 2 to 2: 1) to prepare a diastereomeric mixture having the following formula. Compound 3 (142 mg, yield 61%) represented by (1) was obtained as a colorless foamy substance. Further purification was performed by preparative reverse phase HPLC (methanol).
 (化合物3)
 Mp94-98℃;IR(KBr)3201,3065,2962,2931,2857,2359,2251,1697,1509,1252cm-1H NMR(400MHz,CDCl)δ8.23(s,1H),7.53(t,J=6.6Hz,2H),7.45-7.37(m,4H),7.24(d,J=3.2Hz,2H),7.21-7.17(m,1H),7.04(d,J=8.7Hz,1H),6.84-6.79(m,4H),4.73-4.71(m,1H),4.54(t,J=4.6Hz,0.5H),4.49(t,J=4.4Hz,0.5H),4.46-4.42(m,1H),4.21(d,J=4.1Hz,0.5H),4.13(d,J=3.7Hz,0.5H),3.91-3.87(m,0.5H),3.81-3.77(m,6H),3.67-3.61(m,0.5H),3.57-3.42(m,3H),3.05-3.02(m,3H),2.65-2.61(m,1H),2.30(t,J=6.4Hz,1H),1.18-1.06(m,9H),0.96(d,J=7.1Hz,3H),0.92(t,J=3.0Hz,9H),0.18-0.13(m,6H)ppm;13C{H}NMR(101MHz,CDCl)δ158.49,149.78,148.68,148.61,145.32,130.37,130.34,130.26,128.51,128.44,127.84,126.78,113.15,113.13,113.10,100.00,86.08,82.54,76.79,76.65,73.59,63.77,55.32,55.30,43.40,43.28,43.06,42.93,36.10,36.07,25.96,25.94,24.79,24.71,24.63,24.57,20.16,18.29,0.09,-4.38,-4.42ppm;HRMS calcd for MH,C4863NaOPSi:921.3994;found 921.3998.
(Compound 3)
Mp94-98 ° C; IR (KBr) 3201,3065,2962,2931,2857,2359,2251,1697,1509,1252cm -1 ; 1 1 H NMR (400 MHz, CDCl 3 ) δ8.23 (s, 1H), 7 .53 (t, J = 6.6Hz, 2H), 7.45-7.37 (m, 4H), 7.24 (d, J = 3.2Hz, 2H), 7.21-7.17 ( m, 1H), 7.04 (d, J = 8.7Hz, 1H), 6.84-6.79 (m, 4H), 4.73-4.71 (m, 1H), 4.54 ( t, J = 4.6Hz, 0.5H), 4.49 (t, J = 4.4Hz, 0.5H), 4.46-4.42 (m, 1H), 4.21 (d, J) = 4.1Hz, 0.5H), 4.13 (d, J = 3.7Hz, 0.5H), 3.91-3.87 (m, 0.5H), 3.81-3.77 ( m, 6H), 3.67-3.61 (m, 0.5H), 3.57-3.42 (m, 3H), 3.05-3.02 (m, 3H), 2.65- 2.61 (m, 1H), 2.30 (t, J = 6.4Hz, 1H), 1.18-1.06 (m, 9H), 0.96 (d, J = 7.1Hz, 3H) ), 0.92 (t, J = 3.0Hz, 9H), 0.18-0.13 (m, 6H) ppm; 13 C {1 H} NMR (101MHz, CDCl 3) δ158.49,149. 78, 148.68, 148.61, 145.32, 130.37, 130.34, 130.26, 128.51, 128.44, 127.84, 126.78, 113.15, 113.13, 113.10, 100.00, 86.08, 82.54, 76.79, 76.65, 73.59, 63.77, 55.32, 55.30, 43.40, 43.28, 43. 06, 42.93, 36.10, 36.07, 25.96, 25.94, 24.79, 24.71, 24.63, 24.57, 20.16, 18.29, 0.09, -4.38, -4.42 ppm; HRMS calcd for MH + , C 48 H 63 N 4 NaO 9 PSi: 921.3994; found 921.3998.
Figure JPOXMLDOC01-appb-C000020
(式中、DMTr、TBS及びMeは化合物9と同義である。
 i-Prは、ジイソプロピル基を表す。)
Figure JPOXMLDOC01-appb-C000020
(In the formula, DMTr, TBS and Me are synonymous with compound 9.
i-Pr 2 represents a diisopropyl group. )
 [製造例6]
 化合物10(250mg、0.31mmol)をアルゴン雰囲気下、ジクロロメタン(3mL)に溶解し、その溶液にi-PrNP(Cl)O(CHCN(0.18mL、0.76mmol)、1-メチルイミダゾール(10μL、0.12μmol)、及びN,N-ジイソプロピルエチルアミン(1mL)を室温で加え、2時間撹拌した。メタノールを数滴加えて反応を停止した後、溶媒を減圧留去し、残渣に酢酸エチルを加え、飽和炭酸水素ナトリウムと飽和食塩水で有機層を洗浄した。有機層を硫酸ナトリウムで乾燥した後、溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:2~2:1)にて精製して、ジアステレオマー混合物として下記式で表される化合物4(230mg、収率71%)を無色泡状物質として得た。さらなる精製は、分取用逆相HPLC(メタノール)にて行った。
[Manufacturing Example 6]
Compound 10 (250 mg, 0.31 mmol) was dissolved in dichloromethane (3 mL) under an argon atmosphere, and i-Pr 2 NP (Cl) O (CH 2 ) 2 CN (0.18 mL, 0.76 mmol) was added to the solution. 1-Methylimidazole (10 μL, 0.12 μmol) and N, N-diisopropylethylamine (1 mL) were added at room temperature and stirred for 2 hours. After stopping the reaction by adding a few drops of methanol, the solvent was evaporated under reduced pressure, ethyl acetate was added to the residue, and the organic layer was washed with saturated sodium hydrogen carbonate and saturated brine. After drying the organic layer with sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 2 to 2: 1) to prepare a diastereomeric mixture having the following formula. Compound 4 (230 mg, yield 71%) represented by (2) was obtained as a colorless foamy substance. Further purification was performed by preparative reverse phase HPLC (methanol).
 (化合物4)
 Mp48-52℃;IR(KBr)3398,2964,2930,2359,2252,1708,1601,1510,1373cm-1H NMR(400MHz,CDCl)δ8.96(s,1H),8.37(t,J=2.3Hz,1H),8.23(d,J=8.7Hz,1H),7.73(dt,J=8.5,2.4Hz,1H),7.53-7.49(m,2H),7.42-7.33(m,6H),7.25-7.17(m,2H),7.07(t,J=7.3Hz,1H),7.02-6.99(m,2H),6.82-6.77(m,4H),4.72(t,J=7.3Hz,1H),4.65-4.61(m,3H),4.55-4.52(m,0.5H),4.25-4.16(m,1.5H),3.93-3.86(m,1H),3.77-3.74(m,6H),3.68-3.52(m,3H),3.44(ddd,J=19.5,10.5,3.0Hz,1H),3.05-3.00(m,1H),2.65-2.61(m,1H),2.31-2.27(m,1H),1.29-1.11(m,9H),0.99(d,J=6.9Hz,3H),0.93(td,J=6.2,3.1Hz,9H),0.19-0.14(m,6H)ppm;13C{H}NMR(101MHz,CDCl)δ166.90,158.49,156.92,150.91,141.28,130.24,130.00,128.39,128.30,127.89,126.83,122.59,116.26,114.85,113.48,113.17,72.55,72.47,67.42,55.26,42.86,36.91,26.00,25.95,24.72,24.67,24.61,18.46,0.09,-3.10,-4.47ppm;HRMS calcd for MH,C5669NaOPSi:1023.4464;found 1023.4472.
(Compound 4)
Mp48-52 ° C; IR (KBr) 3398, 2964, 2930, 2359, 2252, 1708, 1601, 1510, 1373 cm -1 ; 1 1 H NMR (400 MHz, CDCl 3 ) δ8.96 (s, 1H), 8.37 (T, J = 2.3Hz, 1H), 8.23 (d, J = 8.7Hz, 1H), 7.73 (dt, J = 8.5, 2.4Hz, 1H), 7.53- 7.49 (m, 2H), 7.42-7.33 (m, 6H), 7.25-7.17 (m, 2H), 7.07 (t, J = 7.3Hz, 1H), 7.02-6.99 (m, 2H), 6.82-6.77 (m, 4H), 4.72 (t, J = 7.3Hz, 1H), 4.65-4.61 (m) , 3H), 4.55-4.52 (m, 0.5H), 4.25-4.16 (m, 1.5H), 3.93-3.86 (m, 1H), 3.77 -3.74 (m, 6H), 3.68-3.52 (m, 3H), 3.44 (ddd, J = 19.5, 10.5, 3.0Hz, 1H), 3.05- 3.00 (m, 1H), 2.65-2.61 (m, 1H), 2.31-2.27 (m, 1H), 1.29-1.11 (m, 9H), 0. 99 (d, J = 6.9Hz, 3H), 0.93 (td, J = 6.2, 3.1Hz, 9H), 0.19-0.14 (m, 6H) ppm; 13 C { 1 H} NMR (101 MHz, CDCl 3 ) δ166.90, 158.49, 156.92, 150.91, 141.28, 130.24, 130.00, 128.39, 128.30, 127.89, 126 .83, 122.59, 116.26, 114.85, 113.48, 113.17, 72.55, 72.47, 67.42, 55.26, 42.86, 36.91, 26.00 , 25.95, 24.72, 24.67, 24.61, 18.46, 0.09, -3.10, -4.47 ppm; HRMS calcd for MH + , C 56 H 69 N 4 NaO 9 PSi : 1023.4464; found 1023.4472.
Figure JPOXMLDOC01-appb-C000021
(式中、DMTr、TBS及びi-Prは、化合物3と同義である。)
Figure JPOXMLDOC01-appb-C000021
(In the formula, DMTr, TBS and i-Pr 2 are synonymous with compound 3.)
 [製造例7]
 化合物3を用いて、DNA自動合成機として392 DNA/RNA Synthesizer(Applied Biosystems製)を使用して、16塩基の人工RNAオリゴマーを固相合成した。自動合成終了後、固相にアンモニア溶液(28%アンモニア水:エタノール=3:1、1mL)を加え、30℃で30分間振盪撹拌することで、オリゴマーを固相から切り出した。固相を濾別し、溶液を40℃で8時間振盪撹拌した後、凍結乾燥した。続いて、残渣にジメチルスルホキシド(DMSO)(100μL)及びトリエチルアミン三フッ化水素酸塩(125μL)を加え、65℃で2.5時間振盪撹拌した。3M酢酸ナトリウム溶液(25μL)及びn-ブタノール(1mL)を加え、低温冷凍庫で30分間静置した。上澄を除去した後、残った沈殿物をエタノールで洗浄した。逆相HPLCで精製して、化合物5(r(T16)を得た。
[Manufacturing Example 7]
Using Compound 3, a 16-base artificial RNA oligomer was solid-phase synthesized using a 392 DNA / RNA Synthesizer (manufactured by Applied Biosystems) as an automatic DNA synthesizer. After completion of the automatic synthesis, an ammonia solution (28% aqueous ammonia: ethanol = 3: 1, 1 mL) was added to the solid phase, and the oligomer was cut out from the solid phase by shaking and stirring at 30 ° C. for 30 minutes. The solid phase was separated by filtration, and the solution was stirred at 40 ° C. for 8 hours and then lyophilized. Subsequently, dimethyl sulfoxide (DMSO) (100 μL) and triethylamine hydrofluorate (125 μL) were added to the residue, and the mixture was stirred with shaking at 65 ° C. for 2.5 hours. 3M sodium acetate solution (25 μL) and n-butanol (1 mL) were added, and the mixture was allowed to stand in a low temperature freezer for 30 minutes. After removing the supernatant, the remaining precipitate was washed with ethanol. Purification by reverse phase HPLC gave compound 5 (r (T * ) 16 ).
 (化合物5)
 MALDI-TOF MS:calcd for [M-H],C1922083212615:5441.7;found 5449.5.
(Compound 5)
MALDI-TOF MS: calcd for [MH + ], C 192 H 208 N 32 O 126 P 15 : 5441.7; found 5449.5.
 [製造例8]
 化合物4を用いたこと以外は、製造例7と同様にして16塩基の人工RNAオリゴマーを固相合成した。自動合成終了後、固相にアンモニア溶液(28%アンモニア水:エタノール=3:1、1mL)を加え、30℃で30分間振盪撹拌することで、オリゴマーを固相から切り出した。固相を濾別し、溶液を55℃で3日間振盪撹拌した後、凍結乾燥した。続いて、残渣にDMSO(100μL)及びトリエチルアミン三フッ化水素酸塩(125μL)を加え、65℃で2.5時間振盪撹拌した。3M酢酸ナトリウム溶液(25μL)及びn-ブタノール(1mL)を加え、低温冷凍庫で30分間静置した。上澄を除去した後、残った沈殿物をエタノールで洗浄した。逆相HPLCで精製して、化合物6(r(Py16)を得た。
[Manufacturing Example 8]
A 16-base artificial RNA oligomer was solid-phase synthesized in the same manner as in Production Example 7 except that Compound 4 was used. After completion of the automatic synthesis, an ammonia solution (28% aqueous ammonia: ethanol = 3: 1, 1 mL) was added to the solid phase, and the oligomer was cut out from the solid phase by shaking and stirring at 30 ° C. for 30 minutes. The solid phase was separated by filtration, and the solution was shaken and stirred at 55 ° C. for 3 days, and then lyophilized. Subsequently, DMSO (100 μL) and triethylamine hydrofluorate (125 μL) were added to the residue, and the mixture was stirred with shaking at 65 ° C. for 2.5 hours. 3M sodium acetate solution (25 μL) and n-butanol (1 mL) were added, and the mixture was allowed to stand in a low temperature freezer for 30 minutes. After removing the supernatant, the remaining precipitate was washed with ethanol. Purification by reverse phase HPLC gave compound 6 (r ( Py A * ) 16 ).
 (化合物6)
 MALDI-TOF MS:calcd for [M-H],C192208329415:4929.9;found 4931.1.
(Compound 6)
MALDI-TOF MS: calcd for [MH + ], C 192 H 208 N 32 O 94 P 15 : 4929.9; found 4931.1.
 [参考例1]
 天然DNAの構成成分であるデオキシアデノシン一リン酸(dAMP)を16塩基有するオリゴマーである化合物7(d(A)16)を(株)日本遺伝子研究所に合成依頼して得た。
[Reference example 1]
Compound 7 (d (A) 16 ), which is an oligomer having 16 bases of deoxyadenosine monophosphate (dAMP), which is a constituent of natural DNA, was obtained by requesting synthesis from Japan Genetic Research Institute.
 [参考例2]
 天然DNAの構成成分であるデオキシチミジン一リン酸(dTMP)を16塩基有するオリゴマーである化合物11(d(T)16)を(株)日本遺伝子研究所に合成依頼して得た。
[Reference example 2]
Compound 11 (d (T) 16 ), which is an oligomer having 16 bases of deoxythymidine monophosphate (dTMP), which is a constituent of natural DNA, was obtained by requesting synthesis from Japan Genetic Research Institute Co., Ltd.
 [参考例3]
 天然RNAの構成成分であるウリジル一リン酸を16塩基有するオリゴマーである化合物12(r(U)16)を(株)日本遺伝子研究所に合成依頼して得た。
[Reference example 3]
Compound 12 (r (U) 16 ), which is an oligomer having 16 bases of uridine monophosphate, which is a constituent of natural RNA, was obtained by requesting synthesis from Japan Genetic Research Institute Co., Ltd.
 [参考例4]
 J. Am. Chem. Soc., 130, 8762-8768, 2008に記載の方法に基づき、人工DNAの構成成分として、Aを16塩基有するオリゴマーである化合物13(d(A16)を合成した。
[Reference example 4]
J. Am. Chem. Soc. , 130, 8762-8768, 2008, compound 13 (d (A * ) 16 ), which is an oligomer having 16 bases of A * , was synthesized as a constituent component of artificial DNA.
 [参考例5]
 J. Am. Chem. Soc., 130, 8762-8768, 2008に記載の方法に基づき、人工DNAの構成成分として、Tを16塩基有するオリゴマーである化合物14(d(T16)を合成した。
[Reference Example 5]
J. Am. Chem. Soc. , 130, 8762-8768, 2008, compound 14 (d (T * ) 16 ), which is an oligomer having 16 bases of T * , was synthesized as a constituent component of artificial DNA.
 <塩基対の相互作用解析>
 [実施例1]
 化合物5及び化合物7の1:1緩衝溶液(2μM duplexes、10mM HEPES(pH7.0)、10mM MgCl、100mM NaCl)を作製した。その溶液の10℃及び80℃でのUV-visスペクトル測定を行った結果を図1Aに示した。上記UV-visスペクトル測定の測定には、V-560 UV/vis spectrophotometer(日本分光製)を使用した。図1Aによれば、天然核酸と同様に、温度依存的かつ不可逆的な濃色効果及び淡色効果が観測できた。また、10、20、30、40、50、60、70、80℃での円二色性(CD)スペクトル測定をJ-720WI spectropolarimeter(日本分光製)を使用して行った結果を図1Bに示した。さらに、10℃から毎分1.0℃のペースで昇温させた際の270nmでの吸光度変化をモニターすることにより、融解温度曲線の測定を行った。上記融解温度曲線の測定には、V-560 UV/vis spectrophotometer(日本分光製)を使用した。融解温度曲線を一次微分した極大値から、2重鎖融解温度(T値)の算出を行い、その結果を図1Cに示した。T値は71.0℃であった。
<Base pair interaction analysis>
[Example 1]
A 1: 1 buffer solution of Compound 5 and Compound 7 (2 μM duplexes, 10 mM HEPES (pH 7.0), 10 mM MgCl 2 , 100 mM NaCl) was prepared. The results of UV-vis spectrum measurement of the solution at 10 ° C. and 80 ° C. are shown in FIG. 1A. A V-560 UV / vis spectrophotometer (manufactured by JASCO Corporation) was used for the measurement of the UV-vis spectrum measurement. According to FIG. 1A, temperature-dependent and irreversible dark color effect and light color effect could be observed as in the case of natural nucleic acid. In addition, the results of circular dichroism (CD) spectrum measurements at 10, 20, 30, 40, 50, 60, 70, and 80 ° C. using the J-720WI spectrum spectrometer (manufactured by JASCO Corporation) are shown in FIG. 1B. Indicated. Further, the melting temperature curve was measured by monitoring the change in absorbance at 270 nm when the temperature was raised from 10 ° C. to 1.0 ° C. per minute. A V-560 UV / vis spectrophotometer (manufactured by JASCO Corporation) was used for the measurement of the melting temperature curve. The double chain melting temperature (Tm value) was calculated from the maximum value obtained by first-derivating the melting temperature curve, and the result is shown in FIG. 1C. The T m value was 71.0 ° C.
 [実施例2]
 化合物7を化合物13に変えたこと以外は、実施例1と同様にして、UV-visスペクトル測定を行った結果を図2Aに示し、CDスペクトル測定を行った結果を図2Bに示した。また、化合物7を化合物13に変えたこと以外は、実施例と同様にして、融解温度曲線の測定を行った結果を図2Cに示し、T値の算出を行ったところ、T値は34.0℃であった。
[Example 2]
The results of UV-vis spectrum measurement are shown in FIG. 2A and the results of CD spectrum measurement are shown in FIG. 2B in the same manner as in Example 1 except that compound 7 was changed to compound 13. Also, except for changing the compound 7 to compound 13, in the same manner as in Example, the results of the measurement of the melting temperature curve shown in FIG. 2C, was subjected to calculation in T m value, T m value It was 34.0 ° C.
 [実施例3]
 化合物7を化合物6に変えたこと以外は、実施例1と同様にして、UV-visスペクトル測定を行った結果を図3Aに示し、CDスペクトル測定を行った結果を図3Bに示した。また、化合物7を化合物6に変えたこと以外は、実施例と同様にして、融解温度曲線の測定を行った結果を図3Cに示し、T値の算出を行ったところ、T値は55.0℃であった。
[Example 3]
The results of UV-vis spectrum measurement are shown in FIG. 3A and the results of CD spectrum measurement are shown in FIG. 3B in the same manner as in Example 1 except that compound 7 was changed to compound 6. Also, except for changing the compound 7 to compound 6, in the same manner as in Example, the results of the measurement of the melting temperature curve shown in FIG. 3C, was subjected to calculation in T m value, T m value It was 55.0 ° C.
 [比較例1]
 化合物5を化合物11に変えたこと以外は、実施例1と同様にして、T値の算出を行ったところ、T値は48.5℃であった。
[Comparative Example 1]
When the T m value was calculated in the same manner as in Example 1 except that the compound 5 was changed to the compound 11 , the T m value was 48.5 ° C.
 [比較例2]
 化合物5を化合物12に変えたこと以外は、実施例1と同様にして、T値の算出を行ったところ、T値は39.0℃であった。
[Comparative Example 2]
When the T m value was calculated in the same manner as in Example 1 except that the compound 5 was changed to the compound 12 , the T m value was 39.0 ° C.
 [比較例3]
 化合物5を化合物14に変えたこと以外は、実施例1と同様にして、T値の算出を行ったところ、T値は40.5℃であった。
[Comparative Example 3]
When the T m value was calculated in the same manner as in Example 1 except that the compound 5 was changed to the compound 14 , the T m value was 40.5 ° C.
 本発明に係る重合体は、天然DNAとの親和性に優れることから、天然DNAが2重鎖を形成している場合であっても、天然DNAのうち一方の相補的な水素結合を形成しうる重合体と特異的に塩基対を形成できうる。例えば、疾患に関する天然DNAや天然RNAと特異的に結合させることができれば、アンチジーン、アンチセンス、診断薬等の核酸医薬への展開が期待される。
 また、本発明に係る重合体は、本発明に係る重合体又は他の人工的に合成された核酸と塩基対を形成できる。一方、塩基対の相互作用は、本発明に係る重合体及び天然核酸(天然DNA)の塩基対である場合に、特に熱的安定性に優れる。
 現在、アンチジーン・アンチセンス医薬品としての展開が期待されている人工的に合成された核酸として代表的なPeptide Nucleic Acid(PNA)又はLocked Nucleic Acid(LNA)(別名Bridged Nucleic Acid;BNA)では、それぞれの2重鎖が最も安定であり、取り扱いが難しいという問題点が存在しており、本発明では、上記問題点を克服できる可能性がある。
 さらに、例えばDNAチップ上に天然DNAの代わりに、本発明に係る重合体を固定化しておけば、検体となる天然DNAを効率的に補足できることが予想され、天然核酸の検出感度を高める基盤技術や核酸検出材料への展開も期待される。
Since the polymer according to the present invention has an excellent affinity with natural DNA, even when the natural DNA forms a double chain, it forms a complementary hydrogen bond with one of the natural DNAs. It can form a base pair specifically with the polymer. For example, if it can be specifically bound to natural DNA or natural RNA related to a disease, it is expected to be applied to nucleic acid drugs such as antigene, antisense, and diagnostic agents.
In addition, the polymer according to the present invention can form a base pair with the polymer according to the present invention or other artificially synthesized nucleic acid. On the other hand, the base pair interaction is particularly excellent in thermal stability when it is a base pair of the polymer and natural nucleic acid (natural DNA) according to the present invention.
Currently, Peptide Nucleic Acid (PNA) or Locked Nucleic Acid (LNA) (also known as Bridged Nucleic Acid; BNA), which are typical artificially synthesized nucleic acids that are expected to be developed as anti-gene antisense drugs, There is a problem that each double strand is the most stable and difficult to handle, and the present invention may overcome the above problem.
Further, for example, if the polymer according to the present invention is immobilized on a DNA chip instead of the natural DNA, it is expected that the natural DNA as a sample can be efficiently captured, and a basic technique for increasing the detection sensitivity of the natural nucleic acid. It is also expected to be applied to DNA detection materials.

Claims (15)

  1.  下記式(A)
    Figure JPOXMLDOC01-appb-C000001
    [式(A)中、Xは、芳香環基であり、
     Rは、-OR1a(式中、R1aは、水素原子又は置換基を示す。)又はホスホロアミダイト基であり、
     Rは、水素原子又は置換基であり、
     Rは、ハロゲン原子又は-OR3a(式中、R3aは、水素原子又は置換基を示す。)である。]
    で表される化合物。
    The following formula (A)
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (A), X is an aromatic ring group,
    R 1 is -OR 1a (in the formula, R 1a represents a hydrogen atom or a substituent) or a phosphoramidite group.
    R 2 is a hydrogen atom or a substituent and is
    R 3 is a halogen atom or −OR 3a (in the formula, R 3a represents a hydrogen atom or a substituent). ]
    The compound represented by.
  2.  Xがヘテロ芳香環基である請求項1に記載の化合物。 The compound according to claim 1, wherein X is a heteroaromatic ring group.
  3.  Xがピリジン環基、ピリミジン環基又はプリン環基である請求項1又は請求項2に記載の化合物。 The compound according to claim 1 or 2, wherein X is a pyridine ring group, a pyrimidine ring group or a purine ring group.
  4.  Rが-OR3aである請求項1~請求項3のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 3 , wherein R 3 is −OR 3a.
  5.  R及びRがヒドロキシ基であり、Rが水素原子である請求項1~請求項4のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 4, wherein R 1 and R 3 are hydroxy groups and R 2 is a hydrogen atom.
  6.  Rがヒドロキシ基又はホスホロアミダイト基であり、Rが-OR3aであり、R及びR3aが保護基である請求項1~請求項4のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 4, wherein R 1 is a hydroxy group or a phosphoramidite group, R 3 is −OR 3a , and R 2 and R 3a are protecting groups.
  7.  請求項1~請求項6のいずれか1項に記載の化合物の重合体。 A polymer of the compound according to any one of claims 1 to 6.
  8.  下記式(B)
    Figure JPOXMLDOC01-appb-C000002
    [式(B)中、Xは、芳香環基であり、
     Rは、-OR(式中、Rは、水素原子又は置換基を示す。)であり、
     Rは、ハロゲン原子又は-OR3a(式中、R3aは、水素原子又は置換基を示す。)であり、
     nは2以上である。
     複数のX、R及びRは同一であっても異なっていてもよい。]
    で表される構造単位を有する請求項7に記載の重合体。
    The following formula (B)
    Figure JPOXMLDOC01-appb-C000002
    [In formula (B), X is an aromatic ring group,
    R a is −OR b (in the formula, R b represents a hydrogen atom or a substituent).
    R 3 is a halogen atom or −OR 3a (in the formula, R 3a represents a hydrogen atom or a substituent).
    n is 2 or more.
    A plurality of X, R a and R 3 may be be the same or different. ]
    The polymer according to claim 7, which has a structural unit represented by.
  9.  核酸と塩基対を形成できる請求項7又は請求項8に記載の重合体。 The polymer according to claim 7 or 8, which can form a base pair with nucleic acid.
  10.  同じ長さの核酸同士で塩基対を形成する場合において、天然DNA同士での塩基対に比べて、天然DNAとの塩基対の2重鎖融解温度が高い請求項7~請求項9のいずれか1項に記載の重合体。 Any of claims 7 to 9 in which the double-chain melting temperature of a base pair with a natural DNA is higher than that of a base pair between natural DNAs when a base pair is formed between nucleic acids having the same length. The polymer according to item 1.
  11.  nが10以上である請求項8~請求項10のいずれか1項に記載の重合体。 The polymer according to any one of claims 8 to 10, wherein n is 10 or more.
  12.  請求項7~請求項11のいずれか1項に記載の重合体を含む塩基対。 A base pair containing the polymer according to any one of claims 7 to 11.
  13.  2重らせん構造を形成している請求項12に記載の塩基対。 The base pair according to claim 12, which forms a double helix structure.
  14.  請求項7~請求項11のいずれか1項に記載の重合体を含む核酸検出材料。 A nucleic acid detection material containing the polymer according to any one of claims 7 to 11.
  15.  請求項1~請求項13のいずれか1項に記載の化合物、重合体又は塩基対を含む核酸医薬。 A nucleic acid drug containing the compound, polymer or base pair according to any one of claims 1 to 13.
PCT/JP2021/006992 2020-03-03 2021-02-25 Artificial nucleic acid WO2021177123A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022505151A JPWO2021177123A1 (en) 2020-03-03 2021-02-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-036320 2020-03-03
JP2020036320 2020-03-03

Publications (1)

Publication Number Publication Date
WO2021177123A1 true WO2021177123A1 (en) 2021-09-10

Family

ID=77614260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006992 WO2021177123A1 (en) 2020-03-03 2021-02-25 Artificial nucleic acid

Country Status (2)

Country Link
JP (1) JPWO2021177123A1 (en)
WO (1) WO2021177123A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200467A (en) * 2006-12-15 2008-06-18 徐州师范大学 New compound generated by streptomycete and preparation method thereof
WO2017104836A1 (en) * 2015-12-16 2017-06-22 味の素株式会社 Oligonucleotide production method, and nucleoside, nucleotide, or oligonucleotide
WO2019079261A1 (en) * 2017-10-16 2019-04-25 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200467A (en) * 2006-12-15 2008-06-18 徐州师范大学 New compound generated by streptomycete and preparation method thereof
WO2017104836A1 (en) * 2015-12-16 2017-06-22 味の素株式会社 Oligonucleotide production method, and nucleoside, nucleotide, or oligonucleotide
WO2019079261A1 (en) * 2017-10-16 2019-04-25 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DOI YASUHIRO, CHIBA JUNYA, MORIKAWA TOMOYUKI, INOUYE MASAHIKO: "Artificial DNA Made Exclusively of Nonnatural C-Nucleosides with Four Types of Nonnatural Bases.", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 130, no. 27, 2008, pages 8762 - 8768, XP055852701, DOI: 10.1021/ja801058h *

Also Published As

Publication number Publication date
JPWO2021177123A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
US5719273A (en) Palladium catalyzed nucleoside modifications methods using nucleophiles and carbon monoxide
CN112533892B (en) Alkoxyphenyl derivative, nucleoside protector, nucleotide protector, method for producing oligonucleotide, and method for removing substituent
WO1998039352A1 (en) Novel bicyclonucleoside and oligonucleotide analogues
MX2007002245A (en) Phosphoramidite compound and method for producing oligo-rna.
JP6673211B2 (en) Method for producing morpholino oligonucleotide
EP1995253B1 (en) Method for detaching protecting group on nucleic acid
JP7045669B2 (en) Method for synthesizing ribonucleic acid H-phosphonate monomer and oligonucleotide synthesis using this monomer
WO2021177123A1 (en) Artificial nucleic acid
EP2053054B1 (en) Method for introducing nucleic-acid-protecting group
JPH1180190A (en) Manmade nucleic acid and its production, and deoxyribofuranose compound and ribofuranose compound, and production of these compounds
JP2013531665A (en) Novel method using N-thio compounds for oligonucleotide synthesis
TW202115097A (en) Method for manufacturing nucleic acid compound and nucleic acid compound
WO2022255469A1 (en) Chimeric nucleic acid oligomer including phosphorothioate and boranophosphate, and method for producing same
KR100474629B1 (en) Method for Purifying 5&#39;-Protected Thymidines and Novel Derivatives Thereof
KR100461709B1 (en) Method for Purifying 5&#39;-Protected 2&#39;-Deoxypurine Nucleosides
CN111836822A (en) LNA-dicarboxylic acid derivatives and process for their preparation
JP4424900B2 (en) Method for purifying 5&#39;-O-substituted thymidine
JP7298866B2 (en) Solid phase carrier for nucleic acid synthesis and method for producing nucleic acid using the same
Oda et al. Syntheses of pyrido [1, 2-a][1, 3, 5] triazin-4-one C-deoxyribonucleosides
JP2009256335A (en) Preparation method of ribonucleic acid having alkyl protective group at position 2&#39;
RU2415862C2 (en) Phosphoramidite derivative and method of producing rna oligo
JP4071991B2 (en) Purification method and novel derivative of 5&#39;-protected thymidines
JP6709999B2 (en) Method for detecting compound, probe, condensate and cytosine
JPWO2009107692A1 (en) Ribonucleoside derivative in which 2&#39;-hydroxyl group is protected and method for producing the same
JPWO2010079813A1 (en) Method for producing inosine derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505151

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764601

Country of ref document: EP

Kind code of ref document: A1