WO2021176964A1 - Haptic sensor - Google Patents

Haptic sensor Download PDF

Info

Publication number
WO2021176964A1
WO2021176964A1 PCT/JP2021/004677 JP2021004677W WO2021176964A1 WO 2021176964 A1 WO2021176964 A1 WO 2021176964A1 JP 2021004677 W JP2021004677 W JP 2021004677W WO 2021176964 A1 WO2021176964 A1 WO 2021176964A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
sensor
shaft portion
force
generating body
Prior art date
Application number
PCT/JP2021/004677
Other languages
French (fr)
Japanese (ja)
Inventor
伸児 平野
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Priority to JP2022505073A priority Critical patent/JPWO2021176964A1/ja
Publication of WO2021176964A1 publication Critical patent/WO2021176964A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/1627Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of strain gauges

Definitions

  • the present invention relates to a force sensor.
  • Cited Document 1 is particularly susceptible to noise in the Z-axis direction, and cannot accurately detect the force applied in the Z-axis direction.
  • a strain generating body having two or more columnar shaft portions, an operation plate connected to the shaft portion, and a first one arranged around each of the shaft portions. It is characterized by having a strain sensor and a second strain sensor arranged between the two shaft portions.
  • the force applied in the Z-axis direction can be accurately detected.
  • the X-axis, the Y-axis, and the Z-axis are defined as axes orthogonal to each other.
  • the X-axis direction may be described as the first direction, the Y-axis direction as the second direction, and the Z-axis direction as the third direction.
  • the surface including the X-axis and the Y-axis is described as the XY surface
  • the surface including the Y-axis and the Z-axis is described as the YZ surface
  • the surface including the Z-axis and the X-axis is described as the ZX surface.
  • the force along the X-axis is FX
  • the force along the Y-axis is FY
  • the force along the Z-axis is FZ
  • the moment rotating around the X-axis is MX
  • the moment rotating around the Y-axis Is MY
  • the moment rotating about the Z axis is MZ.
  • FIG. 1 is a perspective view of the force sensor
  • FIG. 2 is an exploded perspective view.
  • This force sensor has a circuit board 10, a base case 20, a sensor film 30, a strain generating body 40, a support plate 50, an operation plate 60, and the like.
  • the sensor film 30 is attached to the back surface of the circular strain generating body 40 with an adhesive, and the sensor film 30 is provided with a plurality of strain sensors to resist the strain generated in the strain generating body 40. It can be detected by the change.
  • the base case 20 is further fixed by screws 71 on the back surface side of the strain generating body 40 to which the sensor film 30 is attached, and the circuit board 10 is attached to the base case 20.
  • each of the shaft portions 41, 42, 43, 44 is provided on the surface of the strain generating body 40, and the periphery of each of the shaft portions 41, 42, 43, 44 is provided.
  • a recess that is recessed from other parts is formed.
  • the shaft portion 41 is provided in the Y + direction
  • the shaft portion 42 is provided in the X + direction
  • the shaft portion 43 is provided in the Y ⁇ direction
  • the shaft portion 44 is provided in the X ⁇ direction with reference to the center 40a of the circular strain generating body 40.
  • the shaft portion 42 and the shaft portion 44 are arranged on both sides in the X direction with reference to the center 40a of the circular strain generating body 40
  • the shaft portion 41 and the shaft portion 43 are arranged on both sides in the Y direction. ing.
  • a support plate 50 having an opening 51 is placed on the strain generating body 40 at a portion where the shaft portions 41, 42, 43, 44 of the strain generating body 40 are provided, and the number of the support plates 50 is eight. It is attached to the strain generating body 40 by the screw 72 of the above.
  • a circular operation plate 60 is placed on the four shaft portions 41, 42, 43, 44 of the support plate 50 and the strain generating body 40, and the shaft portions 41, 42, 43 of the strain generating body 40, respectively. , 44 is connected to the screw holes provided by the screws 73.
  • FIG. 4 is a plan view of the sensor film 30 seen through the strain generating body 40.
  • the sensor film 30 is formed of an FPC (Flexible Printed Circuits), and distortion sensors S11 to S14, S21 to S24, S31 to S34, and S41 to S44 are provided on an insulator film.
  • the strain sensors S11 to S14, S21 to S24, S31 to S34, and S41 to S44 are examples of the "first strain sensor".
  • the sensor film 30 is provided with a strain sensor at a position corresponding to each of the shaft portions 41, 42, 43, 44 of the strain generating body 40.
  • strain sensors S11, S12, S13, and S14 are provided at positions corresponding to the periphery of the shaft portion 41 provided in the Y + direction.
  • a strain sensor S11 is arranged at a position in the Y + direction
  • a strain sensor S12 is arranged at a position in the X + direction
  • a strain sensor S13 is arranged at a position in the Y ⁇ direction
  • a strain sensor S14 is arranged at a position in the X ⁇ direction from the center of the shaft portion 41.
  • strain sensors S21, S22, S23, and S24 are provided at positions corresponding to the periphery of the shaft portion 42 provided in the X + direction.
  • a strain sensor S21 is arranged at a position in the Y + direction
  • a strain sensor S22 is arranged at a position in the X + direction
  • a strain sensor S23 is arranged at a position in the Y ⁇ direction
  • a strain sensor S24 is arranged at a position in the X ⁇ direction from the center of the shaft portion 42.
  • strain sensors S31, S32, S33, and S34 are provided at positions corresponding to the periphery of the shaft portion 43 provided in the Y- direction.
  • a strain sensor S31 is arranged at a position in the Y + direction
  • a strain sensor S32 is arranged at a position in the X + direction
  • a strain sensor S33 is arranged at a position in the Y ⁇ direction
  • a strain sensor S34 is arranged at a position in the X ⁇ direction from the center of the shaft portion 43.
  • strain sensors S41, S42, S43, and S44 are provided at positions corresponding to the periphery of the shaft portion 44 provided in the X-direction.
  • a strain sensor S41 is arranged at a position in the Y + direction
  • a strain sensor S42 is arranged at a position in the X + direction
  • a strain sensor S43 is arranged at a position in the Y ⁇ direction
  • a strain sensor S44 is arranged at a position in the X ⁇ direction from the center of the shaft portion 44.
  • the strain sensors S11 to S44 are elements whose resistance changes due to strain. When the strain sensor S11 to S44 expands, the resistance increases, and when the strain sensor S11 to S44 contracts, the resistance decreases. Therefore, by measuring the resistance values of the respective strain sensors S11 to S44, it is possible to detect whether the generated strain is in the extending direction or the contracting direction, and further, the magnitude of the applied force can be determined. Can be detected.
  • FIG. 5 is a side view of a state in which a force along the X axis is applied to the operation plate 60 as viewed from the Y- side
  • FIG. 6 is a ZX with the operation plate 60 of the force sensor in this state removed. It is a cross-sectional view cut by a plane.
  • FIG. 7 is a view of the sensor film 30 seen from the Z + side through a part of the strain generating body 40.
  • the strain sensors S14, S24, S34, and S44 of the sensor film 30 are stretched, and the strain sensors S12, S22, S32, and S42 are shrunk.
  • the distortion sensors other than the above do not change much. Therefore, based on the resistance value values obtained by the strain sensors S14, S24, S34, S44, S12, S22, S32, and S42 surrounded by the alternate long and short dash line, the force FX applied in the X direction is as follows ( It can be obtained by the formula shown in 1). In the equation shown in (1) below, the direction of the applied force is opposite when the FX value is positive and when it is negative.
  • FIG. 8 is a side view of a state in which a force along the Y axis is applied to the operation plate 60 as viewed from the X + side
  • FIG. 9 shows a YZ surface after removing the operation plate 60 of the force sensor in this state. It is a cross-sectional view cut by.
  • FIG. 10 is a view of the sensor film 30 seen from the Z + side through a part of the strain generating body 40.
  • the operation plate 60 moves in the Y ⁇ direction with respect to the strain generating body 40, and is provided on the strain generating body 40.
  • the upper portions of the shaft portion 41 to the shaft portion 44 are all tilted toward the Y ⁇ side.
  • the Y ⁇ side of the shaft portion 44 extends from the shaft portion 41 and the Y + side contracts, causing distortion. Distortion is detected by each strain sensor on the sensor film 30.
  • the strain sensors S13, S23, S33, and S43 of the sensor film 30 are stretched, and the strain sensors S11, S21, S31, and S41 are shrunk.
  • the distortion sensors other than the above do not change much. Therefore, based on the resistance value values obtained by the strain sensors S13, S23, S33, S43, S11, S21, S31, and S41 surrounded by the alternate long and short dash line, the force FY applied in the Y direction is as follows ( It can be obtained by the formula shown in 2). In the equation shown in (2) below, the direction of the applied force is opposite depending on whether the FY value is positive or negative.
  • FIGS. 11 to 13 are side views of a state in which a force along the Z axis is applied to the operation plate 60 as viewed from the Y- side
  • FIG. 12 is a ZX with the operation plate 60 of the force sensor in this state removed. It is a cross-sectional view cut by a plane.
  • FIG. 13 is a view of the sensor film 30 seen from the Z + side through a part of the strain generating body 40.
  • the force FZ applied in the Z direction can be obtained by the formula shown in the following (3) based on the resistance value values obtained by the strain sensors S11 to S44.
  • the direction of the applied force is opposite depending on whether the FZ value is positive or negative.
  • FZ -(S11 + S12 + S13 + S14 + S21 + S22 + S23 + S24 + S31 + S32 + S33 + S34 + S41 + S42 + S43 + S44) ...
  • FIG. 14 is a side view of a state in which a moment rotating about the X axis is applied to the operation plate 60 as viewed from the X + side, and FIG. 15 shows the operation plate 60 of the force sensor in this state removed. It is sectional drawing which cut at the YZ plane.
  • FIG. 16 is a view of the sensor film 30 seen from the Z + side through a part of the strain generating body 40.
  • the strain sensors S31, S32, S33, and S34 of the sensor film 30 are stretched, and the strain sensors S11, S12, S13, and S14 are shrunk.
  • the distortion sensors other than the above do not change much. Therefore, the moment MX that rotates about the X-axis based on the resistance values obtained in the strain sensors S31, S32, S33, S34, S11, S12, S13, and S14 surrounded by the two-dot chain line in FIG. Can be obtained by the formula shown in (4) below. In the equation shown in (4) below, the moments rotate in opposite directions depending on whether the MX value is positive or negative.
  • FIG. 17 is a side view of a state in which a moment rotating about the Y axis is applied to the operation plate 60 as viewed from the Y ⁇ side
  • FIG. 18 is a side view of the operation plate 60 of the force sensor in this state. It is sectional drawing which cut at the removed ZX plane.
  • FIG. 19 is a view of the sensor film 30 seen from the Z + side through a part of the strain generating body 40.
  • the strain sensors S41, S42, S43, and S44 of the sensor film 30 are stretched, and the strain sensors S21, S22, S23, and S24 are shrunk.
  • the distortion sensors other than the above do not change much. Therefore, the moment MY that rotates about the Y-axis based on the resistance values obtained in the strain sensors S41, S42, S43, S44, S21, S22, S23, and S24 surrounded by the two-dot chain line in FIG. Can be obtained by the formula shown in (5) below. In the equation shown in (5) below, the moments rotate in opposite directions depending on whether the MY value is positive or negative.
  • FIG. 20 is a side view of a state in which a moment rotating about the Z axis is applied to the operation plate 60 as viewed from the Y ⁇ side
  • FIG. 21 is a state in which the operation plate 60 is removed in this state. It is a side view.
  • FIG. 22 is a view of the sensor film 30 seen from the Z + side through a part of the strain generating body 40.
  • the Y + side is displaced to contract, the X ⁇ side is expanded and the X + side is contracted on the back surface of the portion where the shaft portion 43 is provided, and the Y + side is expanded on the back surface of the portion where the shaft portion 44 is provided.
  • the Y-side contracts. As a result, distortion occurs, and this distortion is detected by each distortion sensor on the sensor film 30.
  • the strain sensors S12, S23, S34, and S41 of the sensor film 30 are stretched, and the strain sensors S14, S21, S32, and S43 are shrunk.
  • the distortion sensors other than the above do not change much. Therefore, the moment MZ rotating about the Z axis is based on the resistance values obtained in the strain sensors S12, S23, S34, S41, S14, S21, S32, and S43 surrounded by the alternate long and short dash line in FIG. Can be obtained by the formula shown in (6) below. In the equation shown in (6) below, the moments rotate in opposite directions depending on whether the MZ value is positive or negative.
  • FIG. 25 is an exploded perspective view of the force sensor according to the present embodiment.
  • the structural difference between the force sensor in the present embodiment and the force sensor shown in FIG. 1 is that the sensor film 130 is used instead of the sensor film 30, so that the force sensor in the present embodiment is visually shown in FIG. It is the same as the force sensor shown in.
  • the force sensor in the present embodiment includes a circuit board 10, a base case 20, a sensor film 130, a strain generating body 40, a support plate 50, an operation plate 60, and the like. As shown in FIG. 26, the sensor film 130 is attached to the back surface of the circular strain generating body 40 with an adhesive, and the sensor film 130 is provided with a plurality of strain sensors and is a strain generating body. The distortion generated in 40 can be detected.
  • the base case 20 is further fixed by screws 71 on the back surface side of the strain generating body 40 to which the sensor film 130 is attached, and the circuit board 10 is attached to the base case 20.
  • Four shaft portions 41, 42, 43, 44 are provided on the surface of the strain generating body 40, and recesses recessed from the other portions are formed around the respective shaft portions 41, 42, 43, 44. Has been done.
  • a support plate 50 having an opening 51 is placed on the strain generating body 40 at a portion where the shaft portions 41, 42, 43, 44 of the strain generating body 40 are provided, and the number of the support plates 50 is eight. It is attached to the strain generating body 40 by the screw 72 of the above. Further, a circular operation plate 60 is placed on the four shaft portions 41, 42, 43, 44 of the support plate 50 and the strain generating body 40, and each shaft portion of the strain generating body 40 is mounted by a screw 73. It is fixed by a screw 73 to the screw holes provided in 41, 42, 43, 44.
  • the sensor film 130 used in this force sensor is formed of an FPC, and like the sensor film 30, strain sensors are provided at positions corresponding to the respective shaft portions 41, 42, 43, 44 of the strain generating body 40, and further, the strain sensor is provided. Distortion sensors S15, S25, S35, and S45 are also provided between the nearest shafts.
  • the shaft portion closest to the shaft portion 41 is the shaft portion 42 and the shaft portion 44, but a strain sensor S15 is provided between the shaft portion 41 and the shaft portion 42, and the shaft portion 41 and the shaft portion are provided.
  • a distortion sensor S45 is provided between the 44 and the distortion sensor S45.
  • FIG. 27 is a plan view of the sensor film 130 of the force sensor according to the present embodiment as seen through the strain generating body 40.
  • a strain sensor S15 is provided at a position corresponding between the shaft portion 41 and the shaft portion 42, and a strain sensor is provided at a position corresponding between the shaft portion 42 and the shaft portion 43.
  • S25 is provided, and a strain sensor S35 is provided at a position corresponding between the shaft portion 43 and the shaft portion 44, and a strain sensor S35 is provided at a position corresponding between the shaft portion 44 and the shaft portion 41.
  • a strain sensor S45 is provided.
  • the strain sensors S15, S25, S35, and S45 are examples of the “second strain sensor”.
  • the positions where the strain sensors S11 to S44 are provided are the same as those of the sensor film 30.
  • the strain sensors S15, S25, S35, and S45 also have a large resistance when expanded and a small resistance when contracted. Therefore, by measuring the resistance values of the respective strain sensors S15, S25, S35, and S45, it is possible to detect whether the generated strain is in the extending direction or the contracting direction, and further, it is added. The magnitude of the force can be detected.
  • the method of detecting FX, FY, MX, MY, and MZ is the same as the above-described case.
  • FIG. 28 is a cross-sectional view taken along the two-dot chain line 27A-27B in FIG. 27 after removing the operation plate 60 of the force sensor in this state.
  • the operation plate 60 moves in the Z- direction with respect to the strain generating body 40, and is provided on the strain generating body 40.
  • the shaft portion 41 to the shaft portion 44 are all displaced to the Z ⁇ side.
  • the strain sensors S15, S25, S35, and S45 are provided between the nearest shaft portion and the shaft portion, and occur between the nearest shaft portion and the shaft portion. Detects distortion.
  • FIG. 29 shows an arithmetic expression for calculating FX, FY, FZ, MX, MY, and MZ in the force sensor according to the present embodiment.
  • the strain sensors S15, S25, S35, and S45 are added in the Z direction based on the resistance values obtained in the innermost S13, S24, S31, and S24 in the respective axial directions.
  • the obtained force FZ may be obtained by the formula shown in (8) below. Further, for the same reason, it may be obtained by the formulas shown in the following (9) to (12) and the like.
  • FZ (S15 + S25 + S35 + S45)-(S13 + S24 + S31 + S42) ...
  • FZ (S15 + S25 + S35 + S45)-(S12 + S21 + S34 + S43) ...
  • the sensor film 230 is provided with a strain sensor S15 at a position corresponding to the shaft portion 41 and the shaft portion 42, and a strain sensor S15 is provided at a position corresponding to the shaft portion 43 and the shaft portion 44.
  • the strain sensor is not provided at a position corresponding between the shaft portion 42 and the shaft portion 43 and between the shaft portion 44 and the shaft portion 41. That is, the strain sensor is provided between one or more of the closest shafts and the shafts among the plurality of closest shafts.
  • the positions where the strain sensors S11 to S44 are provided are the same as those of the sensor film 30.
  • the value of FZ can be obtained by the formula shown in the following (13).
  • FZ ⁇ (S15 + S35) x 2 ⁇ -(S13 + S24 + S31 + S42) ... (13)
  • the number of strain sensors formed can be reduced as compared with the first embodiment.
  • only the strain sensor S25 may be provided, only the strain sensor S35 may be provided, or only the strain sensor S45 is provided. It may be.
  • the force sensor according to the third embodiment will be described with reference to FIGS. 31 and 32.
  • the strain generating body 240 is provided with two shaft portions 241 and 242, and corresponds between the two shaft portions 241 and the shaft portion 242 of the strain generating body 240.
  • a distortion sensor S115 is arranged on the back surface of the position.
  • the two shaft portions 241 and 242 are provided on the X axis, and the shaft portion 241 provided on the X + side and the shaft portion 242 provided on the X ⁇ side
  • a distortion sensor S115 is arranged between them.
  • the strain generating body 240 when the operation plate 60 is pushed in the Z- direction as shown by the broken line arrow in FIG. 32, the strain generating body 240 is deformed, and on the back surface of the strain generating body 240, the shaft portion 241 is formed. And the circumference of the shaft portion 242 is displaced to extend, and the displacement between the shaft portion 241 and the shaft portion 242 is contracted.
  • the force FZ applied in the Z direction is calculated by calculating the difference between the values obtained by the strain sensors S101 and S102 and the values obtained by the strain sensor S115 based on the values obtained in S115. be able to.
  • Circuit board 20
  • Base case 30
  • Sensor film 40
  • Distortion body 40a Center 41, 42, 43, 44
  • Support plate 60

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

A haptic sensor characterized by comprising: a distortion generating body having two or more columnar shaft parts; an operation board connected to the shaft parts; first distortion sensors disposed around each of the shaft parts; and second distortion sensors disposed between two of the shaft parts.

Description

力覚センサForce sensor
 本発明は、力覚センサに関するものである。 The present invention relates to a force sensor.
 近年、ロボット等の開発が進んでいるが、このようなロボットには、触覚の一部の感覚を測定する力覚センサが用いられている。ロボットに用いられる力覚センサとしては、6軸力覚センサがあり、6軸力覚センサでは、X軸、Y軸、Z軸方向に加えられた力と、X軸、Y軸、Z軸を中心として回転するモーメントを検出することができる。 In recent years, the development of robots and the like has progressed, and such robots use force sense sensors that measure a part of the sense of touch. As the force sensor used in the robot, there is a 6-axis force sensor, and in the 6-axis force sensor, the force applied in the X-axis, Y-axis, and Z-axis directions and the X-axis, Y-axis, and Z-axis are combined. The moment of rotation as the center can be detected.
特開2005-31062号公報Japanese Unexamined Patent Publication No. 2005-31062
 しかしながら、引用文献1に記載されている従来の力覚センサでは、特に、Z軸方向においてノイズの影響を受けやすく、Z軸方向に加えられた力を正確に検出することができなかった。 However, the conventional force sensor described in Cited Document 1 is particularly susceptible to noise in the Z-axis direction, and cannot accurately detect the force applied in the Z-axis direction.
 このため、Z軸方向に加えられた力を正確に検出することのできる力覚センサが求められていた。 Therefore, there has been a demand for a force sensor capable of accurately detecting the force applied in the Z-axis direction.
 本実施の形態の一観点によれば、2以上の柱状の軸部を有する起歪体と、前記軸部に接続された操作板と、各々の前記軸部の周囲に配置された第1の歪みセンサと、2つの前記軸部の間に配置された第2の歪みセンサと、を有することを特徴とする。 According to one aspect of the present embodiment, a strain generating body having two or more columnar shaft portions, an operation plate connected to the shaft portion, and a first one arranged around each of the shaft portions. It is characterized by having a strain sensor and a second strain sensor arranged between the two shaft portions.
 開示の力覚センサによれば、Z軸方向に加えられた力を正確に検出することができる。 According to the disclosed force sensor, the force applied in the Z-axis direction can be accurately detected.
力覚センサの斜視図Perspective view of force sensor 力覚センサの分解斜視図An exploded perspective view of the force sensor 起歪体の斜視図Perspective view of the strain-causing body 図1及び図2の力覚センサに用いられるセンサフィルムの平面図Top view of the sensor film used for the force sensor of FIGS. 1 and 2. 力覚センサに力FXが加えられた場合の説明図(1)Explanatory drawing when force FX is applied to the force sensor (1) 力覚センサに力FXが加えられた場合の説明図(2)Explanatory drawing when force FX is applied to the force sensor (2) 力覚センサに力FXが加えられた場合の説明図(3)Explanatory drawing when force FX is applied to the force sensor (3) 力覚センサに力FYが加えられた場合の説明図(1)Explanatory drawing when force FY is applied to the force sensor (1) 力覚センサに力FYが加えられた場合の説明図(2)Explanatory drawing when force FY is applied to the force sensor (2) 力覚センサに力FYが加えられた場合の説明図(3)Explanatory drawing when force FY is applied to the force sensor (3) 力覚センサに力FZが加えられた場合の説明図(1)Explanatory drawing when force FZ is applied to the force sensor (1) 力覚センサに力FZが加えられた場合の説明図(2)Explanatory drawing when force FZ is applied to the force sensor (2) 力覚センサに力FZが加えられた場合の説明図(3)Explanatory drawing when force FZ is applied to the force sensor (3) 力覚センサにモーメントMXが加えられた場合の説明図(1)Explanatory drawing when moment MX is applied to the force sensor (1) 力覚センサにモーメントMXが加えられた場合の説明図(2)Explanatory drawing when moment MX is applied to the force sensor (2) 力覚センサにモーメントMXが加えられた場合の説明図(3)Explanatory drawing when moment MX is applied to the force sensor (3) 力覚センサにモーメントMYが加えられた場合の説明図(1)Explanatory drawing when moment MY is applied to the force sensor (1) 力覚センサにモーメントMYが加えられた場合の説明図(2)Explanatory drawing when moment MY is applied to the force sensor (2) 力覚センサにモーメントMYが加えられた場合の説明図(3)Explanatory drawing when moment MY is applied to the force sensor (3) 力覚センサにモーメントMZが加えられた場合の説明図(1)Explanatory drawing when moment MZ is applied to the force sensor (1) 力覚センサにモーメントMZが加えられた場合の説明図(2)Explanatory drawing when moment MZ is applied to the force sensor (2) 力覚センサにモーメントMZが加えられた場合の説明図(3)Explanatory drawing when moment MZ is applied to the force sensor (3) 力覚センサに加えられた力及びモーメントと歪みセンサの検出結果との関係図Relationship diagram between the force and moment applied to the force sensor and the detection result of the strain sensor 図1及び図2の力覚センサに加えられた力及びモーメントの算出式の説明図Explanatory drawing of the calculation formula of the force and moment applied to the force sensor of FIGS. 1 and 2. 第1の実施の形態における力覚センサの分解斜視図An exploded perspective view of the force sensor according to the first embodiment. 第1の実施の形態における力覚センサのセンサフィルムと起歪体の説明図Explanatory drawing of the sensor film and the strain-causing body of the force sensor in the first embodiment. 第1の実施の形態における力覚センサに用いられるセンサフィルムの平面図Top view of the sensor film used for the force sensor in the first embodiment 第1の実施の形態における力覚センサの説明図Explanatory drawing of the force sensor in the first embodiment 第1の実施の形態における力覚センサに加えられた力及びモーメントの算出式の説明図Explanatory drawing of calculation formula of force and moment applied to force sensor in 1st Embodiment 第2の実施の形態における力覚センサの説明図Explanatory drawing of the force sensor in the second embodiment 第3の実施の形態における力覚センサの説明図(1)Explanatory drawing of the force sensor in the third embodiment (1) 第3の実施の形態における力覚センサの説明図(2)Explanatory drawing of the force sensor in the third embodiment (2)
 実施するための形態について、以下に説明する。尚、同じ部材等については、同一の符号を付して説明を省略する。また、本願においては、X軸、Y軸、Z軸を相互に直交する軸とする。X軸方向を第1の方向、Y軸方向を第2の方向、Z軸方向を第3の方向と記載する場合がある。 The mode for implementation will be described below. The same members and the like are designated by the same reference numerals and the description thereof will be omitted. Further, in the present application, the X-axis, the Y-axis, and the Z-axis are defined as axes orthogonal to each other. The X-axis direction may be described as the first direction, the Y-axis direction as the second direction, and the Z-axis direction as the third direction.
 また、X軸及びY軸を含む面をXY面と記載し、Y軸及びZ軸を含む面をYZ面と記載し、Z軸及びX軸を含む面をZX面と記載する。X軸に沿った力をFXとし、Y軸に沿った力をFYとし、Z軸に沿った力をFZとし、X軸を中心に回転するモーメントをMXとし、Y軸を中心に回転するモーメントをMYとし、Z軸を中心に回転するモーメントをMZとする。 Further, the surface including the X-axis and the Y-axis is described as the XY surface, the surface including the Y-axis and the Z-axis is described as the YZ surface, and the surface including the Z-axis and the X-axis is described as the ZX surface. The force along the X-axis is FX, the force along the Y-axis is FY, the force along the Z-axis is FZ, the moment rotating around the X-axis is MX, and the moment rotating around the Y-axis. Is MY, and the moment rotating about the Z axis is MZ.
 〔第1の実施の形態〕
 最初に、力覚センサについて、図1及び図2に基づき説明する。図1は、この力覚センサの斜視図であり、図2は、分解斜視図である。
[First Embodiment]
First, the force sensor will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view of the force sensor, and FIG. 2 is an exploded perspective view.
 この力覚センサは、回路基板10、ベースケース20、センサフィルム30、起歪体40、サポートプレート50、操作板60等を有している。センサフィルム30は、円形の起歪体40の裏面に接着剤により貼り付けられており、センサフィルム30には、複数の歪みセンサが設けられており、起歪体40に生じた歪みを抵抗の変化により検出することができる。 This force sensor has a circuit board 10, a base case 20, a sensor film 30, a strain generating body 40, a support plate 50, an operation plate 60, and the like. The sensor film 30 is attached to the back surface of the circular strain generating body 40 with an adhesive, and the sensor film 30 is provided with a plurality of strain sensors to resist the strain generated in the strain generating body 40. It can be detected by the change.
 センサフィルム30が貼り付けられている起歪体40の裏面側には、更に、ベースケース20がねじ71により固定されており、ベースケース20には、回路基板10が取り付けられている。 The base case 20 is further fixed by screws 71 on the back surface side of the strain generating body 40 to which the sensor film 30 is attached, and the circuit board 10 is attached to the base case 20.
 図3に示されるように、起歪体40の表面には、柱状の4つの軸部41、42、43、44が設けられており、各々の軸部41、42、43、44の周囲は、他の部分よりも凹んだ凹部が形成されている。具体的には、円形の起歪体40の中心40aを基準として、Y+方向に軸部41、X+方向に軸部42、Y-方向に軸部43、X-方向に軸部44が設けられている。従って、円形の起歪体40の中心40aを基準として、X方向の両側に、軸部42と軸部44が配置されており、Y方向の両側に、軸部41と軸部43が配置されている。 As shown in FIG. 3, four columnar shaft portions 41, 42, 43, 44 are provided on the surface of the strain generating body 40, and the periphery of each of the shaft portions 41, 42, 43, 44 is provided. , A recess that is recessed from other parts is formed. Specifically, the shaft portion 41 is provided in the Y + direction, the shaft portion 42 is provided in the X + direction, the shaft portion 43 is provided in the Y− direction, and the shaft portion 44 is provided in the X− direction with reference to the center 40a of the circular strain generating body 40. ing. Therefore, the shaft portion 42 and the shaft portion 44 are arranged on both sides in the X direction with reference to the center 40a of the circular strain generating body 40, and the shaft portion 41 and the shaft portion 43 are arranged on both sides in the Y direction. ing.
 起歪体40の上には、起歪体40の軸部41、42、43、44が設けられている部分に開口51を有するサポートプレート50が載せられており、サポートプレート50は、8本のねじ72により起歪体40に取り付けられている。サポートプレート50及び起歪体40の4つの軸部41、42、43、44の上には、円形の操作板60が載せられており、起歪体40の各々の軸部41、42、43、44に設けられているねじ穴に、ねじ73により接続されている。 A support plate 50 having an opening 51 is placed on the strain generating body 40 at a portion where the shaft portions 41, 42, 43, 44 of the strain generating body 40 are provided, and the number of the support plates 50 is eight. It is attached to the strain generating body 40 by the screw 72 of the above. A circular operation plate 60 is placed on the four shaft portions 41, 42, 43, 44 of the support plate 50 and the strain generating body 40, and the shaft portions 41, 42, 43 of the strain generating body 40, respectively. , 44 is connected to the screw holes provided by the screws 73.
 次に、この力覚センサに用いられているセンサフィルム30について、図4に基づき説明する。図4は、起歪体40を透過して見たセンサフィルム30の平面図である。センサフィルム30は、FPC(Flexible Printed Circuits:フレキシブルプリント基板)により形成されており、絶縁体のフィルムに、歪みセンサS11~S14、S21~S24、S31~S34、S41~S44が設けられている。歪みセンサS11~S14、S21~S24、S31~S34、S41~S44は、「第1の歪みセンサ」の一例である。センサフィルム30には、起歪体40の各々の軸部41、42、43、44に対応する位置に歪みセンサが設けられている。 Next, the sensor film 30 used in this force sensor will be described with reference to FIG. FIG. 4 is a plan view of the sensor film 30 seen through the strain generating body 40. The sensor film 30 is formed of an FPC (Flexible Printed Circuits), and distortion sensors S11 to S14, S21 to S24, S31 to S34, and S41 to S44 are provided on an insulator film. The strain sensors S11 to S14, S21 to S24, S31 to S34, and S41 to S44 are examples of the "first strain sensor". The sensor film 30 is provided with a strain sensor at a position corresponding to each of the shaft portions 41, 42, 43, 44 of the strain generating body 40.
 具体的には、Y+方向に設けられた軸部41の周囲に対応する位置には、歪みセンサS11、S12、S13、S14が設けられている。軸部41の中心より、Y+方向の位置に歪みセンサS11、X+方向の位置に歪みセンサS12、Y-方向の位置に歪みセンサS13、X-方向の位置に歪みセンサS14が配置されている。これらの歪みセンサS11~S14により、Y+方向に設けられた軸部41を介して生じる歪みを検出することができる。 Specifically, strain sensors S11, S12, S13, and S14 are provided at positions corresponding to the periphery of the shaft portion 41 provided in the Y + direction. A strain sensor S11 is arranged at a position in the Y + direction, a strain sensor S12 is arranged at a position in the X + direction, a strain sensor S13 is arranged at a position in the Y− direction, and a strain sensor S14 is arranged at a position in the X− direction from the center of the shaft portion 41. With these strain sensors S11 to S14, it is possible to detect the strain generated via the shaft portion 41 provided in the Y + direction.
 また、X+方向に設けられた軸部42の周囲に対応する位置には、歪みセンサS21、S22、S23、S24が設けられている。軸部42の中心より、Y+方向の位置に歪みセンサS21、X+方向の位置に歪みセンサS22、Y-方向の位置に歪みセンサS23、X-方向の位置に歪みセンサS24が配置されている。これらの歪みセンサS21~S24により、X+方向に設けられた軸部42を介して生じる歪みを検出することができる。 Further, strain sensors S21, S22, S23, and S24 are provided at positions corresponding to the periphery of the shaft portion 42 provided in the X + direction. A strain sensor S21 is arranged at a position in the Y + direction, a strain sensor S22 is arranged at a position in the X + direction, a strain sensor S23 is arranged at a position in the Y− direction, and a strain sensor S24 is arranged at a position in the X− direction from the center of the shaft portion 42. With these strain sensors S21 to S24, it is possible to detect the strain generated via the shaft portion 42 provided in the X + direction.
 また、Y-方向に設けられた軸部43の周囲に対応する位置には、歪みセンサS31、S32、S33、S34が設けられている。軸部43の中心より、Y+方向の位置に歪みセンサS31、X+方向の位置に歪みセンサS32、Y-方向の位置に歪みセンサS33、X-方向の位置に歪みセンサS34が配置されている。これらの歪みセンサS31~S34により、Y-方向に設けられた軸部43を介して生じる歪みを検出することができる。 Further, strain sensors S31, S32, S33, and S34 are provided at positions corresponding to the periphery of the shaft portion 43 provided in the Y- direction. A strain sensor S31 is arranged at a position in the Y + direction, a strain sensor S32 is arranged at a position in the X + direction, a strain sensor S33 is arranged at a position in the Y− direction, and a strain sensor S34 is arranged at a position in the X− direction from the center of the shaft portion 43. With these strain sensors S31 to S34, it is possible to detect the strain generated via the shaft portion 43 provided in the Y- direction.
 また、X-方向に設けられた軸部44の周囲に対応する位置には、歪みセンサS41、S42、S43、S44が設けられている。軸部44の中心より、Y+方向の位置に歪みセンサS41、X+方向の位置に歪みセンサS42、Y-方向の位置に歪みセンサS43、X-方向の位置に歪みセンサS44が配置されている。これらの歪みセンサS41~S44により、X-方向に設けられた軸部44を介して生じる歪みを検出することができる。 Further, strain sensors S41, S42, S43, and S44 are provided at positions corresponding to the periphery of the shaft portion 44 provided in the X-direction. A strain sensor S41 is arranged at a position in the Y + direction, a strain sensor S42 is arranged at a position in the X + direction, a strain sensor S43 is arranged at a position in the Y− direction, and a strain sensor S44 is arranged at a position in the X− direction from the center of the shaft portion 44. With these strain sensors S41 to S44, it is possible to detect the strain generated via the shaft portion 44 provided in the X-direction.
 次に、図1及び図2に示される力覚センサを用いた6軸の力またはモーメントの検出方法について説明する。尚、歪みセンサS11~S44には、歪みにより抵抗が変化する素子であり、伸びると抵抗が大きくなり、縮むと抵抗が小さくなる。このため、各々の歪みセンサS11~S44の抵抗値を測定することにより、生じた歪みが伸びる方向であるか縮む方向であるかを検出することができ、更に、加えられた力の大きさを検出することができる。 Next, a method of detecting a 6-axis force or moment using the force sensor shown in FIGS. 1 and 2 will be described. The strain sensors S11 to S44 are elements whose resistance changes due to strain. When the strain sensor S11 to S44 expands, the resistance increases, and when the strain sensor S11 to S44 contracts, the resistance decreases. Therefore, by measuring the resistance values of the respective strain sensors S11 to S44, it is possible to detect whether the generated strain is in the extending direction or the contracting direction, and further, the magnitude of the applied force can be determined. Can be detected.
 最初に、この力覚センサの操作板60に、X軸に沿った力FX(FX-)が加えられた場合について、図5~図7に基づき説明する。尚、図5は、X軸に沿った力が操作板60に加えられた状態をY-側から見た側面図であり、図6は、この状態の力覚センサの操作板60を取り除きZX面で切断した断面図である。図7は、起歪体40の一部を透過してセンサフィルム30をZ+側から見た図である。 First, a case where a force FX (FX-) along the X axis is applied to the operation plate 60 of this force sensor will be described with reference to FIGS. 5 to 7. FIG. 5 is a side view of a state in which a force along the X axis is applied to the operation plate 60 as viewed from the Y- side, and FIG. 6 is a ZX with the operation plate 60 of the force sensor in this state removed. It is a cross-sectional view cut by a plane. FIG. 7 is a view of the sensor film 30 seen from the Z + side through a part of the strain generating body 40.
 力覚センサの操作板60に、X軸に沿った力FX(FX-)が加えられると、起歪体40に対し、操作板60がX-方向に動き、起歪体40に設けられた軸部41から軸部44は、すべて上部がX-側に傾く。これにより、起歪体40の軸部41から軸部44が設けられている部分の裏面では、軸部41から軸部44のX-側が伸び、X+側が縮む変位をし、歪みが生じ、この歪みをセンサフィルム30における各々の歪みセンサにより検出する。 When a force FX (FX-) along the X axis is applied to the operation plate 60 of the force sensor, the operation plate 60 moves in the X- direction with respect to the strain generating body 40, and is provided on the strain generating body 40. The upper portions of the shaft portion 41 to the shaft portion 44 are all tilted toward the X− side. As a result, on the back surface of the portion of the strain generating body 40 where the shaft portion 44 is provided from the shaft portion 41, the X-side of the shaft portion 44 extends from the shaft portion 41 and the X + side contracts, causing distortion. Distortion is detected by each strain sensor on the sensor film 30.
 具体的には、センサフィルム30の歪みセンサS14、S24、S34、S44が伸びて、歪みセンサS12、S22、S32、S42が縮む。尚、上記以外の歪みセンサは殆ど変化しない。このため、2点鎖線で囲まれた歪みセンサS14、S24、S34、S44、S12、S22、S32、S42において得られた抵抗値の値に基づき、X方向に加えられた力FXは、下記(1)に示される式により得ることができる。尚、下記(1)に示される式において、FXの値が正の場合と負の場合とでは、加えられた力の向きが逆となる。

 FX=(S12-S14)+(S22-S24)+(S32-S34)+(S42-S44)・・・(1)

 次に、この力覚センサの操作板60に、Y軸に沿った力FY(FY-)が加えられた場合について、図8~図10に基づき説明する。尚、図8は、Y軸に沿った力が操作板60に加えられた状態をX+側から見た側面図であり、図9は、この状態の力覚センサの操作板60を取り除きYZ面で切断した断面図である。図10は、起歪体40の一部を透過してセンサフィルム30をZ+側から見た図である。
Specifically, the strain sensors S14, S24, S34, and S44 of the sensor film 30 are stretched, and the strain sensors S12, S22, S32, and S42 are shrunk. The distortion sensors other than the above do not change much. Therefore, based on the resistance value values obtained by the strain sensors S14, S24, S34, S44, S12, S22, S32, and S42 surrounded by the alternate long and short dash line, the force FX applied in the X direction is as follows ( It can be obtained by the formula shown in 1). In the equation shown in (1) below, the direction of the applied force is opposite when the FX value is positive and when it is negative.

FX = (S12-S14) + (S22-S24) + (S32-S34) + (S42-S44) ... (1)

Next, a case where a force FY (FY−) along the Y axis is applied to the operation plate 60 of the force sensor will be described with reference to FIGS. 8 to 10. FIG. 8 is a side view of a state in which a force along the Y axis is applied to the operation plate 60 as viewed from the X + side, and FIG. 9 shows a YZ surface after removing the operation plate 60 of the force sensor in this state. It is a cross-sectional view cut by. FIG. 10 is a view of the sensor film 30 seen from the Z + side through a part of the strain generating body 40.
 力覚センサの操作板60に、Y軸に沿った力FY(FY-)が加えられると、起歪体40に対し、操作板60がY-方向に動き、起歪体40に設けられた軸部41から軸部44は、すべて上部がY-側に傾く。これにより、起歪体40の軸部41から軸部44が設けられている部分の裏面では、軸部41から軸部44のY-側が伸び、Y+側が縮む変位をし、歪みが生じ、この歪みをセンサフィルム30における各々の歪みセンサにより検出する。 When a force FY (FY−) along the Y axis is applied to the operation plate 60 of the force sensor, the operation plate 60 moves in the Y− direction with respect to the strain generating body 40, and is provided on the strain generating body 40. The upper portions of the shaft portion 41 to the shaft portion 44 are all tilted toward the Y− side. As a result, on the back surface of the portion of the strain generating body 40 where the shaft portion 44 is provided from the shaft portion 41, the Y− side of the shaft portion 44 extends from the shaft portion 41 and the Y + side contracts, causing distortion. Distortion is detected by each strain sensor on the sensor film 30.
 具体的には、センサフィルム30の歪みセンサS13、S23、S33、S43が伸びて、歪みセンサS11、S21、S31、S41が縮む。尚、上記以外の歪みセンサは殆ど変化しない。このため、2点鎖線で囲まれた歪みセンサS13、S23、S33、S43、S11、S21、S31、S41において得られた抵抗値の値に基づき、Y方向に加えられた力FYは、下記(2)に示される式により得ることができる。尚、下記(2)に示される式において、FYの値が正の場合と負の場合とでは、加えられた力の向きが逆となる。

 FY=(S11-S13)+(S21-S23)+(S31-S33)+(S41-S43)・・・(2)

 次に、この力覚センサの操作板60に、Z軸に沿った力FZ(FZ-)が加えられた場合について、図11~図13に基づき説明する。尚、図11は、Z軸に沿った力が操作板60に加えられた状態をY-側から見た側面図であり、図12は、この状態の力覚センサの操作板60を取り除きZX面で切断した断面図である。図13は、起歪体40の一部を透過してセンサフィルム30をZ+側から見た図である。
Specifically, the strain sensors S13, S23, S33, and S43 of the sensor film 30 are stretched, and the strain sensors S11, S21, S31, and S41 are shrunk. The distortion sensors other than the above do not change much. Therefore, based on the resistance value values obtained by the strain sensors S13, S23, S33, S43, S11, S21, S31, and S41 surrounded by the alternate long and short dash line, the force FY applied in the Y direction is as follows ( It can be obtained by the formula shown in 2). In the equation shown in (2) below, the direction of the applied force is opposite depending on whether the FY value is positive or negative.

FY = (S11-S13) + (S21-S23) + (S31-S33) + (S41-S43) ... (2)

Next, a case where a force FZ (FZ−) along the Z axis is applied to the operation plate 60 of the force sensor will be described with reference to FIGS. 11 to 13. 11 is a side view of a state in which a force along the Z axis is applied to the operation plate 60 as viewed from the Y- side, and FIG. 12 is a ZX with the operation plate 60 of the force sensor in this state removed. It is a cross-sectional view cut by a plane. FIG. 13 is a view of the sensor film 30 seen from the Z + side through a part of the strain generating body 40.
 力覚センサの操作板60に、Z軸に沿った力FZ(FZ-)が加えられると、起歪体40に対し、操作板60がZ-方向に動き、起歪体40に設けられた軸部41から軸部44は、すべてZ-側に変位する。これにより、起歪体40の軸部41から軸部44が設けられている部分の裏面では、軸部41から軸部44の周囲は伸びる変位をし、歪みが生じ、この歪みをセンサフィルム30における各々の歪みセンサにより検出する。 When a force FZ (FZ-) along the Z axis is applied to the operation plate 60 of the force sensor, the operation plate 60 moves in the Z- direction with respect to the strain generating body 40, and is provided on the strain generating body 40. The shaft portion 41 to the shaft portion 44 are all displaced to the Z− side. As a result, on the back surface of the portion of the strain generating body 40 where the shaft portion 44 is provided from the shaft portion 41, the periphery of the shaft portion 44 is displaced to extend from the shaft portion 41, and distortion occurs, and this distortion is caused by the sensor film 30. Detected by each strain sensor in.
 具体的には、センサフィルム30の歪みセンサS11~S44のすべてが伸びる。このため、歪みセンサS11~S44において得られた抵抗値の値に基づき、Z方向に加えられた力FZは、下記(3)に示される式により得ることができる。尚、下記(3)に示される式において、FZの値が正の場合と負の場合とでは、加えられた力の向きが逆となる。

 FZ=-(S11+S12+S13+S14+S21+S22+S23+S24+S31+S32+S33+S34+S41+S42+S43+S44)・・・(3)

 次に、この力覚センサの操作板60に、X軸を中心に回転するモーメントMXが加えられた場合について、図14~図16に基づき説明する。尚、図14は、X軸を中心に回転するモーメントが操作板60に加えられた状態をX+側から見た側面図であり、図15は、この状態の力覚センサの操作板60を取り除きYZ面で切断した断面図である。図16は、起歪体40の一部を透過してセンサフィルム30をZ+側から見た図である。
Specifically, all of the distortion sensors S11 to S44 of the sensor film 30 are stretched. Therefore, the force FZ applied in the Z direction can be obtained by the formula shown in the following (3) based on the resistance value values obtained by the strain sensors S11 to S44. In the equation shown in (3) below, the direction of the applied force is opposite depending on whether the FZ value is positive or negative.

FZ =-(S11 + S12 + S13 + S14 + S21 + S22 + S23 + S24 + S31 + S32 + S33 + S34 + S41 + S42 + S43 + S44) ... (3)

Next, a case where a moment MX rotating about the X axis is applied to the operation plate 60 of the force sensor will be described with reference to FIGS. 14 to 16. FIG. 14 is a side view of a state in which a moment rotating about the X axis is applied to the operation plate 60 as viewed from the X + side, and FIG. 15 shows the operation plate 60 of the force sensor in this state removed. It is sectional drawing which cut at the YZ plane. FIG. 16 is a view of the sensor film 30 seen from the Z + side through a part of the strain generating body 40.
 力覚センサの操作板60に、図14の破線矢印で示されるように、X軸を中心に回転するモーメントMXが加えられると、図15に示されるように、例えば、起歪体40に対し、操作板60がY+側がZ+側に、Y-側がZ-側に変位し、起歪体40に設けられた軸部41はZ+側に、軸部43はZ-側に変位する。これにより、起歪体40の裏面では、軸部43が設けられている部分の周囲が伸び、軸部41が設けられている部分の周囲が縮む変位をし、歪みが生じ、この歪みをセンサフィルム30における各々の歪みセンサにより検出する。 When a moment MX rotating about the X axis is applied to the operation plate 60 of the force sensor as shown by the broken line arrow in FIG. 14, for example, with respect to the strain generating body 40 as shown in FIG. The Y + side of the operation plate 60 is displaced to the Z + side, the Y− side is displaced to the Z− side, the shaft portion 41 provided on the strain generating body 40 is displaced to the Z + side, and the shaft portion 43 is displaced to the Z− side. As a result, on the back surface of the strain-causing body 40, the circumference of the portion where the shaft portion 43 is provided is stretched, the circumference of the portion where the shaft portion 41 is provided is contracted, and strain is generated, and this strain is detected by the sensor. Detected by each strain sensor on the film 30.
 具体的には、センサフィルム30の歪みセンサS31、S32、S33、S34が伸びて、歪みセンサS11、S12、S13、S14が縮む。尚、上記以外の歪みセンサは殆ど変化しない。このため、図16の2点鎖線で囲まれた歪みセンサS31、S32、S33、S34、S11、S12、S13、S14において得られた抵抗値の値に基づき、X軸を中心に回転するモーメントMXは、下記(4)に示される式により得ることができる。尚、下記(4)に示される式において、MXの値が正の場合と負の場合とでは、回転する方向が逆のモーメントとなる。

 MX=(S31+S32+S33+S34)-(S11+S12+S13+S14)・・・(4)

 次に、この力覚センサの操作板60に、Y軸を中心に回転するモーメントMYが加えられた場合について、図17~図19に基づき説明する。尚、図17は、Y軸を中心に回転するモーメントが操作板60に加えられた状態をY-側から見た側面図であり、図18は、この状態の力覚センサの操作板60を取り除きZX面で切断した断面図である。図19は、起歪体40の一部を透過してセンサフィルム30をZ+側から見た図である。
Specifically, the strain sensors S31, S32, S33, and S34 of the sensor film 30 are stretched, and the strain sensors S11, S12, S13, and S14 are shrunk. The distortion sensors other than the above do not change much. Therefore, the moment MX that rotates about the X-axis based on the resistance values obtained in the strain sensors S31, S32, S33, S34, S11, S12, S13, and S14 surrounded by the two-dot chain line in FIG. Can be obtained by the formula shown in (4) below. In the equation shown in (4) below, the moments rotate in opposite directions depending on whether the MX value is positive or negative.

MX = (S31 + S32 + S33 + S34)-(S11 + S12 + S13 + S14) ... (4)

Next, a case where a moment MY rotating about the Y axis is applied to the operation plate 60 of the force sensor will be described with reference to FIGS. 17 to 19. FIG. 17 is a side view of a state in which a moment rotating about the Y axis is applied to the operation plate 60 as viewed from the Y− side, and FIG. 18 is a side view of the operation plate 60 of the force sensor in this state. It is sectional drawing which cut at the removed ZX plane. FIG. 19 is a view of the sensor film 30 seen from the Z + side through a part of the strain generating body 40.
 力覚センサの操作板60に、図17の破線矢印で示されるように、Y軸を中心に回転するモーメントMYが加えられると、図18に示されるように、例えば、起歪体40に対し、操作板60がX+側がZ+側に、X-側がZ-側に変位し、起歪体40に設けられた軸部42はZ+側に、軸部44はZ-側に変位する。これにより、起歪体40の裏面では、軸部44が設けられている部分の周囲が伸び、軸部42が設けられている部分の周囲が縮む変位をし、歪みが生じ、この歪みをセンサフィルム30における各々の歪みセンサにより検出する。 When a moment MY rotating about the Y axis is applied to the operation plate 60 of the force sensor as shown by the broken line arrow in FIG. 17, for example, with respect to the strain generating body 40 as shown in FIG. The operation plate 60 is displaced to the Z + side on the X + side and to the Z− side on the X− side, and the shaft portion 42 provided on the strain generating body 40 is displaced to the Z + side and the shaft portion 44 is displaced to the Z− side. As a result, on the back surface of the strain generating body 40, the circumference of the portion where the shaft portion 44 is provided is stretched, the circumference of the portion where the shaft portion 42 is provided is contracted, and strain is generated, and this strain is detected by the sensor. Detected by each strain sensor on the film 30.
 具体的には、センサフィルム30の歪みセンサS41、S42、S43、S44が伸びて、歪みセンサS21、S22、S23、S24が縮む。尚、上記以外の歪みセンサは殆ど変化しない。このため、図19の2点鎖線で囲まれた歪みセンサS41、S42、S43、S44、S21、S22、S23、S24において得られた抵抗値の値に基づき、Y軸を中心に回転するモーメントMYは、下記(5)に示される式により得ることができる。尚、下記(5)に示される式において、MYの値が正の場合と負の場合とでは、回転する方向が逆のモーメントとなる。

 MY=(S41+S42+S43+S44)-(S21+S22+S23+S24)・・・(5)

 次に、この力覚センサの操作板60に、Z軸を中心に回転するモーメントMZが加えられた場合について、図20~図22に基づき説明する。尚、図20は、Z軸を中心に回転するモーメントが操作板60に加えられた状態をY-側から見た側面図であり、図21は、この状態において操作板60を取り除いた状態の側面図である。図22は、起歪体40の一部を透過してセンサフィルム30をZ+側から見た図である。
Specifically, the strain sensors S41, S42, S43, and S44 of the sensor film 30 are stretched, and the strain sensors S21, S22, S23, and S24 are shrunk. The distortion sensors other than the above do not change much. Therefore, the moment MY that rotates about the Y-axis based on the resistance values obtained in the strain sensors S41, S42, S43, S44, S21, S22, S23, and S24 surrounded by the two-dot chain line in FIG. Can be obtained by the formula shown in (5) below. In the equation shown in (5) below, the moments rotate in opposite directions depending on whether the MY value is positive or negative.

MY = (S41 + S42 + S43 + S44)-(S21 + S22 + S23 + S24) ... (5)

Next, a case where a moment MZ rotating about the Z axis is applied to the operation plate 60 of the force sensor will be described with reference to FIGS. 20 to 22. FIG. 20 is a side view of a state in which a moment rotating about the Z axis is applied to the operation plate 60 as viewed from the Y− side, and FIG. 21 is a state in which the operation plate 60 is removed in this state. It is a side view. FIG. 22 is a view of the sensor film 30 seen from the Z + side through a part of the strain generating body 40.
 力覚センサの操作板60に、図22の破線矢印で示されるように、Z軸を中心に時計回りに回転するモーメントMZが加えられると、軸部41は上部がX+側に傾き、軸部42は上部がY-側に傾き、軸部43は上部がX-側に傾き、軸部44は上部がY+側に傾く。これにより、起歪体40の軸部41が設けられている部分の裏面では、X+側が伸び、X-側が縮む変位をし、軸部42が設けられている部分の裏面では、Y-側が伸び、Y+側が縮む変位をし、軸部43が設けられている部分の裏面では、X-側が伸び、X+側が縮む変位をし、軸部44が設けられている部分の裏面では、Y+側が伸び、Y-側が縮む変位をする。これにより、歪みが生じ、この歪みをセンサフィルム30における各々の歪みセンサにより検出する。 When a moment MZ that rotates clockwise around the Z axis is applied to the operation plate 60 of the force sensor, as shown by the broken arrow in FIG. 22, the upper portion of the shaft portion 41 is tilted to the X + side, and the shaft portion is The upper part of 42 is tilted to the Y− side, the upper part of the shaft portion 43 is tilted to the X− side, and the upper portion of the shaft portion 44 is tilted to the Y + side. As a result, on the back surface of the portion of the strain generating body 40 where the shaft portion 41 is provided, the X + side expands and the X− side contracts, and on the back surface of the portion where the shaft portion 42 is provided, the Y− side expands. , The Y + side is displaced to contract, the X− side is expanded and the X + side is contracted on the back surface of the portion where the shaft portion 43 is provided, and the Y + side is expanded on the back surface of the portion where the shaft portion 44 is provided. The Y-side contracts. As a result, distortion occurs, and this distortion is detected by each distortion sensor on the sensor film 30.
 具体的には、センサフィルム30の歪みセンサS12、S23、S34、S41が伸びて、歪みセンサS14、S21、S32、S43が縮む。尚、上記以外の歪みセンサは殆ど変化しない。このため、図22の2点鎖線で囲まれた歪みセンサS12、S23、S34、S41、S14、S21、S32、S43において得られた抵抗値の値に基づき、Z軸を中心に回転するモーメントMZは、下記(6)に示される式により得ることができる。尚、下記(6)に示される式において、MZの値が正の場合と負の場合とでは、回転する方向が逆のモーメントとなる。

 MZ={(S21-S23)+(S32-S34)}-{(S41-S43)+(S12-S14)}・・・(6)

 以上より、力またはモーメントの方向と、歪みセンサS11~S44において検出される抵抗の変化との関係を図23に示し、図24には、FX、FY、FZ、MX、MY、MZを算出するための演算式を示す。
Specifically, the strain sensors S12, S23, S34, and S41 of the sensor film 30 are stretched, and the strain sensors S14, S21, S32, and S43 are shrunk. The distortion sensors other than the above do not change much. Therefore, the moment MZ rotating about the Z axis is based on the resistance values obtained in the strain sensors S12, S23, S34, S41, S14, S21, S32, and S43 surrounded by the alternate long and short dash line in FIG. Can be obtained by the formula shown in (6) below. In the equation shown in (6) below, the moments rotate in opposite directions depending on whether the MZ value is positive or negative.

MZ = {(S21-S23) + (S32-S34)}-{(S41-S43) + (S12-S14)} ... (6)

From the above, the relationship between the direction of the force or moment and the change in resistance detected by the strain sensors S11 to S44 is shown in FIG. 23, and FX, FY, FZ, MX, MY, and MZ are calculated in FIG. 24. The calculation formula for this is shown.
 ところで、上記のような検出方法では、Z方向に加えられた力FZを検出する際には、ノイズの影響を受け、例えば、起歪体40が熱膨張した場合、FZの値が熱膨張に対応して時間とともに変化してしまい、正確な値を検出することができない場合がある。具体的には、FX、FY、MX、MY、MZの場合には、歪みセンサにおいて検出された値が相殺されるため、起歪体40が熱膨張しても値が殆ど変化することはないが、FZの場合には、起歪体40が熱膨張すると、それに伴い値が変化する。 By the way, in the detection method as described above, when the force FZ applied in the Z direction is detected, it is affected by noise. For example, when the strain generating body 40 is thermally expanded, the value of FZ is thermally expanded. Correspondingly, it changes with time, and it may not be possible to detect an accurate value. Specifically, in the case of FX, FY, MX, MY, and MZ, the values detected by the strain sensor cancel each other out, so that the values hardly change even if the strain generator 40 thermally expands. However, in the case of FZ, when the strain generating body 40 thermally expands, the value changes accordingly.
 このため、特にZ方向における力FZを正確に検出することができなかった。 For this reason, it was not possible to accurately detect the force FZ, especially in the Z direction.
 次に、本実施の形態における力覚センサについて、図25に基づき説明する。図25は、本実施の形態における力覚センサの分解斜視図である。本実施の形態における力覚センサは、図1に示される力覚センサとの構造上の相違点は、センサフィルム30に代えて、センサフィルム130が用いられているため、外観上は、図1に示される力覚センサと同である。 Next, the force sensor according to the present embodiment will be described with reference to FIG. FIG. 25 is an exploded perspective view of the force sensor according to the present embodiment. The structural difference between the force sensor in the present embodiment and the force sensor shown in FIG. 1 is that the sensor film 130 is used instead of the sensor film 30, so that the force sensor in the present embodiment is visually shown in FIG. It is the same as the force sensor shown in.
 本実施の形態における力覚センサは、回路基板10、ベースケース20、センサフィルム130、起歪体40、サポートプレート50、操作板60等を有している。センサフィルム130は、図26に示されるように、円形の起歪体40の裏面に接着剤により貼り付けられており、センサフィルム130には、複数の歪みセンサが設けられており、起歪体40に生じた歪みを検出することができる。 The force sensor in the present embodiment includes a circuit board 10, a base case 20, a sensor film 130, a strain generating body 40, a support plate 50, an operation plate 60, and the like. As shown in FIG. 26, the sensor film 130 is attached to the back surface of the circular strain generating body 40 with an adhesive, and the sensor film 130 is provided with a plurality of strain sensors and is a strain generating body. The distortion generated in 40 can be detected.
 センサフィルム130が貼り付けられている起歪体40の裏面側には、更に、ベースケース20がねじ71により固定されており、ベースケース20には、回路基板10が取り付けられている。起歪体40の表面には4つの軸部41、42、43、44が設けられており、各々の軸部41、42、43、44の周囲は、他の部分よりも凹んだ凹部が形成されている。 The base case 20 is further fixed by screws 71 on the back surface side of the strain generating body 40 to which the sensor film 130 is attached, and the circuit board 10 is attached to the base case 20. Four shaft portions 41, 42, 43, 44 are provided on the surface of the strain generating body 40, and recesses recessed from the other portions are formed around the respective shaft portions 41, 42, 43, 44. Has been done.
 起歪体40の上には、起歪体40の軸部41、42、43、44が設けられている部分に開口51を有するサポートプレート50が載せられており、サポートプレート50は、8本のねじ72により起歪体40に取り付けられている。更に、サポートプレート50及び起歪体40の4つの軸部41、42、43、44の上には、円形の操作板60が載せられており、ねじ73により起歪体40の各々の軸部41、42、43、44に設けられたねじ穴に、ねじ73により固定されている。 A support plate 50 having an opening 51 is placed on the strain generating body 40 at a portion where the shaft portions 41, 42, 43, 44 of the strain generating body 40 are provided, and the number of the support plates 50 is eight. It is attached to the strain generating body 40 by the screw 72 of the above. Further, a circular operation plate 60 is placed on the four shaft portions 41, 42, 43, 44 of the support plate 50 and the strain generating body 40, and each shaft portion of the strain generating body 40 is mounted by a screw 73. It is fixed by a screw 73 to the screw holes provided in 41, 42, 43, 44.
 次に、この力覚センサに用いられているセンサフィルム130について、図27に基づき説明する。センサフィルム130は、FPCにより形成されており、センサフィルム30と同様に、起歪体40の各々の軸部41、42、43、44に対応する位置に歪みセンサが設けられており、更に、最も近い軸部と軸部との間にも歪みセンサS15、S25、S35、S45が設けられている。一例として、軸部41から最も近い軸部は軸部42及び軸部44であるが、軸部41と軸部42との間には歪みセンサS15が設けられており、軸部41と軸部44との間には歪みセンサS45が設けられている。よって、センサフィルム130は、絶縁体のフィルムに、歪みセンサS11~S15、S21~S25、S31~S35、S41~S45が設けられている。尚、図27は、本実施の形態における力覚センサのセンサフィルム130を起歪体40を透過して見た平面図である。 Next, the sensor film 130 used in this force sensor will be described with reference to FIG. 27. The sensor film 130 is formed of an FPC, and like the sensor film 30, strain sensors are provided at positions corresponding to the respective shaft portions 41, 42, 43, 44 of the strain generating body 40, and further, the strain sensor is provided. Distortion sensors S15, S25, S35, and S45 are also provided between the nearest shafts. As an example, the shaft portion closest to the shaft portion 41 is the shaft portion 42 and the shaft portion 44, but a strain sensor S15 is provided between the shaft portion 41 and the shaft portion 42, and the shaft portion 41 and the shaft portion are provided. A distortion sensor S45 is provided between the 44 and the distortion sensor S45. Therefore, in the sensor film 130, distortion sensors S11 to S15, S21 to S25, S31 to S35, and S41 to S45 are provided on the insulating film. FIG. 27 is a plan view of the sensor film 130 of the force sensor according to the present embodiment as seen through the strain generating body 40.
 具体的には、軸部41と軸部42との間に対応する位置には、歪みセンサS15が設けられており、軸部42と軸部43との間に対応する位置には、歪みセンサS25が設けられており、軸部43と軸部44との間に対応する位置には、歪みセンサS35が設けられており、軸部44と軸部41との間に対応する位置には、歪みセンサS45が設けられている。歪みセンサS15、S25、S35、S45は、「第2の歪みセンサ」の一例である。尚、歪みセンサS11~S44が設けられている位置は、センサフィルム30と同じである。 Specifically, a strain sensor S15 is provided at a position corresponding between the shaft portion 41 and the shaft portion 42, and a strain sensor is provided at a position corresponding between the shaft portion 42 and the shaft portion 43. S25 is provided, and a strain sensor S35 is provided at a position corresponding between the shaft portion 43 and the shaft portion 44, and a strain sensor S35 is provided at a position corresponding between the shaft portion 44 and the shaft portion 41. A strain sensor S45 is provided. The strain sensors S15, S25, S35, and S45 are examples of the “second strain sensor”. The positions where the strain sensors S11 to S44 are provided are the same as those of the sensor film 30.
 次に、本実施の形態における力覚センサを用いた6軸の力またはモーメントの検出方法について説明する。尚、歪みセンサS15、S25、S35、S45も、伸びると抵抗が大きくなり、縮むと抵抗が小さくなる。このため、各々の歪みセンサS15、S25、S35、S45の抵抗値を測定することにより、生じた歪みが伸びる方向であるか縮む方向であるかを検出することができ、更には、加えられた力の大きさを検出することができる。 Next, a method of detecting a 6-axis force or moment using a force sensor in the present embodiment will be described. The strain sensors S15, S25, S35, and S45 also have a large resistance when expanded and a small resistance when contracted. Therefore, by measuring the resistance values of the respective strain sensors S15, S25, S35, and S45, it is possible to detect whether the generated strain is in the extending direction or the contracting direction, and further, it is added. The magnitude of the force can be detected.
 本実施の形態における力覚センサでは、FX、FY、MX、MY、MZを検出する方法は、上述した場合と同じである。 In the force sensor of the present embodiment, the method of detecting FX, FY, MX, MY, and MZ is the same as the above-described case.
 次に、本実施の形態における力覚センサの操作板60に、Z軸に沿った力FZ(FZ-)が加えられた場合について、図28に基づき説明する。図28は、この状態の力覚センサの操作板60を取り除き、図27における2点鎖線27A-27Bにおいて切断した断面図である。 Next, a case where a force FZ (FZ−) along the Z axis is applied to the operation plate 60 of the force sensor according to the present embodiment will be described with reference to FIG. 28. FIG. 28 is a cross-sectional view taken along the two-dot chain line 27A-27B in FIG. 27 after removing the operation plate 60 of the force sensor in this state.
 力覚センサの操作板60に、Z軸に沿った力FZ(FZ-)が加えられると、起歪体40に対し、操作板60がZ-方向に動き、起歪体40に設けられた軸部41から軸部44は、すべてZ-側に変位する。これにより、起歪体40の軸部41から軸部44が設けられている部分の裏面では、軸部41から軸部44の周囲は伸びる変位をするが、最も近い軸部と軸部との間は縮む変位をする。本実施の形態におけるセンサフィルム130においては、歪みセンサS15、S25、S35、S45は、最も近い軸部と軸部との間に設けられており、最も近い軸部と軸部との間で生じた歪みを検出する。 When a force FZ (FZ-) along the Z axis is applied to the operation plate 60 of the force sensor, the operation plate 60 moves in the Z- direction with respect to the strain generating body 40, and is provided on the strain generating body 40. The shaft portion 41 to the shaft portion 44 are all displaced to the Z− side. As a result, on the back surface of the portion of the strain generating body 40 where the shaft portion 44 is provided from the shaft portion 41, the circumference of the shaft portion 44 extends from the shaft portion 41, but the closest shaft portion and the shaft portion are displaced. It makes a shrinking displacement. In the sensor film 130 of the present embodiment, the strain sensors S15, S25, S35, and S45 are provided between the nearest shaft portion and the shaft portion, and occur between the nearest shaft portion and the shaft portion. Detects distortion.
 具体的には、センサフィルム130の歪みセンサS11~S44は伸びるが、歪みセンサS15、S25、S35、S45は縮む。このため、歪みセンサS15、S25、S35、S45と、各々の軸方向において最も外側となるS11、S22、S33、S44において得られた抵抗値の値に基づき、Z方向に加えられた力FZは、下記(7)に示される式により得ることができる。尚、下記(7)に示される式において、FZの値が正の場合と負の場合とでは、加えられた力の向きが逆となる。

 FZ=(S15+S25+S35+S45)-(S11+S22+S33+S44)・・・(7)

 本実施の形態においては、上記(7)に示される式では、歪みセンサにおいて検出された値が相殺されるため、起歪体40が熱膨張してもFZの値が殆ど変化することはない。よって、Z方向に加えられた力FZを検出する際のノイズの影響を抑制することができ、正確な値を検出することができる。
Specifically, the strain sensors S11 to S44 of the sensor film 130 stretch, but the strain sensors S15, S25, S35, and S45 shrink. Therefore, the force FZ applied in the Z direction is based on the resistance values obtained in the strain sensors S15, S25, S35, and S45 and the outermost resistance values S11, S22, S33, and S44 in the respective axial directions. , Can be obtained by the formula shown in (7) below. In the equation shown in (7) below, the direction of the applied force is opposite depending on whether the FZ value is positive or negative.

FZ = (S15 + S25 + S35 + S45)-(S11 + S22 + S33 + S44) ... (7)

In the present embodiment, in the equation shown in (7) above, the value detected by the strain sensor is canceled out, so that the FZ value hardly changes even if the strain generating body 40 thermally expands. .. Therefore, the influence of noise when detecting the force FZ applied in the Z direction can be suppressed, and an accurate value can be detected.
 以上より、図29には、本実施の形態における力覚センサにおいて、FX、FY、FZ、MX、MY、MZを算出するための演算式を示す。 From the above, FIG. 29 shows an arithmetic expression for calculating FX, FY, FZ, MX, MY, and MZ in the force sensor according to the present embodiment.
 尚、本実施の形態は、歪みセンサS15、S25、S35、S45と、各々の軸方向において最も内側となるS13、S24、S31、S24において得られた抵抗値の値に基づき、Z方向に加えられた力FZを下記(8)に示される式により得てもよい。更には、同様の理由により、下記(9)~(12)等に示される式により得てもよい。

 FZ=(S15+S25+S35+S45)-(S13+S24+S31+S42)・・・(8)

 FZ=(S15+S25+S35+S45)-(S12+S21+S34+S43)・・・(9)

 FZ=(S15+S25+S35+S45)-(S14+S23+S32+S41)・・・(10)

 FZ={(S15+S25+S35+S45)×2}-(S12+S14+S21+S23+S32+S34+S41+S43)・・・(11)

 FZ={(S15+S25+S35+S45)×2}-(S11+S13+S22+S24+S31+S33+S42+S44)・・・(12)

 〔第2の実施の形態〕
 次に、第2の実施の形態について説明する。本実施の形態は、第1の実施の形態におけるセンサフィルム130に代えて、図30に示されるセンサフィルム230を用いるものである。センサフィルム230には、軸部41と軸部42との間に対応する位置には、歪みセンサS15が設けられており、軸部43と軸部44との間に対応する位置には、歪みセンサS35が設けられているが、軸部42と軸部43との間、軸部44と軸部41との間に対応する位置には、歪みセンサは設けられてはいない。即ち、複数の最も近い軸部と軸部との間のうち、1つ以上の最も近い軸部と軸部との間に、歪みセンサが設けられている構造のものである。尚、歪みセンサS11~S44が設けられている位置は、センサフィルム30と同じである。
In this embodiment, the strain sensors S15, S25, S35, and S45 are added in the Z direction based on the resistance values obtained in the innermost S13, S24, S31, and S24 in the respective axial directions. The obtained force FZ may be obtained by the formula shown in (8) below. Further, for the same reason, it may be obtained by the formulas shown in the following (9) to (12) and the like.

FZ = (S15 + S25 + S35 + S45)-(S13 + S24 + S31 + S42) ... (8)

FZ = (S15 + S25 + S35 + S45)-(S12 + S21 + S34 + S43) ... (9)

FZ = (S15 + S25 + S35 + S45)-(S14 + S23 + S32 + S41) ... (10)

FZ = {(S15 + S25 + S35 + S45) x 2}-(S12 + S14 + S21 + S23 + S32 + S34 + S41 + S43) ... (11)

FZ = {(S15 + S25 + S35 + S45) x 2}-(S11 + S13 + S22 + S24 + S31 + S33 + S42 + S44) ... (12)

[Second Embodiment]
Next, the second embodiment will be described. In this embodiment, the sensor film 230 shown in FIG. 30 is used instead of the sensor film 130 in the first embodiment. The sensor film 230 is provided with a strain sensor S15 at a position corresponding to the shaft portion 41 and the shaft portion 42, and a strain sensor S15 is provided at a position corresponding to the shaft portion 43 and the shaft portion 44. Although the sensor S35 is provided, the strain sensor is not provided at a position corresponding between the shaft portion 42 and the shaft portion 43 and between the shaft portion 44 and the shaft portion 41. That is, the strain sensor is provided between one or more of the closest shafts and the shafts among the plurality of closest shafts. The positions where the strain sensors S11 to S44 are provided are the same as those of the sensor film 30.
 本実施の形態においては、FZの値は、下記(13)に示される式により得ることができる。

 FZ={(S15+S35)×2}-(S13+S24+S31+S42)・・・(13)

 本実施の形態においては、第1の実施の形態よりも、形成される歪みセンサの数を減らすことができる。尚、本実施の形態は、歪みセンサS25のみが設けられているものであってもよく、歪みセンサS35のみが設けられているものであってもよく、歪みセンサS45のみが設けられているものであってもよい。
In the present embodiment, the value of FZ can be obtained by the formula shown in the following (13).

FZ = {(S15 + S35) x 2}-(S13 + S24 + S31 + S42) ... (13)

In the present embodiment, the number of strain sensors formed can be reduced as compared with the first embodiment. In this embodiment, only the strain sensor S25 may be provided, only the strain sensor S35 may be provided, or only the strain sensor S45 is provided. It may be.
 尚、上記以外の内容については、第1の実施の形態と同様である。 The contents other than the above are the same as those in the first embodiment.
 〔第3の実施の形態〕
 次に、第3の実施の形態における力覚センサについて、図31及び図32に基づき説明する。本実施の形態における力覚センサは、起歪体240には、2つの軸部241、242が設けられており、起歪体240の2つの軸部241と軸部242との間に対応する位置の裏面には、歪みセンサS115が配置されている。例えば、図31に示されるように、2つの軸部241、242はX軸上に設けられており、X+側に設けられた軸部241と、X-側に設けられた軸部242との間に、歪みセンサS115が配置されている。
[Third Embodiment]
Next, the force sensor according to the third embodiment will be described with reference to FIGS. 31 and 32. In the force sensor of the present embodiment, the strain generating body 240 is provided with two shaft portions 241 and 242, and corresponds between the two shaft portions 241 and the shaft portion 242 of the strain generating body 240. A distortion sensor S115 is arranged on the back surface of the position. For example, as shown in FIG. 31, the two shaft portions 241 and 242 are provided on the X axis, and the shaft portion 241 provided on the X + side and the shaft portion 242 provided on the X− side A distortion sensor S115 is arranged between them.
 本実施の形態においては、操作板60を図32の破線矢印で示されるように、Z-方向に向けて押すと、起歪体240が変形し、起歪体240の裏面では、軸部241及び軸部242の周囲は伸びる変位が生じ、軸部241と軸部242との間では縮む変位が生じる。 In the present embodiment, when the operation plate 60 is pushed in the Z- direction as shown by the broken line arrow in FIG. 32, the strain generating body 240 is deformed, and on the back surface of the strain generating body 240, the shaft portion 241 is formed. And the circumference of the shaft portion 242 is displaced to extend, and the displacement between the shaft portion 241 and the shaft portion 242 is contracted.
 よって、軸部241の周囲に配置されている歪みセンサS101、及び、軸部242の周囲に配置されている歪みセンサS102と、軸部241と軸部242との間に配置されている歪みセンサS115とにおいて得られた値に基づき、歪みセンサS101、S102により得られた値と、歪みセンサS115により得られた値との差を算出することにより、Z方向に加えられた力FZを算出することができる。 Therefore, the strain sensor S101 arranged around the shaft portion 241 and the strain sensor S102 arranged around the shaft portion 242, and the strain sensor arranged between the shaft portion 241 and the shaft portion 242. The force FZ applied in the Z direction is calculated by calculating the difference between the values obtained by the strain sensors S101 and S102 and the values obtained by the strain sensor S115 based on the values obtained in S115. be able to.
 尚、上記以外の内容については、第1の実施の形態と同様である。 The contents other than the above are the same as those in the first embodiment.
 以上、実施の形態について詳述したが、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。 Although the embodiments have been described in detail above, the embodiments are not limited to the specific embodiments, and various modifications and changes can be made within the scope of the claims.
 本国際出願は、2020年3月2日に出願した日本国特許出願第2020-035021号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2020-035021 filed on March 2, 2020, and the entire contents of the application will be incorporated into this international application.
10    回路基板
20    ベースケース
30    センサフィルム
40    起歪体
40a   中心
41、42、43、44    軸部
50    サポートプレート
60    操作板
71、72、73    ねじ
S11~S15、S21~S25、S31~S35、S41~S45   歪みセンサ
10 Circuit board 20 Base case 30 Sensor film 40 Distortion body 40a Center 41, 42, 43, 44 Shaft 50 Support plate 60 Operation plate 71, 72, 73 Screws S11 to S15, S21 to S25, S31 to S35, S41 to S45 distortion sensor

Claims (7)

  1.  2以上の柱状の軸部を有する起歪体と、
     前記軸部に接続された操作板と、
     各々の前記軸部の周囲に配置された第1の歪みセンサと、
     2つの前記軸部の間に配置された第2の歪みセンサと、
     を有することを特徴とする力覚センサ。
    A strain-causing body having two or more columnar shafts,
    The operation plate connected to the shaft and
    A first strain sensor arranged around each of the shafts,
    A second strain sensor located between the two shafts,
    A force sensor characterized by having.
  2.  前記軸部は4つ設けられており、
     4つの前記軸部は、前記起歪体の中心を基準として、第1の方向の両側と、前記第1の方向と直交する第2の方向の両側に、各々配置されており、
     前記第1の歪みセンサは、1つの軸部に対し4つ設けられており、前記軸部を基準として、第1の方向の両側と、前記第2の方向の両側に、各々配置されていることを特徴とする請求項1に記載の力覚センサ。
    Four shafts are provided, and the shaft portion is provided.
    The four shaft portions are arranged on both sides of the first direction and on both sides of the second direction orthogonal to the first direction with respect to the center of the strain-causing body.
    Four of the first strain sensors are provided for one shaft portion, and are arranged on both sides of the first direction and both sides of the second direction with the shaft portion as a reference. The force sensor according to claim 1.
  3.  前記第2の歪みセンサは4つ設けられており、
     各々の前記第2の歪みセンサは、最も近い軸部と軸部との間に、配置されていることを特徴とする請求項2に記載の力覚センサ。
    The second strain sensor is provided with four.
    The force sensor according to claim 2, wherein each of the second strain sensors is arranged between the closest shaft portions.
  4.  前記第2の歪みセンサ及び前記第1の歪みセンサにより、前記操作板において、前記第1の方向及び前記第2の方向と直交する第3の方向に加えられた力を検出することを特徴とする請求項2または3に記載の力覚センサ。 The second strain sensor and the first strain sensor are characterized in that the operation plate detects a force applied in the first direction and a third direction orthogonal to the second direction. The force sensor according to claim 2 or 3.
  5.  前記第1の歪みセンサは、前記操作板において、前記第1の方向に加えられた力、前記第2の方向に加えられた力、前記第1の方向を中心に回転するモーメント、前記第2の方向を中心に回転するモーメント及び前記第3の方向を中心に回転するモーメントを検出することを特徴とする請求項4に記載の力覚センサ。 In the operation plate, the first strain sensor includes a force applied in the first direction, a force applied in the second direction, a moment rotating about the first direction, and the second. The force sensor according to claim 4, further comprising detecting a moment rotating about the direction of the above and a moment rotating about the third direction.
  6.  前記第1の歪みセンサ及び前記第2の歪みセンサは、歪みにより抵抗が変化する素子であることを特徴とする請求項1から5のいずれかに記載の力覚センサ。 The force sensor according to any one of claims 1 to 5, wherein the first strain sensor and the second strain sensor are elements whose resistance changes due to strain.
  7.  前記第1の歪みセンサ及び前記第2の歪みセンサは、絶縁体のフィルムに設けられていることを特徴とする請求項1から6のいずれかに記載の力覚センサ。 The force sensor according to any one of claims 1 to 6, wherein the first strain sensor and the second strain sensor are provided on an insulating film.
PCT/JP2021/004677 2020-03-02 2021-02-08 Haptic sensor WO2021176964A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022505073A JPWO2021176964A1 (en) 2020-03-02 2021-02-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-035021 2020-03-02
JP2020035021 2020-03-02

Publications (1)

Publication Number Publication Date
WO2021176964A1 true WO2021176964A1 (en) 2021-09-10

Family

ID=77614362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004677 WO2021176964A1 (en) 2020-03-02 2021-02-08 Haptic sensor

Country Status (2)

Country Link
JP (1) JPWO2021176964A1 (en)
WO (1) WO2021176964A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031062A (en) * 2003-06-17 2005-02-03 Nitta Ind Corp Multi-axes sensor
JP2015198027A (en) * 2014-04-01 2015-11-09 株式会社日本自動車部品総合研究所 operation input device
JP2016057113A (en) * 2014-09-08 2016-04-21 公立大学法人大阪府立大学 Tactile sensor and integration sensor
US20180275760A1 (en) * 2017-03-23 2018-09-27 Mindmaze Holding Sa System, method and apparatus for accurately measuring haptic forces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031062A (en) * 2003-06-17 2005-02-03 Nitta Ind Corp Multi-axes sensor
JP2015198027A (en) * 2014-04-01 2015-11-09 株式会社日本自動車部品総合研究所 operation input device
JP2016057113A (en) * 2014-09-08 2016-04-21 公立大学法人大阪府立大学 Tactile sensor and integration sensor
US20180275760A1 (en) * 2017-03-23 2018-09-27 Mindmaze Holding Sa System, method and apparatus for accurately measuring haptic forces

Also Published As

Publication number Publication date
JPWO2021176964A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
JP4948630B2 (en) Torque sensor
JP5568768B2 (en) Force detection device
JP4907050B2 (en) Force detection device
JP6100448B1 (en) Torque sensor
US7490524B2 (en) Force sensor chip
JP7184699B2 (en) force sensor
JP5853121B1 (en) Force sensor
US11788906B2 (en) Force sensor
JP5174343B2 (en) Force sensor chip
JP6713151B2 (en) Force sensor
JP5277038B2 (en) Force detection device
JP2021135104A (en) Force sensor
WO2021176964A1 (en) Haptic sensor
US10775250B2 (en) Torque sensor
JP2019015590A (en) Strain gauge and multiaxial force sensor
JP6767559B2 (en) Strain gauge and multi-axial force sensor
JPH10274573A (en) Force sensor
JP2020079806A (en) Force sensor
JP2011112568A (en) Component force meter
JP6837113B2 (en) Strain gauge and multi-axial force sensor
JP6910693B2 (en) Force sensor
JP7421255B1 (en) force sensor
JP7323970B1 (en) torque sensor
Yang et al. Design of a micro six-axis force sensor based on double layer E-type membrane
JP2021096269A (en) Force sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505073

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764719

Country of ref document: EP

Kind code of ref document: A1