WO2021176700A1 - Learning device, inference device, and air conditioner - Google Patents

Learning device, inference device, and air conditioner Download PDF

Info

Publication number
WO2021176700A1
WO2021176700A1 PCT/JP2020/009746 JP2020009746W WO2021176700A1 WO 2021176700 A1 WO2021176700 A1 WO 2021176700A1 JP 2020009746 W JP2020009746 W JP 2020009746W WO 2021176700 A1 WO2021176700 A1 WO 2021176700A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
information
user
learning
inference
Prior art date
Application number
PCT/JP2020/009746
Other languages
French (fr)
Japanese (ja)
Inventor
哲矢 山下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/009746 priority Critical patent/WO2021176700A1/en
Publication of WO2021176700A1 publication Critical patent/WO2021176700A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/10Weather information or forecasts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load

Definitions

  • the present disclosure relates to a learning device, an inference device, and an air conditioner, and particularly to an air conditioning load prediction.
  • the air conditioner controls the rotation speed of the compressor, the rotation speed of the outdoor fan, the rotation speed of the indoor fan, etc. according to the air conditioning load.
  • the air conditioning load is affected by the difference between the outside air temperature and the room temperature, the number of people in the air conditioning space, and the like.
  • a method of predicting an air conditioning load by learning using a neural network model has been known (see, for example, Patent Document 1).
  • Patent Document 1 discloses that the number of people in the room and weather information are used as input data for learning.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a learning device, an inference device, and an air conditioner that improve user comfort regardless of weather conditions.
  • the learning device includes information on the air conditioning load of the air conditioner, user response information obtained from a user command input by the user for the operation of the air conditioner under the air conditioning load, and the air conditioner.
  • the inference device includes a data acquisition unit that acquires current weather information in the installation environment of the air conditioner, information on the air conditioning load of the air conditioner, and the air conditioner under the air conditioning load.
  • the air conditioner uses a trained model generated by learning from learning data including user response information obtained from a user command input by the user for driving and weather information during the driving in the installation environment of the air conditioner. It also includes an inference unit that infers the air conditioning load of the air conditioner from the current weather information acquired by the data acquisition unit. Further, the air conditioner according to the present disclosure includes a compressor, an outdoor fan, an indoor fan, the above-mentioned inference device, and the number of rotations of the compressor according to the air conditioning load inferred by the inference device. A control device for controlling at least one of the rotation speed of the outdoor fan and the rotation speed of the indoor fan is provided.
  • the present disclosure by generating a trained model from learning data including user response information, it is possible to predict an air conditioning load that reflects how the user feels comfort, and the user's comfort regardless of weather conditions.
  • the sex can be improved.
  • FIG. 5 is a functional block diagram showing a state in which the learning device according to the first embodiment is connected to the Internet and an air conditioner.
  • FIG. 5 is a schematic diagram of a neural network illustrating a method of learning processing performed by the learning device of FIG. 1. It is a flowchart of the learning process performed by the learning apparatus of FIG.
  • FIG. 5 is a functional block diagram showing a state in which the inference device according to the second embodiment is connected to a learning device, an Internet, and an air conditioner. It is a flowchart of the inference processing performed by the inference device of FIG.
  • FIG. 5 is a functional block diagram showing a state in which the machine learning system according to the third embodiment is connected to the Internet and an air conditioner. It is a functional block diagram of the machine learning system which concerns on Embodiment 4.
  • FIG. 4 is a functional block diagram showing a state in which the learning device according to the first embodiment is connected to the Internet and an air conditioner.
  • FIG. 1 is a functional block diagram of a state in which the learning device 10 according to the first embodiment is connected to the Internet and an air conditioner 3.
  • the learning device 10 performs learning processing based on information on the operation performed in the past in the air conditioner 3 and the weather information Vwp in the installation environment of the air conditioner 3 when the operation is performed, and performs the learning process.
  • the balancer 3 generates a model for predicting the air conditioning load.
  • the air conditioner 3 includes an outdoor unit 31 installed outdoors, an indoor unit 32 installed in a room, a remote controller 39 operated by a user, an indoor temperature sensor 37 installed in the indoor unit 32, and the like. , Air-conditioning the room.
  • the outdoor unit 31 is equipped with a compressor 34 that compresses the refrigerant, an outdoor fan 35 that blows air, a control device 33 that controls the operation of the air conditioner 3, and the like.
  • the indoor unit 32 is equipped with an indoor fan 36 or the like that blows air.
  • the outdoor unit 31 and the indoor unit 32 are connected by a signal line or the like so that data can be transmitted and received. Further, the indoor unit 32 and the remote controller 39 transmit and receive data via wireless communication.
  • the user command input to the indoor unit 32 via the remote controller 39 is transmitted from the indoor unit 32 to the control device 33 of the outdoor unit 31.
  • the room temperature sensor 37 detects the room temperature, that is, the room temperature. The detected indoor temperature information is transmitted to the control device 33 of the outdoor unit 31 via the indoor unit 32.
  • the control device 33 sets the load condition Va1 such as the rotation speed of the compressor 34, the rotation speed of the indoor fan 36, and the rotation speed of the outdoor fan 35 according to the air conditioning load Va0. And drive.
  • the air conditioning load Va0 is determined, for example, from the difference between the set temperature and the room temperature.
  • the control device 33 changes the load condition Va1 according to the received user command, and rotates the compressor 34 according to the changed load condition Va1.
  • the number, the rotation speed of the indoor fan 36, and the rotation speed of the outdoor fan 35 are controlled.
  • User commands include, for example, a command for changing the set temperature, a command for changing the strength or direction of the wind blown from the indoor unit 32, and the like.
  • the learning device 10 is communicably connected to each of the Internet and the air conditioner 3 so that various information can be received from the Internet and the air conditioner 3.
  • the learning device 10 includes a data acquisition unit 11 that acquires information and the like regarding the past operation of the air conditioner 3, a model generation unit 12 that generates a model for predicting an air conditioning load by learning from various acquired information, and a model generation unit 12. It is composed of a model storage unit 13 that stores the generated model.
  • the learning device 10 is composed of dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in a memory.
  • the CPU is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a processor.
  • the learning device 10 When the learning device 10 is dedicated hardware, the learning device 10 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable. Each of the functional units realized by the learning device 10 may be realized by individual hardware, or each functional unit may be realized by one hardware.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • each function executed by the learning device 10 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory.
  • the CPU realizes each function of the learning device 10 by reading and executing a program stored in the memory.
  • the memory is a non-volatile or volatile semiconductor memory such as, for example, RAM, ROM, flash memory, EPROM, or EEPROM.
  • a part of the function of the learning device 10 may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • the data acquisition unit 11 acquires various information necessary for learning of the model generation unit 12 and creates learning data VL.
  • the data acquisition unit 11 acquires information on the operation performed in the past in the air conditioner 3 from the air conditioner 3, and the weather information in the installation environment of the air conditioner 3 when the operation is performed, that is, the past weather.
  • the operation is defined by the settings used for determining the load conditions such as the set temperature, the strength of the wind blown from the indoor unit 32, and the wind direction. Further, the period during which these settings are constant is the length of the operation.
  • the data acquisition unit 11 creates learning data VL from the acquired information on the past operation of the air conditioner 3 and the weather information Vwp at the time of operation, and outputs the learning data VL to the model generation unit 12.
  • the information regarding the past operation of the air conditioner 3 includes the air conditioning load Va0 of the operation before the user command is input, the load condition Va1 set in the operation, and the input user command, that is, immediately before.
  • User response information Vres or the like representing the user's response to the operation of the vehicle.
  • the user response information Vres is obtained from a user command input via the remote controller 39.
  • the user response information Vres is, for example, the time from the start to the stop of the immediately preceding operation, the time from the stop to the start of the operation, the selection result of the operation mode, the time until the operation mode is changed, the time until the set temperature is changed, and the setting. At least one of the temperature change range and the set temperature.
  • the data acquisition unit 11 creates learning data VL from the acquired air conditioning load Va0 and load condition Va1 information, user response information Vres, and weather information Vwp during operation by normalization or the like.
  • the reason for performing such preprocessing is to convert various information having different scales into data having a common scale and then give it to the model generation unit 12 as input data.
  • a known method may be applied, and the description thereof will be omitted.
  • the learning data VL includes elements such as the air conditioning load Va0 during operation, the load condition Va1 during operation, the weather information Vwp during operation, and the user response information Vres for the operation.
  • a plurality of learning data VLs are created each time the operation is changed via the remote controller 39.
  • Meteorological information Vwp means at least one of temperature, humidity and weather conditions in the installation environment of the air conditioner 3, change status of each condition, or prediction of each condition. Since such weather conditions affect the physical condition and clothes of the user, it is easily imagined that the air conditioning load of the air conditioner 3 is affected by the above weather conditions. Therefore, the learning data VL is configured to include the weather information Vwp as one element.
  • the user response information Vres is the time from the start to the stop of the immediately preceding operation, the time from the stop to the start of the operation, the time until the operation mode is changed, or the time until the set temperature is changed, up to the user command.
  • the user's comfort can be judged by the length of time. Specifically, when these times are long, the user feels more comfortable than when they are short, and it can be seen that the air conditioner 3 can be operated under load conditions suitable for the user at this time.
  • the comfort of the user can be judged by the degree of change from the immediately preceding operation.
  • the user response information Vres is the change range of the set temperature
  • the weather conditions affect the physical condition and clothes of the user, and the way the user feels hot and cold differs depending on the weather conditions.
  • the model generation unit 12 learns the air conditioning load based on the learning data VL output from the data acquisition unit 11 and generates a trained model. Further, the model generation unit 12 outputs the generated learned model to the model storage unit 13.
  • the learning device 10 is configured as a device separate from the air conditioner 3 and is connected to the air conditioner 3 via a network.
  • the learning device 10 may be built on a cloud server.
  • the learning device 10 may be built in the air conditioner 3.
  • FIG. 2 is a schematic diagram of a neural network illustrating a method of learning processing performed by the learning device 10 of FIG.
  • the learning algorithm used by the model generation unit 12 known algorithms such as supervised learning, unsupervised learning, and reinforcement learning can be used.
  • supervised learning is to learn the features in the learning data VL by giving a set of data of input and result (also referred to as a label) to the learning device 10.
  • the generated model is used to infer the result from the input.
  • various machine learning methods such as learning the air conditioning load of the air conditioner 3, and any method may be used.
  • the model generation unit 12 learns the air conditioning load by supervised learning according to the neural network model will be described.
  • the neural network is composed of an input layer composed of a plurality of neurons X1 to X3, an intermediate layer composed of a plurality of neurons Y1 to Y2 (also referred to as a hidden layer), and an output layer composed of a plurality of neurons Z1 to Z3.
  • the intermediate layer may be one layer or two or more layers.
  • the weights w11 to w16 indicate the strength of the connection between the neurons X1 to X3 in the input layer and the neurons Y1 to Y2 in the intermediate layer.
  • the weights w21 to w26 indicate the strength of the connection between the neurons Y1 to Y2 in the intermediate layer and the neurons Z1 to Z3 in the output layer.
  • a neural network having one intermediate layer and a total of three layers as shown in FIG. 2, when a plurality of inputs are input to the input layer, the values are multiplied by the weights w11 to w16 and input to the intermediate layer. , The result of the intermediate layer is further multiplied by the weights w21 to w26 to be output from the output layer. This output result changes depending on the values of the weights w11 to 16 and w21 to 26.
  • the neural network learns the air conditioning load by so-called supervised learning according to the learning data VL created based on the combination of the weather information Vwp and the user response information Vres acquired by the data acquisition unit 11. .. Specifically, the neural network is weighted so that the result output from the output layer by inputting the weather information Vwp to the input layer approaches the air conditioning load to which the user response information Vres is applied to the operation immediately before the user command. Adjust the value.
  • the trained model is based on the weather information Vww. It reflects how the user feels.
  • the trained model generated as described above is stored in the model storage unit 13 as a trained model for the air conditioner 3.
  • the trained model stored in the model storage unit 13 can be referred to and updated by the model generation unit 12 as needed.
  • FIG. 3 is a flowchart of the learning process performed by the learning device 10 of FIG.
  • the learning process performed by the learning device 10 will be described with reference to FIGS. 1 and 3.
  • the data acquisition unit 11 acquires the user response information Vres, the air conditioning load Va0 and the load condition Va1 of the immediately preceding operation from the air conditioner 3, and the weather information Vwp during operation in the installation environment of the air conditioner 3 from the Internet. (Step ST101). It is assumed that the weather information Vwp and the user response information Vres in the installation environment of the air conditioner 3 are acquired at the same time, but if the weather information Vwp and the user response information Vres are input in association with each other, the timings are different. May be obtained at.
  • the data acquisition unit 11 creates learning data VL from the acquired information (step ST102) and outputs the learning data VL to the model generation unit 12.
  • the model generation unit 12 learns the air conditioning load from the input learning data VL and generates a trained model (step ST103).
  • the model generation unit 12 outputs the generated trained model to the model storage unit 13, and the model storage unit 13 stores the trained model (step ST104).
  • the model generation unit 12 may learn the air conditioning load according to the learning data VL created for the plurality of air conditioners 3.
  • the model generation unit 12 may acquire learning data from a plurality of air conditioners 3 used in the same area, or may acquire learning data from a plurality of air conditioners operating independently in different areas. May be acquired and used for learning. It is also possible to add or remove the air conditioner for which the learning data is to be collected from the target during the operation.
  • the learning device 10 of the first embodiment includes a data acquisition unit 11 and a model generation unit 12.
  • the data acquisition unit 11 includes information on the air conditioning load Va0 of the air conditioner 3, user response information Vres obtained from a user command input by the user for the operation of the air conditioner 3 under the air conditioning load, and the air conditioner 3. Acquires the weather information Vwp during operation in the installation environment of.
  • the model generation unit 12 infers the air conditioning load of the air conditioner 3 from the weather information Vwp and the user response information Vres by using the learning data VL including the information of the air conditioning load Va0, the user response information Vres, and the weather information Vwp. Generate a trained model to do.
  • the trained model is generated from the learning data VL including the user response information Vres, so that it is possible to predict the air conditioning load that reflects the user's feeling of comfort, and the user's comfort regardless of the weather conditions.
  • the sex can be improved.
  • the air conditioner 3 of the first embodiment may include a compressor 34, an outdoor fan 35, an indoor fan 36, the above-mentioned inference device 20, and a control device 33.
  • the control device 33 controls at least one of the rotation speed of the compressor 34, the rotation speed of the outdoor fan 35, and the rotation speed of the indoor fan 36 according to the air conditioning load inferred by the inference device 20.
  • the air conditioner 3 can be operated with an air-conditioned load that reflects the user's feeling of comfort, and the user's comfort can be improved regardless of the weather conditions. Further, by performing such an operation, the number of operations by the user can be reduced as compared with the case where the operation is performed with the air conditioning load predicted by the conventional method.
  • the air conditioner 3 may further include the above-mentioned learning device 10.
  • the learning device 10 can acquire information on the operation of the air conditioner 3 in the air conditioner 3, so that the learned model can be easily updated.
  • FIG. 4 is a functional block diagram of a state in which the inference device 20 according to the second embodiment is connected to the learning device 10, the Internet, and the air conditioner 3.
  • the inference device 20 of the second embodiment infers the optimum air conditioning load of the air conditioner 3 with respect to the weather information Vwn by using the learned model generated by the learning device 10 of the first embodiment. ..
  • the inference device 20 of the second embodiment and the learning device 10 of the first embodiment predict the air conditioning load of the present or the next day, and the optimum load for the air conditioner 3.
  • a machine learning system 1 that provides the condition Va21 is formed.
  • the inference device 20 is communicably connected to each of the Internet and the air conditioner 3 so that various information can be received from the Internet and the air conditioner 3. Further, the inference device 20 is communicably connected to the learning device 10. The inference device 20 infers the air conditioning load from the acquired information by using the data acquisition unit 21 that acquires information about the current operation from the air conditioner 3 and the learned model generated by the learning device 10. It is composed of a part 22 and a part 22. The case of optimizing the current air conditioning load will be described below.
  • the inference device 20 is composed of dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in a memory.
  • the CPU is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a processor.
  • the inference device 20 When the inference device 20 is dedicated hardware, the inference device 20 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable. Each of the functional units realized by the inference device 20 may be realized by individual hardware, or each functional unit may be realized by one hardware.
  • each function executed by the inference device 20 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory.
  • the CPU realizes each function of the inference device 20 by reading and executing a program stored in the memory.
  • the memory is a non-volatile or volatile semiconductor memory such as, for example, RAM, ROM, flash memory, EPROM, or EEPROM.
  • a part of the function of the inference device 20 may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • the data acquisition unit 21 acquires various information necessary for the inference of the inference unit 22. Specifically, the data acquisition unit 21 acquires information on the current air conditioning load Va10 and load condition Va11 of the air conditioner 3 from the air conditioner 3, and obtains the current weather information Vwn in the installation environment of the air conditioner 3. Get from the internet. The data acquisition unit 21 outputs various acquired information to the inference unit 22.
  • the current air conditioning load Va10 is, for example, the air conditioning capacity required to bring the current indoor temperature close to the set temperature.
  • the control device 33 determines the load condition Va11 such as the rotation speed of the compressor 34, the rotation speed of the outdoor fan 35, and the rotation speed of the indoor fan 36 according to the current air conditioning load Va10.
  • the inference unit 22 infers the optimum air conditioning load of the air conditioner 3 for the weather information Vwn by using the learned model generated in advance by the learning device 10 for the air conditioner 3. Specifically, various information including the current weather information Vwn acquired by the data acquisition unit 21 is input to the trained model, and the optimum air conditioning load is output for the air conditioner 3. Further, the inference unit 22 transmits the optimum load condition Va21 according to the air conditioning load obtained by the inference to the air conditioner 3.
  • the inference unit 22 infers the air conditioning load using the learned model learned by the learning device 10 of the machine learning system 1 outside the air conditioner 3, and responds to the inferred air conditioning load.
  • the machine learning system 1 may be built on a cloud server.
  • the air conditioner 3 may have a configuration in which a trained model is acquired from another external air conditioner and inference is performed based on the trained model. Even if the learning device 10 that has learned the air conditioning load for a certain air conditioner is applied to an air conditioner different from the air conditioner, and the air conditioning load is relearned and updated in the applied air conditioner. good.
  • the machine learning system 1 may be built in the air conditioner 3.
  • FIG. 5 is a flowchart of inference processing performed by the inference device 20 of FIG.
  • the learning process performed by the inference device 20 will be described with reference to FIGS. 4 and 5.
  • the data acquisition unit 21 acquires the current air conditioning load Va10 and load condition Va11 from the air conditioner 3, and acquires the current weather information Vwn in the installation environment of the air conditioner 3 from the Internet (step ST201).
  • the timing of acquiring the current weather information Vwn and the current air conditioning load Va10 or the like does not have to be exactly the same as long as the weather information Vwn and the air conditioning load Va10 can be input in association with each other.
  • the data acquisition unit 21 outputs these acquired information to the inference unit 22.
  • the inference unit 22 inputs various information including the current weather information Vwn input from the data acquisition unit 21 into the latest learned model of the air conditioner 3 acquired from the learning device 10 in advance, and air-conditions. Infer the load (step ST202).
  • the inference unit 22 outputs the optimum load condition Va21 according to the air conditioning load obtained by the inference to the air conditioner 3 (step ST203).
  • the optimum load condition Va21 for example, the rotation speed of the compressor 34, the rotation speed of the indoor fan 36, the rotation speed of the outdoor fan 35, and the like are output in consideration of the user's feeling.
  • the air conditioner 3 determines the required air conditioning load, for example, giving priority to reducing the temperature difference between the room temperature and the set temperature.
  • the control device 33 determines the rotation speed of the compressor 34 and the rotation speed of the outdoor fan 35, and the strength of the wind blown from the air conditioner 3, that is, the rotation speed of the indoor fan 36 and the air flow.
  • the orientation of the air conditioner is automatically determined.
  • the air conditioner 3 outputs a start signal to the inference device 20 when the operation is started by the automatic operation control.
  • the air conditioner 3 transmits the air conditioning load Va10 and the load condition Va11 determined by the control device 33 to the inference device 20 in response to the request of the inference device 20 that has received the start signal.
  • the air conditioner 3 receives the optimum load condition Va21 from the inference device 20, and controls the compressor 34, the outdoor fan 35, and the indoor fan 36 according to the received load condition Va21.
  • the air conditioner 3 repeats the process of transmitting information to the inference device 20 every time the control device 33 determines the air conditioning load and receiving the optimum load condition Va21 from the inference device 20.
  • the control device 33 When the user operates the remote controller 39 during the operation in the automatic operation control, the control device 33 outputs an end signal to the inference device 20, and shifts from the automatic operation control to the user operation control.
  • the set temperature, the wind direction of the blown airflow, and the wind strength can be set via the remote controller 39.
  • the inference device 20 of the second embodiment uses the data acquisition unit 21 for acquiring the current weather information Vwn in the installation environment of the air conditioner 3 and the trained model to perform air conditioning from the weather information Vwn. It is provided with an inference unit 22 for inferring the air conditioning load of the machine 3.
  • the trained model used by the inference unit 22 is learning data including user response information Vres for the operation of the air conditioner 3 and weather information Vwp during operation in the installation environment of the air conditioner 3. It was generated by learning from. Therefore, the inference device 20 of the second embodiment has the same effect as the learning device 10 of the first embodiment.
  • the learning device 10 and the inference device 20 have been described as separate devices, but the learning device 10 and the inference device 20 may be configured by one controller.
  • FIG. 6 is a functional block diagram of the machine learning system 1 according to the third embodiment connected to the Internet and the air conditioner 3.
  • the machine learning system 1 learns and predicts the air conditioning load in consideration of the indoor environmental condition Volume with respect to the air conditioner 3 having the motion sensor 38a that detects the indoor environmental condition Volume of the air conditioning target space. Is possible.
  • the indoor environmental condition Volume means at least one of the number of persons in the air-conditioned space, the space temperature, the space humidity, the surface temperature including the people in the air-conditioned space, and the amount of change thereof.
  • the motion sensor 38a is composed of, for example, an infrared sensor or the like. An area sensor may be adopted instead of the motion sensor 38a, or the motion sensor 38a and the area sensor may be used in combination.
  • the data acquisition unit 11 of the learning device 10 acquires information on the past operation of the air conditioner 3 from the air conditioner 3, and obtains the weather information when the operation is being performed, that is, the past weather information Vwp from the Internet. get.
  • the operation is defined by the settings used for determining the load conditions such as the set temperature, the strength of the wind blown from the indoor unit 32, and the wind direction. Further, the period during which these settings are constant is the length of the operation.
  • the data acquisition unit 11 creates learning data VL from the acquired information on the past operation of the air conditioner 3 and the weather information Vwp at the time of operation, and outputs the learning data VL to the model generation unit 12.
  • the information on the past operation of the air conditioner 3 also includes the indoor environmental condition Volume obtained by the motion sensor 38a during operation.
  • the data acquisition unit 11 creates learning data VL from the acquired air conditioning load Va0 information, load condition Va1 information, user response information Vres, indoor environment condition Room, and weather information Vwp during operation by normalization or the like. A plurality of learning data VLs are created each time the operation is changed via the remote controller 39.
  • the model generation unit 12 learns the optimum air conditioning load based on the learning data VL input from the data acquisition unit 11, and generates a trained model. Further, the model generation unit 12 outputs the generated learned model to the model storage unit 13.
  • the learning data VL is performed by using the learning data VL as so-called teacher data, for example, by using a neural network.
  • the neural network inputs the weather information Vwp and the indoor environmental condition Room to the input layer, and the result output from the output layer is applied to the air conditioning load to which the user response information Vres is applied to the operation immediately before the user command. Adjust the weight values so that they are closer (see FIG. 2).
  • the learning data VL includes the weather information Vwp during operation in the installation environment of the air conditioner 3, the user response information Vres for operation, and the indoor environmental condition Volume that affects the air conditioning load. Is built in. Therefore, the trained model reflects the user's feelings about the weather condition and the indoor environmental condition Bloom.
  • the trained model generated as described above is stored in the model storage unit 13 as a trained model for the air conditioner 3.
  • the trained model stored in the model storage unit 13 can be referred to and updated by the model generation unit 12 as needed.
  • the data acquisition unit 21 of the inference device 20 acquires information on the current operation of the air conditioner 3 from the air conditioner 3, and acquires the current weather information Vwn in the installation environment of the air conditioner 3 from the Internet.
  • the information regarding the current operation of the air conditioner 3 includes the current indoor environmental condition Room.
  • the data acquisition unit 21 outputs the acquired information on the current air conditioning load Va0 and the load condition Va1, the current indoor environmental condition Room, and the weather information Vwn to the inference unit 22.
  • the inference unit 22 infers the optimum air conditioning load of the air conditioner 3 for the weather condition and the indoor environmental condition Room by using the learned model generated in advance by the learning device 10 for the air conditioner 3. Specifically, information including the current weather information Vwn and the current indoor environmental condition Bloom acquired by the data acquisition unit 21 is input to the trained model, and the optimum air conditioning load for the air conditioner 3 is inferred. The inference unit 22 transmits the load condition Va21 according to the air conditioning load obtained by the inference to the air conditioner 3.
  • the air conditioner 3 includes a sensor 38a that detects the indoor environmental condition Volume of the air-conditioned space, and the learning data VL is the indoor environmental condition Volume detected by the motion sensor 38a of the air conditioner 3. Is included. Further, the indoor environmental condition Volume includes at least one of the number of persons in the air-conditioned space, the space temperature, the space humidity, and the surface temperature including the person in the air-conditioned space.
  • the trained model can be enhanced by combining the weather information Vwn and Vwp in the installation environment of the air conditioner 3 with the indoor environment condition Room in which the user is present, and more accurate air conditioning load prediction according to the indoor environment. Is possible.
  • FIG. 7 is a functional block diagram of the machine learning system 1 according to the fourth embodiment.
  • the machine learning system 1 can learn and predict the air conditioning load according to the detected user with respect to the air conditioner 3 provided with the user detection device that detects the user in the room. There is.
  • the user detection device is composed of the indoor unit 32 or the user detection unit 38b installed in the room, and the control device 33.
  • the user detection unit 38b includes, for example, at least one of a motion sensor, a voice recognition device, a mobile terminal, and a wearable terminal, and the detection information is transmitted to the control device 33.
  • the user can be identified by a method such as image analysis of the indoor space, voice recognition by voice, or analysis of information transmitted from the terminal. Then, the user does not need to carry a card or the like for identification, and the air conditioner suitable for himself / herself can be obtained only by carrying it with what he / she usually has.
  • User information Vu corresponding to a plurality of users is registered in advance in the control device 33 of the air conditioner 3, and user information Vu can be added to and deleted from the control device 33.
  • User information Vu is information that identifies a user.
  • the control device 33 has a function of identifying one or more users in the room based on the detection information of the user detection unit 38b, and outputs the user information Vu corresponding to the users in the room. Specifically, when the air conditioner 3 is operated, the control device 33 stores the user information Vu of the user in the room as one of the information related to the operation, and transmits the user information Vu in response to an external request.
  • the user detection device may be configured by the user detection unit 38b alone, as long as it can identify one or two or more users in the room.
  • the data acquisition unit 11 of the learning device 10 acquires information on the past operation of the air conditioner 3 from the air conditioner 3, and obtains the weather information when the operation is being performed, that is, the past weather information Vwp from the Internet. get.
  • the operation is defined by the settings used for determining the load conditions such as the set temperature, the strength of the wind blown from the indoor unit 32, and the wind direction. Further, the period during which these settings are constant is the length of the operation.
  • the data acquisition unit 11 creates learning data VL from the acquired information on the past operation of the air conditioner 3 and the weather information Vwp at the time of operation, and outputs the learning data VL to the model generation unit 12.
  • the information regarding the past operation of the air conditioner 3 includes information on the air conditioning load Va0 during operation, information on the load condition Va1 during operation, user response information Vres, and is detected by the user detection device during operation.
  • the information of the user that is, the user information Vu is included.
  • a plurality of user information Vu can be registered in the machine learning system 1.
  • the data acquisition unit 11 creates learning data VL from the acquired air conditioning load Va0 information, load condition Va1 information, weather information Vwp, and user response information Vres by normalization or the like.
  • a plurality of learning data VLs are created each time the operation is changed via the remote controller 39.
  • the data acquisition unit 11 divides a plurality of learning data VL for each user based on the acquired user information Vu and outputs the plurality of learning data VL to the model generation unit 12.
  • the model generation unit 12 learns the optimum air conditioning load for the learning data VLa, VLb, and VLc of each user input from the data acquisition unit 11, and generates the trained models A, B, and C for each user. Further, the model generation unit 12 outputs each generated model to the model storage unit 13.
  • the trained models A, B, and C generated for the three users as described above are stored as trained models for the air conditioner 3. ..
  • Each trained model stored in the model storage unit 13 can be referred to and updated by the model generation unit 12 as needed.
  • the data acquisition unit 21 of the inference device 20 acquires information on the current operation of the air conditioner 3 from the air conditioner 3, and acquires the current weather information Vwn in the installation environment of the air conditioner 3 from the Internet.
  • the information regarding the operation currently being performed in the air conditioner 3 includes information on the current air conditioning load Va10, information on the current load condition Va1, and information on the user in the room.
  • the data acquisition unit 21 outputs the acquired air conditioning load Va10 information, load condition Va11 information, user information Vu, and weather information Vwn to the inference unit 22.
  • the inference unit 22 infers the weather conditions and the optimum air conditioning load of the air conditioner 3 for the user by using the learned model generated in advance by the learning device 10 for each user for the air conditioner 3. Specifically, information including the current weather information Vwn is input to the learned model corresponding to the user information Vu input from the data acquisition unit 21, and the air conditioner 3 is used for the user in the room. The optimum air conditioning load is output. The inference unit 22 transmits the load condition Va21 according to the air conditioning load obtained by the inference to the air conditioner 3.
  • the data acquisition unit 11 acquires the user information Vu
  • the model generation unit 12 generates the learned model according to the user information Vu.
  • the data acquisition unit 21 acquires the user information Vu
  • the inference unit 22 uses the learned model corresponding to the user information Vu acquired by the data acquisition unit 21. Infer the air conditioning load of the air conditioner 3.
  • the air conditioning load can be predicted according to the user of the air conditioner 3, and air conditioning suitable for each person can be performed among users who feel cold or hot and who have different clothes.
  • the model generation unit 12 of the learning device 10 generates a trained model for each user according to the user information Vu from the learning data VL including the indoor environmental condition Bloom detected by the air conditioner 3. You may. Further, the inference unit 22 of the inference device 20 infers the air conditioning load according to the user information Vu by using the learned model generated from the learning data VL including the indoor environmental condition Bloom detected in the air conditioner 3. do. As a result, the operation that suits the user's feeling is further adjusted according to the indoor environmental conditions such as the number of people in the room, and the current air conditioning load that is more suitable for the user is transferred to the air conditioner 3 by the machine learning system 1. It will be possible to provide. Further, in the configuration in which the third embodiment and the fourth embodiment are combined, both the indoor environmental condition Room and the indoor user information Vu may be detected by the same sensor.
  • the learning device 10 and the inference device 20 are configured to acquire the weather information Vwp and Vwn via the Internet, but the configuration is not particularly limited to such a configuration.
  • the learning device 10 acquires the weather information Vww during operation from the air conditioner 3 and is an inference device. 20 may acquire the current weather information Vwn from the air conditioner 3.
  • the outdoor unit 31 of the air conditioner 3 is provided with an outside air temperature sensor or the like for detecting the outside air temperature. The outside air temperature detected by the sensor may be stored.
  • the learning device 10 may be configured to determine whether or not to use the indoor environmental condition Room for learning based on the device information of the air conditioner 3. Further, the learning method is not limited to the above neural network model, and a known method can be used instead.
  • 1 machine learning system 3 air conditioner, 10 learning device, 11 data acquisition unit, 12 model generation unit, 13 model storage unit, 20 inference device, 21 data acquisition unit, 22 inference unit, 31 outdoor unit, 32 indoor unit, 33 control device, 34 compressor, 35 outdoor fan, 36 indoor fan, 37 indoor temperature sensor, 38a human sensor, 38b user detector, 39 remote controller, Va1, Va11, Va21 load condition, VL, VLa, VLb, VLc learning Data, Va0, Va10 air conditioning load, Vres user response information, Room indoor environmental conditions, Vu user information, Vwn, Vwp weather information.

Abstract

These learning device and air conditioner each comprise a data acquisition unit for acquiring user response information with respect to an operation and weather information during operation, and a model generation unit for generating a learned model from the weather information and the user response information, using learning data containing the user response information and the weather information. This inference device comprises a data acquisition unit for acquiring current weather information, and an inference unit for inferring an air-conditioning load of an air conditioner from the current weather information acquired by the data acquisition unit, using a learned model generated from learning data containing user response information with respect to an operation and the weather information during operation.

Description

学習装置、推論装置及び空気調和機Learning device, inference device and air conditioner
 本開示は、学習装置、推論装置及び空気調和機に関し、特に、空調負荷予測に関する。 The present disclosure relates to a learning device, an inference device, and an air conditioner, and particularly to an air conditioning load prediction.
 空気調和機は、空調負荷に応じて圧縮機の回転数、室外ファンの回転数、及び室内ファンの回転数等を制御する。空調負荷は、外気温度と室内温度の差、及びの空調空間内の在室人数等の影響を受ける。近年、ニューラルネットワークモデル(Neural Network Model)を用いた学習により、空調負荷の予測を行う方法が知られている(例えば、特許文献1参照)。特許文献1には、学習の入力データとして在室人数及び気象情報を用いることが開示されている。 The air conditioner controls the rotation speed of the compressor, the rotation speed of the outdoor fan, the rotation speed of the indoor fan, etc. according to the air conditioning load. The air conditioning load is affected by the difference between the outside air temperature and the room temperature, the number of people in the air conditioning space, and the like. In recent years, a method of predicting an air conditioning load by learning using a neural network model (Neural Network Model) has been known (see, for example, Patent Document 1). Patent Document 1 discloses that the number of people in the room and weather information are used as input data for learning.
特開2006-078009号公報Japanese Unexamined Patent Publication No. 2006-078009
 特許文献1のように、在室人数等の室内環境条件、及び気象情報等の外界条件だけを入力データとして生成したモデルを用いた場合、ユーザの快適性の感じ方が負荷条件の決定に十分に反映されず、気象条件によってはユーザの快適性を向上させることができない。 When a model is used in which only the indoor environmental conditions such as the number of people in the room and the external conditions such as weather information are used as input data as in Patent Document 1, the user's feeling of comfort is sufficient for determining the load conditions. It is not reflected in the above, and it is not possible to improve the comfort of the user depending on the weather conditions.
 本開示は、上記のような課題を解決するためになされたもので、気象条件によらずユーザの快適性を向上させる学習装置、推論装置及び空気調和機を提供することを目的とする。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a learning device, an inference device, and an air conditioner that improve user comfort regardless of weather conditions.
 本開示に係る学習装置は、空気調和機の空調負荷の情報と、前記空調負荷での前記空気調和機の運転に対してユーザが入力したユーザ指令から得られるユーザ応答情報と、前記空気調和機の設置環境における前記運転時の気象情報と、を取得するデータ取得部と、前記空調負荷の情報と前記ユーザ応答情報と前記気象情報とを含む学習用データを用いて、前記気象情報及び前記ユーザ応答情報から、前記空気調和機の空調負荷を推論するための学習済モデルを生成するモデル生成部と、を備える。
 また、本開示に係る推論装置は、空気調和機の設置環境における現在の気象情報を取得するデータ取得部と、前記空気調和機の空調負荷の情報と、前記空調負荷での前記空気調和機の運転に対してユーザが入力したユーザ指令から得られるユーザ応答情報と、前記空気調和機の設置環境における前記運転時の気象情報と、を含む学習用データから学習により生成された学習済モデルを用いて、前記データ取得部により取得された現在の気象情報から前記空気調和機の空調負荷を推論する推論部と、を備える。
 また、本開示に係る空気調和機は、圧縮機と、室外ファンと、室内ファンと、上記の推論装置と、前記推論装置により推論された空調負荷に応じて、前記圧縮機の回転数、前記室外ファンの回転数、及び前記室内ファンの回転数の少なくとも一つを制御する制御装置と、を備える。
The learning device according to the present disclosure includes information on the air conditioning load of the air conditioner, user response information obtained from a user command input by the user for the operation of the air conditioner under the air conditioning load, and the air conditioner. Using the data acquisition unit for acquiring the weather information during the operation in the installation environment of the above, and the learning data including the air conditioning load information, the user response information, and the weather information, the weather information and the user. It includes a model generation unit that generates a trained model for inferring the air conditioning load of the air conditioner from the response information.
Further, the inference device according to the present disclosure includes a data acquisition unit that acquires current weather information in the installation environment of the air conditioner, information on the air conditioning load of the air conditioner, and the air conditioner under the air conditioning load. Using a trained model generated by learning from learning data including user response information obtained from a user command input by the user for driving and weather information during the driving in the installation environment of the air conditioner. It also includes an inference unit that infers the air conditioning load of the air conditioner from the current weather information acquired by the data acquisition unit.
Further, the air conditioner according to the present disclosure includes a compressor, an outdoor fan, an indoor fan, the above-mentioned inference device, and the number of rotations of the compressor according to the air conditioning load inferred by the inference device. A control device for controlling at least one of the rotation speed of the outdoor fan and the rotation speed of the indoor fan is provided.
 本開示によれば、ユーザ応答情報を含む学習用データから学習済モデルが生成されることにより、ユーザの快適性の感じ方を反映した空調負荷予測が可能となり、気象条件によらずユーザの快適性を向上させることができる。 According to the present disclosure, by generating a trained model from learning data including user response information, it is possible to predict an air conditioning load that reflects how the user feels comfort, and the user's comfort regardless of weather conditions. The sex can be improved.
実施の形態1に係る学習装置がインターネット及び空気調和機と接続された状態の機能ブロック図である。FIG. 5 is a functional block diagram showing a state in which the learning device according to the first embodiment is connected to the Internet and an air conditioner. 図1の学習装置が行う学習処理の一手法を説明するニューラルネットワーク概要図である。FIG. 5 is a schematic diagram of a neural network illustrating a method of learning processing performed by the learning device of FIG. 1. 図1の学習装置が行う学習処理のフローチャートである。It is a flowchart of the learning process performed by the learning apparatus of FIG. 実施の形態2に係る推論装置が学習装置、インターネット及び空気調和機と接続された状態の機能ブロック図である。FIG. 5 is a functional block diagram showing a state in which the inference device according to the second embodiment is connected to a learning device, an Internet, and an air conditioner. 図4の推論装置が行う推論処理のフローチャートである。It is a flowchart of the inference processing performed by the inference device of FIG. 実施の形態3に係る機械学習システムがインターネット及び空気調和機と接続された状態の機能ブロック図である。FIG. 5 is a functional block diagram showing a state in which the machine learning system according to the third embodiment is connected to the Internet and an air conditioner. 実施の形態4に係る機械学習システムの機能ブロック図である。It is a functional block diagram of the machine learning system which concerns on Embodiment 4. FIG.
 以下、本開示の空気調和機の好適な実施の形態について図面を用いて説明する。以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。 Hereinafter, preferred embodiments of the air conditioner of the present disclosure will be described with reference to the drawings. In the following drawings, those having the same reference numerals are the same or equivalent thereof, and this shall be common to the entire text of the specification.
実施の形態1.
 図1は、実施の形態1に係る学習装置10がインターネット及び空気調和機3と接続された状態の機能ブロック図である。学習装置10は、空気調和機3において過去に実施された運転に関する情報、及び、その運転が行われているときの空気調和機3の設置環境における気象情報Vwpに基づいて学習処理を行い、空気調和機3で空調負荷を予測するためのモデルを生成するものである。
Embodiment 1.
FIG. 1 is a functional block diagram of a state in which the learning device 10 according to the first embodiment is connected to the Internet and an air conditioner 3. The learning device 10 performs learning processing based on information on the operation performed in the past in the air conditioner 3 and the weather information Vwp in the installation environment of the air conditioner 3 when the operation is performed, and performs the learning process. The balancer 3 generates a model for predicting the air conditioning load.
<空気調和機3の構成>
 空気調和機3は、屋外に設置される室外機31と、部屋に設置される室内機32と、ユーザが操作するリモコン39と、室内機32に設置された室内温度センサ37等と、を備え、部屋の空調を行うものである。室外機31には、冷媒を圧縮する圧縮機34、送風を行う室外ファン35、及び空気調和機3の運転を制御する制御装置33等が搭載されている。室内機32には、送風を行う室内ファン36等が搭載されている。
<Structure of air conditioner 3>
The air conditioner 3 includes an outdoor unit 31 installed outdoors, an indoor unit 32 installed in a room, a remote controller 39 operated by a user, an indoor temperature sensor 37 installed in the indoor unit 32, and the like. , Air-conditioning the room. The outdoor unit 31 is equipped with a compressor 34 that compresses the refrigerant, an outdoor fan 35 that blows air, a control device 33 that controls the operation of the air conditioner 3, and the like. The indoor unit 32 is equipped with an indoor fan 36 or the like that blows air.
 室外機31と室内機32とは、データの送受信が可能なように信号線等により接続されている。また室内機32とリモコン39とは、無線通信を介してデータの送受信を行う。リモコン39を介して室内機32に入力されたユーザ指令は、室内機32から室外機31の制御装置33へ送信される。室内温度センサ37は、部屋の温度すなわち室内温度を検出する。検出された室内温度の情報は、室内機32を介して室外機31の制御装置33へ送信される。 The outdoor unit 31 and the indoor unit 32 are connected by a signal line or the like so that data can be transmitted and received. Further, the indoor unit 32 and the remote controller 39 transmit and receive data via wireless communication. The user command input to the indoor unit 32 via the remote controller 39 is transmitted from the indoor unit 32 to the control device 33 of the outdoor unit 31. The room temperature sensor 37 detects the room temperature, that is, the room temperature. The detected indoor temperature information is transmitted to the control device 33 of the outdoor unit 31 via the indoor unit 32.
 空気調和機3が運転を開始する際及び運転中、制御装置33は、空調負荷Va0に応じて圧縮機34の回転数、室内ファン36の回転数、及び室外ファン35の回転数といった負荷条件Va1を決定して運転を行う。空調負荷Va0は、例えば、設定温度と室内温度との差等から決定される。また運転中、リモコン39を介してユーザ指令が入力されると、制御装置33は、受信したユーザ指令に応じて負荷条件Va1を変更し、変更後の負荷条件Va1に応じて圧縮機34の回転数、室内ファン36の回転数、及び室外ファン35の回転数を制御する。ユーザ指令としては、例えば、設定温度を変更する指令、及び、室内機32から吹き出される風の強さ又は風向を変更する指令等がある。 When the air conditioner 3 starts operation and during operation, the control device 33 sets the load condition Va1 such as the rotation speed of the compressor 34, the rotation speed of the indoor fan 36, and the rotation speed of the outdoor fan 35 according to the air conditioning load Va0. And drive. The air conditioning load Va0 is determined, for example, from the difference between the set temperature and the room temperature. Further, when a user command is input via the remote controller 39 during operation, the control device 33 changes the load condition Va1 according to the received user command, and rotates the compressor 34 according to the changed load condition Va1. The number, the rotation speed of the indoor fan 36, and the rotation speed of the outdoor fan 35 are controlled. User commands include, for example, a command for changing the set temperature, a command for changing the strength or direction of the wind blown from the indoor unit 32, and the like.
<学習装置10の構成>
 学習装置10は、インターネット及び空気調和機3それぞれから各種情報を受信できるように、インターネット及び空気調和機3それぞれと通信可能に接続されている。学習装置10は、空気調和機3の過去の運転に関する情報等を取得するデータ取得部11、取得された各種情報から学習により空調負荷を予測するためのモデルを生成するモデル生成部12、及び、生成されたモデルを記憶するモデル記憶部13で構成されている。
<Structure of learning device 10>
The learning device 10 is communicably connected to each of the Internet and the air conditioner 3 so that various information can be received from the Internet and the air conditioner 3. The learning device 10 includes a data acquisition unit 11 that acquires information and the like regarding the past operation of the air conditioner 3, a model generation unit 12 that generates a model for predicting an air conditioning load by learning from various acquired information, and a model generation unit 12. It is composed of a model storage unit 13 that stores the generated model.
 学習装置10は、専用のハードウェア、又はメモリに格納されるプログラムを実行するCPU(Central Processing Unit)で構成されている。なお、CPUは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、又はプロセッサともいう。 The learning device 10 is composed of dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in a memory. The CPU is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a processor.
 学習装置10が専用のハードウェアである場合、学習装置10は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものが該当する。学習装置10が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。 When the learning device 10 is dedicated hardware, the learning device 10 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable. Each of the functional units realized by the learning device 10 may be realized by individual hardware, or each functional unit may be realized by one hardware.
 学習装置10がCPUの場合、学習装置10が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリに格納される。CPUは、メモリに格納されたプログラムを読み出して実行することにより、学習装置10の各機能を実現する。ここで、メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、又はEEPROM等の、不揮発性又は揮発性の半導体メモリである。 When the learning device 10 is a CPU, each function executed by the learning device 10 is realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in memory. The CPU realizes each function of the learning device 10 by reading and executing a program stored in the memory. Here, the memory is a non-volatile or volatile semiconductor memory such as, for example, RAM, ROM, flash memory, EPROM, or EEPROM.
 学習装置10の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 A part of the function of the learning device 10 may be realized by dedicated hardware, and a part may be realized by software or firmware.
 データ取得部11は、モデル生成部12の学習に必要な各種情報を取得し、学習用データVLを作成するものである。データ取得部11は、空気調和機3において過去に行われた運転に関する情報を空気調和機3から取得し、その運転行われているときの空気調和機3の設置環境における気象情報すなわち過去の気象情報Vwpをインターネットから取得する。ここで、運転は、設定温度、室内機32から吹き出される風の強さ及び風向といった負荷条件の決定に用いられる設定で定義される。また、これらの設定が一定である期間が、その運転の長さである。データ取得部11は、取得した空気調和機3の過去の運転に関する情報及び運転時の気象情報Vwpから学習用データVLを作成し、モデル生成部12に出力する。 The data acquisition unit 11 acquires various information necessary for learning of the model generation unit 12 and creates learning data VL. The data acquisition unit 11 acquires information on the operation performed in the past in the air conditioner 3 from the air conditioner 3, and the weather information in the installation environment of the air conditioner 3 when the operation is performed, that is, the past weather. Obtain information Vwp from the Internet. Here, the operation is defined by the settings used for determining the load conditions such as the set temperature, the strength of the wind blown from the indoor unit 32, and the wind direction. Further, the period during which these settings are constant is the length of the operation. The data acquisition unit 11 creates learning data VL from the acquired information on the past operation of the air conditioner 3 and the weather information Vwp at the time of operation, and outputs the learning data VL to the model generation unit 12.
 ここで、空気調和機3の過去の運転に関する情報とは、ユーザ指令が入力される前の運転の空調負荷Va0、その運転で設定されていた負荷条件Va1、及び、入力されたユーザ指令すなわち直前の運転に対する利用者の応答を表すユーザ応答情報Vres等である。 Here, the information regarding the past operation of the air conditioner 3 includes the air conditioning load Va0 of the operation before the user command is input, the load condition Va1 set in the operation, and the input user command, that is, immediately before. User response information Vres or the like representing the user's response to the operation of the vehicle.
 ユーザ応答情報Vresは、リモコン39を介して入力されるユーザ指令から得られる。ユーザ応答情報Vresは、例えば、直前の運転の開始から停止までの時間、運転停止から開始までの時間、運転モードの選択結果、運転モードの変更までの時間、設定温度の変更までの時間、設定温度の変更幅、及び設定温度のうち少なくとも1つである。 The user response information Vres is obtained from a user command input via the remote controller 39. The user response information Vres is, for example, the time from the start to the stop of the immediately preceding operation, the time from the stop to the start of the operation, the selection result of the operation mode, the time until the operation mode is changed, the time until the set temperature is changed, and the setting. At least one of the temperature change range and the set temperature.
 データ取得部11は、取得した空調負荷Va0及び負荷条件Va1の情報、ユーザ応答情報Vres、及び運転時の気象情報Vwpから正規化等により学習用データVLを作成する。このような前処理を行うのは、尺度の異なる各種情報を、共通の尺度のデータに変換してからモデル生成部12に入力データとして与えるためである。なお、取得した各種情報から学習用データVLを作成する方法については、既知の方法を適用すればよく、説明は省略する。 The data acquisition unit 11 creates learning data VL from the acquired air conditioning load Va0 and load condition Va1 information, user response information Vres, and weather information Vwp during operation by normalization or the like. The reason for performing such preprocessing is to convert various information having different scales into data having a common scale and then give it to the model generation unit 12 as input data. As for the method of creating the learning data VL from the various acquired information, a known method may be applied, and the description thereof will be omitted.
 このように、学習用データVLには、運転時の空調負荷Va0、運転時の負荷条件Va1、運転時の気象情報Vwp、及びその運転に対するユーザ応答情報Vresといった要素が含まれている。学習用データVLは、リモコン39を介して運転が変更されるごとに、複数作成される。 As described above, the learning data VL includes elements such as the air conditioning load Va0 during operation, the load condition Va1 during operation, the weather information Vwp during operation, and the user response information Vres for the operation. A plurality of learning data VLs are created each time the operation is changed via the remote controller 39.
 気象情報Vwpとは、空気調和機3の設置環境における温度、湿度及び天候の条件、各条件の変化状況、又は各条件の予測のうち少なくとも1つをいう。このような気象条件は、ユーザの体調及び服装に影響を与えるものであることから、空気調和機3の空調負荷が上記のような気象条件による影響を受けることも容易に想像される。このため、学習用データVLは、気象情報Vwpを一要素として含む構成とされている。 Meteorological information Vwp means at least one of temperature, humidity and weather conditions in the installation environment of the air conditioner 3, change status of each condition, or prediction of each condition. Since such weather conditions affect the physical condition and clothes of the user, it is easily imagined that the air conditioning load of the air conditioner 3 is affected by the above weather conditions. Therefore, the learning data VL is configured to include the weather information Vwp as one element.
 例えば、ユーザ応答情報Vresが、直前の運転の開始から停止までの時間、停止から運転開始までの時間、運転モードの変更までの時間、又は設定温度の変更までの時間である場合、ユーザ指令までの時間の長さによってユーザの快適性が判断できる。具体的には、これらの時間が長いときには短いときと比べ、ユーザは快適であると感じており、このときのユーザに適した負荷条件で空気調和機3が運転できていることがわかる。 For example, if the user response information Vres is the time from the start to the stop of the immediately preceding operation, the time from the stop to the start of the operation, the time until the operation mode is changed, or the time until the set temperature is changed, up to the user command. The user's comfort can be judged by the length of time. Specifically, when these times are long, the user feels more comfortable than when they are short, and it can be seen that the air conditioner 3 can be operated under load conditions suitable for the user at this time.
 また例えば、ユーザ応答情報Vresが、運転モードの選択結果、又は設定温度の変更幅である場合、直前の運転からの変更度合いによってユーザの快適性の判断ができる。具体的には、ユーザ応答情報Vresが設定温度の変更幅である場合、変更幅が小さいときには大きいときと比べ、ユーザは快適であると感じており、このときのユーザに適した負荷条件で空気調和機3が運転できているとわかる。上記のように、気象条件はユーザの体調及び服装に影響を与え、気象条件によってユーザの暑い寒い等の感じ方は異なる。 Further, for example, when the user response information Vres is the selection result of the operation mode or the change range of the set temperature, the comfort of the user can be judged by the degree of change from the immediately preceding operation. Specifically, when the user response information Vres is the change range of the set temperature, the user feels more comfortable when the change range is small than when it is large, and the air is air-conditioned under the load conditions suitable for the user at this time. It can be seen that the air conditioner 3 is operating. As described above, the weather conditions affect the physical condition and clothes of the user, and the way the user feels hot and cold differs depending on the weather conditions.
 図1に示されるように、モデル生成部12は、データ取得部11から出力される学習用データVLに基づいて空調負荷を学習し、学習済モデルを生成する。またモデル生成部12は、生成した学習済モデルをモデル記憶部13へ出力する。図1に示される例では、学習装置10は、空気調和機3とは別個の装置として構成され、ネットワークを介して空気調和機3と接続される場合が示されている。ここで、学習装置10は、クラウドサーバ上に構築されたものでもよい。なお、学習装置10は、空気調和機3に内蔵されたものでもよい。 As shown in FIG. 1, the model generation unit 12 learns the air conditioning load based on the learning data VL output from the data acquisition unit 11 and generates a trained model. Further, the model generation unit 12 outputs the generated learned model to the model storage unit 13. In the example shown in FIG. 1, the learning device 10 is configured as a device separate from the air conditioner 3 and is connected to the air conditioner 3 via a network. Here, the learning device 10 may be built on a cloud server. The learning device 10 may be built in the air conditioner 3.
 図2は、図1の学習装置10が行う学習処理の一手法を説明するニューラルネットワーク概要図である。モデル生成部12が用いる学習アルゴリズムは、教師あり学習、教師なし学習又は強化学習等の公知のアルゴリズムを用いることができる。ここで、教師あり学習とは、入力と結果(ラベルともいう)のデータの組を学習装置10に与えることで、それらの学習用データVLにある特徴を学習するものであり、このようにして生成されたモデルは、入力から結果を推論するのに使用される。また、空気調和機3の空調負荷を学習するといった機械学習の手法にはいろいろな手法があり、どのような手法を用いてもよい。以下、モデル生成部12が、ニューラルネットワークモデルに従って、教師あり学習により、空調負荷を学習する場合について説明する。 FIG. 2 is a schematic diagram of a neural network illustrating a method of learning processing performed by the learning device 10 of FIG. As the learning algorithm used by the model generation unit 12, known algorithms such as supervised learning, unsupervised learning, and reinforcement learning can be used. Here, supervised learning is to learn the features in the learning data VL by giving a set of data of input and result (also referred to as a label) to the learning device 10. The generated model is used to infer the result from the input. Further, there are various machine learning methods such as learning the air conditioning load of the air conditioner 3, and any method may be used. Hereinafter, a case where the model generation unit 12 learns the air conditioning load by supervised learning according to the neural network model will be described.
 ニューラルネットワークは、複数のニューロンX1~X3からなる入力層、複数のニューロンY1~Y2からなる中間層(隠れ層ともいう)、及び複数のニューロンZ1~Z3からなる出力層で構成される。中間層は、1層、又は2層以上でもよい。重みw11~w16は、入力層の各ニューロンX1~X3と中間層の各ニューロンY1~Y2とのつながりの強さを示すものである。重みw21~w26は、中間層の各ニューロンY1~Y2と出力層の各ニューロンZ1~Z3とのつながりの強さを示すものである。 The neural network is composed of an input layer composed of a plurality of neurons X1 to X3, an intermediate layer composed of a plurality of neurons Y1 to Y2 (also referred to as a hidden layer), and an output layer composed of a plurality of neurons Z1 to Z3. The intermediate layer may be one layer or two or more layers. The weights w11 to w16 indicate the strength of the connection between the neurons X1 to X3 in the input layer and the neurons Y1 to Y2 in the intermediate layer. The weights w21 to w26 indicate the strength of the connection between the neurons Y1 to Y2 in the intermediate layer and the neurons Z1 to Z3 in the output layer.
 例えば、図2に示されるような中間層が1層で合計3層のニューラルネットワークでは、複数の入力が入力層に入力されると、その値に重みw11~w16を掛けて中間層に入力され、中間層の結果にさらに重みw21~w26を掛けて出力層から出力される。この出力結果は、重みw11~16、w21~26の値によって変わる。 For example, in a neural network having one intermediate layer and a total of three layers as shown in FIG. 2, when a plurality of inputs are input to the input layer, the values are multiplied by the weights w11 to w16 and input to the intermediate layer. , The result of the intermediate layer is further multiplied by the weights w21 to w26 to be output from the output layer. This output result changes depending on the values of the weights w11 to 16 and w21 to 26.
 本開示において、ニューラルネットワークは、データ取得部11によって取得される気象情報Vwp及びユーザ応答情報Vres等の組合せに基づいて作成される学習用データVLに従って、いわゆる教師あり学習により、空調負荷を学習する。具体的には、ニューラルネットワークは、入力層に気象情報Vwpを入力して出力層から出力される結果が、ユーザ指令の直前の運転にユーザ応答情報Vresを適用した空調負荷に近づくように重みの値を調整する。 In the present disclosure, the neural network learns the air conditioning load by so-called supervised learning according to the learning data VL created based on the combination of the weather information Vwp and the user response information Vres acquired by the data acquisition unit 11. .. Specifically, the neural network is weighted so that the result output from the output layer by inputting the weather information Vwp to the input layer approaches the air conditioning load to which the user response information Vres is applied to the operation immediately before the user command. Adjust the value.
 上記のとおり、学習用データVLには、空気調和機3の設置環境における運転時の気象情報Vwpとともに運転に対するユーザ応答情報Vresが組み込まれているので、学習済モデルは、気象情報Vwpに対してユーザの感じ方が反映されたものとなっている。 As described above, since the user response information Vres for driving is incorporated in the learning data VL together with the weather information Vwp during operation in the installation environment of the air conditioner 3, the trained model is based on the weather information Vww. It reflects how the user feels.
 図1に示されるように、モデル記憶部13には、上記のように生成された学習済モデルが、空気調和機3についての学習済モデルとして記憶される。モデル記憶部13に記憶された学習済モデルは、必要に応じてモデル生成部12により参照され、更新することが可能である。 As shown in FIG. 1, the trained model generated as described above is stored in the model storage unit 13 as a trained model for the air conditioner 3. The trained model stored in the model storage unit 13 can be referred to and updated by the model generation unit 12 as needed.
 図3は、図1の学習装置10が行う学習処理のフローチャートである。図1及び図3を参照しつつ、学習装置10が行う学習処理について説明する。データ取得部11は、空気調和機3から、ユーザ応答情報Vres、直前の運転の空調負荷Va0及及び負荷条件Va1を取得し、インターネットから、空気調和機3の設置環境における運転時の気象情報Vwpを取得する(ステップST101)。なお、空気調和機3の設置環境における気象情報Vwpとユーザ応答情報Vresとが同時に取得されるものとしたが、気象情報Vwpとユーザ応答情報Vresとが関連づけて入力されれば、それぞれ別のタイミングで取得されても良い。データ取得部11は、これらの取得した情報から学習用データVLを作成し(ステップST102)、モデル生成部12に出力する。モデル生成部12は、入力された学習用データVLから空調負荷の学習を行い、学習済モデルを生成する(ステップST103)。モデル生成部12は、生成した学習済モデルをモデル記憶部13へ出力し、モデル記憶部13により、学習済モデルが記憶される(ステップST104)。 FIG. 3 is a flowchart of the learning process performed by the learning device 10 of FIG. The learning process performed by the learning device 10 will be described with reference to FIGS. 1 and 3. The data acquisition unit 11 acquires the user response information Vres, the air conditioning load Va0 and the load condition Va1 of the immediately preceding operation from the air conditioner 3, and the weather information Vwp during operation in the installation environment of the air conditioner 3 from the Internet. (Step ST101). It is assumed that the weather information Vwp and the user response information Vres in the installation environment of the air conditioner 3 are acquired at the same time, but if the weather information Vwp and the user response information Vres are input in association with each other, the timings are different. May be obtained at. The data acquisition unit 11 creates learning data VL from the acquired information (step ST102) and outputs the learning data VL to the model generation unit 12. The model generation unit 12 learns the air conditioning load from the input learning data VL and generates a trained model (step ST103). The model generation unit 12 outputs the generated trained model to the model storage unit 13, and the model storage unit 13 stores the trained model (step ST104).
 モデル生成部12は、複数の空気調和機3に対して作成される学習用データVLに従って、空調負荷を学習するようにしてもよい。なお、モデル生成部12は、同一のエリアで使用される複数の空気調和機3から学習用データを取得してもよいし、異なるエリアで独立して動作する複数の空気調和機から学習用データを取得し、学習に利用してもよい。また、学習用データを収集する対象となる空気調和機を、運用の途中で対象に追加する、又は対象から除去するといったことも可能である。 The model generation unit 12 may learn the air conditioning load according to the learning data VL created for the plurality of air conditioners 3. The model generation unit 12 may acquire learning data from a plurality of air conditioners 3 used in the same area, or may acquire learning data from a plurality of air conditioners operating independently in different areas. May be acquired and used for learning. It is also possible to add or remove the air conditioner for which the learning data is to be collected from the target during the operation.
 以上のように、実施の形態1の学習装置10は、データ取得部11とモデル生成部12とを備える。データ取得部11は、空気調和機3の空調負荷Va0の情報と、空調負荷での空気調和機3の運転に対してユーザが入力したユーザ指令から得られるユーザ応答情報Vresと、空気調和機3の設置環境における運転時の気象情報Vwpと、を取得する。モデル生成部12は、空調負荷Va0の情報とユーザ応答情報Vresと気象情報Vwpとを含む学習用データVLを用いて、気象情報Vwp及びユーザ応答情報Vresから、空気調和機3の空調負荷を推論するための学習済モデルを生成する。 As described above, the learning device 10 of the first embodiment includes a data acquisition unit 11 and a model generation unit 12. The data acquisition unit 11 includes information on the air conditioning load Va0 of the air conditioner 3, user response information Vres obtained from a user command input by the user for the operation of the air conditioner 3 under the air conditioning load, and the air conditioner 3. Acquires the weather information Vwp during operation in the installation environment of. The model generation unit 12 infers the air conditioning load of the air conditioner 3 from the weather information Vwp and the user response information Vres by using the learning data VL including the information of the air conditioning load Va0, the user response information Vres, and the weather information Vwp. Generate a trained model to do.
 これにより、ユーザ応答情報Vresを含む学習用データVLから学習済モデルが生成されることにより、ユーザの快適性の感じ方を反映した空調負荷の予測が可能となり、気象条件によらずユーザの快適性を向上させることができる。 As a result, the trained model is generated from the learning data VL including the user response information Vres, so that it is possible to predict the air conditioning load that reflects the user's feeling of comfort, and the user's comfort regardless of the weather conditions. The sex can be improved.
 また実施の形態1の空気調和機3は、圧縮機34と、室外ファン35と、室内ファン36と、上記の推論装置20と、制御装置33とを備えるものでもよい。制御装置33は、推論装置20により推論された空調負荷に応じて、圧縮機34の回転数、室外ファン35の回転数、及び室内ファン36の回転数の少なくとも一つを制御する。 Further, the air conditioner 3 of the first embodiment may include a compressor 34, an outdoor fan 35, an indoor fan 36, the above-mentioned inference device 20, and a control device 33. The control device 33 controls at least one of the rotation speed of the compressor 34, the rotation speed of the outdoor fan 35, and the rotation speed of the indoor fan 36 according to the air conditioning load inferred by the inference device 20.
 これにより、空気調和機3は、ユーザの快適性の感じ方を反映した空調負荷で運転を行うことができ、気象条件によらずユーザの快適性を向上させることができる。また、このような運転が行われることで、従来の方法で予測された空調負荷で運転が行われる場合と比べ、ユーザの操作回数が低減できる。 As a result, the air conditioner 3 can be operated with an air-conditioned load that reflects the user's feeling of comfort, and the user's comfort can be improved regardless of the weather conditions. Further, by performing such an operation, the number of operations by the user can be reduced as compared with the case where the operation is performed with the air conditioning load predicted by the conventional method.
 また空気調和機3は、上記の学習装置10をさらに備えてもよい。これにより、学習装置10による、空気調和機3の運転に関する情報の取得が空気調和機3内で行えるので、学習済モデルの更新が容易となる。 Further, the air conditioner 3 may further include the above-mentioned learning device 10. As a result, the learning device 10 can acquire information on the operation of the air conditioner 3 in the air conditioner 3, so that the learned model can be easily updated.
実施の形態2.
 図4は、実施の形態2に係る推論装置20が学習装置10、インターネット及び空気調和機3と接続された状態の機能ブロック図である。実施の形態2の推論装置20は、実施の形態1の学習装置10で生成された学習済モデルを用いて、気象情報Vwnに対して空気調和機3の最適な空調負荷を推論するものである。図4に示されるように、実施の形態2の推論装置20と、実施の形態1の学習装置10とにより、現在、又は翌日といった先の空調負荷を予測し、空気調和機3に最適な負荷条件Va21を提供する機械学習システム1が形成されている。
Embodiment 2.
FIG. 4 is a functional block diagram of a state in which the inference device 20 according to the second embodiment is connected to the learning device 10, the Internet, and the air conditioner 3. The inference device 20 of the second embodiment infers the optimum air conditioning load of the air conditioner 3 with respect to the weather information Vwn by using the learned model generated by the learning device 10 of the first embodiment. .. As shown in FIG. 4, the inference device 20 of the second embodiment and the learning device 10 of the first embodiment predict the air conditioning load of the present or the next day, and the optimum load for the air conditioner 3. A machine learning system 1 that provides the condition Va21 is formed.
<推論装置20の構成>
 推論装置20は、インターネット及び空気調和機3それぞれから各種情報を受信できるように、インターネット及び空気調和機3それぞれと通信可能に接続されている。また推論装置20は、学習装置10と通信可能に接続されている。推論装置20は、空気調和機3から、現在の運転に関する情報を取得するデータ取得部21と、学習装置10で生成された学習済モデルを用いて、取得された情報から空調負荷を推論する推論部22とで構成されている。以下、現在の空調負荷を最適化する場合について説明する。
<Configuration of inference device 20>
The inference device 20 is communicably connected to each of the Internet and the air conditioner 3 so that various information can be received from the Internet and the air conditioner 3. Further, the inference device 20 is communicably connected to the learning device 10. The inference device 20 infers the air conditioning load from the acquired information by using the data acquisition unit 21 that acquires information about the current operation from the air conditioner 3 and the learned model generated by the learning device 10. It is composed of a part 22 and a part 22. The case of optimizing the current air conditioning load will be described below.
 推論装置20は、専用のハードウェア、又はメモリに格納されるプログラムを実行するCPU(Central Processing Unit)で構成されている。なお、CPUは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、又はプロセッサともいう。 The inference device 20 is composed of dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in a memory. The CPU is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a processor.
 推論装置20が専用のハードウェアである場合、推論装置20は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものが該当する。推論装置20が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。 When the inference device 20 is dedicated hardware, the inference device 20 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable. Each of the functional units realized by the inference device 20 may be realized by individual hardware, or each functional unit may be realized by one hardware.
 推論装置20がCPUの場合、推論装置20が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリに格納される。CPUは、メモリに格納されたプログラムを読み出して実行することにより、推論装置20の各機能を実現する。ここで、メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、又はEEPROM等の、不揮発性又は揮発性の半導体メモリである。 When the inference device 20 is a CPU, each function executed by the inference device 20 is realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in memory. The CPU realizes each function of the inference device 20 by reading and executing a program stored in the memory. Here, the memory is a non-volatile or volatile semiconductor memory such as, for example, RAM, ROM, flash memory, EPROM, or EEPROM.
 推論装置20の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 A part of the function of the inference device 20 may be realized by dedicated hardware, and a part may be realized by software or firmware.
 データ取得部21は、推論部22の推論に必要な各種情報を取得する。具体的には、データ取得部21は、空気調和機3の現在の空調負荷Va10及び負荷条件Va11の情報を空気調和機3から取得し、空気調和機3の設置環境における現在の気象情報Vwnをインターネットから取得する。データ取得部21は、取得した各種情報を推論部22に出力する。 The data acquisition unit 21 acquires various information necessary for the inference of the inference unit 22. Specifically, the data acquisition unit 21 acquires information on the current air conditioning load Va10 and load condition Va11 of the air conditioner 3 from the air conditioner 3, and obtains the current weather information Vwn in the installation environment of the air conditioner 3. Get from the internet. The data acquisition unit 21 outputs various acquired information to the inference unit 22.
 ここで、現在の空調負荷Va10は、例えば、現在の室内の温度を設定温度に近づけるために必要とされている空調能力である。空気調和機3では、制御装置33により、現在の空調負荷Va10に応じて圧縮機34の回転数、室外ファン35の回転数、及び室内ファン36の回転数といった負荷条件Va11が決定される。 Here, the current air conditioning load Va10 is, for example, the air conditioning capacity required to bring the current indoor temperature close to the set temperature. In the air conditioner 3, the control device 33 determines the load condition Va11 such as the rotation speed of the compressor 34, the rotation speed of the outdoor fan 35, and the rotation speed of the indoor fan 36 according to the current air conditioning load Va10.
 推論部22は、空気調和機3について予め学習装置10で生成された学習済モデルを利用して、気象情報Vwnに対して最適な空気調和機3の空調負荷を推論する。具体的には、学習済モデルに、データ取得部21で取得した現在の気象情報Vwnを含む各種情報が入力され、空気調和機3について最適な空調負荷が出力される。また推論部22は、推論により得た空調負荷に応じた最適な負荷条件Va21を空気調和機3へ送信する。 The inference unit 22 infers the optimum air conditioning load of the air conditioner 3 for the weather information Vwn by using the learned model generated in advance by the learning device 10 for the air conditioner 3. Specifically, various information including the current weather information Vwn acquired by the data acquisition unit 21 is input to the trained model, and the optimum air conditioning load is output for the air conditioner 3. Further, the inference unit 22 transmits the optimum load condition Va21 according to the air conditioning load obtained by the inference to the air conditioner 3.
 図4に示される例では、空気調和機3の外部にある機械学習システム1の学習装置10で学習した学習済モデルを用いて推論部22が空調負荷を推論し、推論した空調負荷に応じた最適な負荷条件Va21を空気調和機3へ出力する場合が示されている。ここで、機械学習システム1は、クラウドサーバ上に構築されたものでもよい。また例えば、空気調和機3は、外部の他の空気調和機から学習済モデルを取得し、この学習済モデルに基づいて推論を行う構成でもよい。ある空気調和機に関して空調負荷を学習した学習装置10を、その空気調和機とは別の空気調和機に適用し、適用された空気調和機において空調負荷を再学習して更新するようにしてもよい。なお、機械学習システム1は、空気調和機3に内蔵されたものでもよい。 In the example shown in FIG. 4, the inference unit 22 infers the air conditioning load using the learned model learned by the learning device 10 of the machine learning system 1 outside the air conditioner 3, and responds to the inferred air conditioning load. The case where the optimum load condition Va21 is output to the air conditioner 3 is shown. Here, the machine learning system 1 may be built on a cloud server. Further, for example, the air conditioner 3 may have a configuration in which a trained model is acquired from another external air conditioner and inference is performed based on the trained model. Even if the learning device 10 that has learned the air conditioning load for a certain air conditioner is applied to an air conditioner different from the air conditioner, and the air conditioning load is relearned and updated in the applied air conditioner. good. The machine learning system 1 may be built in the air conditioner 3.
 図5は、図4の推論装置20が行う推論処理のフローチャートである。図4及び図5を参照しつつ、推論装置20が行う学習処理について説明する。データ取得部21は、空気調和機3から現在の空調負荷Va10及び負荷条件Va11を取得し、インターネットから、空気調和機3の設置環境における現在の気象情報Vwnを取得する(ステップST201)。なお、現在の気象情報Vwnと現在の空調負荷Va10等とを取得するタイミングは、気象情報Vwnと空調負荷Va10とを関連づけて入力できれば厳密に同時でなくとも良い。データ取得部21は、これらの取得した情報を推論部22に出力する。推論部22は、予め学習装置10から取得されている、空気調和機3についての最新の学習済モデルに、データ取得部21から入力された現在の気象情報Vwnを含む各種情報を入力し、空調負荷を推論する(ステップST202)。推論部22は、推論により得た空調負荷に応じた最適な負荷条件Va21を空気調和機3に出力する(ステップST203)。最適な負荷条件Va21として、ユーザの感じ方が加味された、例えば、圧縮機34の回転数、室内ファン36の回転数、及び室外ファン35の回転数等が出力される。 FIG. 5 is a flowchart of inference processing performed by the inference device 20 of FIG. The learning process performed by the inference device 20 will be described with reference to FIGS. 4 and 5. The data acquisition unit 21 acquires the current air conditioning load Va10 and load condition Va11 from the air conditioner 3, and acquires the current weather information Vwn in the installation environment of the air conditioner 3 from the Internet (step ST201). The timing of acquiring the current weather information Vwn and the current air conditioning load Va10 or the like does not have to be exactly the same as long as the weather information Vwn and the air conditioning load Va10 can be input in association with each other. The data acquisition unit 21 outputs these acquired information to the inference unit 22. The inference unit 22 inputs various information including the current weather information Vwn input from the data acquisition unit 21 into the latest learned model of the air conditioner 3 acquired from the learning device 10 in advance, and air-conditions. Infer the load (step ST202). The inference unit 22 outputs the optimum load condition Va21 according to the air conditioning load obtained by the inference to the air conditioner 3 (step ST203). As the optimum load condition Va21, for example, the rotation speed of the compressor 34, the rotation speed of the indoor fan 36, the rotation speed of the outdoor fan 35, and the like are output in consideration of the user's feeling.
<空気調和機3の動作>
 以下、空気調和機3が自動運転制御で運転している場合において、機械学習システム1により空調負荷を最適化する場合の空気調和機3の動作について説明する。自動運転制御が選択されているとき、空気調和機3は、例えば室内温度と設定温度との温度差を小さくすることを優先して必要な空調負荷を決定する。具体的には、制御装置33により、圧縮機34の回転数及び室外ファン35の回転数が決定されるとともに、空気調和機3から吹き出す風の強さ、すなわち室内ファン36の回転数、及び気流の向き等が自動的に決定される。
<Operation of air conditioner 3>
Hereinafter, the operation of the air conditioner 3 when the air conditioning load is optimized by the machine learning system 1 when the air conditioner 3 is operated by the automatic operation control will be described. When automatic operation control is selected, the air conditioner 3 determines the required air conditioning load, for example, giving priority to reducing the temperature difference between the room temperature and the set temperature. Specifically, the control device 33 determines the rotation speed of the compressor 34 and the rotation speed of the outdoor fan 35, and the strength of the wind blown from the air conditioner 3, that is, the rotation speed of the indoor fan 36 and the air flow. The orientation of the air conditioner is automatically determined.
 空気調和機3は、自動運転制御で運転を開始する際に、推論装置20へ開始信号を出力する。空気調和機3は、まず、制御装置33において決定した空調負荷Va10及び負荷条件Va11を、開始信号を受信した推論装置20の要求に応じて推論装置20へ送信する。その後、空気調和機3は、推論装置20から最適な負荷条件Va21を受信し、受信した負荷条件Va21に応じて圧縮機34、室外ファン35及び室内ファン36の制御を行う。自動運転制御での運転中、空気調和機3は、制御装置33において空調負荷を決定するたび推論装置20へ情報を送信し、推論装置20から最適な負荷条件Va21を受信するという処理を繰り返す。自動運転制御での運転中にユーザによるリモコン39の操作が行われると、制御装置33は推論装置20へ終了信号を出力し、自動運転制御からユーザ操作制御へ移行する。ユーザ操作制御では、リモコン39を介して例えば設定温度、吹き出し気流の風向及び風の強さが設定可能となる。 The air conditioner 3 outputs a start signal to the inference device 20 when the operation is started by the automatic operation control. First, the air conditioner 3 transmits the air conditioning load Va10 and the load condition Va11 determined by the control device 33 to the inference device 20 in response to the request of the inference device 20 that has received the start signal. After that, the air conditioner 3 receives the optimum load condition Va21 from the inference device 20, and controls the compressor 34, the outdoor fan 35, and the indoor fan 36 according to the received load condition Va21. During the operation under the automatic operation control, the air conditioner 3 repeats the process of transmitting information to the inference device 20 every time the control device 33 determines the air conditioning load and receiving the optimum load condition Va21 from the inference device 20. When the user operates the remote controller 39 during the operation in the automatic operation control, the control device 33 outputs an end signal to the inference device 20, and shifts from the automatic operation control to the user operation control. In the user operation control, for example, the set temperature, the wind direction of the blown airflow, and the wind strength can be set via the remote controller 39.
 以上のように、実施の形態2の推論装置20は、空気調和機3の設置環境における現在の気象情報Vwnを取得するデータ取得部21と、学習済モデルを用いて、気象情報Vwnから空気調和機3の空調負荷を推論する推論部22と、を備えている。実施の形態2において、推論部22が使用する学習済モデルは、空気調和機3の運転に対するユーザ応答情報Vresと、空気調和機3の設置環境における運転時の気象情報Vwpとを含む学習用データから学習により生成されたものである。よって、実施の形態2の推論装置20においても、実施の形態1の学習装置10と同様の効果が得られる。 As described above, the inference device 20 of the second embodiment uses the data acquisition unit 21 for acquiring the current weather information Vwn in the installation environment of the air conditioner 3 and the trained model to perform air conditioning from the weather information Vwn. It is provided with an inference unit 22 for inferring the air conditioning load of the machine 3. In the second embodiment, the trained model used by the inference unit 22 is learning data including user response information Vres for the operation of the air conditioner 3 and weather information Vwp during operation in the installation environment of the air conditioner 3. It was generated by learning from. Therefore, the inference device 20 of the second embodiment has the same effect as the learning device 10 of the first embodiment.
 なお、図4に示される例では、学習装置10と推論装置20とをそれぞれ別個の装置として説明したが、学習装置10と推論装置20とを一つのコントローラで構成してもよい In the example shown in FIG. 4, the learning device 10 and the inference device 20 have been described as separate devices, but the learning device 10 and the inference device 20 may be configured by one controller.
実施の形態3.
 図6は、実施の形態3に係る機械学習システム1がインターネット及び空気調和機3と接続された状態の機能ブロック図である。実施の形態3において、機械学習システム1は、空調対象空間の室内環境条件Vroomを検出する人感センサ38aを有する空気調和機3に対して、室内環境条件Vroomを加味した空調負荷の学習及び予測が可能となっている。
Embodiment 3.
FIG. 6 is a functional block diagram of the machine learning system 1 according to the third embodiment connected to the Internet and the air conditioner 3. In the third embodiment, the machine learning system 1 learns and predicts the air conditioning load in consideration of the indoor environmental condition Volume with respect to the air conditioner 3 having the motion sensor 38a that detects the indoor environmental condition Volume of the air conditioning target space. Is possible.
 ここで、室内環境条件Vroomとは、空調対象空間の人員数、空間温度、空間湿度、空調対象空間の人を含む表面温度、及びこれらの変化量の少なくとも1つをいう。人感センサ38aは、例えば赤外線センサ等で構成されている。なお、人感センサ38aの代わりにエリアセンサが採用されてもよく、あるいは、人感センサ38aとエリアセンサとが併用されてもよい。 Here, the indoor environmental condition Volume means at least one of the number of persons in the air-conditioned space, the space temperature, the space humidity, the surface temperature including the people in the air-conditioned space, and the amount of change thereof. The motion sensor 38a is composed of, for example, an infrared sensor or the like. An area sensor may be adopted instead of the motion sensor 38a, or the motion sensor 38a and the area sensor may be used in combination.
<学習装置10の構成>
 学習装置10のデータ取得部11は、空気調和機3の過去の運転に関する情報を空気調和機3から取得し、その運転が行われているときの気象情報、すなわち過去の気象情報Vwpをインターネットから取得する。ここで、運転は、設定温度、室内機32から吹き出される風の強さ及び風向といった負荷条件の決定に用いられる設定で定義される。また、これらの設定が一定である期間が、その運転の長さである。データ取得部11は、取得した空気調和機3の過去の運転に関する情報及び運転時の気象情報Vwpから学習用データVLを作成し、モデル生成部12に出力する。
<Structure of learning device 10>
The data acquisition unit 11 of the learning device 10 acquires information on the past operation of the air conditioner 3 from the air conditioner 3, and obtains the weather information when the operation is being performed, that is, the past weather information Vwp from the Internet. get. Here, the operation is defined by the settings used for determining the load conditions such as the set temperature, the strength of the wind blown from the indoor unit 32, and the wind direction. Further, the period during which these settings are constant is the length of the operation. The data acquisition unit 11 creates learning data VL from the acquired information on the past operation of the air conditioner 3 and the weather information Vwp at the time of operation, and outputs the learning data VL to the model generation unit 12.
 ここで、空気調和機3の過去の運転に関する情報には、運転時に人感センサ38aによって得られる室内環境条件Vroomも含まれる。データ取得部11は、取得した空調負荷Va0の情報、負荷条件Va1の情報、ユーザ応答情報Vres、室内環境条件Vroom、及び運転時の気象情報Vwpから正規化等により学習用データVLを作成する。学習用データVLは、リモコン39を介して運転が変更されるごとに、複数作成される。 Here, the information on the past operation of the air conditioner 3 also includes the indoor environmental condition Volume obtained by the motion sensor 38a during operation. The data acquisition unit 11 creates learning data VL from the acquired air conditioning load Va0 information, load condition Va1 information, user response information Vres, indoor environment condition Room, and weather information Vwp during operation by normalization or the like. A plurality of learning data VLs are created each time the operation is changed via the remote controller 39.
 モデル生成部12は、データ取得部11から入力される学習用データVLに基づいて最適な空調負荷を学習し、学習済モデルを生成する。またモデル生成部12は、生成した学習済モデルをモデル記憶部13へ出力する。 The model generation unit 12 learns the optimum air conditioning load based on the learning data VL input from the data acquisition unit 11, and generates a trained model. Further, the model generation unit 12 outputs the generated learned model to the model storage unit 13.
 学習は、例えばニューラルネットワークにより、学習用データVLをいわゆる教師データとして用いることにより行われる。具体的には、ニューラルネットワークは、入力層に気象情報Vwp及び室内環境条件Vroomを入力して出力層から出力される結果が、ユーザ指令の直前の運転にユーザ応答情報Vresを適用した空調負荷に近づくように重みの値を調整する(図2参照)。上記のように、実施の形態3では、学習用データVLに、空気調和機3の設置環境における運転時の気象情報Vwp、及び運転に対するユーザ応答情報Vres、及び空調負荷に影響する室内環境条件Vroomが組み込まれている。よって、学習済モデルは、気象条件及び室内環境条件Vroomに対してユーザの感じ方が反映されたものとなっている。 Learning is performed by using the learning data VL as so-called teacher data, for example, by using a neural network. Specifically, the neural network inputs the weather information Vwp and the indoor environmental condition Room to the input layer, and the result output from the output layer is applied to the air conditioning load to which the user response information Vres is applied to the operation immediately before the user command. Adjust the weight values so that they are closer (see FIG. 2). As described above, in the third embodiment, the learning data VL includes the weather information Vwp during operation in the installation environment of the air conditioner 3, the user response information Vres for operation, and the indoor environmental condition Volume that affects the air conditioning load. Is built in. Therefore, the trained model reflects the user's feelings about the weather condition and the indoor environmental condition Bloom.
 図1に示されるように、モデル記憶部13には、上記のように生成された学習済モデルが、空気調和機3についての学習済モデルとして記憶される。モデル記憶部13に記憶された学習済モデルは、必要に応じてモデル生成部12により参照され、更新することが可能である。 As shown in FIG. 1, the trained model generated as described above is stored in the model storage unit 13 as a trained model for the air conditioner 3. The trained model stored in the model storage unit 13 can be referred to and updated by the model generation unit 12 as needed.
<推論装置20の構成>
 推論装置20のデータ取得部21は、空気調和機3の現在の運転に関する情報を空気調和機3から取得し、空気調和機3の設置環境における現在の気象情報Vwnをインターネットから取得する。ここで、空気調和機3の現在の運転に関する情報には、現在の室内環境条件Vroomが含まれる。データ取得部21は、取得した現在の空調負荷Va0及び負荷条件Va1の情報、現在の室内環境条件Vroom、及び気象情報Vwnを推論部22へ出力する。
<Configuration of inference device 20>
The data acquisition unit 21 of the inference device 20 acquires information on the current operation of the air conditioner 3 from the air conditioner 3, and acquires the current weather information Vwn in the installation environment of the air conditioner 3 from the Internet. Here, the information regarding the current operation of the air conditioner 3 includes the current indoor environmental condition Room. The data acquisition unit 21 outputs the acquired information on the current air conditioning load Va0 and the load condition Va1, the current indoor environmental condition Room, and the weather information Vwn to the inference unit 22.
 推論部22は、空気調和機3について予め学習装置10で生成された学習済モデルを利用して、気象条件及び室内環境条件Vroomに対して最適な空気調和機3の空調負荷を推論する。具体的には、学習済モデルに、データ取得部21で取得した現在の気象情報Vwn及び現在の室内環境条件Vroomを含む情報が入力され、空気調和機3について最適な空調負荷が推論される。推論部22は、推論により得た空調負荷に応じた負荷条件Va21を空気調和機3へ送信する。 The inference unit 22 infers the optimum air conditioning load of the air conditioner 3 for the weather condition and the indoor environmental condition Room by using the learned model generated in advance by the learning device 10 for the air conditioner 3. Specifically, information including the current weather information Vwn and the current indoor environmental condition Bloom acquired by the data acquisition unit 21 is input to the trained model, and the optimum air conditioning load for the air conditioner 3 is inferred. The inference unit 22 transmits the load condition Va21 according to the air conditioning load obtained by the inference to the air conditioner 3.
 以上のように、空気調和機3は、空調対象空間の室内環境条件Vroomを検出するセンサを38a備え、学習用データVLは、空気調和機3の人感センサ38aにより検出された室内環境条件Vroomを含むものである。また、室内環境条件Vroomは、空調対象空間の人員数、空間温度、空間湿度、及び空調対象空間の人を含む表面温度のうち少なくとも1つを含む。 As described above, the air conditioner 3 includes a sensor 38a that detects the indoor environmental condition Volume of the air-conditioned space, and the learning data VL is the indoor environmental condition Volume detected by the motion sensor 38a of the air conditioner 3. Is included. Further, the indoor environmental condition Volume includes at least one of the number of persons in the air-conditioned space, the space temperature, the space humidity, and the surface temperature including the person in the air-conditioned space.
 これにより、空気調和機3の設置環境における気象情報Vwn、Vwpとユーザが居る室内環境条件Vroomとを組み合わせることで学習済モデルの充実化が図れ、より室内環境に応じた高精度な空調負荷予測が可能となる。 As a result, the trained model can be enhanced by combining the weather information Vwn and Vwp in the installation environment of the air conditioner 3 with the indoor environment condition Room in which the user is present, and more accurate air conditioning load prediction according to the indoor environment. Is possible.
実施の形態4.
 図7は、実施の形態4に係る機械学習システム1の機能ブロック図である。実施の形態4において、機械学習システム1は、室内のユーザを検出するユーザ検出装置を備えた空気調和機3に対して、検出されたユーザに応じた空調負荷の学習及び予測が可能となっている。
Embodiment 4.
FIG. 7 is a functional block diagram of the machine learning system 1 according to the fourth embodiment. In the fourth embodiment, the machine learning system 1 can learn and predict the air conditioning load according to the detected user with respect to the air conditioner 3 provided with the user detection device that detects the user in the room. There is.
 ここで、ユーザ検出装置は、室内機32又は室内に設置されたユーザ検出部38bと、制御装置33とにより構成される。ユーザ検出部38bは、例えば、人感センサ、音声認識装置、携帯端末、及びウェアラブル端末の少なくとも1つを備えたものであり、検出情報は制御装置33へ送信される。このような構成により、室内空間の画像解析、声による音声認識、あるいは、端末から送信される情報の解析といった手法により、ユーザの識別が可能である。そして、ユーザは識別のためのカード等を持ち歩く必要が無く、通常所持している物で所持しているだけで、自分に合った空調が得られる。 Here, the user detection device is composed of the indoor unit 32 or the user detection unit 38b installed in the room, and the control device 33. The user detection unit 38b includes, for example, at least one of a motion sensor, a voice recognition device, a mobile terminal, and a wearable terminal, and the detection information is transmitted to the control device 33. With such a configuration, the user can be identified by a method such as image analysis of the indoor space, voice recognition by voice, or analysis of information transmitted from the terminal. Then, the user does not need to carry a card or the like for identification, and the air conditioner suitable for himself / herself can be obtained only by carrying it with what he / she usually has.
 空気調和機3の制御装置33には、複数のユーザに対応したユーザ情報Vuが予め登録されており、制御装置33に対してユーザ情報Vuの追加及び削除が可能である。ユーザ情報Vuは、ユーザを特定する情報である。制御装置33は、ユーザ検出部38bの検出情報に基づいて室内に居る一人又は二人以上のユーザを識別する機能を有しており、室内に居るユーザに対応するユーザ情報Vuを出力する。具体的には、制御装置33は、空気調和機3の運転時、室内に居るユーザのユーザ情報Vuを運転に関する情報の一つとして記憶しておき、外部からの要求に応じて送信する。なお、ユーザ検出装置は、室内に居る一人又は二人以上のユーザを識別できれば良く、ユーザ検出部38b単独で構成されてもよい。 User information Vu corresponding to a plurality of users is registered in advance in the control device 33 of the air conditioner 3, and user information Vu can be added to and deleted from the control device 33. User information Vu is information that identifies a user. The control device 33 has a function of identifying one or more users in the room based on the detection information of the user detection unit 38b, and outputs the user information Vu corresponding to the users in the room. Specifically, when the air conditioner 3 is operated, the control device 33 stores the user information Vu of the user in the room as one of the information related to the operation, and transmits the user information Vu in response to an external request. The user detection device may be configured by the user detection unit 38b alone, as long as it can identify one or two or more users in the room.
<学習装置10の構成>
 学習装置10のデータ取得部11は、空気調和機3の過去の運転に関する情報を空気調和機3から取得し、その運転が行われているときの気象情報、すなわち過去の気象情報Vwpをインターネットから取得する。ここで、運転は、設定温度、室内機32から吹き出される風の強さ及び風向といった負荷条件の決定に用いられる設定で定義される。また、これらの設定が一定である期間が、その運転の長さである。データ取得部11は、取得した空気調和機3の過去の運転に関する情報及び運転時の気象情報Vwpから学習用データVLを作成し、モデル生成部12に出力する。
<Structure of learning device 10>
The data acquisition unit 11 of the learning device 10 acquires information on the past operation of the air conditioner 3 from the air conditioner 3, and obtains the weather information when the operation is being performed, that is, the past weather information Vwp from the Internet. get. Here, the operation is defined by the settings used for determining the load conditions such as the set temperature, the strength of the wind blown from the indoor unit 32, and the wind direction. Further, the period during which these settings are constant is the length of the operation. The data acquisition unit 11 creates learning data VL from the acquired information on the past operation of the air conditioner 3 and the weather information Vwp at the time of operation, and outputs the learning data VL to the model generation unit 12.
 ここで、空気調和機3の過去の運転に関する情報には、運転時の空調負荷Va0の情報、運転時の負荷条件Va1の情報、及びユーザ応答情報Vresの他、運転時にユーザ検出装置により検出されたユーザの情報すなわちユーザ情報Vuが含まれる。機械学習システム1には、複数のユーザ情報Vuが登録可能である。データ取得部11は、取得した空調負荷Va0の情報、負荷条件Va1の情報、気象情報Vwp、ユーザ応答情報Vresから正規化等により学習用データVLを作成する。学習用データVLは、リモコン39を介して運転が変更されるごとに、複数作成される。データ取得部11は、取得したユーザ情報Vuに基づいて複数の学習用データVLをユーザごとに分けてモデル生成部12へ出力する。 Here, the information regarding the past operation of the air conditioner 3 includes information on the air conditioning load Va0 during operation, information on the load condition Va1 during operation, user response information Vres, and is detected by the user detection device during operation. The information of the user, that is, the user information Vu is included. A plurality of user information Vu can be registered in the machine learning system 1. The data acquisition unit 11 creates learning data VL from the acquired air conditioning load Va0 information, load condition Va1 information, weather information Vwp, and user response information Vres by normalization or the like. A plurality of learning data VLs are created each time the operation is changed via the remote controller 39. The data acquisition unit 11 divides a plurality of learning data VL for each user based on the acquired user information Vu and outputs the plurality of learning data VL to the model generation unit 12.
 モデル生成部12は、データ取得部11から入力される各ユーザの学習用データVLa、VLb、VLcについて最適な空調負荷を学習し、各ユーザについて学習済モデルA、B、Cを生成する。またモデル生成部12は、生成した各学習済モデルをモデル記憶部13へ出力する。 The model generation unit 12 learns the optimum air conditioning load for the learning data VLa, VLb, and VLc of each user input from the data acquisition unit 11, and generates the trained models A, B, and C for each user. Further, the model generation unit 12 outputs each generated model to the model storage unit 13.
 図7に示されるように、モデル記憶部13には、上記のように三人のユーザについて生成された学習済モデルA、B、Cが、空気調和機3について、学習済モデルとして記憶される。モデル記憶部13に記憶された各学習済モデルは、必要に応じてモデル生成部12により参照され、更新することが可能である。 As shown in FIG. 7, in the model storage unit 13, the trained models A, B, and C generated for the three users as described above are stored as trained models for the air conditioner 3. .. Each trained model stored in the model storage unit 13 can be referred to and updated by the model generation unit 12 as needed.
<推論装置20の構成>
 推論装置20のデータ取得部21は、空気調和機3の現在の運転に関する情報を空気調和機3から取得し、空気調和機3の設置環境における現在の気象情報Vwnをインターネットから取得する。ここで、空気調和機3において現在行われている運転に関する情報には、現在の空調負荷Va10の情報、及び現在の負荷条件Va1の情報の他、在室中のユーザの情報が含まれる。データ取得部21は、取得した空調負荷Va10の情報、負荷条件Va11の情報、ユーザ情報Vu及び気象情報Vwnを推論部22へ出力する。
<Configuration of inference device 20>
The data acquisition unit 21 of the inference device 20 acquires information on the current operation of the air conditioner 3 from the air conditioner 3, and acquires the current weather information Vwn in the installation environment of the air conditioner 3 from the Internet. Here, the information regarding the operation currently being performed in the air conditioner 3 includes information on the current air conditioning load Va10, information on the current load condition Va1, and information on the user in the room. The data acquisition unit 21 outputs the acquired air conditioning load Va10 information, load condition Va11 information, user information Vu, and weather information Vwn to the inference unit 22.
 推論部22は、空気調和機3についてユーザ別に予め学習装置10で生成された学習済モデルを利用して、気象条件及びユーザに対して最適な空気調和機3の空調負荷を推論する。具体的には、データ取得部21から入力されたユーザ情報Vuに対応する学習済モデルに、現在の気象情報Vwnを含む情報が入力され、空気調和機3について、在室中のユーザに対して最適な空調負荷が出力される。推論部22は、推論により得た空調負荷に応じた負荷条件Va21を空気調和機3へ送信する。 The inference unit 22 infers the weather conditions and the optimum air conditioning load of the air conditioner 3 for the user by using the learned model generated in advance by the learning device 10 for each user for the air conditioner 3. Specifically, information including the current weather information Vwn is input to the learned model corresponding to the user information Vu input from the data acquisition unit 21, and the air conditioner 3 is used for the user in the room. The optimum air conditioning load is output. The inference unit 22 transmits the load condition Va21 according to the air conditioning load obtained by the inference to the air conditioner 3.
 以上のように、実施の形態4の学習装置10において、データ取得部11は、ユーザ情報Vuを取得し、モデル生成部12は、ユーザ情報Vuに応じて、学習済モデルを生成する。また、実施の形態4の推論装置20において、データ取得部21は、ユーザ情報Vuを取得し、推論部22は、データ取得部21が取得したユーザ情報Vuに対応する学習済モデルを用いて、空気調和機3の空調負荷を推論する。 As described above, in the learning device 10 of the fourth embodiment, the data acquisition unit 11 acquires the user information Vu, and the model generation unit 12 generates the learned model according to the user information Vu. Further, in the inference device 20 of the fourth embodiment, the data acquisition unit 21 acquires the user information Vu, and the inference unit 22 uses the learned model corresponding to the user information Vu acquired by the data acquisition unit 21. Infer the air conditioning load of the air conditioner 3.
 これにより、空気調和機3のユーザに応じて空調負荷の予測ができ、寒い又は暑いといった感じ方、及び服装等が異なるユーザ間において、各人に適した空調を行うことができる。 As a result, the air conditioning load can be predicted according to the user of the air conditioner 3, and air conditioning suitable for each person can be performed among users who feel cold or hot and who have different clothes.
 なお、実施の形態3と実施の形態4とは組み合わせてもよい。具体的には、学習装置10のモデル生成部12は、空気調和機3において検出された室内環境条件Vroomを含む学習用データVLから、ユーザ情報Vuに応じて、ユーザごとに学習済モデルを生成してもよい。また、推論装置20の推論部22は、空気調和機3において検出された室内環境条件Vroomを含む学習用データVLから生成された学習済モデルを用いて、ユーザ情報Vuに応じた空調負荷を推論する。これにより、ユーザの感じ方に合った運転が、室内の人数等といった室内環境条件Vroomに合わせてさらに調整され、現在のそのユーザにより適した空調負荷が、機械学習システム1により空気調和機3へ提供可能となる。また、実施の形態3と実施の形態4とが組み合わされる構成において、同一のセンサにより、室内環境条件Vroom及び室内のユーザ情報Vuの双方を検出するようにしてもよい。 Note that the third embodiment and the fourth embodiment may be combined. Specifically, the model generation unit 12 of the learning device 10 generates a trained model for each user according to the user information Vu from the learning data VL including the indoor environmental condition Bloom detected by the air conditioner 3. You may. Further, the inference unit 22 of the inference device 20 infers the air conditioning load according to the user information Vu by using the learned model generated from the learning data VL including the indoor environmental condition Bloom detected in the air conditioner 3. do. As a result, the operation that suits the user's feeling is further adjusted according to the indoor environmental conditions such as the number of people in the room, and the current air conditioning load that is more suitable for the user is transferred to the air conditioner 3 by the machine learning system 1. It will be possible to provide. Further, in the configuration in which the third embodiment and the fourth embodiment are combined, both the indoor environmental condition Room and the indoor user information Vu may be detected by the same sensor.
 なお、各実施の形態を組み合わせたり、各実施の形態を適宜、変形又は省略したりすることが可能である。本開示の実施の形態は上記実施の形態に限定されず、種々の変更を行うことができる。例えば、上記の実施の形態では、学習装置10及び推論装置20が、インターネットを介して気象情報Vwp、Vwnを取得するように構成されていたが、特にこのような構成に限定されない。例えば、空気調和機3に、運転時の気象情報Vwp及び現在の気象情報Vwnが記憶されている場合には、学習装置10は空気調和機3から運転時の気象情報Vwpを取得し、推論装置20は空気調和機3から現在の気象情報Vwnを取得すればよい。気象情報Vwp、Vwnとして外気温度が用いられる場合、空気調和機3の室外機31に外気温度を検出する外気温度センサ等を設け、空気調和機3は運転時に、負荷条件とともに気象条件として外気温度センサで検出された外気温度を記憶するようにしてもよい。 It is possible to combine each embodiment and appropriately modify or omit each embodiment. The embodiments of the present disclosure are not limited to the above embodiments, and various modifications can be made. For example, in the above embodiment, the learning device 10 and the inference device 20 are configured to acquire the weather information Vwp and Vwn via the Internet, but the configuration is not particularly limited to such a configuration. For example, when the air conditioner 3 stores the weather information Vwp during operation and the current weather information Vwn, the learning device 10 acquires the weather information Vww during operation from the air conditioner 3 and is an inference device. 20 may acquire the current weather information Vwn from the air conditioner 3. When the outside air temperature is used as the weather information Vwp and Vwn, the outdoor unit 31 of the air conditioner 3 is provided with an outside air temperature sensor or the like for detecting the outside air temperature. The outside air temperature detected by the sensor may be stored.
 また、学習装置10は、室内環境条件Vroomを学習に使用するか否かの判断を、空気調和機3の機器情報に基づいて行うように構成されてもよい。また学習の手法は、上記のニューラルネットワークモデルに限定されず、既知の手法で代用可能である。 Further, the learning device 10 may be configured to determine whether or not to use the indoor environmental condition Room for learning based on the device information of the air conditioner 3. Further, the learning method is not limited to the above neural network model, and a known method can be used instead.
 1 機械学習システム、3 空気調和機、10 学習装置、11 データ取得部、12 モデル生成部、13 モデル記憶部、20 推論装置、21 データ取得部、22 推論部、31 室外機、32 室内機、33 制御装置、34 圧縮機、35 室外ファン、36 室内ファン、37 室内温度センサ、38a 人感センサ、38b ユーザ検出部、39 リモコン、Va1、Va11、Va21 負荷条件、VL、VLa、VLb、VLc 学習用データ、Va0、Va10 空調負荷、Vres ユーザ応答情報、Vroom 室内環境条件、Vu ユーザ情報、Vwn、Vwp 気象情報。 1 machine learning system, 3 air conditioner, 10 learning device, 11 data acquisition unit, 12 model generation unit, 13 model storage unit, 20 inference device, 21 data acquisition unit, 22 inference unit, 31 outdoor unit, 32 indoor unit, 33 control device, 34 compressor, 35 outdoor fan, 36 indoor fan, 37 indoor temperature sensor, 38a human sensor, 38b user detector, 39 remote controller, Va1, Va11, Va21 load condition, VL, VLa, VLb, VLc learning Data, Va0, Va10 air conditioning load, Vres user response information, Room indoor environmental conditions, Vu user information, Vwn, Vwp weather information.

Claims (13)

  1.  空気調和機の空調負荷の情報と、前記空調負荷での前記空気調和機の運転に対してユーザが入力したユーザ指令から得られるユーザ応答情報と、前記空気調和機の設置環境における前記運転時の気象情報と、を取得するデータ取得部と、
     前記空調負荷の情報と前記ユーザ応答情報と前記気象情報とを含む学習用データを用いて、前記気象情報及び前記ユーザ応答情報から、前記空気調和機の空調負荷を推論するための学習済モデルを生成するモデル生成部と、
     を備えた学習装置。
    Information on the air conditioning load of the air conditioner, user response information obtained from a user command input by the user for the operation of the air conditioner under the air conditioner load, and information on the operation of the air conditioner in the installation environment of the air conditioner. Meteorological information, data acquisition department to acquire, and
    Using the learning data including the air conditioning load information, the user response information, and the weather information, a trained model for inferring the air conditioning load of the air conditioner from the weather information and the user response information is obtained. The model generator to generate and
    A learning device equipped with.
  2.  空気調和機の設置環境における現在の気象情報を取得するデータ取得部と、
     前記空気調和機の空調負荷の情報と、前記空調負荷での前記空気調和機の運転に対してユーザが入力したユーザ指令から得られるユーザ応答情報と、前記空気調和機の設置環境における前記運転時の気象情報と、を含む学習用データから学習により生成された学習済モデルを用いて、前記データ取得部により取得された現在の気象情報から前記空気調和機の空調負荷を推論する推論部と、
     を備えた推論装置。
    The data acquisition unit that acquires the current weather information in the installation environment of the air conditioner,
    Information on the air conditioning load of the air conditioner, user response information obtained from a user command input by the user for the operation of the air conditioner under the air conditioning load, and the operation of the air conditioner in the installation environment of the air conditioner. The inference unit that infers the air conditioning load of the air conditioner from the current weather information acquired by the data acquisition unit using the trained model generated by learning from the training data including the weather information of the above.
    Inference device equipped with.
  3.  前記気象情報は、前記空気調和機の設置環境における温度、湿度及び天候の条件、前記各条件の変化状況、並びに、前記各条件の予測のうち少なくとも1つを含む
     請求項1に記載の学習装置、又は請求項2に記載の推論装置。
    The learning device according to claim 1, wherein the weather information includes at least one of temperature, humidity, and weather conditions in the installation environment of the air conditioner, a change state of each of the conditions, and a prediction of each of the conditions. , Or the inference device according to claim 2.
  4.  前記ユーザ応答情報は、前記空気調和機の前記運転の開始から停止までの時間、停止から運転開始までの時間、運転モードの選択結果、前記運転モードの変更までの時間、設定温度を変更するときの変更までの時間、設定温度の変更幅、及び設定温度のうち少なくとも1つを含む
     請求項1に記載の学習装置、又は請求項2に記載の推論装置。
    The user response information includes the time from the start to the stop of the operation of the air conditioner, the time from the stop to the start of the operation, the selection result of the operation mode, the time until the change of the operation mode, and the set temperature. The learning device according to claim 1, or the inference device according to claim 2, which includes at least one of the time until the change, the change width of the set temperature, and the set temperature.
  5.  前記空気調和機は、空調対象空間の室内環境条件を検出するセンサを備え、
     前記学習用データは、前記空気調和機の前記センサにより検出された前記室内環境条件を含むものである
     請求項1に記載の学習装置、又は請求項2に記載の推論装置。
    The air conditioner includes a sensor that detects the indoor environmental conditions of the air-conditioned space.
    The learning device according to claim 1, or the inference device according to claim 2, wherein the learning data includes the indoor environmental conditions detected by the sensor of the air conditioner.
  6.  前記室内環境条件は、前記空調対象空間の人員数、空間温度、空間湿度、及び前記空調対象空間の人を含む表面温度のうち少なくとも1つを含む
     請求項5に記載の学習装置、又は請求項5に記載の推論装置。
    The learning device according to claim 5, wherein the indoor environmental condition includes at least one of the number of persons, the space temperature, the space humidity, and the surface temperature including the person in the air-conditioned space. The inference device according to 5.
  7.  前記データ取得部は、ユーザを特定する情報であるユーザ情報を取得し、
     前記モデル生成部は、前記ユーザ情報に応じて、前記学習済モデルを生成する
     請求項1に記載の学習装置。
    The data acquisition unit acquires user information, which is information that identifies the user, and obtains user information.
    The learning device according to claim 1, wherein the model generation unit generates the trained model according to the user information.
  8.  前記データ取得部は、ユーザを特定する情報であるユーザ情報を取得し、
     前記推論部は、前記データ取得部が取得した前記ユーザ情報に対応する前記学習済モデルを用いて、前記空気調和機の空調負荷を推論する
     請求項2に記載の推論装置。
    The data acquisition unit acquires user information, which is information that identifies the user, and obtains user information.
    The inference device according to claim 2, wherein the inference unit infers the air conditioning load of the air conditioner by using the learned model corresponding to the user information acquired by the data acquisition unit.
  9.  前記空気調和機は、空調対象空間のユーザを検出するユーザ検出装置を備え、
     前記ユーザ検出装置は、人感センサ、音声認識装置、携帯端末、及びウェアラブル端末の少なくとも1つを有し、検出した前記ユーザに対応する前記ユーザ情報を出力する
     請求項7に記載の学習装置、又は請求項8に記載の推論装置。
    The air conditioner includes a user detection device that detects a user in the air-conditioned space.
    The learning device according to claim 7, wherein the user detection device has at least one of a motion sensor, a voice recognition device, a mobile terminal, and a wearable terminal, and outputs the user information corresponding to the detected user. Alternatively, the inference device according to claim 8.
  10.  前記空気調和機は、空調対象空間の室内環境条件を検出するセンサを備え、
     前記学習用データは、前記空気調和機の前記センサにより検出された前記室内環境条件を含むものであり、
     前記データ取得部は、ユーザ情報を取得し、
     前記モデル生成部は、前記ユーザ情報に応じて、前記学習済モデルを生成する
     請求項1に記載の学習装置。
    The air conditioner includes a sensor that detects the indoor environmental conditions of the air-conditioned space.
    The learning data includes the indoor environmental conditions detected by the sensor of the air conditioner.
    The data acquisition unit acquires user information and
    The learning device according to claim 1, wherein the model generation unit generates the trained model according to the user information.
  11.  前記空気調和機は、空調対象空間の室内環境条件を検出するセンサを備え、
     前記学習用データは、前記空気調和機の前記センサにより検出された前記室内環境条件を含むものであり、
     前記データ取得部は、ユーザ情報を取得し、
     前記推論部は、前記データ取得部が取得した前記ユーザ情報に対応する前記学習済モデルを用いて、前記空気調和機の空調負荷を推論する
     請求項2に記載の推論装置。
    The air conditioner includes a sensor that detects the indoor environmental conditions of the air-conditioned space.
    The learning data includes the indoor environmental conditions detected by the sensor of the air conditioner.
    The data acquisition unit acquires user information and
    The inference device according to claim 2, wherein the inference unit infers the air conditioning load of the air conditioner by using the learned model corresponding to the user information acquired by the data acquisition unit.
  12.  圧縮機と、
     室外ファンと、
     室内ファンと、
     請求項2に記載の推論装置と、
     前記推論装置により推論された空調負荷に応じて、前記圧縮機の回転数、前記室外ファンの回転数、及び前記室内ファンの回転数の少なくとも一つを制御する制御装置と、
     を備えた空気調和機。
    With a compressor,
    With an outdoor fan
    With an indoor fan
    The inference device according to claim 2 and
    A control device that controls at least one of the rotation speed of the compressor, the rotation speed of the outdoor fan, and the rotation speed of the indoor fan according to the air conditioning load inferred by the inference device.
    Air conditioner equipped with.
  13.  請求項1に記載の学習装置を備えた
     請求項12に記載の空気調和機。
    The air conditioner according to claim 12, further comprising the learning device according to claim 1.
PCT/JP2020/009746 2020-03-06 2020-03-06 Learning device, inference device, and air conditioner WO2021176700A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009746 WO2021176700A1 (en) 2020-03-06 2020-03-06 Learning device, inference device, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009746 WO2021176700A1 (en) 2020-03-06 2020-03-06 Learning device, inference device, and air conditioner

Publications (1)

Publication Number Publication Date
WO2021176700A1 true WO2021176700A1 (en) 2021-09-10

Family

ID=77613954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009746 WO2021176700A1 (en) 2020-03-06 2020-03-06 Learning device, inference device, and air conditioner

Country Status (1)

Country Link
WO (1) WO2021176700A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100940A (en) * 1992-10-23 1996-04-16 Matsushita Electric Ind Co Ltd Load estimating device for air-conditioning machine
JP2010091228A (en) * 2008-10-10 2010-04-22 Panasonic Corp Air conditioner
CN105910225A (en) * 2016-04-18 2016-08-31 浙江大学 Air conditioner load control system and method based on personnel information detection
WO2018096608A1 (en) * 2016-11-24 2018-05-31 三菱電機株式会社 Air conditioning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100940A (en) * 1992-10-23 1996-04-16 Matsushita Electric Ind Co Ltd Load estimating device for air-conditioning machine
JP2010091228A (en) * 2008-10-10 2010-04-22 Panasonic Corp Air conditioner
CN105910225A (en) * 2016-04-18 2016-08-31 浙江大学 Air conditioner load control system and method based on personnel information detection
WO2018096608A1 (en) * 2016-11-24 2018-05-31 三菱電機株式会社 Air conditioning system

Similar Documents

Publication Publication Date Title
US11480359B2 (en) Air-conditioning control device
EP3683513B1 (en) Drowsiness estimation device
EP3680567B1 (en) Concentration estimation device
EP3029389B1 (en) Controlling system for environmental comfort degree and controlling method of the controlling system
CN106322656B (en) A kind of air conditioning control method and server and air-conditioning system
WO2020075824A1 (en) Air conditioner, data transmission method, and air conditioning system
CN112443954B (en) Control method of air conditioner, air conditioner and computer readable storage medium
KR20210100355A (en) Air conditioner and method for controlling for the same
JP2020175749A (en) Temperature environment adjusting system, temperature preference estimating system, and temperature preference estimating program
JPH09105545A (en) Air-conditioning device
WO2021176700A1 (en) Learning device, inference device, and air conditioner
JP7305041B2 (en) Information processing equipment and air conditioning system
JP2020144555A (en) Control system of equipment
JP3314137B2 (en) Control device for air conditioner
JP3564583B2 (en) Control device for air conditioner
JPH07198186A (en) Cooling/heating switching device for air conditioner
JP2673394B2 (en) Air conditioner controller
JP7049524B2 (en) Air conditioner and health care assistance system
CN114322276A (en) Non-wind-sensation control method and device, storage medium and air conditioner
WO2022168307A1 (en) Air-conditioning control system and air-conditioning control system program
JP2014231980A (en) Energy saving system in light of comfortability
JP2022094505A (en) Air-conditioning system
JP7407915B2 (en) Information processing equipment and air conditioning systems
JP2020186826A (en) Air-conditioning control system and program
JPH0765794B2 (en) Air conditioning control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP