WO2021176665A1 - Surgery support system, surgery support method, and program - Google Patents

Surgery support system, surgery support method, and program Download PDF

Info

Publication number
WO2021176665A1
WO2021176665A1 PCT/JP2020/009495 JP2020009495W WO2021176665A1 WO 2021176665 A1 WO2021176665 A1 WO 2021176665A1 JP 2020009495 W JP2020009495 W JP 2020009495W WO 2021176665 A1 WO2021176665 A1 WO 2021176665A1
Authority
WO
WIPO (PCT)
Prior art keywords
support system
polyp
organ
surgical
surgery
Prior art date
Application number
PCT/JP2020/009495
Other languages
French (fr)
Japanese (ja)
Inventor
耀子 鎌戸
恵令奈 下地
翔平 辺見
久保 允則
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2020/009495 priority Critical patent/WO2021176665A1/en
Publication of WO2021176665A1 publication Critical patent/WO2021176665A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis

Definitions

  • the disclosure of this specification relates to a surgery support system, a surgery support method, and a program.
  • Endoscopy is an examination method that is inserted into luminal organs such as the esophagus, stomach, large intestine, trachea, and bronchi, and the inside of the lumen is observed using images obtained by endoscopy.
  • Gender has come to be widely recognized.
  • the surface structure of the colon polyp indicates whether the colon polyp is a tumor or a non-tumor, and if it is a tumor, It is possible to classify whether it is a benign tumor or a malignant tumor.
  • the inside of the lumen can be directly observed, so that the lesion can be detected and treated at an early stage.
  • an object of one aspect of the present invention is to provide a technique for presenting an appropriate surgical plan to a doctor during endoscopy.
  • the surgical support system is based on the image captured by the imaging unit of the endoscope in the lumen organ of the patient and the spatial arrangement information of the tip of the insertion portion of the endoscope.
  • the model-creating unit that creates an organ model of the luminal organ, and the polyp that is the target of the surgery among the polyps in the luminal organ identified from the image, at least based on the constraints of surgery. It is provided with an operation plan creation unit that creates an operation plan including target polyp information for specifying a position on an organ model and updates the operation plan in accordance with the update of the constraint condition during the operation.
  • the surgical support method is based on an image captured by an imaging unit of an endoscope in a patient's luminal organ and spatial arrangement information at the tip of the insertion portion of the endoscope. , An organ model of the luminal organ of the patient, and the organ of the polyp to be operated on among the polyps in the luminal organ identified from the image, at least based on surgical constraints.
  • a surgical plan including target polyp information for specifying a position on a model is created, and the surgical plan is updated as the constraint conditions are updated during the surgery.
  • the program according to one aspect of the present invention is based on the image captured by the imaging unit of the endoscope in the tract organ of the patient and the spatial arrangement information of the tip of the insertion portion of the endoscope.
  • An organ model of the luminal organ of the patient is created, and on the organ model of the polyp to be operated on among the polyps in the luminal organ identified from the image, at least based on the surgical constraints.
  • An operation plan including the target polyp information for specifying the position in the operation plan is created, and a process of updating the operation plan is executed in accordance with the update of the constraint condition during the operation.
  • an appropriate surgical plan can be presented to the doctor during the endoscopy.
  • FIG. 1 is a diagram illustrating the configuration of the surgery support system according to one embodiment.
  • FIG. 2 is a block diagram illustrating the configuration of the surgery support system according to the embodiment.
  • the surgery support system 1 shown in FIGS. 1 and 2 is a system that creates a surgery plan in consideration of the constraints of surgery and presents it to a doctor during endoscopy of the luminal organ of patient Pa.
  • the configuration of the surgery support system 1 will be described with reference to FIGS. 1 and 2.
  • the surgery support system 1 includes an endoscope 10, an image processing device 20, a light source device 30, a surgery support device 40, a display device 50, a magnetic field generator 60, and an input device 70. It has.
  • the endoscope 10 is not particularly limited, but is, for example, a flexible endoscope for the large intestine.
  • colonoscopy is performed using a flexible endoscope will be described as an example, but the scope of application of the surgical support system 1 is not limited to colonoscopy. It can also be applied to endoscopy of other luminal organs such as the esophagus and stomach.
  • the endoscopy may be performed not only by a flexible endoscope but also by a rigid endoscope. good.
  • the endoscope 10 is provided at an operation unit operated by a doctor, a flexible insertion portion inserted into a lumen, a universal cord extending from the operation portion, and an end portion of the universal cord. It includes a connector portion that is detachably connected to the processing device 20 and the light source device 30.
  • the doctor can bend the insertion portion in an arbitrary direction by operating the operation portion, whereby the inside of the luminal organ can be freely observed by the image captured by the image sensor 11.
  • the image sensor 11 is, for example, a CCD (Charge Coupled Device) image sensor, a CMOS (Complementary MOS) image sensor, or the like, and is an example of an image pickup unit of the surgery support system 1.
  • the image sensor 11 may be provided in the endoscope 10.
  • the image sensor 11 may be provided, for example, at the tip of the insertion portion, or may be provided on the base end side of the insertion portion, that is, near the operation portion.
  • a magnetic sensor 12 is further provided at the insertion portion of the endoscope 10, and the signal line from the magnetic sensor 12 is connected to the surgery support device 40.
  • the magnetic sensor 12 is arranged near the tip of the insertion portion, and detects the position and orientation of the tip of the insertion portion, that is, the spatial arrangement of the tip of the insertion portion by detecting the magnetic field generated by the magnetic field generator 60. ..
  • the magnetic sensor 12 is, for example, a 6-axis sensor composed of two cylindrical coils whose central axes are orthogonal to each other, detects the position coordinates of the tip of the insertion portion and the Euler angles, and outputs them to the surgical support device 40.
  • FIGS. 1 and 2 show an example in which the magnetic field generator 60 generates a predetermined magnetic field and the magnetic sensor 12 provided in the endoscope 10 detects the magnetic field generated by the magnetic field generator 60.
  • a magnetic field generator is provided in the endoscope 10, and the magnetic field generated by the endoscope 10 is detected by a magnetic sensor placed at a predetermined position to detect the spatial arrangement of the tip of the insertion portion of the endoscope 10. You may.
  • the image processing device 20 is a video processor that processes an image captured by the endoscope 10.
  • the image processing device 20 converts, for example, a signal from the endoscope 10 into a video signal and outputs the signal to the display device 50.
  • the display device 50 displays the live image based on the video signal from the image processing device 20.
  • the image processing device 20 may control the light source device 30 based on, for example, a video signal, or may perform processing related to automatic dimming control.
  • the image processing device 20 is also connected to the surgery support device 40, and outputs the image processed by the image processing device 20 to the surgery support device 40.
  • the light source device 30 is a device that supplies illumination light to the endoscope 10 via a light guide.
  • the illumination light supplied by the light source device 30 is not particularly limited, but may be, for example, white light used for normal light observation of an endoscope, NBI (Narrow Band Imaging) observation, AFI (Auto-Fluorescence Imaging). Special light used for special light observation such as observation may be used. Further, the light source device 30 may supply the endoscope 10 by arbitrarily switching between white light and special light at the option of a doctor, for example.
  • the surgery support device 40 is a device that creates an organ model and a surgery plan by processing the information obtained during the endoscopy in real time.
  • the surgery support device 40 may display the created organ model and the surgery plan on the display device 50 during the surgery.
  • the surgical plan includes information for identifying the position of the polyp to be operated on the organ model among the polyps in the luminal organ identified from the endoscopic image.
  • the surgical support device 40 may be a general-purpose computer such as a personal computer, a tablet, or other mobile device, or may be a computer for a specific purpose, a workstation, or a mainframe computer. Further, the surgery support device 40 may be a single device, a set of a plurality of devices, or may be configured as a distributed computing system. The surgical support device 40 is configured to execute a variety of software programs, including software programs that execute all or part of the processes and algorithms disclosed herein. As shown in FIG. 2, the surgical support device 40 as an example includes a processor 41 configured to process non-image information such as images and spatial arrangement information received as inputs for various algorithms and software programs. ..
  • the processor 41 may include hardware, which may include, for example, at least one of a circuit for processing digital signals and a circuit for processing analog signals.
  • the processor 41 can include, for example, one or more circuit devices (eg, ICs) or one or more circuit elements (eg, resistors, capacitors) on a circuit board.
  • the processor 41 may be a CPU (central processing unit). Further, various types of processors including GPU (Graphics processing unit) and DSP (Digital Signal Processor) may be used for the processor 41.
  • the processor 41 may be a hardware circuit having an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).
  • the processor 41 can include an amplifier circuit, a filter circuit, and the like for processing an analog signal.
  • the surgery support device 40 as an example includes a storage device 42 as shown in FIG.
  • the software program and / or computer-executable instruction executed by the processor 41 is stored in a computer-readable storage medium such as the storage device 42.
  • the "computer-readable storage medium” used in the present specification refers to a non-temporary computer-readable storage medium.
  • the surgery support device 40 can include one or more storage devices 42.
  • the storage device 42 may include a memory and / or other storage device.
  • the memory may be, for example, a computer's random access memory (RAM).
  • the memory may be a semiconductor memory such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory).
  • the storage device 42 may include, for example, a register, a magnetic storage device such as a hard disk device, an optical storage device such as an optical disk device, an internal or external hard disk drive, a server, a solid state storage device, a CD-ROM, a DVD, or other optical device. Alternatively, it may be a magnetic disk storage device or another storage device.
  • the storage device 42 is an example of a storage unit of the surgery support system 1.
  • the computer-executable instructions include, for example, instructions and data that cause the surgical support device 40 to realize a certain function or group of functions, and the processor 41 is determined by executing these computer-executable instructions by the processor 41. Demonstrate function.
  • the computer-executable instruction may be a set of instructions constituting a software program, or may be an instruction for the hardware circuit of the processor 41 to directly process.
  • the surgery support device 40 as an example further includes a display interface 43, an image capture device 44, a spatial arrangement detection device 45, a drive circuit 46, and an input interface 47.
  • the display interface 43 displays the organ model and the surgical plan generated by the processor 41 on the display device 50 based on the image captured from the image acquisition device 44 and the spatial arrangement information generated by the spatial arrangement detection device 45. Output. As a result, the display device 50 displays the operation plan on the organ model together with the live image.
  • the image capture device 44 is a device that captures an endoscope image imaged by the endoscope 10 and subjected to predetermined processing by the image processing device 20 at regular intervals.
  • the image capturing device 44 may acquire, for example, 30 endoscopic images per second from the image processing device 20 in the same manner as the frame rate. Further, unlike the frame rate, endoscopic images may be acquired at a cycle longer than the frame rate, for example, 3 images per second.
  • the spatial arrangement detection device 45 controls the drive circuit 46 that drives the magnetic field generator 60 to generate a predetermined magnetic field in the magnetic field generator 60.
  • the spatial arrangement detection device 45 detects the magnetic field by the magnetic sensor 12, and from the detection signal of the detected magnetic field, the position coordinates (x, y, z) and the direction (Euler angles ( ⁇ , ⁇ , ⁇ )) data, that is, spatial arrangement information, is generated in real time.
  • the input interface 47 is connected to an input device 70 such as a keyboard, mouse, touch panel, voice input device, and foot pedal.
  • the operation signal corresponding to the operation on the input device 70 is input to the processor 41 via the input interface 47.
  • FIG. 3 is a block diagram illustrating the functional configuration of the processor according to the embodiment.
  • FIG. 4 is a diagram for explaining the trained model.
  • the processor 41 executes the software program, so that the processor 41 realizes the function shown in FIG.
  • the functions of the processor 41 will be described with reference to FIGS. 3 and 4.
  • the processor 41 includes an acquisition unit 40a, a model creation unit 40b, a removal priority calculation unit 40c, a constraint condition management unit 40d, an operation plan creation unit 40e, and a display control unit 40f. ing.
  • the acquisition unit 40a acquires the endoscopic image captured by the image sensor 11 in the patient's luminal organ and the spatial arrangement information at the tip of the insertion unit. Specifically, the acquisition unit 40a acquires an endoscopic image from the image processing device 20 via the image acquisition device 44, and acquires spatial arrangement information from the spatial arrangement detection device 45.
  • the model creation unit 40b creates an organ model of the luminal organ of the patient Pa based on the endoscopic image and the spatial arrangement information acquired by the acquisition unit 40a.
  • the organ model is not particularly limited, but may show, for example, the three-dimensional structure of a luminal organ.
  • the vascular organ is the large intestine and the organ model is the large intestine model.
  • the model creation unit 40b uses Visual SLAM (Simultaneus Localization and Mapping) from, for example, an endoscopic image acquired at a fixed cycle and spatial arrangement information at the time of acquiring each endoscopic image.
  • An organ model may be created.
  • Visual SLAM is a technology that simultaneously estimates the three-dimensional information of a plurality of feature points and the position and orientation of the camera from an image taken by the camera.
  • the position and posture of the camera correspond to the position and posture of the tip of the insertion portion, the position and posture of the camera can be processed as known by the spatial arrangement information. Therefore, the three-dimensional information can be calculated at high speed and with high accuracy.
  • the removal priority calculation unit 40c calculates the malignancy and progression rate of the polyp in the luminal organ detected from the endoscopic image, and the removal priority of the polyp is based on the calculated malignancy and progression rate of the polyp. Calculate the degree.
  • the rate of progression of a polyp is the rate at which the malignancy of the polyp worsens, for example, the rate at which the polyp becomes cancerous.
  • the removal priority calculation unit 40c detects a polyp by analyzing an endoscopic image, and calculates the malignancy and progression rate of the detected polyp. More specifically, the removal priority calculation unit 40c has learned, for example, the malignancy and progression rate of the polyp with respect to the surface shape of the polyp identified from the polyp image, as shown in FIG. May be used to estimate the location of the polyp in the endoscopic image, the malignancy of the polyp, and the rate of progression of the polyp.
  • the trained model PTM may be created in advance for each patient's race, age, gender, lifestyle (whether smoking, drinking, etc.), medical history, etc., and may be stored in the storage device 42, and may be removed.
  • the priority calculation unit 40c may appropriately select a trained model to be used based on the patient information of the patient Pa.
  • the patient information includes race, age, gender, lifestyle (whether smoking, drinking, etc.), medical history, and the like.
  • the removal priority calculation unit 40c uses a trained model in which the malignancy of the polyp with respect to the surface shape of the polyp is learned instead of the trained model PTM shown in FIG.
  • the location and grade of the polyp may be estimated.
  • the removal priority calculation unit 40c further determines the polyp in the luminal organ based on the endoscopic image and the past examination result of the luminal organ of the patient Pa stored in the storage device 42.
  • the speed of travel may be estimated.
  • the rate of polyp progression may be estimated, for example, by comparing the size of the polyp detected from the endoscopic image with the size of the corresponding polyp in past test results. It may also be estimated by comparing the malignancy in addition to or instead of the size.
  • the trained model that learned the malignancy is also created in advance for each patient's race, age, gender, lifestyle (whether smoking, drinking, etc.), medical history, etc., and is stored in the storage device 42.
  • the removal priority calculation unit 40c may appropriately select a trained model to be used based on the patient information of the patient Pa.
  • the constraint condition management unit 40d manages the constraint conditions of the surgery performed during the endoscopy.
  • Constraint conditions The constraints managed by the management unit 40d include, for example, allowable operation cost, allowable operation time, allowable bleeding amount, difficulty of operation, skill level of surgeon (doctor), and patient information. At least one of is included. Further, since these constraint conditions include those that fluctuate during the operation, the constraint condition management unit 40d manages the constraint conditions while updating them as needed during the endoscopy.
  • the permissible surgical cost varies depending on the number and size of polyps removed, the number of disposable treatment tools used, and so on. Therefore, the constraint condition management unit 40d subtracts the cost determined according to the progress of the surgery from the permissible surgery cost.
  • the amount of bleeding at the time of polyp removal is predictable to some extent, and a surgical plan described later is created based on the expected amount of bleeding, but the amount of bleeding that occurs in actual surgery may differ from the expected amount. Therefore, the constraint condition management unit 40d subtracts the actual bleeding amount from the allowable bleeding amount according to the progress of the operation.
  • the surgery plan creation unit 40e creates a surgery plan at least based on the constraint conditions of the surgery managed by the constraint condition management unit 40d. Specifically, the operation plan creation unit 40e creates an operation plan based on the constraint conditions managed by the constraint condition management unit 40d and the removal priority calculated by the removal priority calculation unit 40c.
  • the surgery plan created by the surgery plan creation unit 40e includes information for identifying the position of the polyp to be operated on the organ model among the polyps in the luminal organ identified from the endoscopic image. It has been done.
  • the operation plan creation unit 40e prepares the operation plan according to the update of the constraint conditions during the operation. Update. Specifically, the surgery plan creation unit 40e may create a new surgery plan each time the constraint condition is updated. The operation plan creation unit 40e only needs to be able to create an operation plan that reflects the latest constraint conditions, and therefore the constraint conditions and the operation plan may be updated asynchronously.
  • the display control unit 40f causes the display unit 80 to display at least the organ model created by the model creation unit 40b and the surgery plan created by the surgery plan creation unit 40e.
  • the display unit 80 is, for example, a display device 50.
  • the display control unit 40f indicates the position of the polyp to be operated on by displaying a predetermined mark on the organ model.
  • the display control unit 40f may display a predetermined mark in a size corresponding to one of the malignancy and the rate of progression of the polyp, and display the predetermined mark. It may be displayed in a color corresponding to either the malignancy of the polyp or the rate of progression. Further, when there are a plurality of polyps to be operated on, a predetermined mark may be displayed with an order in which the operation should be performed.
  • the display control unit 40f has the polyp information that identifies the position of the polyp that is not the target of surgery (hereinafter, the non-target polyp information). May be displayed on the display unit 80. Further, the operation planning unit 40e may display the current position information for specifying the current position of the tip of the insertion portion on the organ model on the display unit 80. The display control unit 40f displays these auxiliary information (organ model, polyp information, current position information, etc.) side by side next to, for example, a live image. The auxiliary information may be displayed by switching to the live image according to the operation of the doctor.
  • the display device 50 which is an example of the display unit 80, is, for example, a liquid crystal display, a plasma display, an organic EL display, a CRT display, an LED matrix panel, electronic paper, a projector, or the like, and is another type of display device. May be good. Further, the display device 50 may display an image three-dimensionally.
  • the display method of the 3D image by the display device 50 is not particularly limited, and any display method can be adopted. For example, it may be a naked eye type, or a method of displaying a stereoscopic image in combination with eyeglasses worn by the operator.
  • the polyp to be the target of the surgery is specified under the given constraints of the surgery, and the information for specifying the position of the polyp to be the target is included.
  • the surgical plan is updated in substantially real time as the endoscopy constraints are updated. For this reason, doctors can perform surgery according to the patient's ever-changing conditions during endoscopy, and can provide patients with optimal treatment under given constraints. Become.
  • FIG. 5 is a flowchart of processing performed by the surgery support system according to the embodiment.
  • FIG. 6 is a diagram showing a display example of the model display area.
  • FIG. 7 is a diagram showing a display example of the operation plan selection screen.
  • FIG. 8 is a diagram showing another display example of the operation plan selection screen.
  • FIG. 9 is a diagram showing how the surgical plan displayed in the model display area is updated.
  • the surgical support method for supporting the surgery performed during the endoscopy performed by the surgical support system 1 will be specifically described with reference to FIGS. 5 to 9.
  • the surgery support system 1 first accepts the input of the initial setting (step S1).
  • the surgery support device 40 sets various information necessary for subsequent processing.
  • the processor 41 of the surgery support device 40 extracts the information of the patient Pa from a predetermined database according to the input of the doctor and sets it as the basic information.
  • the basic information includes, for example, the patient Pa's name, race, age, gender, lifestyle (whether smoking, drinking, etc.), medical history, and the like. It may also include information on colonoscopy and other examinations received in the past.
  • the processor 41 receives the input of the constraint condition of the operation and sets the constraint condition as the constraint condition at the start of the endoscopy.
  • Surgical constraints include permissible surgical costs, permissible surgery time, permissible bleeding volume, surgeon skill level, and patient information.
  • the processor 41 sets the reference position and the reference posture by detecting the operation of the doctor with respect to the endoscope 10. For example, when the doctor performs a predetermined operation with the tip of the endoscope 10 aligned with the anus of the patient Pa laid on the bed 2, the processor 41 sets the detected position and posture as the reference position and the reference. Register as a posture.
  • the spatial arrangement information generated by the surgical support device 40 thereafter is created as the spatial arrangement information on the three-dimensional Cartesian coordinate system defined by the reference position and the reference posture.
  • the doctor starts inserting the endoscope 10 into the large intestine, advances the endoscope 10 in the order of the anus, the rectum, the colon, and the cecum, and reaches the endoscope 10 to the innermost part of the large intestine.
  • the period during which the endoscope 10 is inserted from the anus to the innermost part of the large intestine is referred to as an insertion period, and is distinguished from the subsequent withdrawal period.
  • the inspection period consists of an insertion period and a withdrawal period.
  • the withdrawal period is a period during which the endoscope 10 is withdrawn from the innermost part toward the anus, and the doctor mainly performs a polyp removal operation while observing the inside of the large intestine in detail during the withdrawal period.
  • the surgery support system 1 acquires an endoscopic image and spatial arrangement information (step S2), and creates an organ model based on the acquired information (step S3). Further, the surgical support system 1 calculates the malignancy and the rate of progression of the polyp detected from the endoscopic image (step S4). Then, during the insertion period (step S5YES), the surgical support system 1 displays auxiliary information including the organ model and polyp information together with the live image (step S6). The operation during the insertion period will be described in more detail as follows.
  • step S2 the image processing device 20 performs predetermined image processing on the endoscope image captured by the endoscope 10 and outputs it to the surgery support device 40.
  • the processor 41 of the surgery support device 40 acquires the endoscopic image captured by the image capture device 44 from the image processing device 20 at, for example, 30 fps. Further, the processor 41 acquires the spatial arrangement information created by the spatial arrangement detecting device 45 based on the detection result by the magnetic sensor 12 in synchronization with the acquisition of the endoscopic image. In this way, the surgery support system 1 periodically acquires the endoscopic image and the spatial arrangement information corresponding to the endoscopic image.
  • step S3 the processor 41 creates a large intestine model of patient Pa using the endoscopic image and spatial arrangement information acquired in step S2.
  • the processor 41 extracts a plurality of feature points from continuous endoscopic images obtained at 30 fps, and calculates the coordinate information of the feature points by a method such as Visual SLAM. Then, by using the coordinate information of these feature points, a large intestine model showing the three-dimensional structure of the large intestine of patient Pa is created.
  • the processor 41 uses the spatial arrangement information indicating the position and orientation of the tip of the insertion portion acquired by using the magnetic sensor 12, and is faster than the case where the coordinate information of the feature point is calculated only from the image information. Moreover, it is possible to calculate the coordinate information of the feature points with high accuracy.
  • step S4 the processor 41 selects a trained model based on the basic information set in step S1, and inputs an endoscopic image to the selected trained model. Then, the processor 41 detects the position of the polyp when the polyp is present in the endoscopic image by using the trained model, and the endoscopic image according to the malignancy and the progress rate of the detected polyp. To classify. The classified endoscopic images are used as information for calculating the removal priority at the time of creating the surgical plan in step S8.
  • step S6 the processor 41 causes the display device 50 to display auxiliary information including the organ model and polyp information. Specifically, as shown in FIG. 6, the processor 41 displays the organ model M1 created in step S3 on the model display area 52 next to the live image display area 51 for displaying the live image L1 on the display device 50. , And further, the display device 50 displays the polyp information detected in step S4 on the organ model M1.
  • the polyp information may be any information that identifies the position of the polyp in the large intestine on the organ model M1. For example, as in the polyp information P shown in FIG. 6, a predetermined value displayed at the position of the polyp on the organ model M1. Mark (black circle in this example) may be used.
  • the polyp information P may be displayed in an aspect (for example, size, color, etc.) according to the malignancy of the polyp, and may be displayed in an aspect (for example, size, color, etc.) according to the degree of progression of the polyp. Etc.) may be displayed.
  • the current position information C displayed on the organ model M1 is information for specifying the current position of the tip of the insertion portion on the organ model M1.
  • the current position information C is created based on the latest spatial arrangement information.
  • FIG. 6 shows how the auxiliary information is updated during the insertion period.
  • the organ model M1 is an organ model created when the endoscope 10 is inserted halfway into the descending colon, and three polyp information is displayed on the organ model M1.
  • the organ model M2 is an organ model created when the endoscope 10 is inserted halfway through the transverse colon, and the same three polyp information as the organ model M1 is displayed on the organ model M2.
  • the organ model M3 is an organ model created when the endoscope 10 is inserted into the cecum, and five polyp information is displayed on the organ model M3.
  • the surgery support system 1 acquires the constraint condition (step S7) and creates an operation plan under the acquired constraint condition (step S8).
  • the end of the insertion period may be determined based on the movement locus of the tip of the insertion portion calculated from the history of the spatial arrangement information. For example, when the processor 41 detects that the image sensor 11 is returning the route taken in the past, it may determine that the insertion period has ended.
  • step S7 the processor 41 first acquires the constraint condition at the start of endoscopy set in step S1.
  • the processor 41 updates the constraints that have changed from the start of the endoscopy to the present.
  • the processor 41 sets, for example, a time calculated by subtracting the elapsed time from the start of endoscopy to the present from the allowable operation time as a new allowable operation time.
  • processor 41 adds constraints that have become apparent from the start of endoscopy to the present.
  • the processor 41 identifies, for example, the difficulty of the removal operation of each polyp and the amount of bleeding caused by the removal from the position, size, malignancy, etc. of the polyp detected during the insertion period, and adds it as a constraint condition.
  • the amount of bleeding may be estimated using a learned model in which the amount of bleeding with respect to the surface shape of the polyp has been learned.
  • step S8 the processor 41 first calculates the removal priority of each polyp based on the malignancy and progression rate of the polyps calculated in step S4.
  • the removal priority for example, the relationship between the malignancy level of the polyp and the numerical value indicating the removal priority, which is stored in the storage device 42 in advance, and the numerical value indicating the progress rate level of the polyp and the removal priority are shown. The relationship with may be used.
  • the processor 41 averages, for example, a numerical value indicating the removal priority derived from the malignancy of the polyp and a numerical value indicating the removal priority derived from the progress rate of the polyp, thereby giving an overall removal priority to each polyp. The degree may be calculated. Further, the processor 41 may calculate a plurality of removal priorities for each polyp by changing the weighting of the malignancy and the progression rate.
  • the processor 41 creates an operation plan based on the calculated removal priority and the constraint condition acquired in step S7.
  • a plurality of surgical plans may be created.
  • the processor 41 may present a plurality of operation plans to the doctor by displaying the operation plan selection screen 50a as shown in FIGS. 7 and 8 on the display device 50, and executes the operation plan to the doctor. You may choose the surgical plan to be used.
  • the surgical plan OP1 shown in FIG. 7 is a surgical plan in which the malignancy is relatively prioritized over the rate of progression, and is formed in the cecum, rectal sigmoid, and lower colon judged to be relatively high in malignancy. It is shown that a total of three polyps were presented as surgical targets.
  • the surgical plan OP2 shown in FIG. 8 is a surgical plan in which the progression rate is relatively prioritized over the malignancy, and can be formed in the cecum, transverse colon, descending colon, and lower colon, which are judged to have a relatively high progression rate. It is shown that a total of four polyps were presented as surgical targets.
  • the target polyp information T indicated by a black circle on the organ model M3 indicates the position of the polyp to be operated on, and the non-target polyp information U indicated by a white circle on the organ model M3 indicates the position of the polyp not to be operated on.
  • the number assigned to the side of the target polyp information T indicates the surgical order, and basically, the direction in which the endoscope moves in the large intestine, that is, the direction from the innermost part of the large intestine toward the anus. Numbered in order along.
  • the processor 41 may switch a plurality of surgery plans and display them on the display device 50 in response to the operation of the buttons (buttons 53 and 54) on the surgery plan selection screen 50a, for example, and the doctor presses the surgery start button 55. By pressing, the surgical plan to be performed in the endoscopy may be confirmed.
  • the processor 41 closes the surgery plan selection screen 50a and displays the organ on the display device 50 and the model display area 52.
  • the model M3 and the selected surgical plan are displayed (step S10).
  • the case where the operation plan OP1 is selected will be described as an example.
  • the surgery support system 1 acquires the endoscopic image and the spatial arrangement information (step S11), updates the constraint conditions (step S12), and updates the surgery plan (step S13).
  • step S11 acquires the endoscopic image and the spatial arrangement information
  • step S12 updates the constraint conditions
  • step S13 updates the surgery plan
  • step S11 the image processing device 20 performs predetermined image processing on the endoscope image captured by the endoscope 10 and outputs it to the surgery support device 40.
  • the processor 41 acquires an endoscopic image captured by the image capturing device 44 from the image processing device 20 at, for example, 30 fps. Further, the processor 41 acquires the spatial arrangement information created based on the detection result by the magnetic sensor 12 in synchronization with the acquisition of the endoscopic image. In this way, the surgery support system 1 periodically acquires the endoscopic image and the spatial arrangement information corresponding to the endoscopic image.
  • the process of step S11 is the same as the process of step S2 during the insertion period.
  • step S12 the constraint condition acquired in step S7 is updated.
  • the processor 41 updates the permissible operation time based on the start of endoscopy, that is, the elapsed time from the start of the operation to the present, as in step S7.
  • Processor 41 also updates the permissible surgical costs based on the price of polyp removal performed during the surgery. The price for removing the polyp may be manually input to the surgical support device 40 by a doctor or a nurse each time the polyp is removed, and the size of the removed polyp is detected from the endoscopic image. It may be automatically specified by.
  • the processor 41 also updates the permissible amount of bleeding based on the amount of bleeding from the luminal organs estimated from the images captured during surgery.
  • step S13 the processor 41 recreates the surgical plan based on the removal priority of each polyp and the constraints updated in step S12, and newly creates the surgical plan displayed in the model display area 52. Update to plan.
  • FIG. 9 shows how the surgery plan is updated in the order of surgery plan OP1, surgery plan OP1a, surgery plan OP1b or surgery plan OP1c during the withdrawal period.
  • the surgical plan OP1 is a surgical plan immediately after the start of the withdrawal period, and includes three target polyp information T displayed on the organ model M3.
  • the surgical plan OP1a is a surgical plan immediately after the polyp PO formed in the cecum is excised with the snare 15.
  • the target polyp information T corresponding to the polyp PO formed in the cecum is updated to the treated information F, and the remaining two target polyp information T are given the updated processing order.
  • the surgical plan OP1b is a surgical plan after a while has passed after the removal of the polyp PO formed in the cecum, and is a surgical plan for a case in which bleeding occurs more than expected after the removal of the polyp PO.
  • the surgical plan OP1c is a surgical plan after a while has passed after the removal of the polyp PO formed in the cecum, and is a surgical plan for the case where the amount of bleeding is less than expected after the removal of the polyp PO.
  • the surgical plan OP1b shows that the polyps formed in the rectal sigmoid region were excluded from the surgical target as a result of the sharp decrease in the allowable amount of bleeding.
  • the surgical plan OP1c shows that a polyp formed in the descending colon was added to the surgical target as a result of having a margin in the allowable amount of bleeding.
  • step S14YES When the extraction period ends and the endoscope 10 is removed from the large intestine (step S14YES), the surgery support system 1 ends the process shown in FIG.
  • the operation plan including the information identifying the polyp to be treated is presented to the doctor during the endoscopy, so that the doctor treats it. It is possible to perform surgery efficiently while appropriately determining the polyp to be used. In addition, since the surgery plan is updated to reflect the situation during endoscopy, it is possible to respond appropriately to sudden changes in the situation.
  • an example is shown in which an organ model showing a three-dimensional structure of a luminal organ is created by using three-dimensional coordinate information of feature points extracted from an endoscopic image.
  • the organ model may be, for example, a two-dimensional model that gives a bird's-eye view of the luminal organ.
  • the organ model is not limited to a model showing a three-dimensional structure such as the above-mentioned three-dimensional model and two-dimensional model. It may be a planar model such as a model in which a luminal organ is projected on a plane or a model showing a cross-sectional shape of the luminal organ.
  • the means for detecting the spatial arrangement of the image sensor 11 is not limited to the magnetic sensor.
  • the spatial arrangement of the image pickup element 11 may be detected by using a sensor that detects the shape of the endoscope 10 and a sensor that detects the insertion amount of the endoscope 10.
  • the spatial arrangement of the tip of the insertion portion may be estimated by measuring the traction amount of the operation wire inserted through the insertion portion. Further, the spatial arrangement of the tip of the insertion portion may be estimated from the operation history of the operation portion for pulling and relaxing the operation wire.
  • the spatial arrangement of the tip of the insertion portion may be estimated by combining the traction amount and the operation history with the detection information of the gyro sensor provided at the tip of the insertion portion. Further, the spatial arrangement of the tip of the insertion portion may be estimated from the information obtained from the device other than the endoscope 10, and the device other than the endoscope 10 may be, for example, a medical imaging device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Endoscopes (AREA)

Abstract

The purpose of the present invention is to provide a technology for presenting an appropriate surgical plan to a doctor during an endoscopic examination. The surgery support system comprises: a model creation unit (40b) that creates an organ model of a luminal organ of a patient on the basis of an image captured by an imaging unit of an endoscope inside the luminal organ of the patient and spatial layout information on the imaging unit; and a surgical plan creating unit (40e) that creates, on the basis of at least surgical constraints, a surgical plan including information specifying the location of a surgery target polyp in the organ model among polyps in the luminal organ specified from the image, and updates the surgical plan in accordance with the updating of constraints during surgery.

Description

手術支援システム、手術支援方法、及び、プログラムSurgery support system, surgery support method, and program
 本明細書の開示は、手術支援システム、手術支援方法、及び、プログラムに関する。 The disclosure of this specification relates to a surgery support system, a surgery support method, and a program.
 内視鏡検査は、食道、胃、大腸、気管、気管支などの管腔臓器に挿入し、内視鏡で取得した画像を用いて管腔内を観察する検査方法であり、現在では、その有用性は広く認識されるに至っている。例えば、特許文献1に記載される技術を用いて大腸拡大内視鏡検査を行うことで、大腸ポリープの表面構造から、その大腸ポリープが腫瘍か非腫瘍か、また、腫瘍である場合には、良性腫瘍か悪性腫瘍かを分類することができる。このように、内視鏡検査によれば、管腔内を直接観察することができるため、病変の早期発見、早期治療が可能である。 Endoscopy is an examination method that is inserted into luminal organs such as the esophagus, stomach, large intestine, trachea, and bronchi, and the inside of the lumen is observed using images obtained by endoscopy. Gender has come to be widely recognized. For example, by performing colon magnifying endoscopy using the technique described in Patent Document 1, the surface structure of the colon polyp indicates whether the colon polyp is a tumor or a non-tumor, and if it is a tumor, It is possible to classify whether it is a benign tumor or a malignant tumor. As described above, according to the endoscopy, the inside of the lumen can be directly observed, so that the lesion can be detected and treated at an early stage.
特開2016-087370号公報Japanese Unexamined Patent Publication No. 2016-08737
 ところで、内視鏡検査においてポリープ除去などの手術を行う場合、出血量などの医学的見地からの制約や検査費用などの経済的見地からの制約など、様々な制約が存在する。このため、内視鏡検査で発見したすべてのポリープを処置できるとは限らず、与えられた制約の範囲内で優先順位の高いポリープを選択的に処置する必要がある。 By the way, when performing surgery such as polyp removal in endoscopy, there are various restrictions such as restrictions from a medical point of view such as the amount of bleeding and restrictions from an economic point of view such as examination costs. For this reason, not all polyps found by endoscopy can be treated, and it is necessary to selectively treat high-priority polyps within the given constraints.
 しかしながら、内視鏡検査という高度な医療作業中に、処置すべきポリープを適切に判断することは容易ではない。特に、内視鏡検査中の状況によって処置すべきポリープは刻々と変化し得るため、どのポリープを処置すべきかを医師にリアルタイムで知らせて医師の判断を支援する技術が望まれている。 However, it is not easy to properly determine the polyp to be treated during the advanced medical work of endoscopy. In particular, since the polyp to be treated may change from moment to moment depending on the situation during endoscopy, a technique for notifying a doctor in real time of which polyp should be treated and assisting the doctor's decision is desired.
 以上のような実情から、本発明の一側面に係る目的は、内視鏡検査中に適切な手術計画を医師に提示する技術を提供することである。 From the above circumstances, an object of one aspect of the present invention is to provide a technique for presenting an appropriate surgical plan to a doctor during endoscopy.
 本発明の一態様に係る手術支援システムは、患者の管腔臓器内で内視鏡の撮像部によって撮像された画像と前記内視鏡の挿入部先端の空間配置情報とに基づいて、前記患者の前記管腔臓器の臓器モデルを作成するモデル作成部と、少なくとも手術の制約条件に基づいて、前記画像から特定された前記管腔臓器内のポリープのうちの前記手術の対象とするポリープの前記臓器モデル上における位置を特定する対象ポリープ情報を含む手術計画を作成し、前記手術中における前記制約条件の更新に伴って、前記手術計画を更新する手術計画作成部と、を備える。 The surgical support system according to one aspect of the present invention is based on the image captured by the imaging unit of the endoscope in the lumen organ of the patient and the spatial arrangement information of the tip of the insertion portion of the endoscope. The model-creating unit that creates an organ model of the luminal organ, and the polyp that is the target of the surgery among the polyps in the luminal organ identified from the image, at least based on the constraints of surgery. It is provided with an operation plan creation unit that creates an operation plan including target polyp information for specifying a position on an organ model and updates the operation plan in accordance with the update of the constraint condition during the operation.
 本発明の一態様に係る手術支援方法は、コンピュータが、患者の管腔臓器内で内視鏡の撮像部によって撮像された画像と前記内視鏡の挿入部先端の空間配置情報とに基づいて、前記患者の前記管腔臓器の臓器モデルを作成し、少なくとも手術の制約条件に基づいて、前記画像から特定された前記管腔臓器内のポリープのうちの前記手術の対象とするポリープの前記臓器モデル上における位置を特定する対象ポリープ情報を含む手術計画を作成し、前記手術中における前記制約条件の更新に伴って、前記手術計画を更新する。 The surgical support method according to one aspect of the present invention is based on an image captured by an imaging unit of an endoscope in a patient's luminal organ and spatial arrangement information at the tip of the insertion portion of the endoscope. , An organ model of the luminal organ of the patient, and the organ of the polyp to be operated on among the polyps in the luminal organ identified from the image, at least based on surgical constraints. A surgical plan including target polyp information for specifying a position on a model is created, and the surgical plan is updated as the constraint conditions are updated during the surgery.
 本発明の一態様に係るプログラムは、コンピュータに、患者の管腔臓器内で内視鏡の撮像部によって撮像された画像と前記内視鏡の挿入部先端の空間配置情報とに基づいて、前記患者の前記管腔臓器の臓器モデルを作成し、少なくとも手術の制約条件に基づいて、前記画像から特定された前記管腔臓器内のポリープのうちの前記手術の対象とするポリープの前記臓器モデル上における位置を特定する対象ポリープ情報を含む手術計画を作成し、前記手術中における前記制約条件の更新に伴って、前記手術計画を更新する処理を実行させる。 The program according to one aspect of the present invention is based on the image captured by the imaging unit of the endoscope in the tract organ of the patient and the spatial arrangement information of the tip of the insertion portion of the endoscope. An organ model of the luminal organ of the patient is created, and on the organ model of the polyp to be operated on among the polyps in the luminal organ identified from the image, at least based on the surgical constraints. An operation plan including the target polyp information for specifying the position in the operation plan is created, and a process of updating the operation plan is executed in accordance with the update of the constraint condition during the operation.
 上記の態様によれば、内視鏡検査中に適切な手術計画を医師に提示することができる。 According to the above aspect, an appropriate surgical plan can be presented to the doctor during the endoscopy.
一実施形態に係る手術支援システムの構成を例示した図である。It is a figure which illustrated the structure of the operation support system which concerns on one Embodiment. 一実施形態に係る手術支援システムの構成を例示したブロック図である。It is a block diagram which illustrated the structure of the operation support system which concerns on one Embodiment. 一実施形態に係るプロセッサの機能的構成を例示したブロック図である。It is a block diagram which illustrates the functional structure of the processor which concerns on one Embodiment. 学習済みモデルについて説明するための図である。It is a figure for demonstrating the trained model. 一実施形態に係る手術支援システムが行う処理のフローチャートである。It is a flowchart of the process performed by the operation support system which concerns on one Embodiment. モデル表示領域の表示例を示した図である。It is a figure which showed the display example of the model display area. 手術計画選択画面の表示例を示した図である。It is a figure which showed the display example of the operation plan selection screen. 手術計画選択画面の別の表示例を示した図である。It is a figure which showed another display example of the operation plan selection screen. モデル表示領域に表示される手術計画が更新される様子を示した図である。It is a figure which showed how the operation plan displayed in the model display area is updated.
 図1は、一実施形態に係る手術支援システムの構成を例示した図である。図2は、一実施形態に係る手術支援システムの構成を例示したブロック図である。図1及び図2に示す手術支援システム1は、患者Paの管腔臓器に対する内視鏡検査中に、手術の制約条件を考慮した手術計画を作成し、医師に提示するシステムである。以下、図1及び図2を参照しながら、手術支援システム1の構成について説明する。 FIG. 1 is a diagram illustrating the configuration of the surgery support system according to one embodiment. FIG. 2 is a block diagram illustrating the configuration of the surgery support system according to the embodiment. The surgery support system 1 shown in FIGS. 1 and 2 is a system that creates a surgery plan in consideration of the constraints of surgery and presents it to a doctor during endoscopy of the luminal organ of patient Pa. Hereinafter, the configuration of the surgery support system 1 will be described with reference to FIGS. 1 and 2.
 手術支援システム1は、図1に示すように、内視鏡10と、画像処理装置20と、光源装置30と、手術支援装置40と、表示装置50と、磁場発生装置60と、入力装置70を備えている。なお、内視鏡10は、特に限定しないが、例えば、大腸用の軟性内視鏡である。以降では、軟性内視鏡を用いて大腸内視鏡検査を行う場合を例に説明するが、手術支援システム1の適用範囲は、大腸内視鏡検査に限らない。食道や胃などのその他の管腔臓器の内視鏡検査にも適用可能である。また、管腔内を移動しながら取得した内視鏡画像とその座標情報が得られればよいため、内視鏡検査には、軟性内視鏡に限らず、硬性内視鏡が用いられてもよい。 As shown in FIG. 1, the surgery support system 1 includes an endoscope 10, an image processing device 20, a light source device 30, a surgery support device 40, a display device 50, a magnetic field generator 60, and an input device 70. It has. The endoscope 10 is not particularly limited, but is, for example, a flexible endoscope for the large intestine. Hereinafter, the case where colonoscopy is performed using a flexible endoscope will be described as an example, but the scope of application of the surgical support system 1 is not limited to colonoscopy. It can also be applied to endoscopy of other luminal organs such as the esophagus and stomach. Further, since it is only necessary to obtain the endoscopic image acquired while moving in the lumen and its coordinate information, the endoscopy may be performed not only by a flexible endoscope but also by a rigid endoscope. good.
 内視鏡10は、医師が操作する操作部と、管腔内に挿入される可撓性を有する挿入部と、操作部から延出するユニバーサルコードと、ユニバーサルコードの端部に設けられ、画像処理装置20及び光源装置30に着脱可能に接続されるコネクタ部と、を備えている。医師は操作部を操作することで挿入部を任意の方向に湾曲させることが可能であり、これにより、撮像素子11で撮像した画像によって管腔臓器内を自由に観察することができる。なお、撮像素子11は、例えば、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary MOS)イメージセンサなどであり、手術支援システム1の撮像部の一例である。撮像素子11は、内視鏡10内に設けられていればよい。撮像素子11は、例えば、挿入部の先端に設けられていてもよく、挿入部の基端側、つまり、操作部付近に設けられてもよい。 The endoscope 10 is provided at an operation unit operated by a doctor, a flexible insertion portion inserted into a lumen, a universal cord extending from the operation portion, and an end portion of the universal cord. It includes a connector portion that is detachably connected to the processing device 20 and the light source device 30. The doctor can bend the insertion portion in an arbitrary direction by operating the operation portion, whereby the inside of the luminal organ can be freely observed by the image captured by the image sensor 11. The image sensor 11 is, for example, a CCD (Charge Coupled Device) image sensor, a CMOS (Complementary MOS) image sensor, or the like, and is an example of an image pickup unit of the surgery support system 1. The image sensor 11 may be provided in the endoscope 10. The image sensor 11 may be provided, for example, at the tip of the insertion portion, or may be provided on the base end side of the insertion portion, that is, near the operation portion.
 内視鏡10の挿入部には、さらに、磁気センサ12が設けられていて、磁気センサ12からの信号線は、手術支援装置40に接続されている。磁気センサ12は、挿入部先端の近傍に配置されていて、磁場発生装置60が発生する磁場を検出することで、挿入部先端の位置と姿勢、即ち、挿入部先端の空間配置、を検出する。磁気センサ12は、例えば、中心軸が互いに直交した円筒状の2つのコイルからなる6軸のセンサであり、挿入部先端の位置座標とオイラー角を検出し、手術支援装置40へ出力する。 A magnetic sensor 12 is further provided at the insertion portion of the endoscope 10, and the signal line from the magnetic sensor 12 is connected to the surgery support device 40. The magnetic sensor 12 is arranged near the tip of the insertion portion, and detects the position and orientation of the tip of the insertion portion, that is, the spatial arrangement of the tip of the insertion portion by detecting the magnetic field generated by the magnetic field generator 60. .. The magnetic sensor 12 is, for example, a 6-axis sensor composed of two cylindrical coils whose central axes are orthogonal to each other, detects the position coordinates of the tip of the insertion portion and the Euler angles, and outputs them to the surgical support device 40.
 なお、図1及び図2では、磁場発生装置60が所定の磁場を発生し、内視鏡10に設けられた磁気センサ12が磁場発生装置60が発生する磁場を検出する例を示したが、内視鏡10に磁場発生装置を設けて、内視鏡10から発生した磁場を所定の位置に置かれた磁気センサで検出することで、内視鏡10の挿入部先端の空間配置を検出してもよい。 Although FIGS. 1 and 2 show an example in which the magnetic field generator 60 generates a predetermined magnetic field and the magnetic sensor 12 provided in the endoscope 10 detects the magnetic field generated by the magnetic field generator 60. A magnetic field generator is provided in the endoscope 10, and the magnetic field generated by the endoscope 10 is detected by a magnetic sensor placed at a predetermined position to detect the spatial arrangement of the tip of the insertion portion of the endoscope 10. You may.
 画像処理装置20は、内視鏡10で撮像した画像を処理するビデオプロセッサである。画像処理装置20は、例えば、内視鏡10からの信号を映像信号に変換して表示装置50に出力する。これにより、表示装置50は、画像処理装置20からの映像信号に基づいてライブ画像を表示する。また、画像処理装置20は、例えば、映像信号に基づいて光源装置30を制御してもよく、自動調光制御に関連する処理を行ってもよい。さらに、画像処理装置20は、手術支援装置40にも接続されていて、画像処理装置20で処理した画像を手術支援装置40へ出力する。 The image processing device 20 is a video processor that processes an image captured by the endoscope 10. The image processing device 20 converts, for example, a signal from the endoscope 10 into a video signal and outputs the signal to the display device 50. As a result, the display device 50 displays the live image based on the video signal from the image processing device 20. Further, the image processing device 20 may control the light source device 30 based on, for example, a video signal, or may perform processing related to automatic dimming control. Further, the image processing device 20 is also connected to the surgery support device 40, and outputs the image processed by the image processing device 20 to the surgery support device 40.
 光源装置30は、内視鏡10にライトガイドを介して照明光を供給する装置である。光源装置30が供給する照明光は、特に限定しないが、例えば、内視鏡の通常光観察で用いられる白色光であってもよく、NBI(Narrow Band Imaging)観察、AFI(Auto-Fluorescence Imaging)観察などの特殊光観察で用いられる特殊光であってもよい。また、光源装置30は、例えば、白色光と特殊光とを医師の選択により任意に切り換えて内視鏡10へ供給してもよい。 The light source device 30 is a device that supplies illumination light to the endoscope 10 via a light guide. The illumination light supplied by the light source device 30 is not particularly limited, but may be, for example, white light used for normal light observation of an endoscope, NBI (Narrow Band Imaging) observation, AFI (Auto-Fluorescence Imaging). Special light used for special light observation such as observation may be used. Further, the light source device 30 may supply the endoscope 10 by arbitrarily switching between white light and special light at the option of a doctor, for example.
 手術支援装置40は、内視鏡検査中に得られた情報をリアルタイムで処理することで臓器モデルと手術計画を作成する装置である。手術支援装置40は、作成した臓器モデルと手術計画を、手術中に表示装置50に表示させてもよい。なお、手術計画には、内視鏡画像から特定された管腔臓器内のポリープのうちの手術の対象とするポリープの臓器モデル上における位置を特定する情報が含まれている。 The surgery support device 40 is a device that creates an organ model and a surgery plan by processing the information obtained during the endoscopy in real time. The surgery support device 40 may display the created organ model and the surgery plan on the display device 50 during the surgery. The surgical plan includes information for identifying the position of the polyp to be operated on the organ model among the polyps in the luminal organ identified from the endoscopic image.
 手術支援装置40は、パーソナルコンピュータ、タブレット、またはその他のモバイル機器などの汎用コンピュータであってもよく、特定用途向けのコンピュータ、ワークステーション、メインフレームコンピュータであってもよい。また、手術支援装置40は、単一の装置であっても、複数の装置の集合であってもよく、分散コンピューティングシステムとして構成されてもよい。手術支援装置40は、本明細書で開示されるプロセスおよびアルゴリズムのすべてまたは一部を実行するソフトウェアプログラムを含む、様々なソフトウェアプログラムを実行するように構成される。一例としての手術支援装置40は、図2に示すように、各種アルゴリズムおよびソフトウェアプログラムのための入力として受信した画像及び空間配置情報などの非画像情報を処理するように構成されたプロセッサ41を含む。 The surgical support device 40 may be a general-purpose computer such as a personal computer, a tablet, or other mobile device, or may be a computer for a specific purpose, a workstation, or a mainframe computer. Further, the surgery support device 40 may be a single device, a set of a plurality of devices, or may be configured as a distributed computing system. The surgical support device 40 is configured to execute a variety of software programs, including software programs that execute all or part of the processes and algorithms disclosed herein. As shown in FIG. 2, the surgical support device 40 as an example includes a processor 41 configured to process non-image information such as images and spatial arrangement information received as inputs for various algorithms and software programs. ..
 プロセッサ41は、ハードウェアを含んでもよく、ハードウェアは例えば、デジタル信号を処理するための回路およびアナログ信号を処理するための回路のうちの少なくとも1つを含んでもよい。プロセッサ41は、例えば、回路基板上に、1つまたは複数の回路デバイス(例えば、IC)または1つまたは複数の回路素子(例えば、抵抗器、コンデンサ)を含むことができる。プロセッサ41はCPU(central processing unit)であってもよい。また、プロセッサ41には、GPU(Graphics processing unit)及びDSP(Digital Signal Processor)を含む様々なタイプのプロセッサが使用されてもよい。プロセッサ41は、ASIC(Application Specific Integrated Circuit)またはFPGA(Field-Programmable Gate Array)を有するハードウェア回路であってもよい。プロセッサ41は、アナログ信号を処理するための増幅回路、フィルタ回路などを含むことができる。 The processor 41 may include hardware, which may include, for example, at least one of a circuit for processing digital signals and a circuit for processing analog signals. The processor 41 can include, for example, one or more circuit devices (eg, ICs) or one or more circuit elements (eg, resistors, capacitors) on a circuit board. The processor 41 may be a CPU (central processing unit). Further, various types of processors including GPU (Graphics processing unit) and DSP (Digital Signal Processor) may be used for the processor 41. The processor 41 may be a hardware circuit having an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array). The processor 41 can include an amplifier circuit, a filter circuit, and the like for processing an analog signal.
 一例としての手術支援装置40は、図2に示すように、記憶装置42を含んでいる。プロセッサ41が実行するソフトウェアプログラム及び/又はコンピュータ実行可能命令は、記憶装置42などのコンピュータ可読記憶媒体に記憶される。なお、本明細書で使用される「コンピュータ可読記憶媒体」は、非一時的なコンピュータ可読記憶媒体を指す。 The surgery support device 40 as an example includes a storage device 42 as shown in FIG. The software program and / or computer-executable instruction executed by the processor 41 is stored in a computer-readable storage medium such as the storage device 42. The "computer-readable storage medium" used in the present specification refers to a non-temporary computer-readable storage medium.
 手術支援装置40は、1つまたは複数の記憶装置42を含むことができる。記憶装置42は、メモリ及び/又はその他の記憶装置を含むことができる。メモリは、例えば、コンピュータのランダムアクセスメモリ(RAM)であってもよい。メモリは、SRAM(Static Randam Access Memory)やDRAM(Dynamic Random Access Memory)などの半導体メモリであってもよい。記憶装置42は、例えば、レジスタ、ハードディスク装置のような磁気記憶装置、光学ディスク装置のような光学記憶装置、内部または外部ハードディスクドライブ、サーバ、ソリッドステート記憶装置、CD-ROM、DVD、他の光学または磁気ディスク記憶装置、または、他の記憶装置であってもよい。なお、記憶装置42は、手術支援システム1の記憶部の一例である。 The surgery support device 40 can include one or more storage devices 42. The storage device 42 may include a memory and / or other storage device. The memory may be, for example, a computer's random access memory (RAM). The memory may be a semiconductor memory such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory). The storage device 42 may include, for example, a register, a magnetic storage device such as a hard disk device, an optical storage device such as an optical disk device, an internal or external hard disk drive, a server, a solid state storage device, a CD-ROM, a DVD, or other optical device. Alternatively, it may be a magnetic disk storage device or another storage device. The storage device 42 is an example of a storage unit of the surgery support system 1.
 コンピュータ実行可能命令は、例えば、手術支援装置40に一定の機能または機能のグループを実現させる命令およびデータを含み、これらのコンピュータ実行可能命令がプロセッサ41によって実行されることで、プロセッサ41が所定の機能を発揮する。コンピュータ実行可能命令は、ソフトウェアプログラムを構成する命令の集合であってもよいし、プロセッサ41のハードウェア回路が直接的に処理するための命令であってもよい。 The computer-executable instructions include, for example, instructions and data that cause the surgical support device 40 to realize a certain function or group of functions, and the processor 41 is determined by executing these computer-executable instructions by the processor 41. Demonstrate function. The computer-executable instruction may be a set of instructions constituting a software program, or may be an instruction for the hardware circuit of the processor 41 to directly process.
 一例としての手術支援装置40は、図2に示すように、さらに、表示インタフェース43と、画像取込装置44と、空間配置検出装置45と、駆動回路46と、入力インタフェース47を含んでいる。 As shown in FIG. 2, the surgery support device 40 as an example further includes a display interface 43, an image capture device 44, a spatial arrangement detection device 45, a drive circuit 46, and an input interface 47.
 表示インタフェース43は、画像取込装置44から取り込まれた画像と、空間配置検出装置45で生成された空間配置情報と、に基づいて、プロセッサ41が生成した臓器モデル及び手術計画を表示装置50に出力する。これにより、表示装置50は、ライブ画像とともに臓器モデル上に手術計画を表示する。 The display interface 43 displays the organ model and the surgical plan generated by the processor 41 on the display device 50 based on the image captured from the image acquisition device 44 and the spatial arrangement information generated by the spatial arrangement detection device 45. Output. As a result, the display device 50 displays the operation plan on the organ model together with the live image.
 画像取込装置44は、内視鏡10で撮像され、画像処理装置20によって所定の処理が施された内視鏡画像を、一定周期で取り込む装置である。画像取込装置44は、例えば、フレームレートと同じく1秒間に30枚の内視鏡画像を画像処理装置20から取得してもよい。また、フレームレートとは異なり、例えば1秒間に3枚などフレームレートよりも長い周期で内視鏡画像を取得してもよい。 The image capture device 44 is a device that captures an endoscope image imaged by the endoscope 10 and subjected to predetermined processing by the image processing device 20 at regular intervals. The image capturing device 44 may acquire, for example, 30 endoscopic images per second from the image processing device 20 in the same manner as the frame rate. Further, unlike the frame rate, endoscopic images may be acquired at a cycle longer than the frame rate, for example, 3 images per second.
 空間配置検出装置45は、磁場発生装置60を駆動する駆動回路46を制御して、磁場発生装置60に所定の磁場を発生させる。空間配置検出装置45は、その磁場を磁気センサ12により検出し、その検出された磁場の検出信号から、挿入部先端の位置座標(x、y、z)と向き(オイラー角(ψ、θ、φ))のデータ、すなわち空間配置情報、をリアルタイムで生成する。 The spatial arrangement detection device 45 controls the drive circuit 46 that drives the magnetic field generator 60 to generate a predetermined magnetic field in the magnetic field generator 60. The spatial arrangement detection device 45 detects the magnetic field by the magnetic sensor 12, and from the detection signal of the detected magnetic field, the position coordinates (x, y, z) and the direction (Euler angles (ψ, θ, φ)) data, that is, spatial arrangement information, is generated in real time.
 入力インタフェース47は、キーボード、マウス、タッチパネル、音声入力装置、フットペダルなどの入力装置70に接続される。入力装置70に対する操作に応じた操作信号は、入力インタフェース47を経由してプロセッサ41に入力される。 The input interface 47 is connected to an input device 70 such as a keyboard, mouse, touch panel, voice input device, and foot pedal. The operation signal corresponding to the operation on the input device 70 is input to the processor 41 via the input interface 47.
 図3は、一実施形態に係るプロセッサの機能的構成を例示したブロック図である。図4は、学習済みモデルについて説明するための図である。上述した手術支援装置40では、プロセッサ41がソフトウェアプログラムを実行することで、プロセッサ41が図3に示す機能を実現する。以下、プロセッサ41が有する機能について、図3及び図4を参照しながら説明する。 FIG. 3 is a block diagram illustrating the functional configuration of the processor according to the embodiment. FIG. 4 is a diagram for explaining the trained model. In the operation support device 40 described above, the processor 41 executes the software program, so that the processor 41 realizes the function shown in FIG. Hereinafter, the functions of the processor 41 will be described with reference to FIGS. 3 and 4.
 プロセッサ41は、図3に示すように、取得部40aと、モデル作成部40bと、除去優先度算出部40cと、制約条件管理部40dと、手術計画作成部40eと、表示制御部40fを備えている。 As shown in FIG. 3, the processor 41 includes an acquisition unit 40a, a model creation unit 40b, a removal priority calculation unit 40c, a constraint condition management unit 40d, an operation plan creation unit 40e, and a display control unit 40f. ing.
 取得部40aは、患者の管腔臓器内で撮像素子11によって撮像された内視鏡画像と、挿入部先端の空間配置情報を取得する。具体的には、取得部40aは、画像取込装置44を介して画像処理装置20から内視鏡画像を取得し、空間配置検出装置45から空間配置情報を取得する。 The acquisition unit 40a acquires the endoscopic image captured by the image sensor 11 in the patient's luminal organ and the spatial arrangement information at the tip of the insertion unit. Specifically, the acquisition unit 40a acquires an endoscopic image from the image processing device 20 via the image acquisition device 44, and acquires spatial arrangement information from the spatial arrangement detection device 45.
 モデル作成部40bは、取得部40aが取得した内視鏡画像と空間配置情報に基づいて、患者Paの管腔臓器の臓器モデルを作成する。臓器モデルは、特に限定しないが、例えば、管腔臓器の立体的構造を示してもよい。この例では、管構臓器は大腸であり、臓器モデルは大腸モデルである。具体的には、モデル作成部40bは、例えば、一定の周期で取得される内視鏡画像と各内視鏡画像取得時における空間配置情報とから、Visual SLAM(Simultaneous Localization and Mapping)を用いて臓器モデルを作成してもよい。Visual SLAMは、カメラで撮影された画像から複数の特徴点の3次元情報とカメラの位置及び姿勢とを同時に推定する技術である。手術支援システム1では、カメラの位置及び姿勢は挿入部先端の位置及び姿勢に相当するため、空間配置情報によりカメラの位置及び姿勢を既知として処理することができる。そのため、3次元情報を高速かつ高精度に算出することができる。 The model creation unit 40b creates an organ model of the luminal organ of the patient Pa based on the endoscopic image and the spatial arrangement information acquired by the acquisition unit 40a. The organ model is not particularly limited, but may show, for example, the three-dimensional structure of a luminal organ. In this example, the vascular organ is the large intestine and the organ model is the large intestine model. Specifically, the model creation unit 40b uses Visual SLAM (Simultaneus Localization and Mapping) from, for example, an endoscopic image acquired at a fixed cycle and spatial arrangement information at the time of acquiring each endoscopic image. An organ model may be created. Visual SLAM is a technology that simultaneously estimates the three-dimensional information of a plurality of feature points and the position and orientation of the camera from an image taken by the camera. In the surgery support system 1, since the position and posture of the camera correspond to the position and posture of the tip of the insertion portion, the position and posture of the camera can be processed as known by the spatial arrangement information. Therefore, the three-dimensional information can be calculated at high speed and with high accuracy.
 除去優先度算出部40cは、内視鏡画像から検出された管腔臓器内のポリープの悪性度と進行速度とを算出し、算出したポリープの悪性度と進行速度に基づいてそのポリープの除去優先度を算出する。なお、ポリープの進行速度とは、ポリープの悪性度が悪化する速度のことであり、例えば、ポリープが癌化する速度である。 The removal priority calculation unit 40c calculates the malignancy and progression rate of the polyp in the luminal organ detected from the endoscopic image, and the removal priority of the polyp is based on the calculated malignancy and progression rate of the polyp. Calculate the degree. The rate of progression of a polyp is the rate at which the malignancy of the polyp worsens, for example, the rate at which the polyp becomes cancerous.
 具体的には、除去優先度算出部40cは、内視鏡画像を解析することで、ポリープを検出し、検出したポリープの悪性度と進行速度を算出する。より具体的には、除去優先度算出部40cは、例えば、図4に示すような、ポリープ画像から特定されるポリープの表面形状に対するそのポリープの悪性度と進行速度とを学習した学習済みモデルPTMを用いて、内視鏡画像中におけるポリープの位置とポリープの悪性度とポリープの進行速度を推定してもよい。なお、学習済みモデルPTMは、患者の人種、年齢、性別、ライフスタイル(喫煙の有無、飲酒の有無など)、病歴など毎に予め作成され、記憶装置42に記憶されていてもよく、除去優先度算出部40cは、患者Paの患者情報に基づいて使用する学習済みモデルを適宜選択してもよい。なお、患者情報には、人種、年齢、性別、ライフスタイル(喫煙の有無、飲酒の有無など)、病歴などが含まれる。 Specifically, the removal priority calculation unit 40c detects a polyp by analyzing an endoscopic image, and calculates the malignancy and progression rate of the detected polyp. More specifically, the removal priority calculation unit 40c has learned, for example, the malignancy and progression rate of the polyp with respect to the surface shape of the polyp identified from the polyp image, as shown in FIG. May be used to estimate the location of the polyp in the endoscopic image, the malignancy of the polyp, and the rate of progression of the polyp. The trained model PTM may be created in advance for each patient's race, age, gender, lifestyle (whether smoking, drinking, etc.), medical history, etc., and may be stored in the storage device 42, and may be removed. The priority calculation unit 40c may appropriately select a trained model to be used based on the patient information of the patient Pa. The patient information includes race, age, gender, lifestyle (whether smoking, drinking, etc.), medical history, and the like.
 また、除去優先度算出部40cは、図4に示す学習済みモデルPTMの代わりに、ポリープの表面形状に対するそのポリープの悪性度を学習した学習済みモデルを用いて、内視鏡画像中におけるポリープの位置とポリープの悪性度を推定してもよい。その場合、除去優先度算出部40cは、さらに、内視鏡画像と、記憶装置42に記憶されている患者Paの管腔臓器の過去の検査結果とに基づいて、管腔臓器内のポリープの進行速度を推定してもよい。ポリープの進行速度は、例えば、内視鏡画像から検出されたポリープの大きさと過去の検査結果における対応するポリープの大きさとを比較することによって推定されてもよい。また、大きさに加えて又は代わりに悪性度を比較することによって推定されてもよい。なお、悪性度を学習した学習済みモデルも、患者の人種、年齢、性別、ライフスタイル(喫煙の有無、飲酒の有無など)、病歴など毎に予め作成され、記憶装置42に記憶されていてもよく、除去優先度算出部40cは、患者Paの患者情報に基づいて使用する学習済みモデルを適宜選択してもよい。 Further, the removal priority calculation unit 40c uses a trained model in which the malignancy of the polyp with respect to the surface shape of the polyp is learned instead of the trained model PTM shown in FIG. The location and grade of the polyp may be estimated. In that case, the removal priority calculation unit 40c further determines the polyp in the luminal organ based on the endoscopic image and the past examination result of the luminal organ of the patient Pa stored in the storage device 42. The speed of travel may be estimated. The rate of polyp progression may be estimated, for example, by comparing the size of the polyp detected from the endoscopic image with the size of the corresponding polyp in past test results. It may also be estimated by comparing the malignancy in addition to or instead of the size. The trained model that learned the malignancy is also created in advance for each patient's race, age, gender, lifestyle (whether smoking, drinking, etc.), medical history, etc., and is stored in the storage device 42. Alternatively, the removal priority calculation unit 40c may appropriately select a trained model to be used based on the patient information of the patient Pa.
 制約条件管理部40dは、内視鏡検査中に行う手術の制約条件を管理する。制約条件管理部40dで管理される制約条件には、例えば、許容される手術費用、許容される手術時間、許容される出血量、手術の難易度、術者(医師)のスキルレベル、患者情報の少なくとも1つが含まれている。また、これらの制約条件には手術中に変動するものも含まれているため、制約条件管理部40dは、内視鏡検査中に制約条件を随時更新しながら管理する。 The constraint condition management unit 40d manages the constraint conditions of the surgery performed during the endoscopy. Constraint conditions The constraints managed by the management unit 40d include, for example, allowable operation cost, allowable operation time, allowable bleeding amount, difficulty of operation, skill level of surgeon (doctor), and patient information. At least one of is included. Further, since these constraint conditions include those that fluctuate during the operation, the constraint condition management unit 40d manages the constraint conditions while updating them as needed during the endoscopy.
 例えば、許容される手術費用は、除去したポリープの数や大きさ、使用済みの使い捨て処置具の数などによって変動する。このため、制約条件管理部40dは、許容される手術費用から手術の進行に合わせて確定した費用を減算する。また、ポリープ除去時の出血量はある程度予想可能であり予想される出血量に基づいて後述する手術計画は作成されるが、実際の手術で生じる出血量は予想とは異なることがある。このため、制約条件管理部40dは、許容される出血量から手術の進行に合わせて実際の出血量を減算する。 For example, the permissible surgical cost varies depending on the number and size of polyps removed, the number of disposable treatment tools used, and so on. Therefore, the constraint condition management unit 40d subtracts the cost determined according to the progress of the surgery from the permissible surgery cost. In addition, the amount of bleeding at the time of polyp removal is predictable to some extent, and a surgical plan described later is created based on the expected amount of bleeding, but the amount of bleeding that occurs in actual surgery may differ from the expected amount. Therefore, the constraint condition management unit 40d subtracts the actual bleeding amount from the allowable bleeding amount according to the progress of the operation.
 手術計画作成部40eは、少なくとも制約条件管理部40dで管理される手術の制約条件に基づいて、手術計画を作成する。具体的には、手術計画作成部40eは、制約条件管理部40dで管理される制約条件と除去優先度算出部40cで算出された除去優先度とに基づいて、手術計画を作成する。なお、手術計画作成部40eが作成する手術計画には、内視鏡画像から特定された管腔臓器内のポリープのうちの手術の対象とするポリープの臓器モデル上における位置を特定する情報が含まれている。 The surgery plan creation unit 40e creates a surgery plan at least based on the constraint conditions of the surgery managed by the constraint condition management unit 40d. Specifically, the operation plan creation unit 40e creates an operation plan based on the constraint conditions managed by the constraint condition management unit 40d and the removal priority calculated by the removal priority calculation unit 40c. The surgery plan created by the surgery plan creation unit 40e includes information for identifying the position of the polyp to be operated on the organ model among the polyps in the luminal organ identified from the endoscopic image. It has been done.
 上述したように、制約条件管理部40dで管理されている手術の制約条件は、手術の進行とともに変化するため、手術計画作成部40eは、手術中における制約条件の更新に伴って、手術計画を更新する。具体的には、手術計画作成部40eは、制約条件が更新される度に新たな手術計画を作成してもよい。なお、手術計画作成部40eは、最新の制約条件が反映された手術計画を作成できればよく、そのため、制約条件と手術計画は非同期で更新されてもよい。 As described above, the constraint conditions of the operation managed by the constraint condition management unit 40d change with the progress of the operation. Therefore, the operation plan creation unit 40e prepares the operation plan according to the update of the constraint conditions during the operation. Update. Specifically, the surgery plan creation unit 40e may create a new surgery plan each time the constraint condition is updated. The operation plan creation unit 40e only needs to be able to create an operation plan that reflects the latest constraint conditions, and therefore the constraint conditions and the operation plan may be updated asynchronously.
 表示制御部40fは、少なくとも、モデル作成部40bで作成した臓器モデルと、手術計画作成部40eで作成した手術計画とを、表示部80に表示させる。なお、表示部80は、例えば、表示装置50である。具体的には、表示制御部40fは、臓器モデル上に所定のマークを表示することで、手術の対象とするポリープの位置を示す。表示制御部40fは、ポリープの悪性度と進行速度を識別可能に表示するため、所定のマークをポリープの悪性度と進行速度の一方に応じた大きさで表示してもよく、所定のマークをポリープの悪性度と進行速度の他方に応じた色で表示してもよい。さらに、手術の対象とするポリープが複数存在する場合には、所定のマークに手術すべき順番を付して表示してもよい。 The display control unit 40f causes the display unit 80 to display at least the organ model created by the model creation unit 40b and the surgery plan created by the surgery plan creation unit 40e. The display unit 80 is, for example, a display device 50. Specifically, the display control unit 40f indicates the position of the polyp to be operated on by displaying a predetermined mark on the organ model. In order to discriminately display the malignancy and the rate of progression of the polyp, the display control unit 40f may display a predetermined mark in a size corresponding to one of the malignancy and the rate of progression of the polyp, and display the predetermined mark. It may be displayed in a color corresponding to either the malignancy of the polyp or the rate of progression. Further, when there are a plurality of polyps to be operated on, a predetermined mark may be displayed with an order in which the operation should be performed.
 表示制御部40fは、手術の対象のポリープの位置を特定するポリープ情報(以降、対象ポリープ情報と記す)に加えて、手術対象外のポリープの位置を特定するポリープ情報(以降、対象外ポリープ情報と記す)を、表示部80に表示させてもよい。また、手術計画作成部40eは、臓器モデル上における挿入部先端の現在位置を特定する現在位置情報を、表示部80に表示させてもよい。表示制御部40fは、これらの補助情報(臓器モデル、ポリープ情報、現在位置情報など)を、例えばライブ画像の隣に並べて表示する。なお、補助情報は、医師の操作に応じて、ライブ画像と切り替えて表示されてもよい。 In addition to the polyp information that specifies the position of the polyp that is the target of surgery (hereinafter referred to as the target polyp information), the display control unit 40f has the polyp information that identifies the position of the polyp that is not the target of surgery (hereinafter, the non-target polyp information). May be displayed on the display unit 80. Further, the operation planning unit 40e may display the current position information for specifying the current position of the tip of the insertion portion on the organ model on the display unit 80. The display control unit 40f displays these auxiliary information (organ model, polyp information, current position information, etc.) side by side next to, for example, a live image. The auxiliary information may be displayed by switching to the live image according to the operation of the doctor.
 なお、表示部80の一例である表示装置50は、例えば、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、CRTディスプレイ、LEDマトリクスパネル、電子ペーパー、プロジェクタなどであり、その他の種類の表示装置であってもよい。また、表示装置50は、立体的に画像を表示してもよい。表示装置50による3D画像の表示方式は、特に限定されず、任意の表示方式が採用し得る。例えば、裸眼式であってもよく、術者が装着した眼鏡などとの組み合わせで立体画像を表示する方式であってもよい。 The display device 50, which is an example of the display unit 80, is, for example, a liquid crystal display, a plasma display, an organic EL display, a CRT display, an LED matrix panel, electronic paper, a projector, or the like, and is another type of display device. May be good. Further, the display device 50 may display an image three-dimensionally. The display method of the 3D image by the display device 50 is not particularly limited, and any display method can be adopted. For example, it may be a naked eye type, or a method of displaying a stereoscopic image in combination with eyeglasses worn by the operator.
 以上のように構成された手術支援システム1によれば、与えられた手術の制約条件の下で手術の対象とすべきポリープを特定し、その対象とすべきポリープの位置を特定する情報を含む手術計画を作成することができる。従って、作成された手術計画が医師に提示されることで、医師は、手術計画を参考にして手術対象を判断することができるため、手術中の限られた時間内で適切な判断を行うことが可能となる。また、内視鏡検査の制約条件の更新に伴って手術計画も実質的にリアルタイムで更新される。このため、医師は、内視鏡検査中に刻々と変化する患者の状況に合わせて手術を行うことが可能となり、与えられた制約条件の下で最適な治療を患者に提供することが可能となる。 According to the surgery support system 1 configured as described above, the polyp to be the target of the surgery is specified under the given constraints of the surgery, and the information for specifying the position of the polyp to be the target is included. Can make a surgical plan. Therefore, by presenting the created surgery plan to the doctor, the doctor can judge the surgery target with reference to the surgery plan, and make an appropriate decision within the limited time during the surgery. Is possible. In addition, the surgical plan is updated in substantially real time as the endoscopy constraints are updated. For this reason, doctors can perform surgery according to the patient's ever-changing conditions during endoscopy, and can provide patients with optimal treatment under given constraints. Become.
 図5は、一実施形態に係る手術支援システムが行う処理のフローチャートである。図6は、モデル表示領域の表示例を示した図である。図7は、手術計画選択画面の表示例を示した図である。図8は、手術計画選択画面の別の表示例を示した図である。図9は、モデル表示領域に表示される手術計画が更新される様子を示した図である。以下、図5から図9を参照しながら、手術支援システム1によって行われる内視鏡検査中に行われる手術を支援する手術支援方法について具体的に説明する。 FIG. 5 is a flowchart of processing performed by the surgery support system according to the embodiment. FIG. 6 is a diagram showing a display example of the model display area. FIG. 7 is a diagram showing a display example of the operation plan selection screen. FIG. 8 is a diagram showing another display example of the operation plan selection screen. FIG. 9 is a diagram showing how the surgical plan displayed in the model display area is updated. Hereinafter, the surgical support method for supporting the surgery performed during the endoscopy performed by the surgical support system 1 will be specifically described with reference to FIGS. 5 to 9.
 検査が開始されると、まず、手術支援システム1は、初期設定の入力を受け付ける(ステップS1)。ここでは、手術支援装置40は、後続の処理において必要な種々の情報を設定する。具体的には、手術支援装置40のプロセッサ41は、医師の入力に従って、患者Paの情報を所定のデータベースから抽出し、基本情報として設定する。基本情報は、例えば、患者Paの氏名、人種、年齢、性別、ライフスタイル(喫煙の有無、飲酒の有無など)、病歴などを含んでいる。また、過去に受けた大腸内視鏡検査やその他の検査の情報などが含まれてもよい。また、プロセッサ41は、手術の制約条件の入力を受け付けて、その制約条件を内視鏡検査開始時点における制約条件として設定する。手術の制約条件には、許容される手術費用、許容される手術時間、許容される出血量、術者のスキルレベル、患者情報が含まれる。さらに、プロセッサ41は、内視鏡10に対する医師の操作を検出することで、基準位置と基準姿勢を設定する。例えば、医師がベッド2に寝かされた患者Paの肛門に内視鏡10の先端を合わせた状態で所定の操作を行うことで、プロセッサ41は、検出された位置及び姿勢を基準位置及び基準姿勢として登録する。これにより、これ以降に手術支援装置40によって生成される空間配置情報が、基準位置と基準姿勢によって定義された三次元直交座標系上における空間配置の情報として作成される。 When the examination is started, the surgery support system 1 first accepts the input of the initial setting (step S1). Here, the surgery support device 40 sets various information necessary for subsequent processing. Specifically, the processor 41 of the surgery support device 40 extracts the information of the patient Pa from a predetermined database according to the input of the doctor and sets it as the basic information. The basic information includes, for example, the patient Pa's name, race, age, gender, lifestyle (whether smoking, drinking, etc.), medical history, and the like. It may also include information on colonoscopy and other examinations received in the past. Further, the processor 41 receives the input of the constraint condition of the operation and sets the constraint condition as the constraint condition at the start of the endoscopy. Surgical constraints include permissible surgical costs, permissible surgery time, permissible bleeding volume, surgeon skill level, and patient information. Further, the processor 41 sets the reference position and the reference posture by detecting the operation of the doctor with respect to the endoscope 10. For example, when the doctor performs a predetermined operation with the tip of the endoscope 10 aligned with the anus of the patient Pa laid on the bed 2, the processor 41 sets the detected position and posture as the reference position and the reference. Register as a posture. As a result, the spatial arrangement information generated by the surgical support device 40 thereafter is created as the spatial arrangement information on the three-dimensional Cartesian coordinate system defined by the reference position and the reference posture.
 初期設定が終了すると、医師は、大腸へ内視鏡10の挿入を開始し、肛門から直腸、結腸、盲腸の順に内視鏡10を進めて、大腸の最奥部まで内視鏡10を到達させる。この肛門から大腸最奥部まで内視鏡10を挿入する期間を挿入期間と称し、その後の引き抜き期間と区別する。なお、検査期間は、挿入期間と引き抜き期間から構成される。引き抜き期間は、内視鏡10を最奥部から肛門に向かって引き抜く期間であり、医師は主に引き抜き期間中に、大腸内を詳細に観察しながらポリープの除去手術を行う。 When the initial setting is completed, the doctor starts inserting the endoscope 10 into the large intestine, advances the endoscope 10 in the order of the anus, the rectum, the colon, and the cecum, and reaches the endoscope 10 to the innermost part of the large intestine. Let me. The period during which the endoscope 10 is inserted from the anus to the innermost part of the large intestine is referred to as an insertion period, and is distinguished from the subsequent withdrawal period. The inspection period consists of an insertion period and a withdrawal period. The withdrawal period is a period during which the endoscope 10 is withdrawn from the innermost part toward the anus, and the doctor mainly performs a polyp removal operation while observing the inside of the large intestine in detail during the withdrawal period.
 手術支援システム1は、内視鏡画像と空間配置情報を取得し(ステップS2)、取得した情報に基づいて臓器モデルを作成する(ステップS3)。さらに、手術支援システム1は、内視鏡画像から検出されたポリープの悪性度と進行速度を算出する(ステップS4)。その後、挿入期間中であれば(ステップS5YES)、手術支援システム1は、臓器モデル及びポリープ情報を含む補助情報を、ライブ画像と共に表示する(ステップS6)。挿入期間中の動作についてさらに詳細に説明すると以下のとおりである。 The surgery support system 1 acquires an endoscopic image and spatial arrangement information (step S2), and creates an organ model based on the acquired information (step S3). Further, the surgical support system 1 calculates the malignancy and the rate of progression of the polyp detected from the endoscopic image (step S4). Then, during the insertion period (step S5YES), the surgical support system 1 displays auxiliary information including the organ model and polyp information together with the live image (step S6). The operation during the insertion period will be described in more detail as follows.
 ステップS2では、内視鏡10が撮像した内視鏡画像に対して、画像処理装置20が所定の画像処理を施して手術支援装置40へ出力する。その後、手術支援装置40のプロセッサ41は、画像処理装置20から例えば30fpsで画像取込装置44によって取り込まれた内視鏡画像を取得する。さらに、プロセッサ41は、内視鏡画像の取り込みと同期して、磁気センサ12での検出結果に基づいて空間配置検出装置45によって作成された空間配置情報を取得する。このようにして、手術支援システム1は、内視鏡画像とその内視鏡画像に対応する空間配置情報を定期的に取得する。 In step S2, the image processing device 20 performs predetermined image processing on the endoscope image captured by the endoscope 10 and outputs it to the surgery support device 40. After that, the processor 41 of the surgery support device 40 acquires the endoscopic image captured by the image capture device 44 from the image processing device 20 at, for example, 30 fps. Further, the processor 41 acquires the spatial arrangement information created by the spatial arrangement detecting device 45 based on the detection result by the magnetic sensor 12 in synchronization with the acquisition of the endoscopic image. In this way, the surgery support system 1 periodically acquires the endoscopic image and the spatial arrangement information corresponding to the endoscopic image.
 ステップS3では、プロセッサ41は、ステップS2で取得した内視鏡画像と空間配置情報を用いて、患者Paの大腸モデルを作成する。手術支援装置40では、プロセッサ41が30fpsで得られる連続した内視鏡画像から複数の特徴点を抽出し、Visual SLAMなどの手法により特徴点の座標情報を算出する。そして、これらの特徴点の座標情報を用いることで、患者Paの大腸の三次元構造を示す大腸モデルを作成する。なお、プロセッサ41では、磁気センサ12を用いて取得した挿入部先端の位置と姿勢を示す空間配置情報を用いることで、画像情報のみから特徴点の座標情報を算出する場合と比較して、高速かつ高精度に特徴点の座標情報を算出することが可能となっている。 In step S3, the processor 41 creates a large intestine model of patient Pa using the endoscopic image and spatial arrangement information acquired in step S2. In the surgery support device 40, the processor 41 extracts a plurality of feature points from continuous endoscopic images obtained at 30 fps, and calculates the coordinate information of the feature points by a method such as Visual SLAM. Then, by using the coordinate information of these feature points, a large intestine model showing the three-dimensional structure of the large intestine of patient Pa is created. The processor 41 uses the spatial arrangement information indicating the position and orientation of the tip of the insertion portion acquired by using the magnetic sensor 12, and is faster than the case where the coordinate information of the feature point is calculated only from the image information. Moreover, it is possible to calculate the coordinate information of the feature points with high accuracy.
 ステップS4では、プロセッサ41は、ステップS1で設定された基本情報に基づいて学習済みモデルを選択し、選択した学習済みモデルに内視鏡画像を入力する。そして、プロセッサ41は、学習済みモデルを用いることで、内視鏡画像内にポリープが存在する場合にはポリープの位置を検出し、検出したポリープの悪性度と進行速度に応じて内視鏡画像を分類する。分類された内視鏡画像はステップS8での手術計画作成時の除去優先度算出のための情報として使用される。 In step S4, the processor 41 selects a trained model based on the basic information set in step S1, and inputs an endoscopic image to the selected trained model. Then, the processor 41 detects the position of the polyp when the polyp is present in the endoscopic image by using the trained model, and the endoscopic image according to the malignancy and the progress rate of the detected polyp. To classify. The classified endoscopic images are used as information for calculating the removal priority at the time of creating the surgical plan in step S8.
 ステップS6では、プロセッサ41は、臓器モデルとポリープ情報とを含む補助情報を表示装置50に表示させる。具体的には、プロセッサ41は、図6に示すように、表示装置50に、ライブ画像L1を表示するライブ画像表示領域51の隣のモデル表示領域52上にステップS3で作成した臓器モデルM1を、表示させ、さらに、表示装置50に、臓器モデルM1上にステップS4で検出したポリープ情報を、表示させる。ポリープ情報は、臓器モデルM1上における大腸内のポリープの位置を特定する情報であればよく、例えば、図6に示すポリープ情報Pのように、臓器モデルM1上におけるポリープの位置に表示される所定のマーク(この例では、黒丸)であってもよい。なお、ポリープ情報Pは、そのポリープの悪性度に応じた態様(例えば、大きさ、色など)で表示されてもよく、また、そのポリープの進行度に応じた態様(例えば、大きさ、色など)で表示されてもよい。また、臓器モデルM1上に表示されている現在位置情報Cは、臓器モデルM1上における挿入部先端の現在位置を特定する情報である。現在位置情報Cは、最新の空間配置情報に基づいて作成される。 In step S6, the processor 41 causes the display device 50 to display auxiliary information including the organ model and polyp information. Specifically, as shown in FIG. 6, the processor 41 displays the organ model M1 created in step S3 on the model display area 52 next to the live image display area 51 for displaying the live image L1 on the display device 50. , And further, the display device 50 displays the polyp information detected in step S4 on the organ model M1. The polyp information may be any information that identifies the position of the polyp in the large intestine on the organ model M1. For example, as in the polyp information P shown in FIG. 6, a predetermined value displayed at the position of the polyp on the organ model M1. Mark (black circle in this example) may be used. The polyp information P may be displayed in an aspect (for example, size, color, etc.) according to the malignancy of the polyp, and may be displayed in an aspect (for example, size, color, etc.) according to the degree of progression of the polyp. Etc.) may be displayed. Further, the current position information C displayed on the organ model M1 is information for specifying the current position of the tip of the insertion portion on the organ model M1. The current position information C is created based on the latest spatial arrangement information.
 挿入期間中に、ステップS2からステップS6の処理が繰り返し実行されることで、表示装置50にライブ画像とともに表示される補助情報が随時更新される。図6には、挿入期間中に補助情報が更新される様子が示されている。臓器モデルM1は、内視鏡10を下行結腸の途中まで挿入したときに作成された臓器モデルであり、臓器モデルM1上には、3つのポリープ情報が表示されている。臓器モデルM2は、内視鏡10を横行結腸の途中まで挿入したときに作成された臓器モデルであり、臓器モデルM2上には、臓器モデルM1と同じ3つのポリープ情報が表示されている。臓器モデルM3は、内視鏡10を盲腸まで挿入したときに作成された臓器モデルであり、臓器モデルM3上には、5つのポリープ情報が表示されている。 During the insertion period, the processes of steps S2 to S6 are repeatedly executed, so that the auxiliary information displayed on the display device 50 together with the live image is updated at any time. FIG. 6 shows how the auxiliary information is updated during the insertion period. The organ model M1 is an organ model created when the endoscope 10 is inserted halfway into the descending colon, and three polyp information is displayed on the organ model M1. The organ model M2 is an organ model created when the endoscope 10 is inserted halfway through the transverse colon, and the same three polyp information as the organ model M1 is displayed on the organ model M2. The organ model M3 is an organ model created when the endoscope 10 is inserted into the cecum, and five polyp information is displayed on the organ model M3.
 挿入期間が終了すると(ステップS5NO)、手術支援システム1は、制約条件を取得し(ステップS7)、取得した制約条件下で手術計画を作成する(ステップS8)。なお、挿入期間の終了は、空間配置情報の履歴から算出される挿入部先端の移動軌跡に基づいて判定してもよい。例えば、プロセッサ41は、撮像素子11が過去の通ったルートを引き返していることを検出した場合に、挿入期間が終了したと判定してもよい。 When the insertion period ends (step S5NO), the surgery support system 1 acquires the constraint condition (step S7) and creates an operation plan under the acquired constraint condition (step S8). The end of the insertion period may be determined based on the movement locus of the tip of the insertion portion calculated from the history of the spatial arrangement information. For example, when the processor 41 detects that the image sensor 11 is returning the route taken in the past, it may determine that the insertion period has ended.
 ステップS7では、プロセッサ41は、まず、ステップS1で設定した、内視鏡検査開始時点における制約条件を取得する。次に、プロセッサ41は、内視鏡検査開始から現在までの間で変化した制約条件を更新する。プロセッサ41は、例えば、許容される手術時間から内視鏡検査開始から現在までの経過時間を減算することで算出された時間を新たな許容される手術時間として設定する。さらに、プロセッサ41は、内視鏡検査開始から現在までの間で明らかになった制約条件を追加する。プロセッサ41は、例えば、挿入期間中に検出されたポリープの位置、大きさ、悪性度などから各ポリープの除去手術の難易度や除去によって生じる出血量を特定し、制約条件として追加する。なお、出血量は、ポリープの表面形状に対する出血量を学習した学習済みモデルを用いて、推定してもよい。 In step S7, the processor 41 first acquires the constraint condition at the start of endoscopy set in step S1. Next, the processor 41 updates the constraints that have changed from the start of the endoscopy to the present. The processor 41 sets, for example, a time calculated by subtracting the elapsed time from the start of endoscopy to the present from the allowable operation time as a new allowable operation time. In addition, processor 41 adds constraints that have become apparent from the start of endoscopy to the present. The processor 41 identifies, for example, the difficulty of the removal operation of each polyp and the amount of bleeding caused by the removal from the position, size, malignancy, etc. of the polyp detected during the insertion period, and adds it as a constraint condition. The amount of bleeding may be estimated using a learned model in which the amount of bleeding with respect to the surface shape of the polyp has been learned.
 ステップS8では、プロセッサ41は、まず、ステップS4で算出したポリープの悪性度と進行速度とに基づいて、各ポリープの除去優先度を算出する。除去優先度の算出には、例えば、予め記憶装置42に記憶された、ポリープの悪性度のレベルと除去優先度を示す数値との関係と、ポリープの進行速度のレベルと除去優先度を示す数値との関係を用いてもよい。プロセッサ41は、例えば、ポリープの悪性度から導かれる除去優先度を示す数値と、ポリープの進行速度から導かれる除去優先度を示す数値と、を平均することで、各ポリープの総合的な除去優先度を算出してもよい。また、プロセッサ41は、悪性度と進行速度の重み付けを変更することで、ポリープ毎に複数の除去優先度を算出してもよい。 In step S8, the processor 41 first calculates the removal priority of each polyp based on the malignancy and progression rate of the polyps calculated in step S4. In the calculation of the removal priority, for example, the relationship between the malignancy level of the polyp and the numerical value indicating the removal priority, which is stored in the storage device 42 in advance, and the numerical value indicating the progress rate level of the polyp and the removal priority are shown. The relationship with may be used. The processor 41 averages, for example, a numerical value indicating the removal priority derived from the malignancy of the polyp and a numerical value indicating the removal priority derived from the progress rate of the polyp, thereby giving an overall removal priority to each polyp. The degree may be calculated. Further, the processor 41 may calculate a plurality of removal priorities for each polyp by changing the weighting of the malignancy and the progression rate.
 その後、プロセッサ41は、算出した除去優先度とステップS7で取得した制約条件とに基づいて、手術計画を作成する。なお、プロセッサ41は、重み付けを変えてポリープ毎に複数の除去優先度を算出した場合には、手術計画についても複数作成してもよい。その場合、プロセッサ41は、例えば、図7及び図8に示すような手術計画選択画面50aを表示装置50に表示させることで、複数の手術計画を医師に提示してもよく、医師に実行すべき手術計画を選択させてもよい。 After that, the processor 41 creates an operation plan based on the calculated removal priority and the constraint condition acquired in step S7. When the processor 41 calculates a plurality of removal priorities for each polyp by changing the weighting, a plurality of surgical plans may be created. In that case, the processor 41 may present a plurality of operation plans to the doctor by displaying the operation plan selection screen 50a as shown in FIGS. 7 and 8 on the display device 50, and executes the operation plan to the doctor. You may choose the surgical plan to be used.
 なお、図7に示す手術計画OP1は、進行速度よりも悪性度を相対的に優先した手術計画であり、悪性度が比較的高いと判断された盲腸、直腸S状部、下部結腸にできた計3つのポリープを手術対象として提示した様子が示されている。また、図8に示す手術計画OP2は、悪性度よりも進行速度を相対的に優先した手術計画であり、進行速度が比較的高いと判断された盲腸、横行結腸、下行結腸、下部結腸にできた計4つのポリープを手術対象として提示した様子が示されている。なお、臓器モデルM3上に黒丸で示された対象ポリープ情報Tが手術対象のポリープ位置を示し、臓器モデルM3上に白丸で示された非対象ポリープ情報Uが手術対象外のポリープ位置を示している。また、対象ポリープ情報Tの側に付された番号は、手術順序を示していて、基本的には、内視鏡が大腸内を移動する方向、つまり、大腸最奥部から肛門に向う方向、に沿って順番に番号が付されている。 The surgical plan OP1 shown in FIG. 7 is a surgical plan in which the malignancy is relatively prioritized over the rate of progression, and is formed in the cecum, rectal sigmoid, and lower colon judged to be relatively high in malignancy. It is shown that a total of three polyps were presented as surgical targets. In addition, the surgical plan OP2 shown in FIG. 8 is a surgical plan in which the progression rate is relatively prioritized over the malignancy, and can be formed in the cecum, transverse colon, descending colon, and lower colon, which are judged to have a relatively high progression rate. It is shown that a total of four polyps were presented as surgical targets. The target polyp information T indicated by a black circle on the organ model M3 indicates the position of the polyp to be operated on, and the non-target polyp information U indicated by a white circle on the organ model M3 indicates the position of the polyp not to be operated on. There is. In addition, the number assigned to the side of the target polyp information T indicates the surgical order, and basically, the direction in which the endoscope moves in the large intestine, that is, the direction from the innermost part of the large intestine toward the anus. Numbered in order along.
 プロセッサ41は、例えば、手術計画選択画面50a上のボタン(ボタン53、ボタン54)操作に応じて、複数の手術計画を切り替えて表示装置50に表示させてもよく、医師が手術開始ボタン55を押下することで、内視鏡検査において実施する手術計画を確定してもよい。 The processor 41 may switch a plurality of surgery plans and display them on the display device 50 in response to the operation of the buttons (buttons 53 and 54) on the surgery plan selection screen 50a, for example, and the doctor presses the surgery start button 55. By pressing, the surgical plan to be performed in the endoscopy may be confirmed.
 医師が手術計画選択画面50aにおいて手術計画を選択し(ステップS9YES)、引き抜き期間が開始されると、プロセッサ41は、手術計画選択画面50aを閉じて、表示装置50に、モデル表示領域52に臓器モデルM3と選択された手術計画を、表示させる(ステップS10)。以降では、手術計画OP1が選択された場合を例に説明する。 When the doctor selects the surgery plan on the surgery plan selection screen 50a (step S9YES) and the withdrawal period is started, the processor 41 closes the surgery plan selection screen 50a and displays the organ on the display device 50 and the model display area 52. The model M3 and the selected surgical plan are displayed (step S10). Hereinafter, the case where the operation plan OP1 is selected will be described as an example.
 引き抜き期間中、手術支援システム1は、内視鏡画像と空間配置情報を取得し(ステップS11)、制約条件を更新し(ステップS12)、手術計画を更新する(ステップS13)。引き抜き期間中の動作についてさらに詳細に説明すると以下のとおりである。 During the extraction period, the surgery support system 1 acquires the endoscopic image and the spatial arrangement information (step S11), updates the constraint conditions (step S12), and updates the surgery plan (step S13). The operation during the pull-out period will be described in more detail as follows.
 ステップS11では、内視鏡10が撮像した内視鏡画像に対して、画像処理装置20が所定の画像処理を施して手術支援装置40へ出力する。その後、プロセッサ41は、画像処理装置20から画像取込装置44によって例えば30fpsで取り込まれた内視鏡画像を取得する。さらに、プロセッサ41は、内視鏡画像の取り込みと同期して、磁気センサ12での検出結果に基づいて作成された空間配置情報を取得する。このようにして、手術支援システム1は、内視鏡画像とその内視鏡画像に対応する空間配置情報を定期的に取得する。なお、ステップS11の処理は、挿入期間中のステップS2の処理と同様である。 In step S11, the image processing device 20 performs predetermined image processing on the endoscope image captured by the endoscope 10 and outputs it to the surgery support device 40. After that, the processor 41 acquires an endoscopic image captured by the image capturing device 44 from the image processing device 20 at, for example, 30 fps. Further, the processor 41 acquires the spatial arrangement information created based on the detection result by the magnetic sensor 12 in synchronization with the acquisition of the endoscopic image. In this way, the surgery support system 1 periodically acquires the endoscopic image and the spatial arrangement information corresponding to the endoscopic image. The process of step S11 is the same as the process of step S2 during the insertion period.
 ステップS12では、ステップS7で取得した制約条件を更新する。具体的には、プロセッサ41は、許容される手術時間を、ステップS7と同様に、内視鏡検査開始、つまり、手術開始から現在までの経過時間に基づいて、更新する。また、プロセッサ41は、許容される手術費用を、手術中に行われたポリープ除去の対価に基づいて、更新する。なお、ポリープ除去の対価は、ポリープが除去される度に、医師や看護師が手動で手術支援装置40へ入力してもよく、内視鏡画像から除去されたポリープの大きさなどを検出することで自動的に特定されてもよい。また、プロセッサ41は、許容される出血量を、手術中に撮像された画像から推定された管腔臓器からの出血量に基づいて更新する。 In step S12, the constraint condition acquired in step S7 is updated. Specifically, the processor 41 updates the permissible operation time based on the start of endoscopy, that is, the elapsed time from the start of the operation to the present, as in step S7. Processor 41 also updates the permissible surgical costs based on the price of polyp removal performed during the surgery. The price for removing the polyp may be manually input to the surgical support device 40 by a doctor or a nurse each time the polyp is removed, and the size of the removed polyp is detected from the endoscopic image. It may be automatically specified by. The processor 41 also updates the permissible amount of bleeding based on the amount of bleeding from the luminal organs estimated from the images captured during surgery.
 ステップS13では、プロセッサ41は、各ポリープの除去優先度とステップS12で更新された制約条件とに基づいて手術計画を再作成し、モデル表示領域52に表示される手術計画を新たに作成した手術計画に更新する。 In step S13, the processor 41 recreates the surgical plan based on the removal priority of each polyp and the constraints updated in step S12, and newly creates the surgical plan displayed in the model display area 52. Update to plan.
 引き抜き期間中に、ステップS10からステップS13の処理が繰り返し実行されることで、表示装置50にライブ画像とともに表示される手術計画が随時更新される。図9には、引き抜き期間中に手術計画が、手術計画OP1、手術計画OP1a、手術計画OP1b又は手術計画OP1cの順に、更新される様子が示されている。 During the withdrawal period, the processes of steps S10 to S13 are repeatedly executed, so that the surgical plan displayed on the display device 50 together with the live image is updated at any time. FIG. 9 shows how the surgery plan is updated in the order of surgery plan OP1, surgery plan OP1a, surgery plan OP1b or surgery plan OP1c during the withdrawal period.
 手術計画OP1は、引き抜き期間開始直後の手術計画であり、臓器モデルM3上に表示された3つの対象ポリープ情報Tが含まれている。手術計画OP1aは、盲腸にできたポリープPOをスネア15で切除した直後の手術計画である。手術計画OP1aでは、盲腸にできたポリープPOに対応する対象ポリープ情報Tが処置済み情報Fに更新され、残りの2つの対象ポリープ情報Tに更新された処理順序が付されている。手術計画OP1bは、盲腸にできたポリープPOを切除後しばらく時間が経過した後の手術計画であり、ポリープPOを切除後に想定以上に出血したケースの手術計画である。手術計画OP1cは、盲腸にできたポリープPOを切除後しばらく時間が経過した後の手術計画であり、ポリープPOを切除後に想定よりも出血量が少なかったケースの手術計画である。手術計画OP1bには、許容される出血量が急激に低下した結果、直腸S状部に生じたポリープが手術対象から除外された様子が示されている。また、手術計画OP1cには、許容される出血量に余裕ができた結果、下行結腸に生じたポリープが手術対象に加えられた様子が示されている。 The surgical plan OP1 is a surgical plan immediately after the start of the withdrawal period, and includes three target polyp information T displayed on the organ model M3. The surgical plan OP1a is a surgical plan immediately after the polyp PO formed in the cecum is excised with the snare 15. In the operation plan OP1a, the target polyp information T corresponding to the polyp PO formed in the cecum is updated to the treated information F, and the remaining two target polyp information T are given the updated processing order. The surgical plan OP1b is a surgical plan after a while has passed after the removal of the polyp PO formed in the cecum, and is a surgical plan for a case in which bleeding occurs more than expected after the removal of the polyp PO. The surgical plan OP1c is a surgical plan after a while has passed after the removal of the polyp PO formed in the cecum, and is a surgical plan for the case where the amount of bleeding is less than expected after the removal of the polyp PO. The surgical plan OP1b shows that the polyps formed in the rectal sigmoid region were excluded from the surgical target as a result of the sharp decrease in the allowable amount of bleeding. In addition, the surgical plan OP1c shows that a polyp formed in the descending colon was added to the surgical target as a result of having a margin in the allowable amount of bleeding.
 引き抜き期間が終了して内視鏡10が大腸から抜去されると(ステップS14YES)、手術支援システム1は、図5に示す処理を終了する。 When the extraction period ends and the endoscope 10 is removed from the large intestine (step S14YES), the surgery support system 1 ends the process shown in FIG.
 以上のように、手術支援システム1が図5に示す処理を行うことで、処置すべきポリープを特定する情報を含む手術計画が内視鏡検査中に医師に提示されるため、医師は処置すべきポリープを適切に判断しながら効率よく手術を行うことができる。また、内視鏡検査中の状況を反映して手術計画が更新されるため、急な状況変化にも適切に対応することができる。 As described above, when the operation support system 1 performs the process shown in FIG. 5, the operation plan including the information identifying the polyp to be treated is presented to the doctor during the endoscopy, so that the doctor treats it. It is possible to perform surgery efficiently while appropriately determining the polyp to be used. In addition, since the surgery plan is updated to reflect the situation during endoscopy, it is possible to respond appropriately to sudden changes in the situation.
 上述した実施形態は、発明の理解を容易にするための具体例を示したものであり、本発明の実施形態はこれらに限定されるものではない。手術支援システム、手術支援方法、及び、プログラムは、特許請求の範囲の記載を逸脱しない範囲において、さまざまな変形、変更が可能である。 The above-described embodiments show specific examples for facilitating the understanding of the invention, and the embodiments of the present invention are not limited thereto. The surgical support system, surgical support method, and program can be variously modified and modified without departing from the description of the claims.
 上述した実施形態では、挿入期間中に臓器モデルの作成とポリープの悪性度及び進行速度の算出とを行う例を示したが、これらの処理は、引き抜き期間中にも行われてもよい。即ち、引き抜き期間中に制約条件と除去優先度を更新し、更新された制約条件と除去優先度に基づいて手術計画を更新してもよい。 In the above-described embodiment, an example of creating an organ model and calculating the malignancy and progression rate of the polyp during the insertion period has been shown, but these processes may also be performed during the extraction period. That is, the constraints and removal priorities may be updated during the withdrawal period, and the surgical plan may be updated based on the updated constraints and removal priorities.
 また、上述した実施形態では、管腔臓器の立体的構造を示す臓器モデルを内視鏡画像から抽出された特徴点の三次元座標情報を用いて作成する例を示したが、臓器モデルは、三次元モデルに限らない。臓器モデルは、例えば、管腔臓器を俯瞰した二次元モデルであってもよい。また、臓器モデルは、上述した三次元モデルや二次元モデルのような立体的な構造を示すモデルにも限らない。管腔臓器を平面に投影したモデルや管腔臓器の断面形状を示すモデルなど、平面的なモデルであってもよい。 Further, in the above-described embodiment, an example is shown in which an organ model showing a three-dimensional structure of a luminal organ is created by using three-dimensional coordinate information of feature points extracted from an endoscopic image. Not limited to 3D models. The organ model may be, for example, a two-dimensional model that gives a bird's-eye view of the luminal organ. Further, the organ model is not limited to a model showing a three-dimensional structure such as the above-mentioned three-dimensional model and two-dimensional model. It may be a planar model such as a model in which a luminal organ is projected on a plane or a model showing a cross-sectional shape of the luminal organ.
 また、上述した実施形態では、磁気センサを用いて撮像素子11の位置と姿勢を含む空間配置を検出する例を示したが、撮像素子11の空間配置を検出する手段は磁気センサに限らない。例えば、内視鏡10の形状を検出するセンサと、内視鏡10の挿入量を検出するセンサと、を用いて、撮像素子11の空間配置を検出してもよい。挿入部に挿通されている操作ワイヤの牽引量を測定することで挿入部先端の空間配置を推定してもよい。また、操作ワイヤを牽引・弛緩させる操作部に対する操作履歴から挿入部先端の空間配置を推定してもよい。また、牽引量や操作履歴に挿入部先端に設けられたジャイロセンサの検出情報を組み合わせて挿入部先端の空間配置を推定してもよい。さらに、内視鏡10以外の装置から得た情報により挿入部先端の空間配置を推定してもよく、内視鏡10以外の装置は、例えば、医用画像機器などであってもよい。 Further, in the above-described embodiment, an example of detecting the spatial arrangement including the position and orientation of the image sensor 11 by using the magnetic sensor is shown, but the means for detecting the spatial arrangement of the image sensor 11 is not limited to the magnetic sensor. For example, the spatial arrangement of the image pickup element 11 may be detected by using a sensor that detects the shape of the endoscope 10 and a sensor that detects the insertion amount of the endoscope 10. The spatial arrangement of the tip of the insertion portion may be estimated by measuring the traction amount of the operation wire inserted through the insertion portion. Further, the spatial arrangement of the tip of the insertion portion may be estimated from the operation history of the operation portion for pulling and relaxing the operation wire. Further, the spatial arrangement of the tip of the insertion portion may be estimated by combining the traction amount and the operation history with the detection information of the gyro sensor provided at the tip of the insertion portion. Further, the spatial arrangement of the tip of the insertion portion may be estimated from the information obtained from the device other than the endoscope 10, and the device other than the endoscope 10 may be, for example, a medical imaging device.
1・・・手術支援システム、10・・・内視鏡、11・・・撮像素子、12・・・磁気センサ、40・・・手術支援装置40a・・・取得部、40b・・・モデル作成部、40c・・・除去優先度算出部、40d・・・制約条件管理部、40e・・・手術計画作成部、40f・・・表示制御部、41・・・プロセッサ、42・・・記憶装置、45・・・空間配置検出装置、50・・・表示装置、80・・・表示部、C・・・現在位置情報、M1~M3・・・臓器モデル、OP1、OP1a、OP1b、OP1c、OP2・・・手術計画、P・・・ポリープ位置情報、Pa・・・患者、PTM・・・学習済みモデル、T・・・対象ポリープ情報、U・・・非対象ポリープ情報 1 ... Surgery support system, 10 ... Endoscope, 11 ... Imaging element, 12 ... Magnetic sensor, 40 ... Surgery support device 40a ... Acquisition unit, 40b ... Model creation Unit, 40c ... Removal priority calculation unit, 40d ... Constraint condition management unit, 40e ... Surgical plan creation unit, 40f ... Display control unit, 41 ... Processor, 42 ... Storage device , 45 ... Spatial layout detection device, 50 ... Display device, 80 ... Display unit, C ... Current position information, M1 to M3 ... Organ model, OP1, OP1a, OP1b, OP1c, OP2・ ・ ・ Surgery plan, P ・ ・ ・ Polyp position information, Pa ・ ・ ・ Patient, PTM ・ ・ ・ Learned model, T ・ ・ ・ Target polyp information, U ・ ・ ・ Non-target polyp information

Claims (17)

  1.  患者の管腔臓器内で内視鏡の撮像部によって撮像された画像と前記内視鏡の挿入部先端の空間配置情報とに基づいて、前記患者の前記管腔臓器の臓器モデルを作成するモデル作成部と、
     少なくとも手術の制約条件に基づいて、前記画像から特定された前記管腔臓器内のポリープのうちの前記手術の対象とするポリープの前記臓器モデル上における位置を特定する情報を含む手術計画を作成し、前記手術中における前記制約条件の更新に伴って、前記手術計画を更新する手術計画作成部と、を備える
    ことを特徴とする手術支援システム。
    A model for creating an organ model of the patient's tract organ based on the image captured by the imaging unit of the endoscope in the patient's tract organ and the spatial arrangement information of the tip of the insertion part of the endoscope. With the creation department
    Create a surgical plan containing information that identifies the position of the polyp to be operated on among the polyps in the luminal organ identified from the image on the organ model, at least based on the surgical constraints. , A surgery support system comprising:, a surgery plan creation unit that updates the surgery plan with the update of the constraint condition during the surgery.
  2.  請求項1に記載の手術支援システムにおいて、さらに、
     前記管腔臓器内のポリープの悪性度と前記管腔臓器内のポリープの進行速度とに基づいて、当該ポリープの除去優先度を算出する除去優先度算出部と、を備え、
     前記手術計画作成部は、前記制約条件と前記除去優先度とに基づいて、前記手術計画を作成する
    ことを特徴とする手術支援システム。
    In the surgical support system according to claim 1, further
    A removal priority calculation unit that calculates the removal priority of the polyp based on the malignancy of the polyp in the tract organ and the progress rate of the polyp in the luminal organ is provided.
    The surgery support system is characterized in that the surgery plan creation unit creates the surgery plan based on the constraint condition and the removal priority.
  3.  請求項2に記載の手術支援システムにおいて、さらに、
     ポリープの表面形状に対する前記ポリープの悪性度及び進行速度を学習した学習済みモデルを記憶した記憶部を備え、
     前記除去優先度算出部は、前記画像に基づいて、前記学習済みモデルを用いた前記管腔臓器内のポリープの悪性度及び進行速度の推定を行う
    ことを特徴とする手術支援システム。
    In the surgical support system according to claim 2, further
    It is provided with a storage unit that stores a learned model in which the malignancy and progression rate of the polyp with respect to the surface shape of the polyp are learned.
    The removal priority calculation unit is a surgical support system characterized by estimating the malignancy and the rate of progression of polyps in the luminal organ using the learned model based on the image.
  4.  請求項2に記載の手術支援システムにおいて、さらに、
     ポリープの表面形状に対する前記ポリープの悪性度を学習した学習済みモデルと、前記患者の前記管腔臓器の過去の検査結果とを記憶した記憶部を備え、
     前記除去優先度算出部は、
      前記画像に基づいて、前記学習済みモデルを用いた前記管腔臓器内のポリープの悪性度の推定を行い、
      前記画像と前記過去の検査結果とに基づいて、前記管腔臓器内のポリープの進行速度の推定を行う
    ことを特徴とする手術支援システム。
    In the surgical support system according to claim 2, further
    It is provided with a storage unit that stores a learned model in which the malignancy of the polyp with respect to the surface shape of the polyp is learned and the past test results of the luminal organ of the patient.
    The removal priority calculation unit
    Based on the image, the malignancy of the polyp in the luminal organ was estimated using the trained model.
    A surgical support system comprising estimating the progress rate of a polyp in the luminal organ based on the image and the past test result.
  5.  請求項1乃至請求項4のいずれか1項に記載の手術支援システムにおいて、
     前記制約条件は、許容される手術費用、許容される手術時間、許容される出血量、手術の難易度、術者のスキルレベル、患者情報の少なくとも1つを含む
    ことを特徴とする手術支援システム。
    In the surgical support system according to any one of claims 1 to 4.
    The constraint condition includes at least one of acceptable operation cost, allowable operation time, allowable bleeding amount, operation difficulty, operator skill level, and patient information. ..
  6.  請求項5に記載の手術支援システムにおいて、
     前記制約条件は、前記許容される手術費用を含み、
     前記許容される手術費用は、前記手術中に行われたポリープ除去の対価に基づいて更新される
    ことを特徴とする手術支援システム。
    In the surgical support system according to claim 5.
    The constraints include said acceptable surgical costs.
    A surgical support system characterized in that the acceptable surgical costs are renewed based on the price of polyp removal performed during the surgery.
  7.  請求項5又は請求項6に記載の手術支援システムにおいて、
     前記制約条件は、前記許容される手術時間を含み、
     前記許容される手術時間は、前記手術の開始からの経過時間に基づいて更新される
    ことを特徴とする手術支援システム。
    In the surgical support system according to claim 5 or 6.
    The constraints include the permissible operating time.
    A surgical support system characterized in that the allowable surgical time is updated based on the elapsed time from the start of the surgery.
  8.  請求項5乃至請求項7のいずれか1項に記載の手術支援システムにおいて、
     前記制約条件は、前記許容される出血量を含み、
     前記許容される出血量は、前記手術中に前記撮像部によって撮像された画像に基づいて推定された前記管腔臓器からの出血量に基づいて更新される
    ことを特徴とする手術支援システム。
    In the surgical support system according to any one of claims 5 to 7.
    The constraints include the permissible amount of bleeding.
    A surgical support system characterized in that the allowable amount of bleeding is updated based on the amount of bleeding from the luminal organ estimated based on an image captured by the imaging unit during the operation.
  9.  請求項1乃至請求項8のいずれか1項に記載の手術支援システムにおいて、
     前記モデル作成部は、少なくとも前記管腔臓器への前記内視鏡の挿入期間中に得られた前記画像と前記空間配置情報に基づいて、前記臓器モデルを作成する
    ことを特徴とする手術支援システム。
    In the surgical support system according to any one of claims 1 to 8.
    The surgical support system is characterized in that the model creating unit creates the organ model based on the image and the spatial arrangement information obtained at least during the insertion period of the endoscope into the luminal organ. ..
  10.  請求項1乃至請求項9のいずれか1項に記載の手術支援システムにおいて、さらに、
     少なくとも前記臓器モデル及び前記手術計画を表示部に表示させる表示制御部と、を備える
    ことを特徴とする手術支援システム。
    In the surgical support system according to any one of claims 1 to 9, further
    A surgery support system including at least the organ model and a display control unit for displaying the surgery plan on the display unit.
  11.  請求項10に記載の手術支援システムにおいて、
     前記表示制御部は、さらに、前記臓器モデル上における前記挿入部先端の現在位置を特定する現在位置情報を、前記表示部に表示させる
    ことを特徴とする手術支援システム。
    In the surgical support system according to claim 10.
    The display control unit is a surgical support system further characterized in that the display unit displays current position information that specifies the current position of the tip of the insertion unit on the organ model.
  12.  請求項10又は請求項11に記載の手術支援システムにおいて、
     前記表示制御部は、さらに、前記臓器モデル上における前記管腔臓器内のポリープの位置を特定するポリープ情報を、前記表示部に表示させる
    ことを特徴とする手術支援システム。
    In the surgical support system according to claim 10 or 11.
    The display control unit is a surgical support system further characterized in that the display unit displays polyp information that identifies the position of a polyp in the luminal organ on the organ model.
  13.  請求項10乃至請求項12のいずれか1項に記載の手術支援システムにおいて、
     前記表示制御部は、少なくとも前記臓器モデル及び前記手術計画を、前記撮像部で撮像されたライブ画像と並べて又は切り替えて、前記表示部に表示させる
    ことを特徴とする手術支援システム。
    In the surgical support system according to any one of claims 10 to 12.
    The display control unit is a surgery support system characterized in that at least the organ model and the surgery plan are displayed on the display unit side by side or switched with a live image captured by the imaging unit.
  14.  請求項1乃至請求項13のいずれか1項に記載の手術支援システムにおいて、さらに、
     前記撮像部と、前記挿入部先端の空間配置を検出するセンサと、を含む前記内視鏡を備える
    ことを特徴とする手術支援システム。
    In the surgical support system according to any one of claims 1 to 13, further
    A surgical support system including the endoscope including the imaging unit and a sensor for detecting the spatial arrangement of the tip of the insertion unit.
  15.  請求項14に記載の手術支援システムにおいて、
     前記内視鏡は、大腸用内視鏡であり、
     前記管腔臓器は、大腸である
    ことを特徴とする手術支援システム。
    In the surgical support system according to claim 14.
    The endoscope is an endoscope for the large intestine.
    A surgical support system characterized in that the luminal organ is the large intestine.
  16.  コンピュータが、
     患者の管腔臓器内で内視鏡の撮像部によって撮像された画像と前記内視鏡の挿入部先端の空間配置情報とに基づいて、前記患者の前記管腔臓器の臓器モデルを作成し、
     少なくとも手術の制約条件に基づいて、前記画像から特定された前記管腔臓器内のポリープのうちの前記手術の対象とするポリープの前記臓器モデル上における位置を特定する情報を含む手術計画を作成し、 
     前記手術中における前記制約条件の更新に伴って、前記手術計画を更新する
    ことを特徴とする手術支援方法。
    The computer
    Based on the image captured by the imaging unit of the endoscope in the patient's tract organ and the spatial arrangement information of the tip of the insertion part of the endoscope, an organ model of the patient's tract organ is created.
    Create a surgical plan containing information that identifies the position of the polyp to be operated on in the organ model among the polyps in the luminal organ identified from the image, at least based on the constraints of the operation. ,
    A surgical support method comprising updating the surgical plan in accordance with the updating of the constraints during the surgery.
  17.  コンピュータに、
     患者の管腔臓器内で内視鏡の撮像部によって撮像された画像と前記内視鏡の挿入部先端の空間配置情報とに基づいて、前記患者の前記管腔臓器の臓器モデルを作成し、
     少なくとも手術の制約条件に基づいて、前記画像から特定された前記管腔臓器内のポリープのうちの前記手術の対象とするポリープの前記臓器モデル上における位置を特定する情報を含む手術計画を作成し、
     前記手術中における前記制約条件の更新に伴って、前記手術計画を更新する
    処理を実行させることを特徴とするプログラム。
    On the computer
    Based on the image captured by the imaging unit of the endoscope in the patient's tract organ and the spatial arrangement information of the tip of the insertion part of the endoscope, an organ model of the patient's tract organ is created.
    Create a surgical plan containing information that identifies the position of the polyp to be operated on in the organ model among the polyps in the luminal organ identified from the image, at least based on the constraints of the operation. ,
    A program characterized in that a process of updating an operation plan is executed in association with an update of the constraint condition during the operation.
PCT/JP2020/009495 2020-03-05 2020-03-05 Surgery support system, surgery support method, and program WO2021176665A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009495 WO2021176665A1 (en) 2020-03-05 2020-03-05 Surgery support system, surgery support method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009495 WO2021176665A1 (en) 2020-03-05 2020-03-05 Surgery support system, surgery support method, and program

Publications (1)

Publication Number Publication Date
WO2021176665A1 true WO2021176665A1 (en) 2021-09-10

Family

ID=77613262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009495 WO2021176665A1 (en) 2020-03-05 2020-03-05 Surgery support system, surgery support method, and program

Country Status (1)

Country Link
WO (1) WO2021176665A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070055128A1 (en) * 2005-08-24 2007-03-08 Glossop Neil D System, method and devices for navigated flexible endoscopy
JP2008017997A (en) * 2006-07-12 2008-01-31 Hitachi Medical Corp Surgery support navigation system
US20120027260A1 (en) * 2009-04-03 2012-02-02 Koninklijke Philips Electronics N.V. Associating a sensor position with an image position
US8795157B1 (en) * 2006-10-10 2014-08-05 Visionsense Ltd. Method and system for navigating within a colon
WO2018159363A1 (en) * 2017-03-01 2018-09-07 富士フイルム株式会社 Endoscope system and method for operating same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070055128A1 (en) * 2005-08-24 2007-03-08 Glossop Neil D System, method and devices for navigated flexible endoscopy
JP2008017997A (en) * 2006-07-12 2008-01-31 Hitachi Medical Corp Surgery support navigation system
US8795157B1 (en) * 2006-10-10 2014-08-05 Visionsense Ltd. Method and system for navigating within a colon
US20120027260A1 (en) * 2009-04-03 2012-02-02 Koninklijke Philips Electronics N.V. Associating a sensor position with an image position
WO2018159363A1 (en) * 2017-03-01 2018-09-07 富士フイルム株式会社 Endoscope system and method for operating same

Similar Documents

Publication Publication Date Title
JP4153963B2 (en) Endoscope insertion shape detection device
WO2021176664A1 (en) Inspection support system, inspection support method, and program
JP5486432B2 (en) Image processing apparatus, operating method thereof, and program
JP2008301968A (en) Endoscopic image processing apparatus
EP3040015A1 (en) Capsular endoscopic system
CN110868907A (en) Endoscopic diagnosis support system, endoscopic diagnosis support program, and endoscopic diagnosis support method
JP7423740B2 (en) Endoscope system, lumen structure calculation device, operation method of lumen structure calculation device, and lumen structure information creation program
WO2020165978A1 (en) Image recording device, image recording method, and image recording program
US20220409030A1 (en) Processing device, endoscope system, and method for processing captured image
JP6956853B2 (en) Diagnostic support device, diagnostic support program, and diagnostic support method
CN114980793A (en) Endoscopic examination support device, method for operating endoscopic examination support device, and program
JP2008119259A (en) Endoscope insertion shape analysis system
JP2024041891A (en) Computer program, method of generating learning model, and assistance device
JP2008054763A (en) Medical image diagnostic apparatus
JP2022071617A (en) Endoscope system and endoscope device
WO2021176665A1 (en) Surgery support system, surgery support method, and program
KR20200132174A (en) AR colonoscopy system and method for monitoring by using the same
JP2005131317A (en) Insertion support system
JP7221786B2 (en) Blood vessel diameter measurement system
US20220202284A1 (en) Endoscope processor, training device, information processing method, training method and program
JP2021194268A (en) Blood vessel observation system and blood vessel observation method
WO2023195103A1 (en) Inspection assistance system and inspection assistance method
JP7448923B2 (en) Information processing device, operating method of information processing device, and program
WO2024028925A1 (en) Endoscope inspection assistance device, endoscope inspection assistance method, and recording medium
JP2020160505A (en) Medical image processing device, medical observation system, image processing method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP